• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ScopeInfo.h"
19 #include "clang/Sema/AnalysisBasedWarnings.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTMutationListener.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/EvaluatedExprVisitor.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExprObjC.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Lex/LiteralSupport.h"
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/Designator.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/SemaFixItUtils.h"
43 #include "clang/Sema/Template.h"
44 #include "TreeTransform.h"
45 using namespace clang;
46 using namespace sema;
47 
48 /// \brief Determine whether the use of this declaration is valid, without
49 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)50 bool Sema::CanUseDecl(NamedDecl *D) {
51   // See if this is an auto-typed variable whose initializer we are parsing.
52   if (ParsingInitForAutoVars.count(D))
53     return false;
54 
55   // See if this is a deleted function.
56   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57     if (FD->isDeleted())
58       return false;
59   }
60 
61   // See if this function is unavailable.
62   if (D->getAvailability() == AR_Unavailable &&
63       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64     return false;
65 
66   return true;
67 }
68 
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)69 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
70                               NamedDecl *D, SourceLocation Loc,
71                               const ObjCInterfaceDecl *UnknownObjCClass) {
72   // See if this declaration is unavailable or deprecated.
73   std::string Message;
74   AvailabilityResult Result = D->getAvailability(&Message);
75   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
76     if (Result == AR_Available) {
77       const DeclContext *DC = ECD->getDeclContext();
78       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
79         Result = TheEnumDecl->getAvailability(&Message);
80     }
81 
82   switch (Result) {
83     case AR_Available:
84     case AR_NotYetIntroduced:
85       break;
86 
87     case AR_Deprecated:
88       S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
89       break;
90 
91     case AR_Unavailable:
92       if (S.getCurContextAvailability() != AR_Unavailable) {
93         if (Message.empty()) {
94           if (!UnknownObjCClass)
95             S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
96           else
97             S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
98               << D->getDeclName();
99         }
100         else
101           S.Diag(Loc, diag::err_unavailable_message)
102             << D->getDeclName() << Message;
103           S.Diag(D->getLocation(), diag::note_unavailable_here)
104           << isa<FunctionDecl>(D) << false;
105       }
106       break;
107     }
108     return Result;
109 }
110 
111 /// \brief Emit a note explaining that this function is deleted or unavailable.
NoteDeletedFunction(FunctionDecl * Decl)112 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
113   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
114 
115   if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
116     // If the method was explicitly defaulted, point at that declaration.
117     if (!Method->isImplicit())
118       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
119 
120     // Try to diagnose why this special member function was implicitly
121     // deleted. This might fail, if that reason no longer applies.
122     CXXSpecialMember CSM = getSpecialMember(Method);
123     if (CSM != CXXInvalid)
124       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
125 
126     return;
127   }
128 
129   Diag(Decl->getLocation(), diag::note_unavailable_here)
130     << 1 << Decl->isDeleted();
131 }
132 
133 /// \brief Determine whether the use of this declaration is valid, and
134 /// emit any corresponding diagnostics.
135 ///
136 /// This routine diagnoses various problems with referencing
137 /// declarations that can occur when using a declaration. For example,
138 /// it might warn if a deprecated or unavailable declaration is being
139 /// used, or produce an error (and return true) if a C++0x deleted
140 /// function is being used.
141 ///
142 /// \returns true if there was an error (this declaration cannot be
143 /// referenced), false otherwise.
144 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)145 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
146                              const ObjCInterfaceDecl *UnknownObjCClass) {
147   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
148     // If there were any diagnostics suppressed by template argument deduction,
149     // emit them now.
150     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
151       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
152     if (Pos != SuppressedDiagnostics.end()) {
153       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
154       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
155         Diag(Suppressed[I].first, Suppressed[I].second);
156 
157       // Clear out the list of suppressed diagnostics, so that we don't emit
158       // them again for this specialization. However, we don't obsolete this
159       // entry from the table, because we want to avoid ever emitting these
160       // diagnostics again.
161       Suppressed.clear();
162     }
163   }
164 
165   // See if this is an auto-typed variable whose initializer we are parsing.
166   if (ParsingInitForAutoVars.count(D)) {
167     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
168       << D->getDeclName();
169     return true;
170   }
171 
172   // See if this is a deleted function.
173   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
174     if (FD->isDeleted()) {
175       Diag(Loc, diag::err_deleted_function_use);
176       NoteDeletedFunction(FD);
177       return true;
178     }
179   }
180   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
181 
182   // Warn if this is used but marked unused.
183   if (D->hasAttr<UnusedAttr>())
184     Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
185   return false;
186 }
187 
188 /// \brief Retrieve the message suffix that should be added to a
189 /// diagnostic complaining about the given function being deleted or
190 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)191 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
192   // FIXME: C++0x implicitly-deleted special member functions could be
193   // detected here so that we could improve diagnostics to say, e.g.,
194   // "base class 'A' had a deleted copy constructor".
195   if (FD->isDeleted())
196     return std::string();
197 
198   std::string Message;
199   if (FD->getAvailability(&Message))
200     return ": " + Message;
201 
202   return std::string();
203 }
204 
205 /// DiagnoseSentinelCalls - This routine checks whether a call or
206 /// message-send is to a declaration with the sentinel attribute, and
207 /// if so, it checks that the requirements of the sentinel are
208 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,Expr ** args,unsigned numArgs)209 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
210                                  Expr **args, unsigned numArgs) {
211   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
212   if (!attr)
213     return;
214 
215   // The number of formal parameters of the declaration.
216   unsigned numFormalParams;
217 
218   // The kind of declaration.  This is also an index into a %select in
219   // the diagnostic.
220   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
221 
222   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
223     numFormalParams = MD->param_size();
224     calleeType = CT_Method;
225   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
226     numFormalParams = FD->param_size();
227     calleeType = CT_Function;
228   } else if (isa<VarDecl>(D)) {
229     QualType type = cast<ValueDecl>(D)->getType();
230     const FunctionType *fn = 0;
231     if (const PointerType *ptr = type->getAs<PointerType>()) {
232       fn = ptr->getPointeeType()->getAs<FunctionType>();
233       if (!fn) return;
234       calleeType = CT_Function;
235     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
236       fn = ptr->getPointeeType()->castAs<FunctionType>();
237       calleeType = CT_Block;
238     } else {
239       return;
240     }
241 
242     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
243       numFormalParams = proto->getNumArgs();
244     } else {
245       numFormalParams = 0;
246     }
247   } else {
248     return;
249   }
250 
251   // "nullPos" is the number of formal parameters at the end which
252   // effectively count as part of the variadic arguments.  This is
253   // useful if you would prefer to not have *any* formal parameters,
254   // but the language forces you to have at least one.
255   unsigned nullPos = attr->getNullPos();
256   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
257   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
258 
259   // The number of arguments which should follow the sentinel.
260   unsigned numArgsAfterSentinel = attr->getSentinel();
261 
262   // If there aren't enough arguments for all the formal parameters,
263   // the sentinel, and the args after the sentinel, complain.
264   if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
265     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
266     Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
267     return;
268   }
269 
270   // Otherwise, find the sentinel expression.
271   Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
272   if (!sentinelExpr) return;
273   if (sentinelExpr->isValueDependent()) return;
274   if (Context.isSentinelNullExpr(sentinelExpr)) return;
275 
276   // Pick a reasonable string to insert.  Optimistically use 'nil' or
277   // 'NULL' if those are actually defined in the context.  Only use
278   // 'nil' for ObjC methods, where it's much more likely that the
279   // variadic arguments form a list of object pointers.
280   SourceLocation MissingNilLoc
281     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
282   std::string NullValue;
283   if (calleeType == CT_Method &&
284       PP.getIdentifierInfo("nil")->hasMacroDefinition())
285     NullValue = "nil";
286   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
287     NullValue = "NULL";
288   else
289     NullValue = "(void*) 0";
290 
291   if (MissingNilLoc.isInvalid())
292     Diag(Loc, diag::warn_missing_sentinel) << calleeType;
293   else
294     Diag(MissingNilLoc, diag::warn_missing_sentinel)
295       << calleeType
296       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
297   Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
298 }
299 
getExprRange(Expr * E) const300 SourceRange Sema::getExprRange(Expr *E) const {
301   return E ? E->getSourceRange() : SourceRange();
302 }
303 
304 //===----------------------------------------------------------------------===//
305 //  Standard Promotions and Conversions
306 //===----------------------------------------------------------------------===//
307 
308 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)309 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
310   // Handle any placeholder expressions which made it here.
311   if (E->getType()->isPlaceholderType()) {
312     ExprResult result = CheckPlaceholderExpr(E);
313     if (result.isInvalid()) return ExprError();
314     E = result.take();
315   }
316 
317   QualType Ty = E->getType();
318   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
319 
320   if (Ty->isFunctionType())
321     E = ImpCastExprToType(E, Context.getPointerType(Ty),
322                           CK_FunctionToPointerDecay).take();
323   else if (Ty->isArrayType()) {
324     // In C90 mode, arrays only promote to pointers if the array expression is
325     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
326     // type 'array of type' is converted to an expression that has type 'pointer
327     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
328     // that has type 'array of type' ...".  The relevant change is "an lvalue"
329     // (C90) to "an expression" (C99).
330     //
331     // C++ 4.2p1:
332     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
333     // T" can be converted to an rvalue of type "pointer to T".
334     //
335     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
336       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
337                             CK_ArrayToPointerDecay).take();
338   }
339   return Owned(E);
340 }
341 
CheckForNullPointerDereference(Sema & S,Expr * E)342 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
343   // Check to see if we are dereferencing a null pointer.  If so,
344   // and if not volatile-qualified, this is undefined behavior that the
345   // optimizer will delete, so warn about it.  People sometimes try to use this
346   // to get a deterministic trap and are surprised by clang's behavior.  This
347   // only handles the pattern "*null", which is a very syntactic check.
348   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
349     if (UO->getOpcode() == UO_Deref &&
350         UO->getSubExpr()->IgnoreParenCasts()->
351           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
352         !UO->getType().isVolatileQualified()) {
353     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
354                           S.PDiag(diag::warn_indirection_through_null)
355                             << UO->getSubExpr()->getSourceRange());
356     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
357                         S.PDiag(diag::note_indirection_through_null));
358   }
359 }
360 
DefaultLvalueConversion(Expr * E)361 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
362   // Handle any placeholder expressions which made it here.
363   if (E->getType()->isPlaceholderType()) {
364     ExprResult result = CheckPlaceholderExpr(E);
365     if (result.isInvalid()) return ExprError();
366     E = result.take();
367   }
368 
369   // C++ [conv.lval]p1:
370   //   A glvalue of a non-function, non-array type T can be
371   //   converted to a prvalue.
372   if (!E->isGLValue()) return Owned(E);
373 
374   QualType T = E->getType();
375   assert(!T.isNull() && "r-value conversion on typeless expression?");
376 
377   // We don't want to throw lvalue-to-rvalue casts on top of
378   // expressions of certain types in C++.
379   if (getLangOpts().CPlusPlus &&
380       (E->getType() == Context.OverloadTy ||
381        T->isDependentType() ||
382        T->isRecordType()))
383     return Owned(E);
384 
385   // The C standard is actually really unclear on this point, and
386   // DR106 tells us what the result should be but not why.  It's
387   // generally best to say that void types just doesn't undergo
388   // lvalue-to-rvalue at all.  Note that expressions of unqualified
389   // 'void' type are never l-values, but qualified void can be.
390   if (T->isVoidType())
391     return Owned(E);
392 
393   CheckForNullPointerDereference(*this, E);
394 
395   // C++ [conv.lval]p1:
396   //   [...] If T is a non-class type, the type of the prvalue is the
397   //   cv-unqualified version of T. Otherwise, the type of the
398   //   rvalue is T.
399   //
400   // C99 6.3.2.1p2:
401   //   If the lvalue has qualified type, the value has the unqualified
402   //   version of the type of the lvalue; otherwise, the value has the
403   //   type of the lvalue.
404   if (T.hasQualifiers())
405     T = T.getUnqualifiedType();
406 
407   UpdateMarkingForLValueToRValue(E);
408 
409   ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
410                                                   E, 0, VK_RValue));
411 
412   // C11 6.3.2.1p2:
413   //   ... if the lvalue has atomic type, the value has the non-atomic version
414   //   of the type of the lvalue ...
415   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
416     T = Atomic->getValueType().getUnqualifiedType();
417     Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
418                                          Res.get(), 0, VK_RValue));
419   }
420 
421   return Res;
422 }
423 
DefaultFunctionArrayLvalueConversion(Expr * E)424 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
425   ExprResult Res = DefaultFunctionArrayConversion(E);
426   if (Res.isInvalid())
427     return ExprError();
428   Res = DefaultLvalueConversion(Res.take());
429   if (Res.isInvalid())
430     return ExprError();
431   return move(Res);
432 }
433 
434 
435 /// UsualUnaryConversions - Performs various conversions that are common to most
436 /// operators (C99 6.3). The conversions of array and function types are
437 /// sometimes suppressed. For example, the array->pointer conversion doesn't
438 /// apply if the array is an argument to the sizeof or address (&) operators.
439 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)440 ExprResult Sema::UsualUnaryConversions(Expr *E) {
441   // First, convert to an r-value.
442   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
443   if (Res.isInvalid())
444     return Owned(E);
445   E = Res.take();
446 
447   QualType Ty = E->getType();
448   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
449 
450   // Half FP is a bit different: it's a storage-only type, meaning that any
451   // "use" of it should be promoted to float.
452   if (Ty->isHalfType())
453     return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
454 
455   // Try to perform integral promotions if the object has a theoretically
456   // promotable type.
457   if (Ty->isIntegralOrUnscopedEnumerationType()) {
458     // C99 6.3.1.1p2:
459     //
460     //   The following may be used in an expression wherever an int or
461     //   unsigned int may be used:
462     //     - an object or expression with an integer type whose integer
463     //       conversion rank is less than or equal to the rank of int
464     //       and unsigned int.
465     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
466     //
467     //   If an int can represent all values of the original type, the
468     //   value is converted to an int; otherwise, it is converted to an
469     //   unsigned int. These are called the integer promotions. All
470     //   other types are unchanged by the integer promotions.
471 
472     QualType PTy = Context.isPromotableBitField(E);
473     if (!PTy.isNull()) {
474       E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
475       return Owned(E);
476     }
477     if (Ty->isPromotableIntegerType()) {
478       QualType PT = Context.getPromotedIntegerType(Ty);
479       E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
480       return Owned(E);
481     }
482   }
483   return Owned(E);
484 }
485 
486 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
487 /// do not have a prototype. Arguments that have type float are promoted to
488 /// double. All other argument types are converted by UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)489 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
490   QualType Ty = E->getType();
491   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
492 
493   ExprResult Res = UsualUnaryConversions(E);
494   if (Res.isInvalid())
495     return Owned(E);
496   E = Res.take();
497 
498   // If this is a 'float' (CVR qualified or typedef) promote to double.
499   if (Ty->isSpecificBuiltinType(BuiltinType::Float))
500     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
501 
502   // C++ performs lvalue-to-rvalue conversion as a default argument
503   // promotion, even on class types, but note:
504   //   C++11 [conv.lval]p2:
505   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
506   //     operand or a subexpression thereof the value contained in the
507   //     referenced object is not accessed. Otherwise, if the glvalue
508   //     has a class type, the conversion copy-initializes a temporary
509   //     of type T from the glvalue and the result of the conversion
510   //     is a prvalue for the temporary.
511   // FIXME: add some way to gate this entire thing for correctness in
512   // potentially potentially evaluated contexts.
513   if (getLangOpts().CPlusPlus && E->isGLValue() &&
514       ExprEvalContexts.back().Context != Unevaluated) {
515     ExprResult Temp = PerformCopyInitialization(
516                        InitializedEntity::InitializeTemporary(E->getType()),
517                                                 E->getExprLoc(),
518                                                 Owned(E));
519     if (Temp.isInvalid())
520       return ExprError();
521     E = Temp.get();
522   }
523 
524   return Owned(E);
525 }
526 
527 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
528 /// will warn if the resulting type is not a POD type, and rejects ObjC
529 /// interfaces passed by value.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)530 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
531                                                   FunctionDecl *FDecl) {
532   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
533     // Strip the unbridged-cast placeholder expression off, if applicable.
534     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
535         (CT == VariadicMethod ||
536          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
537       E = stripARCUnbridgedCast(E);
538 
539     // Otherwise, do normal placeholder checking.
540     } else {
541       ExprResult ExprRes = CheckPlaceholderExpr(E);
542       if (ExprRes.isInvalid())
543         return ExprError();
544       E = ExprRes.take();
545     }
546   }
547 
548   ExprResult ExprRes = DefaultArgumentPromotion(E);
549   if (ExprRes.isInvalid())
550     return ExprError();
551   E = ExprRes.take();
552 
553   // Don't allow one to pass an Objective-C interface to a vararg.
554   if (E->getType()->isObjCObjectType() &&
555     DiagRuntimeBehavior(E->getLocStart(), 0,
556                         PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
557                           << E->getType() << CT))
558     return ExprError();
559 
560   // Complain about passing non-POD types through varargs. However, don't
561   // perform this check for incomplete types, which we can get here when we're
562   // in an unevaluated context.
563   if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) {
564     // C++0x [expr.call]p7:
565     //   Passing a potentially-evaluated argument of class type (Clause 9)
566     //   having a non-trivial copy constructor, a non-trivial move constructor,
567     //   or a non-trivial destructor, with no corresponding parameter,
568     //   is conditionally-supported with implementation-defined semantics.
569     bool TrivialEnough = false;
570     if (getLangOpts().CPlusPlus0x && !E->getType()->isDependentType())  {
571       if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
572         if (Record->hasTrivialCopyConstructor() &&
573             Record->hasTrivialMoveConstructor() &&
574             Record->hasTrivialDestructor()) {
575           DiagRuntimeBehavior(E->getLocStart(), 0,
576             PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
577               << E->getType() << CT);
578           TrivialEnough = true;
579         }
580       }
581     }
582 
583     if (!TrivialEnough &&
584         getLangOpts().ObjCAutoRefCount &&
585         E->getType()->isObjCLifetimeType())
586       TrivialEnough = true;
587 
588     if (TrivialEnough) {
589       // Nothing to diagnose. This is okay.
590     } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
591                           PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
592                             << getLangOpts().CPlusPlus0x << E->getType()
593                             << CT)) {
594       // Turn this into a trap.
595       CXXScopeSpec SS;
596       SourceLocation TemplateKWLoc;
597       UnqualifiedId Name;
598       Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
599                          E->getLocStart());
600       ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
601                                             true, false);
602       if (TrapFn.isInvalid())
603         return ExprError();
604 
605       ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
606                                       MultiExprArg(), E->getLocEnd());
607       if (Call.isInvalid())
608         return ExprError();
609 
610       ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
611                                     Call.get(), E);
612       if (Comma.isInvalid())
613         return ExprError();
614       E = Comma.get();
615     }
616   }
617   // c++ rules are enforced elsewhere.
618   if (!getLangOpts().CPlusPlus &&
619       RequireCompleteType(E->getExprLoc(), E->getType(),
620                           diag::err_call_incomplete_argument))
621     return ExprError();
622 
623   return Owned(E);
624 }
625 
626 /// \brief Converts an integer to complex float type.  Helper function of
627 /// UsualArithmeticConversions()
628 ///
629 /// \return false if the integer expression is an integer type and is
630 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)631 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
632                                                   ExprResult &ComplexExpr,
633                                                   QualType IntTy,
634                                                   QualType ComplexTy,
635                                                   bool SkipCast) {
636   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
637   if (SkipCast) return false;
638   if (IntTy->isIntegerType()) {
639     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
640     IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
641     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
642                                   CK_FloatingRealToComplex);
643   } else {
644     assert(IntTy->isComplexIntegerType());
645     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
646                                   CK_IntegralComplexToFloatingComplex);
647   }
648   return false;
649 }
650 
651 /// \brief Takes two complex float types and converts them to the same type.
652 /// Helper function of UsualArithmeticConversions()
653 static QualType
handleComplexFloatToComplexFloatConverstion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)654 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
655                                             ExprResult &RHS, QualType LHSType,
656                                             QualType RHSType,
657                                             bool IsCompAssign) {
658   int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
659 
660   if (order < 0) {
661     // _Complex float -> _Complex double
662     if (!IsCompAssign)
663       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
664     return RHSType;
665   }
666   if (order > 0)
667     // _Complex float -> _Complex double
668     RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
669   return LHSType;
670 }
671 
672 /// \brief Converts otherExpr to complex float and promotes complexExpr if
673 /// necessary.  Helper function of UsualArithmeticConversions()
handleOtherComplexFloatConversion(Sema & S,ExprResult & ComplexExpr,ExprResult & OtherExpr,QualType ComplexTy,QualType OtherTy,bool ConvertComplexExpr,bool ConvertOtherExpr)674 static QualType handleOtherComplexFloatConversion(Sema &S,
675                                                   ExprResult &ComplexExpr,
676                                                   ExprResult &OtherExpr,
677                                                   QualType ComplexTy,
678                                                   QualType OtherTy,
679                                                   bool ConvertComplexExpr,
680                                                   bool ConvertOtherExpr) {
681   int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
682 
683   // If just the complexExpr is complex, the otherExpr needs to be converted,
684   // and the complexExpr might need to be promoted.
685   if (order > 0) { // complexExpr is wider
686     // float -> _Complex double
687     if (ConvertOtherExpr) {
688       QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
689       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
690       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
691                                       CK_FloatingRealToComplex);
692     }
693     return ComplexTy;
694   }
695 
696   // otherTy is at least as wide.  Find its corresponding complex type.
697   QualType result = (order == 0 ? ComplexTy :
698                                   S.Context.getComplexType(OtherTy));
699 
700   // double -> _Complex double
701   if (ConvertOtherExpr)
702     OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
703                                     CK_FloatingRealToComplex);
704 
705   // _Complex float -> _Complex double
706   if (ConvertComplexExpr && order < 0)
707     ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
708                                       CK_FloatingComplexCast);
709 
710   return result;
711 }
712 
713 /// \brief Handle arithmetic conversion with complex types.  Helper function of
714 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)715 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
716                                              ExprResult &RHS, QualType LHSType,
717                                              QualType RHSType,
718                                              bool IsCompAssign) {
719   // if we have an integer operand, the result is the complex type.
720   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
721                                              /*skipCast*/false))
722     return LHSType;
723   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
724                                              /*skipCast*/IsCompAssign))
725     return RHSType;
726 
727   // This handles complex/complex, complex/float, or float/complex.
728   // When both operands are complex, the shorter operand is converted to the
729   // type of the longer, and that is the type of the result. This corresponds
730   // to what is done when combining two real floating-point operands.
731   // The fun begins when size promotion occur across type domains.
732   // From H&S 6.3.4: When one operand is complex and the other is a real
733   // floating-point type, the less precise type is converted, within it's
734   // real or complex domain, to the precision of the other type. For example,
735   // when combining a "long double" with a "double _Complex", the
736   // "double _Complex" is promoted to "long double _Complex".
737 
738   bool LHSComplexFloat = LHSType->isComplexType();
739   bool RHSComplexFloat = RHSType->isComplexType();
740 
741   // If both are complex, just cast to the more precise type.
742   if (LHSComplexFloat && RHSComplexFloat)
743     return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
744                                                        LHSType, RHSType,
745                                                        IsCompAssign);
746 
747   // If only one operand is complex, promote it if necessary and convert the
748   // other operand to complex.
749   if (LHSComplexFloat)
750     return handleOtherComplexFloatConversion(
751         S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
752         /*convertOtherExpr*/ true);
753 
754   assert(RHSComplexFloat);
755   return handleOtherComplexFloatConversion(
756       S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
757       /*convertOtherExpr*/ !IsCompAssign);
758 }
759 
760 /// \brief Hande arithmetic conversion from integer to float.  Helper function
761 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)762 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
763                                            ExprResult &IntExpr,
764                                            QualType FloatTy, QualType IntTy,
765                                            bool ConvertFloat, bool ConvertInt) {
766   if (IntTy->isIntegerType()) {
767     if (ConvertInt)
768       // Convert intExpr to the lhs floating point type.
769       IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
770                                     CK_IntegralToFloating);
771     return FloatTy;
772   }
773 
774   // Convert both sides to the appropriate complex float.
775   assert(IntTy->isComplexIntegerType());
776   QualType result = S.Context.getComplexType(FloatTy);
777 
778   // _Complex int -> _Complex float
779   if (ConvertInt)
780     IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
781                                   CK_IntegralComplexToFloatingComplex);
782 
783   // float -> _Complex float
784   if (ConvertFloat)
785     FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
786                                     CK_FloatingRealToComplex);
787 
788   return result;
789 }
790 
791 /// \brief Handle arithmethic conversion with floating point types.  Helper
792 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)793 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
794                                       ExprResult &RHS, QualType LHSType,
795                                       QualType RHSType, bool IsCompAssign) {
796   bool LHSFloat = LHSType->isRealFloatingType();
797   bool RHSFloat = RHSType->isRealFloatingType();
798 
799   // If we have two real floating types, convert the smaller operand
800   // to the bigger result.
801   if (LHSFloat && RHSFloat) {
802     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
803     if (order > 0) {
804       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
805       return LHSType;
806     }
807 
808     assert(order < 0 && "illegal float comparison");
809     if (!IsCompAssign)
810       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
811     return RHSType;
812   }
813 
814   if (LHSFloat)
815     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
816                                       /*convertFloat=*/!IsCompAssign,
817                                       /*convertInt=*/ true);
818   assert(RHSFloat);
819   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
820                                     /*convertInt=*/ true,
821                                     /*convertFloat=*/!IsCompAssign);
822 }
823 
824 /// \brief Handle conversions with GCC complex int extension.  Helper function
825 /// of UsualArithmeticConversions()
826 // FIXME: if the operands are (int, _Complex long), we currently
827 // don't promote the complex.  Also, signedness?
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)828 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
829                                            ExprResult &RHS, QualType LHSType,
830                                            QualType RHSType,
831                                            bool IsCompAssign) {
832   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
833   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
834 
835   if (LHSComplexInt && RHSComplexInt) {
836     int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
837                                               RHSComplexInt->getElementType());
838     assert(order && "inequal types with equal element ordering");
839     if (order > 0) {
840       // _Complex int -> _Complex long
841       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
842       return LHSType;
843     }
844 
845     if (!IsCompAssign)
846       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
847     return RHSType;
848   }
849 
850   if (LHSComplexInt) {
851     // int -> _Complex int
852     // FIXME: This needs to take integer ranks into account
853     RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
854                               CK_IntegralCast);
855     RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
856     return LHSType;
857   }
858 
859   assert(RHSComplexInt);
860   // int -> _Complex int
861   // FIXME: This needs to take integer ranks into account
862   if (!IsCompAssign) {
863     LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
864                               CK_IntegralCast);
865     LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
866   }
867   return RHSType;
868 }
869 
870 /// \brief Handle integer arithmetic conversions.  Helper function of
871 /// UsualArithmeticConversions()
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)872 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
873                                         ExprResult &RHS, QualType LHSType,
874                                         QualType RHSType, bool IsCompAssign) {
875   // The rules for this case are in C99 6.3.1.8
876   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
877   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
878   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
879   if (LHSSigned == RHSSigned) {
880     // Same signedness; use the higher-ranked type
881     if (order >= 0) {
882       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
883       return LHSType;
884     } else if (!IsCompAssign)
885       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
886     return RHSType;
887   } else if (order != (LHSSigned ? 1 : -1)) {
888     // The unsigned type has greater than or equal rank to the
889     // signed type, so use the unsigned type
890     if (RHSSigned) {
891       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
892       return LHSType;
893     } else if (!IsCompAssign)
894       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
895     return RHSType;
896   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
897     // The two types are different widths; if we are here, that
898     // means the signed type is larger than the unsigned type, so
899     // use the signed type.
900     if (LHSSigned) {
901       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
902       return LHSType;
903     } else if (!IsCompAssign)
904       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
905     return RHSType;
906   } else {
907     // The signed type is higher-ranked than the unsigned type,
908     // but isn't actually any bigger (like unsigned int and long
909     // on most 32-bit systems).  Use the unsigned type corresponding
910     // to the signed type.
911     QualType result =
912       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
913     RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
914     if (!IsCompAssign)
915       LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
916     return result;
917   }
918 }
919 
920 /// UsualArithmeticConversions - Performs various conversions that are common to
921 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
922 /// routine returns the first non-arithmetic type found. The client is
923 /// responsible for emitting appropriate error diagnostics.
924 /// FIXME: verify the conversion rules for "complex int" are consistent with
925 /// GCC.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)926 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
927                                           bool IsCompAssign) {
928   if (!IsCompAssign) {
929     LHS = UsualUnaryConversions(LHS.take());
930     if (LHS.isInvalid())
931       return QualType();
932   }
933 
934   RHS = UsualUnaryConversions(RHS.take());
935   if (RHS.isInvalid())
936     return QualType();
937 
938   // For conversion purposes, we ignore any qualifiers.
939   // For example, "const float" and "float" are equivalent.
940   QualType LHSType =
941     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
942   QualType RHSType =
943     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
944 
945   // If both types are identical, no conversion is needed.
946   if (LHSType == RHSType)
947     return LHSType;
948 
949   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
950   // The caller can deal with this (e.g. pointer + int).
951   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
952     return LHSType;
953 
954   // Apply unary and bitfield promotions to the LHS's type.
955   QualType LHSUnpromotedType = LHSType;
956   if (LHSType->isPromotableIntegerType())
957     LHSType = Context.getPromotedIntegerType(LHSType);
958   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
959   if (!LHSBitfieldPromoteTy.isNull())
960     LHSType = LHSBitfieldPromoteTy;
961   if (LHSType != LHSUnpromotedType && !IsCompAssign)
962     LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
963 
964   // If both types are identical, no conversion is needed.
965   if (LHSType == RHSType)
966     return LHSType;
967 
968   // At this point, we have two different arithmetic types.
969 
970   // Handle complex types first (C99 6.3.1.8p1).
971   if (LHSType->isComplexType() || RHSType->isComplexType())
972     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
973                                         IsCompAssign);
974 
975   // Now handle "real" floating types (i.e. float, double, long double).
976   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
977     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
978                                  IsCompAssign);
979 
980   // Handle GCC complex int extension.
981   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
982     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
983                                       IsCompAssign);
984 
985   // Finally, we have two differing integer types.
986   return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
987                                  IsCompAssign);
988 }
989 
990 //===----------------------------------------------------------------------===//
991 //  Semantic Analysis for various Expression Types
992 //===----------------------------------------------------------------------===//
993 
994 
995 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,MultiTypeArg ArgTypes,MultiExprArg ArgExprs)996 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
997                                 SourceLocation DefaultLoc,
998                                 SourceLocation RParenLoc,
999                                 Expr *ControllingExpr,
1000                                 MultiTypeArg ArgTypes,
1001                                 MultiExprArg ArgExprs) {
1002   unsigned NumAssocs = ArgTypes.size();
1003   assert(NumAssocs == ArgExprs.size());
1004 
1005   ParsedType *ParsedTypes = ArgTypes.release();
1006   Expr **Exprs = ArgExprs.release();
1007 
1008   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1009   for (unsigned i = 0; i < NumAssocs; ++i) {
1010     if (ParsedTypes[i])
1011       (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1012     else
1013       Types[i] = 0;
1014   }
1015 
1016   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1017                                              ControllingExpr, Types, Exprs,
1018                                              NumAssocs);
1019   delete [] Types;
1020   return ER;
1021 }
1022 
1023 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)1024 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1025                                  SourceLocation DefaultLoc,
1026                                  SourceLocation RParenLoc,
1027                                  Expr *ControllingExpr,
1028                                  TypeSourceInfo **Types,
1029                                  Expr **Exprs,
1030                                  unsigned NumAssocs) {
1031   bool TypeErrorFound = false,
1032        IsResultDependent = ControllingExpr->isTypeDependent(),
1033        ContainsUnexpandedParameterPack
1034          = ControllingExpr->containsUnexpandedParameterPack();
1035 
1036   for (unsigned i = 0; i < NumAssocs; ++i) {
1037     if (Exprs[i]->containsUnexpandedParameterPack())
1038       ContainsUnexpandedParameterPack = true;
1039 
1040     if (Types[i]) {
1041       if (Types[i]->getType()->containsUnexpandedParameterPack())
1042         ContainsUnexpandedParameterPack = true;
1043 
1044       if (Types[i]->getType()->isDependentType()) {
1045         IsResultDependent = true;
1046       } else {
1047         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1048         // complete object type other than a variably modified type."
1049         unsigned D = 0;
1050         if (Types[i]->getType()->isIncompleteType())
1051           D = diag::err_assoc_type_incomplete;
1052         else if (!Types[i]->getType()->isObjectType())
1053           D = diag::err_assoc_type_nonobject;
1054         else if (Types[i]->getType()->isVariablyModifiedType())
1055           D = diag::err_assoc_type_variably_modified;
1056 
1057         if (D != 0) {
1058           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1059             << Types[i]->getTypeLoc().getSourceRange()
1060             << Types[i]->getType();
1061           TypeErrorFound = true;
1062         }
1063 
1064         // C11 6.5.1.1p2 "No two generic associations in the same generic
1065         // selection shall specify compatible types."
1066         for (unsigned j = i+1; j < NumAssocs; ++j)
1067           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1068               Context.typesAreCompatible(Types[i]->getType(),
1069                                          Types[j]->getType())) {
1070             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1071                  diag::err_assoc_compatible_types)
1072               << Types[j]->getTypeLoc().getSourceRange()
1073               << Types[j]->getType()
1074               << Types[i]->getType();
1075             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1076                  diag::note_compat_assoc)
1077               << Types[i]->getTypeLoc().getSourceRange()
1078               << Types[i]->getType();
1079             TypeErrorFound = true;
1080           }
1081       }
1082     }
1083   }
1084   if (TypeErrorFound)
1085     return ExprError();
1086 
1087   // If we determined that the generic selection is result-dependent, don't
1088   // try to compute the result expression.
1089   if (IsResultDependent)
1090     return Owned(new (Context) GenericSelectionExpr(
1091                    Context, KeyLoc, ControllingExpr,
1092                    Types, Exprs, NumAssocs, DefaultLoc,
1093                    RParenLoc, ContainsUnexpandedParameterPack));
1094 
1095   SmallVector<unsigned, 1> CompatIndices;
1096   unsigned DefaultIndex = -1U;
1097   for (unsigned i = 0; i < NumAssocs; ++i) {
1098     if (!Types[i])
1099       DefaultIndex = i;
1100     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1101                                         Types[i]->getType()))
1102       CompatIndices.push_back(i);
1103   }
1104 
1105   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1106   // type compatible with at most one of the types named in its generic
1107   // association list."
1108   if (CompatIndices.size() > 1) {
1109     // We strip parens here because the controlling expression is typically
1110     // parenthesized in macro definitions.
1111     ControllingExpr = ControllingExpr->IgnoreParens();
1112     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1113       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1114       << (unsigned) CompatIndices.size();
1115     for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1116          E = CompatIndices.end(); I != E; ++I) {
1117       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1118            diag::note_compat_assoc)
1119         << Types[*I]->getTypeLoc().getSourceRange()
1120         << Types[*I]->getType();
1121     }
1122     return ExprError();
1123   }
1124 
1125   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1126   // its controlling expression shall have type compatible with exactly one of
1127   // the types named in its generic association list."
1128   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1129     // We strip parens here because the controlling expression is typically
1130     // parenthesized in macro definitions.
1131     ControllingExpr = ControllingExpr->IgnoreParens();
1132     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1133       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1134     return ExprError();
1135   }
1136 
1137   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1138   // type name that is compatible with the type of the controlling expression,
1139   // then the result expression of the generic selection is the expression
1140   // in that generic association. Otherwise, the result expression of the
1141   // generic selection is the expression in the default generic association."
1142   unsigned ResultIndex =
1143     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1144 
1145   return Owned(new (Context) GenericSelectionExpr(
1146                  Context, KeyLoc, ControllingExpr,
1147                  Types, Exprs, NumAssocs, DefaultLoc,
1148                  RParenLoc, ContainsUnexpandedParameterPack,
1149                  ResultIndex));
1150 }
1151 
1152 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1153 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1154 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1155                                      unsigned Offset) {
1156   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1157                                         S.getLangOpts());
1158 }
1159 
1160 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1161 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1162 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1163                                                  IdentifierInfo *UDSuffix,
1164                                                  SourceLocation UDSuffixLoc,
1165                                                  ArrayRef<Expr*> Args,
1166                                                  SourceLocation LitEndLoc) {
1167   assert(Args.size() <= 2 && "too many arguments for literal operator");
1168 
1169   QualType ArgTy[2];
1170   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1171     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1172     if (ArgTy[ArgIdx]->isArrayType())
1173       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1174   }
1175 
1176   DeclarationName OpName =
1177     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1178   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1179   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1180 
1181   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1182   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1183                               /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1184     return ExprError();
1185 
1186   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1187 }
1188 
1189 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1190 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1191 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1192 /// multiple tokens.  However, the common case is that StringToks points to one
1193 /// string.
1194 ///
1195 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks,Scope * UDLScope)1196 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1197                          Scope *UDLScope) {
1198   assert(NumStringToks && "Must have at least one string!");
1199 
1200   StringLiteralParser Literal(StringToks, NumStringToks, PP);
1201   if (Literal.hadError)
1202     return ExprError();
1203 
1204   SmallVector<SourceLocation, 4> StringTokLocs;
1205   for (unsigned i = 0; i != NumStringToks; ++i)
1206     StringTokLocs.push_back(StringToks[i].getLocation());
1207 
1208   QualType StrTy = Context.CharTy;
1209   if (Literal.isWide())
1210     StrTy = Context.getWCharType();
1211   else if (Literal.isUTF16())
1212     StrTy = Context.Char16Ty;
1213   else if (Literal.isUTF32())
1214     StrTy = Context.Char32Ty;
1215   else if (Literal.isPascal())
1216     StrTy = Context.UnsignedCharTy;
1217 
1218   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1219   if (Literal.isWide())
1220     Kind = StringLiteral::Wide;
1221   else if (Literal.isUTF8())
1222     Kind = StringLiteral::UTF8;
1223   else if (Literal.isUTF16())
1224     Kind = StringLiteral::UTF16;
1225   else if (Literal.isUTF32())
1226     Kind = StringLiteral::UTF32;
1227 
1228   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1229   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1230     StrTy.addConst();
1231 
1232   // Get an array type for the string, according to C99 6.4.5.  This includes
1233   // the nul terminator character as well as the string length for pascal
1234   // strings.
1235   StrTy = Context.getConstantArrayType(StrTy,
1236                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
1237                                        ArrayType::Normal, 0);
1238 
1239   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1240   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1241                                              Kind, Literal.Pascal, StrTy,
1242                                              &StringTokLocs[0],
1243                                              StringTokLocs.size());
1244   if (Literal.getUDSuffix().empty())
1245     return Owned(Lit);
1246 
1247   // We're building a user-defined literal.
1248   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1249   SourceLocation UDSuffixLoc =
1250     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1251                    Literal.getUDSuffixOffset());
1252 
1253   // Make sure we're allowed user-defined literals here.
1254   if (!UDLScope)
1255     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1256 
1257   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1258   //   operator "" X (str, len)
1259   QualType SizeType = Context.getSizeType();
1260   llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1261   IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1262                                                   StringTokLocs[0]);
1263   Expr *Args[] = { Lit, LenArg };
1264   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1265                                         Args, StringTokLocs.back());
1266 }
1267 
1268 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1269 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1270                        SourceLocation Loc,
1271                        const CXXScopeSpec *SS) {
1272   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1273   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1274 }
1275 
1276 /// BuildDeclRefExpr - Build an expression that references a
1277 /// declaration that does not require a closure capture.
1278 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS)1279 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1280                        const DeclarationNameInfo &NameInfo,
1281                        const CXXScopeSpec *SS) {
1282   if (getLangOpts().CUDA)
1283     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1284       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1285         CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1286                            CalleeTarget = IdentifyCUDATarget(Callee);
1287         if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1288           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1289             << CalleeTarget << D->getIdentifier() << CallerTarget;
1290           Diag(D->getLocation(), diag::note_previous_decl)
1291             << D->getIdentifier();
1292           return ExprError();
1293         }
1294       }
1295 
1296   bool refersToEnclosingScope =
1297     (CurContext != D->getDeclContext() &&
1298      D->getDeclContext()->isFunctionOrMethod());
1299 
1300   DeclRefExpr *E = DeclRefExpr::Create(Context,
1301                                        SS ? SS->getWithLocInContext(Context)
1302                                               : NestedNameSpecifierLoc(),
1303                                        SourceLocation(),
1304                                        D, refersToEnclosingScope,
1305                                        NameInfo, Ty, VK);
1306 
1307   MarkDeclRefReferenced(E);
1308 
1309   // Just in case we're building an illegal pointer-to-member.
1310   FieldDecl *FD = dyn_cast<FieldDecl>(D);
1311   if (FD && FD->isBitField())
1312     E->setObjectKind(OK_BitField);
1313 
1314   return Owned(E);
1315 }
1316 
1317 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1318 /// possibly a list of template arguments.
1319 ///
1320 /// If this produces template arguments, it is permitted to call
1321 /// DecomposeTemplateName.
1322 ///
1323 /// This actually loses a lot of source location information for
1324 /// non-standard name kinds; we should consider preserving that in
1325 /// some way.
1326 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1327 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1328                              TemplateArgumentListInfo &Buffer,
1329                              DeclarationNameInfo &NameInfo,
1330                              const TemplateArgumentListInfo *&TemplateArgs) {
1331   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1332     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1333     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1334 
1335     ASTTemplateArgsPtr TemplateArgsPtr(*this,
1336                                        Id.TemplateId->getTemplateArgs(),
1337                                        Id.TemplateId->NumArgs);
1338     translateTemplateArguments(TemplateArgsPtr, Buffer);
1339     TemplateArgsPtr.release();
1340 
1341     TemplateName TName = Id.TemplateId->Template.get();
1342     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1343     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1344     TemplateArgs = &Buffer;
1345   } else {
1346     NameInfo = GetNameFromUnqualifiedId(Id);
1347     TemplateArgs = 0;
1348   }
1349 }
1350 
1351 /// Diagnose an empty lookup.
1352 ///
1353 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)1354 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1355                                CorrectionCandidateCallback &CCC,
1356                                TemplateArgumentListInfo *ExplicitTemplateArgs,
1357                                llvm::ArrayRef<Expr *> Args) {
1358   DeclarationName Name = R.getLookupName();
1359 
1360   unsigned diagnostic = diag::err_undeclared_var_use;
1361   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1362   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1363       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1364       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1365     diagnostic = diag::err_undeclared_use;
1366     diagnostic_suggest = diag::err_undeclared_use_suggest;
1367   }
1368 
1369   // If the original lookup was an unqualified lookup, fake an
1370   // unqualified lookup.  This is useful when (for example) the
1371   // original lookup would not have found something because it was a
1372   // dependent name.
1373   DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1374   while (DC) {
1375     if (isa<CXXRecordDecl>(DC)) {
1376       LookupQualifiedName(R, DC);
1377 
1378       if (!R.empty()) {
1379         // Don't give errors about ambiguities in this lookup.
1380         R.suppressDiagnostics();
1381 
1382         // During a default argument instantiation the CurContext points
1383         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1384         // function parameter list, hence add an explicit check.
1385         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1386                               ActiveTemplateInstantiations.back().Kind ==
1387             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1388         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1389         bool isInstance = CurMethod &&
1390                           CurMethod->isInstance() &&
1391                           DC == CurMethod->getParent() && !isDefaultArgument;
1392 
1393 
1394         // Give a code modification hint to insert 'this->'.
1395         // TODO: fixit for inserting 'Base<T>::' in the other cases.
1396         // Actually quite difficult!
1397         if (isInstance) {
1398           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1399               CallsUndergoingInstantiation.back()->getCallee());
1400           CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1401               CurMethod->getInstantiatedFromMemberFunction());
1402           if (DepMethod) {
1403             if (getLangOpts().MicrosoftMode)
1404               diagnostic = diag::warn_found_via_dependent_bases_lookup;
1405             Diag(R.getNameLoc(), diagnostic) << Name
1406               << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1407             QualType DepThisType = DepMethod->getThisType(Context);
1408             CheckCXXThisCapture(R.getNameLoc());
1409             CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1410                                        R.getNameLoc(), DepThisType, false);
1411             TemplateArgumentListInfo TList;
1412             if (ULE->hasExplicitTemplateArgs())
1413               ULE->copyTemplateArgumentsInto(TList);
1414 
1415             CXXScopeSpec SS;
1416             SS.Adopt(ULE->getQualifierLoc());
1417             CXXDependentScopeMemberExpr *DepExpr =
1418                 CXXDependentScopeMemberExpr::Create(
1419                     Context, DepThis, DepThisType, true, SourceLocation(),
1420                     SS.getWithLocInContext(Context),
1421                     ULE->getTemplateKeywordLoc(), 0,
1422                     R.getLookupNameInfo(),
1423                     ULE->hasExplicitTemplateArgs() ? &TList : 0);
1424             CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1425           } else {
1426             // FIXME: we should be able to handle this case too. It is correct
1427             // to add this-> here. This is a workaround for PR7947.
1428             Diag(R.getNameLoc(), diagnostic) << Name;
1429           }
1430         } else {
1431           if (getLangOpts().MicrosoftMode)
1432             diagnostic = diag::warn_found_via_dependent_bases_lookup;
1433           Diag(R.getNameLoc(), diagnostic) << Name;
1434         }
1435 
1436         // Do we really want to note all of these?
1437         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1438           Diag((*I)->getLocation(), diag::note_dependent_var_use);
1439 
1440         // Return true if we are inside a default argument instantiation
1441         // and the found name refers to an instance member function, otherwise
1442         // the function calling DiagnoseEmptyLookup will try to create an
1443         // implicit member call and this is wrong for default argument.
1444         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1445           Diag(R.getNameLoc(), diag::err_member_call_without_object);
1446           return true;
1447         }
1448 
1449         // Tell the callee to try to recover.
1450         return false;
1451       }
1452 
1453       R.clear();
1454     }
1455 
1456     // In Microsoft mode, if we are performing lookup from within a friend
1457     // function definition declared at class scope then we must set
1458     // DC to the lexical parent to be able to search into the parent
1459     // class.
1460     if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1461         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1462         DC->getLexicalParent()->isRecord())
1463       DC = DC->getLexicalParent();
1464     else
1465       DC = DC->getParent();
1466   }
1467 
1468   // We didn't find anything, so try to correct for a typo.
