1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ScopeInfo.h"
19 #include "clang/Sema/AnalysisBasedWarnings.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTMutationListener.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/EvaluatedExprVisitor.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExprObjC.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Lex/LiteralSupport.h"
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/Designator.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/SemaFixItUtils.h"
43 #include "clang/Sema/Template.h"
44 #include "TreeTransform.h"
45 using namespace clang;
46 using namespace sema;
47
48 /// \brief Determine whether the use of this declaration is valid, without
49 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)50 bool Sema::CanUseDecl(NamedDecl *D) {
51 // See if this is an auto-typed variable whose initializer we are parsing.
52 if (ParsingInitForAutoVars.count(D))
53 return false;
54
55 // See if this is a deleted function.
56 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57 if (FD->isDeleted())
58 return false;
59 }
60
61 // See if this function is unavailable.
62 if (D->getAvailability() == AR_Unavailable &&
63 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64 return false;
65
66 return true;
67 }
68
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)69 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
70 NamedDecl *D, SourceLocation Loc,
71 const ObjCInterfaceDecl *UnknownObjCClass) {
72 // See if this declaration is unavailable or deprecated.
73 std::string Message;
74 AvailabilityResult Result = D->getAvailability(&Message);
75 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
76 if (Result == AR_Available) {
77 const DeclContext *DC = ECD->getDeclContext();
78 if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
79 Result = TheEnumDecl->getAvailability(&Message);
80 }
81
82 switch (Result) {
83 case AR_Available:
84 case AR_NotYetIntroduced:
85 break;
86
87 case AR_Deprecated:
88 S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
89 break;
90
91 case AR_Unavailable:
92 if (S.getCurContextAvailability() != AR_Unavailable) {
93 if (Message.empty()) {
94 if (!UnknownObjCClass)
95 S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
96 else
97 S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
98 << D->getDeclName();
99 }
100 else
101 S.Diag(Loc, diag::err_unavailable_message)
102 << D->getDeclName() << Message;
103 S.Diag(D->getLocation(), diag::note_unavailable_here)
104 << isa<FunctionDecl>(D) << false;
105 }
106 break;
107 }
108 return Result;
109 }
110
111 /// \brief Emit a note explaining that this function is deleted or unavailable.
NoteDeletedFunction(FunctionDecl * Decl)112 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
113 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
114
115 if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
116 // If the method was explicitly defaulted, point at that declaration.
117 if (!Method->isImplicit())
118 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
119
120 // Try to diagnose why this special member function was implicitly
121 // deleted. This might fail, if that reason no longer applies.
122 CXXSpecialMember CSM = getSpecialMember(Method);
123 if (CSM != CXXInvalid)
124 ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
125
126 return;
127 }
128
129 Diag(Decl->getLocation(), diag::note_unavailable_here)
130 << 1 << Decl->isDeleted();
131 }
132
133 /// \brief Determine whether the use of this declaration is valid, and
134 /// emit any corresponding diagnostics.
135 ///
136 /// This routine diagnoses various problems with referencing
137 /// declarations that can occur when using a declaration. For example,
138 /// it might warn if a deprecated or unavailable declaration is being
139 /// used, or produce an error (and return true) if a C++0x deleted
140 /// function is being used.
141 ///
142 /// \returns true if there was an error (this declaration cannot be
143 /// referenced), false otherwise.
144 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)145 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
146 const ObjCInterfaceDecl *UnknownObjCClass) {
147 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
148 // If there were any diagnostics suppressed by template argument deduction,
149 // emit them now.
150 llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
151 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
152 if (Pos != SuppressedDiagnostics.end()) {
153 SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
154 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
155 Diag(Suppressed[I].first, Suppressed[I].second);
156
157 // Clear out the list of suppressed diagnostics, so that we don't emit
158 // them again for this specialization. However, we don't obsolete this
159 // entry from the table, because we want to avoid ever emitting these
160 // diagnostics again.
161 Suppressed.clear();
162 }
163 }
164
165 // See if this is an auto-typed variable whose initializer we are parsing.
166 if (ParsingInitForAutoVars.count(D)) {
167 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
168 << D->getDeclName();
169 return true;
170 }
171
172 // See if this is a deleted function.