1469   TypoCorrection Corrected;
1470   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1471                                     S, &SS, CCC))) {
1472     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1473     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1474     R.setLookupName(Corrected.getCorrection());
1475 
1476     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1477       if (Corrected.isOverloaded()) {
1478         OverloadCandidateSet OCS(R.getNameLoc());
1479         OverloadCandidateSet::iterator Best;
1480         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1481                                         CDEnd = Corrected.end();
1482              CD != CDEnd; ++CD) {
1483           if (FunctionTemplateDecl *FTD =
1484                    dyn_cast<FunctionTemplateDecl>(*CD))
1485             AddTemplateOverloadCandidate(
1486                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1487                 Args, OCS);
1488           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1489             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1490               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1491                                    Args, OCS);
1492         }
1493         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1494           case OR_Success:
1495             ND = Best->Function;
1496             break;
1497           default:
1498             break;
1499         }
1500       }
1501       R.addDecl(ND);
1502       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1503         if (SS.isEmpty())
1504           Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1505             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1506         else
1507           Diag(R.getNameLoc(), diag::err_no_member_suggest)
1508             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1509             << SS.getRange()
1510             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1511         if (ND)
1512           Diag(ND->getLocation(), diag::note_previous_decl)
1513             << CorrectedQuotedStr;
1514 
1515         // Tell the callee to try to recover.
1516         return false;
1517       }
1518 
1519       if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1520         // FIXME: If we ended up with a typo for a type name or
1521         // Objective-C class name, we're in trouble because the parser
1522         // is in the wrong place to recover. Suggest the typo
1523         // correction, but don't make it a fix-it since we're not going
1524         // to recover well anyway.
1525         if (SS.isEmpty())
1526           Diag(R.getNameLoc(), diagnostic_suggest)
1527             << Name << CorrectedQuotedStr;
1528         else
1529           Diag(R.getNameLoc(), diag::err_no_member_suggest)
1530             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1531             << SS.getRange();
1532 
1533         // Don't try to recover; it won't work.
1534         return true;
1535       }
1536     } else {
1537       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1538       // because we aren't able to recover.
1539       if (SS.isEmpty())
1540         Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1541       else
1542         Diag(R.getNameLoc(), diag::err_no_member_suggest)
1543         << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1544         << SS.getRange();
1545       return true;
1546     }
1547   }
1548   R.clear();
1549 
1550   // Emit a special diagnostic for failed member lookups.
1551   // FIXME: computing the declaration context might fail here (?)
1552   if (!SS.isEmpty()) {
1553     Diag(R.getNameLoc(), diag::err_no_member)
1554       << Name << computeDeclContext(SS, false)
1555       << SS.getRange();
1556     return true;
1557   }
1558 
1559   // Give up, we can't recover.
1560   Diag(R.getNameLoc(), diagnostic) << Name;
1561   return true;
1562 }
1563 
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)1564 ExprResult Sema::ActOnIdExpression(Scope *S,
1565                                    CXXScopeSpec &SS,
1566                                    SourceLocation TemplateKWLoc,
1567                                    UnqualifiedId &Id,
1568                                    bool HasTrailingLParen,
1569                                    bool IsAddressOfOperand,
1570                                    CorrectionCandidateCallback *CCC) {
1571   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1572          "cannot be direct & operand and have a trailing lparen");
1573 
1574   if (SS.isInvalid())
1575     return ExprError();
1576 
1577   TemplateArgumentListInfo TemplateArgsBuffer;
1578 
1579   // Decompose the UnqualifiedId into the following data.
1580   DeclarationNameInfo NameInfo;
1581   const TemplateArgumentListInfo *TemplateArgs;
1582   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1583 
1584   DeclarationName Name = NameInfo.getName();
1585   IdentifierInfo *II = Name.getAsIdentifierInfo();
1586   SourceLocation NameLoc = NameInfo.getLoc();
1587 
1588   // C++ [temp.dep.expr]p3:
1589   //   An id-expression is type-dependent if it contains:
1590   //     -- an identifier that was declared with a dependent type,
1591   //        (note: handled after lookup)
1592   //     -- a template-id that is dependent,
1593   //        (note: handled in BuildTemplateIdExpr)
1594   //     -- a conversion-function-id that specifies a dependent type,
1595   //     -- a nested-name-specifier that contains a class-name that
1596   //        names a dependent type.
1597   // Determine whether this is a member of an unknown specialization;
1598   // we need to handle these differently.
1599   bool DependentID = false;
1600   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1601       Name.getCXXNameType()->isDependentType()) {
1602     DependentID = true;
1603   } else if (SS.isSet()) {
1604     if (DeclContext *DC = computeDeclContext(SS, false)) {
1605       if (RequireCompleteDeclContext(SS, DC))
1606         return ExprError();
1607     } else {
1608       DependentID = true;
1609     }
1610   }
1611 
1612   if (DependentID)
1613     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1614                                       IsAddressOfOperand, TemplateArgs);
1615 
1616   // Perform the required lookup.
1617   LookupResult R(*this, NameInfo,
1618                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1619                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1620   if (TemplateArgs) {
1621     // Lookup the template name again to correctly establish the context in
1622     // which it was found. This is really unfortunate as we already did the
1623     // lookup to determine that it was a template name in the first place. If
1624     // this becomes a performance hit, we can work harder to preserve those
1625     // results until we get here but it's likely not worth it.
1626     bool MemberOfUnknownSpecialization;
1627     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1628                        MemberOfUnknownSpecialization);
1629 
1630     if (MemberOfUnknownSpecialization ||
1631         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1632       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1633                                         IsAddressOfOperand, TemplateArgs);
1634   } else {
1635     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1636     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1637 
1638     // If the result might be in a dependent base class, this is a dependent
1639     // id-expression.
1640     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1641       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1642                                         IsAddressOfOperand, TemplateArgs);
1643 
1644     // If this reference is in an Objective-C method, then we need to do
1645     // some special Objective-C lookup, too.
1646     if (IvarLookupFollowUp) {
1647       ExprResult E(LookupInObjCMethod(R, S, II, true));
1648       if (E.isInvalid())
1649         return ExprError();
1650 
1651       if (Expr *Ex = E.takeAs<Expr>())
1652         return Owned(Ex);
1653     }
1654   }
1655 
1656   if (R.isAmbiguous())
1657     return ExprError();
1658 
1659   // Determine whether this name might be a candidate for
1660   // argument-dependent lookup.
1661   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1662 
1663   if (R.empty() && !ADL) {
1664     // Otherwise, this could be an implicitly declared function reference (legal
1665     // in C90, extension in C99, forbidden in C++).
1666     if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1667       NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1668       if (D) R.addDecl(D);
1669     }
1670 
1671     // If this name wasn't predeclared and if this is not a function
1672     // call, diagnose the problem.
1673     if (R.empty()) {
1674 
1675       // In Microsoft mode, if we are inside a template class member function
1676       // and we can't resolve an identifier then assume the identifier is type
1677       // dependent. The goal is to postpone name lookup to instantiation time
1678       // to be able to search into type dependent base classes.
1679       if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1680           isa<CXXMethodDecl>(CurContext))
1681         return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1682                                           IsAddressOfOperand, TemplateArgs);
1683 
1684       CorrectionCandidateCallback DefaultValidator;
1685       if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1686         return ExprError();
1687 
1688       assert(!R.empty() &&
1689              "DiagnoseEmptyLookup returned false but added no results");
1690 
1691       // If we found an Objective-C instance variable, let
1692       // LookupInObjCMethod build the appropriate expression to
1693       // reference the ivar.
1694       if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1695         R.clear();
1696         ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1697         // In a hopelessly buggy code, Objective-C instance variable
1698         // lookup fails and no expression will be built to reference it.
1699         if (!E.isInvalid() && !E.get())
1700           return ExprError();
1701         return move(E);
1702       }
1703     }
1704   }
1705 
1706   // This is guaranteed from this point on.
1707   assert(!R.empty() || ADL);
1708 
1709   // Check whether this might be a C++ implicit instance member access.
1710   // C++ [class.mfct.non-static]p3:
1711   //   When an id-expression that is not part of a class member access
1712   //   syntax and not used to form a pointer to member is used in the
1713   //   body of a non-static member function of class X, if name lookup
1714   //   resolves the name in the id-expression to a non-static non-type
1715   //   member of some class C, the id-expression is transformed into a
1716   //   class member access expression using (*this) as the
1717   //   postfix-expression to the left of the . operator.
1718   //
1719   // But we don't actually need to do this for '&' operands if R
1720   // resolved to a function or overloaded function set, because the
1721   // expression is ill-formed if it actually works out to be a
1722   // non-static member function:
1723   //
1724   // C++ [expr.ref]p4:
1725   //   Otherwise, if E1.E2 refers to a non-static member function. . .
1726   //   [t]he expression can be used only as the left-hand operand of a
1727   //   member function call.
1728   //
1729   // There are other safeguards against such uses, but it's important
1730   // to get this right here so that we don't end up making a
1731   // spuriously dependent expression if we're inside a dependent
1732   // instance method.
1733   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1734     bool MightBeImplicitMember;
1735     if (!IsAddressOfOperand)
1736       MightBeImplicitMember = true;
1737     else if (!SS.isEmpty())
1738       MightBeImplicitMember = false;
1739     else if (R.isOverloadedResult())
1740       MightBeImplicitMember = false;
1741     else if (R.isUnresolvableResult())
1742       MightBeImplicitMember = true;
1743     else
1744       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1745                               isa<IndirectFieldDecl>(R.getFoundDecl());
1746 
1747     if (MightBeImplicitMember)
1748       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1749                                              R, TemplateArgs);
1750   }
1751 
1752   if (TemplateArgs || TemplateKWLoc.isValid())
1753     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1754 
1755   return BuildDeclarationNameExpr(SS, R, ADL);
1756 }
1757 
1758 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1759 /// declaration name, generally during template instantiation.
1760 /// There's a large number of things which don't need to be done along
1761 /// this path.
1762 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo)1763 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1764                                         const DeclarationNameInfo &NameInfo) {
1765   DeclContext *DC;
1766   if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1767     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1768                                      NameInfo, /*TemplateArgs=*/0);
1769 
1770   if (RequireCompleteDeclContext(SS, DC))
1771     return ExprError();
1772 
1773   LookupResult R(*this, NameInfo, LookupOrdinaryName);
1774   LookupQualifiedName(R, DC);
1775 
1776   if (R.isAmbiguous())
1777     return ExprError();
1778 
1779   if (R.empty()) {
1780     Diag(NameInfo.getLoc(), diag::err_no_member)
1781       << NameInfo.getName() << DC << SS.getRange();
1782     return ExprError();
1783   }
1784 
1785   return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1786 }
1787 
1788 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1789 /// detected that we're currently inside an ObjC method.  Perform some
1790 /// additional lookup.
1791 ///
1792 /// Ideally, most of this would be done by lookup, but there's
1793 /// actually quite a lot of extra work involved.
1794 ///
1795 /// Returns a null sentinel to indicate trivial success.
1796 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)1797 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1798                          IdentifierInfo *II, bool AllowBuiltinCreation) {
1799   SourceLocation Loc = Lookup.getNameLoc();
1800   ObjCMethodDecl *CurMethod = getCurMethodDecl();
1801 
1802   // There are two cases to handle here.  1) scoped lookup could have failed,
1803   // in which case we should look for an ivar.  2) scoped lookup could have
1804   // found a decl, but that decl is outside the current instance method (i.e.
1805   // a global variable).  In these two cases, we do a lookup for an ivar with
1806   // this name, if the lookup sucedes, we replace it our current decl.
1807 
1808   // If we're in a class method, we don't normally want to look for
1809   // ivars.  But if we don't find anything else, and there's an
1810   // ivar, that's an error.
1811   bool IsClassMethod = CurMethod->isClassMethod();
1812 
1813   bool LookForIvars;
1814   if (Lookup.empty())
1815     LookForIvars = true;
1816   else if (IsClassMethod)
1817     LookForIvars = false;
1818   else
1819     LookForIvars = (Lookup.isSingleResult() &&
1820                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1821   ObjCInterfaceDecl *IFace = 0;
1822   if (LookForIvars) {
1823     IFace = CurMethod->getClassInterface();
1824     ObjCInterfaceDecl *ClassDeclared;
1825     ObjCIvarDecl *IV = 0;
1826     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1827       // Diagnose using an ivar in a class method.
1828       if (IsClassMethod)
1829         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1830                          << IV->getDeclName());
1831 
1832       // If we're referencing an invalid decl, just return this as a silent
1833       // error node.  The error diagnostic was already emitted on the decl.
1834       if (IV->isInvalidDecl())
1835         return ExprError();
1836 
1837       // Check if referencing a field with __attribute__((deprecated)).
1838       if (DiagnoseUseOfDecl(IV, Loc))
1839         return ExprError();
1840 
1841       // Diagnose the use of an ivar outside of the declaring class.
1842       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1843           !declaresSameEntity(ClassDeclared, IFace) &&
1844           !getLangOpts().DebuggerSupport)
1845         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1846 
1847       // FIXME: This should use a new expr for a direct reference, don't
1848       // turn this into Self->ivar, just return a BareIVarExpr or something.
1849       IdentifierInfo &II = Context.Idents.get("self");
1850       UnqualifiedId SelfName;
1851       SelfName.setIdentifier(&II, SourceLocation());
1852       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1853       CXXScopeSpec SelfScopeSpec;
1854       SourceLocation TemplateKWLoc;
1855       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1856                                               SelfName, false, false);
1857       if (SelfExpr.isInvalid())
1858         return ExprError();
1859 
1860       SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1861       if (SelfExpr.isInvalid())
1862         return ExprError();
1863 
1864       MarkAnyDeclReferenced(Loc, IV);
1865       return Owned(new (Context)
1866                    ObjCIvarRefExpr(IV, IV->getType(), Loc,
1867                                    SelfExpr.take(), true, true));
1868     }
1869   } else if (CurMethod->isInstanceMethod()) {
1870     // We should warn if a local variable hides an ivar.
1871     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1872       ObjCInterfaceDecl *ClassDeclared;
1873       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1874         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1875             declaresSameEntity(IFace, ClassDeclared))
1876           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1877       }
1878     }
1879   } else if (Lookup.isSingleResult() &&
1880              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1881     // If accessing a stand-alone ivar in a class method, this is an error.
1882     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1883       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1884                        << IV->getDeclName());
1885   }
1886 
1887   if (Lookup.empty() && II && AllowBuiltinCreation) {
1888     // FIXME. Consolidate this with similar code in LookupName.
1889     if (unsigned BuiltinID = II->getBuiltinID()) {
1890       if (!(getLangOpts().CPlusPlus &&
1891             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1892         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1893                                            S, Lookup.isForRedeclaration(),
1894                                            Lookup.getNameLoc());
1895         if (D) Lookup.addDecl(D);
1896       }
1897     }
1898   }
1899   // Sentinel value saying that we didn't do anything special.
1900   return Owned((Expr*) 0);
1901 }
1902 
1903 /// \brief Cast a base object to a member's actual type.
1904 ///
1905 /// Logically this happens in three phases:
1906 ///
1907 /// * First we cast from the base type to the naming class.
1908 ///   The naming class is the class into which we were looking
1909 ///   when we found the member;  it's the qualifier type if a
1910 ///   qualifier was provided, and otherwise it's the base type.
1911 ///
1912 /// * Next we cast from the naming class to the declaring class.
1913 ///   If the member we found was brought into a class's scope by
1914 ///   a using declaration, this is that class;  otherwise it's
1915 ///   the class declaring the member.
1916 ///
1917 /// * Finally we cast from the declaring class to the "true"
1918 ///   declaring class of the member.  This conversion does not
1919 ///   obey access control.
1920 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)1921 Sema::PerformObjectMemberConversion(Expr *From,
1922                                     NestedNameSpecifier *Qualifier,
1923                                     NamedDecl *FoundDecl,
1924                                     NamedDecl *Member) {
1925   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1926   if (!RD)
1927     return Owned(From);
1928 
1929   QualType DestRecordType;
1930   QualType DestType;
1931   QualType FromRecordType;
1932   QualType FromType = From->getType();
1933   bool PointerConversions = false;
1934   if (isa<FieldDecl>(Member)) {
1935     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1936 
1937     if (FromType->getAs<PointerType>()) {
1938       DestType = Context.getPointerType(DestRecordType);
1939       FromRecordType = FromType->getPointeeType();
1940       PointerConversions = true;
1941     } else {
1942       DestType = DestRecordType;
1943       FromRecordType = FromType;
1944     }
1945   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1946     if (Method->isStatic())
1947       return Owned(From);
1948 
1949     DestType = Method->getThisType(Context);
1950     DestRecordType = DestType->getPointeeType();
1951 
1952     if (FromType->getAs<PointerType>()) {
1953       FromRecordType = FromType->getPointeeType();
1954       PointerConversions = true;
1955     } else {
1956       FromRecordType = FromType;
1957       DestType = DestRecordType;
1958     }
1959   } else {
1960     // No conversion necessary.
1961     return Owned(From);
1962   }
1963 
1964   if (DestType->isDependentType() || FromType->isDependentType())
1965     return Owned(From);
1966 
1967   // If the unqualified types are the same, no conversion is necessary.
1968   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1969     return Owned(From);
1970 
1971   SourceRange FromRange = From->getSourceRange();
1972   SourceLocation FromLoc = FromRange.getBegin();
1973 
1974   ExprValueKind VK = From->getValueKind();
1975 
1976   // C++ [class.member.lookup]p8:
1977   //   [...] Ambiguities can often be resolved by qualifying a name with its
1978   //   class name.
1979   //
1980   // If the member was a qualified name and the qualified referred to a
1981   // specific base subobject type, we'll cast to that intermediate type
1982   // first and then to the object in which the member is declared. That allows
1983   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1984   //
1985   //   class Base { public: int x; };
1986   //   class Derived1 : public Base { };
1987   //   class Derived2 : public Base { };
1988   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1989   //
1990   //   void VeryDerived::f() {
1991   //     x = 17; // error: ambiguous base subobjects
1992   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1993   //   }
1994   if (Qualifier) {
1995     QualType QType = QualType(Qualifier->getAsType(), 0);
1996     assert(!QType.isNull() && "lookup done with dependent qualifier?");
1997     assert(QType->isRecordType() && "lookup done with non-record type");
1998 
1999     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2000 
2001     // In C++98, the qualifier type doesn't actually have to be a base
2002     // type of the object type, in which case we just ignore it.
2003     // Otherwise build the appropriate casts.
2004     if (IsDerivedFrom(FromRecordType, QRecordType)) {
2005       CXXCastPath BasePath;
2006       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2007                                        FromLoc, FromRange, &BasePath))
2008         return ExprError();
2009 
2010       if (PointerConversions)
2011         QType = Context.getPointerType(QType);
2012       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2013                                VK, &BasePath).take();
2014 
2015       FromType = QType;
2016       FromRecordType = QRecordType;
2017 
2018       // If the qualifier type was the same as the destination type,
2019       // we're done.
2020       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2021         return Owned(From);
2022     }
2023   }
2024 
2025   bool IgnoreAccess = false;
2026 
2027   // If we actually found the member through a using declaration, cast
2028   // down to the using declaration's type.
2029   //
2030   // Pointer equality is fine here because only one declaration of a
2031   // class ever has member declarations.
2032   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2033     assert(isa<UsingShadowDecl>(FoundDecl));
2034     QualType URecordType = Context.getTypeDeclType(
2035                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2036 
2037     // We only need to do this if the naming-class to declaring-class
2038     // conversion is non-trivial.
2039     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2040       assert(IsDerivedFrom(FromRecordType, URecordType));
2041       CXXCastPath BasePath;
2042       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2043                                        FromLoc, FromRange, &BasePath))
2044         return ExprError();
2045 
2046       QualType UType = URecordType;
2047       if (PointerConversions)
2048         UType = Context.getPointerType(UType);
2049       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2050                                VK, &BasePath).take();
2051       FromType = UType;
2052       FromRecordType = URecordType;
2053     }
2054 
2055     // We don't do access control for the conversion from the
2056     // declaring class to the true declaring class.
2057     IgnoreAccess = true;
2058   }
2059 
2060   CXXCastPath BasePath;
2061   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2062                                    FromLoc, FromRange, &BasePath,
2063                                    IgnoreAccess))
2064     return ExprError();
2065 
2066   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2067                            VK, &BasePath);
2068 }
2069 
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2070 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2071                                       const LookupResult &R,
2072                                       bool HasTrailingLParen) {
2073   // Only when used directly as the postfix-expression of a call.
2074   if (!HasTrailingLParen)
2075     return false;
2076 
2077   // Never if a scope specifier was provided.
2078   if (SS.isSet())
2079     return false;
2080 
2081   // Only in C++ or ObjC++.
2082   if (!getLangOpts().CPlusPlus)
2083     return false;
2084 
2085   // Turn off ADL when we find certain kinds of declarations during
2086   // normal lookup:
2087   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2088     NamedDecl *D = *I;
2089 
2090     // C++0x [basic.lookup.argdep]p3:
2091     //     -- a declaration of a class member
2092     // Since using decls preserve this property, we check this on the
2093     // original decl.
2094     if (D->isCXXClassMember())
2095       return false;
2096 
2097     // C++0x [basic.lookup.argdep]p3:
2098     //     -- a block-scope function declaration that is not a
2099     //        using-declaration
2100     // NOTE: we also trigger this for function templates (in fact, we
2101     // don't check the decl type at all, since all other decl types
2102     // turn off ADL anyway).
2103     if (isa<UsingShadowDecl>(D))
2104       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2105     else if (D->getDeclContext()->isFunctionOrMethod())
2106       return false;
2107 
2108     // C++0x [basic.lookup.argdep]p3:
2109     //     -- a declaration that is neither a function or a function
2110     //        template
2111     // And also for builtin functions.
2112     if (isa<FunctionDecl>(D)) {
2113       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2114 
2115       // But also builtin functions.
2116       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2117         return false;
2118     } else if (!isa<FunctionTemplateDecl>(D))
2119       return false;
2120   }
2121 
2122   return true;
2123 }
2124 
2125 
2126 /// Diagnoses obvious problems with the use of the given declaration
2127 /// as an expression.  This is only actually called for lookups that
2128 /// were not overloaded, and it doesn't promise that the declaration
2129 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2130 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2131   if (isa<TypedefNameDecl>(D)) {
2132     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2133     return true;
2134   }
2135 
2136   if (isa<ObjCInterfaceDecl>(D)) {
2137     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2138     return true;
2139   }
2140 
2141   if (isa<NamespaceDecl>(D)) {
2142     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2143     return true;
2144   }
2145 
2146   return false;
2147 }
2148 
2149 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2150 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2151                                LookupResult &R,
2152                                bool NeedsADL) {
2153   // If this is a single, fully-resolved result and we don't need ADL,
2154   // just build an ordinary singleton decl ref.
2155   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2156     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2157                                     R.getFoundDecl());
2158 
2159   // We only need to check the declaration if there's exactly one
2160   // result, because in the overloaded case the results can only be
2161   // functions and function templates.
2162   if (R.isSingleResult() &&
2163       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2164     return ExprError();
2165 
2166   // Otherwise, just build an unresolved lookup expression.  Suppress
2167   // any lookup-related diagnostics; we'll hash these out later, when
2168   // we've picked a target.
2169   R.suppressDiagnostics();
2170 
2171   UnresolvedLookupExpr *ULE
2172     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2173                                    SS.getWithLocInContext(Context),
2174                                    R.getLookupNameInfo(),
2175                                    NeedsADL, R.isOverloadedResult(),
2176                                    R.begin(), R.end());
2177 
2178   return Owned(ULE);
2179 }
2180 
2181 /// \brief Complete semantic analysis for a reference to the given declaration.
2182 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D)2183 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2184                                const DeclarationNameInfo &NameInfo,
2185                                NamedDecl *D) {
2186   assert(D && "Cannot refer to a NULL declaration");
2187   assert(!isa<FunctionTemplateDecl>(D) &&
2188          "Cannot refer unambiguously to a function template");
2189 
2190   SourceLocation Loc = NameInfo.getLoc();
2191   if (CheckDeclInExpr(*this, Loc, D))
2192     return ExprError();
2193 
2194   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2195     // Specifically diagnose references to class templates that are missing
2196     // a template argument list.
2197     Diag(Loc, diag::err_template_decl_ref)
2198       << Template << SS.getRange();
2199     Diag(Template->getLocation(), diag::note_template_decl_here);
2200     return ExprError();
2201   }
2202 
2203   // Make sure that we're referring to a value.
2204   ValueDecl *VD = dyn_cast<ValueDecl>(D);
2205   if (!VD) {
2206     Diag(Loc, diag::err_ref_non_value)
2207       << D << SS.getRange();
2208     Diag(D->getLocation(), diag::note_declared_at);
2209     return ExprError();
2210   }
2211 
2212   // Check whether this declaration can be used. Note that we suppress
2213   // this check when we're going to perform argument-dependent lookup
2214   // on this function name, because this might not be the function
2215   // that overload resolution actually selects.
2216   if (DiagnoseUseOfDecl(VD, Loc))
2217     return ExprError();
2218 
2219   // Only create DeclRefExpr's for valid Decl's.
2220   if (VD->isInvalidDecl())
2221     return ExprError();
2222 
2223   // Handle members of anonymous structs and unions.  If we got here,
2224   // and the reference is to a class member indirect field, then this
2225   // must be the subject of a pointer-to-member expression.
2226   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2227     if (!indirectField->isCXXClassMember())
2228       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2229                                                       indirectField);
2230 
2231   {
2232     QualType type = VD->getType();
2233     ExprValueKind valueKind = VK_RValue;
2234 
2235     switch (D->getKind()) {
2236     // Ignore all the non-ValueDecl kinds.
2237 #define ABSTRACT_DECL(kind)
2238 #define VALUE(type, base)
2239 #define DECL(type, base) \
2240     case Decl::type:
2241 #include "clang/AST/DeclNodes.inc"
2242       llvm_unreachable("invalid value decl kind");
2243 
2244     // These shouldn't make it here.
2245     case Decl::ObjCAtDefsField:
2246     case Decl::ObjCIvar:
2247       llvm_unreachable("forming non-member reference to ivar?");
2248 
2249     // Enum constants are always r-values and never references.
2250     // Unresolved using declarations are dependent.
2251     case Decl::EnumConstant:
2252     case Decl::UnresolvedUsingValue:
2253       valueKind = VK_RValue;
2254       break;
2255 
2256     // Fields and indirect fields that got here must be for
2257     // pointer-to-member expressions; we just call them l-values for
2258     // internal consistency, because this subexpression doesn't really
2259     // exist in the high-level semantics.
2260     case Decl::Field:
2261     case Decl::IndirectField:
2262       assert(getLangOpts().CPlusPlus &&
2263              "building reference to field in C?");
2264 
2265       // These can't have reference type in well-formed programs, but
2266       // for internal consistency we do this anyway.
2267       type = type.getNonReferenceType();
2268       valueKind = VK_LValue;
2269       break;
2270 
2271     // Non-type template parameters are either l-values or r-values
2272     // depending on the type.
2273     case Decl::NonTypeTemplateParm: {
2274       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2275         type = reftype->getPointeeType();
2276         valueKind = VK_LValue; // even if the parameter is an r-value reference
2277         break;
2278       }
2279 
2280       // For non-references, we need to strip qualifiers just in case
2281       // the template parameter was declared as 'const int' or whatever.
2282       valueKind = VK_RValue;
2283       type = type.getUnqualifiedType();
2284       break;
2285     }
2286 
2287     case Decl::Var:
2288       // In C, "extern void blah;" is valid and is an r-value.
2289       if (!getLangOpts().CPlusPlus &&
2290           !type.hasQualifiers() &&
2291           type->isVoidType()) {
2292         valueKind = VK_RValue;
2293         break;
2294       }
2295       // fallthrough
2296 
2297     case Decl::ImplicitParam:
2298     case Decl::ParmVar: {
2299       // These are always l-values.
2300       valueKind = VK_LValue;
2301       type = type.getNonReferenceType();
2302 
2303       // FIXME: Does the addition of const really only apply in
2304       // potentially-evaluated contexts? Since the variable isn't actually
2305       // captured in an unevaluated context, it seems that the answer is no.
2306       if (ExprEvalContexts.back().Context != Sema::Unevaluated) {
2307         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2308         if (!CapturedType.isNull())
2309           type = CapturedType;
2310       }
2311 
2312       break;
2313     }
2314 
2315     case Decl::Function: {
2316       const FunctionType *fty = type->castAs<FunctionType>();
2317 
2318       // If we're referring to a function with an __unknown_anytype
2319       // result type, make the entire expression __unknown_anytype.
2320       if (fty->getResultType() == Context.UnknownAnyTy) {
2321         type = Context.UnknownAnyTy;
2322         valueKind = VK_RValue;
2323         break;
2324       }
2325 
2326       // Functions are l-values in C++.
2327       if (getLangOpts().CPlusPlus) {
2328         valueKind = VK_LValue;
2329         break;
2330       }
2331 
2332       // C99 DR 316 says that, if a function type comes from a
2333       // function definition (without a prototype), that type is only
2334       // used for checking compatibility. Therefore, when referencing
2335       // the function, we pretend that we don't have the full function
2336       // type.
2337       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2338           isa<FunctionProtoType>(fty))
2339         type = Context.getFunctionNoProtoType(fty->getResultType(),
2340                                               fty->getExtInfo());
2341 
2342       // Functions are r-values in C.
2343       valueKind = VK_RValue;
2344       break;
2345     }
2346 
2347     case Decl::CXXMethod:
2348       // If we're referring to a method with an __unknown_anytype
2349       // result type, make the entire expression __unknown_anytype.
2350       // This should only be possible with a type written directly.
2351       if (const FunctionProtoType *proto
2352             = dyn_cast<FunctionProtoType>(VD->getType()))
2353         if (proto->getResultType() == Context.UnknownAnyTy) {
2354           type = Context.UnknownAnyTy;
2355           valueKind = VK_RValue;
2356           break;
2357         }
2358 
2359       // C++ methods are l-values if static, r-values if non-static.
2360       if (cast<CXXMethodDecl>(VD)->isStatic()) {
2361         valueKind = VK_LValue;
2362         break;
2363       }
2364       // fallthrough
2365 
2366     case Decl::CXXConversion:
2367     case Decl::CXXDestructor:
2368     case Decl::CXXConstructor:
2369       valueKind = VK_RValue;
2370       break;
2371     }
2372 
2373     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2374   }
2375 }
2376 
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2377 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2378   PredefinedExpr::IdentType IT;
2379 
2380   switch (Kind) {
2381   default: llvm_unreachable("Unknown simple primary expr!");
2382   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2383   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2384   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2385   }
2386 
2387   // Pre-defined identifiers are of type char[x], where x is the length of the
2388   // string.
2389 
2390   Decl *currentDecl = getCurFunctionOrMethodDecl();
2391   if (!currentDecl && getCurBlock())
2392     currentDecl = getCurBlock()->TheDecl;
2393   if (!currentDecl) {
2394     Diag(Loc, diag::ext_predef_outside_function);
2395     currentDecl = Context.getTranslationUnitDecl();
2396   }
2397 
2398   QualType ResTy;
2399   if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2400     ResTy = Context.DependentTy;
2401   } else {
2402     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2403 
2404     llvm::APInt LengthI(32, Length + 1);
2405     ResTy = Context.CharTy.withConst();
2406     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2407   }
2408   return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2409 }
2410 
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)2411 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2412   SmallString<16> CharBuffer;
2413   bool Invalid = false;
2414   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2415   if (Invalid)
2416     return ExprError();
2417 
2418   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2419                             PP, Tok.getKind());
2420   if (Literal.hadError())
2421     return ExprError();
2422 
2423   QualType Ty;
2424   if (Literal.isWide())
2425     Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2426   else if (Literal.isUTF16())
2427     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2428   else if (Literal.isUTF32())
2429     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2430   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2431     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2432   else
2433     Ty = Context.CharTy;  // 'x' -> char in C++
2434 
2435   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2436   if (Literal.isWide())
2437     Kind = CharacterLiteral::Wide;
2438   else if (Literal.isUTF16())
2439     Kind = CharacterLiteral::UTF16;
2440   else if (Literal.isUTF32())
2441     Kind = CharacterLiteral::UTF32;
2442 
2443   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2444                                              Tok.getLocation());
2445 
2446   if (Literal.getUDSuffix().empty())
2447     return Owned(Lit);
2448 
2449   // We're building a user-defined literal.
2450   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2451   SourceLocation UDSuffixLoc =
2452     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2453 
2454   // Make sure we're allowed user-defined literals here.
2455   if (!UDLScope)
2456     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2457 
2458   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2459   //   operator "" X (ch)
2460   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2461                                         llvm::makeArrayRef(&Lit, 1),
2462                                         Tok.getLocation());
2463 }
2464 
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)2465 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2466   unsigned IntSize = Context.getTargetInfo().getIntWidth();
2467   return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2468                                       Context.IntTy, Loc));
2469 }
2470 
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)2471 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2472                                   QualType Ty, SourceLocation Loc) {
2473   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2474 
2475   using llvm::APFloat;
2476   APFloat Val(Format);
2477 
2478   APFloat::opStatus result = Literal.GetFloatValue(Val);
2479 
2480   // Overflow is always an error, but underflow is only an error if
2481   // we underflowed to zero (APFloat reports denormals as underflow).
2482   if ((result & APFloat::opOverflow) ||
2483       ((result & APFloat::opUnderflow) && Val.isZero())) {
2484     unsigned diagnostic;
2485     SmallString<20> buffer;
2486     if (result & APFloat::opOverflow) {
2487       diagnostic = diag::warn_float_overflow;
2488       APFloat::getLargest(Format).toString(buffer);
2489     } else {
2490       diagnostic = diag::warn_float_underflow;
2491       APFloat::getSmallest(Format).toString(buffer);
2492     }
2493 
2494     S.Diag(Loc, diagnostic)
2495       << Ty
2496       << StringRef(buffer.data(), buffer.size());
2497   }
2498 
2499   bool isExact = (result == APFloat::opOK);
2500   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2501 }
2502 
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)2503 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2504   // Fast path for a single digit (which is quite common).  A single digit
2505   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2506   if (Tok.getLength() == 1) {
2507     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2508     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2509   }
2510 
2511   SmallString<512> IntegerBuffer;
2512   // Add padding so that NumericLiteralParser can overread by one character.
2513   IntegerBuffer.resize(Tok.getLength()+1);
2514   const char *ThisTokBegin = &IntegerBuffer[0];
2515 
2516   // Get the spelling of the token, which eliminates trigraphs, etc.
2517   bool Invalid = false;
2518   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2519   if (Invalid)
2520     return ExprError();
2521 
2522   NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2523                                Tok.getLocation(), PP);
2524   if (Literal.hadError)
2525     return ExprError();
2526 
2527   if (Literal.hasUDSuffix()) {
2528     // We're building a user-defined literal.
2529     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2530     SourceLocation UDSuffixLoc =
2531       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2532 
2533     // Make sure we're allowed user-defined literals here.
2534     if (!UDLScope)
2535       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2536 
2537     QualType CookedTy;
2538     if (Literal.isFloatingLiteral()) {
2539       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2540       // long double, the literal is treated as a call of the form
2541       //   operator "" X (f L)
2542       CookedTy = Context.LongDoubleTy;
2543     } else {
2544       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2545       // unsigned long long, the literal is treated as a call of the form
2546       //   operator "" X (n ULL)
2547       CookedTy = Context.UnsignedLongLongTy;
2548     }
2549 
2550     DeclarationName OpName =
2551       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2552     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2553     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2554 
2555     // Perform literal operator lookup to determine if we're building a raw
2556     // literal or a cooked one.
2557     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2558     switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2559                                   /*AllowRawAndTemplate*/true)) {
2560     case LOLR_Error:
2561       return ExprError();
2562 
2563     case LOLR_Cooked: {
2564       Expr *Lit;
2565       if (Literal.isFloatingLiteral()) {
2566         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2567       } else {
2568         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2569         if (Literal.GetIntegerValue(ResultVal))
2570           Diag(Tok.getLocation(), diag::warn_integer_too_large);
2571         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2572                                      Tok.getLocation());
2573       }
2574       return BuildLiteralOperatorCall(R, OpNameInfo,
2575                                       llvm::makeArrayRef(&Lit, 1),
2576                                       Tok.getLocation());
2577     }
2578 
2579     case LOLR_Raw: {
2580       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2581       // literal is treated as a call of the form
2582       //   operator "" X ("n")
2583       SourceLocation TokLoc = Tok.getLocation();
2584       unsigned Length = Literal.getUDSuffixOffset();
2585       QualType StrTy = Context.getConstantArrayType(
2586           Context.CharTy, llvm::APInt(32, Length + 1),
2587           ArrayType::Normal, 0);
2588       Expr *Lit = StringLiteral::Create(
2589           Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2590           /*Pascal*/false, StrTy, &TokLoc, 1);
2591       return BuildLiteralOperatorCall(R, OpNameInfo,
2592                                       llvm::makeArrayRef(&Lit, 1), TokLoc);
2593     }
2594 
2595     case LOLR_Template:
2596       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2597       // template), L is treated as a call fo the form
2598       //   operator "" X <'c1', 'c2', ... 'ck'>()
2599       // where n is the source character sequence c1 c2 ... ck.
2600       TemplateArgumentListInfo ExplicitArgs;
2601       unsigned CharBits = Context.getIntWidth(Context.CharTy);
2602       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2603       llvm::APSInt Value(CharBits, CharIsUnsigned);
2604       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2605         Value = ThisTokBegin[I];
2606         TemplateArgument Arg(Value, Context.CharTy);
2607         TemplateArgumentLocInfo ArgInfo;
2608         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2609       }
2610       return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2611                                       Tok.getLocation(), &ExplicitArgs);
2612     }
2613 
2614     llvm_unreachable("unexpected literal operator lookup result");
2615   }
2616 
2617   Expr *Res;
2618 
2619   if (Literal.isFloatingLiteral()) {
2620     QualType Ty;
2621     if (Literal.isFloat)
2622       Ty = Context.FloatTy;
2623     else if (!Literal.isLong)
2624       Ty = Context.DoubleTy;
2625     else
2626       Ty = Context.LongDoubleTy;
2627 
2628     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2629 
2630     if (Ty == Context.DoubleTy) {
2631       if (getLangOpts().SinglePrecisionConstants) {
2632         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2633       } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2634         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2635         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2636       }
2637     }
2638   } else if (!Literal.isIntegerLiteral()) {
2639     return ExprError();
2640   } else {
2641     QualType Ty;
2642 
2643     // long long is a C99 feature.
2644     if (!getLangOpts().C99 && Literal.isLongLong)
2645       Diag(Tok.getLocation(),
2646            getLangOpts().CPlusPlus0x ?
2647              diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2648 
2649     // Get the value in the widest-possible width.
2650     llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
2651 
2652     if (Literal.GetIntegerValue(ResultVal)) {
2653       // If this value didn't fit into uintmax_t, warn and force to ull.
2654       Diag(Tok.getLocation(), diag::warn_integer_too_large);
2655       Ty = Context.UnsignedLongLongTy;
2656       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2657              "long long is not intmax_t?");
2658     } else {
2659       // If this value fits into a ULL, try to figure out what else it fits into
2660       // according to the rules of C99 6.4.4.1p5.
2661 
2662       // Octal, Hexadecimal, and integers with a U suffix are allowed to
2663       // be an unsigned int.
2664       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2665 
2666       // Check from smallest to largest, picking the smallest type we can.
2667       unsigned Width = 0;
2668       if (!Literal.isLong && !Literal.isLongLong) {
2669         // Are int/unsigned possibilities?
2670         unsigned IntSize = Context.getTargetInfo().getIntWidth();
2671 
2672         // Does it fit in a unsigned int?
2673         if (ResultVal.isIntN(IntSize)) {
2674           // Does it fit in a signed int?
2675           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2676             Ty = Context.IntTy;
2677           else if (AllowUnsigned)
2678             Ty = Context.UnsignedIntTy;
2679           Width = IntSize;
2680         }
2681       }
2682 
2683       // Are long/unsigned long possibilities?
2684       if (Ty.isNull() && !Literal.isLongLong) {
2685         unsigned LongSize = Context.getTargetInfo().getLongWidth();
2686 
2687         // Does it fit in a unsigned long?
2688         if (ResultVal.isIntN(LongSize)) {
2689           // Does it fit in a signed long?
2690           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2691             Ty = Context.LongTy;
2692           else if (AllowUnsigned)
2693             Ty = Context.UnsignedLongTy;
2694           Width = LongSize;
2695         }
2696       }
2697 
2698       // Finally, check long long if needed.
2699       if (Ty.isNull()) {
2700         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2701 
2702         // Does it fit in a unsigned long long?
2703         if (ResultVal.isIntN(LongLongSize)) {
2704           // Does it fit in a signed long long?
2705           // To be compatible with MSVC, hex integer literals ending with the
2706           // LL or i64 suffix are always signed in Microsoft mode.
2707           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2708               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2709             Ty = Context.LongLongTy;
2710           else if (AllowUnsigned)
2711             Ty = Context.UnsignedLongLongTy;
2712           Width = LongLongSize;
2713         }
2714       }
2715 
2716       // If we still couldn't decide a type, we probably have something that
2717       // does not fit in a signed long long, but has no U suffix.
2718       if (Ty.isNull()) {
2719         Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2720         Ty = Context.UnsignedLongLongTy;
2721         Width = Context.getTargetInfo().getLongLongWidth();
2722       }
2723 
2724       if (ResultVal.getBitWidth() != Width)
2725         ResultVal = ResultVal.trunc(Width);
2726     }
2727     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2728   }
2729 
2730   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2731   if (Literal.isImaginary)
2732     Res = new (Context) ImaginaryLiteral(Res,
2733                                         Context.getComplexType(Res->getType()));
2734 
2735   return Owned(Res);
2736 }
2737 
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)2738 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2739   assert((E != 0) && "ActOnParenExpr() missing expr");
2740   return Owned(new (Context) ParenExpr(L, R, E));
2741 }
2742 
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)2743 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2744                                          SourceLocation Loc,
2745                                          SourceRange ArgRange) {
2746   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2747   // scalar or vector data type argument..."
2748   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2749   // type (C99 6.2.5p18) or void.
2750   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2751     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2752       << T << ArgRange;
2753     return true;
2754   }
2755 
2756   assert((T->isVoidType() || !T->isIncompleteType()) &&
2757          "Scalar types should always be complete");
2758   return false;
2759 }
2760 
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2761 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2762                                            SourceLocation Loc,
2763                                            SourceRange ArgRange,
2764                                            UnaryExprOrTypeTrait TraitKind) {
2765   // C99 6.5.3.4p1:
2766   if (T->isFunctionType()) {
2767     // alignof(function) is allowed as an extension.
2768     if (TraitKind == UETT_SizeOf)
2769       S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2770     return false;
2771   }
2772 
2773   // Allow sizeof(void)/alignof(void) as an extension.
2774   if (T->isVoidType()) {
2775     S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2776     return false;
2777   }
2778 
2779   return true;
2780 }
2781 
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2782 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2783                                              SourceLocation Loc,
2784                                              SourceRange ArgRange,
2785                                              UnaryExprOrTypeTrait TraitKind) {
2786   // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2787   if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
2788     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2789       << T << (TraitKind == UETT_SizeOf)
2790       << ArgRange;
2791     return true;
2792   }
2793 
2794   return false;
2795 }
2796 
2797 /// \brief Check the constrains on expression operands to unary type expression
2798 /// and type traits.
2799 ///
2800 /// Completes any types necessary and validates the constraints on the operand
2801 /// expression. The logic mostly mirrors the type-based overload, but may modify
2802 /// the expression as it completes the type for that expression through template
2803 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)2804 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2805                                             UnaryExprOrTypeTrait ExprKind) {
2806   QualType ExprTy = E->getType();
2807 
2808   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2809   //   the result is the size of the referenced type."
2810   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2811   //   result shall be the alignment of the referenced type."
2812   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2813     ExprTy = Ref->getPointeeType();
2814 
2815   if (ExprKind == UETT_VecStep)
2816     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2817                                         E->getSourceRange());
2818 
2819   // Whitelist some types as extensions
2820   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2821                                       E->getSourceRange(), ExprKind))
2822     return false;
2823 
2824   if (RequireCompleteExprType(E,
2825                               PDiag(diag::err_sizeof_alignof_incomplete_type)
2826                               << ExprKind << E->getSourceRange(),
2827                               std::make_pair(SourceLocation(), PDiag(0))))
2828     return true;
2829 
2830   // Completeing the expression's type may have changed it.
2831   ExprTy = E->getType();
2832   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2833     ExprTy = Ref->getPointeeType();
2834 
2835   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2836                                        E->getSourceRange(), ExprKind))
2837     return true;
2838 
2839   if (ExprKind == UETT_SizeOf) {
2840     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2841       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2842         QualType OType = PVD->getOriginalType();
2843         QualType Type = PVD->getType();
2844         if (Type->isPointerType() && OType->isArrayType()) {
2845           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2846             << Type << OType;
2847           Diag(PVD->getLocation(), diag::note_declared_at);
2848         }
2849       }
2850     }
2851   }
2852 
2853   return false;
2854 }
2855 
2856 /// \brief Check the constraints on operands to unary expression and type
2857 /// traits.
2858 ///
2859 /// This will complete any types necessary, and validate the various constraints
2860 /// on those operands.
2861 ///
2862 /// The UsualUnaryConversions() function is *not* called by this routine.
2863 /// C99 6.3.2.1p[2-4] all state:
2864 ///   Except when it is the operand of the sizeof operator ...
2865 ///
2866 /// C++ [expr.sizeof]p4
2867 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2868 ///   standard conversions are not applied to the operand of sizeof.
2869 ///
2870 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)2871 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
2872                                             SourceLocation OpLoc,
2873                                             SourceRange ExprRange,
2874                                             UnaryExprOrTypeTrait ExprKind) {
2875   if (ExprType->isDependentType())
2876     return false;
2877 
2878   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2879   //   the result is the size of the referenced type."
2880   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2881   //   result shall be the alignment of the referenced type."
2882   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
2883     ExprType = Ref->getPointeeType();
2884 
2885   if (ExprKind == UETT_VecStep)
2886     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
2887 
2888   // Whitelist some types as extensions
2889   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
2890                                       ExprKind))
2891     return false;
2892 
2893   if (RequireCompleteType(OpLoc, ExprType,
2894                           PDiag(diag::err_sizeof_alignof_incomplete_type)
2895                           << ExprKind << ExprRange))
2896     return true;
2897 
2898   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
2899                                        ExprKind))
2900     return true;
2901 
2902   return false;
2903 }
2904 
CheckAlignOfExpr(Sema & S,Expr * E)2905 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
2906   E = E->IgnoreParens();
2907 
2908   // alignof decl is always ok.