173 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
174 if (FD->isDeleted()) {
175 Diag(Loc, diag::err_deleted_function_use);
176 NoteDeletedFunction(FD);
177 return true;
178 }
179 }
180 DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
181
182 // Warn if this is used but marked unused.
183 if (D->hasAttr<UnusedAttr>())
184 Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
185 return false;
186 }
187
188 /// \brief Retrieve the message suffix that should be added to a
189 /// diagnostic complaining about the given function being deleted or
190 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)191 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
192 // FIXME: C++0x implicitly-deleted special member functions could be
193 // detected here so that we could improve diagnostics to say, e.g.,
194 // "base class 'A' had a deleted copy constructor".
195 if (FD->isDeleted())
196 return std::string();
197
198 std::string Message;
199 if (FD->getAvailability(&Message))
200 return ": " + Message;
201
202 return std::string();
203 }
204
205 /// DiagnoseSentinelCalls - This routine checks whether a call or
206 /// message-send is to a declaration with the sentinel attribute, and
207 /// if so, it checks that the requirements of the sentinel are
208 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,Expr ** args,unsigned numArgs)209 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
210 Expr **args, unsigned numArgs) {
211 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
212 if (!attr)
213 return;
214
215 // The number of formal parameters of the declaration.
216 unsigned numFormalParams;
217
218 // The kind of declaration. This is also an index into a %select in
219 // the diagnostic.
220 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
221
222 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
223 numFormalParams = MD->param_size();
224 calleeType = CT_Method;
225 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
226 numFormalParams = FD->param_size();
227 calleeType = CT_Function;
228 } else if (isa<VarDecl>(D)) {
229 QualType type = cast<ValueDecl>(D)->getType();
230 const FunctionType *fn = 0;
231 if (const PointerType *ptr = type->getAs<PointerType>()) {
232 fn = ptr->getPointeeType()->getAs<FunctionType>();
233 if (!fn) return;
234 calleeType = CT_Function;
235 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
236 fn = ptr->getPointeeType()->castAs<FunctionType>();
237 calleeType = CT_Block;
238 } else {
239 return;
240 }
241
242 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
243 numFormalParams = proto->getNumArgs();
244 } else {
245 numFormalParams = 0;
246 }
247 } else {
248 return;
249 }
250
251 // "nullPos" is the number of formal parameters at the end which
252 // effectively count as part of the variadic arguments. This is
253 // useful if you would prefer to not have *any* formal parameters,
254 // but the language forces you to have at least one.
255 unsigned nullPos = attr->getNullPos();
256 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
257 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
258
259 // The number of arguments which should follow the sentinel.
260 unsigned numArgsAfterSentinel = attr->getSentinel();
261
262 // If there aren't enough arguments for all the formal parameters,
263 // the sentinel, and the args after the sentinel, complain.
264 if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
265 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
266 Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
267 return;
268 }
269
270 // Otherwise, find the sentinel expression.
271 Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
272 if (!sentinelExpr) return;
273 if (sentinelExpr->isValueDependent()) return;
274 if (Context.isSentinelNullExpr(sentinelExpr)) return;
275
276 // Pick a reasonable string to insert. Optimistically use 'nil' or
277 // 'NULL' if those are actually defined in the context. Only use
278 // 'nil' for ObjC methods, where it's much more likely that the
279 // variadic arguments form a list of object pointers.
280 SourceLocation MissingNilLoc
281 = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
282 std::string NullValue;
283 if (calleeType == CT_Method &&
284 PP.getIdentifierInfo("nil")->hasMacroDefinition())
285 NullValue = "nil";
286 else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
287 NullValue = "NULL";
288 else
289 NullValue = "(void*) 0";
290
291 if (MissingNilLoc.isInvalid())
292 Diag(Loc, diag::warn_missing_sentinel) << calleeType;
293 else
294 Diag(MissingNilLoc, diag::warn_missing_sentinel)
295 << calleeType
296 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
297 Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
298 }
299
getExprRange(Expr * E) const300 SourceRange Sema::getExprRange(Expr *E) const {
301 return E ? E->getSourceRange() : SourceRange();
302 }
303
304 //===----------------------------------------------------------------------===//
305 // Standard Promotions and Conversions
306 //===----------------------------------------------------------------------===//
307
308 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)309 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
310 // Handle any placeholder expressions which made it here.