2909   if (isa<DeclRefExpr>(E))
2910     return false;
2911 
2912   // Cannot know anything else if the expression is dependent.
2913   if (E->isTypeDependent())
2914     return false;
2915 
2916   if (E->getBitField()) {
2917     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
2918        << 1 << E->getSourceRange();
2919     return true;
2920   }
2921 
2922   // Alignment of a field access is always okay, so long as it isn't a
2923   // bit-field.
2924   if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2925     if (isa<FieldDecl>(ME->getMemberDecl()))
2926       return false;
2927 
2928   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
2929 }
2930 
CheckVecStepExpr(Expr * E)2931 bool Sema::CheckVecStepExpr(Expr *E) {
2932   E = E->IgnoreParens();
2933 
2934   // Cannot know anything else if the expression is dependent.
2935   if (E->isTypeDependent())
2936     return false;
2937 
2938   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
2939 }
2940 
2941 /// \brief Build a sizeof or alignof expression given a type operand.
2942 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2943 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
2944                                      SourceLocation OpLoc,
2945                                      UnaryExprOrTypeTrait ExprKind,
2946                                      SourceRange R) {
2947   if (!TInfo)
2948     return ExprError();
2949 
2950   QualType T = TInfo->getType();
2951 
2952   if (!T->isDependentType() &&
2953       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
2954     return ExprError();
2955 
2956   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2957   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
2958                                                       Context.getSizeType(),
2959                                                       OpLoc, R.getEnd()));
2960 }
2961 
2962 /// \brief Build a sizeof or alignof expression given an expression
2963 /// operand.
2964 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)2965 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
2966                                      UnaryExprOrTypeTrait ExprKind) {
2967   ExprResult PE = CheckPlaceholderExpr(E);
2968   if (PE.isInvalid())
2969     return ExprError();
2970 
2971   E = PE.get();
2972 
2973   // Verify that the operand is valid.
2974   bool isInvalid = false;
2975   if (E->isTypeDependent()) {
2976     // Delay type-checking for type-dependent expressions.
2977   } else if (ExprKind == UETT_AlignOf) {
2978     isInvalid = CheckAlignOfExpr(*this, E);
2979   } else if (ExprKind == UETT_VecStep) {
2980     isInvalid = CheckVecStepExpr(E);
2981   } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2982     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
2983     isInvalid = true;
2984   } else {
2985     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
2986   }
2987 
2988   if (isInvalid)
2989     return ExprError();
2990 
2991   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
2992     PE = TranformToPotentiallyEvaluated(E);
2993     if (PE.isInvalid()) return ExprError();
2994     E = PE.take();
2995   }
2996 
2997   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2998   return Owned(new (Context) UnaryExprOrTypeTraitExpr(
2999       ExprKind, E, Context.getSizeType(), OpLoc,
3000       E->getSourceRange().getEnd()));
3001 }
3002 
3003 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3004 /// expr and the same for @c alignof and @c __alignof
3005 /// Note that the ArgRange is invalid if isType is false.
3006 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,const SourceRange & ArgRange)3007 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3008                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
3009                                     void *TyOrEx, const SourceRange &ArgRange) {
3010   // If error parsing type, ignore.
3011   if (TyOrEx == 0) return ExprError();
3012 
3013   if (IsType) {
3014     TypeSourceInfo *TInfo;
3015     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3016     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3017   }
3018 
3019   Expr *ArgEx = (Expr *)TyOrEx;
3020   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3021   return move(Result);
3022 }
3023 
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3024 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3025                                      bool IsReal) {
3026   if (V.get()->isTypeDependent())
3027     return S.Context.DependentTy;
3028 
3029   // _Real and _Imag are only l-values for normal l-values.
3030   if (V.get()->getObjectKind() != OK_Ordinary) {
3031     V = S.DefaultLvalueConversion(V.take());
3032     if (V.isInvalid())
3033       return QualType();
3034   }
3035 
3036   // These operators return the element type of a complex type.
3037   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3038     return CT->getElementType();
3039 
3040   // Otherwise they pass through real integer and floating point types here.
3041   if (V.get()->getType()->isArithmeticType())
3042     return V.get()->getType();
3043 
3044   // Test for placeholders.
3045   ExprResult PR = S.CheckPlaceholderExpr(V.get());
3046   if (PR.isInvalid()) return QualType();
3047   if (PR.get() != V.get()) {
3048     V = move(PR);
3049     return CheckRealImagOperand(S, V, Loc, IsReal);
3050   }
3051 
3052   // Reject anything else.
3053   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3054     << (IsReal ? "__real" : "__imag");
3055   return QualType();
3056 }
3057 
3058 
3059 
3060 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3061 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3062                           tok::TokenKind Kind, Expr *Input) {
3063   UnaryOperatorKind Opc;
3064   switch (Kind) {
3065   default: llvm_unreachable("Unknown unary op!");
3066   case tok::plusplus:   Opc = UO_PostInc; break;
3067   case tok::minusminus: Opc = UO_PostDec; break;
3068   }
3069 
3070   // Since this might is a postfix expression, get rid of ParenListExprs.
3071   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3072   if (Result.isInvalid()) return ExprError();
3073   Input = Result.take();
3074 
3075   return BuildUnaryOp(S, OpLoc, Opc, Input);
3076 }
3077 
3078 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3079 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3080                               Expr *Idx, SourceLocation RLoc) {
3081   // Since this might be a postfix expression, get rid of ParenListExprs.
3082   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3083   if (Result.isInvalid()) return ExprError();
3084   Base = Result.take();
3085 
3086   Expr *LHSExp = Base, *RHSExp = Idx;
3087 
3088   if (getLangOpts().CPlusPlus &&
3089       (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3090     return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3091                                                   Context.DependentTy,
3092                                                   VK_LValue, OK_Ordinary,
3093                                                   RLoc));
3094   }
3095 
3096   if (getLangOpts().CPlusPlus &&
3097       (LHSExp->getType()->isRecordType() ||
3098        LHSExp->getType()->isEnumeralType() ||
3099        RHSExp->getType()->isRecordType() ||
3100        RHSExp->getType()->isEnumeralType()) &&
3101       !LHSExp->getType()->isObjCObjectPointerType()) {
3102     return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3103   }
3104 
3105   return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3106 }
3107 
3108 
3109 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3110 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3111                                       Expr *Idx, SourceLocation RLoc) {
3112   Expr *LHSExp = Base;
3113   Expr *RHSExp = Idx;
3114 
3115   // Perform default conversions.
3116   if (!LHSExp->getType()->getAs<VectorType>()) {
3117     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3118     if (Result.isInvalid())
3119       return ExprError();
3120     LHSExp = Result.take();
3121   }
3122   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3123   if (Result.isInvalid())
3124     return ExprError();
3125   RHSExp = Result.take();
3126 
3127   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3128   ExprValueKind VK = VK_LValue;
3129   ExprObjectKind OK = OK_Ordinary;
3130 
3131   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3132   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3133   // in the subscript position. As a result, we need to derive the array base
3134   // and index from the expression types.
3135   Expr *BaseExpr, *IndexExpr;
3136   QualType ResultType;
3137   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3138     BaseExpr = LHSExp;
3139     IndexExpr = RHSExp;
3140     ResultType = Context.DependentTy;
3141   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3142     BaseExpr = LHSExp;
3143     IndexExpr = RHSExp;
3144     ResultType = PTy->getPointeeType();
3145   } else if (const ObjCObjectPointerType *PTy =
3146              LHSTy->getAs<ObjCObjectPointerType>()) {
3147     BaseExpr = LHSExp;
3148     IndexExpr = RHSExp;
3149     Result = BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3150     if (!Result.isInvalid())
3151       return Owned(Result.take());
3152     ResultType = PTy->getPointeeType();
3153   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3154      // Handle the uncommon case of "123[Ptr]".
3155     BaseExpr = RHSExp;
3156     IndexExpr = LHSExp;
3157     ResultType = PTy->getPointeeType();
3158   } else if (const ObjCObjectPointerType *PTy =
3159                RHSTy->getAs<ObjCObjectPointerType>()) {
3160      // Handle the uncommon case of "123[Ptr]".
3161     BaseExpr = RHSExp;
3162     IndexExpr = LHSExp;
3163     ResultType = PTy->getPointeeType();
3164   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3165     BaseExpr = LHSExp;    // vectors: V[123]
3166     IndexExpr = RHSExp;
3167     VK = LHSExp->getValueKind();
3168     if (VK != VK_RValue)
3169       OK = OK_VectorComponent;
3170 
3171     // FIXME: need to deal with const...
3172     ResultType = VTy->getElementType();
3173   } else if (LHSTy->isArrayType()) {
3174     // If we see an array that wasn't promoted by
3175     // DefaultFunctionArrayLvalueConversion, it must be an array that
3176     // wasn't promoted because of the C90 rule that doesn't
3177     // allow promoting non-lvalue arrays.  Warn, then
3178     // force the promotion here.
3179     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3180         LHSExp->getSourceRange();
3181     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3182                                CK_ArrayToPointerDecay).take();
3183     LHSTy = LHSExp->getType();
3184 
3185     BaseExpr = LHSExp;
3186     IndexExpr = RHSExp;
3187     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3188   } else if (RHSTy->isArrayType()) {
3189     // Same as previous, except for 123[f().a] case
3190     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3191         RHSExp->getSourceRange();
3192     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3193                                CK_ArrayToPointerDecay).take();
3194     RHSTy = RHSExp->getType();
3195 
3196     BaseExpr = RHSExp;
3197     IndexExpr = LHSExp;
3198     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3199   } else {
3200     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3201        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3202   }
3203   // C99 6.5.2.1p1
3204   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3205     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3206                      << IndexExpr->getSourceRange());
3207 
3208   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3209        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3210          && !IndexExpr->isTypeDependent())
3211     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3212 
3213   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3214   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3215   // type. Note that Functions are not objects, and that (in C99 parlance)
3216   // incomplete types are not object types.
3217   if (ResultType->isFunctionType()) {
3218     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3219       << ResultType << BaseExpr->getSourceRange();
3220     return ExprError();
3221   }
3222 
3223   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3224     // GNU extension: subscripting on pointer to void
3225     Diag(LLoc, diag::ext_gnu_subscript_void_type)
3226       << BaseExpr->getSourceRange();
3227 
3228     // C forbids expressions of unqualified void type from being l-values.
3229     // See IsCForbiddenLValueType.
3230     if (!ResultType.hasQualifiers()) VK = VK_RValue;
3231   } else if (!ResultType->isDependentType() &&
3232       RequireCompleteType(LLoc, ResultType,
3233                           PDiag(diag::err_subscript_incomplete_type)
3234                             << BaseExpr->getSourceRange()))
3235     return ExprError();
3236 
3237   // Diagnose bad cases where we step over interface counts.
3238   if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3239     Diag(LLoc, diag::err_subscript_nonfragile_interface)
3240       << ResultType << BaseExpr->getSourceRange();
3241     return ExprError();
3242   }
3243 
3244   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3245          !ResultType.isCForbiddenLValueType());
3246 
3247   return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3248                                                 ResultType, VK, OK, RLoc));
3249 }
3250 
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3251 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3252                                         FunctionDecl *FD,
3253                                         ParmVarDecl *Param) {
3254   if (Param->hasUnparsedDefaultArg()) {
3255     Diag(CallLoc,
3256          diag::err_use_of_default_argument_to_function_declared_later) <<
3257       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3258     Diag(UnparsedDefaultArgLocs[Param],
3259          diag::note_default_argument_declared_here);
3260     return ExprError();
3261   }
3262 
3263   if (Param->hasUninstantiatedDefaultArg()) {
3264     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3265 
3266     // Instantiate the expression.
3267     MultiLevelTemplateArgumentList ArgList
3268       = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3269 
3270     std::pair<const TemplateArgument *, unsigned> Innermost
3271       = ArgList.getInnermost();
3272     InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3273                                Innermost.second);
3274 
3275     ExprResult Result;
3276     {
3277       // C++ [dcl.fct.default]p5:
3278       //   The names in the [default argument] expression are bound, and
3279       //   the semantic constraints are checked, at the point where the
3280       //   default argument expression appears.
3281       ContextRAII SavedContext(*this, FD);
3282       LocalInstantiationScope Local(*this);
3283       Result = SubstExpr(UninstExpr, ArgList);
3284     }
3285     if (Result.isInvalid())
3286       return ExprError();
3287 
3288     // Check the expression as an initializer for the parameter.
3289     InitializedEntity Entity
3290       = InitializedEntity::InitializeParameter(Context, Param);
3291     InitializationKind Kind
3292       = InitializationKind::CreateCopy(Param->getLocation(),
3293              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3294     Expr *ResultE = Result.takeAs<Expr>();
3295 
3296     InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3297     Result = InitSeq.Perform(*this, Entity, Kind,
3298                              MultiExprArg(*this, &ResultE, 1));
3299     if (Result.isInvalid())
3300       return ExprError();
3301 
3302     // Build the default argument expression.
3303     return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3304                                            Result.takeAs<Expr>()));
3305   }
3306 
3307   // If the default expression creates temporaries, we need to
3308   // push them to the current stack of expression temporaries so they'll
3309   // be properly destroyed.
3310   // FIXME: We should really be rebuilding the default argument with new
3311   // bound temporaries; see the comment in PR5810.
3312   // We don't need to do that with block decls, though, because
3313   // blocks in default argument expression can never capture anything.
3314   if (isa<ExprWithCleanups>(Param->getInit())) {
3315     // Set the "needs cleanups" bit regardless of whether there are
3316     // any explicit objects.
3317     ExprNeedsCleanups = true;
3318 
3319     // Append all the objects to the cleanup list.  Right now, this
3320     // should always be a no-op, because blocks in default argument
3321     // expressions should never be able to capture anything.
3322     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3323            "default argument expression has capturing blocks?");
3324   }
3325 
3326   // We already type-checked the argument, so we know it works.
3327   // Just mark all of the declarations in this potentially-evaluated expression
3328   // as being "referenced".
3329   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3330                                    /*SkipLocalVariables=*/true);
3331   return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3332 }
3333 
3334 /// ConvertArgumentsForCall - Converts the arguments specified in
3335 /// Args/NumArgs to the parameter types of the function FDecl with
3336 /// function prototype Proto. Call is the call expression itself, and
3337 /// Fn is the function expression. For a C++ member function, this
3338 /// routine does not attempt to convert the object argument. Returns
3339 /// true if the call is ill-formed.
3340 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,bool IsExecConfig)3341 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3342                               FunctionDecl *FDecl,
3343                               const FunctionProtoType *Proto,
3344                               Expr **Args, unsigned NumArgs,
3345                               SourceLocation RParenLoc,
3346                               bool IsExecConfig) {
3347   // Bail out early if calling a builtin with custom typechecking.
3348   // We don't need to do this in the
3349   if (FDecl)
3350     if (unsigned ID = FDecl->getBuiltinID())
3351       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3352         return false;
3353 
3354   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3355   // assignment, to the types of the corresponding parameter, ...
3356   unsigned NumArgsInProto = Proto->getNumArgs();
3357   bool Invalid = false;
3358   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3359   unsigned FnKind = Fn->getType()->isBlockPointerType()
3360                        ? 1 /* block */
3361                        : (IsExecConfig ? 3 /* kernel function (exec config) */
3362                                        : 0 /* function */);
3363 
3364   // If too few arguments are available (and we don't have default
3365   // arguments for the remaining parameters), don't make the call.
3366   if (NumArgs < NumArgsInProto) {
3367     if (NumArgs < MinArgs) {
3368       Diag(RParenLoc, MinArgs == NumArgsInProto
3369                         ? diag::err_typecheck_call_too_few_args
3370                         : diag::err_typecheck_call_too_few_args_at_least)
3371         << FnKind
3372         << MinArgs << NumArgs << Fn->getSourceRange();
3373 
3374       // Emit the location of the prototype.
3375       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3376         Diag(FDecl->getLocStart(), diag::note_callee_decl)
3377           << FDecl;
3378 
3379       return true;
3380     }
3381     Call->setNumArgs(Context, NumArgsInProto);
3382   }
3383 
3384   // If too many are passed and not variadic, error on the extras and drop
3385   // them.
3386   if (NumArgs > NumArgsInProto) {
3387     if (!Proto->isVariadic()) {
3388       Diag(Args[NumArgsInProto]->getLocStart(),
3389            MinArgs == NumArgsInProto
3390              ? diag::err_typecheck_call_too_many_args
3391              : diag::err_typecheck_call_too_many_args_at_most)
3392         << FnKind
3393         << NumArgsInProto << NumArgs << Fn->getSourceRange()
3394         << SourceRange(Args[NumArgsInProto]->getLocStart(),
3395                        Args[NumArgs-1]->getLocEnd());
3396 
3397       // Emit the location of the prototype.
3398       if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3399         Diag(FDecl->getLocStart(), diag::note_callee_decl)
3400           << FDecl;
3401 
3402       // This deletes the extra arguments.
3403       Call->setNumArgs(Context, NumArgsInProto);
3404       return true;
3405     }
3406   }
3407   SmallVector<Expr *, 8> AllArgs;
3408   VariadicCallType CallType =
3409     Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3410   if (Fn->getType()->isBlockPointerType())
3411     CallType = VariadicBlock; // Block
3412   else if (isa<MemberExpr>(Fn))
3413     CallType = VariadicMethod;
3414   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3415                                    Proto, 0, Args, NumArgs, AllArgs, CallType);
3416   if (Invalid)
3417     return true;
3418   unsigned TotalNumArgs = AllArgs.size();
3419   for (unsigned i = 0; i < TotalNumArgs; ++i)
3420     Call->setArg(i, AllArgs[i]);
3421 
3422   return false;
3423 }
3424 
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,Expr ** Args,unsigned NumArgs,SmallVector<Expr *,8> & AllArgs,VariadicCallType CallType,bool AllowExplicit)3425 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3426                                   FunctionDecl *FDecl,
3427                                   const FunctionProtoType *Proto,
3428                                   unsigned FirstProtoArg,
3429                                   Expr **Args, unsigned NumArgs,
3430                                   SmallVector<Expr *, 8> &AllArgs,
3431                                   VariadicCallType CallType,
3432                                   bool AllowExplicit) {
3433   unsigned NumArgsInProto = Proto->getNumArgs();
3434   unsigned NumArgsToCheck = NumArgs;
3435   bool Invalid = false;
3436   if (NumArgs != NumArgsInProto)
3437     // Use default arguments for missing arguments
3438     NumArgsToCheck = NumArgsInProto;
3439   unsigned ArgIx = 0;
3440   // Continue to check argument types (even if we have too few/many args).
3441   for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3442     QualType ProtoArgType = Proto->getArgType(i);
3443 
3444     Expr *Arg;
3445     ParmVarDecl *Param;
3446     if (ArgIx < NumArgs) {
3447       Arg = Args[ArgIx++];
3448 
3449       if (RequireCompleteType(Arg->getLocStart(),
3450                               ProtoArgType,
3451                               PDiag(diag::err_call_incomplete_argument)
3452                               << Arg->getSourceRange()))
3453         return true;
3454 
3455       // Pass the argument
3456       Param = 0;
3457       if (FDecl && i < FDecl->getNumParams())
3458         Param = FDecl->getParamDecl(i);
3459 
3460       // Strip the unbridged-cast placeholder expression off, if applicable.
3461       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3462           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3463           (!Param || !Param->hasAttr<CFConsumedAttr>()))
3464         Arg = stripARCUnbridgedCast(Arg);
3465 
3466       InitializedEntity Entity =
3467         Param? InitializedEntity::InitializeParameter(Context, Param)
3468              : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3469                                                       Proto->isArgConsumed(i));
3470       ExprResult ArgE = PerformCopyInitialization(Entity,
3471                                                   SourceLocation(),
3472                                                   Owned(Arg),
3473                                                   /*TopLevelOfInitList=*/false,
3474                                                   AllowExplicit);
3475       if (ArgE.isInvalid())
3476         return true;
3477 
3478       Arg = ArgE.takeAs<Expr>();
3479     } else {
3480       Param = FDecl->getParamDecl(i);
3481 
3482       ExprResult ArgExpr =
3483         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3484       if (ArgExpr.isInvalid())
3485         return true;
3486 
3487       Arg = ArgExpr.takeAs<Expr>();
3488     }
3489 
3490     // Check for array bounds violations for each argument to the call. This
3491     // check only triggers warnings when the argument isn't a more complex Expr
3492     // with its own checking, such as a BinaryOperator.
3493     CheckArrayAccess(Arg);
3494 
3495     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3496     CheckStaticArrayArgument(CallLoc, Param, Arg);
3497 
3498     AllArgs.push_back(Arg);
3499   }
3500 
3501   // If this is a variadic call, handle args passed through "...".
3502   if (CallType != VariadicDoesNotApply) {
3503 
3504     // Assume that extern "C" functions with variadic arguments that
3505     // return __unknown_anytype aren't *really* variadic.
3506     if (Proto->getResultType() == Context.UnknownAnyTy &&
3507         FDecl && FDecl->isExternC()) {
3508       for (unsigned i = ArgIx; i != NumArgs; ++i) {
3509         ExprResult arg;
3510         if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3511           arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3512         else
3513           arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3514         Invalid |= arg.isInvalid();
3515         AllArgs.push_back(arg.take());
3516       }
3517 
3518     // Otherwise do argument promotion, (C99 6.5.2.2p7).
3519     } else {
3520       for (unsigned i = ArgIx; i != NumArgs; ++i) {
3521         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3522                                                           FDecl);
3523         Invalid |= Arg.isInvalid();
3524         AllArgs.push_back(Arg.take());
3525       }
3526     }
3527 
3528     // Check for array bounds violations.
3529     for (unsigned i = ArgIx; i != NumArgs; ++i)
3530       CheckArrayAccess(Args[i]);
3531   }
3532   return Invalid;
3533 }
3534 
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)3535 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3536   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3537   if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3538     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3539       << ATL->getLocalSourceRange();
3540 }
3541 
3542 /// CheckStaticArrayArgument - If the given argument corresponds to a static
3543 /// array parameter, check that it is non-null, and that if it is formed by
3544 /// array-to-pointer decay, the underlying array is sufficiently large.
3545 ///
3546 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3547 /// array type derivation, then for each call to the function, the value of the
3548 /// corresponding actual argument shall provide access to the first element of
3549 /// an array with at least as many elements as specified by the size expression.
3550 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)3551 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3552                                ParmVarDecl *Param,
3553                                const Expr *ArgExpr) {
3554   // Static array parameters are not supported in C++.
3555   if (!Param || getLangOpts().CPlusPlus)
3556     return;
3557 
3558   QualType OrigTy = Param->getOriginalType();
3559 
3560   const ArrayType *AT = Context.getAsArrayType(OrigTy);
3561   if (!AT || AT->getSizeModifier() != ArrayType::Static)
3562     return;
3563 
3564   if (ArgExpr->isNullPointerConstant(Context,
3565                                      Expr::NPC_NeverValueDependent)) {
3566     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3567     DiagnoseCalleeStaticArrayParam(*this, Param);
3568     return;
3569   }
3570 
3571   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3572   if (!CAT)
3573     return;
3574 
3575   const ConstantArrayType *ArgCAT =
3576     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3577   if (!ArgCAT)
3578     return;
3579 
3580   if (ArgCAT->getSize().ult(CAT->getSize())) {
3581     Diag(CallLoc, diag::warn_static_array_too_small)
3582       << ArgExpr->getSourceRange()
3583       << (unsigned) ArgCAT->getSize().getZExtValue()
3584       << (unsigned) CAT->getSize().getZExtValue();
3585     DiagnoseCalleeStaticArrayParam(*this, Param);
3586   }
3587 }
3588 
3589 /// Given a function expression of unknown-any type, try to rebuild it
3590 /// to have a function type.
3591 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3592 
3593 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3594 /// This provides the location of the left/right parens and a list of comma
3595 /// locations.
3596 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)3597 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3598                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
3599                     Expr *ExecConfig, bool IsExecConfig) {
3600   unsigned NumArgs = ArgExprs.size();
3601 
3602   // Since this might be a postfix expression, get rid of ParenListExprs.
3603   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3604   if (Result.isInvalid()) return ExprError();
3605   Fn = Result.take();
3606 
3607   Expr **Args = ArgExprs.release();
3608 
3609   if (getLangOpts().CPlusPlus) {
3610     // If this is a pseudo-destructor expression, build the call immediately.
3611     if (isa<CXXPseudoDestructorExpr>(Fn)) {
3612       if (NumArgs > 0) {
3613         // Pseudo-destructor calls should not have any arguments.
3614         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3615           << FixItHint::CreateRemoval(
3616                                     SourceRange(Args[0]->getLocStart(),
3617                                                 Args[NumArgs-1]->getLocEnd()));
3618       }
3619 
3620       return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3621                                           VK_RValue, RParenLoc));
3622     }
3623 
3624     // Determine whether this is a dependent call inside a C++ template,
3625     // in which case we won't do any semantic analysis now.
3626     // FIXME: Will need to cache the results of name lookup (including ADL) in
3627     // Fn.
3628     bool Dependent = false;
3629     if (Fn->isTypeDependent())
3630       Dependent = true;
3631     else if (Expr::hasAnyTypeDependentArguments(
3632         llvm::makeArrayRef(Args, NumArgs)))
3633       Dependent = true;
3634 
3635     if (Dependent) {
3636       if (ExecConfig) {
3637         return Owned(new (Context) CUDAKernelCallExpr(
3638             Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3639             Context.DependentTy, VK_RValue, RParenLoc));
3640       } else {
3641         return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3642                                             Context.DependentTy, VK_RValue,
3643                                             RParenLoc));
3644       }
3645     }
3646 
3647     // Determine whether this is a call to an object (C++ [over.call.object]).
3648     if (Fn->getType()->isRecordType())
3649       return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3650                                                 RParenLoc));
3651 
3652     if (Fn->getType() == Context.UnknownAnyTy) {
3653       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3654       if (result.isInvalid()) return ExprError();
3655       Fn = result.take();
3656     }
3657 
3658     if (Fn->getType() == Context.BoundMemberTy) {
3659       return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3660                                        RParenLoc);
3661     }
3662   }
3663 
3664   // Check for overloaded calls.  This can happen even in C due to extensions.
3665   if (Fn->getType() == Context.OverloadTy) {
3666     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3667 
3668     // We aren't supposed to apply this logic for if there's an '&' involved.
3669     if (!find.HasFormOfMemberPointer) {
3670       OverloadExpr *ovl = find.Expression;
3671       if (isa<UnresolvedLookupExpr>(ovl)) {
3672         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3673         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3674                                        RParenLoc, ExecConfig);
3675       } else {
3676         return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3677                                          RParenLoc);
3678       }
3679     }
3680   }
3681 
3682   // If we're directly calling a function, get the appropriate declaration.
3683   if (Fn->getType() == Context.UnknownAnyTy) {
3684     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3685     if (result.isInvalid()) return ExprError();
3686     Fn = result.take();
3687   }
3688 
3689   Expr *NakedFn = Fn->IgnoreParens();
3690 
3691   NamedDecl *NDecl = 0;
3692   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3693     if (UnOp->getOpcode() == UO_AddrOf)
3694       NakedFn = UnOp->getSubExpr()->IgnoreParens();
3695 
3696   if (isa<DeclRefExpr>(NakedFn))
3697     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3698   else if (isa<MemberExpr>(NakedFn))
3699     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3700 
3701   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3702                                ExecConfig, IsExecConfig);
3703 }
3704 
3705 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)3706 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3707                               MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3708   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3709   if (!ConfigDecl)
3710     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3711                           << "cudaConfigureCall");
3712   QualType ConfigQTy = ConfigDecl->getType();
3713 
3714   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3715       ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3716   MarkFunctionReferenced(LLLLoc, ConfigDecl);
3717 
3718   return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3719                        /*IsExecConfig=*/true);
3720 }
3721 
3722 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3723 ///
3724 /// __builtin_astype( value, dst type )
3725 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)3726 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3727                                  SourceLocation BuiltinLoc,
3728                                  SourceLocation RParenLoc) {
3729   ExprValueKind VK = VK_RValue;
3730   ExprObjectKind OK = OK_Ordinary;
3731   QualType DstTy = GetTypeFromParser(ParsedDestTy);
3732   QualType SrcTy = E->getType();
3733   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3734     return ExprError(Diag(BuiltinLoc,
3735                           diag::err_invalid_astype_of_different_size)
3736                      << DstTy
3737                      << SrcTy
3738                      << E->getSourceRange());
3739   return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3740                RParenLoc));
3741 }
3742 
3743 /// BuildResolvedCallExpr - Build a call to a resolved expression,
3744 /// i.e. an expression not of \p OverloadTy.  The expression should
3745 /// unary-convert to an expression of function-pointer or
3746 /// block-pointer type.
3747 ///
3748 /// \param NDecl the declaration being called, if available
3749 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)3750 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3751                             SourceLocation LParenLoc,
3752                             Expr **Args, unsigned NumArgs,
3753                             SourceLocation RParenLoc,
3754                             Expr *Config, bool IsExecConfig) {
3755   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3756 
3757   // Promote the function operand.
3758   ExprResult Result = UsualUnaryConversions(Fn);
3759   if (Result.isInvalid())
3760     return ExprError();
3761   Fn = Result.take();
3762 
3763   // Make the call expr early, before semantic checks.  This guarantees cleanup
3764   // of arguments and function on error.
3765   CallExpr *TheCall;
3766   if (Config) {
3767     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3768                                                cast<CallExpr>(Config),
3769                                                Args, NumArgs,
3770                                                Context.BoolTy,
3771                                                VK_RValue,
3772                                                RParenLoc);
3773   } else {
3774     TheCall = new (Context) CallExpr(Context, Fn,
3775                                      Args, NumArgs,
3776                                      Context.BoolTy,
3777                                      VK_RValue,
3778                                      RParenLoc);
3779   }
3780 
3781   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3782 
3783   // Bail out early if calling a builtin with custom typechecking.
3784   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3785     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3786 
3787  retry:
3788   const FunctionType *FuncT;
3789   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3790     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3791     // have type pointer to function".
3792     FuncT = PT->getPointeeType()->getAs<FunctionType>();
3793     if (FuncT == 0)
3794       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3795                          << Fn->getType() << Fn->getSourceRange());
3796   } else if (const BlockPointerType *BPT =
3797                Fn->getType()->getAs<BlockPointerType>()) {
3798     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3799   } else {
3800     // Handle calls to expressions of unknown-any type.
3801     if (Fn->getType() == Context.UnknownAnyTy) {
3802       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3803       if (rewrite.isInvalid()) return ExprError();
3804       Fn = rewrite.take();
3805       TheCall->setCallee(Fn);
3806       goto retry;
3807     }
3808 
3809     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3810       << Fn->getType() << Fn->getSourceRange());
3811   }
3812 
3813   if (getLangOpts().CUDA) {
3814     if (Config) {
3815       // CUDA: Kernel calls must be to global functions
3816       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3817         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3818             << FDecl->getName() << Fn->getSourceRange());
3819 
3820       // CUDA: Kernel function must have 'void' return type
3821       if (!FuncT->getResultType()->isVoidType())
3822         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3823             << Fn->getType() << Fn->getSourceRange());
3824     } else {
3825       // CUDA: Calls to global functions must be configured
3826       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
3827         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
3828             << FDecl->getName() << Fn->getSourceRange());
3829     }
3830   }
3831 
3832   // Check for a valid return type
3833   if (CheckCallReturnType(FuncT->getResultType(),
3834                           Fn->getLocStart(), TheCall,
3835                           FDecl))
3836     return ExprError();
3837 
3838   // We know the result type of the call, set it.
3839   TheCall->setType(FuncT->getCallResultType(Context));
3840   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3841 
3842   if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3843     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3844                                 RParenLoc, IsExecConfig))
3845       return ExprError();
3846   } else {
3847     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3848 
3849     if (FDecl) {
3850       // Check if we have too few/too many template arguments, based
3851       // on our knowledge of the function definition.
3852       const FunctionDecl *Def = 0;
3853       if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3854         const FunctionProtoType *Proto
3855           = Def->getType()->getAs<FunctionProtoType>();
3856         if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
3857           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3858             << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3859       }
3860 
3861       // If the function we're calling isn't a function prototype, but we have
3862       // a function prototype from a prior declaratiom, use that prototype.
3863       if (!FDecl->hasPrototype())
3864         Proto = FDecl->getType()->getAs<FunctionProtoType>();
3865     }
3866 
3867     // Promote the arguments (C99 6.5.2.2p6).
3868     for (unsigned i = 0; i != NumArgs; i++) {
3869       Expr *Arg = Args[i];
3870 
3871       if (Proto && i < Proto->getNumArgs()) {
3872         InitializedEntity Entity
3873           = InitializedEntity::InitializeParameter(Context,
3874                                                    Proto->getArgType(i),
3875                                                    Proto->isArgConsumed(i));
3876         ExprResult ArgE = PerformCopyInitialization(Entity,
3877                                                     SourceLocation(),
3878                                                     Owned(Arg));
3879         if (ArgE.isInvalid())
3880           return true;
3881 
3882         Arg = ArgE.takeAs<Expr>();
3883 
3884       } else {
3885         ExprResult ArgE = DefaultArgumentPromotion(Arg);
3886 
3887         if (ArgE.isInvalid())
3888           return true;
3889 
3890         Arg = ArgE.takeAs<Expr>();
3891       }
3892 
3893       if (RequireCompleteType(Arg->getLocStart(),
3894                               Arg->getType(),
3895                               PDiag(diag::err_call_incomplete_argument)
3896                                 << Arg->getSourceRange()))
3897         return ExprError();
3898 
3899       TheCall->setArg(i, Arg);
3900     }
3901   }
3902 
3903   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3904     if (!Method->isStatic())
3905       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3906         << Fn->getSourceRange());
3907 
3908   // Check for sentinels
3909   if (NDecl)
3910     DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3911 
3912   // Do special checking on direct calls to functions.
3913   if (FDecl) {
3914     if (CheckFunctionCall(FDecl, TheCall))
3915       return ExprError();
3916 
3917     if (BuiltinID)
3918       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3919   } else if (NDecl) {
3920     if (CheckBlockCall(NDecl, TheCall))
3921       return ExprError();
3922   }
3923 
3924   return MaybeBindToTemporary(TheCall);
3925 }
3926 
3927 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)3928 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3929                            SourceLocation RParenLoc, Expr *InitExpr) {
3930   assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3931   // FIXME: put back this assert when initializers are worked out.
3932   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3933 
3934   TypeSourceInfo *TInfo;
3935   QualType literalType = GetTypeFromParser(Ty, &TInfo);
3936   if (!TInfo)
3937     TInfo = Context.getTrivialTypeSourceInfo(literalType);
3938 
3939   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3940 }
3941 
3942 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)3943 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3944                                SourceLocation RParenLoc, Expr *LiteralExpr) {
3945   QualType literalType = TInfo->getType();
3946 
3947   if (literalType->isArrayType()) {
3948     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
3949              PDiag(diag::err_illegal_decl_array_incomplete_type)
3950                << SourceRange(LParenLoc,
3951                               LiteralExpr->getSourceRange().getEnd())))
3952       return ExprError();
3953     if (literalType->isVariableArrayType())
3954       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3955         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
3956   } else if (!literalType->isDependentType() &&
3957              RequireCompleteType(LParenLoc, literalType,
3958                       PDiag(diag::err_typecheck_decl_incomplete_type)
3959                         << SourceRange(LParenLoc,
3960                                        LiteralExpr->getSourceRange().getEnd())))
3961     return ExprError();
3962 
3963   InitializedEntity Entity
3964     = InitializedEntity::InitializeTemporary(literalType);
3965   InitializationKind Kind
3966     = InitializationKind::CreateCStyleCast(LParenLoc,
3967                                            SourceRange(LParenLoc, RParenLoc),
3968                                            /*InitList=*/true);
3969   InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
3970   ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3971                                        MultiExprArg(*this, &LiteralExpr, 1),
3972                                             &literalType);
3973   if (Result.isInvalid())
3974     return ExprError();
3975   LiteralExpr = Result.get();
3976 
3977   bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3978   if (isFileScope) { // 6.5.2.5p3
3979     if (CheckForConstantInitializer(LiteralExpr, literalType))
3980       return ExprError();
3981   }
3982 
3983   // In C, compound literals are l-values for some reason.
3984   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
3985 
3986   return MaybeBindToTemporary(
3987            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3988                                              VK, LiteralExpr, isFileScope));
3989 }
3990 
3991 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)3992 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
3993                     SourceLocation RBraceLoc) {
3994   unsigned NumInit = InitArgList.size();
3995   Expr **InitList = InitArgList.release();
3996 
3997   // Immediately handle non-overload placeholders.  Overloads can be
3998   // resolved contextually, but everything else here can't.
3999   for (unsigned I = 0; I != NumInit; ++I) {
4000     if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
4001       ExprResult result = CheckPlaceholderExpr(InitList[I]);
4002 
4003       // Ignore failures; dropping the entire initializer list because
4004       // of one failure would be terrible for indexing/etc.
4005       if (result.isInvalid()) continue;
4006 
4007       InitList[I] = result.take();
4008     }
4009   }
4010 
4011   // Semantic analysis for initializers is done by ActOnDeclarator() and
4012   // CheckInitializer() - it requires knowledge of the object being intialized.
4013 
4014   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4015                                                NumInit, RBraceLoc);
4016   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4017   return Owned(E);
4018 }
4019 
4020 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(Sema & S,ExprResult & E)4021 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4022   assert(E.get()->getType()->isBlockPointerType());
4023   assert(E.get()->isRValue());
4024 
4025   // Only do this in an r-value context.
4026   if (!S.getLangOpts().ObjCAutoRefCount) return;
4027 
4028   E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4029                                CK_ARCExtendBlockObject, E.get(),
4030                                /*base path*/ 0, VK_RValue);
4031   S.ExprNeedsCleanups = true;
4032 }
4033 
4034 /// Prepare a conversion of the given expression to an ObjC object
4035 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)4036 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4037   QualType type = E.get()->getType();
4038   if (type->isObjCObjectPointerType()) {
4039     return CK_BitCast;
4040   } else if (type->isBlockPointerType()) {
4041     maybeExtendBlockObject(*this, E);
4042     return CK_BlockPointerToObjCPointerCast;
4043   } else {
4044     assert(type->isPointerType());
4045     return CK_CPointerToObjCPointerCast;
4046   }
4047 }
4048 
4049 /// Prepares for a scalar cast, performing all the necessary stages
4050 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)4051 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4052   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4053   // Also, callers should have filtered out the invalid cases with
4054   // pointers.  Everything else should be possible.
4055 
4056   QualType SrcTy = Src.get()->getType();
4057   if (const AtomicType *SrcAtomicTy = SrcTy->getAs<AtomicType>())
4058     SrcTy = SrcAtomicTy->getValueType();
4059   if (const AtomicType *DestAtomicTy = DestTy->getAs<AtomicType>())
4060     DestTy = DestAtomicTy->getValueType();
4061 
4062   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4063     return CK_NoOp;
4064 
4065   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4066   case Type::STK_MemberPointer:
4067     llvm_unreachable("member pointer type in C");
4068 
4069   case Type::STK_CPointer:
4070   case Type::STK_BlockPointer:
4071   case Type::STK_ObjCObjectPointer:
4072     switch (DestTy->getScalarTypeKind()) {
4073     case Type::STK_CPointer:
4074       return CK_BitCast;
4075     case Type::STK_BlockPointer:
4076       return (SrcKind == Type::STK_BlockPointer
4077                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4078     case Type::STK_ObjCObjectPointer:
4079       if (SrcKind == Type::STK_ObjCObjectPointer)
4080         return CK_BitCast;
4081       if (SrcKind == Type::STK_CPointer)
4082         return CK_CPointerToObjCPointerCast;
4083       maybeExtendBlockObject(*this, Src);
4084       return CK_BlockPointerToObjCPointerCast;
4085     case Type::STK_Bool:
4086       return CK_PointerToBoolean;
4087     case Type::STK_Integral:
4088       return CK_PointerToIntegral;
4089     case Type::STK_Floating:
4090     case Type::STK_FloatingComplex:
4091     case Type::STK_IntegralComplex:
4092     case Type::STK_MemberPointer:
4093       llvm_unreachable("illegal cast from pointer");
4094     }
4095     llvm_unreachable("Should have returned before this");
4096 
4097   case Type::STK_Bool: // casting from bool is like casting from an integer
4098   case Type::STK_Integral:
4099     switch (DestTy->getScalarTypeKind()) {
4100     case Type::STK_CPointer:
4101     case Type::STK_ObjCObjectPointer:
4102     case Type::STK_BlockPointer:
4103       if (Src.get()->isNullPointerConstant(Context,
4104                                            Expr::NPC_ValueDependentIsNull))
4105         return CK_NullToPointer;
4106       return CK_IntegralToPointer;
4107     case Type::STK_Bool:
4108       return CK_IntegralToBoolean;
4109     case Type::STK_Integral:
4110       return CK_IntegralCast;
4111     case Type::STK_Floating:
4112       return CK_IntegralToFloating;
4113     case Type::STK_IntegralComplex:
4114       Src = ImpCastExprToType(Src.take(),
4115                               DestTy->castAs<ComplexType>()->getElementType(),
4116                               CK_IntegralCast);
4117       return CK_IntegralRealToComplex;
4118     case Type::STK_FloatingComplex:
4119       Src = ImpCastExprToType(Src.take(),
4120                               DestTy->castAs<ComplexType>()->getElementType(),
4121                               CK_IntegralToFloating);
4122       return CK_FloatingRealToComplex;
4123     case Type::STK_MemberPointer:
4124       llvm_unreachable("member pointer type in C");
4125     }
4126     llvm_unreachable("Should have returned before this");
4127 
4128   case Type::STK_Floating:
4129     switch (DestTy->getScalarTypeKind()) {
4130     case Type::STK_Floating:
4131       return CK_FloatingCast;
4132     case Type::STK_Bool:
4133       return CK_FloatingToBoolean;
4134     case Type::STK_Integral:
4135       return CK_FloatingToIntegral;
4136     case Type::STK_FloatingComplex:
4137       Src = ImpCastExprToType(Src.take(),
4138                               DestTy->castAs<ComplexType>()->getElementType(),
4139                               CK_FloatingCast);
4140       return CK_FloatingRealToComplex;
4141     case Type::STK_IntegralComplex:
4142       Src = ImpCastExprToType(Src.take(),
4143                               DestTy->castAs<ComplexType>()->getElementType(),
4144                               CK_FloatingToIntegral);
4145       return CK_IntegralRealToComplex;
4146     case Type::STK_CPointer:
4147     case Type::STK_ObjCObjectPointer:
4148     case Type::STK_BlockPointer:
4149       llvm_unreachable("valid float->pointer cast?");
4150     case Type::STK_MemberPointer:
4151       llvm_unreachable("member pointer type in C");
4152     }
4153     llvm_unreachable("Should have returned before this");
4154 
4155   case Type::STK_FloatingComplex:
4156     switch (DestTy->getScalarTypeKind()) {
4157     case Type::STK_FloatingComplex:
4158       return CK_FloatingComplexCast;
4159     case Type::STK_IntegralComplex:
4160       return CK_FloatingComplexToIntegralComplex;
4161     case Type::STK_Floating: {
4162       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4163       if (Context.hasSameType(ET, DestTy))
4164         return CK_FloatingComplexToReal;
4165       Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4166       return CK_FloatingCast;
4167     }
4168     case Type::STK_Bool:
4169       return CK_FloatingComplexToBoolean;
4170     case Type::STK_Integral:
4171       Src = ImpCastExprToType(Src.take(),
4172                               SrcTy->castAs<ComplexType>()->getElementType(),
4173                               CK_FloatingComplexToReal);
4174       return CK_FloatingToIntegral;
4175     case Type::STK_CPointer:
4176     case Type::STK_ObjCObjectPointer:
4177     case Type::STK_BlockPointer:
4178       llvm_unreachable("valid complex float->pointer cast?");
4179     case Type::STK_MemberPointer:
4180       llvm_unreachable("member pointer type in C");
4181     }
4182     llvm_unreachable("Should have returned before this");
4183 
4184   case Type::STK_IntegralComplex:
4185     switch (DestTy->getScalarTypeKind()) {
4186     case Type::STK_FloatingComplex:
4187       return CK_IntegralComplexToFloatingComplex;
4188     case Type::STK_IntegralComplex:
4189       return CK_IntegralComplexCast;
4190     case Type::STK_Integral: {
4191       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4192       if (Context.hasSameType(ET, DestTy))
4193         return CK_IntegralComplexToReal;
4194       Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4195       return CK_IntegralCast;
4196     }
4197     case Type::STK_Bool:
4198       return CK_IntegralComplexToBoolean;
4199     case Type::STK_Floating:
4200       Src = ImpCastExprToType(Src.take(),
4201                               SrcTy->castAs<ComplexType>()->getElementType(),
4202                               CK_IntegralComplexToReal);
4203       return CK_IntegralToFloating;
4204     case Type::STK_CPointer:
4205     case Type::STK_ObjCObjectPointer:
4206     case Type::STK_BlockPointer:
4207       llvm_unreachable("valid complex int->pointer cast?");
4208     case Type::STK_MemberPointer:
4209       llvm_unreachable("member pointer type in C");
4210     }
4211     llvm_unreachable("Should have returned before this");
4212   }
4213 
4214   llvm_unreachable("Unhandled scalar cast");
4215 }
4216 
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4217 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4218                            CastKind &Kind) {
4219   assert(VectorTy->isVectorType() && "Not a vector type!");
4220 
4221   if (Ty->isVectorType() || Ty->isIntegerType()) {
4222     if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4223       return Diag(R.getBegin(),
4224                   Ty->isVectorType() ?
4225                   diag::err_invalid_conversion_between_vectors :
4226                   diag::err_invalid_conversion_between_vector_and_integer)
4227         << VectorTy << Ty << R;
4228   } else
4229     return Diag(R.getBegin(),
4230                 diag::err_invalid_conversion_between_vector_and_scalar)
4231       << VectorTy << Ty << R;
4232 
4233   Kind = CK_BitCast;
4234   return false;
4235 }
4236 
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4237 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4238                                     Expr *CastExpr, CastKind &Kind) {
4239   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4240 
4241   QualType SrcTy = CastExpr->getType();
4242 
4243   // If SrcTy is a VectorType, the total size must match to explicitly cast to
4244   // an ExtVectorType.
4245   // In OpenCL, casts between vectors of different types are not allowed.