311 if (E->getType()->isPlaceholderType()) {
312 ExprResult result = CheckPlaceholderExpr(E);
313 if (result.isInvalid()) return ExprError();
314 E = result.take();
315 }
316
317 QualType Ty = E->getType();
318 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
319
320 if (Ty->isFunctionType())
321 E = ImpCastExprToType(E, Context.getPointerType(Ty),
322 CK_FunctionToPointerDecay).take();
323 else if (Ty->isArrayType()) {
324 // In C90 mode, arrays only promote to pointers if the array expression is
325 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
326 // type 'array of type' is converted to an expression that has type 'pointer
327 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
328 // that has type 'array of type' ...". The relevant change is "an lvalue"
329 // (C90) to "an expression" (C99).
330 //
331 // C++ 4.2p1:
332 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
333 // T" can be converted to an rvalue of type "pointer to T".
334 //
335 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
336 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
337 CK_ArrayToPointerDecay).take();
338 }
339 return Owned(E);
340 }
341
CheckForNullPointerDereference(Sema & S,Expr * E)342 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
343 // Check to see if we are dereferencing a null pointer. If so,
344 // and if not volatile-qualified, this is undefined behavior that the
345 // optimizer will delete, so warn about it. People sometimes try to use this
346 // to get a deterministic trap and are surprised by clang's behavior. This
347 // only handles the pattern "*null", which is a very syntactic check.
348 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
349 if (UO->getOpcode() == UO_Deref &&
350 UO->getSubExpr()->IgnoreParenCasts()->
351 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
352 !UO->getType().isVolatileQualified()) {
353 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
354 S.PDiag(diag::warn_indirection_through_null)
355 << UO->getSubExpr()->getSourceRange());
356 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
357 S.PDiag(diag::note_indirection_through_null));
358 }
359 }
360
DefaultLvalueConversion(Expr * E)361 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
362 // Handle any placeholder expressions which made it here.
363 if (E->getType()->isPlaceholderType()) {
364 ExprResult result = CheckPlaceholderExpr(E);
365 if (result.isInvalid()) return ExprError();
366 E = result.take();
367 }
368
369 // C++ [conv.lval]p1:
370 // A glvalue of a non-function, non-array type T can be
371 // converted to a prvalue.
372 if (!E->isGLValue()) return Owned(E);
373
374 QualType T = E->getType();
375 assert(!T.isNull() && "r-value conversion on typeless expression?");
376
377 // We don't want to throw lvalue-to-rvalue casts on top of
378 // expressions of certain types in C++.
379 if (getLangOpts().CPlusPlus &&
380 (E->getType() == Context.OverloadTy ||
381 T->isDependentType() ||
382 T->isRecordType()))
383 return Owned(E);
384
385 // The C standard is actually really unclear on this point, and
386 // DR106 tells us what the result should be but not why. It's
387 // generally best to say that void types just doesn't undergo
388 // lvalue-to-rvalue at all. Note that expressions of unqualified
389 // 'void' type are never l-values, but qualified void can be.
390 if (T->isVoidType())
391 return Owned(E);
392
393 CheckForNullPointerDereference(*this, E);
394
395 // C++ [conv.lval]p1:
396 // [...] If T is a non-class type, the type of the prvalue is the
397 // cv-unqualified version of T. Otherwise, the type of the
398 // rvalue is T.
399 //
400 // C99 6.3.2.1p2:
401 // If the lvalue has qualified type, the value has the unqualified
402 // version of the type of the lvalue; otherwise, the value has the
403 // type of the lvalue.
404 if (T.hasQualifiers())
405 T = T.getUnqualifiedType();
406
407 UpdateMarkingForLValueToRValue(E);
408
409 ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
410 E, 0, VK_RValue));
411
412 // C11 6.3.2.1p2:
413 // ... if the lvalue has atomic type, the value has the non-atomic version
414 // of the type of the lvalue ...
415 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
416 T = Atomic->getValueType().getUnqualifiedType();
417 Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
418 Res.get(), 0, VK_RValue));
419 }
420
421 return Res;
422 }
423
DefaultFunctionArrayLvalueConversion(Expr * E)424 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
425 ExprResult Res = DefaultFunctionArrayConversion(E);
426 if (Res.isInvalid())
427 return ExprError();
428 Res = DefaultLvalueConversion(Res.take());
429 if (Res.isInvalid())
430 return ExprError();
431 return move(Res);
432 }
433
434
435 /// UsualUnaryConversions - Performs various conversions that are common to most
436 /// operators (C99 6.3). The conversions of array and function types are
437 /// sometimes suppressed. For example, the array->pointer conversion doesn't
438 /// apply if the array is an argument to the sizeof or address (&) operators.
439 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)440 ExprResult Sema::UsualUnaryConversions(Expr *E) {
441 // First, convert to an r-value.
442 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
443 if (Res.isInvalid())
444 return Owned(E);
445 E = Res.take();
446
447 QualType Ty = E->getType();
448 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
449
450 // Half FP is a bit different: it's a storage-only type, meaning that any
451 // "use" of it should be promoted to float.
452 if (Ty->isHalfType())
453 return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
454
455 // Try to perform integral promotions if the object has a theoretically
456 // promotable type.
457 if (Ty->isIntegralOrUnscopedEnumerationType()) {
458 // C99 6.3.1.1p2:
459 //
460 // The following may be used in an expression wherever an int or
461 // unsigned int may be used:
462 // - an object or expression with an integer type whose integer
463 // conversion rank is less than or equal to the rank of int
464 // and unsigned int.
465 // - A bit-field of type _Bool, int, signed int, or unsigned int.
466 //
467 // If an int can represent all values of the original type, the
468 // value is converted to an int; otherwise, it is converted to an
469 // unsigned int. These are called the integer promotions. All
470 // other types are unchanged by the integer promotions.
471
472 QualType PTy = Context.isPromotableBitField(E);
473 if (!PTy.isNull()) {
474 E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
475 return Owned(E);
476 }
477 if (Ty->isPromotableIntegerType()) {
478 QualType PT = Context.getPromotedIntegerType(Ty);
479 E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
480 return Owned(E);
481 }
482 }
483 return Owned(E);
484 }
485
486 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
487 /// do not have a prototype. Arguments that have type float are promoted to
488 /// double. All other argument types are converted by UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)489 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
490 QualType Ty = E->getType();
491 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
492
493 ExprResult Res = UsualUnaryConversions(E);
494 if (Res.isInvalid())
495 return Owned(E);
496 E = Res.take();
497
498 // If this is a 'float' (CVR qualified or typedef) promote to double.
499 if (Ty->isSpecificBuiltinType(BuiltinType::Float))
500 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
501
502 // C++ performs lvalue-to-rvalue conversion as a default argument
503 // promotion, even on class types, but note:
504 // C++11 [conv.lval]p2:
505 // When an lvalue-to-rvalue conversion occurs in an unevaluated
506 // operand or a subexpression thereof the value contained in the
507 // referenced object is not accessed. Otherwise, if the glvalue
508 // has a class type, the conversion copy-initializes a temporary
509 // of type T from the glvalue and the result of the conversion
510 // is a prvalue for the temporary.
511 // FIXME: add some way to gate this entire thing for correctness in
512 // potentially potentially evaluated contexts.
513 if (getLangOpts().CPlusPlus && E->isGLValue() &&
514 ExprEvalContexts.back().Context != Unevaluated) {
515 ExprResult Temp = PerformCopyInitialization(
516 InitializedEntity::InitializeTemporary(E->getType()),
517 E->getExprLoc(),
518 Owned(E));
519 if (Temp.isInvalid())
520 return ExprError();
521 E = Temp.get();
522 }
523
524 return Owned(E);
525 }
526
527 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
528 /// will warn if the resulting type is not a POD type, and rejects ObjC
529 /// interfaces passed by value.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)530 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
531 FunctionDecl *FDecl) {
532 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
533 // Strip the unbridged-cast placeholder expression off, if applicable.
534 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
535 (CT == VariadicMethod ||
536 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
537 E = stripARCUnbridgedCast(E);
538
539 // Otherwise, do normal placeholder checking.
540 } else {
541 ExprResult ExprRes = CheckPlaceholderExpr(E);
542 if (ExprRes.isInvalid())
543 return ExprError();
544 E = ExprRes.take();
545 }
546 }
547
548 ExprResult ExprRes = DefaultArgumentPromotion(E);
549 if (ExprRes.isInvalid())
550 return ExprError();
551 E = ExprRes.take();
552
553 // Don't allow one to pass an Objective-C interface to a vararg.