4246   // (See OpenCL 6.2).
4247   if (SrcTy->isVectorType()) {
4248     if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4249         || (getLangOpts().OpenCL &&
4250             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4251       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4252         << DestTy << SrcTy << R;
4253       return ExprError();
4254     }
4255     Kind = CK_BitCast;
4256     return Owned(CastExpr);
4257   }
4258 
4259   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4260   // conversion will take place first from scalar to elt type, and then
4261   // splat from elt type to vector.
4262   if (SrcTy->isPointerType())
4263     return Diag(R.getBegin(),
4264                 diag::err_invalid_conversion_between_vector_and_scalar)
4265       << DestTy << SrcTy << R;
4266 
4267   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4268   ExprResult CastExprRes = Owned(CastExpr);
4269   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4270   if (CastExprRes.isInvalid())
4271     return ExprError();
4272   CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4273 
4274   Kind = CK_VectorSplat;
4275   return Owned(CastExpr);
4276 }
4277 
4278 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)4279 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4280                     Declarator &D, ParsedType &Ty,
4281                     SourceLocation RParenLoc, Expr *CastExpr) {
4282   assert(!D.isInvalidType() && (CastExpr != 0) &&
4283          "ActOnCastExpr(): missing type or expr");
4284 
4285   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4286   if (D.isInvalidType())
4287     return ExprError();
4288 
4289   if (getLangOpts().CPlusPlus) {
4290     // Check that there are no default arguments (C++ only).
4291     CheckExtraCXXDefaultArguments(D);
4292   }
4293 
4294   checkUnusedDeclAttributes(D);
4295 
4296   QualType castType = castTInfo->getType();
4297   Ty = CreateParsedType(castType, castTInfo);
4298 
4299   bool isVectorLiteral = false;
4300 
4301   // Check for an altivec or OpenCL literal,
4302   // i.e. all the elements are integer constants.
4303   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4304   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4305   if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4306        && castType->isVectorType() && (PE || PLE)) {
4307     if (PLE && PLE->getNumExprs() == 0) {
4308       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4309       return ExprError();
4310     }
4311     if (PE || PLE->getNumExprs() == 1) {
4312       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4313       if (!E->getType()->isVectorType())
4314         isVectorLiteral = true;
4315     }
4316     else
4317       isVectorLiteral = true;
4318   }
4319 
4320   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4321   // then handle it as such.
4322   if (isVectorLiteral)
4323     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4324 
4325   // If the Expr being casted is a ParenListExpr, handle it specially.
4326   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4327   // sequence of BinOp comma operators.
4328   if (isa<ParenListExpr>(CastExpr)) {
4329     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4330     if (Result.isInvalid()) return ExprError();
4331     CastExpr = Result.take();
4332   }
4333 
4334   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4335 }
4336 
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)4337 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4338                                     SourceLocation RParenLoc, Expr *E,
4339                                     TypeSourceInfo *TInfo) {
4340   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4341          "Expected paren or paren list expression");
4342 
4343   Expr **exprs;
4344   unsigned numExprs;
4345   Expr *subExpr;
4346   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4347     exprs = PE->getExprs();
4348     numExprs = PE->getNumExprs();
4349   } else {
4350     subExpr = cast<ParenExpr>(E)->getSubExpr();
4351     exprs = &subExpr;
4352     numExprs = 1;
4353   }
4354 
4355   QualType Ty = TInfo->getType();
4356   assert(Ty->isVectorType() && "Expected vector type");
4357 
4358   SmallVector<Expr *, 8> initExprs;
4359   const VectorType *VTy = Ty->getAs<VectorType>();
4360   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4361 
4362   // '(...)' form of vector initialization in AltiVec: the number of
4363   // initializers must be one or must match the size of the vector.
4364   // If a single value is specified in the initializer then it will be
4365   // replicated to all the components of the vector
4366   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4367     // The number of initializers must be one or must match the size of the
4368     // vector. If a single value is specified in the initializer then it will
4369     // be replicated to all the components of the vector
4370     if (numExprs == 1) {
4371       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4372       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4373       if (Literal.isInvalid())
4374         return ExprError();
4375       Literal = ImpCastExprToType(Literal.take(), ElemTy,
4376                                   PrepareScalarCast(Literal, ElemTy));
4377       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4378     }
4379     else if (numExprs < numElems) {
4380       Diag(E->getExprLoc(),
4381            diag::err_incorrect_number_of_vector_initializers);
4382       return ExprError();
4383     }
4384     else
4385       initExprs.append(exprs, exprs + numExprs);
4386   }
4387   else {
4388     // For OpenCL, when the number of initializers is a single value,
4389     // it will be replicated to all components of the vector.
4390     if (getLangOpts().OpenCL &&
4391         VTy->getVectorKind() == VectorType::GenericVector &&
4392         numExprs == 1) {
4393         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4394         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4395         if (Literal.isInvalid())
4396           return ExprError();
4397         Literal = ImpCastExprToType(Literal.take(), ElemTy,
4398                                     PrepareScalarCast(Literal, ElemTy));
4399         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4400     }
4401 
4402     initExprs.append(exprs, exprs + numExprs);
4403   }
4404   // FIXME: This means that pretty-printing the final AST will produce curly
4405   // braces instead of the original commas.
4406   InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4407                                                    &initExprs[0],
4408                                                    initExprs.size(), RParenLoc);
4409   initE->setType(Ty);
4410   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4411 }
4412 
4413 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4414 /// the ParenListExpr into a sequence of comma binary operators.
4415 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)4416 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4417   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4418   if (!E)
4419     return Owned(OrigExpr);
4420 
4421   ExprResult Result(E->getExpr(0));
4422 
4423   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4424     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4425                         E->getExpr(i));
4426 
4427   if (Result.isInvalid()) return ExprError();
4428 
4429   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4430 }
4431 
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)4432 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4433                                     SourceLocation R,
4434                                     MultiExprArg Val) {
4435   unsigned nexprs = Val.size();
4436   Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4437   assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4438   Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4439   return Owned(expr);
4440 }
4441 
4442 /// \brief Emit a specialized diagnostic when one expression is a null pointer
4443 /// constant and the other is not a pointer.  Returns true if a diagnostic is
4444 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)4445 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4446                                       SourceLocation QuestionLoc) {
4447   Expr *NullExpr = LHSExpr;
4448   Expr *NonPointerExpr = RHSExpr;
4449   Expr::NullPointerConstantKind NullKind =
4450       NullExpr->isNullPointerConstant(Context,
4451                                       Expr::NPC_ValueDependentIsNotNull);
4452 
4453   if (NullKind == Expr::NPCK_NotNull) {
4454     NullExpr = RHSExpr;
4455     NonPointerExpr = LHSExpr;
4456     NullKind =
4457         NullExpr->isNullPointerConstant(Context,
4458                                         Expr::NPC_ValueDependentIsNotNull);
4459   }
4460 
4461   if (NullKind == Expr::NPCK_NotNull)
4462     return false;
4463 
4464   if (NullKind == Expr::NPCK_ZeroInteger) {
4465     // In this case, check to make sure that we got here from a "NULL"
4466     // string in the source code.
4467     NullExpr = NullExpr->IgnoreParenImpCasts();
4468     SourceLocation loc = NullExpr->getExprLoc();
4469     if (!findMacroSpelling(loc, "NULL"))
4470       return false;
4471   }
4472 
4473   int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4474   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4475       << NonPointerExpr->getType() << DiagType
4476       << NonPointerExpr->getSourceRange();
4477   return true;
4478 }
4479 
4480 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond)4481 static bool checkCondition(Sema &S, Expr *Cond) {
4482   QualType CondTy = Cond->getType();
4483 
4484   // C99 6.5.15p2
4485   if (CondTy->isScalarType()) return false;
4486 
4487   // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4488   if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4489     return false;
4490 
4491   // Emit the proper error message.
4492   S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4493                               diag::err_typecheck_cond_expect_scalar :
4494                               diag::err_typecheck_cond_expect_scalar_or_vector)
4495     << CondTy;
4496   return true;
4497 }
4498 
4499 /// \brief Return false if the two expressions can be converted to a vector,
4500 /// true otherwise
checkConditionalConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy)4501 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4502                                                     ExprResult &RHS,
4503                                                     QualType CondTy) {
4504   // Both operands should be of scalar type.
4505   if (!LHS.get()->getType()->isScalarType()) {
4506     S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4507       << CondTy;
4508     return true;
4509   }
4510   if (!RHS.get()->getType()->isScalarType()) {
4511     S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4512       << CondTy;
4513     return true;
4514   }
4515 
4516   // Implicity convert these scalars to the type of the condition.
4517   LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4518   RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4519   return false;
4520 }
4521 
4522 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)4523 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4524                                          ExprResult &RHS) {
4525     Expr *LHSExpr = LHS.get();
4526     Expr *RHSExpr = RHS.get();
4527 
4528     if (!LHSExpr->getType()->isVoidType())
4529       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4530         << RHSExpr->getSourceRange();
4531     if (!RHSExpr->getType()->isVoidType())
4532       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4533         << LHSExpr->getSourceRange();
4534     LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4535     RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4536     return S.Context.VoidTy;
4537 }
4538 
4539 /// \brief Return false if the NullExpr can be promoted to PointerTy,
4540 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)4541 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4542                                         QualType PointerTy) {
4543   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4544       !NullExpr.get()->isNullPointerConstant(S.Context,
4545                                             Expr::NPC_ValueDependentIsNull))
4546     return true;
4547 
4548   NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4549   return false;
4550 }
4551 
4552 /// \brief Checks compatibility between two pointers and return the resulting
4553 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4554 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4555                                                      ExprResult &RHS,
4556                                                      SourceLocation Loc) {
4557   QualType LHSTy = LHS.get()->getType();
4558   QualType RHSTy = RHS.get()->getType();
4559 
4560   if (S.Context.hasSameType(LHSTy, RHSTy)) {
4561     // Two identical pointers types are always compatible.
4562     return LHSTy;
4563   }
4564 
4565   QualType lhptee, rhptee;
4566 
4567   // Get the pointee types.
4568   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4569     lhptee = LHSBTy->getPointeeType();
4570     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4571   } else {
4572     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4573     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4574   }
4575 
4576   // C99 6.5.15p6: If both operands are pointers to compatible types or to
4577   // differently qualified versions of compatible types, the result type is
4578   // a pointer to an appropriately qualified version of the composite
4579   // type.
4580 
4581   // Only CVR-qualifiers exist in the standard, and the differently-qualified
4582   // clause doesn't make sense for our extensions. E.g. address space 2 should
4583   // be incompatible with address space 3: they may live on different devices or
4584   // anything.
4585   Qualifiers lhQual = lhptee.getQualifiers();
4586   Qualifiers rhQual = rhptee.getQualifiers();
4587 
4588   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4589   lhQual.removeCVRQualifiers();
4590   rhQual.removeCVRQualifiers();
4591 
4592   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4593   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4594 
4595   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4596 
4597   if (CompositeTy.isNull()) {
4598     S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4599       << LHSTy << RHSTy << LHS.get()->getSourceRange()
4600       << RHS.get()->getSourceRange();
4601     // In this situation, we assume void* type. No especially good
4602     // reason, but this is what gcc does, and we do have to pick
4603     // to get a consistent AST.
4604     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4605     LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4606     RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4607     return incompatTy;
4608   }
4609 
4610   // The pointer types are compatible.
4611   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4612   ResultTy = S.Context.getPointerType(ResultTy);
4613 
4614   LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4615   RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4616   return ResultTy;
4617 }
4618 
4619 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4620 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4621                                                           ExprResult &LHS,
4622                                                           ExprResult &RHS,
4623                                                           SourceLocation Loc) {
4624   QualType LHSTy = LHS.get()->getType();
4625   QualType RHSTy = RHS.get()->getType();
4626 
4627   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4628     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4629       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4630       LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4631       RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4632       return destType;
4633     }
4634     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4635       << LHSTy << RHSTy << LHS.get()->getSourceRange()
4636       << RHS.get()->getSourceRange();
4637     return QualType();
4638   }
4639 
4640   // We have 2 block pointer types.
4641   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4642 }
4643 
4644 /// \brief Return the resulting type when the operands are both pointers.
4645 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4646 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4647                                             ExprResult &RHS,
4648                                             SourceLocation Loc) {
4649   // get the pointer types
4650   QualType LHSTy = LHS.get()->getType();
4651   QualType RHSTy = RHS.get()->getType();
4652 
4653   // get the "pointed to" types
4654   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4655   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4656 
4657   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4658   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4659     // Figure out necessary qualifiers (C99 6.5.15p6)
4660     QualType destPointee
4661       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4662     QualType destType = S.Context.getPointerType(destPointee);
4663     // Add qualifiers if necessary.
4664     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4665     // Promote to void*.
4666     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4667     return destType;
4668   }
4669   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4670     QualType destPointee
4671       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4672     QualType destType = S.Context.getPointerType(destPointee);
4673     // Add qualifiers if necessary.
4674     RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4675     // Promote to void*.
4676     LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4677     return destType;
4678   }
4679 
4680   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4681 }
4682 
4683 /// \brief Return false if the first expression is not an integer and the second
4684 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)4685 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4686                                         Expr* PointerExpr, SourceLocation Loc,
4687                                         bool IsIntFirstExpr) {
4688   if (!PointerExpr->getType()->isPointerType() ||
4689       !Int.get()->getType()->isIntegerType())
4690     return false;
4691 
4692   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4693   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4694 
4695   S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4696     << Expr1->getType() << Expr2->getType()
4697     << Expr1->getSourceRange() << Expr2->getSourceRange();
4698   Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4699                             CK_IntegralToPointer);
4700   return true;
4701 }
4702 
4703 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4704 /// In that case, LHS = cond.
4705 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4706 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4707                                         ExprResult &RHS, ExprValueKind &VK,
4708                                         ExprObjectKind &OK,
4709                                         SourceLocation QuestionLoc) {
4710 
4711   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4712   if (!LHSResult.isUsable()) return QualType();
4713   LHS = move(LHSResult);
4714 
4715   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4716   if (!RHSResult.isUsable()) return QualType();
4717   RHS = move(RHSResult);
4718 
4719   // C++ is sufficiently different to merit its own checker.
4720   if (getLangOpts().CPlusPlus)
4721     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4722 
4723   VK = VK_RValue;
4724   OK = OK_Ordinary;
4725 
4726   Cond = UsualUnaryConversions(Cond.take());
4727   if (Cond.isInvalid())
4728     return QualType();
4729   LHS = UsualUnaryConversions(LHS.take());
4730   if (LHS.isInvalid())
4731     return QualType();
4732   RHS = UsualUnaryConversions(RHS.take());
4733   if (RHS.isInvalid())
4734     return QualType();
4735 
4736   QualType CondTy = Cond.get()->getType();
4737   QualType LHSTy = LHS.get()->getType();
4738   QualType RHSTy = RHS.get()->getType();
4739 
4740   // first, check the condition.
4741   if (checkCondition(*this, Cond.get()))
4742     return QualType();
4743 
4744   // Now check the two expressions.
4745   if (LHSTy->isVectorType() || RHSTy->isVectorType())
4746     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4747 
4748   // OpenCL: If the condition is a vector, and both operands are scalar,
4749   // attempt to implicity convert them to the vector type to act like the
4750   // built in select.
4751   if (getLangOpts().OpenCL && CondTy->isVectorType())
4752     if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4753       return QualType();
4754 
4755   // If both operands have arithmetic type, do the usual arithmetic conversions
4756   // to find a common type: C99 6.5.15p3,5.
4757   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4758     UsualArithmeticConversions(LHS, RHS);
4759     if (LHS.isInvalid() || RHS.isInvalid())
4760       return QualType();
4761     return LHS.get()->getType();
4762   }
4763 
4764   // If both operands are the same structure or union type, the result is that
4765   // type.
4766   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4767     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4768       if (LHSRT->getDecl() == RHSRT->getDecl())
4769         // "If both the operands have structure or union type, the result has
4770         // that type."  This implies that CV qualifiers are dropped.
4771         return LHSTy.getUnqualifiedType();
4772     // FIXME: Type of conditional expression must be complete in C mode.
4773   }
4774 
4775   // C99 6.5.15p5: "If both operands have void type, the result has void type."
4776   // The following || allows only one side to be void (a GCC-ism).
4777   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4778     return checkConditionalVoidType(*this, LHS, RHS);
4779   }
4780 
4781   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4782   // the type of the other operand."
4783   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4784   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4785 
4786   // All objective-c pointer type analysis is done here.
4787   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4788                                                         QuestionLoc);
4789   if (LHS.isInvalid() || RHS.isInvalid())
4790     return QualType();
4791   if (!compositeType.isNull())
4792     return compositeType;
4793 
4794 
4795   // Handle block pointer types.
4796   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4797     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4798                                                      QuestionLoc);
4799 
4800   // Check constraints for C object pointers types (C99 6.5.15p3,6).
4801   if (LHSTy->isPointerType() && RHSTy->isPointerType())
4802     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4803                                                        QuestionLoc);
4804 
4805   // GCC compatibility: soften pointer/integer mismatch.  Note that
4806   // null pointers have been filtered out by this point.
4807   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4808       /*isIntFirstExpr=*/true))
4809     return RHSTy;
4810   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4811       /*isIntFirstExpr=*/false))
4812     return LHSTy;
4813 
4814   // Emit a better diagnostic if one of the expressions is a null pointer
4815   // constant and the other is not a pointer type. In this case, the user most
4816   // likely forgot to take the address of the other expression.
4817   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4818     return QualType();
4819 
4820   // Otherwise, the operands are not compatible.
4821   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4822     << LHSTy << RHSTy << LHS.get()->getSourceRange()
4823     << RHS.get()->getSourceRange();
4824   return QualType();
4825 }
4826 
4827 /// FindCompositeObjCPointerType - Helper method to find composite type of
4828 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4829 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4830                                             SourceLocation QuestionLoc) {
4831   QualType LHSTy = LHS.get()->getType();
4832   QualType RHSTy = RHS.get()->getType();
4833 
4834   // Handle things like Class and struct objc_class*.  Here we case the result
4835   // to the pseudo-builtin, because that will be implicitly cast back to the
4836   // redefinition type if an attempt is made to access its fields.
4837   if (LHSTy->isObjCClassType() &&
4838       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
4839     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4840     return LHSTy;
4841   }
4842   if (RHSTy->isObjCClassType() &&
4843       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
4844     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4845     return RHSTy;
4846   }
4847   // And the same for struct objc_object* / id
4848   if (LHSTy->isObjCIdType() &&
4849       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
4850     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4851     return LHSTy;
4852   }
4853   if (RHSTy->isObjCIdType() &&
4854       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
4855     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4856     return RHSTy;
4857   }
4858   // And the same for struct objc_selector* / SEL
4859   if (Context.isObjCSelType(LHSTy) &&
4860       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
4861     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4862     return LHSTy;
4863   }
4864   if (Context.isObjCSelType(RHSTy) &&
4865       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
4866     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4867     return RHSTy;
4868   }
4869   // Check constraints for Objective-C object pointers types.
4870   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4871 
4872     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4873       // Two identical object pointer types are always compatible.
4874       return LHSTy;
4875     }
4876     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
4877     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
4878     QualType compositeType = LHSTy;
4879 
4880     // If both operands are interfaces and either operand can be
4881     // assigned to the other, use that type as the composite
4882     // type. This allows
4883     //   xxx ? (A*) a : (B*) b
4884     // where B is a subclass of A.
4885     //
4886     // Additionally, as for assignment, if either type is 'id'
4887     // allow silent coercion. Finally, if the types are
4888     // incompatible then make sure to use 'id' as the composite
4889     // type so the result is acceptable for sending messages to.
4890 
4891     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4892     // It could return the composite type.
4893     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4894       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4895     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4896       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4897     } else if ((LHSTy->isObjCQualifiedIdType() ||
4898                 RHSTy->isObjCQualifiedIdType()) &&
4899                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4900       // Need to handle "id<xx>" explicitly.
4901       // GCC allows qualified id and any Objective-C type to devolve to
4902       // id. Currently localizing to here until clear this should be
4903       // part of ObjCQualifiedIdTypesAreCompatible.
4904       compositeType = Context.getObjCIdType();
4905     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4906       compositeType = Context.getObjCIdType();
4907     } else if (!(compositeType =
4908                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4909       ;
4910     else {
4911       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4912       << LHSTy << RHSTy
4913       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4914       QualType incompatTy = Context.getObjCIdType();
4915       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4916       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4917       return incompatTy;
4918     }
4919     // The object pointer types are compatible.
4920     LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
4921     RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
4922     return compositeType;
4923   }
4924   // Check Objective-C object pointer types and 'void *'
4925   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4926     if (getLangOpts().ObjCAutoRefCount) {
4927       // ARC forbids the implicit conversion of object pointers to 'void *',
4928       // so these types are not compatible.
4929       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4930           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4931       LHS = RHS = true;
4932       return QualType();
4933     }
4934     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4935     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4936     QualType destPointee
4937     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4938     QualType destType = Context.getPointerType(destPointee);
4939     // Add qualifiers if necessary.
4940     LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4941     // Promote to void*.
4942     RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4943     return destType;
4944   }
4945   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4946     if (getLangOpts().ObjCAutoRefCount) {
4947       // ARC forbids the implicit conversion of object pointers to 'void *',
4948       // so these types are not compatible.
4949       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4950           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4951       LHS = RHS = true;
4952       return QualType();
4953     }
4954     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4955     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4956     QualType destPointee
4957     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4958     QualType destType = Context.getPointerType(destPointee);
4959     // Add qualifiers if necessary.
4960     RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4961     // Promote to void*.
4962     LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4963     return destType;
4964   }
4965   return QualType();
4966 }
4967 
4968 /// SuggestParentheses - Emit a note with a fixit hint that wraps
4969 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)4970 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
4971                                const PartialDiagnostic &Note,
4972                                SourceRange ParenRange) {
4973   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
4974   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
4975       EndLoc.isValid()) {
4976     Self.Diag(Loc, Note)
4977       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
4978       << FixItHint::CreateInsertion(EndLoc, ")");
4979   } else {
4980     // We can't display the parentheses, so just show the bare note.
4981     Self.Diag(Loc, Note) << ParenRange;
4982   }
4983 }
4984 
IsArithmeticOp(BinaryOperatorKind Opc)4985 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
4986   return Opc >= BO_Mul && Opc <= BO_Shr;
4987 }
4988 
4989 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
4990 /// expression, either using a built-in or overloaded operator,
4991 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
4992 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)4993 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
4994                                    Expr **RHSExprs) {
4995   // Don't strip parenthesis: we should not warn if E is in parenthesis.
4996   E = E->IgnoreImpCasts();
4997   E = E->IgnoreConversionOperator();
4998   E = E->IgnoreImpCasts();
4999 
5000   // Built-in binary operator.
5001   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5002     if (IsArithmeticOp(OP->getOpcode())) {
5003       *Opcode = OP->getOpcode();
5004       *RHSExprs = OP->getRHS();
5005       return true;
5006     }
5007   }
5008 
5009   // Overloaded operator.
5010   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5011     if (Call->getNumArgs() != 2)
5012       return false;
5013 
5014     // Make sure this is really a binary operator that is safe to pass into
5015     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5016     OverloadedOperatorKind OO = Call->getOperator();
5017     if (OO < OO_Plus || OO > OO_Arrow)
5018       return false;
5019 
5020     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5021     if (IsArithmeticOp(OpKind)) {
5022       *Opcode = OpKind;
5023       *RHSExprs = Call->getArg(1);
5024       return true;
5025     }
5026   }
5027 
5028   return false;
5029 }
5030 
IsLogicOp(BinaryOperatorKind Opc)5031 static bool IsLogicOp(BinaryOperatorKind Opc) {
5032   return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5033 }
5034 
5035 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5036 /// or is a logical expression such as (x==y) which has int type, but is
5037 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)5038 static bool ExprLooksBoolean(Expr *E) {
5039   E = E->IgnoreParenImpCasts();
5040 
5041   if (E->getType()->isBooleanType())
5042     return true;
5043   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5044     return IsLogicOp(OP->getOpcode());
5045   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5046     return OP->getOpcode() == UO_LNot;
5047 
5048   return false;
5049 }
5050 
5051 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5052 /// and binary operator are mixed in a way that suggests the programmer assumed
5053 /// the conditional operator has higher precedence, for example:
5054 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)5055 static void DiagnoseConditionalPrecedence(Sema &Self,
5056                                           SourceLocation OpLoc,
5057                                           Expr *Condition,
5058                                           Expr *LHSExpr,
5059                                           Expr *RHSExpr) {
5060   BinaryOperatorKind CondOpcode;
5061   Expr *CondRHS;
5062 
5063   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5064     return;
5065   if (!ExprLooksBoolean(CondRHS))
5066     return;
5067 
5068   // The condition is an arithmetic binary expression, with a right-
5069   // hand side that looks boolean, so warn.
5070 
5071   Self.Diag(OpLoc, diag::warn_precedence_conditional)
5072       << Condition->getSourceRange()
5073       << BinaryOperator::getOpcodeStr(CondOpcode);
5074 
5075   SuggestParentheses(Self, OpLoc,
5076     Self.PDiag(diag::note_precedence_conditional_silence)
5077       << BinaryOperator::getOpcodeStr(CondOpcode),
5078     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5079 
5080   SuggestParentheses(Self, OpLoc,
5081     Self.PDiag(diag::note_precedence_conditional_first),
5082     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5083 }
5084 
5085 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5086 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)5087 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5088                                     SourceLocation ColonLoc,
5089                                     Expr *CondExpr, Expr *LHSExpr,
5090                                     Expr *RHSExpr) {
5091   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5092   // was the condition.
5093   OpaqueValueExpr *opaqueValue = 0;
5094   Expr *commonExpr = 0;
5095   if (LHSExpr == 0) {
5096     commonExpr = CondExpr;
5097 
5098     // We usually want to apply unary conversions *before* saving, except
5099     // in the special case of a C++ l-value conditional.
5100     if (!(getLangOpts().CPlusPlus
5101           && !commonExpr->isTypeDependent()
5102           && commonExpr->getValueKind() == RHSExpr->getValueKind()
5103           && commonExpr->isGLValue()
5104           && commonExpr->isOrdinaryOrBitFieldObject()
5105           && RHSExpr->isOrdinaryOrBitFieldObject()
5106           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5107       ExprResult commonRes = UsualUnaryConversions(commonExpr);
5108       if (commonRes.isInvalid())
5109         return ExprError();
5110       commonExpr = commonRes.take();
5111     }
5112 
5113     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5114                                                 commonExpr->getType(),
5115                                                 commonExpr->getValueKind(),
5116                                                 commonExpr->getObjectKind(),
5117                                                 commonExpr);
5118     LHSExpr = CondExpr = opaqueValue;
5119   }
5120 
5121   ExprValueKind VK = VK_RValue;
5122   ExprObjectKind OK = OK_Ordinary;
5123   ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5124   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5125                                              VK, OK, QuestionLoc);
5126   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5127       RHS.isInvalid())
5128     return ExprError();
5129 
5130   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5131                                 RHS.get());
5132 
5133   if (!commonExpr)
5134     return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5135                                                    LHS.take(), ColonLoc,
5136                                                    RHS.take(), result, VK, OK));
5137 
5138   return Owned(new (Context)
5139     BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5140                               RHS.take(), QuestionLoc, ColonLoc, result, VK,
5141                               OK));
5142 }
5143 
5144 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5145 // being closely modeled after the C99 spec:-). The odd characteristic of this
5146 // routine is it effectively iqnores the qualifiers on the top level pointee.
5147 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5148 // FIXME: add a couple examples in this comment.
5149 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5150 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5151   assert(LHSType.isCanonical() && "LHS not canonicalized!");
5152   assert(RHSType.isCanonical() && "RHS not canonicalized!");
5153 
5154   // get the "pointed to" type (ignoring qualifiers at the top level)
5155   const Type *lhptee, *rhptee;
5156   Qualifiers lhq, rhq;
5157   llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5158   llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5159 
5160   Sema::AssignConvertType ConvTy = Sema::Compatible;
5161 
5162   // C99 6.5.16.1p1: This following citation is common to constraints
5163   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5164   // qualifiers of the type *pointed to* by the right;
5165   Qualifiers lq;
5166 
5167   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5168   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5169       lhq.compatiblyIncludesObjCLifetime(rhq)) {
5170     // Ignore lifetime for further calculation.
5171     lhq.removeObjCLifetime();
5172     rhq.removeObjCLifetime();
5173   }
5174 
5175   if (!lhq.compatiblyIncludes(rhq)) {
5176     // Treat address-space mismatches as fatal.  TODO: address subspaces
5177     if (lhq.getAddressSpace() != rhq.getAddressSpace())
5178       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5179 
5180     // It's okay to add or remove GC or lifetime qualifiers when converting to
5181     // and from void*.
5182     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5183                         .compatiblyIncludes(
5184                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
5185              && (lhptee->isVoidType() || rhptee->isVoidType()))
5186       ; // keep old
5187 
5188     // Treat lifetime mismatches as fatal.
5189     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5190       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5191 
5192     // For GCC compatibility, other qualifier mismatches are treated
5193     // as still compatible in C.
5194     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5195   }
5196 
5197   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5198   // incomplete type and the other is a pointer to a qualified or unqualified
5199   // version of void...
5200   if (lhptee->isVoidType()) {
5201     if (rhptee->isIncompleteOrObjectType())
5202       return ConvTy;
5203 
5204     // As an extension, we allow cast to/from void* to function pointer.
5205     assert(rhptee->isFunctionType());
5206     return Sema::FunctionVoidPointer;
5207   }
5208 
5209   if (rhptee->isVoidType()) {
5210     if (lhptee->isIncompleteOrObjectType())
5211       return ConvTy;
5212 
5213     // As an extension, we allow cast to/from void* to function pointer.
5214     assert(lhptee->isFunctionType());
5215     return Sema::FunctionVoidPointer;
5216   }
5217 
5218   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5219   // unqualified versions of compatible types, ...
5220   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5221   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5222     // Check if the pointee types are compatible ignoring the sign.
5223     // We explicitly check for char so that we catch "char" vs
5224     // "unsigned char" on systems where "char" is unsigned.
5225     if (lhptee->isCharType())
5226       ltrans = S.Context.UnsignedCharTy;
5227     else if (lhptee->hasSignedIntegerRepresentation())
5228       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5229 
5230     if (rhptee->isCharType())
5231       rtrans = S.Context.UnsignedCharTy;
5232     else if (rhptee->hasSignedIntegerRepresentation())
5233       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5234 
5235     if (ltrans == rtrans) {
5236       // Types are compatible ignoring the sign. Qualifier incompatibility
5237       // takes priority over sign incompatibility because the sign
5238       // warning can be disabled.
5239       if (ConvTy != Sema::Compatible)
5240         return ConvTy;
5241 
5242       return Sema::IncompatiblePointerSign;
5243     }
5244 
5245     // If we are a multi-level pointer, it's possible that our issue is simply
5246     // one of qualification - e.g. char ** -> const char ** is not allowed. If
5247     // the eventual target type is the same and the pointers have the same
5248     // level of indirection, this must be the issue.
5249     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5250       do {
5251         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5252         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5253       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5254 
5255       if (lhptee == rhptee)
5256         return Sema::IncompatibleNestedPointerQualifiers;
5257     }
5258 
5259     // General pointer incompatibility takes priority over qualifiers.
5260     return Sema::IncompatiblePointer;
5261   }
5262   if (!S.getLangOpts().CPlusPlus &&
5263       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5264     return Sema::IncompatiblePointer;
5265   return ConvTy;
5266 }
5267 
5268 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5269 /// block pointer types are compatible or whether a block and normal pointer
5270 /// are compatible. It is more restrict than comparing two function pointer
5271 // types.
5272 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5273 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5274                                     QualType RHSType) {
5275   assert(LHSType.isCanonical() && "LHS not canonicalized!");
5276   assert(RHSType.isCanonical() && "RHS not canonicalized!");
5277 
5278   QualType lhptee, rhptee;
5279 
5280   // get the "pointed to" type (ignoring qualifiers at the top level)
5281   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5282   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5283 
5284   // In C++, the types have to match exactly.
5285   if (S.getLangOpts().CPlusPlus)
5286     return Sema::IncompatibleBlockPointer;
5287 
5288   Sema::AssignConvertType ConvTy = Sema::Compatible;
5289 
5290   // For blocks we enforce that qualifiers are identical.
5291   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5292     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5293 
5294   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5295     return Sema::IncompatibleBlockPointer;
5296 
5297   return ConvTy;
5298 }
5299 
5300 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5301 /// for assignment compatibility.
5302 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5303 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5304                                    QualType RHSType) {
5305   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5306   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5307 
5308   if (LHSType->isObjCBuiltinType()) {
5309     // Class is not compatible with ObjC object pointers.
5310     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5311         !RHSType->isObjCQualifiedClassType())
5312       return Sema::IncompatiblePointer;
5313     return Sema::Compatible;
5314   }
5315   if (RHSType->isObjCBuiltinType()) {
5316     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5317         !LHSType->isObjCQualifiedClassType())
5318       return Sema::IncompatiblePointer;
5319     return Sema::Compatible;
5320   }
5321   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5322   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5323 
5324   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5325       // make an exception for id<P>
5326       !LHSType->isObjCQualifiedIdType())
5327     return Sema::CompatiblePointerDiscardsQualifiers;
5328 
5329   if (S.Context.typesAreCompatible(LHSType, RHSType))
5330     return Sema::Compatible;
5331   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5332     return Sema::IncompatibleObjCQualifiedId;
5333   return Sema::IncompatiblePointer;
5334 }
5335 
5336 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)5337 Sema::CheckAssignmentConstraints(SourceLocation Loc,
5338                                  QualType LHSType, QualType RHSType) {
5339   // Fake up an opaque expression.  We don't actually care about what
5340   // cast operations are required, so if CheckAssignmentConstraints
5341   // adds casts to this they'll be wasted, but fortunately that doesn't
5342   // usually happen on valid code.
5343   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5344   ExprResult RHSPtr = &RHSExpr;
5345   CastKind K = CK_Invalid;
5346 
5347   return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5348 }
5349 
5350 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5351 /// has code to accommodate several GCC extensions when type checking
5352 /// pointers. Here are some objectionable examples that GCC considers warnings:
5353 ///
5354 ///  int a, *pint;
5355 ///  short *pshort;
5356 ///  struct foo *pfoo;
5357 ///
5358 ///  pint = pshort; // warning: assignment from incompatible pointer type
5359 ///  a = pint; // warning: assignment makes integer from pointer without a cast
5360 ///  pint = a; // warning: assignment makes pointer from integer without a cast
5361 ///  pint = pfoo; // warning: assignment from incompatible pointer type
5362 ///
5363 /// As a result, the code for dealing with pointers is more complex than the
5364 /// C99 spec dictates.
5365 ///
5366 /// Sets 'Kind' for any result kind except Incompatible.
5367 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind)5368 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5369                                  CastKind &Kind) {
5370   QualType RHSType = RHS.get()->getType();
5371   QualType OrigLHSType = LHSType;
5372 
5373   // Get canonical types.  We're not formatting these types, just comparing
5374   // them.
5375   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5376   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5377 
5378 
5379   // Common case: no conversion required.
5380   if (LHSType == RHSType) {
5381     Kind = CK_NoOp;
5382     return Compatible;
5383   }
5384 
5385   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5386     if (AtomicTy->getValueType() == RHSType) {
5387       Kind = CK_NonAtomicToAtomic;
5388       return Compatible;
5389     }
5390   }
5391 
5392   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(RHSType)) {
5393     if (AtomicTy->getValueType() == LHSType) {
5394       Kind = CK_AtomicToNonAtomic;
5395       return Compatible;
5396     }
5397   }
5398 
5399 
5400   // If the left-hand side is a reference type, then we are in a
5401   // (rare!) case where we've allowed the use of references in C,
5402   // e.g., as a parameter type in a built-in function. In this case,
5403   // just make sure that the type referenced is compatible with the
5404   // right-hand side type. The caller is responsible for adjusting
5405   // LHSType so that the resulting expression does not have reference
5406   // type.
5407   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5408     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5409       Kind = CK_LValueBitCast;
5410       return Compatible;
5411     }
5412     return Incompatible;
5413   }
5414 
5415   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5416   // to the same ExtVector type.
5417   if (LHSType->isExtVectorType()) {
5418     if (RHSType->isExtVectorType())
5419       return Incompatible;
5420     if (RHSType->isArithmeticType()) {
5421       // CK_VectorSplat does T -> vector T, so first cast to the
5422       // element type.
5423       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5424       if (elType != RHSType) {
5425         Kind = PrepareScalarCast(RHS, elType);
5426         RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5427       }
5428       Kind = CK_VectorSplat;
5429       return Compatible;
5430     }
5431   }
5432 
5433   // Conversions to or from vector type.
5434   if (LHSType->isVectorType() || RHSType->isVectorType()) {
5435     if (LHSType->isVectorType() && RHSType->isVectorType()) {
5436       // Allow assignments of an AltiVec vector type to an equivalent GCC
5437       // vector type and vice versa
5438       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5439         Kind = CK_BitCast;
5440         return Compatible;
5441       }
5442 
5443       // If we are allowing lax vector conversions, and LHS and RHS are both
5444       // vectors, the total size only needs to be the same. This is a bitcast;
5445       // no bits are changed but the result type is different.
5446       if (getLangOpts().LaxVectorConversions &&
5447           (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5448         Kind = CK_BitCast;
5449         return IncompatibleVectors;
5450       }
5451     }
5452     return Incompatible;
5453   }
5454 
5455   // Arithmetic conversions.
5456   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5457       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5458     Kind = PrepareScalarCast(RHS, LHSType);
5459     return Compatible;
5460   }
5461 
5462   // Conversions to normal pointers.
5463   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5464     // U* -> T*
5465     if (isa<PointerType>(RHSType)) {
5466       Kind = CK_BitCast;
5467       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5468     }
5469 
5470     // int -> T*
5471     if (RHSType->isIntegerType()) {
5472       Kind = CK_IntegralToPointer; // FIXME: null?
5473       return IntToPointer;
5474     }
5475 
5476     // C pointers are not compatible with ObjC object pointers,
5477     // with two exceptions:
5478     if (isa<ObjCObjectPointerType>(RHSType)) {
5479       //  - conversions to void*
5480       if (LHSPointer->getPointeeType()->isVoidType()) {
5481         Kind = CK_BitCast;
5482         return Compatible;
5483       }
5484 
5485       //  - conversions from 'Class' to the redefinition type
5486       if (RHSType->isObjCClassType() &&
5487           Context.hasSameType(LHSType,
5488                               Context.getObjCClassRedefinitionType())) {
5489         Kind = CK_BitCast;
5490         return Compatible;
5491       }
5492 
5493       Kind = CK_BitCast;
5494       return IncompatiblePointer;
5495     }
5496 
5497     // U^ -> void*
5498     if (RHSType->getAs<BlockPointerType>()) {
5499       if (LHSPointer->getPointeeType()->isVoidType()) {
5500         Kind = CK_BitCast;
5501         return Compatible;
5502       }
5503     }
5504 
5505     return Incompatible;
5506   }
5507 
5508   // Conversions to block pointers.
5509   if (isa<BlockPointerType>(LHSType)) {
5510     // U^ -> T^
5511     if (RHSType->isBlockPointerType()) {
5512       Kind = CK_BitCast;
5513       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5514     }
5515 
5516     // int or null -> T^
5517     if (RHSType->isIntegerType()) {
5518       Kind = CK_IntegralToPointer; // FIXME: null
5519       return IntToBlockPointer;
5520     }
5521 
5522     // id -> T^
5523     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5524       Kind = CK_AnyPointerToBlockPointerCast;
5525       return Compatible;
5526     }
5527 
5528     // void* -> T^
5529     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5530       if (RHSPT->getPointeeType()->isVoidType()) {
5531         Kind = CK_AnyPointerToBlockPointerCast;
5532         return Compatible;
5533       }
5534 
5535     return Incompatible;
5536   }
5537 
5538   // Conversions to Objective-C pointers.
5539   if (isa<ObjCObjectPointerType>(LHSType)) {
5540     // A* -> B*
5541     if (RHSType->isObjCObjectPointerType()) {
5542       Kind = CK_BitCast;
5543       Sema::AssignConvertType result =
5544         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5545       if (getLangOpts().ObjCAutoRefCount &&
5546           result == Compatible &&
5547           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5548         result = IncompatibleObjCWeakRef;
5549       return result;
5550     }
5551 
5552     // int or null -> A*
5553     if (RHSType->isIntegerType()) {
5554       Kind = CK_IntegralToPointer; // FIXME: null
5555       return IntToPointer;
5556     }
5557 
5558     // In general, C pointers are not compatible with ObjC object pointers,
5559     // with two exceptions:
5560     if (isa<PointerType>(RHSType)) {
5561       Kind = CK_CPointerToObjCPointerCast;
5562 
5563       //  - conversions from 'void*'
5564       if (RHSType->isVoidPointerType()) {
5565         return Compatible;
5566       }
5567 
5568       //  - conversions to 'Class' from its redefinition type
5569       if (LHSType->isObjCClassType() &&
5570           Context.hasSameType(RHSType,
5571                               Context.getObjCClassRedefinitionType())) {
5572         return Compatible;
5573       }
5574 
5575       return IncompatiblePointer;
5576     }
5577 
5578     // T^ -> A*
5579     if (RHSType->isBlockPointerType()) {
5580       maybeExtendBlockObject(*this, RHS);
5581       Kind = CK_BlockPointerToObjCPointerCast;
5582       return Compatible;
5583     }
5584 
5585     return Incompatible;
5586   }
5587 
5588   // Conversions from pointers that are not covered by the above.
5589   if (isa<PointerType>(RHSType)) {
5590     // T* -> _Bool
5591     if (LHSType == Context.BoolTy) {
5592       Kind = CK_PointerToBoolean;
5593       return Compatible;
5594     }
5595 
5596     // T* -> int
5597     if (LHSType->isIntegerType()) {
5598       Kind = CK_PointerToIntegral;
5599       return PointerToInt;
5600     }
5601 
5602     return Incompatible;
5603   }
5604 
5605   // Conversions from Objective-C pointers that are not covered by the above.
5606   if (isa<ObjCObjectPointerType>(RHSType)) {
5607     // T* -> _Bool
5608     if (LHSType == Context.BoolTy) {
5609       Kind = CK_PointerToBoolean;
5610       return Compatible;
5611     }
5612 
5613     // T* -> int
5614     if (LHSType->isIntegerType()) {
5615       Kind = CK_PointerToIntegral;
5616       return PointerToInt;
5617     }
5618 
5619     return Incompatible;
5620   }
5621 
5622   // struct A -> struct B
5623   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5624     if (Context.typesAreCompatible(LHSType, RHSType)) {
5625       Kind = CK_NoOp;
5626       return Compatible;
5627     }
5628   }
5629 
5630   return Incompatible;
5631 }
5632 
5633 /// \brief Constructs a transparent union from an expression that is
5634 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)5635 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5636                                       ExprResult &EResult, QualType UnionType,
5637                                       FieldDecl *Field) {
5638   // Build an initializer list that designates the appropriate member
5639   // of the transparent union.
5640   Expr *E = EResult.take();
5641   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5642                                                    &E, 1,
5643                                                    SourceLocation());
5644   Initializer->setType(UnionType);
5645   Initializer->setInitializedFieldInUnion(Field);
5646 
5647   // Build a compound literal constructing a value of the transparent
5648   // union type from this initializer list.
5649   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5650   EResult = S.Owned(
5651     new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5652                                 VK_RValue, Initializer, false));
5653 }
5654 
5655 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)5656 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5657                                                ExprResult &RHS) {
5658   QualType RHSType = RHS.get()->getType();
5659 
5660   // If the ArgType is a Union type, we want to handle a potential
5661   // transparent_union GCC extension.
5662   const RecordType *UT = ArgType->getAsUnionType();
5663   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5664     return Incompatible;
5665 
5666   // The field to initialize within the transparent union.
5667   RecordDecl *UD = UT->getDecl();
5668   FieldDecl *InitField = 0;
5669   // It's compatible if the expression matches any of the fields.
5670   for (RecordDecl::field_iterator it = UD->field_begin(),
5671          itend = UD->field_end();
5672        it != itend; ++it) {
5673     if (it->getType()->isPointerType()) {
5674       // If the transparent union contains a pointer type, we allow:
5675       // 1) void pointer
5676       // 2) null pointer constant
5677       if (RHSType->isPointerType())
5678         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5679           RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5680           InitField = *it;
5681           break;
5682         }
5683 
5684       if (RHS.get()->isNullPointerConstant(Context,
5685                                            Expr::NPC_ValueDependentIsNull)) {
5686         RHS = ImpCastExprToType(RHS.take(), it->getType(),
5687                                 CK_NullToPointer);
5688         InitField = *it;
5689         break;
5690       }
5691     }
5692 
5693     CastKind Kind = CK_Invalid;
5694     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5695           == Compatible) {
5696       RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5697       InitField = *it;
5698       break;
5699     }
5700   }
5701 
5702   if (!InitField)
5703     return Incompatible;
5704 
5705   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5706   return Compatible;
5707 }
5708 
5709 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & RHS,bool Diagnose)5710 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5711                                        bool Diagnose) {
5712   if (getLangOpts().CPlusPlus) {
5713     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5714       // C++ 5.17p3: If the left operand is not of class type, the
5715       // expression is implicitly converted (C++ 4) to the
5716       // cv-unqualified type of the left operand.
5717       ExprResult Res;
5718       if (Diagnose) {
5719         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5720                                         AA_Assigning);
5721       } else {
5722         ImplicitConversionSequence ICS =
5723             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5724                                   /*SuppressUserConversions=*/false,
5725                                   /*AllowExplicit=*/false,
5726                                   /*InOverloadResolution=*/false,
5727                                   /*CStyle=*/false,
5728                                   /*AllowObjCWritebackConversion=*/false);
5729         if (ICS.isFailure())
5730           return Incompatible;
5731         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5732                                         ICS, AA_Assigning);
5733       }
5734       if (Res.isInvalid())
5735         return Incompatible;
5736       Sema::AssignConvertType result = Compatible;
5737       if (getLangOpts().ObjCAutoRefCount &&
5738           !CheckObjCARCUnavailableWeakConversion(LHSType,
5739                                                  RHS.get()->getType()))
5740         result = IncompatibleObjCWeakRef;
5741       RHS = move(Res);
5742       return result;
5743     }
5744 
5745     // FIXME: Currently, we fall through and treat C++ classes like C
5746     // structures.
5747     // FIXME: We also fall through for atomics; not sure what should
5748     // happen there, though.
5749   }
5750 
5751   // C99 6.5.16.1p1: the left operand is a pointer and the right is
5752   // a null pointer constant.
5753   if ((LHSType->isPointerType() ||
5754        LHSType->isObjCObjectPointerType() ||
5755        LHSType->isBlockPointerType())
5756       && RHS.get()->isNullPointerConstant(Context,
5757                                           Expr::NPC_ValueDependentIsNull)) {
5758     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5759     return Compatible;
5760   }
5761 
5762   // This check seems unnatural, however it is necessary to ensure the proper
5763   // conversion of functions/arrays. If the conversion were done for all
5764   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5765   // expressions that suppress this implicit conversion (&, sizeof).
5766   //
5767   // Suppress this for references: C++ 8.5.3p5.
5768   if (!LHSType->isReferenceType()) {
5769     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5770     if (RHS.isInvalid())
5771       return Incompatible;
5772   }
5773 
5774   CastKind Kind = CK_Invalid;
5775   Sema::AssignConvertType result =
5776     CheckAssignmentConstraints(LHSType, RHS, Kind);
5777 
5778   // C99 6.5.16.1p2: The value of the right operand is converted to the
5779   // type of the assignment expression.
5780   // CheckAssignmentConstraints allows the left-hand side to be a reference,
5781   // so that we can use references in built-in functions even in C.
5782   // The getNonReferenceType() call makes sure that the resulting expression
5783   // does not have reference type.
5784   if (result != Incompatible && RHS.get()->getType() != LHSType)
5785     RHS = ImpCastExprToType(RHS.take(),
5786                             LHSType.getNonLValueExprType(Context), Kind);
5787   return result;
5788 }
5789 
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)5790 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5791                                ExprResult &RHS) {
5792   Diag(Loc, diag::err_typecheck_invalid_operands)
5793     << LHS.get()->getType() << RHS.get()->getType()
5794     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5795   return QualType();
5796 }
5797 
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)5798 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5799                                    SourceLocation Loc, bool IsCompAssign) {
5800   if (!IsCompAssign) {
5801     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5802     if (LHS.isInvalid())
5803       return QualType();
5804   }
5805   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5806   if (RHS.isInvalid())
5807     return QualType();
5808 
5809   // For conversion purposes, we ignore any qualifiers.
5810   // For example, "const float" and "float" are equivalent.
5811   QualType LHSType =
5812     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5813   QualType RHSType =
5814     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5815 
5816   // If the vector types are identical, return.
5817   if (LHSType == RHSType)
5818     return LHSType;
5819 
5820   // Handle the case of equivalent AltiVec and GCC vector types
5821   if (LHSType->isVectorType() && RHSType->isVectorType() &&
5822       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5823     if (LHSType->isExtVectorType()) {
5824       RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5825       return LHSType;
5826     }
5827 
5828     if (!IsCompAssign)
5829       LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
5830     return RHSType;
5831   }
5832 
5833   if (getLangOpts().LaxVectorConversions &&
5834       Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
5835     // If we are allowing lax vector conversions, and LHS and RHS are both
5836     // vectors, the total size only needs to be the same. This is a
5837     // bitcast; no bits are changed but the result type is different.
5838     // FIXME: Should we really be allowing this?
5839     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5840     return LHSType;
5841   }
5842 
5843   // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5844   // swap back (so that we don't reverse the inputs to a subtract, for instance.
5845   bool swapped = false;
5846   if (RHSType->isExtVectorType() && !IsCompAssign) {
5847     swapped = true;
5848     std::swap(RHS, LHS);
5849     std::swap(RHSType, LHSType);
5850   }
5851 
5852   // Handle the case of an ext vector and scalar.
5853   if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
5854     QualType EltTy = LV->getElementType();
5855     if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
5856       int order = Context.getIntegerTypeOrder(EltTy, RHSType);
5857       if (order > 0)
5858         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
5859       if (order >= 0) {
5860         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5861         if (swapped) std::swap(RHS, LHS);
5862         return LHSType;
5863       }
5864     }
5865     if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
5866         RHSType->isRealFloatingType()) {
5867       int order = Context.getFloatingTypeOrder(EltTy, RHSType);
5868       if (order > 0)
5869         RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
5870       if (order >= 0) {
5871         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5872         if (swapped) std::swap(RHS, LHS);
5873         return LHSType;
5874       }
5875     }
5876   }
5877 
5878   // Vectors of different size or scalar and non-ext-vector are errors.
5879   if (swapped) std::swap(RHS, LHS);
5880   Diag(Loc, diag::err_typecheck_vector_not_convertable)
5881     << LHS.get()->getType() << RHS.get()->getType()
5882     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5883   return QualType();
5884 }
5885 
5886 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
5887 // expression.  These are mainly cases where the null pointer is used as an
5888 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)5889 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
5890                                 SourceLocation Loc, bool IsCompare) {
5891   // The canonical way to check for a GNU null is with isNullPointerConstant,
5892   // but we use a bit of a hack here for speed; this is a relatively
5893   // hot path, and isNullPointerConstant is slow.
5894   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
5895   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
5896 
5897   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
5898 
5899   // Avoid analyzing cases where the result will either be invalid (and
5900   // diagnosed as such) or entirely valid and not something to warn about.
5901   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
5902       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
5903     return;
5904 
5905   // Comparison operations would not make sense with a null pointer no matter
5906   // what the other expression is.
5907   if (!IsCompare) {
5908     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
5909         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
5910         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
5911     return;
5912   }
5913 
5914   // The rest of the operations only make sense with a null pointer
5915   // if the other expression is a pointer.
5916   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
5917       NonNullType->canDecayToPointerType())
5918     return;
5919 
5920   S.Diag(Loc, diag::warn_null_in_comparison_operation)
5921       << LHSNull /* LHS is NULL */ << NonNullType
5922       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5923 }
5924 
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)5925 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
5926                                            SourceLocation Loc,
5927                                            bool IsCompAssign, bool IsDiv) {
5928   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5929 
5930   if (LHS.get()->getType()->isVectorType() ||
5931       RHS.get()->getType()->isVectorType())
5932     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5933 
5934   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5935   if (LHS.isInvalid() || RHS.isInvalid())
5936     return QualType();
5937 
5938 
5939   if (!LHS.get()->getType()->isArithmeticType() ||
5940       !RHS.get()->getType()->isArithmeticType()) {
5941     if (IsCompAssign &&
5942         LHS.get()->getType()->isAtomicType() &&
5943         RHS.get()->getType()->isArithmeticType())
5944       return compType;
5945     return InvalidOperands(Loc, LHS, RHS);
5946   }
5947 
5948   // Check for division by zero.
5949   if (IsDiv &&
5950       RHS.get()->isNullPointerConstant(Context,
5951                                        Expr::NPC_ValueDependentIsNotNull))
5952     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
5953                                           << RHS.get()->getSourceRange());
5954 
5955   return compType;
5956 }
5957 
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)5958 QualType Sema::CheckRemainderOperands(
5959   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
5960   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5961 
5962   if (LHS.get()->getType()->isVectorType() ||
5963       RHS.get()->getType()->isVectorType()) {
5964     if (LHS.get()->getType()->hasIntegerRepresentation() &&
5965         RHS.get()->getType()->hasIntegerRepresentation())
5966       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5967     return InvalidOperands(Loc, LHS, RHS);
5968   }
5969 
5970   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5971   if (LHS.isInvalid() || RHS.isInvalid())
5972     return QualType();
5973 
5974   if (!LHS.get()->getType()->isIntegerType() ||
5975       !RHS.get()->getType()->isIntegerType())
5976     return InvalidOperands(Loc, LHS, RHS);
5977 
5978   // Check for remainder by zero.
5979   if (RHS.get()->isNullPointerConstant(Context,
5980                                        Expr::NPC_ValueDependentIsNotNull))
5981     DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
5982                                  << RHS.get()->getSourceRange());
5983 
5984   return compType;
5985 }
5986 
5987 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)5988 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
5989                                                 Expr *LHSExpr, Expr *RHSExpr) {
5990   S.Diag(Loc, S.getLangOpts().CPlusPlus
5991                 ? diag::err_typecheck_pointer_arith_void_type
5992                 : diag::ext_gnu_void_ptr)
5993     << 1 /* two pointers */ << LHSExpr->getSourceRange()
5994                             << RHSExpr->getSourceRange();
5995 }
5996 
5997 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)5998 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
5999                                             Expr *Pointer) {
6000   S.Diag(Loc, S.getLangOpts().CPlusPlus
6001                 ? diag::err_typecheck_pointer_arith_void_type
6002                 : diag::ext_gnu_void_ptr)
6003     << 0 /* one pointer */ << Pointer->getSourceRange();
6004 }
6005 
6006 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6007 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6008                                                     Expr *LHS, Expr *RHS) {
6009   assert(LHS->getType()->isAnyPointerType());
6010   assert(RHS->getType()->isAnyPointerType());
6011   S.Diag(Loc, S.getLangOpts().CPlusPlus
6012                 ? diag::err_typecheck_pointer_arith_function_type
6013                 : diag::ext_gnu_ptr_func_arith)
6014     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6015     // We only show the second type if it differs from the first.
6016     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6017                                                    RHS->getType())
6018     << RHS->getType()->getPointeeType()
6019     << LHS->getSourceRange() << RHS->getSourceRange();
6020 }
6021 
6022 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6023 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6024                                                 Expr *Pointer) {
6025   assert(Pointer->getType()->isAnyPointerType());
6026   S.Diag(Loc, S.getLangOpts().CPlusPlus
6027                 ? diag::err_typecheck_pointer_arith_function_type
6028                 : diag::ext_gnu_ptr_func_arith)
6029     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6030     << 0 /* one pointer, so only one type */
6031     << Pointer->getSourceRange();
6032 }
6033 
6034 /// \brief Emit error if Operand is incomplete pointer type
6035 ///
6036 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)6037 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6038                                                  Expr *Operand) {
6039   if ((Operand->getType()->isPointerType() &&
6040        !Operand->getType()->isDependentType()) ||
6041       Operand->getType()->isObjCObjectPointerType()) {
6042     QualType PointeeTy = Operand->getType()->getPointeeType();
6043     if (S.RequireCompleteType(
6044           Loc, PointeeTy,
6045           S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6046             << PointeeTy << Operand->getSourceRange()))
6047       return true;
6048   }
6049   return false;
6050 }
6051 
6052 /// \brief Check the validity of an arithmetic pointer operand.
6053 ///
6054 /// If the operand has pointer type, this code will check for pointer types
6055 /// which are invalid in arithmetic operations. These will be diagnosed
6056 /// appropriately, including whether or not the use is supported as an
6057 /// extension.
6058 ///
6059 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)6060 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6061                                             Expr *Operand) {
6062   if (!Operand->getType()->isAnyPointerType()) return true;
6063 
6064   QualType PointeeTy = Operand->getType()->getPointeeType();
6065   if (PointeeTy->isVoidType()) {
6066     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6067     return !S.getLangOpts().CPlusPlus;
6068   }
6069   if (PointeeTy->isFunctionType()) {
6070     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6071     return !S.getLangOpts().CPlusPlus;
6072   }
6073 
6074   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6075 
6076   return true;
6077 }
6078 
6079 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6080 /// operands.
6081 ///
6082 /// This routine will diagnose any invalid arithmetic on pointer operands much
6083 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
6084 /// for emitting a single diagnostic even for operations where both LHS and RHS
6085 /// are (potentially problematic) pointers.
6086 ///
6087 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6088 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6089                                                 Expr *LHSExpr, Expr *RHSExpr) {
6090   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6091   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6092   if (!isLHSPointer && !isRHSPointer) return true;
6093 
6094   QualType LHSPointeeTy, RHSPointeeTy;
6095   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6096   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6097 
6098   // Check for arithmetic on pointers to incomplete types.
6099   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6100   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6101   if (isLHSVoidPtr || isRHSVoidPtr) {
6102     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6103     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6104     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6105 
6106     return !S.getLangOpts().CPlusPlus;
6107   }
6108 
6109   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6110   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6111   if (isLHSFuncPtr || isRHSFuncPtr) {
6112     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6113     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6114                                                                 RHSExpr);
6115     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6116 
6117     return !S.getLangOpts().CPlusPlus;
6118   }
6119 
6120   if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
6121   if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
6122 
6123   return true;
6124 }
6125 
6126 /// \brief Check bad cases where we step over interface counts.
checkArithmethicPointerOnNonFragileABI(Sema & S,SourceLocation OpLoc,Expr * Op)6127 static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
6128                                                    SourceLocation OpLoc,
6129                                                    Expr *Op) {
6130   assert(Op->getType()->isAnyPointerType());
6131   QualType PointeeTy = Op->getType()->getPointeeType();
6132   if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
6133     return true;
6134 
6135   S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6136     << PointeeTy << Op->getSourceRange();
6137   return false;
6138 }
6139 
6140 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6141 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)6142 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6143                                   Expr *LHSExpr, Expr *RHSExpr) {
6144   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6145   Expr* IndexExpr = RHSExpr;
6146   if (!StrExpr) {
6147     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6148     IndexExpr = LHSExpr;
6149   }
6150 
6151   bool IsStringPlusInt = StrExpr &&
6152       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6153   if (!IsStringPlusInt)
6154     return;
6155 
6156   llvm::APSInt index;
6157   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6158     unsigned StrLenWithNull = StrExpr->getLength() + 1;
6159     if (index.isNonNegative() &&
6160         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6161                               index.isUnsigned()))
6162       return;
6163   }
6164 
6165   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6166   Self.Diag(OpLoc, diag::warn_string_plus_int)
6167       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6168 
6169   // Only print a fixit for "str" + int, not for int + "str".
6170   if (IndexExpr == RHSExpr) {
6171     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6172     Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6173         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6174         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6175         << FixItHint::CreateInsertion(EndLoc, "]");
6176   } else
6177     Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6178 }
6179 
6180 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6181 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6182                                            Expr *LHSExpr, Expr *RHSExpr) {
6183   assert(LHSExpr->getType()->isAnyPointerType());
6184   assert(RHSExpr->getType()->isAnyPointerType());
6185   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6186     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6187     << RHSExpr->getSourceRange();
6188 }
6189 
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType * CompLHSTy)6190 QualType Sema::CheckAdditionOperands( // C99 6.5.6
6191     ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6192     QualType* CompLHSTy) {
6193   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6194 
6195   if (LHS.get()->getType()->isVectorType() ||
6196       RHS.get()->getType()->isVectorType()) {
6197     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6198     if (CompLHSTy) *CompLHSTy = compType;
6199     return compType;
6200   }
6201 
6202   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6203   if (LHS.isInvalid() || RHS.isInvalid())
6204     return QualType();
6205 
6206   // Diagnose "string literal" '+' int.
6207   if (Opc == BO_Add)
6208     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6209 
6210   // handle the common case first (both operands are arithmetic).
6211   if (LHS.get()->getType()->isArithmeticType() &&
6212       RHS.get()->getType()->isArithmeticType()) {
6213     if (CompLHSTy) *CompLHSTy = compType;
6214     return compType;
6215   }
6216 
6217   if (LHS.get()->getType()->isAtomicType() &&
6218       RHS.get()->getType()->isArithmeticType()) {
6219     *CompLHSTy = LHS.get()->getType();
6220     return compType;
6221   }
6222 
6223   // Put any potential pointer into PExp
6224   Expr* PExp = LHS.get(), *IExp = RHS.get();
6225   if (IExp->getType()->isAnyPointerType())
6226     std::swap(PExp, IExp);
6227 
6228   if (!PExp->getType()->isAnyPointerType())
6229     return InvalidOperands(Loc, LHS, RHS);
6230 
6231   if (!IExp->getType()->isIntegerType())
6232     return InvalidOperands(Loc, LHS, RHS);
6233 
6234   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6235     return QualType();
6236 
6237   // Diagnose bad cases where we step over interface counts.
6238   if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
6239     return QualType();
6240 
6241   // Check array bounds for pointer arithemtic
6242   CheckArrayAccess(PExp, IExp);
6243 
6244   if (CompLHSTy) {
6245     QualType LHSTy = Context.isPromotableBitField(LHS.get());
6246     if (LHSTy.isNull()) {
6247       LHSTy = LHS.get()->getType();
6248       if (LHSTy->isPromotableIntegerType())
6249         LHSTy = Context.getPromotedIntegerType(LHSTy);
6250     }
6251     *CompLHSTy = LHSTy;
6252   }
6253 
6254   return PExp->getType();
6255 }
6256 
6257 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)6258 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6259                                         SourceLocation Loc,
6260                                         QualType* CompLHSTy) {
6261   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6262 
6263   if (LHS.get()->getType()->isVectorType() ||
6264       RHS.get()->getType()->isVectorType()) {
6265     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6266     if (CompLHSTy) *CompLHSTy = compType;
6267     return compType;
6268   }
6269 
6270   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6271   if (LHS.isInvalid() || RHS.isInvalid())
6272     return QualType();
6273 
6274   // Enforce type constraints: C99 6.5.6p3.
6275 
6276   // Handle the common case first (both operands are arithmetic).
6277   if (LHS.get()->getType()->isArithmeticType() &&
6278       RHS.get()->getType()->isArithmeticType()) {
6279     if (CompLHSTy) *CompLHSTy = compType;
6280     return compType;
6281   }
6282 
6283   if (LHS.get()->getType()->isAtomicType() &&
6284       RHS.get()->getType()->isArithmeticType()) {
6285     *CompLHSTy = LHS.get()->getType();
6286     return compType;
6287   }
6288 
6289   // Either ptr - int   or   ptr - ptr.
6290   if (LHS.get()->getType()->isAnyPointerType()) {
6291     QualType lpointee = LHS.get()->getType()->getPointeeType();
6292 
6293     // Diagnose bad cases where we step over interface counts.
6294     if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
6295       return QualType();
6296 
6297     // The result type of a pointer-int computation is the pointer type.
6298     if (RHS.get()->getType()->isIntegerType()) {
6299       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6300         return QualType();
6301 
6302       // Check array bounds for pointer arithemtic
6303       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6304                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6305 
6306       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6307       return LHS.get()->getType();
6308     }
6309 
6310     // Handle pointer-pointer subtractions.
6311     if (const PointerType *RHSPTy
6312           = RHS.get()->getType()->getAs<PointerType>()) {
6313       QualType rpointee = RHSPTy->getPointeeType();
6314 
6315       if (getLangOpts().CPlusPlus) {
6316         // Pointee types must be the same: C++ [expr.add]
6317         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6318           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6319         }
6320       } else {
6321         // Pointee types must be compatible C99 6.5.6p3
6322         if (!Context.typesAreCompatible(
6323                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
6324                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6325           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6326           return QualType();
6327         }
6328       }
6329 
6330       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6331                                                LHS.get(), RHS.get()))
6332         return QualType();
6333 
6334       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6335       return Context.getPointerDiffType();
6336     }
6337   }
6338 
6339   return InvalidOperands(Loc, LHS, RHS);
6340 }
6341 
isScopedEnumerationType(QualType T)6342 static bool isScopedEnumerationType(QualType T) {
6343   if (const EnumType *ET = dyn_cast<EnumType>(T))
6344     return ET->getDecl()->isScoped();
6345   return false;
6346 }
6347 
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType LHSType)6348 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6349                                    SourceLocation Loc, unsigned Opc,
6350                                    QualType LHSType) {
6351   llvm::APSInt Right;
6352   // Check right/shifter operand
6353   if (RHS.get()->isValueDependent() ||
6354       !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6355     return;
6356 
6357   if (Right.isNegative()) {
6358     S.DiagRuntimeBehavior(Loc, RHS.get(),
6359                           S.PDiag(diag::warn_shift_negative)
6360                             << RHS.get()->getSourceRange());
6361     return;
6362   }
6363   llvm::APInt LeftBits(Right.getBitWidth(),
6364                        S.Context.getTypeSize(LHS.get()->getType()));
6365   if (Right.uge(LeftBits)) {
6366     S.DiagRuntimeBehavior(Loc, RHS.get(),
6367                           S.PDiag(diag::warn_shift_gt_typewidth)
6368                             << RHS.get()->getSourceRange());
6369     return;
6370   }
6371   if (Opc != BO_Shl)
6372     return;
6373 
6374   // When left shifting an ICE which is signed, we can check for overflow which
6375   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6376   // integers have defined behavior modulo one more than the maximum value
6377   // representable in the result type, so never warn for those.
6378   llvm::APSInt Left;
6379   if (LHS.get()->isValueDependent() ||
6380       !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6381       LHSType->hasUnsignedIntegerRepresentation())
6382     return;
6383   llvm::APInt ResultBits =
6384       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6385   if (LeftBits.uge(ResultBits))
6386     return;
6387   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6388   Result = Result.shl(Right);
6389 
6390   // Print the bit representation of the signed integer as an unsigned
6391   // hexadecimal number.
6392   SmallString<40> HexResult;
6393   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6394 
6395   // If we are only missing a sign bit, this is less likely to result in actual
6396   // bugs -- if the result is cast back to an unsigned type, it will have the
6397   // expected value. Thus we place this behind a different warning that can be
6398   // turned off separately if needed.
6399   if (LeftBits == ResultBits - 1) {
6400     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6401         << HexResult.str() << LHSType
6402         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6403     return;
6404   }
6405 
6406   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6407     << HexResult.str() << Result.getMinSignedBits() << LHSType
6408     << Left.getBitWidth() << LHS.get()->getSourceRange()
6409     << RHS.get()->getSourceRange();
6410 }
6411 
6412 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,bool IsCompAssign)6413 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6414                                   SourceLocation Loc, unsigned Opc,
6415                                   bool IsCompAssign) {
6416   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6417 
6418   // C99 6.5.7p2: Each of the operands shall have integer type.
6419   if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6420       !RHS.get()->getType()->hasIntegerRepresentation())
6421     return InvalidOperands(Loc, LHS, RHS);
6422 
6423   // C++0x: Don't allow scoped enums. FIXME: Use something better than
6424   // hasIntegerRepresentation() above instead of this.
6425   if (isScopedEnumerationType(LHS.get()->getType()) ||
6426       isScopedEnumerationType(RHS.get()->getType())) {
6427     return InvalidOperands(Loc, LHS, RHS);
6428   }
6429 
6430   // Vector shifts promote their scalar inputs to vector type.
6431   if (LHS.get()->getType()->isVectorType() ||
6432       RHS.get()->getType()->isVectorType())
6433     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6434 
6435   // Shifts don't perform usual arithmetic conversions, they just do integer
6436   // promotions on each operand. C99 6.5.7p3
6437 
6438   // For the LHS, do usual unary conversions, but then reset them away
6439   // if this is a compound assignment.
6440   ExprResult OldLHS = LHS;
6441   LHS = UsualUnaryConversions(LHS.take());
6442   if (LHS.isInvalid())
6443     return QualType();
6444   QualType LHSType = LHS.get()->getType();
6445   if (IsCompAssign) LHS = OldLHS;
6446 
6447   // The RHS is simpler.
6448   RHS = UsualUnaryConversions(RHS.take());
6449   if (RHS.isInvalid())
6450     return QualType();
6451 
6452   // Sanity-check shift operands
6453   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6454 
6455   // "The type of the result is that of the promoted left operand."
6456   return LHSType;
6457 }
6458 
IsWithinTemplateSpecialization(Decl * D)6459 static bool IsWithinTemplateSpecialization(Decl *D) {
6460   if (DeclContext *DC = D->getDeclContext()) {
6461     if (isa<ClassTemplateSpecializationDecl>(DC))
6462       return true;
6463     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6464       return FD->isFunctionTemplateSpecialization();
6465   }
6466   return false;
6467 }
6468 
6469 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6470 static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6471                                 ExprResult &RHS) {
6472   QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6473   QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6474 
6475   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6476   if (!LHSEnumType)
6477     return;
6478   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6479   if (!RHSEnumType)
6480     return;
6481 
6482   // Ignore anonymous enums.
6483   if (!LHSEnumType->getDecl()->getIdentifier())
6484     return;
6485   if (!RHSEnumType->getDecl()->getIdentifier())
6486     return;
6487 
6488   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6489     return;
6490 
6491   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6492       << LHSStrippedType << RHSStrippedType
6493       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6494 }
6495 
6496 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6497 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6498                                               ExprResult &LHS, ExprResult &RHS,
6499                                               bool IsError) {
6500   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6501                       : diag::ext_typecheck_comparison_of_distinct_pointers)
6502     << LHS.get()->getType() << RHS.get()->getType()
6503     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6504 }
6505 
6506 /// \brief Returns false if the pointers are converted to a composite type,
6507 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6508 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6509                                            ExprResult &LHS, ExprResult &RHS) {
6510   // C++ [expr.rel]p2:
6511   //   [...] Pointer conversions (4.10) and qualification
6512   //   conversions (4.4) are performed on pointer operands (or on
6513   //   a pointer operand and a null pointer constant) to bring
6514   //   them to their composite pointer type. [...]
6515   //
6516   // C++ [expr.eq]p1 uses the same notion for (in)equality
6517   // comparisons of pointers.
6518 
6519   // C++ [expr.eq]p2:
6520   //   In addition, pointers to members can be compared, or a pointer to
6521   //   member and a null pointer constant. Pointer to member conversions
6522   //   (4.11) and qualification conversions (4.4) are performed to bring
6523   //   them to a common type. If one operand is a null pointer constant,
6524   //   the common type is the type of the other operand. Otherwise, the
6525   //   common type is a pointer to member type similar (4.4) to the type
6526   //   of one of the operands, with a cv-qualification signature (4.4)
6527   //   that is the union of the cv-qualification signatures of the operand
6528   //   types.
6529 
6530   QualType LHSType = LHS.get()->getType();
6531   QualType RHSType = RHS.get()->getType();
6532   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6533          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6534 
6535   bool NonStandardCompositeType = false;
6536   bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6537   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6538   if (T.isNull()) {
6539     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6540     return true;
6541   }
6542 
6543   if (NonStandardCompositeType)
6544     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6545       << LHSType << RHSType << T << LHS.get()->getSourceRange()
6546       << RHS.get()->getSourceRange();
6547 
6548   LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6549   RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6550   return false;
6551 }
6552 
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6553 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6554                                                     ExprResult &LHS,
6555                                                     ExprResult &RHS,
6556                                                     bool IsError) {
6557   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6558                       : diag::ext_typecheck_comparison_of_fptr_to_void)
6559     << LHS.get()->getType() << RHS.get()->getType()
6560     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6561 }
6562 
6563 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc,bool IsRelational)6564 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6565                                     SourceLocation Loc, unsigned OpaqueOpc,
6566                                     bool IsRelational) {
6567   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6568 
6569   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6570 
6571   // Handle vector comparisons separately.
6572   if (LHS.get()->getType()->isVectorType() ||
6573       RHS.get()->getType()->isVectorType())
6574     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6575 
6576   QualType LHSType = LHS.get()->getType();
6577   QualType RHSType = RHS.get()->getType();
6578 
6579   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6580   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6581 
6582   checkEnumComparison(*this, Loc, LHS, RHS);
6583 
6584   if (!LHSType->hasFloatingRepresentation() &&
6585       !(LHSType->isBlockPointerType() && IsRelational) &&
6586       !LHS.get()->getLocStart().isMacroID() &&
6587       !RHS.get()->getLocStart().isMacroID()) {
6588     // For non-floating point types, check for self-comparisons of the form
6589     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6590     // often indicate logic errors in the program.
6591     //
6592     // NOTE: Don't warn about comparison expressions resulting from macro
6593     // expansion. Also don't warn about comparisons which are only self
6594     // comparisons within a template specialization. The warnings should catch
6595     // obvious cases in the definition of the template anyways. The idea is to
6596     // warn when the typed comparison operator will always evaluate to the same
6597     // result.
6598     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6599       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6600         if (DRL->getDecl() == DRR->getDecl() &&
6601             !IsWithinTemplateSpecialization(DRL->getDecl())) {
6602           DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6603                               << 0 // self-
6604                               << (Opc == BO_EQ
6605                                   || Opc == BO_LE
6606                                   || Opc == BO_GE));
6607         } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6608                    !DRL->getDecl()->getType()->isReferenceType() &&
6609                    !DRR->getDecl()->getType()->isReferenceType()) {
6610             // what is it always going to eval to?
6611             char always_evals_to;
6612             switch(Opc) {
6613             case BO_EQ: // e.g. array1 == array2
6614               always_evals_to = 0; // false
6615               break;
6616             case BO_NE: // e.g. array1 != array2
6617               always_evals_to = 1; // true
6618               break;
6619             default:
6620               // best we can say is 'a constant'
6621               always_evals_to = 2; // e.g. array1 <= array2
6622               break;
6623             }
6624             DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6625                                 << 1 // array
6626                                 << always_evals_to);
6627         }
6628       }
6629     }
6630 
6631     if (isa<CastExpr>(LHSStripped))
6632       LHSStripped = LHSStripped->IgnoreParenCasts();
6633     if (isa<CastExpr>(RHSStripped))
6634       RHSStripped = RHSStripped->IgnoreParenCasts();
6635 
6636     // Warn about comparisons against a string constant (unless the other
6637     // operand is null), the user probably wants strcmp.
6638     Expr *literalString = 0;
6639     Expr *literalStringStripped = 0;
6640     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6641         !RHSStripped->isNullPointerConstant(Context,
6642                                             Expr::NPC_ValueDependentIsNull)) {
6643       literalString = LHS.get();
6644       literalStringStripped = LHSStripped;
6645     } else if ((isa<StringLiteral>(RHSStripped) ||
6646                 isa<ObjCEncodeExpr>(RHSStripped)) &&
6647                !LHSStripped->isNullPointerConstant(Context,
6648                                             Expr::NPC_ValueDependentIsNull)) {
6649       literalString = RHS.get();
6650       literalStringStripped = RHSStripped;
6651     }
6652 
6653     if (literalString) {
6654       std::string resultComparison;
6655       switch (Opc) {
6656       case BO_LT: resultComparison = ") < 0"; break;
6657       case BO_GT: resultComparison = ") > 0"; break;
6658       case BO_LE: resultComparison = ") <= 0"; break;
6659       case BO_GE: resultComparison = ") >= 0"; break;
6660       case BO_EQ: resultComparison = ") == 0"; break;
6661       case BO_NE: resultComparison = ") != 0"; break;
6662       default: llvm_unreachable("Invalid comparison operator");
6663       }
6664 
6665       DiagRuntimeBehavior(Loc, 0,
6666         PDiag(diag::warn_stringcompare)
6667           << isa<ObjCEncodeExpr>(literalStringStripped)
6668           << literalString->getSourceRange());
6669     }
6670   }
6671 
6672   // C99 6.5.8p3 / C99 6.5.9p4
6673   if (LHS.get()->getType()->isArithmeticType() &&
6674       RHS.get()->getType()->isArithmeticType()) {
6675     UsualArithmeticConversions(LHS, RHS);
6676     if (LHS.isInvalid() || RHS.isInvalid())
6677       return QualType();
6678   }
6679   else {
6680     LHS = UsualUnaryConversions(LHS.take());
6681     if (LHS.isInvalid())
6682       return QualType();
6683 
6684     RHS = UsualUnaryConversions(RHS.take());
6685     if (RHS.isInvalid())
6686       return QualType();
6687   }
6688 
6689   LHSType = LHS.get()->getType();
6690   RHSType = RHS.get()->getType();
6691 
6692   // The result of comparisons is 'bool' in C++, 'int' in C.
6693   QualType ResultTy = Context.getLogicalOperationType();
6694 
6695   if (IsRelational) {
6696     if (LHSType->isRealType() && RHSType->isRealType())
6697       return ResultTy;
6698   } else {
6699     // Check for comparisons of floating point operands using != and ==.
6700     if (LHSType->hasFloatingRepresentation())
6701       CheckFloatComparison(Loc, LHS.get(), RHS.get());
6702 
6703     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
6704       return ResultTy;
6705   }
6706 
6707   bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
6708                                               Expr::NPC_ValueDependentIsNull);
6709   bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
6710                                               Expr::NPC_ValueDependentIsNull);
6711 
6712   // All of the following pointer-related warnings are GCC extensions, except
6713   // when handling null pointer constants.
6714   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
6715     QualType LCanPointeeTy =
6716       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6717     QualType RCanPointeeTy =
6718       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6719 
6720     if (getLangOpts().CPlusPlus) {
6721       if (LCanPointeeTy == RCanPointeeTy)
6722         return ResultTy;
6723       if (!IsRelational &&
6724           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6725         // Valid unless comparison between non-null pointer and function pointer
6726         // This is a gcc extension compatibility comparison.
6727         // In a SFINAE context, we treat this as a hard error to maintain
6728         // conformance with the C++ standard.
6729         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6730             && !LHSIsNull && !RHSIsNull) {
6731           diagnoseFunctionPointerToVoidComparison(
6732               *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
6733 
6734           if (isSFINAEContext())
6735             return QualType();
6736 
6737           RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6738           return ResultTy;
6739         }
6740       }
6741 
6742       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6743         return QualType();
6744       else
6745         return ResultTy;
6746     }
6747     // C99 6.5.9p2 and C99 6.5.8p2
6748     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6749                                    RCanPointeeTy.getUnqualifiedType())) {
6750       // Valid unless a relational comparison of function pointers
6751       if (IsRelational && LCanPointeeTy->isFunctionType()) {
6752         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6753           << LHSType << RHSType << LHS.get()->getSourceRange()
6754           << RHS.get()->getSourceRange();
6755       }
6756     } else if (!IsRelational &&
6757                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6758       // Valid unless comparison between non-null pointer and function pointer
6759       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6760           && !LHSIsNull && !RHSIsNull)
6761         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
6762                                                 /*isError*/false);
6763     } else {
6764       // Invalid
6765       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
6766     }
6767     if (LCanPointeeTy != RCanPointeeTy) {
6768       if (LHSIsNull && !RHSIsNull)
6769         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6770       else
6771         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6772     }
6773     return ResultTy;
6774   }
6775 
6776   if (getLangOpts().CPlusPlus) {
6777     // Comparison of nullptr_t with itself.
6778     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
6779       return ResultTy;
6780 
6781     // Comparison of pointers with null pointer constants and equality
6782     // comparisons of member pointers to null pointer constants.
6783     if (RHSIsNull &&
6784         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
6785          (!IsRelational &&
6786           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
6787       RHS = ImpCastExprToType(RHS.take(), LHSType,
6788                         LHSType->isMemberPointerType()
6789                           ? CK_NullToMemberPointer
6790                           : CK_NullToPointer);
6791       return ResultTy;
6792     }
6793     if (LHSIsNull &&
6794         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
6795          (!IsRelational &&
6796           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
6797       LHS = ImpCastExprToType(LHS.take(), RHSType,
6798                         RHSType->isMemberPointerType()
6799                           ? CK_NullToMemberPointer
6800                           : CK_NullToPointer);
6801       return ResultTy;
6802     }
6803 
6804     // Comparison of member pointers.
6805     if (!IsRelational &&
6806         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
6807       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6808         return QualType();
6809       else
6810         return ResultTy;
6811     }
6812 
6813     // Handle scoped enumeration types specifically, since they don't promote
6814     // to integers.
6815     if (LHS.get()->getType()->isEnumeralType() &&
6816         Context.hasSameUnqualifiedType(LHS.get()->getType(),
6817                                        RHS.get()->getType()))
6818       return ResultTy;
6819   }
6820 
6821   // Handle block pointer types.
6822   if (!IsRelational && LHSType->isBlockPointerType() &&
6823       RHSType->isBlockPointerType()) {
6824     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
6825     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
6826 
6827     if (!LHSIsNull && !RHSIsNull &&
6828         !Context.typesAreCompatible(lpointee, rpointee)) {
6829       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6830         << LHSType << RHSType << LHS.get()->getSourceRange()
6831         << RHS.get()->getSourceRange();
6832     }
6833     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6834     return ResultTy;
6835   }
6836 
6837   // Allow block pointers to be compared with null pointer constants.
6838   if (!IsRelational
6839       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
6840           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
6841     if (!LHSIsNull && !RHSIsNull) {
6842       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
6843              ->getPointeeType()->isVoidType())
6844             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
6845                 ->getPointeeType()->isVoidType())))
6846         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6847           << LHSType << RHSType << LHS.get()->getSourceRange()
6848           << RHS.get()->getSourceRange();
6849     }
6850     if (LHSIsNull && !RHSIsNull)
6851       LHS = ImpCastExprToType(LHS.take(), RHSType,
6852                               RHSType->isPointerType() ? CK_BitCast
6853                                 : CK_AnyPointerToBlockPointerCast);
6854     else
6855       RHS = ImpCastExprToType(RHS.take(), LHSType,
6856                               LHSType->isPointerType() ? CK_BitCast
6857                                 : CK_AnyPointerToBlockPointerCast);
6858     return ResultTy;
6859   }
6860 
6861   if (LHSType->isObjCObjectPointerType() ||
6862       RHSType->isObjCObjectPointerType()) {
6863     const PointerType *LPT = LHSType->getAs<PointerType>();
6864     const PointerType *RPT = RHSType->getAs<PointerType>();
6865     if (LPT || RPT) {
6866       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
6867       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
6868 
6869       if (!LPtrToVoid && !RPtrToVoid &&
6870           !Context.typesAreCompatible(LHSType, RHSType)) {
6871         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6872                                           /*isError*/false);
6873       }
6874       if (LHSIsNull && !RHSIsNull)
6875         LHS = ImpCastExprToType(LHS.take(), RHSType,
6876                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6877       else
6878         RHS = ImpCastExprToType(RHS.take(), LHSType,
6879                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6880       return ResultTy;
6881     }
6882     if (LHSType->isObjCObjectPointerType() &&
6883         RHSType->isObjCObjectPointerType()) {
6884       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
6885         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6886                                           /*isError*/false);
6887       if (LHSIsNull && !RHSIsNull)
6888         LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6889       else
6890         RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6891       return ResultTy;
6892     }
6893   }
6894   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
6895       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
6896     unsigned DiagID = 0;
6897     bool isError = false;
6898     if ((LHSIsNull && LHSType->isIntegerType()) ||
6899         (RHSIsNull && RHSType->isIntegerType())) {
6900       if (IsRelational && !getLangOpts().CPlusPlus)
6901         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6902     } else if (IsRelational && !getLangOpts().CPlusPlus)
6903       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6904     else if (getLangOpts().CPlusPlus) {
6905       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6906       isError = true;
6907     } else
6908       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6909 
6910     if (DiagID) {
6911       Diag(Loc, DiagID)
6912         << LHSType << RHSType << LHS.get()->getSourceRange()
6913         << RHS.get()->getSourceRange();
6914       if (isError)
6915         return QualType();
6916     }
6917 
6918     if (LHSType->isIntegerType())
6919       LHS = ImpCastExprToType(LHS.take(), RHSType,
6920                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6921     else
6922       RHS = ImpCastExprToType(RHS.take(), LHSType,
6923                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6924     return ResultTy;
6925   }
6926 
6927   // Handle block pointers.
6928   if (!IsRelational && RHSIsNull
6929       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
6930     RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6931     return ResultTy;
6932   }
6933   if (!IsRelational && LHSIsNull
6934       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
6935     LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
6936     return ResultTy;
6937   }
6938 
6939   return InvalidOperands(Loc, LHS, RHS);
6940 }
6941 
6942 
6943 // Return a signed type that is of identical size and number of elements.
6944 // For floating point vectors, return an integer type of identical size
6945 // and number of elements.
GetSignedVectorType(QualType V)6946 QualType Sema::GetSignedVectorType(QualType V) {
6947   const VectorType *VTy = V->getAs<VectorType>();
6948   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6949   if (TypeSize == Context.getTypeSize(Context.CharTy))
6950     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
6951   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
6952     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
6953   else if (TypeSize == Context.getTypeSize(Context.IntTy))
6954     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6955   else if (TypeSize == Context.getTypeSize(Context.LongTy))
6956     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6957   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6958          "Unhandled vector element size in vector compare");
6959   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6960 }
6961 
6962 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
6963 /// operates on extended vector types.  Instead of producing an IntTy result,
6964 /// like a scalar comparison, a vector comparison produces a vector of integer
6965 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)6966 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
6967                                           SourceLocation Loc,
6968                                           bool IsRelational) {
6969   // Check to make sure we're operating on vectors of the same type and width,
6970   // Allowing one side to be a scalar of element type.
6971   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
6972   if (vType.isNull())
6973     return vType;
6974 
6975   QualType LHSType = LHS.get()->getType();
6976 
6977   // If AltiVec, the comparison results in a numeric type, i.e.
6978   // bool for C++, int for C
6979   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
6980     return Context.getLogicalOperationType();
6981 
6982   // For non-floating point types, check for self-comparisons of the form
6983   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6984   // often indicate logic errors in the program.
6985   if (!LHSType->hasFloatingRepresentation()) {
6986     if (DeclRefExpr* DRL
6987           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
6988       if (DeclRefExpr* DRR
6989             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
6990         if (DRL->getDecl() == DRR->getDecl())
6991           DiagRuntimeBehavior(Loc, 0,
6992                               PDiag(diag::warn_comparison_always)
6993                                 << 0 // self-
6994                                 << 2 // "a constant"
6995                               );
6996   }
6997 
6998   // Check for comparisons of floating point operands using != and ==.
6999   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7000     assert (RHS.get()->getType()->hasFloatingRepresentation());
7001     CheckFloatComparison(Loc, LHS.get(), RHS.get());
7002   }
7003 
7004   // Return a signed type for the vector.
7005   return GetSignedVectorType(LHSType);
7006 }
7007 
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7008 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7009                                           SourceLocation Loc) {
7010   // Ensure that either both operands are of the same vector type, or
7011   // one operand is of a vector type and the other is of its element type.
7012   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7013   if (vType.isNull() || vType->isFloatingType())
7014     return InvalidOperands(Loc, LHS, RHS);
7015 
7016   return GetSignedVectorType(LHS.get()->getType());
7017 }
7018 
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7019 inline QualType Sema::CheckBitwiseOperands(
7020   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7021   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7022 
7023   if (LHS.get()->getType()->isVectorType() ||
7024       RHS.get()->getType()->isVectorType()) {
7025     if (LHS.get()->getType()->hasIntegerRepresentation() &&
7026         RHS.get()->getType()->hasIntegerRepresentation())
7027       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7028 
7029     return InvalidOperands(Loc, LHS, RHS);
7030   }
7031 
7032   ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7033   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7034                                                  IsCompAssign);
7035   if (LHSResult.isInvalid() || RHSResult.isInvalid())
7036     return QualType();
7037   LHS = LHSResult.take();
7038   RHS = RHSResult.take();
7039 
7040   if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
7041       RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
7042     return compType;
7043   return InvalidOperands(Loc, LHS, RHS);
7044 }
7045 
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc)7046 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7047   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7048 
7049   // Check vector operands differently.
7050   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7051     return CheckVectorLogicalOperands(LHS, RHS, Loc);
7052 
7053   // Diagnose cases where the user write a logical and/or but probably meant a
7054   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7055   // is a constant.
7056   if (LHS.get()->getType()->isIntegerType() &&
7057       !LHS.get()->getType()->isBooleanType() &&
7058       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7059       // Don't warn in macros or template instantiations.
7060       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7061     // If the RHS can be constant folded, and if it constant folds to something
7062     // that isn't 0 or 1 (which indicate a potential logical operation that
7063     // happened to fold to true/false) then warn.
7064     // Parens on the RHS are ignored.
7065     llvm::APSInt Result;
7066     if (RHS.get()->EvaluateAsInt(Result, Context))
7067       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7068           (Result != 0 && Result != 1)) {
7069         Diag(Loc, diag::warn_logical_instead_of_bitwise)
7070           << RHS.get()->getSourceRange()
7071           << (Opc == BO_LAnd ? "&&" : "||");
7072         // Suggest replacing the logical operator with the bitwise version
7073         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7074             << (Opc == BO_LAnd ? "&" : "|")
7075             << FixItHint::CreateReplacement(SourceRange(
7076                 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7077                                                 getLangOpts())),
7078                                             Opc == BO_LAnd ? "&" : "|");
7079         if (Opc == BO_LAnd)
7080           // Suggest replacing "Foo() && kNonZero" with "Foo()"
7081           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7082               << FixItHint::CreateRemoval(
7083                   SourceRange(
7084                       Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7085                                                  0, getSourceManager(),
7086                                                  getLangOpts()),
7087                       RHS.get()->getLocEnd()));
7088       }
7089   }
7090 
7091   if (!Context.getLangOpts().CPlusPlus) {
7092     LHS = UsualUnaryConversions(LHS.take());
7093     if (LHS.isInvalid())
7094       return QualType();
7095 
7096     RHS = UsualUnaryConversions(RHS.take());
7097     if (RHS.isInvalid())
7098       return QualType();
7099 
7100     if (!LHS.get()->getType()->isScalarType() ||
7101         !RHS.get()->getType()->isScalarType())
7102       return InvalidOperands(Loc, LHS, RHS);
7103 
7104     return Context.IntTy;
7105   }
7106 
7107   // The following is safe because we only use this method for
7108   // non-overloadable operands.
7109 
7110   // C++ [expr.log.and]p1
7111   // C++ [expr.log.or]p1
7112   // The operands are both contextually converted to type bool.
7113   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7114   if (LHSRes.isInvalid())
7115     return InvalidOperands(Loc, LHS, RHS);
7116   LHS = move(LHSRes);
7117 
7118   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7119   if (RHSRes.isInvalid())
7120     return InvalidOperands(Loc, LHS, RHS);
7121   RHS = move(RHSRes);
7122 
7123   // C++ [expr.log.and]p2
7124   // C++ [expr.log.or]p2
7125   // The result is a bool.
7126   return Context.BoolTy;
7127 }
7128 
7129 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7130 /// is a read-only property; return true if so. A readonly property expression
7131 /// depends on various declarations and thus must be treated specially.
7132 ///
IsReadonlyProperty(Expr * E,Sema & S)7133 static bool IsReadonlyProperty(Expr *E, Sema &S) {
7134   const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7135   if (!PropExpr) return false;
7136   if (PropExpr->isImplicitProperty()) return false;
7137 
7138   ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7139   QualType BaseType = PropExpr->isSuperReceiver() ?
7140                             PropExpr->getSuperReceiverType() :
7141                             PropExpr->getBase()->getType();
7142 
7143   if (const ObjCObjectPointerType *OPT =
7144       BaseType->getAsObjCInterfacePointerType())
7145     if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7146       if (S.isPropertyReadonly(PDecl, IFace))
7147         return true;
7148   return false;
7149 }
7150 
IsReadonlyMessage(Expr * E,Sema & S)7151 static bool IsReadonlyMessage(Expr *E, Sema &S) {
7152   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7153   if (!ME) return false;
7154   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7155   ObjCMessageExpr *Base =
7156     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7157   if (!Base) return false;
7158   return Base->getMethodDecl() != 0;
7159 }
7160 
7161 /// Is the given expression (which must be 'const') a reference to a
7162 /// variable which was originally non-const, but which has become
7163 /// 'const' due to being captured within a block?
7164 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)7165 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7166   assert(E->isLValue() && E->getType().isConstQualified());
7167   E = E->IgnoreParens();
7168 
7169   // Must be a reference to a declaration from an enclosing scope.
7170   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7171   if (!DRE) return NCCK_None;
7172   if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7173 
7174   // The declaration must be a variable which is not declared 'const'.
7175   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7176   if (!var) return NCCK_None;
7177   if (var->getType().isConstQualified()) return NCCK_None;
7178   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7179 
7180   // Decide whether the first capture was for a block or a lambda.
7181   DeclContext *DC = S.CurContext;
7182   while (DC->getParent() != var->getDeclContext())
7183     DC = DC->getParent();
7184   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7185 }
7186 
7187 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7188 /// emit an error and return true.  If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)7189 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7190   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7191   SourceLocation OrigLoc = Loc;
7192   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7193                                                               &Loc);
7194   if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7195     IsLV = Expr::MLV_ReadonlyProperty;
7196   else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7197     IsLV = Expr::MLV_InvalidMessageExpression;
7198   if (IsLV == Expr::MLV_Valid)
7199     return false;
7200 
7201   unsigned Diag = 0;
7202   bool NeedType = false;
7203   switch (IsLV) { // C99 6.5.16p2
7204   case Expr::MLV_ConstQualified:
7205     Diag = diag::err_typecheck_assign_const;
7206 
7207     // Use a specialized diagnostic when we're assigning to an object
7208     // from an enclosing function or block.
7209     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7210       if (NCCK == NCCK_Block)
7211         Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7212       else
7213         Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7214       break;
7215     }
7216 
7217     // In ARC, use some specialized diagnostics for occasions where we
7218     // infer 'const'.  These are always pseudo-strong variables.
7219     if (S.getLangOpts().ObjCAutoRefCount) {
7220       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7221       if (declRef && isa<VarDecl>(declRef->getDecl())) {
7222         VarDecl *var = cast<VarDecl>(declRef->getDecl());
7223 
7224         // Use the normal diagnostic if it's pseudo-__strong but the
7225         // user actually wrote 'const'.
7226         if (var->isARCPseudoStrong() &&
7227             (!var->getTypeSourceInfo() ||
7228              !var->getTypeSourceInfo()->getType().isConstQualified())) {
7229           // There are two pseudo-strong cases:
7230           //  - self
7231           ObjCMethodDecl *method = S.getCurMethodDecl();
7232           if (method && var == method->getSelfDecl())
7233             Diag = method->isClassMethod()
7234               ? diag::err_typecheck_arc_assign_self_class_method
7235               : diag::err_typecheck_arc_assign_self;
7236 
7237           //  - fast enumeration variables
7238           else
7239             Diag = diag::err_typecheck_arr_assign_enumeration;
7240 
7241           SourceRange Assign;
7242           if (Loc != OrigLoc)
7243             Assign = SourceRange(OrigLoc, OrigLoc);
7244           S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7245           // We need to preserve the AST regardless, so migration tool
7246           // can do its job.
7247           return false;
7248         }
7249       }
7250     }
7251 
7252     break;
7253   case Expr::MLV_ArrayType:
7254     Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7255     NeedType = true;
7256     break;
7257   case Expr::MLV_NotObjectType:
7258     Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7259     NeedType = true;
7260     break;
7261   case Expr::MLV_LValueCast:
7262     Diag = diag::err_typecheck_lvalue_casts_not_supported;
7263     break;
7264   case Expr::MLV_Valid:
7265     llvm_unreachable("did not take early return for MLV_Valid");
7266   case Expr::MLV_InvalidExpression:
7267   case Expr::MLV_MemberFunction:
7268   case Expr::MLV_ClassTemporary:
7269     Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7270     break;
7271   case Expr::MLV_IncompleteType:
7272   case Expr::MLV_IncompleteVoidType:
7273     return S.RequireCompleteType(Loc, E->getType(),
7274               S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
7275                   << E->getSourceRange());
7276   case Expr::MLV_DuplicateVectorComponents:
7277     Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7278     break;
7279   case Expr::MLV_ReadonlyProperty:
7280   case Expr::MLV_NoSetterProperty:
7281     llvm_unreachable("readonly properties should be processed differently");
7282   case Expr::MLV_InvalidMessageExpression:
7283     Diag = diag::error_readonly_message_assignment;
7284     break;
7285   case Expr::MLV_SubObjCPropertySetting:
7286     Diag = diag::error_no_subobject_property_setting;
7287     break;
7288   }
7289 
7290   SourceRange Assign;
7291   if (Loc != OrigLoc)
7292     Assign = SourceRange(OrigLoc, OrigLoc);
7293   if (NeedType)
7294     S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7295   else
7296     S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7297   return true;
7298 }
7299 
7300 
7301 
7302 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)7303 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7304                                        SourceLocation Loc,
7305                                        QualType CompoundType) {
7306   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7307 
7308   // Verify that LHS is a modifiable lvalue, and emit error if not.
7309   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7310     return QualType();
7311 
7312   QualType LHSType = LHSExpr->getType();
7313   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7314                                              CompoundType;
7315   AssignConvertType ConvTy;
7316   if (CompoundType.isNull()) {
7317     QualType LHSTy(LHSType);
7318     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7319     if (RHS.isInvalid())
7320       return QualType();
7321     // Special case of NSObject attributes on c-style pointer types.
7322     if (ConvTy == IncompatiblePointer &&
7323         ((Context.isObjCNSObjectType(LHSType) &&
7324           RHSType->isObjCObjectPointerType()) ||
7325          (Context.isObjCNSObjectType(RHSType) &&
7326           LHSType->isObjCObjectPointerType())))
7327       ConvTy = Compatible;
7328 
7329     if (ConvTy == Compatible &&
7330         LHSType->isObjCObjectType())
7331         Diag(Loc, diag::err_objc_object_assignment)
7332           << LHSType;
7333 
7334     // If the RHS is a unary plus or minus, check to see if they = and + are
7335     // right next to each other.  If so, the user may have typo'd "x =+ 4"
7336     // instead of "x += 4".
7337     Expr *RHSCheck = RHS.get();
7338     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7339       RHSCheck = ICE->getSubExpr();
7340     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7341       if ((UO->getOpcode() == UO_Plus ||
7342            UO->getOpcode() == UO_Minus) &&
7343           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7344           // Only if the two operators are exactly adjacent.
7345           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7346           // And there is a space or other character before the subexpr of the
7347           // unary +/-.  We don't want to warn on "x=-1".
7348           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7349           UO->getSubExpr()->getLocStart().isFileID()) {
7350         Diag(Loc, diag::warn_not_compound_assign)
7351           << (UO->getOpcode() == UO_Plus ? "+" : "-")
7352           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7353       }
7354     }
7355 
7356     if (ConvTy == Compatible) {
7357       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7358         checkRetainCycles(LHSExpr, RHS.get());
7359       else if (getLangOpts().ObjCAutoRefCount)
7360         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7361     }
7362   } else {
7363     // Compound assignment "x += y"
7364     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7365   }
7366 
7367   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7368                                RHS.get(), AA_Assigning))
7369     return QualType();
7370 
7371   CheckForNullPointerDereference(*this, LHSExpr);
7372 
7373   // C99 6.5.16p3: The type of an assignment expression is the type of the
7374   // left operand unless the left operand has qualified type, in which case
7375   // it is the unqualified version of the type of the left operand.
7376   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7377   // is converted to the type of the assignment expression (above).
7378   // C++ 5.17p1: the type of the assignment expression is that of its left
7379   // operand.
7380   return (getLangOpts().CPlusPlus
7381           ? LHSType : LHSType.getUnqualifiedType());
7382 }
7383 
7384 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7385 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7386                                    SourceLocation Loc) {
7387   S.DiagnoseUnusedExprResult(LHS.get());
7388 
7389   LHS = S.CheckPlaceholderExpr(LHS.take());
7390   RHS = S.CheckPlaceholderExpr(RHS.take());
7391   if (LHS.isInvalid() || RHS.isInvalid())
7392     return QualType();
7393 
7394   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7395   // operands, but not unary promotions.
7396   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7397 
7398   // So we treat the LHS as a ignored value, and in C++ we allow the
7399   // containing site to determine what should be done with the RHS.
7400   LHS = S.IgnoredValueConversions(LHS.take());
7401   if (LHS.isInvalid())
7402     return QualType();
7403 
7404   if (!S.getLangOpts().CPlusPlus) {
7405     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7406     if (RHS.isInvalid())
7407       return QualType();
7408     if (!RHS.get()->getType()->isVoidType())
7409       S.RequireCompleteType(Loc, RHS.get()->getType(),
7410                             diag::err_incomplete_type);
7411   }
7412 
7413   return RHS.get()->getType();
7414 }
7415 
7416 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7417 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)7418 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7419                                                ExprValueKind &VK,
7420                                                SourceLocation OpLoc,
7421                                                bool IsInc, bool IsPrefix) {
7422   if (Op->isTypeDependent())
7423     return S.Context.DependentTy;
7424 
7425   QualType ResType = Op->getType();
7426   // Atomic types can be used for increment / decrement where the non-atomic
7427   // versions can, so ignore the _Atomic() specifier for the purpose of
7428   // checking.
7429   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7430     ResType = ResAtomicType->getValueType();
7431 
7432   assert(!ResType.isNull() && "no type for increment/decrement expression");
7433 
7434   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7435     // Decrement of bool is not allowed.
7436     if (!IsInc) {
7437       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7438       return QualType();
7439     }
7440     // Increment of bool sets it to true, but is deprecated.
7441     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7442   } else if (ResType->isRealType()) {
7443     // OK!
7444   } else if (ResType->isAnyPointerType()) {
7445     // C99 6.5.2.4p2, 6.5.6p2
7446     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7447       return QualType();
7448 
7449     // Diagnose bad cases where we step over interface counts.
7450     else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
7451       return QualType();
7452   } else if (ResType->isAnyComplexType()) {
7453     // C99 does not support ++/-- on complex types, we allow as an extension.
7454     S.Diag(OpLoc, diag::ext_integer_increment_complex)
7455       << ResType << Op->getSourceRange();
7456   } else if (ResType->isPlaceholderType()) {
7457     ExprResult PR = S.CheckPlaceholderExpr(Op);
7458     if (PR.isInvalid()) return QualType();
7459     return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7460                                           IsInc, IsPrefix);
7461   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7462     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7463   } else {
7464     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7465       << ResType << int(IsInc) << Op->getSourceRange();
7466     return QualType();
7467   }
7468   // At this point, we know we have a real, complex or pointer type.
7469   // Now make sure the operand is a modifiable lvalue.
7470   if (CheckForModifiableLvalue(Op, OpLoc, S))
7471     return QualType();
7472   // In C++, a prefix increment is the same type as the operand. Otherwise
7473   // (in C or with postfix), the increment is the unqualified type of the
7474   // operand.
7475   if (IsPrefix && S.getLangOpts().CPlusPlus) {
7476     VK = VK_LValue;
7477     return ResType;
7478   } else {
7479     VK = VK_RValue;
7480     return ResType.getUnqualifiedType();
7481   }
7482 }
7483 
7484 
7485 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7486 /// This routine allows us to typecheck complex/recursive expressions
7487 /// where the declaration is needed for type checking. We only need to
7488 /// handle cases when the expression references a function designator
7489 /// or is an lvalue. Here are some examples:
7490 ///  - &(x) => x
7491 ///  - &*****f => f for f a function designator.
7492 ///  - &s.xx => s
7493 ///  - &s.zz[1].yy -> s, if zz is an array
7494 ///  - *(x + 1) -> x, if x is an array
7495 ///  - &"123"[2] -> 0
7496 ///  - & __real__ x -> x
getPrimaryDecl(Expr * E)7497 static ValueDecl *getPrimaryDecl(Expr *E) {
7498   switch (E->getStmtClass()) {
7499   case Stmt::DeclRefExprClass:
7500     return cast<DeclRefExpr>(E)->getDecl();
7501   case Stmt::MemberExprClass:
7502     // If this is an arrow operator, the address is an offset from
7503     // the base's value, so the object the base refers to is
7504     // irrelevant.
7505     if (cast<MemberExpr>(E)->isArrow())
7506       return 0;
7507     // Otherwise, the expression refers to a part of the base
7508     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7509   case Stmt::ArraySubscriptExprClass: {
7510     // FIXME: This code shouldn't be necessary!  We should catch the implicit
7511     // promotion of register arrays earlier.
7512     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7513     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7514       if (ICE->getSubExpr()->getType()->isArrayType())
7515         return getPrimaryDecl(ICE->getSubExpr());
7516     }
7517     return 0;
7518   }
7519   case Stmt::UnaryOperatorClass: {
7520     UnaryOperator *UO = cast<UnaryOperator>(E);
7521 
7522     switch(UO->getOpcode()) {
7523     case UO_Real:
7524     case UO_Imag:
7525     case UO_Extension:
7526       return getPrimaryDecl(UO->getSubExpr());
7527     default:
7528       return 0;
7529     }
7530   }
7531   case Stmt::ParenExprClass:
7532     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7533   case Stmt::ImplicitCastExprClass:
7534     // If the result of an implicit cast is an l-value, we care about
7535     // the sub-expression; otherwise, the result here doesn't matter.
7536     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7537   default:
7538     return 0;
7539   }
7540 }
7541 
7542 namespace {
7543   enum {
7544     AO_Bit_Field = 0,
7545     AO_Vector_Element = 1,
7546     AO_Property_Expansion = 2,
7547     AO_Register_Variable = 3,
7548     AO_No_Error = 4
7549   };
7550 }
7551 /// \brief Diagnose invalid operand for address of operations.
7552 ///
7553 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)7554 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7555                                          Expr *E, unsigned Type) {
7556   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7557 }
7558 
7559 /// CheckAddressOfOperand - The operand of & must be either a function
7560 /// designator or an lvalue designating an object. If it is an lvalue, the
7561 /// object cannot be declared with storage class register or be a bit field.
7562 /// Note: The usual conversions are *not* applied to the operand of the &
7563 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7564 /// In C++, the operand might be an overloaded function name, in which case
7565 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(Sema & S,ExprResult & OrigOp,SourceLocation OpLoc)7566 static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7567                                       SourceLocation OpLoc) {
7568   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7569     if (PTy->getKind() == BuiltinType::Overload) {
7570       if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7571         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7572           << OrigOp.get()->getSourceRange();
7573         return QualType();
7574       }
7575 
7576       return S.Context.OverloadTy;
7577     }
7578 
7579     if (PTy->getKind() == BuiltinType::UnknownAny)
7580       return S.Context.UnknownAnyTy;
7581 
7582     if (PTy->getKind() == BuiltinType::BoundMember) {
7583       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7584         << OrigOp.get()->getSourceRange();
7585       return QualType();
7586     }
7587 
7588     OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7589     if (OrigOp.isInvalid()) return QualType();
7590   }
7591 
7592   if (OrigOp.get()->isTypeDependent())
7593     return S.Context.DependentTy;
7594 
7595   assert(!OrigOp.get()->getType()->isPlaceholderType());
7596 
7597   // Make sure to ignore parentheses in subsequent checks
7598   Expr *op = OrigOp.get()->IgnoreParens();
7599 
7600   if (S.getLangOpts().C99) {
7601     // Implement C99-only parts of addressof rules.
7602     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7603       if (uOp->getOpcode() == UO_Deref)
7604         // Per C99 6.5.3.2, the address of a deref always returns a valid result
7605         // (assuming the deref expression is valid).
7606         return uOp->getSubExpr()->getType();
7607     }
7608     // Technically, there should be a check for array subscript
7609     // expressions here, but the result of one is always an lvalue anyway.
7610   }
7611   ValueDecl *dcl = getPrimaryDecl(op);
7612   Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7613   unsigned AddressOfError = AO_No_Error;
7614 
7615   if (lval == Expr::LV_ClassTemporary) {
7616     bool sfinae = S.isSFINAEContext();
7617     S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7618                          : diag::ext_typecheck_addrof_class_temporary)
7619       << op->getType() << op->getSourceRange();
7620     if (sfinae)
7621       return QualType();
7622   } else if (isa<ObjCSelectorExpr>(op)) {
7623     return S.Context.getPointerType(op->getType());
7624   } else if (lval == Expr::LV_MemberFunction) {
7625     // If it's an instance method, make a member pointer.
7626     // The expression must have exactly the form &A::foo.
7627 
7628     // If the underlying expression isn't a decl ref, give up.
7629     if (!isa<DeclRefExpr>(op)) {
7630       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7631         << OrigOp.get()->getSourceRange();
7632       return QualType();
7633     }
7634     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7635     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7636 
7637     // The id-expression was parenthesized.
7638     if (OrigOp.get() != DRE) {
7639       S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7640         << OrigOp.get()->getSourceRange();
7641 
7642     // The method was named without a qualifier.
7643     } else if (!DRE->getQualifier()) {
7644       S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7645         << op->getSourceRange();
7646     }
7647 
7648     return S.Context.getMemberPointerType(op->getType(),
7649               S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7650   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7651     // C99 6.5.3.2p1
7652     // The operand must be either an l-value or a function designator
7653     if (!op->getType()->isFunctionType()) {
7654       // Use a special diagnostic for loads from property references.
7655       if (isa<PseudoObjectExpr>(op)) {
7656         AddressOfError = AO_Property_Expansion;
7657       } else {
7658         // FIXME: emit more specific diag...
7659         S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7660           << op->getSourceRange();
7661         return QualType();
7662       }
7663     }
7664   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7665     // The operand cannot be a bit-field
7666     AddressOfError = AO_Bit_Field;
7667   } else if (op->getObjectKind() == OK_VectorComponent) {
7668     // The operand cannot be an element of a vector
7669     AddressOfError = AO_Vector_Element;
7670   } else if (dcl) { // C99 6.5.3.2p1
7671     // We have an lvalue with a decl. Make sure the decl is not declared
7672     // with the register storage-class specifier.
7673     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7674       // in C++ it is not error to take address of a register
7675       // variable (c++03 7.1.1P3)
7676       if (vd->getStorageClass() == SC_Register &&
7677           !S.getLangOpts().CPlusPlus) {
7678         AddressOfError = AO_Register_Variable;
7679       }
7680     } else if (isa<FunctionTemplateDecl>(dcl)) {
7681       return S.Context.OverloadTy;
7682     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7683       // Okay: we can take the address of a field.
7684       // Could be a pointer to member, though, if there is an explicit
7685       // scope qualifier for the class.
7686       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7687         DeclContext *Ctx = dcl->getDeclContext();
7688         if (Ctx && Ctx->isRecord()) {
7689           if (dcl->getType()->isReferenceType()) {
7690             S.Diag(OpLoc,
7691                    diag::err_cannot_form_pointer_to_member_of_reference_type)
7692               << dcl->getDeclName() << dcl->getType();
7693             return QualType();
7694           }
7695 
7696           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7697             Ctx = Ctx->getParent();
7698           return S.Context.getMemberPointerType(op->getType(),
7699                 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7700         }
7701       }
7702     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
7703       llvm_unreachable("Unknown/unexpected decl type");
7704   }
7705 
7706   if (AddressOfError != AO_No_Error) {
7707     diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
7708     return QualType();
7709   }
7710 
7711   if (lval == Expr::LV_IncompleteVoidType) {
7712     // Taking the address of a void variable is technically illegal, but we
7713     // allow it in cases which are otherwise valid.
7714     // Example: "extern void x; void* y = &x;".
7715     S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7716   }
7717 
7718   // If the operand has type "type", the result has type "pointer to type".
7719   if (op->getType()->isObjCObjectType())
7720     return S.Context.getObjCObjectPointerType(op->getType());
7721   return S.Context.getPointerType(op->getType());
7722 }
7723 
7724 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)7725 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7726                                         SourceLocation OpLoc) {
7727   if (Op->isTypeDependent())
7728     return S.Context.DependentTy;
7729 
7730   ExprResult ConvResult = S.UsualUnaryConversions(Op);
7731   if (ConvResult.isInvalid())
7732     return QualType();
7733   Op = ConvResult.take();
7734   QualType OpTy = Op->getType();
7735   QualType Result;
7736 
7737   if (isa<CXXReinterpretCastExpr>(Op)) {
7738     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
7739     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
7740                                      Op->getSourceRange());
7741   }
7742 
7743   // Note that per both C89 and C99, indirection is always legal, even if OpTy
7744   // is an incomplete type or void.  It would be possible to warn about
7745   // dereferencing a void pointer, but it's completely well-defined, and such a
7746   // warning is unlikely to catch any mistakes.
7747   if (const PointerType *PT = OpTy->getAs<PointerType>())
7748     Result = PT->getPointeeType();
7749   else if (const ObjCObjectPointerType *OPT =
7750              OpTy->getAs<ObjCObjectPointerType>())
7751     Result = OPT->getPointeeType();
7752   else {
7753     ExprResult PR = S.CheckPlaceholderExpr(Op);
7754     if (PR.isInvalid()) return QualType();
7755     if (PR.take() != Op)
7756       return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7757   }
7758 
7759   if (Result.isNull()) {
7760     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7761       << OpTy << Op->getSourceRange();
7762     return QualType();
7763   }
7764 
7765   // Dereferences are usually l-values...
7766   VK = VK_LValue;
7767 
7768   // ...except that certain expressions are never l-values in C.
7769   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
7770     VK = VK_RValue;
7771 
7772   return Result;
7773 }
7774 
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)7775 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7776   tok::TokenKind Kind) {
7777   BinaryOperatorKind Opc;
7778   switch (Kind) {
7779   default: llvm_unreachable("Unknown binop!");
7780   case tok::periodstar:           Opc = BO_PtrMemD; break;
7781   case tok::arrowstar:            Opc = BO_PtrMemI; break;
7782   case tok::star:                 Opc = BO_Mul; break;
7783   case tok::slash:                Opc = BO_Div; break;
7784   case tok::percent:              Opc = BO_Rem; break;
7785   case tok::plus:                 Opc = BO_Add; break;
7786   case tok::minus:                Opc = BO_Sub; break;
7787   case tok::lessless:             Opc = BO_Shl; break;
7788   case tok::greatergreater:       Opc = BO_Shr; break;
7789   case tok::lessequal:            Opc = BO_LE; break;
7790   case tok::less:                 Opc = BO_LT; break;
7791   case tok::greaterequal:         Opc = BO_GE; break;
7792   case tok::greater:              Opc = BO_GT; break;
7793   case tok::exclaimequal:         Opc = BO_NE; break;
7794   case tok::equalequal:           Opc = BO_EQ; break;
7795   case tok::amp:                  Opc = BO_And; break;
7796   case tok::caret:                Opc = BO_Xor; break;
7797   case tok::pipe:                 Opc = BO_Or; break;
7798   case tok::ampamp:               Opc = BO_LAnd; break;
7799   case tok::pipepipe:             Opc = BO_LOr; break;
7800   case tok::equal:                Opc = BO_Assign; break;
7801   case tok::starequal:            Opc = BO_MulAssign; break;
7802   case tok::slashequal:           Opc = BO_DivAssign; break;
7803   case tok::percentequal:         Opc = BO_RemAssign; break;
7804   case tok::plusequal:            Opc = BO_AddAssign; break;
7805   case tok::minusequal:           Opc = BO_SubAssign; break;
7806   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
7807   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
7808   case tok::ampequal:             Opc = BO_AndAssign; break;
7809   case tok::caretequal:           Opc = BO_XorAssign; break;
7810   case tok::pipeequal:            Opc = BO_OrAssign; break;
7811   case tok::comma:                Opc = BO_Comma; break;
7812   }
7813   return Opc;
7814 }
7815 
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)7816 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7817   tok::TokenKind Kind) {
7818   UnaryOperatorKind Opc;
7819   switch (Kind) {
7820   default: llvm_unreachable("Unknown unary op!");
7821   case tok::plusplus:     Opc = UO_PreInc; break;
7822   case tok::minusminus:   Opc = UO_PreDec; break;
7823   case tok::amp:          Opc = UO_AddrOf; break;
7824   case tok::star:         Opc = UO_Deref; break;
7825   case tok::plus:         Opc = UO_Plus; break;
7826   case tok::minus:        Opc = UO_Minus; break;
7827   case tok::tilde:        Opc = UO_Not; break;
7828   case tok::exclaim:      Opc = UO_LNot; break;
7829   case tok::kw___real:    Opc = UO_Real; break;
7830   case tok::kw___imag:    Opc = UO_Imag; break;
7831   case tok::kw___extension__: Opc = UO_Extension; break;
7832   }
7833   return Opc;
7834 }
7835 
7836 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7837 /// This warning is only emitted for builtin assignment operations. It is also
7838 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)7839 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
7840                                    SourceLocation OpLoc) {
7841   if (!S.ActiveTemplateInstantiations.empty())
7842     return;
7843   if (OpLoc.isInvalid() || OpLoc.isMacroID())
7844     return;
7845   LHSExpr = LHSExpr->IgnoreParenImpCasts();
7846   RHSExpr = RHSExpr->IgnoreParenImpCasts();
7847   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
7848   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
7849   if (!LHSDeclRef || !RHSDeclRef ||
7850       LHSDeclRef->getLocation().isMacroID() ||
7851       RHSDeclRef->getLocation().isMacroID())
7852     return;
7853   const ValueDecl *LHSDecl =
7854     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
7855   const ValueDecl *RHSDecl =
7856     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
7857   if (LHSDecl != RHSDecl)
7858     return;
7859   if (LHSDecl->getType().isVolatileQualified())
7860     return;
7861   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
7862     if (RefTy->getPointeeType().isVolatileQualified())
7863       return;
7864 
7865   S.Diag(OpLoc, diag::warn_self_assignment)
7866       << LHSDeclRef->getType()
7867       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7868 }
7869 
7870 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
7871 /// operator @p Opc at location @c TokLoc. This routine only supports
7872 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)7873 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7874                                     BinaryOperatorKind Opc,
7875                                     Expr *LHSExpr, Expr *RHSExpr) {
7876   if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
7877     // The syntax only allows initializer lists on the RHS of assignment,
7878     // so we don't need to worry about accepting invalid code for
7879     // non-assignment operators.
7880     // C++11 5.17p9:
7881     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
7882     //   of x = {} is x = T().
7883     InitializationKind Kind =
7884         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
7885     InitializedEntity Entity =
7886         InitializedEntity::InitializeTemporary(LHSExpr->getType());
7887     InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
7888     ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
7889                                       MultiExprArg(&RHSExpr, 1));
7890     if (Init.isInvalid())
7891       return Init;
7892     RHSExpr = Init.take();
7893   }
7894 
7895   ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
7896   QualType ResultTy;     // Result type of the binary operator.
7897   // The following two variables are used for compound assignment operators
7898   QualType CompLHSTy;    // Type of LHS after promotions for computation
7899   QualType CompResultTy; // Type of computation result
7900   ExprValueKind VK = VK_RValue;
7901   ExprObjectKind OK = OK_Ordinary;
7902 
7903   switch (Opc) {
7904   case BO_Assign:
7905     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
7906     if (getLangOpts().CPlusPlus &&
7907         LHS.get()->getObjectKind() != OK_ObjCProperty) {
7908       VK = LHS.get()->getValueKind();
7909       OK = LHS.get()->getObjectKind();
7910     }
7911     if (!ResultTy.isNull())
7912       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
7913     break;
7914   case BO_PtrMemD:
7915   case BO_PtrMemI:
7916     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
7917                                             Opc == BO_PtrMemI);
7918     break;
7919   case BO_Mul:
7920   case BO_Div:
7921     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
7922                                            Opc == BO_Div);
7923     break;
7924   case BO_Rem:
7925     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
7926     break;
7927   case BO_Add:
7928     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
7929     break;
7930   case BO_Sub:
7931     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
7932     break;
7933   case BO_Shl:
7934   case BO_Shr:
7935     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
7936     break;
7937   case BO_LE:
7938   case BO_LT:
7939   case BO_GE:
7940   case BO_GT:
7941     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
7942     break;
7943   case BO_EQ:
7944   case BO_NE:
7945     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
7946     break;
7947   case BO_And:
7948   case BO_Xor:
7949   case BO_Or:
7950     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
7951     break;
7952   case BO_LAnd:
7953   case BO_LOr:
7954     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
7955     break;
7956   case BO_MulAssign:
7957   case BO_DivAssign:
7958     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
7959                                                Opc == BO_DivAssign);
7960     CompLHSTy = CompResultTy;
7961     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7962       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7963     break;
7964   case BO_RemAssign:
7965     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
7966     CompLHSTy = CompResultTy;
7967     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7968       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7969     break;
7970   case BO_AddAssign:
7971     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
7972     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7973       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7974     break;
7975   case BO_SubAssign:
7976     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
7977     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7978       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7979     break;
7980   case BO_ShlAssign:
7981   case BO_ShrAssign:
7982     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
7983     CompLHSTy = CompResultTy;
7984     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7985       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7986     break;
7987   case BO_AndAssign:
7988   case BO_XorAssign:
7989   case BO_OrAssign:
7990     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
7991     CompLHSTy = CompResultTy;
7992     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7993       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7994     break;
7995   case BO_Comma:
7996     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
7997     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
7998       VK = RHS.get()->getValueKind();
7999       OK = RHS.get()->getObjectKind();
8000     }
8001     break;
8002   }
8003   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8004     return ExprError();
8005 
8006   // Check for array bounds violations for both sides of the BinaryOperator
8007   CheckArrayAccess(LHS.get());
8008   CheckArrayAccess(RHS.get());
8009 
8010   if (CompResultTy.isNull())
8011     return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8012                                               ResultTy, VK, OK, OpLoc));
8013   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8014       OK_ObjCProperty) {
8015     VK = VK_LValue;
8016     OK = LHS.get()->getObjectKind();
8017   }
8018   return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8019                                                     ResultTy, VK, OK, CompLHSTy,
8020                                                     CompResultTy, OpLoc));
8021 }
8022 
8023 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8024 /// operators are mixed in a way that suggests that the programmer forgot that
8025 /// comparison operators have higher precedence. The most typical example of
8026 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8027 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8028                                       SourceLocation OpLoc, Expr *LHSExpr,
8029                                       Expr *RHSExpr) {
8030   typedef BinaryOperator BinOp;
8031   BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8032                 RHSopc = static_cast<BinOp::Opcode>(-1);
8033   if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8034     LHSopc = BO->getOpcode();
8035   if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8036     RHSopc = BO->getOpcode();
8037 
8038   // Subs are not binary operators.
8039   if (LHSopc == -1 && RHSopc == -1)
8040     return;
8041 
8042   // Bitwise operations are sometimes used as eager logical ops.
8043   // Don't diagnose this.
8044   if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8045       (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8046     return;
8047 
8048   bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8049   bool isRightComp = BinOp::isComparisonOp(RHSopc);
8050   if (!isLeftComp && !isRightComp) return;
8051 
8052   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8053                                                    OpLoc)
8054                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
8055   std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8056                                  : BinOp::getOpcodeStr(RHSopc);
8057   SourceRange ParensRange = isLeftComp ?
8058       SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8059                   RHSExpr->getLocEnd())
8060     : SourceRange(LHSExpr->getLocStart(),
8061                   cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8062 
8063   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8064     << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8065   SuggestParentheses(Self, OpLoc,
8066     Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8067     RHSExpr->getSourceRange());
8068   SuggestParentheses(Self, OpLoc,
8069     Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8070     ParensRange);
8071 }
8072 
8073 /// \brief It accepts a '&' expr that is inside a '|' one.
8074 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8075 /// in parentheses.
8076 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8077 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8078                                        BinaryOperator *Bop) {
8079   assert(Bop->getOpcode() == BO_And);
8080   Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8081       << Bop->getSourceRange() << OpLoc;
8082   SuggestParentheses(Self, Bop->getOperatorLoc(),
8083     Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8084     Bop->getSourceRange());
8085 }
8086 
8087 /// \brief It accepts a '&&' expr that is inside a '||' one.
8088 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8089 /// in parentheses.
8090 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8091 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8092                                        BinaryOperator *Bop) {
8093   assert(Bop->getOpcode() == BO_LAnd);
8094   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8095       << Bop->getSourceRange() << OpLoc;
8096   SuggestParentheses(Self, Bop->getOperatorLoc(),
8097     Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8098     Bop->getSourceRange());
8099 }
8100 
8101 /// \brief Returns true if the given expression can be evaluated as a constant
8102 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)8103 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8104   bool Res;
8105   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8106 }
8107 
8108 /// \brief Returns true if the given expression can be evaluated as a constant
8109 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)8110 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8111   bool Res;
8112   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8113 }
8114 
8115 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8116 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8117                                              Expr *LHSExpr, Expr *RHSExpr) {
8118   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8119     if (Bop->getOpcode() == BO_LAnd) {
8120       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8121       if (EvaluatesAsFalse(S, RHSExpr))
8122         return;
8123       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8124       if (!EvaluatesAsTrue(S, Bop->getLHS()))
8125         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8126     } else if (Bop->getOpcode() == BO_LOr) {
8127       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8128         // If it's "a || b && 1 || c" we didn't warn earlier for
8129         // "a || b && 1", but warn now.
8130         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8131           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8132       }
8133     }
8134   }
8135 }
8136 
8137 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8138 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8139                                              Expr *LHSExpr, Expr *RHSExpr) {
8140   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8141     if (Bop->getOpcode() == BO_LAnd) {
8142       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8143       if (EvaluatesAsFalse(S, LHSExpr))
8144         return;
8145       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8146       if (!EvaluatesAsTrue(S, Bop->getRHS()))
8147         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8148     }
8149   }
8150 }
8151 
8152 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)8153 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8154                                              Expr *OrArg) {
8155   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8156     if (Bop->getOpcode() == BO_And)
8157       return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8158   }
8159 }
8160 
8161 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8162 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8163 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8164                                     SourceLocation OpLoc, Expr *LHSExpr,
8165                                     Expr *RHSExpr){
8166   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8167   if (BinaryOperator::isBitwiseOp(Opc))
8168     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8169 
8170   // Diagnose "arg1 & arg2 | arg3"
8171   if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8172     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8173     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8174   }
8175 
8176   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8177   // We don't warn for 'assert(a || b && "bad")' since this is safe.
8178   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8179     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8180     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8181   }
8182 }
8183 
8184 // Binary Operators.  'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)8185 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8186                             tok::TokenKind Kind,
8187                             Expr *LHSExpr, Expr *RHSExpr) {
8188   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8189   assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8190   assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8191 
8192   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8193   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8194 
8195   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8196 }
8197 
8198 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)8199 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8200                                        BinaryOperatorKind Opc,
8201                                        Expr *LHS, Expr *RHS) {
8202   // Find all of the overloaded operators visible from this
8203   // point. We perform both an operator-name lookup from the local
8204   // scope and an argument-dependent lookup based on the types of
8205   // the arguments.
8206   UnresolvedSet<16> Functions;
8207   OverloadedOperatorKind OverOp
8208     = BinaryOperator::getOverloadedOperator(Opc);
8209   if (Sc && OverOp != OO_None)
8210     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8211                                    RHS->getType(), Functions);
8212 
8213   // Build the (potentially-overloaded, potentially-dependent)
8214   // binary operation.
8215   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8216 }
8217 
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8218 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8219                             BinaryOperatorKind Opc,
8220                             Expr *LHSExpr, Expr *RHSExpr) {
8221   // We want to end up calling one of checkPseudoObjectAssignment
8222   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8223   // both expressions are overloadable or either is type-dependent),
8224   // or CreateBuiltinBinOp (in any other case).  We also want to get
8225   // any placeholder types out of the way.
8226 
8227   // Handle pseudo-objects in the LHS.
8228   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8229     // Assignments with a pseudo-object l-value need special analysis.
8230     if (pty->getKind() == BuiltinType::PseudoObject &&
8231         BinaryOperator::isAssignmentOp(Opc))
8232       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8233 
8234     // Don't resolve overloads if the other type is overloadable.
8235     if (pty->getKind() == BuiltinType::Overload) {
8236       // We can't actually test that if we still have a placeholder,
8237       // though.  Fortunately, none of the exceptions we see in that
8238       // code below are valid when the LHS is an overload set.  Note
8239       // that an overload set can be dependently-typed, but it never
8240       // instantiates to having an overloadable type.
8241       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8242       if (resolvedRHS.isInvalid()) return ExprError();
8243       RHSExpr = resolvedRHS.take();
8244 
8245       if (RHSExpr->isTypeDependent() ||
8246           RHSExpr->getType()->isOverloadableType())
8247         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8248     }
8249 
8250     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8251     if (LHS.isInvalid()) return ExprError();
8252     LHSExpr = LHS.take();
8253   }
8254 
8255   // Handle pseudo-objects in the RHS.
8256   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8257     // An overload in the RHS can potentially be resolved by the type
8258     // being assigned to.
8259     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8260       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8261         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8262 
8263       if (LHSExpr->getType()->isOverloadableType())
8264         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8265 
8266       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8267     }
8268 
8269     // Don't resolve overloads if the other type is overloadable.
8270     if (pty->getKind() == BuiltinType::Overload &&
8271         LHSExpr->getType()->isOverloadableType())
8272       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8273 
8274     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8275     if (!resolvedRHS.isUsable()) return ExprError();
8276     RHSExpr = resolvedRHS.take();
8277   }
8278 
8279   if (getLangOpts().CPlusPlus) {
8280     // If either expression is type-dependent, always build an
8281     // overloaded op.
8282     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8283       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8284 
8285     // Otherwise, build an overloaded op if either expression has an
8286     // overloadable type.
8287     if (LHSExpr->getType()->isOverloadableType() ||
8288         RHSExpr->getType()->isOverloadableType())
8289       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8290   }
8291 
8292   // Build a built-in binary operation.
8293   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8294 }
8295 
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)8296 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8297                                       UnaryOperatorKind Opc,
8298                                       Expr *InputExpr) {
8299   ExprResult Input = Owned(InputExpr);
8300   ExprValueKind VK = VK_RValue;
8301   ExprObjectKind OK = OK_Ordinary;
8302   QualType resultType;
8303   switch (Opc) {
8304   case UO_PreInc:
8305   case UO_PreDec:
8306   case UO_PostInc:
8307   case UO_PostDec:
8308     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8309                                                 Opc == UO_PreInc ||
8310                                                 Opc == UO_PostInc,
8311                                                 Opc == UO_PreInc ||
8312                                                 Opc == UO_PreDec);
8313     break;
8314   case UO_AddrOf:
8315     resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8316     break;
8317   case UO_Deref: {
8318     Input = DefaultFunctionArrayLvalueConversion(Input.take());
8319     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8320     break;
8321   }
8322   case UO_Plus:
8323   case UO_Minus:
8324     Input = UsualUnaryConversions(Input.take());
8325     if (Input.isInvalid()) return ExprError();
8326     resultType = Input.get()->getType();
8327     if (resultType->isDependentType())
8328       break;
8329     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8330         resultType->isVectorType())
8331       break;
8332     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8333              resultType->isEnumeralType())
8334       break;
8335     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8336              Opc == UO_Plus &&
8337              resultType->isPointerType())
8338       break;
8339 
8340     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8341       << resultType << Input.get()->getSourceRange());
8342 
8343   case UO_Not: // bitwise complement
8344     Input = UsualUnaryConversions(Input.take());
8345     if (Input.isInvalid()) return ExprError();
8346     resultType = Input.get()->getType();
8347     if (resultType->isDependentType())
8348       break;
8349     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8350     if (resultType->isComplexType() || resultType->isComplexIntegerType())
8351       // C99 does not support '~' for complex conjugation.
8352       Diag(OpLoc, diag::ext_integer_complement_complex)
8353         << resultType << Input.get()->getSourceRange();
8354     else if (resultType->hasIntegerRepresentation())
8355       break;
8356     else {
8357       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8358         << resultType << Input.get()->getSourceRange());
8359     }
8360     break;
8361 
8362   case UO_LNot: // logical negation
8363     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8364     Input = DefaultFunctionArrayLvalueConversion(Input.take());
8365     if (Input.isInvalid()) return ExprError();
8366     resultType = Input.get()->getType();
8367 
8368     // Though we still have to promote half FP to float...
8369     if (resultType->isHalfType()) {
8370       Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8371       resultType = Context.FloatTy;
8372     }
8373 
8374     if (resultType->isDependentType())
8375       break;
8376     if (resultType->isScalarType()) {
8377       // C99 6.5.3.3p1: ok, fallthrough;
8378       if (Context.getLangOpts().CPlusPlus) {
8379         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8380         // operand contextually converted to bool.
8381         Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8382                                   ScalarTypeToBooleanCastKind(resultType));
8383       }
8384     } else if (resultType->isExtVectorType()) {
8385       // Vector logical not returns the signed variant of the operand type.
8386       resultType = GetSignedVectorType(resultType);
8387       break;
8388     } else {
8389       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8390         << resultType << Input.get()->getSourceRange());
8391     }
8392 
8393     // LNot always has type int. C99 6.5.3.3p5.
8394     // In C++, it's bool. C++ 5.3.1p8
8395     resultType = Context.getLogicalOperationType();
8396     break;
8397   case UO_Real:
8398   case UO_Imag:
8399     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8400     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8401     // complex l-values to ordinary l-values and all other values to r-values.
8402     if (Input.isInvalid()) return ExprError();
8403     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8404       if (Input.get()->getValueKind() != VK_RValue &&
8405           Input.get()->getObjectKind() == OK_Ordinary)
8406         VK = Input.get()->getValueKind();
8407     } else if (!getLangOpts().CPlusPlus) {
8408       // In C, a volatile scalar is read by __imag. In C++, it is not.
8409       Input = DefaultLvalueConversion(Input.take());
8410     }
8411     break;
8412   case UO_Extension:
8413     resultType = Input.get()->getType();
8414     VK = Input.get()->getValueKind();
8415     OK = Input.get()->getObjectKind();
8416     break;
8417   }
8418   if (resultType.isNull() || Input.isInvalid())
8419     return ExprError();
8420 
8421   // Check for array bounds violations in the operand of the UnaryOperator,
8422   // except for the '*' and '&' operators that have to be handled specially
8423   // by CheckArrayAccess (as there are special cases like &array[arraysize]
8424   // that are explicitly defined as valid by the standard).
8425   if (Opc != UO_AddrOf && Opc != UO_Deref)
8426     CheckArrayAccess(Input.get());
8427 
8428   return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8429                                            VK, OK, OpLoc));
8430 }
8431 
8432 /// \brief Determine whether the given expression is a qualified member
8433 /// access expression, of a form that could be turned into a pointer to member
8434 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)8435 static bool isQualifiedMemberAccess(Expr *E) {
8436   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8437     if (!DRE->getQualifier())
8438       return false;
8439 
8440     ValueDecl *VD = DRE->getDecl();
8441     if (!VD->isCXXClassMember())
8442       return false;
8443 
8444     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8445       return true;
8446     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8447       return Method->isInstance();
8448 
8449     return false;
8450   }
8451 
8452   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8453     if (!ULE->getQualifier())
8454       return false;
8455 
8456     for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8457                                            DEnd = ULE->decls_end();
8458          D != DEnd; ++D) {
8459       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8460         if (Method->isInstance())
8461           return true;
8462       } else {
8463         // Overload set does not contain methods.
8464         break;
8465       }
8466     }
8467 
8468     return false;
8469   }
8470 
8471   return false;
8472 }
8473 
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)8474 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8475                               UnaryOperatorKind Opc, Expr *Input) {
8476   // First things first: handle placeholders so that the
8477   // overloaded-operator check considers the right type.
8478   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8479     // Increment and decrement of pseudo-object references.
8480     if (pty->getKind() == BuiltinType::PseudoObject &&
8481         UnaryOperator::isIncrementDecrementOp(Opc))
8482       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8483 
8484     // extension is always a builtin operator.
8485     if (Opc == UO_Extension)
8486       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8487 
8488     // & gets special logic for several kinds of placeholder.
8489     // The builtin code knows what to do.
8490     if (Opc == UO_AddrOf &&
8491         (pty->getKind() == BuiltinType::Overload ||
8492          pty->getKind() == BuiltinType::UnknownAny ||
8493          pty->getKind() == BuiltinType::BoundMember))
8494       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8495 
8496     // Anything else needs to be handled now.
8497     ExprResult Result = CheckPlaceholderExpr(Input);
8498     if (Result.isInvalid()) return ExprError();
8499     Input = Result.take();
8500   }
8501 
8502   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8503       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8504       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8505     // Find all of the overloaded operators visible from this
8506     // point. We perform both an operator-name lookup from the local
8507     // scope and an argument-dependent lookup based on the types of
8508     // the arguments.
8509     UnresolvedSet<16> Functions;
8510     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8511     if (S && OverOp != OO_None)
8512       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8513                                    Functions);
8514 
8515     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8516   }
8517 
8518   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8519 }
8520 
8521 // Unary Operators.  'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)8522 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8523                               tok::TokenKind Op, Expr *Input) {
8524   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8525 }
8526 
8527 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)8528 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8529                                 LabelDecl *TheDecl) {
8530   TheDecl->setUsed();
8531   // Create the AST node.  The address of a label always has type 'void*'.
8532   return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8533                                        Context.getPointerType(Context.VoidTy)));
8534 }
8535 
8536 /// Given the last statement in a statement-expression, check whether
8537 /// the result is a producing expression (like a call to an
8538 /// ns_returns_retained function) and, if so, rebuild it to hoist the
8539 /// release out of the full-expression.  Otherwise, return null.
8540 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)8541 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8542   // Should always be wrapped with one of these.
8543   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8544   if (!cleanups) return 0;
8545 
8546   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8547   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8548     return 0;
8549 
8550   // Splice out the cast.  This shouldn't modify any interesting
8551   // features of the statement.
8552   Expr *producer = cast->getSubExpr();
8553   assert(producer->getType() == cast->getType());
8554   assert(producer->getValueKind() == cast->getValueKind());
8555   cleanups->setSubExpr(producer);
8556   return cleanups;
8557 }
8558 
ActOnStartStmtExpr()8559 void Sema::ActOnStartStmtExpr() {
8560   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8561 }
8562 
ActOnStmtExprError()8563 void Sema::ActOnStmtExprError() {
8564   // Note that function is also called by TreeTransform when leaving a
8565   // StmtExpr scope without rebuilding anything.
8566 
8567   DiscardCleanupsInEvaluationContext();
8568   PopExpressionEvaluationContext();
8569 }
8570 
8571 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)8572 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8573                     SourceLocation RPLoc) { // "({..})"
8574   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8575   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8576 
8577   if (hasAnyUnrecoverableErrorsInThisFunction())
8578     DiscardCleanupsInEvaluationContext();
8579   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8580   PopExpressionEvaluationContext();
8581 
8582   bool isFileScope
8583     = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8584   if (isFileScope)
8585     return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8586 
8587   // FIXME: there are a variety of strange constraints to enforce here, for
8588   // example, it is not possible to goto into a stmt expression apparently.
8589   // More semantic analysis is needed.
8590 
8591   // If there are sub stmts in the compound stmt, take the type of the last one
8592   // as the type of the stmtexpr.
8593   QualType Ty = Context.VoidTy;
8594   bool StmtExprMayBindToTemp = false;
8595   if (!Compound->body_empty()) {
8596     Stmt *LastStmt = Compound->body_back();
8597     LabelStmt *LastLabelStmt = 0;
8598     // If LastStmt is a label, skip down through into the body.
8599     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8600       LastLabelStmt = Label;
8601       LastStmt = Label->getSubStmt();
8602     }
8603 
8604     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8605       // Do function/array conversion on the last expression, but not
8606       // lvalue-to-rvalue.  However, initialize an unqualified type.
8607       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8608       if (LastExpr.isInvalid())
8609         return ExprError();
8610       Ty = LastExpr.get()->getType().getUnqualifiedType();
8611 
8612       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8613         // In ARC, if the final expression ends in a consume, splice
8614         // the consume out and bind it later.  In the alternate case
8615         // (when dealing with a retainable type), the result
8616         // initialization will create a produce.  In both cases the
8617         // result will be +1, and we'll need to balance that out with
8618         // a bind.
8619         if (Expr *rebuiltLastStmt
8620               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8621           LastExpr = rebuiltLastStmt;
8622         } else {
8623           LastExpr = PerformCopyInitialization(
8624                             InitializedEntity::InitializeResult(LPLoc,
8625                                                                 Ty,
8626                                                                 false),
8627                                                    SourceLocation(),
8628                                                LastExpr);
8629         }
8630 
8631         if (LastExpr.isInvalid())
8632           return ExprError();
8633         if (LastExpr.get() != 0) {
8634           if (!LastLabelStmt)
8635             Compound->setLastStmt(LastExpr.take());
8636           else
8637             LastLabelStmt->setSubStmt(LastExpr.take());
8638           StmtExprMayBindToTemp = true;
8639         }
8640       }
8641     }
8642   }
8643 
8644   // FIXME: Check that expression type is complete/non-abstract; statement
8645   // expressions are not lvalues.
8646   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8647   if (StmtExprMayBindToTemp)
8648     return MaybeBindToTemporary(ResStmtExpr);
8649   return Owned(ResStmtExpr);
8650 }
8651 
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)8652 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8653                                       TypeSourceInfo *TInfo,
8654                                       OffsetOfComponent *CompPtr,
8655                                       unsigned NumComponents,
8656                                       SourceLocation RParenLoc) {
8657   QualType ArgTy = TInfo->getType();
8658   bool Dependent = ArgTy->isDependentType();
8659   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8660 
8661   // We must have at least one component that refers to the type, and the first
8662   // one is known to be a field designator.  Verify that the ArgTy represents
8663   // a struct/union/class.
8664   if (!Dependent && !ArgTy->isRecordType())
8665     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8666                        << ArgTy << TypeRange);
8667 
8668   // Type must be complete per C99 7.17p3 because a declaring a variable
8669   // with an incomplete type would be ill-formed.
8670   if (!Dependent
8671       && RequireCompleteType(BuiltinLoc, ArgTy,
8672                              PDiag(diag::err_offsetof_incomplete_type)
8673                                << TypeRange))
8674     return ExprError();
8675 
8676   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8677   // GCC extension, diagnose them.
8678   // FIXME: This diagnostic isn't actually visible because the location is in
8679   // a system header!
8680   if (NumComponents != 1)
8681     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8682       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8683 
8684   bool DidWarnAboutNonPOD = false;
8685   QualType CurrentType = ArgTy;
8686   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8687   SmallVector<OffsetOfNode, 4> Comps;
8688   SmallVector<Expr*, 4> Exprs;
8689   for (unsigned i = 0; i != NumComponents; ++i) {
8690     const OffsetOfComponent &OC = CompPtr[i];
8691     if (OC.isBrackets) {
8692       // Offset of an array sub-field.  TODO: Should we allow vector elements?
8693       if (!CurrentType->isDependentType()) {
8694         const ArrayType *AT = Context.getAsArrayType(CurrentType);
8695         if(!AT)
8696           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8697                            << CurrentType);
8698         CurrentType = AT->getElementType();
8699       } else
8700         CurrentType = Context.DependentTy;
8701 
8702       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
8703       if (IdxRval.isInvalid())
8704         return ExprError();
8705       Expr *Idx = IdxRval.take();
8706 
8707       // The expression must be an integral expression.
8708       // FIXME: An integral constant expression?
8709       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8710           !Idx->getType()->isIntegerType())
8711         return ExprError(Diag(Idx->getLocStart(),
8712                               diag::err_typecheck_subscript_not_integer)
8713                          << Idx->getSourceRange());
8714 
8715       // Record this array index.
8716       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8717       Exprs.push_back(Idx);
8718       continue;
8719     }
8720 
8721     // Offset of a field.
8722     if (CurrentType->isDependentType()) {
8723       // We have the offset of a field, but we can't look into the dependent
8724       // type. Just record the identifier of the field.
8725       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8726       CurrentType = Context.DependentTy;
8727       continue;
8728     }
8729 
8730     // We need to have a complete type to look into.
8731     if (RequireCompleteType(OC.LocStart, CurrentType,
8732                             diag::err_offsetof_incomplete_type))
8733       return ExprError();
8734 
8735     // Look for the designated field.
8736     const RecordType *RC = CurrentType->getAs<RecordType>();
8737     if (!RC)
8738       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8739                        << CurrentType);
8740     RecordDecl *RD = RC->getDecl();
8741 
8742     // C++ [lib.support.types]p5:
8743     //   The macro offsetof accepts a restricted set of type arguments in this
8744     //   International Standard. type shall be a POD structure or a POD union
8745     //   (clause 9).
8746     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8747       if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
8748           DiagRuntimeBehavior(BuiltinLoc, 0,
8749                               PDiag(diag::warn_offsetof_non_pod_type)
8750                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8751                               << CurrentType))
8752         DidWarnAboutNonPOD = true;
8753     }
8754 
8755     // Look for the field.
8756     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8757     LookupQualifiedName(R, RD);
8758     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8759     IndirectFieldDecl *IndirectMemberDecl = 0;
8760     if (!MemberDecl) {
8761       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8762         MemberDecl = IndirectMemberDecl->getAnonField();
8763     }
8764 
8765     if (!MemberDecl)
8766       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8767                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8768                                                               OC.LocEnd));
8769 
8770     // C99 7.17p3:
8771     //   (If the specified member is a bit-field, the behavior is undefined.)
8772     //
8773     // We diagnose this as an error.
8774     if (MemberDecl->isBitField()) {
8775       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8776         << MemberDecl->getDeclName()
8777         << SourceRange(BuiltinLoc, RParenLoc);
8778       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8779       return ExprError();
8780     }
8781 
8782     RecordDecl *Parent = MemberDecl->getParent();
8783     if (IndirectMemberDecl)
8784       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8785 
8786     // If the member was found in a base class, introduce OffsetOfNodes for
8787     // the base class indirections.
8788     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8789                        /*DetectVirtual=*/false);
8790     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8791       CXXBasePath &Path = Paths.front();
8792       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8793            B != BEnd; ++B)
8794         Comps.push_back(OffsetOfNode(B->Base));
8795     }
8796 
8797     if (IndirectMemberDecl) {
8798       for (IndirectFieldDecl::chain_iterator FI =
8799            IndirectMemberDecl->chain_begin(),
8800            FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8801         assert(isa<FieldDecl>(*FI));
8802         Comps.push_back(OffsetOfNode(OC.LocStart,
8803                                      cast<FieldDecl>(*FI), OC.LocEnd));
8804       }
8805     } else
8806       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8807 
8808     CurrentType = MemberDecl->getType().getNonReferenceType();
8809   }
8810 
8811   return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8812                                     TInfo, Comps.data(), Comps.size(),
8813                                     Exprs.data(), Exprs.size(), RParenLoc));
8814 }
8815 
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)8816 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8817                                       SourceLocation BuiltinLoc,
8818                                       SourceLocation TypeLoc,
8819                                       ParsedType ParsedArgTy,
8820                                       OffsetOfComponent *CompPtr,
8821                                       unsigned NumComponents,
8822                                       SourceLocation RParenLoc) {
8823 
8824   TypeSourceInfo *ArgTInfo;
8825   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
8826   if (ArgTy.isNull())
8827     return ExprError();
8828 
8829   if (!ArgTInfo)
8830     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8831 
8832   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8833                               RParenLoc);
8834 }
8835 
8836 
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)8837 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8838                                  Expr *CondExpr,
8839                                  Expr *LHSExpr, Expr *RHSExpr,
8840                                  SourceLocation RPLoc) {
8841   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8842 
8843   ExprValueKind VK = VK_RValue;
8844   ExprObjectKind OK = OK_Ordinary;
8845   QualType resType;
8846   bool ValueDependent = false;
8847   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8848     resType = Context.DependentTy;
8849     ValueDependent = true;
8850   } else {
8851     // The conditional expression is required to be a constant expression.
8852     llvm::APSInt condEval(32);
8853     ExprResult CondICE = VerifyIntegerConstantExpression(CondExpr, &condEval,
8854       PDiag(diag::err_typecheck_choose_expr_requires_constant), false);
8855     if (CondICE.isInvalid())
8856       return ExprError();
8857     CondExpr = CondICE.take();
8858 
8859     // If the condition is > zero, then the AST type is the same as the LSHExpr.
8860     Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8861 
8862     resType = ActiveExpr->getType();
8863     ValueDependent = ActiveExpr->isValueDependent();
8864     VK = ActiveExpr->getValueKind();
8865     OK = ActiveExpr->getObjectKind();
8866   }
8867 
8868   return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8869                                         resType, VK, OK, RPLoc,
8870                                         resType->isDependentType(),
8871                                         ValueDependent));
8872 }
8873 
8874 //===----------------------------------------------------------------------===//
8875 // Clang Extensions.
8876 //===----------------------------------------------------------------------===//
8877 
8878 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)8879 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
8880   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8881   PushBlockScope(CurScope, Block);
8882   CurContext->addDecl(Block);
8883   if (CurScope)
8884     PushDeclContext(CurScope, Block);
8885   else
8886     CurContext = Block;
8887 
8888   getCurBlock()->HasImplicitReturnType = true;
8889 
8890   // Enter a new evaluation context to insulate the block from any
8891   // cleanups from the enclosing full-expression.
8892   PushExpressionEvaluationContext(PotentiallyEvaluated);
8893 }
8894 
ActOnBlockArguments(Declarator & ParamInfo,Scope * CurScope)8895 void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8896   assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8897   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8898   BlockScopeInfo *CurBlock = getCurBlock();
8899 
8900   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8901   QualType T = Sig->getType();
8902 
8903   // GetTypeForDeclarator always produces a function type for a block
8904   // literal signature.  Furthermore, it is always a FunctionProtoType
8905   // unless the function was written with a typedef.
8906   assert(T->isFunctionType() &&
8907          "GetTypeForDeclarator made a non-function block signature");
8908 
8909   // Look for an explicit signature in that function type.
8910   FunctionProtoTypeLoc ExplicitSignature;
8911 
8912   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8913   if (isa<FunctionProtoTypeLoc>(tmp)) {
8914     ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8915 
8916     // Check whether that explicit signature was synthesized by
8917     // GetTypeForDeclarator.  If so, don't save that as part of the
8918     // written signature.
8919     if (ExplicitSignature.getLocalRangeBegin() ==
8920         ExplicitSignature.getLocalRangeEnd()) {
8921       // This would be much cheaper if we stored TypeLocs instead of
8922       // TypeSourceInfos.
8923       TypeLoc Result = ExplicitSignature.getResultLoc();
8924       unsigned Size = Result.getFullDataSize();
8925       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8926       Sig->getTypeLoc().initializeFullCopy(Result, Size);
8927 
8928       ExplicitSignature = FunctionProtoTypeLoc();
8929     }
8930   }
8931 
8932   CurBlock->TheDecl->setSignatureAsWritten(Sig);
8933   CurBlock->FunctionType = T;
8934 
8935   const FunctionType *Fn = T->getAs<FunctionType>();
8936   QualType RetTy = Fn->getResultType();
8937   bool isVariadic =
8938     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8939 
8940   CurBlock->TheDecl->setIsVariadic(isVariadic);
8941 
8942   // Don't allow returning a objc interface by value.
8943   if (RetTy->isObjCObjectType()) {
8944     Diag(ParamInfo.getLocStart(),
8945          diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8946     return;
8947   }
8948 
8949   // Context.DependentTy is used as a placeholder for a missing block
8950   // return type.  TODO:  what should we do with declarators like:
8951   //   ^ * { ... }
8952   // If the answer is "apply template argument deduction"....
8953   if (RetTy != Context.DependentTy) {
8954     CurBlock->ReturnType = RetTy;
8955     CurBlock->TheDecl->setBlockMissingReturnType(false);
8956     CurBlock->HasImplicitReturnType = false;
8957   }
8958 
8959   // Push block parameters from the declarator if we had them.
8960   SmallVector<ParmVarDecl*, 8> Params;
8961   if (ExplicitSignature) {
8962     for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8963       ParmVarDecl *Param = ExplicitSignature.getArg(I);
8964       if (Param->getIdentifier() == 0 &&
8965           !Param->isImplicit() &&
8966           !Param->isInvalidDecl() &&
8967           !getLangOpts().CPlusPlus)
8968         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8969       Params.push_back(Param);
8970     }
8971 
8972   // Fake up parameter variables if we have a typedef, like
8973   //   ^ fntype { ... }
8974   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8975     for (FunctionProtoType::arg_type_iterator
8976            I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8977       ParmVarDecl *Param =
8978         BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8979                                    ParamInfo.getLocStart(),
8980                                    *I);
8981       Params.push_back(Param);
8982     }
8983   }
8984 
8985   // Set the parameters on the block decl.
8986   if (!Params.empty()) {
8987     CurBlock->TheDecl->setParams(Params);
8988     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
8989                              CurBlock->TheDecl->param_end(),
8990                              /*CheckParameterNames=*/false);
8991   }
8992 
8993   // Finally we can process decl attributes.
8994   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
8995 
8996   // Put the parameter variables in scope.  We can bail out immediately
8997   // if we don't have any.
8998   if (Params.empty())
8999     return;
9000 
9001   for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9002          E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9003     (*AI)->setOwningFunction(CurBlock->TheDecl);
9004 
9005     // If this has an identifier, add it to the scope stack.
9006     if ((*AI)->getIdentifier()) {
9007       CheckShadow(CurBlock->TheScope, *AI);
9008 
9009       PushOnScopeChains(*AI, CurBlock->TheScope);
9010     }
9011   }
9012 }
9013 
9014 /// ActOnBlockError - If there is an error parsing a block, this callback
9015 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)9016 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9017   // Leave the expression-evaluation context.
9018   DiscardCleanupsInEvaluationContext();
9019   PopExpressionEvaluationContext();
9020 
9021   // Pop off CurBlock, handle nested blocks.
9022   PopDeclContext();
9023   PopFunctionScopeInfo();
9024 }
9025 
9026 /// ActOnBlockStmtExpr - This is called when the body of a block statement
9027 /// literal was successfully completed.  ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)9028 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9029                                     Stmt *Body, Scope *CurScope) {
9030   // If blocks are disabled, emit an error.
9031   if (!LangOpts.Blocks)
9032     Diag(CaretLoc, diag::err_blocks_disable);
9033 
9034   // Leave the expression-evaluation context.
9035   if (hasAnyUnrecoverableErrorsInThisFunction())
9036     DiscardCleanupsInEvaluationContext();
9037   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9038   PopExpressionEvaluationContext();
9039 
9040   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9041 
9042   PopDeclContext();
9043 
9044   QualType RetTy = Context.VoidTy;
9045   if (!BSI->ReturnType.isNull())
9046     RetTy = BSI->ReturnType;
9047 
9048   bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9049   QualType BlockTy;
9050 
9051   // Set the captured variables on the block.
9052   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9053   SmallVector<BlockDecl::Capture, 4> Captures;
9054   for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9055     CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9056     if (Cap.isThisCapture())
9057       continue;
9058     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9059                               Cap.isNested(), Cap.getCopyExpr());
9060     Captures.push_back(NewCap);
9061   }
9062   BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9063                             BSI->CXXThisCaptureIndex != 0);
9064 
9065   // If the user wrote a function type in some form, try to use that.
9066   if (!BSI->FunctionType.isNull()) {
9067     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9068 
9069     FunctionType::ExtInfo Ext = FTy->getExtInfo();
9070     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9071 
9072     // Turn protoless block types into nullary block types.
9073     if (isa<FunctionNoProtoType>(FTy)) {
9074       FunctionProtoType::ExtProtoInfo EPI;
9075       EPI.ExtInfo = Ext;
9076       BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9077 
9078     // Otherwise, if we don't need to change anything about the function type,
9079     // preserve its sugar structure.
9080     } else if (FTy->getResultType() == RetTy &&
9081                (!NoReturn || FTy->getNoReturnAttr())) {
9082       BlockTy = BSI->FunctionType;
9083 
9084     // Otherwise, make the minimal modifications to the function type.
9085     } else {
9086       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9087       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9088       EPI.TypeQuals = 0; // FIXME: silently?
9089       EPI.ExtInfo = Ext;
9090       BlockTy = Context.getFunctionType(RetTy,
9091                                         FPT->arg_type_begin(),
9092                                         FPT->getNumArgs(),
9093                                         EPI);
9094     }
9095 
9096   // If we don't have a function type, just build one from nothing.
9097   } else {
9098     FunctionProtoType::ExtProtoInfo EPI;
9099     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9100     BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9101   }
9102 
9103   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9104                            BSI->TheDecl->param_end());
9105   BlockTy = Context.getBlockPointerType(BlockTy);
9106 
9107   // If needed, diagnose invalid gotos and switches in the block.
9108   if (getCurFunction()->NeedsScopeChecking() &&
9109       !hasAnyUnrecoverableErrorsInThisFunction())
9110     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9111 
9112   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9113 
9114   computeNRVO(Body, getCurBlock());
9115 
9116   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9117   const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9118   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9119 
9120   // If the block isn't obviously global, i.e. it captures anything at
9121   // all, then we need to do a few things in the surrounding context:
9122   if (Result->getBlockDecl()->hasCaptures()) {
9123     // First, this expression has a new cleanup object.
9124     ExprCleanupObjects.push_back(Result->getBlockDecl());
9125     ExprNeedsCleanups = true;
9126 
9127     // It also gets a branch-protected scope if any of the captured
9128     // variables needs destruction.
9129     for (BlockDecl::capture_const_iterator
9130            ci = Result->getBlockDecl()->capture_begin(),
9131            ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9132       const VarDecl *var = ci->getVariable();
9133       if (var->getType().isDestructedType() != QualType::DK_none) {
9134         getCurFunction()->setHasBranchProtectedScope();
9135         break;
9136       }
9137     }
9138   }
9139 
9140   return Owned(Result);
9141 }
9142 
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)9143 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9144                                         Expr *E, ParsedType Ty,
9145                                         SourceLocation RPLoc) {
9146   TypeSourceInfo *TInfo;
9147   GetTypeFromParser(Ty, &TInfo);
9148   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9149 }
9150 
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)9151 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9152                                 Expr *E, TypeSourceInfo *TInfo,
9153                                 SourceLocation RPLoc) {
9154   Expr *OrigExpr = E;
9155 
9156   // Get the va_list type
9157   QualType VaListType = Context.getBuiltinVaListType();
9158   if (VaListType->isArrayType()) {
9159     // Deal with implicit array decay; for example, on x86-64,
9160     // va_list is an array, but it's supposed to decay to
9161     // a pointer for va_arg.
9162     VaListType = Context.getArrayDecayedType(VaListType);
9163     // Make sure the input expression also decays appropriately.
9164     ExprResult Result = UsualUnaryConversions(E);
9165     if (Result.isInvalid())
9166       return ExprError();
9167     E = Result.take();
9168   } else {
9169     // Otherwise, the va_list argument must be an l-value because
9170     // it is modified by va_arg.
9171     if (!E->isTypeDependent() &&
9172         CheckForModifiableLvalue(E, BuiltinLoc, *this))
9173       return ExprError();
9174   }
9175 
9176   if (!E->isTypeDependent() &&
9177       !Context.hasSameType(VaListType, E->getType())) {
9178     return ExprError(Diag(E->getLocStart(),
9179                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
9180       << OrigExpr->getType() << E->getSourceRange());
9181   }
9182 
9183   if (!TInfo->getType()->isDependentType()) {
9184     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9185           PDiag(diag::err_second_parameter_to_va_arg_incomplete)
9186           << TInfo->getTypeLoc().getSourceRange()))
9187       return ExprError();
9188 
9189     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9190           TInfo->getType(),
9191           PDiag(diag::err_second_parameter_to_va_arg_abstract)
9192           << TInfo->getTypeLoc().getSourceRange()))
9193       return ExprError();
9194 
9195     if (!TInfo->getType().isPODType(Context)) {
9196       Diag(TInfo->getTypeLoc().getBeginLoc(),
9197            TInfo->getType()->isObjCLifetimeType()
9198              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9199              : diag::warn_second_parameter_to_va_arg_not_pod)
9200         << TInfo->getType()
9201         << TInfo->getTypeLoc().getSourceRange();
9202     }
9203 
9204     // Check for va_arg where arguments of the given type will be promoted
9205     // (i.e. this va_arg is guaranteed to have undefined behavior).
9206     QualType PromoteType;
9207     if (TInfo->getType()->isPromotableIntegerType()) {
9208       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9209       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9210         PromoteType = QualType();
9211     }
9212     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9213       PromoteType = Context.DoubleTy;
9214     if (!PromoteType.isNull())
9215       Diag(TInfo->getTypeLoc().getBeginLoc(),
9216           diag::warn_second_parameter_to_va_arg_never_compatible)
9217         << TInfo->getType()
9218         << PromoteType
9219         << TInfo->getTypeLoc().getSourceRange();
9220   }
9221 
9222   QualType T = TInfo->getType().getNonLValueExprType(Context);
9223   return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9224 }
9225 
ActOnGNUNullExpr(SourceLocation TokenLoc)9226 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9227   // The type of __null will be int or long, depending on the size of
9228   // pointers on the target.
9229   QualType Ty;
9230   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9231   if (pw == Context.getTargetInfo().getIntWidth())
9232     Ty = Context.IntTy;
9233   else if (pw == Context.getTargetInfo().getLongWidth())
9234     Ty = Context.LongTy;
9235   else if (pw == Context.getTargetInfo().getLongLongWidth())
9236     Ty = Context.LongLongTy;
9237   else {
9238     llvm_unreachable("I don't know size of pointer!");
9239   }
9240 
9241   return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9242 }
9243 
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint)9244 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9245                                            Expr *SrcExpr, FixItHint &Hint) {
9246   if (!SemaRef.getLangOpts().ObjC1)
9247     return;
9248 
9249   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9250   if (!PT)
9251     return;
9252 
9253   // Check if the destination is of type 'id'.
9254   if (!PT->isObjCIdType()) {
9255     // Check if the destination is the 'NSString' interface.
9256     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9257     if (!ID || !ID->getIdentifier()->isStr("NSString"))
9258       return;
9259   }
9260 
9261   // Ignore any parens, implicit casts (should only be
9262   // array-to-pointer decays), and not-so-opaque values.  The last is
9263   // important for making this trigger for property assignments.
9264   SrcExpr = SrcExpr->IgnoreParenImpCasts();
9265   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9266     if (OV->getSourceExpr())
9267       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9268 
9269   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9270   if (!SL || !SL->isAscii())
9271     return;
9272 
9273   Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9274 }
9275 
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)9276 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9277                                     SourceLocation Loc,
9278                                     QualType DstType, QualType SrcType,
9279                                     Expr *SrcExpr, AssignmentAction Action,
9280                                     bool *Complained) {
9281   if (Complained)
9282     *Complained = false;
9283 
9284   // Decode the result (notice that AST's are still created for extensions).
9285   bool CheckInferredResultType = false;
9286   bool isInvalid = false;
9287   unsigned DiagKind = 0;
9288   FixItHint Hint;
9289   ConversionFixItGenerator ConvHints;
9290   bool MayHaveConvFixit = false;
9291   bool MayHaveFunctionDiff = false;
9292 
9293   switch (ConvTy) {
9294   case Compatible: return false;
9295   case PointerToInt:
9296     DiagKind = diag::ext_typecheck_convert_pointer_int;
9297     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9298     MayHaveConvFixit = true;
9299     break;
9300   case IntToPointer:
9301     DiagKind = diag::ext_typecheck_convert_int_pointer;
9302     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9303     MayHaveConvFixit = true;
9304     break;
9305   case IncompatiblePointer:
9306     MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9307     DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9308     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9309       SrcType->isObjCObjectPointerType();
9310     if (Hint.isNull() && !CheckInferredResultType) {
9311       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9312     }
9313     MayHaveConvFixit = true;
9314     break;
9315   case IncompatiblePointerSign:
9316     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9317     break;
9318   case FunctionVoidPointer:
9319     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9320     break;
9321   case IncompatiblePointerDiscardsQualifiers: {
9322     // Perform array-to-pointer decay if necessary.
9323     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9324 
9325     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9326     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9327     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9328       DiagKind = diag::err_typecheck_incompatible_address_space;
9329       break;
9330 
9331 
9332     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9333       DiagKind = diag::err_typecheck_incompatible_ownership;
9334       break;
9335     }
9336 
9337     llvm_unreachable("unknown error case for discarding qualifiers!");
9338     // fallthrough
9339   }
9340   case CompatiblePointerDiscardsQualifiers:
9341     // If the qualifiers lost were because we were applying the
9342     // (deprecated) C++ conversion from a string literal to a char*
9343     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9344     // Ideally, this check would be performed in
9345     // checkPointerTypesForAssignment. However, that would require a
9346     // bit of refactoring (so that the second argument is an
9347     // expression, rather than a type), which should be done as part
9348     // of a larger effort to fix checkPointerTypesForAssignment for
9349     // C++ semantics.
9350     if (getLangOpts().CPlusPlus &&
9351         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9352       return false;
9353     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9354     break;
9355   case IncompatibleNestedPointerQualifiers:
9356     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9357     break;
9358   case IntToBlockPointer:
9359     DiagKind = diag::err_int_to_block_pointer;
9360     break;
9361   case IncompatibleBlockPointer:
9362     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9363     break;
9364   case IncompatibleObjCQualifiedId:
9365     // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9366     // it can give a more specific diagnostic.
9367     DiagKind = diag::warn_incompatible_qualified_id;
9368     break;
9369   case IncompatibleVectors:
9370     DiagKind = diag::warn_incompatible_vectors;
9371     break;
9372   case IncompatibleObjCWeakRef:
9373     DiagKind = diag::err_arc_weak_unavailable_assign;
9374     break;
9375   case Incompatible:
9376     DiagKind = diag::err_typecheck_convert_incompatible;
9377     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9378     MayHaveConvFixit = true;
9379     isInvalid = true;
9380     MayHaveFunctionDiff = true;
9381     break;
9382   }
9383 
9384   QualType FirstType, SecondType;
9385   switch (Action) {
9386   case AA_Assigning:
9387   case AA_Initializing:
9388     // The destination type comes first.
9389     FirstType = DstType;
9390     SecondType = SrcType;
9391     break;
9392 
9393   case AA_Returning:
9394   case AA_Passing:
9395   case AA_Converting:
9396   case AA_Sending:
9397   case AA_Casting:
9398     // The source type comes first.
9399     FirstType = SrcType;
9400     SecondType = DstType;
9401     break;
9402   }
9403 
9404   PartialDiagnostic FDiag = PDiag(DiagKind);
9405   FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9406 
9407   // If we can fix the conversion, suggest the FixIts.
9408   assert(ConvHints.isNull() || Hint.isNull());
9409   if (!ConvHints.isNull()) {
9410     for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9411          HE = ConvHints.Hints.end(); HI != HE; ++HI)
9412       FDiag << *HI;
9413   } else {
9414     FDiag << Hint;
9415   }
9416   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9417 
9418   if (MayHaveFunctionDiff)
9419     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9420 
9421   Diag(Loc, FDiag);
9422 
9423   if (SecondType == Context.OverloadTy)
9424     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9425                               FirstType);
9426 
9427   if (CheckInferredResultType)
9428     EmitRelatedResultTypeNote(SrcExpr);
9429 
9430   if (Complained)
9431     *Complained = true;
9432   return isInvalid;
9433 }
9434 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)9435 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9436                                                  llvm::APSInt *Result) {
9437   return VerifyIntegerConstantExpression(E, Result,
9438       PDiag(diag::err_expr_not_ice) << LangOpts.CPlusPlus);
9439 }
9440 
9441 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,const PartialDiagnostic & NotIceDiag,bool AllowFold,const PartialDiagnostic & FoldDiag)9442 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9443                                       const PartialDiagnostic &NotIceDiag,
9444                                       bool AllowFold,
9445                                       const PartialDiagnostic &FoldDiag) {
9446   SourceLocation DiagLoc = E->getLocStart();
9447 
9448   if (getLangOpts().CPlusPlus0x) {
9449     // C++11 [expr.const]p5:
9450     //   If an expression of literal class type is used in a context where an
9451     //   integral constant expression is required, then that class type shall
9452     //   have a single non-explicit conversion function to an integral or
9453     //   unscoped enumeration type
9454     ExprResult Converted;
9455     if (NotIceDiag.getDiagID()) {
9456       Converted = ConvertToIntegralOrEnumerationType(
9457         DiagLoc, E,
9458         PDiag(diag::err_ice_not_integral),
9459         PDiag(diag::err_ice_incomplete_type),
9460         PDiag(diag::err_ice_explicit_conversion),
9461         PDiag(diag::note_ice_conversion_here),
9462         PDiag(diag::err_ice_ambiguous_conversion),
9463         PDiag(diag::note_ice_conversion_here),
9464         PDiag(0),
9465         /*AllowScopedEnumerations*/ false);
9466     } else {
9467       // The caller wants to silently enquire whether this is an ICE. Don't
9468       // produce any diagnostics if it isn't.
9469       Converted = ConvertToIntegralOrEnumerationType(
9470         DiagLoc, E, PDiag(), PDiag(), PDiag(), PDiag(),
9471         PDiag(), PDiag(), PDiag(), false);
9472     }
9473     if (Converted.isInvalid())
9474       return Converted;
9475     E = Converted.take();
9476     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9477       return ExprError();
9478   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9479     // An ICE must be of integral or unscoped enumeration type.
9480     if (NotIceDiag.getDiagID())
9481       Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
9482     return ExprError();
9483   }
9484 
9485   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9486   // in the non-ICE case.
9487   if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9488     if (Result)
9489       *Result = E->EvaluateKnownConstInt(Context);
9490     return Owned(E);
9491   }
9492 
9493   Expr::EvalResult EvalResult;
9494   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9495   EvalResult.Diag = &Notes;
9496 
9497   // Try to evaluate the expression, and produce diagnostics explaining why it's
9498   // not a constant expression as a side-effect.
9499   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9500                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9501 
9502   // In C++11, we can rely on diagnostics being produced for any expression
9503   // which is not a constant expression. If no diagnostics were produced, then
9504   // this is a constant expression.
9505   if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9506     if (Result)
9507       *Result = EvalResult.Val.getInt();
9508     return Owned(E);
9509   }
9510 
9511   // If our only note is the usual "invalid subexpression" note, just point
9512   // the caret at its location rather than producing an essentially
9513   // redundant note.
9514   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9515         diag::note_invalid_subexpr_in_const_expr) {
9516     DiagLoc = Notes[0].first;
9517     Notes.clear();
9518   }
9519 
9520   if (!Folded || !AllowFold) {
9521     if (NotIceDiag.getDiagID()) {
9522       Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
9523       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9524         Diag(Notes[I].first, Notes[I].second);
9525     }
9526 
9527     return ExprError();
9528   }
9529 
9530   if (FoldDiag.getDiagID())
9531     Diag(DiagLoc, FoldDiag) << E->getSourceRange();
9532   else
9533     Diag(DiagLoc, diag::ext_expr_not_ice)
9534       << E->getSourceRange() << LangOpts.CPlusPlus;
9535   for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9536     Diag(Notes[I].first, Notes[I].second);
9537 
9538   if (Result)
9539     *Result = EvalResult.Val.getInt();
9540   return Owned(E);
9541 }
9542 
9543 namespace {
9544   // Handle the case where we conclude a expression which we speculatively
9545   // considered to be unevaluated is actually evaluated.
9546   class TransformToPE : public TreeTransform<TransformToPE> {
9547     typedef TreeTransform<TransformToPE> BaseTransform;
9548 
9549   public:
TransformToPE(Sema & SemaRef)9550     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
9551 
9552     // Make sure we redo semantic analysis
AlwaysRebuild()9553     bool AlwaysRebuild() { return true; }
9554 
9555     // Make sure we handle LabelStmts correctly.
9556     // FIXME: This does the right thing, but maybe we need a more general
9557     // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)9558     StmtResult TransformLabelStmt(LabelStmt *S) {
9559       S->getDecl()->setStmt(0);
9560       return BaseTransform::TransformLabelStmt(S);
9561     }
9562 
9563     // We need to special-case DeclRefExprs referring to FieldDecls which
9564     // are not part of a member pointer formation; normal TreeTransforming
9565     // doesn't catch this case because of the way we represent them in the AST.
9566     // FIXME: This is a bit ugly; is it really the best way to handle this
9567     // case?
9568     //
9569     // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)9570     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
9571       if (isa<FieldDecl>(E->getDecl()) &&
9572           SemaRef.ExprEvalContexts.back().Context != Sema::Unevaluated)
9573         return SemaRef.Diag(E->getLocation(),
9574                             diag::err_invalid_non_static_member_use)
9575             << E->getDecl() << E->getSourceRange();
9576 
9577       return BaseTransform::TransformDeclRefExpr(E);
9578     }
9579 
9580     // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)9581     ExprResult TransformUnaryOperator(UnaryOperator *E) {
9582       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
9583         return E;
9584 
9585       return BaseTransform::TransformUnaryOperator(E);
9586     }
9587 
TransformLambdaExpr(LambdaExpr * E)9588     ExprResult TransformLambdaExpr(LambdaExpr *E) {
9589       // Lambdas never need to be transformed.
9590       return E;
9591     }
9592   };
9593 }
9594 
TranformToPotentiallyEvaluated(Expr * E)9595 ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
9596   assert(ExprEvalContexts.back().Context == Unevaluated &&
9597          "Should only transform unevaluated expressions");
9598   ExprEvalContexts.back().Context =
9599       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
9600   if (ExprEvalContexts.back().Context == Unevaluated)
9601     return E;
9602   return TransformToPE(*this).TransformExpr(E);
9603 }
9604 
9605 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)9606 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
9607                                       Decl *LambdaContextDecl,
9608                                       bool IsDecltype) {
9609   ExprEvalContexts.push_back(
9610              ExpressionEvaluationContextRecord(NewContext,
9611                                                ExprCleanupObjects.size(),
9612                                                ExprNeedsCleanups,
9613                                                LambdaContextDecl,
9614                                                IsDecltype));
9615   ExprNeedsCleanups = false;
9616   if (!MaybeODRUseExprs.empty())
9617     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
9618 }
9619 
PopExpressionEvaluationContext()9620 void Sema::PopExpressionEvaluationContext() {
9621   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
9622 
9623   if (!Rec.Lambdas.empty()) {
9624     if (Rec.Context == Unevaluated) {
9625       // C++11 [expr.prim.lambda]p2:
9626       //   A lambda-expression shall not appear in an unevaluated operand
9627       //   (Clause 5).
9628       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
9629         Diag(Rec.Lambdas[I]->getLocStart(),
9630              diag::err_lambda_unevaluated_operand);
9631     } else {
9632       // Mark the capture expressions odr-used. This was deferred
9633       // during lambda expression creation.
9634       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
9635         LambdaExpr *Lambda = Rec.Lambdas[I];
9636         for (LambdaExpr::capture_init_iterator
9637                   C = Lambda->capture_init_begin(),
9638                CEnd = Lambda->capture_init_end();
9639              C != CEnd; ++C) {
9640           MarkDeclarationsReferencedInExpr(*C);
9641         }
9642       }
9643     }
9644   }
9645 
9646   // When are coming out of an unevaluated context, clear out any
9647   // temporaries that we may have created as part of the evaluation of
9648   // the expression in that context: they aren't relevant because they
9649   // will never be constructed.
9650   if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
9651     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
9652                              ExprCleanupObjects.end());
9653     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
9654     CleanupVarDeclMarking();
9655     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
9656   // Otherwise, merge the contexts together.
9657   } else {
9658     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
9659     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
9660                             Rec.SavedMaybeODRUseExprs.end());
9661   }
9662 
9663   // Pop the current expression evaluation context off the stack.
9664   ExprEvalContexts.pop_back();
9665 }
9666 
DiscardCleanupsInEvaluationContext()9667 void Sema::DiscardCleanupsInEvaluationContext() {
9668   ExprCleanupObjects.erase(
9669          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
9670          ExprCleanupObjects.end());
9671   ExprNeedsCleanups = false;
9672   MaybeODRUseExprs.clear();
9673 }
9674 
HandleExprEvaluationContextForTypeof(Expr * E)9675 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
9676   if (!E->getType()->isVariablyModifiedType())
9677     return E;
9678   return TranformToPotentiallyEvaluated(E);
9679 }
9680 
IsPotentiallyEvaluatedContext(Sema & SemaRef)9681 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
9682   // Do not mark anything as "used" within a dependent context; wait for
9683   // an instantiation.
9684   if (SemaRef.CurContext->isDependentContext())
9685     return false;
9686 
9687   switch (SemaRef.ExprEvalContexts.back().Context) {
9688     case Sema::Unevaluated:
9689       // We are in an expression that is not potentially evaluated; do nothing.
9690       // (Depending on how you read the standard, we actually do need to do
9691       // something here for null pointer constants, but the standard's
9692       // definition of a null pointer constant is completely crazy.)
9693       return false;
9694 
9695     case Sema::ConstantEvaluated:
9696     case Sema::PotentiallyEvaluated:
9697       // We are in a potentially evaluated expression (or a constant-expression
9698       // in C++03); we need to do implicit template instantiation, implicitly
9699       // define class members, and mark most declarations as used.
9700       return true;
9701 
9702     case Sema::PotentiallyEvaluatedIfUsed:
9703       // Referenced declarations will only be used if the construct in the
9704       // containing expression is used.
9705       return false;
9706   }
9707   llvm_unreachable("Invalid context");
9708 }
9709 
9710 /// \brief Mark a function referenced, and check whether it is odr-used
9711 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func)9712 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
9713   assert(Func && "No function?");
9714 
9715   Func->setReferenced();
9716 
9717   // Don't mark this function as used multiple times, unless it's a constexpr
9718   // function which we need to instantiate.
9719   if (Func->isUsed(false) &&
9720       !(Func->isConstexpr() && !Func->getBody() &&
9721         Func->isImplicitlyInstantiable()))
9722     return;
9723 
9724   if (!IsPotentiallyEvaluatedContext(*this))
9725     return;
9726 
9727   // Note that this declaration has been used.
9728   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
9729     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
9730       if (Constructor->isDefaultConstructor()) {
9731         if (Constructor->isTrivial())
9732           return;
9733         if (!Constructor->isUsed(false))
9734           DefineImplicitDefaultConstructor(Loc, Constructor);
9735       } else if (Constructor->isCopyConstructor()) {
9736         if (!Constructor->isUsed(false))
9737           DefineImplicitCopyConstructor(Loc, Constructor);
9738       } else if (Constructor->isMoveConstructor()) {
9739         if (!Constructor->isUsed(false))
9740           DefineImplicitMoveConstructor(Loc, Constructor);
9741       }
9742     }
9743 
9744     MarkVTableUsed(Loc, Constructor->getParent());
9745   } else if (CXXDestructorDecl *Destructor =
9746                  dyn_cast<CXXDestructorDecl>(Func)) {
9747     if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
9748         !Destructor->isUsed(false))
9749       DefineImplicitDestructor(Loc, Destructor);
9750     if (Destructor->isVirtual())
9751       MarkVTableUsed(Loc, Destructor->getParent());
9752   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
9753     if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
9754         MethodDecl->isOverloadedOperator() &&
9755         MethodDecl->getOverloadedOperator() == OO_Equal) {
9756       if (!MethodDecl->isUsed(false)) {
9757         if (MethodDecl->isCopyAssignmentOperator())
9758           DefineImplicitCopyAssignment(Loc, MethodDecl);
9759         else
9760           DefineImplicitMoveAssignment(Loc, MethodDecl);
9761       }
9762     } else if (isa<CXXConversionDecl>(MethodDecl) &&
9763                MethodDecl->getParent()->isLambda()) {
9764       CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
9765       if (Conversion->isLambdaToBlockPointerConversion())
9766         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
9767       else
9768         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
9769     } else if (MethodDecl->isVirtual())
9770       MarkVTableUsed(Loc, MethodDecl->getParent());
9771   }
9772 
9773   // Recursive functions should be marked when used from another function.
9774   // FIXME: Is this really right?
9775   if (CurContext == Func) return;
9776 
9777   // Instantiate the exception specification for any function which is
9778   // used: CodeGen will need it.
9779   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
9780   if (FPT && FPT->getExceptionSpecType() == EST_Uninstantiated)
9781     InstantiateExceptionSpec(Loc, Func);
9782 
9783   // Implicit instantiation of function templates and member functions of
9784   // class templates.
9785   if (Func->isImplicitlyInstantiable()) {
9786     bool AlreadyInstantiated = false;
9787     SourceLocation PointOfInstantiation = Loc;
9788     if (FunctionTemplateSpecializationInfo *SpecInfo
9789                               = Func->getTemplateSpecializationInfo()) {
9790       if (SpecInfo->getPointOfInstantiation().isInvalid())
9791         SpecInfo->setPointOfInstantiation(Loc);
9792       else if (SpecInfo->getTemplateSpecializationKind()
9793                  == TSK_ImplicitInstantiation) {
9794         AlreadyInstantiated = true;
9795         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
9796       }
9797     } else if (MemberSpecializationInfo *MSInfo
9798                                 = Func->getMemberSpecializationInfo()) {
9799       if (MSInfo->getPointOfInstantiation().isInvalid())
9800         MSInfo->setPointOfInstantiation(Loc);
9801       else if (MSInfo->getTemplateSpecializationKind()
9802                  == TSK_ImplicitInstantiation) {
9803         AlreadyInstantiated = true;
9804         PointOfInstantiation = MSInfo->getPointOfInstantiation();
9805       }
9806     }
9807 
9808     if (!AlreadyInstantiated || Func->isConstexpr()) {
9809       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
9810           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
9811         PendingLocalImplicitInstantiations.push_back(
9812             std::make_pair(Func, PointOfInstantiation));
9813       else if (Func->isConstexpr())
9814         // Do not defer instantiations of constexpr functions, to avoid the
9815         // expression evaluator needing to call back into Sema if it sees a
9816         // call to such a function.
9817         InstantiateFunctionDefinition(PointOfInstantiation, Func);
9818       else {
9819         PendingInstantiations.push_back(std::make_pair(Func,
9820                                                        PointOfInstantiation));
9821         // Notify the consumer that a function was implicitly instantiated.
9822         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
9823       }
9824     }
9825   } else {
9826     // Walk redefinitions, as some of them may be instantiable.
9827     for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
9828          e(Func->redecls_end()); i != e; ++i) {
9829       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
9830         MarkFunctionReferenced(Loc, *i);
9831     }
9832   }
9833 
9834   // Keep track of used but undefined functions.
9835   if (!Func->isPure() && !Func->hasBody() &&
9836       Func->getLinkage() != ExternalLinkage) {
9837     SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
9838     if (old.isInvalid()) old = Loc;
9839   }
9840 
9841   Func->setUsed(true);
9842 }
9843 
9844 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)9845 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
9846                                    VarDecl *var, DeclContext *DC) {
9847   DeclContext *VarDC = var->getDeclContext();
9848 
9849   //  If the parameter still belongs to the translation unit, then
9850   //  we're actually just using one parameter in the declaration of
9851   //  the next.
9852   if (isa<ParmVarDecl>(var) &&
9853       isa<TranslationUnitDecl>(VarDC))
9854     return;
9855 
9856   // For C code, don't diagnose about capture if we're not actually in code
9857   // right now; it's impossible to write a non-constant expression outside of
9858   // function context, so we'll get other (more useful) diagnostics later.
9859   //
9860   // For C++, things get a bit more nasty... it would be nice to suppress this
9861   // diagnostic for certain cases like using a local variable in an array bound
9862   // for a member of a local class, but the correct predicate is not obvious.
9863   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
9864     return;
9865 
9866   if (isa<CXXMethodDecl>(VarDC) &&
9867       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
9868     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
9869       << var->getIdentifier();
9870   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
9871     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
9872       << var->getIdentifier() << fn->getDeclName();
9873   } else if (isa<BlockDecl>(VarDC)) {
9874     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
9875       << var->getIdentifier();
9876   } else {
9877     // FIXME: Is there any other context where a local variable can be
9878     // declared?
9879     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
9880       << var->getIdentifier();
9881   }
9882 
9883   S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
9884     << var->getIdentifier();
9885 
9886   // FIXME: Add additional diagnostic info about class etc. which prevents
9887   // capture.
9888 }
9889 
9890 /// \brief Capture the given variable in the given lambda expression.
captureInLambda(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc)9891 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
9892                                   VarDecl *Var, QualType FieldType,
9893                                   QualType DeclRefType,
9894                                   SourceLocation Loc) {
9895   CXXRecordDecl *Lambda = LSI->Lambda;
9896 
9897   // Build the non-static data member.
9898   FieldDecl *Field
9899     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
9900                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
9901                         0, false, false);
9902   Field->setImplicit(true);
9903   Field->setAccess(AS_private);
9904   Lambda->addDecl(Field);
9905 
9906   // C++11 [expr.prim.lambda]p21:
9907   //   When the lambda-expression is evaluated, the entities that
9908   //   are captured by copy are used to direct-initialize each
9909   //   corresponding non-static data member of the resulting closure
9910   //   object. (For array members, the array elements are
9911   //   direct-initialized in increasing subscript order.) These
9912   //   initializations are performed in the (unspecified) order in
9913   //   which the non-static data members are declared.
9914 
9915   // Introduce a new evaluation context for the initialization, so
9916   // that temporaries introduced as part of the capture are retained
9917   // to be re-"exported" from the lambda expression itself.
9918   S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
9919 
9920   // C++ [expr.prim.labda]p12:
9921   //   An entity captured by a lambda-expression is odr-used (3.2) in
9922   //   the scope containing the lambda-expression.
9923   Expr *Ref = new (S.Context) DeclRefExpr(Var, false, DeclRefType,
9924                                           VK_LValue, Loc);
9925   Var->setReferenced(true);
9926   Var->setUsed(true);
9927 
9928   // When the field has array type, create index variables for each
9929   // dimension of the array. We use these index variables to subscript
9930   // the source array, and other clients (e.g., CodeGen) will perform
9931   // the necessary iteration with these index variables.
9932   SmallVector<VarDecl *, 4> IndexVariables;
9933   QualType BaseType = FieldType;
9934   QualType SizeType = S.Context.getSizeType();
9935   LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
9936   while (const ConstantArrayType *Array
9937                         = S.Context.getAsConstantArrayType(BaseType)) {
9938     // Create the iteration variable for this array index.
9939     IdentifierInfo *IterationVarName = 0;
9940     {
9941       SmallString<8> Str;
9942       llvm::raw_svector_ostream OS(Str);
9943       OS << "__i" << IndexVariables.size();
9944       IterationVarName = &S.Context.Idents.get(OS.str());
9945     }
9946     VarDecl *IterationVar
9947       = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9948                         IterationVarName, SizeType,
9949                         S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9950                         SC_None, SC_None);
9951     IndexVariables.push_back(IterationVar);
9952     LSI->ArrayIndexVars.push_back(IterationVar);
9953 
9954     // Create a reference to the iteration variable.
9955     ExprResult IterationVarRef
9956       = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
9957     assert(!IterationVarRef.isInvalid() &&
9958            "Reference to invented variable cannot fail!");
9959     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
9960     assert(!IterationVarRef.isInvalid() &&
9961            "Conversion of invented variable cannot fail!");
9962 
9963     // Subscript the array with this iteration variable.
9964     ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
9965                              Ref, Loc, IterationVarRef.take(), Loc);
9966     if (Subscript.isInvalid()) {
9967       S.CleanupVarDeclMarking();
9968       S.DiscardCleanupsInEvaluationContext();
9969       S.PopExpressionEvaluationContext();
9970       return ExprError();
9971     }
9972 
9973     Ref = Subscript.take();
9974     BaseType = Array->getElementType();
9975   }
9976 
9977   // Construct the entity that we will be initializing. For an array, this
9978   // will be first element in the array, which may require several levels
9979   // of array-subscript entities.
9980   SmallVector<InitializedEntity, 4> Entities;
9981   Entities.reserve(1 + IndexVariables.size());
9982   Entities.push_back(
9983     InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
9984   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
9985     Entities.push_back(InitializedEntity::InitializeElement(S.Context,
9986                                                             0,
9987                                                             Entities.back()));
9988 
9989   InitializationKind InitKind
9990     = InitializationKind::CreateDirect(Loc, Loc, Loc);
9991   InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
9992   ExprResult Result(true);
9993   if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
9994     Result = Init.Perform(S, Entities.back(), InitKind,
9995                           MultiExprArg(S, &Ref, 1));
9996 
9997   // If this initialization requires any cleanups (e.g., due to a
9998   // default argument to a copy constructor), note that for the
9999   // lambda.
10000   if (S.ExprNeedsCleanups)
10001     LSI->ExprNeedsCleanups = true;
10002 
10003   // Exit the expression evaluation context used for the capture.
10004   S.CleanupVarDeclMarking();
10005   S.DiscardCleanupsInEvaluationContext();
10006   S.PopExpressionEvaluationContext();
10007   return Result;
10008 }
10009 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType)10010 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10011                               TryCaptureKind Kind, SourceLocation EllipsisLoc,
10012                               bool BuildAndDiagnose,
10013                               QualType &CaptureType,
10014                               QualType &DeclRefType) {
10015   bool Nested = false;
10016 
10017   DeclContext *DC = CurContext;
10018   if (Var->getDeclContext() == DC) return true;
10019   if (!Var->hasLocalStorage()) return true;
10020 
10021   bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10022 
10023   // Walk up the stack to determine whether we can capture the variable,
10024   // performing the "simple" checks that don't depend on type. We stop when
10025   // we've either hit the declared scope of the variable or find an existing
10026   // capture of that variable.
10027   CaptureType = Var->getType();
10028   DeclRefType = CaptureType.getNonReferenceType();
10029   bool Explicit = (Kind != TryCapture_Implicit);
10030   unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10031   do {
10032     // Only block literals and lambda expressions can capture; other
10033     // scopes don't work.
10034     DeclContext *ParentDC;
10035     if (isa<BlockDecl>(DC))
10036       ParentDC = DC->getParent();
10037     else if (isa<CXXMethodDecl>(DC) &&
10038              cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10039              cast<CXXRecordDecl>(DC->getParent())->isLambda())
10040       ParentDC = DC->getParent()->getParent();
10041     else {
10042       if (BuildAndDiagnose)
10043         diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10044       return true;
10045     }
10046 
10047     CapturingScopeInfo *CSI =
10048       cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10049 
10050     // Check whether we've already captured it.
10051     if (CSI->CaptureMap.count(Var)) {
10052       // If we found a capture, any subcaptures are nested.
10053       Nested = true;
10054 
10055       // Retrieve the capture type for this variable.
10056       CaptureType = CSI->getCapture(Var).getCaptureType();
10057 
10058       // Compute the type of an expression that refers to this variable.
10059       DeclRefType = CaptureType.getNonReferenceType();
10060 
10061       const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10062       if (Cap.isCopyCapture() &&
10063           !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10064         DeclRefType.addConst();
10065       break;
10066     }
10067 
10068     bool IsBlock = isa<BlockScopeInfo>(CSI);
10069     bool IsLambda = !IsBlock;
10070 
10071     // Lambdas are not allowed to capture unnamed variables
10072     // (e.g. anonymous unions).
10073     // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10074     // assuming that's the intent.
10075     if (IsLambda && !Var->getDeclName()) {
10076       if (BuildAndDiagnose) {
10077         Diag(Loc, diag::err_lambda_capture_anonymous_var);
10078         Diag(Var->getLocation(), diag::note_declared_at);
10079       }
10080       return true;
10081     }
10082 
10083     // Prohibit variably-modified types; they're difficult to deal with.
10084     if (Var->getType()->isVariablyModifiedType()) {
10085       if (BuildAndDiagnose) {
10086         if (IsBlock)
10087           Diag(Loc, diag::err_ref_vm_type);
10088         else
10089           Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10090         Diag(Var->getLocation(), diag::note_previous_decl)
10091           << Var->getDeclName();
10092       }
10093       return true;
10094     }
10095 
10096     // Lambdas are not allowed to capture __block variables; they don't
10097     // support the expected semantics.
10098     if (IsLambda && HasBlocksAttr) {
10099       if (BuildAndDiagnose) {
10100         Diag(Loc, diag::err_lambda_capture_block)
10101           << Var->getDeclName();
10102         Diag(Var->getLocation(), diag::note_previous_decl)
10103           << Var->getDeclName();
10104       }
10105       return true;
10106     }
10107 
10108     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10109       // No capture-default
10110       if (BuildAndDiagnose) {
10111         Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10112         Diag(Var->getLocation(), diag::note_previous_decl)
10113           << Var->getDeclName();
10114         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10115              diag::note_lambda_decl);
10116       }
10117       return true;
10118     }
10119 
10120     FunctionScopesIndex--;
10121     DC = ParentDC;
10122     Explicit = false;
10123   } while (!Var->getDeclContext()->Equals(DC));
10124 
10125   // Walk back down the scope stack, computing the type of the capture at
10126   // each step, checking type-specific requirements, and adding captures if
10127   // requested.
10128   for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10129        ++I) {
10130     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10131 
10132     // Compute the type of the capture and of a reference to the capture within
10133     // this scope.
10134     if (isa<BlockScopeInfo>(CSI)) {
10135       Expr *CopyExpr = 0;
10136       bool ByRef = false;
10137 
10138       // Blocks are not allowed to capture arrays.
10139       if (CaptureType->isArrayType()) {
10140         if (BuildAndDiagnose) {
10141           Diag(Loc, diag::err_ref_array_type);
10142           Diag(Var->getLocation(), diag::note_previous_decl)
10143           << Var->getDeclName();
10144         }
10145         return true;
10146       }
10147 
10148       // Forbid the block-capture of autoreleasing variables.
10149       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10150         if (BuildAndDiagnose) {
10151           Diag(Loc, diag::err_arc_autoreleasing_capture)
10152             << /*block*/ 0;
10153           Diag(Var->getLocation(), diag::note_previous_decl)
10154             << Var->getDeclName();
10155         }
10156         return true;
10157       }
10158 
10159       if (HasBlocksAttr || CaptureType->isReferenceType()) {
10160         // Block capture by reference does not change the capture or
10161         // declaration reference types.
10162         ByRef = true;
10163       } else {
10164         // Block capture by copy introduces 'const'.
10165         CaptureType = CaptureType.getNonReferenceType().withConst();
10166         DeclRefType = CaptureType;
10167 
10168         if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10169           if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10170             // The capture logic needs the destructor, so make sure we mark it.
10171             // Usually this is unnecessary because most local variables have
10172             // their destructors marked at declaration time, but parameters are
10173             // an exception because it's technically only the call site that
10174             // actually requires the destructor.
10175             if (isa<ParmVarDecl>(Var))
10176               FinalizeVarWithDestructor(Var, Record);
10177 
10178             // According to the blocks spec, the capture of a variable from
10179             // the stack requires a const copy constructor.  This is not true
10180             // of the copy/move done to move a __block variable to the heap.
10181             Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10182                                                       DeclRefType.withConst(),
10183                                                       VK_LValue, Loc);
10184             ExprResult Result
10185               = PerformCopyInitialization(
10186                   InitializedEntity::InitializeBlock(Var->getLocation(),
10187                                                      CaptureType, false),
10188                   Loc, Owned(DeclRef));
10189 
10190             // Build a full-expression copy expression if initialization
10191             // succeeded and used a non-trivial constructor.  Recover from
10192             // errors by pretending that the copy isn't necessary.
10193             if (!Result.isInvalid() &&
10194                 !cast<CXXConstructExpr>(Result.get())->getConstructor()
10195                    ->isTrivial()) {
10196               Result = MaybeCreateExprWithCleanups(Result);
10197               CopyExpr = Result.take();
10198             }
10199           }
10200         }
10201       }
10202 
10203       // Actually capture the variable.
10204       if (BuildAndDiagnose)
10205         CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10206                         SourceLocation(), CaptureType, CopyExpr);
10207       Nested = true;
10208       continue;
10209     }
10210 
10211     LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10212 
10213     // Determine whether we are capturing by reference or by value.
10214     bool ByRef = false;
10215     if (I == N - 1 && Kind != TryCapture_Implicit) {
10216       ByRef = (Kind == TryCapture_ExplicitByRef);
10217     } else {
10218       ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10219     }
10220 
10221     // Compute the type of the field that will capture this variable.
10222     if (ByRef) {
10223       // C++11 [expr.prim.lambda]p15:
10224       //   An entity is captured by reference if it is implicitly or
10225       //   explicitly captured but not captured by copy. It is
10226       //   unspecified whether additional unnamed non-static data
10227       //   members are declared in the closure type for entities
10228       //   captured by reference.
10229       //
10230       // FIXME: It is not clear whether we want to build an lvalue reference
10231       // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10232       // to do the former, while EDG does the latter. Core issue 1249 will
10233       // clarify, but for now we follow GCC because it's a more permissive and
10234       // easily defensible position.
10235       CaptureType = Context.getLValueReferenceType(DeclRefType);
10236     } else {
10237       // C++11 [expr.prim.lambda]p14:
10238       //   For each entity captured by copy, an unnamed non-static
10239       //   data member is declared in the closure type. The
10240       //   declaration order of these members is unspecified. The type
10241       //   of such a data member is the type of the corresponding
10242       //   captured entity if the entity is not a reference to an
10243       //   object, or the referenced type otherwise. [Note: If the
10244       //   captured entity is a reference to a function, the
10245       //   corresponding data member is also a reference to a
10246       //   function. - end note ]
10247       if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10248         if (!RefType->getPointeeType()->isFunctionType())
10249           CaptureType = RefType->getPointeeType();
10250       }
10251 
10252       // Forbid the lambda copy-capture of autoreleasing variables.
10253       if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10254         if (BuildAndDiagnose) {
10255           Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10256           Diag(Var->getLocation(), diag::note_previous_decl)
10257             << Var->getDeclName();
10258         }
10259         return true;
10260       }
10261     }
10262 
10263     // Capture this variable in the lambda.
10264     Expr *CopyExpr = 0;
10265     if (BuildAndDiagnose) {
10266       ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10267                                           DeclRefType, Loc);
10268       if (!Result.isInvalid())
10269         CopyExpr = Result.take();
10270     }
10271 
10272     // Compute the type of a reference to this captured variable.
10273     if (ByRef)
10274       DeclRefType = CaptureType.getNonReferenceType();
10275     else {
10276       // C++ [expr.prim.lambda]p5:
10277       //   The closure type for a lambda-expression has a public inline
10278       //   function call operator [...]. This function call operator is
10279       //   declared const (9.3.1) if and only if the lambda-expression’s
10280       //   parameter-declaration-clause is not followed by mutable.
10281       DeclRefType = CaptureType.getNonReferenceType();
10282       if (!LSI->Mutable && !CaptureType->isReferenceType())
10283         DeclRefType.addConst();
10284     }
10285 
10286     // Add the capture.
10287     if (BuildAndDiagnose)
10288       CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10289                       EllipsisLoc, CaptureType, CopyExpr);
10290     Nested = true;
10291   }
10292 
10293   return false;
10294 }
10295 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)10296 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10297                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10298   QualType CaptureType;
10299   QualType DeclRefType;
10300   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10301                             /*BuildAndDiagnose=*/true, CaptureType,
10302                             DeclRefType);
10303 }
10304 
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)10305 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10306   QualType CaptureType;
10307   QualType DeclRefType;
10308 
10309   // Determine whether we can capture this variable.
10310   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10311                          /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10312     return QualType();
10313 
10314   return DeclRefType;
10315 }
10316 
MarkVarDeclODRUsed(Sema & SemaRef,VarDecl * Var,SourceLocation Loc)10317 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10318                                SourceLocation Loc) {
10319   // Keep track of used but undefined variables.
10320   // FIXME: We shouldn't suppress this warning for static data members.
10321   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10322       Var->getLinkage() != ExternalLinkage &&
10323       !(Var->isStaticDataMember() && Var->hasInit())) {
10324     SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10325     if (old.isInvalid()) old = Loc;
10326   }
10327 
10328   SemaRef.tryCaptureVariable(Var, Loc);
10329 
10330   Var->setUsed(true);
10331 }
10332 
UpdateMarkingForLValueToRValue(Expr * E)10333 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10334   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10335   // an object that satisfies the requirements for appearing in a
10336   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10337   // is immediately applied."  This function handles the lvalue-to-rvalue
10338   // conversion part.
10339   MaybeODRUseExprs.erase(E->IgnoreParens());
10340 }
10341 
ActOnConstantExpression(ExprResult Res)10342 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10343   if (!Res.isUsable())
10344     return Res;
10345 
10346   // If a constant-expression is a reference to a variable where we delay
10347   // deciding whether it is an odr-use, just assume we will apply the
10348   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
10349   // (a non-type template argument), we have special handling anyway.
10350   UpdateMarkingForLValueToRValue(Res.get());
10351   return Res;
10352 }
10353 
CleanupVarDeclMarking()10354 void Sema::CleanupVarDeclMarking() {
10355   for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10356                                         e = MaybeODRUseExprs.end();
10357        i != e; ++i) {
10358     VarDecl *Var;
10359     SourceLocation Loc;
10360     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10361       Var = cast<VarDecl>(DRE->getDecl());
10362       Loc = DRE->getLocation();
10363     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10364       Var = cast<VarDecl>(ME->getMemberDecl());
10365       Loc = ME->getMemberLoc();
10366     } else {
10367       llvm_unreachable("Unexpcted expression");
10368     }
10369 
10370     MarkVarDeclODRUsed(*this, Var, Loc);
10371   }
10372 
10373   MaybeODRUseExprs.clear();
10374 }
10375 
10376 // Mark a VarDecl referenced, and perform the necessary handling to compute
10377 // odr-uses.
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)10378 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10379                                     VarDecl *Var, Expr *E) {
10380   Var->setReferenced();
10381 
10382   if (!IsPotentiallyEvaluatedContext(SemaRef))
10383     return;
10384 
10385   // Implicit instantiation of static data members of class templates.
10386   if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10387     MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10388     assert(MSInfo && "Missing member specialization information?");
10389     bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10390     if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10391         (!AlreadyInstantiated ||
10392          Var->isUsableInConstantExpressions(SemaRef.Context))) {
10393       if (!AlreadyInstantiated) {
10394         // This is a modification of an existing AST node. Notify listeners.
10395         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10396           L->StaticDataMemberInstantiated(Var);
10397         MSInfo->setPointOfInstantiation(Loc);
10398       }
10399       SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10400       if (Var->isUsableInConstantExpressions(SemaRef.Context))
10401         // Do not defer instantiations of variables which could be used in a
10402         // constant expression.
10403         SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10404       else
10405         SemaRef.PendingInstantiations.push_back(
10406             std::make_pair(Var, PointOfInstantiation));
10407     }
10408   }
10409 
10410   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10411   // an object that satisfies the requirements for appearing in a
10412   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10413   // is immediately applied."  We check the first part here, and
10414   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10415   // Note that we use the C++11 definition everywhere because nothing in
10416   // C++03 depends on whether we get the C++03 version correct. This does not
10417   // apply to references, since they are not objects.
10418   const VarDecl *DefVD;
10419   if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10420       Var->isUsableInConstantExpressions(SemaRef.Context) &&
10421       Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10422     SemaRef.MaybeODRUseExprs.insert(E);
10423   else
10424     MarkVarDeclODRUsed(SemaRef, Var, Loc);
10425 }
10426 
10427 /// \brief Mark a variable referenced, and check whether it is odr-used
10428 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
10429 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)10430 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10431   DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10432 }
10433 
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E)10434 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10435                                Decl *D, Expr *E) {
10436   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10437     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10438     return;
10439   }
10440 
10441   SemaRef.MarkAnyDeclReferenced(Loc, D);
10442 }
10443 
10444 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)10445 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10446   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10447 }
10448 
10449 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)10450 void Sema::MarkMemberReferenced(MemberExpr *E) {
10451   MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10452 }
10453 
10454 /// \brief Perform marking for a reference to an arbitrary declaration.  It
10455 /// marks the declaration referenced, and performs odr-use checking for functions
10456 /// and variables. This method should not be used when building an normal
10457 /// expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D)10458 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10459   if (VarDecl *VD = dyn_cast<VarDecl>(D))
10460     MarkVariableReferenced(Loc, VD);
10461   else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10462     MarkFunctionReferenced(Loc, FD);
10463   else
10464     D->setReferenced();
10465 }
10466 
10467 namespace {
10468   // Mark all of the declarations referenced
10469   // FIXME: Not fully implemented yet! We need to have a better understanding
10470   // of when we're entering
10471   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10472     Sema &S;
10473     SourceLocation Loc;
10474 
10475   public:
10476     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10477 
MarkReferencedDecls(Sema & S,SourceLocation Loc)10478     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10479 
10480     bool TraverseTemplateArgument(const TemplateArgument &Arg);
10481     bool TraverseRecordType(RecordType *T);
10482   };
10483 }
10484 
TraverseTemplateArgument(const TemplateArgument & Arg)10485 bool MarkReferencedDecls::TraverseTemplateArgument(
10486   const TemplateArgument &Arg) {
10487   if (Arg.getKind() == TemplateArgument::Declaration) {
10488     if (Decl *D = Arg.getAsDecl())
10489       S.MarkAnyDeclReferenced(Loc, D);
10490   }
10491 
10492   return Inherited::TraverseTemplateArgument(Arg);
10493 }
10494 
TraverseRecordType(RecordType * T)10495 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
10496   if (ClassTemplateSpecializationDecl *Spec
10497                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
10498     const TemplateArgumentList &Args = Spec->getTemplateArgs();
10499     return TraverseTemplateArguments(Args.data(), Args.size());
10500   }
10501 
10502   return true;
10503 }
10504 
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)10505 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
10506   MarkReferencedDecls Marker(*this, Loc);
10507   Marker.TraverseType(Context.getCanonicalType(T));
10508 }
10509 
10510 namespace {
10511   /// \brief Helper class that marks all of the declarations referenced by
10512   /// potentially-evaluated subexpressions as "referenced".
10513   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
10514     Sema &S;
10515     bool SkipLocalVariables;
10516 
10517   public:
10518     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
10519 
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)10520     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
10521       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
10522 
VisitDeclRefExpr(DeclRefExpr * E)10523     void VisitDeclRefExpr(DeclRefExpr *E) {
10524       // If we were asked not to visit local variables, don't.
10525       if (SkipLocalVariables) {
10526         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
10527           if (VD->hasLocalStorage())
10528             return;
10529       }
10530 
10531       S.MarkDeclRefReferenced(E);
10532     }
10533 
VisitMemberExpr(MemberExpr * E)10534     void VisitMemberExpr(MemberExpr *E) {
10535       S.MarkMemberReferenced(E);
10536       Inherited::VisitMemberExpr(E);
10537     }
10538 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)10539     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
10540       S.MarkFunctionReferenced(E->getLocStart(),
10541             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
10542       Visit(E->getSubExpr());
10543     }
10544 
VisitCXXNewExpr(CXXNewExpr * E)10545     void VisitCXXNewExpr(CXXNewExpr *E) {
10546       if (E->getOperatorNew())
10547         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
10548       if (E->getOperatorDelete())
10549         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10550       Inherited::VisitCXXNewExpr(E);
10551     }
10552 
VisitCXXDeleteExpr(CXXDeleteExpr * E)10553     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
10554       if (E->getOperatorDelete())
10555         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10556       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
10557       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
10558         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
10559         S.MarkFunctionReferenced(E->getLocStart(),
10560                                     S.LookupDestructor(Record));
10561       }
10562 
10563       Inherited::VisitCXXDeleteExpr(E);
10564     }
10565 
VisitCXXConstructExpr(CXXConstructExpr * E)10566     void VisitCXXConstructExpr(CXXConstructExpr *E) {
10567       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
10568       Inherited::VisitCXXConstructExpr(E);
10569     }
10570 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)10571     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
10572       Visit(E->getExpr());
10573     }
10574 
VisitImplicitCastExpr(ImplicitCastExpr * E)10575     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10576       Inherited::VisitImplicitCastExpr(E);
10577 
10578       if (E->getCastKind() == CK_LValueToRValue)
10579         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
10580     }
10581   };
10582 }
10583 
10584 /// \brief Mark any declarations that appear within this expression or any
10585 /// potentially-evaluated subexpressions as "referenced".
10586 ///
10587 /// \param SkipLocalVariables If true, don't mark local variables as
10588 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)10589 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
10590                                             bool SkipLocalVariables) {
10591   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
10592 }
10593 
10594 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
10595 /// of the program being compiled.
10596 ///
10597 /// This routine emits the given diagnostic when the code currently being
10598 /// type-checked is "potentially evaluated", meaning that there is a
10599 /// possibility that the code will actually be executable. Code in sizeof()
10600 /// expressions, code used only during overload resolution, etc., are not
10601 /// potentially evaluated. This routine will suppress such diagnostics or,
10602 /// in the absolutely nutty case of potentially potentially evaluated
10603 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
10604 /// later.
10605 ///
10606 /// This routine should be used for all diagnostics that describe the run-time
10607 /// behavior of a program, such as passing a non-POD value through an ellipsis.
10608 /// Failure to do so will likely result in spurious diagnostics or failures
10609 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)10610 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
10611                                const PartialDiagnostic &PD) {
10612   switch (ExprEvalContexts.back().Context) {
10613   case Unevaluated:
10614     // The argument will never be evaluated, so don't complain.
10615     break;
10616 
10617   case ConstantEvaluated:
10618     // Relevant diagnostics should be produced by constant evaluation.
10619     break;
10620 
10621   case PotentiallyEvaluated:
10622   case PotentiallyEvaluatedIfUsed:
10623     if (Statement && getCurFunctionOrMethodDecl()) {
10624       FunctionScopes.back()->PossiblyUnreachableDiags.
10625         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
10626     }
10627     else
10628       Diag(Loc, PD);
10629 
10630     return true;
10631   }
10632 
10633   return false;
10634 }
10635 
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)10636 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
10637                                CallExpr *CE, FunctionDecl *FD) {
10638   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
10639     return false;
10640 
10641   // If we're inside a decltype's expression, don't check for a valid return
10642   // type or construct temporaries until we know whether this is the last call.
10643   if (ExprEvalContexts.back().IsDecltype) {
10644     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
10645     return false;
10646   }
10647 
10648   PartialDiagnostic Note =
10649     FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
10650     << FD->getDeclName() : PDiag();
10651   SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
10652 
10653   if (RequireCompleteType(Loc, ReturnType,
10654                           FD ?
10655                           PDiag(diag::err_call_function_incomplete_return)
10656                             << CE->getSourceRange() << FD->getDeclName() :
10657                           PDiag(diag::err_call_incomplete_return)
10658                             << CE->getSourceRange(),
10659                           std::make_pair(NoteLoc, Note)))
10660     return true;
10661 
10662   return false;
10663 }
10664 
10665 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
10666 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)10667 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
10668   SourceLocation Loc;
10669 
10670   unsigned diagnostic = diag::warn_condition_is_assignment;
10671   bool IsOrAssign = false;
10672 
10673   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
10674     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
10675       return;
10676 
10677     IsOrAssign = Op->getOpcode() == BO_OrAssign;
10678 
10679     // Greylist some idioms by putting them into a warning subcategory.
10680     if (ObjCMessageExpr *ME
10681           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
10682       Selector Sel = ME->getSelector();
10683 
10684       // self = [<foo> init...]
10685       if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
10686         diagnostic = diag::warn_condition_is_idiomatic_assignment;
10687 
10688       // <foo> = [<bar> nextObject]
10689       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
10690         diagnostic = diag::warn_condition_is_idiomatic_assignment;
10691     }
10692 
10693     Loc = Op->getOperatorLoc();
10694   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
10695     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
10696       return;
10697 
10698     IsOrAssign = Op->getOperator() == OO_PipeEqual;
10699     Loc = Op->getOperatorLoc();
10700   } else {
10701     // Not an assignment.
10702     return;
10703   }
10704 
10705   Diag(Loc, diagnostic) << E->getSourceRange();
10706 
10707   SourceLocation Open = E->getLocStart();
10708   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
10709   Diag(Loc, diag::note_condition_assign_silence)
10710         << FixItHint::CreateInsertion(Open, "(")
10711         << FixItHint::CreateInsertion(Close, ")");
10712 
10713   if (IsOrAssign)
10714     Diag(Loc, diag::note_condition_or_assign_to_comparison)
10715       << FixItHint::CreateReplacement(Loc, "!=");
10716   else
10717     Diag(Loc, diag::note_condition_assign_to_comparison)
10718       << FixItHint::CreateReplacement(Loc, "==");
10719 }
10720 
10721 /// \brief Redundant parentheses over an equality comparison can indicate
10722 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)10723 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
10724   // Don't warn if the parens came from a macro.
10725   SourceLocation parenLoc = ParenE->getLocStart();
10726   if (parenLoc.isInvalid() || parenLoc.isMacroID())
10727     return;
10728   // Don't warn for dependent expressions.
10729   if (ParenE->isTypeDependent())
10730     return;
10731 
10732   Expr *E = ParenE->IgnoreParens();
10733 
10734   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
10735     if (opE->getOpcode() == BO_EQ &&
10736         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
10737                                                            == Expr::MLV_Valid) {
10738       SourceLocation Loc = opE->getOperatorLoc();
10739 
10740       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
10741       SourceRange ParenERange = ParenE->getSourceRange();
10742       Diag(Loc, diag::note_equality_comparison_silence)
10743         << FixItHint::CreateRemoval(ParenERange.getBegin())
10744         << FixItHint::CreateRemoval(ParenERange.getEnd());
10745       Diag(Loc, diag::note_equality_comparison_to_assign)
10746         << FixItHint::CreateReplacement(Loc, "=");
10747     }
10748 }
10749 
CheckBooleanCondition(Expr * E,SourceLocation Loc)10750 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
10751   DiagnoseAssignmentAsCondition(E);
10752   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
10753     DiagnoseEqualityWithExtraParens(parenE);
10754 
10755   ExprResult result = CheckPlaceholderExpr(E);
10756   if (result.isInvalid()) return ExprError();
10757   E = result.take();
10758 
10759   if (!E->isTypeDependent()) {
10760     if (getLangOpts().CPlusPlus)
10761       return CheckCXXBooleanCondition(E); // C++ 6.4p4
10762 
10763     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
10764     if (ERes.isInvalid())
10765       return ExprError();
10766     E = ERes.take();
10767 
10768     QualType T = E->getType();
10769     if (!T->isScalarType()) { // C99 6.8.4.1p1
10770       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
10771         << T << E->getSourceRange();
10772       return ExprError();
10773     }
10774   }
10775 
10776   return Owned(E);
10777 }
10778 
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)10779 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
10780                                        Expr *SubExpr) {
10781   if (!SubExpr)
10782     return ExprError();
10783 
10784   return CheckBooleanCondition(SubExpr, Loc);
10785 }
10786 
10787 namespace {
10788   /// A visitor for rebuilding a call to an __unknown_any expression
10789   /// to have an appropriate type.
10790   struct RebuildUnknownAnyFunction
10791     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
10792 
10793     Sema &S;
10794 
RebuildUnknownAnyFunction__anon7c81a41a0611::RebuildUnknownAnyFunction10795     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
10796 
VisitStmt__anon7c81a41a0611::RebuildUnknownAnyFunction10797     ExprResult VisitStmt(Stmt *S) {
10798       llvm_unreachable("unexpected statement!");
10799     }
10800 
VisitExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10801     ExprResult VisitExpr(Expr *E) {
10802       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
10803         << E->getSourceRange();
10804       return ExprError();
10805     }
10806 
10807     /// Rebuild an expression which simply semantically wraps another
10808     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10809     template <class T> ExprResult rebuildSugarExpr(T *E) {
10810       ExprResult SubResult = Visit(E->getSubExpr());
10811       if (SubResult.isInvalid()) return ExprError();
10812 
10813       Expr *SubExpr = SubResult.take();
10814       E->setSubExpr(SubExpr);
10815       E->setType(SubExpr->getType());
10816       E->setValueKind(SubExpr->getValueKind());
10817       assert(E->getObjectKind() == OK_Ordinary);
10818       return E;
10819     }
10820 
VisitParenExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10821     ExprResult VisitParenExpr(ParenExpr *E) {
10822       return rebuildSugarExpr(E);
10823     }
10824 
VisitUnaryExtension__anon7c81a41a0611::RebuildUnknownAnyFunction10825     ExprResult VisitUnaryExtension(UnaryOperator *E) {
10826       return rebuildSugarExpr(E);
10827     }
10828 
VisitUnaryAddrOf__anon7c81a41a0611::RebuildUnknownAnyFunction10829     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
10830       ExprResult SubResult = Visit(E->getSubExpr());
10831       if (SubResult.isInvalid()) return ExprError();
10832 
10833       Expr *SubExpr = SubResult.take();
10834       E->setSubExpr(SubExpr);
10835       E->setType(S.Context.getPointerType(SubExpr->getType()));
10836       assert(E->getValueKind() == VK_RValue);
10837       assert(E->getObjectKind() == OK_Ordinary);
10838       return E;
10839     }
10840 
resolveDecl__anon7c81a41a0611::RebuildUnknownAnyFunction10841     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
10842       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
10843 
10844       E->setType(VD->getType());
10845 
10846       assert(E->getValueKind() == VK_RValue);
10847       if (S.getLangOpts().CPlusPlus &&
10848           !(isa<CXXMethodDecl>(VD) &&
10849             cast<CXXMethodDecl>(VD)->isInstance()))
10850         E->setValueKind(VK_LValue);
10851 
10852       return E;
10853     }
10854 
VisitMemberExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10855     ExprResult VisitMemberExpr(MemberExpr *E) {
10856       return resolveDecl(E, E->getMemberDecl());
10857     }
10858 
VisitDeclRefExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10859     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
10860       return resolveDecl(E, E->getDecl());
10861     }
10862   };
10863 }
10864 
10865 /// Given a function expression of unknown-any type, try to rebuild it
10866 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)10867 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
10868   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
10869   if (Result.isInvalid()) return ExprError();
10870   return S.DefaultFunctionArrayConversion(Result.take());
10871 }
10872 
10873 namespace {
10874   /// A visitor for rebuilding an expression of type __unknown_anytype
10875   /// into one which resolves the type directly on the referring
10876   /// expression.  Strict preservation of the original source
10877   /// structure is not a goal.
10878   struct RebuildUnknownAnyExpr
10879     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
10880 
10881     Sema &S;
10882 
10883     /// The current destination type.
10884     QualType DestType;
10885 
RebuildUnknownAnyExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10886     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
10887       : S(S), DestType(CastType) {}
10888 
VisitStmt__anon7c81a41a0711::RebuildUnknownAnyExpr10889     ExprResult VisitStmt(Stmt *S) {
10890       llvm_unreachable("unexpected statement!");
10891     }
10892 
VisitExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10893     ExprResult VisitExpr(Expr *E) {
10894       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
10895         << E->getSourceRange();
10896       return ExprError();
10897     }
10898 
10899     ExprResult VisitCallExpr(CallExpr *E);
10900     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
10901 
10902     /// Rebuild an expression which simply semantically wraps another
10903     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10904     template <class T> ExprResult rebuildSugarExpr(T *E) {
10905       ExprResult SubResult = Visit(E->getSubExpr());
10906       if (SubResult.isInvalid()) return ExprError();
10907       Expr *SubExpr = SubResult.take();
10908       E->setSubExpr(SubExpr);
10909       E->setType(SubExpr->getType());
10910       E->setValueKind(SubExpr->getValueKind());
10911       assert(E->getObjectKind() == OK_Ordinary);
10912       return E;
10913     }
10914 
VisitParenExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10915     ExprResult VisitParenExpr(ParenExpr *E) {
10916       return rebuildSugarExpr(E);
10917     }
10918 
VisitUnaryExtension__anon7c81a41a0711::RebuildUnknownAnyExpr10919     ExprResult VisitUnaryExtension(UnaryOperator *E) {
10920       return rebuildSugarExpr(E);
10921     }
10922 
VisitUnaryAddrOf__anon7c81a41a0711::RebuildUnknownAnyExpr10923     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
10924       const PointerType *Ptr = DestType->getAs<PointerType>();
10925       if (!Ptr) {
10926         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
10927           << E->getSourceRange();
10928         return ExprError();
10929       }
10930       assert(E->getValueKind() == VK_RValue);
10931       assert(E->getObjectKind() == OK_Ordinary);
10932       E->setType(DestType);
10933 
10934       // Build the sub-expression as if it were an object of the pointee type.
10935       DestType = Ptr->getPointeeType();
10936       ExprResult SubResult = Visit(E->getSubExpr());
10937       if (SubResult.isInvalid()) return ExprError();
10938       E->setSubExpr(SubResult.take());
10939       return E;
10940     }
10941 
10942     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
10943 
10944     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
10945 
VisitMemberExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10946     ExprResult VisitMemberExpr(MemberExpr *E) {
10947       return resolveDecl(E, E->getMemberDecl());
10948     }
10949 
VisitDeclRefExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10950     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
10951       return resolveDecl(E, E->getDecl());
10952     }
10953   };
10954 }
10955 
10956 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)10957 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
10958   Expr *CalleeExpr = E->getCallee();
10959 
10960   enum FnKind {
10961     FK_MemberFunction,
10962     FK_FunctionPointer,
10963     FK_BlockPointer
10964   };
10965 
10966   FnKind Kind;
10967   QualType CalleeType = CalleeExpr->getType();
10968   if (CalleeType == S.Context.BoundMemberTy) {
10969     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
10970     Kind = FK_MemberFunction;
10971     CalleeType = Expr::findBoundMemberType(CalleeExpr);
10972   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
10973     CalleeType = Ptr->getPointeeType();
10974     Kind = FK_FunctionPointer;
10975   } else {
10976     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
10977     Kind = FK_BlockPointer;
10978   }
10979   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
10980 
10981   // Verify that this is a legal result type of a function.
10982   if (DestType->isArrayType() || DestType->isFunctionType()) {
10983     unsigned diagID = diag::err_func_returning_array_function;
10984     if (Kind == FK_BlockPointer)
10985       diagID = diag::err_block_returning_array_function;
10986 
10987     S.Diag(E->getExprLoc(), diagID)
10988       << DestType->isFunctionType() << DestType;
10989     return ExprError();
10990   }
10991 
10992   // Otherwise, go ahead and set DestType as the call's result.
10993   E->setType(DestType.getNonLValueExprType(S.Context));
10994   E->setValueKind(Expr::getValueKindForType(DestType));
10995   assert(E->getObjectKind() == OK_Ordinary);
10996 
10997   // Rebuild the function type, replacing the result type with DestType.
10998   if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
10999     DestType = S.Context.getFunctionType(DestType,
11000                                          Proto->arg_type_begin(),
11001                                          Proto->getNumArgs(),
11002                                          Proto->getExtProtoInfo());
11003   else
11004     DestType = S.Context.getFunctionNoProtoType(DestType,
11005                                                 FnType->getExtInfo());
11006 
11007   // Rebuild the appropriate pointer-to-function type.
11008   switch (Kind) {
11009   case FK_MemberFunction:
11010     // Nothing to do.
11011     break;
11012 
11013   case FK_FunctionPointer:
11014     DestType = S.Context.getPointerType(DestType);
11015     break;
11016 
11017   case FK_BlockPointer:
11018     DestType = S.Context.getBlockPointerType(DestType);
11019     break;
11020   }
11021 
11022   // Finally, we can recurse.
11023   ExprResult CalleeResult = Visit(CalleeExpr);
11024   if (!CalleeResult.isUsable()) return ExprError();
11025   E->setCallee(CalleeResult.take());
11026 
11027   // Bind a temporary if necessary.
11028   return S.MaybeBindToTemporary(E);
11029 }
11030 
VisitObjCMessageExpr(ObjCMessageExpr * E)11031 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11032   // Verify that this is a legal result type of a call.
11033   if (DestType->isArrayType() || DestType->isFunctionType()) {
11034     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11035       << DestType->isFunctionType() << DestType;
11036     return ExprError();
11037   }
11038 
11039   // Rewrite the method result type if available.
11040   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11041     assert(Method->getResultType() == S.Context.UnknownAnyTy);
11042     Method->setResultType(DestType);
11043   }
11044 
11045   // Change the type of the message.
11046   E->setType(DestType.getNonReferenceType());
11047   E->setValueKind(Expr::getValueKindForType(DestType));
11048 
11049   return S.MaybeBindToTemporary(E);
11050 }
11051 
VisitImplicitCastExpr(ImplicitCastExpr * E)11052 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11053   // The only case we should ever see here is a function-to-pointer decay.
11054   if (E->getCastKind() == CK_FunctionToPointerDecay) {
11055     assert(E->getValueKind() == VK_RValue);
11056     assert(E->getObjectKind() == OK_Ordinary);
11057 
11058     E->setType(DestType);
11059 
11060     // Rebuild the sub-expression as the pointee (function) type.
11061     DestType = DestType->castAs<PointerType>()->getPointeeType();
11062 
11063     ExprResult Result = Visit(E->getSubExpr());
11064     if (!Result.isUsable()) return ExprError();
11065 
11066     E->setSubExpr(Result.take());
11067     return S.Owned(E);
11068   } else if (E->getCastKind() == CK_LValueToRValue) {
11069     assert(E->getValueKind() == VK_RValue);
11070     assert(E->getObjectKind() == OK_Ordinary);
11071 
11072     assert(isa<BlockPointerType>(E->getType()));
11073 
11074     E->setType(DestType);
11075 
11076     // The sub-expression has to be a lvalue reference, so rebuild it as such.
11077     DestType = S.Context.getLValueReferenceType(DestType);
11078 
11079     ExprResult Result = Visit(E->getSubExpr());
11080     if (!Result.isUsable()) return ExprError();
11081 
11082     E->setSubExpr(Result.take());
11083     return S.Owned(E);
11084   } else {
11085     llvm_unreachable("Unhandled cast type!");
11086   }
11087 }
11088 
resolveDecl(Expr * E,ValueDecl * VD)11089 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11090   ExprValueKind ValueKind = VK_LValue;
11091   QualType Type = DestType;
11092 
11093   // We know how to make this work for certain kinds of decls:
11094 
11095   //  - functions
11096   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11097     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11098       DestType = Ptr->getPointeeType();
11099       ExprResult Result = resolveDecl(E, VD);
11100       if (Result.isInvalid()) return ExprError();
11101       return S.ImpCastExprToType(Result.take(), Type,
11102                                  CK_FunctionToPointerDecay, VK_RValue);
11103     }
11104 
11105     if (!Type->isFunctionType()) {
11106       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11107         << VD << E->getSourceRange();
11108       return ExprError();
11109     }
11110 
11111     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11112       if (MD->isInstance()) {
11113         ValueKind = VK_RValue;
11114         Type = S.Context.BoundMemberTy;
11115       }
11116 
11117     // Function references aren't l-values in C.
11118     if (!S.getLangOpts().CPlusPlus)
11119       ValueKind = VK_RValue;
11120 
11121   //  - variables
11122   } else if (isa<VarDecl>(VD)) {
11123     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11124       Type = RefTy->getPointeeType();
11125     } else if (Type->isFunctionType()) {
11126       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11127         << VD << E->getSourceRange();
11128       return ExprError();
11129     }
11130 
11131   //  - nothing else
11132   } else {
11133     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11134       << VD << E->getSourceRange();
11135     return ExprError();
11136   }
11137 
11138   VD->setType(DestType);
11139   E->setType(Type);
11140   E->setValueKind(ValueKind);
11141   return S.Owned(E);
11142 }
11143 
11144 /// Check a cast of an unknown-any type.  We intentionally only
11145 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)11146 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11147                                      Expr *CastExpr, CastKind &CastKind,
11148                                      ExprValueKind &VK, CXXCastPath &Path) {
11149   // Rewrite the casted expression from scratch.
11150   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11151   if (!result.isUsable()) return ExprError();
11152 
11153   CastExpr = result.take();
11154   VK = CastExpr->getValueKind();
11155   CastKind = CK_NoOp;
11156 
11157   return CastExpr;
11158 }
11159 
forceUnknownAnyToType(Expr * E,QualType ToType)11160 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11161   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11162 }
11163 
diagnoseUnknownAnyExpr(Sema & S,Expr * E)11164 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11165   Expr *orig = E;
11166   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11167   while (true) {
11168     E = E->IgnoreParenImpCasts();
11169     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11170       E = call->getCallee();
11171       diagID = diag::err_uncasted_call_of_unknown_any;
11172     } else {
11173       break;
11174     }
11175   }
11176 
11177   SourceLocation loc;
11178   NamedDecl *d;
11179   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11180     loc = ref->getLocation();
11181     d = ref->getDecl();
11182   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11183     loc = mem->getMemberLoc();
11184     d = mem->getMemberDecl();
11185   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11186     diagID = diag::err_uncasted_call_of_unknown_any;
11187     loc = msg->getSelectorStartLoc();
11188     d = msg->getMethodDecl();
11189     if (!d) {
11190       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11191         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11192         << orig->getSourceRange();
11193       return ExprError();
11194     }
11195   } else {
11196     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11197       << E->getSourceRange();
11198     return ExprError();
11199   }
11200 
11201   S.Diag(loc, diagID) << d << orig->getSourceRange();
11202 
11203   // Never recoverable.
11204   return ExprError();
11205 }
11206 
11207 /// Check for operands with placeholder types and complain if found.
11208 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)11209 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11210   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11211   if (!placeholderType) return Owned(E);
11212 
11213   switch (placeholderType->getKind()) {
11214 
11215   // Overloaded expressions.
11216   case BuiltinType::Overload: {
11217     // Try to resolve a single function template specialization.
11218     // This is obligatory.
11219     ExprResult result = Owned(E);
11220     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11221       return result;
11222 
11223     // If that failed, try to recover with a call.
11224     } else {
11225       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11226                            /*complain*/ true);
11227       return result;
11228     }
11229   }
11230 
11231   // Bound member functions.
11232   case BuiltinType::BoundMember: {
11233     ExprResult result = Owned(E);
11234     tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11235                          /*complain*/ true);
11236     return result;
11237   }
11238 
11239   // ARC unbridged casts.
11240   case BuiltinType::ARCUnbridgedCast: {
11241     Expr *realCast = stripARCUnbridgedCast(E);
11242     diagnoseARCUnbridgedCast(realCast);
11243     return Owned(realCast);
11244   }
11245 
11246   // Expressions of unknown type.
11247   case BuiltinType::UnknownAny:
11248     return diagnoseUnknownAnyExpr(*this, E);
11249 
11250   // Pseudo-objects.
11251   case BuiltinType::PseudoObject:
11252     return checkPseudoObjectRValue(E);
11253 
11254   // Everything else should be impossible.
11255 #define BUILTIN_TYPE(Id, SingletonId) \
11256   case BuiltinType::Id:
11257 #define PLACEHOLDER_TYPE(Id, SingletonId)
11258 #include "clang/AST/BuiltinTypes.def"
11259     break;
11260   }
11261 
11262   llvm_unreachable("invalid placeholder type!");
11263 }
11264 
CheckCaseExpression(Expr * E)11265 bool Sema::CheckCaseExpression(Expr *E) {
11266   if (E->isTypeDependent())
11267     return true;
11268   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11269     return E->getType()->isIntegralOrEnumerationType();
11270   return false;
11271 }
11272 
11273 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11274 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)11275 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11276   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11277          "Unknown Objective-C Boolean value!");
11278   return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11279                                         Context.ObjCBuiltinBoolTy, OpLoc));
11280 }
11281