554 if (E->getType()->isObjCObjectType() &&
555 DiagRuntimeBehavior(E->getLocStart(), 0,
556 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
557 << E->getType() << CT))
558 return ExprError();
559
560 // Complain about passing non-POD types through varargs. However, don't
561 // perform this check for incomplete types, which we can get here when we're
562 // in an unevaluated context.
563 if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) {
564 // C++0x [expr.call]p7:
565 // Passing a potentially-evaluated argument of class type (Clause 9)
566 // having a non-trivial copy constructor, a non-trivial move constructor,
567 // or a non-trivial destructor, with no corresponding parameter,
568 // is conditionally-supported with implementation-defined semantics.
569 bool TrivialEnough = false;
570 if (getLangOpts().CPlusPlus0x && !E->getType()->isDependentType()) {
571 if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
572 if (Record->hasTrivialCopyConstructor() &&
573 Record->hasTrivialMoveConstructor() &&
574 Record->hasTrivialDestructor()) {
575 DiagRuntimeBehavior(E->getLocStart(), 0,
576 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
577 << E->getType() << CT);
578 TrivialEnough = true;
579 }
580 }
581 }
582
583 if (!TrivialEnough &&
584 getLangOpts().ObjCAutoRefCount &&
585 E->getType()->isObjCLifetimeType())
586 TrivialEnough = true;
587
588 if (TrivialEnough) {
589 // Nothing to diagnose. This is okay.
590 } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
591 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
592 << getLangOpts().CPlusPlus0x << E->getType()
593 << CT)) {
594 // Turn this into a trap.
595 CXXScopeSpec SS;
596 SourceLocation TemplateKWLoc;
597 UnqualifiedId Name;
598 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
599 E->getLocStart());
600 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
601 true, false);
602 if (TrapFn.isInvalid())
603 return ExprError();
604
605 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
606 MultiExprArg(), E->getLocEnd());
607 if (Call.isInvalid())
608 return ExprError();
609
610 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
611 Call.get(), E);
612 if (Comma.isInvalid())
613 return ExprError();
614 E = Comma.get();
615 }
616 }
617 // c++ rules are enforced elsewhere.
618 if (!getLangOpts().CPlusPlus &&
619 RequireCompleteType(E->getExprLoc(), E->getType(),
620 diag::err_call_incomplete_argument))
621 return ExprError();
622
623 return Owned(E);
624 }
625
626 /// \brief Converts an integer to complex float type. Helper function of
627 /// UsualArithmeticConversions()
628 ///
629 /// \return false if the integer expression is an integer type and is
630 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)631 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
632 ExprResult &ComplexExpr,
633 QualType IntTy,
634 QualType ComplexTy,
635 bool SkipCast) {
636 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
637 if (SkipCast) return false;
638 if (IntTy->isIntegerType()) {
639 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
640 IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
641 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
642 CK_FloatingRealToComplex);
643 } else {
644 assert(IntTy->isComplexIntegerType());
645 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
646 CK_IntegralComplexToFloatingComplex);
647 }
648 return false;
649 }
650
651 /// \brief Takes two complex float types and converts them to the same type.
652 /// Helper function of UsualArithmeticConversions()
653 static QualType
handleComplexFloatToComplexFloatConverstion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)654 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
655 ExprResult &RHS, QualType LHSType,
656 QualType RHSType,
657 bool IsCompAssign) {
658 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
659
660 if (order < 0) {
661 // _Complex float -> _Complex double
662 if (!IsCompAssign)
663 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
664 return RHSType;
665 }
666 if (order > 0)
667 // _Complex float -> _Complex double
668 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
669 return LHSType;
670 }
671
672 /// \brief Converts otherExpr to complex float and promotes complexExpr if
673 /// necessary. Helper function of UsualArithmeticConversions()
handleOtherComplexFloatConversion(Sema & S,ExprResult & ComplexExpr,ExprResult & OtherExpr,QualType ComplexTy,QualType OtherTy,bool ConvertComplexExpr,bool ConvertOtherExpr)674 static QualType handleOtherComplexFloatConversion(Sema &S,
675 ExprResult &ComplexExpr,
676 ExprResult &OtherExpr,
677 QualType ComplexTy,
678 QualType OtherTy,
679 bool ConvertComplexExpr,
680 bool ConvertOtherExpr) {
681 int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
682
683 // If just the complexExpr is complex, the otherExpr needs to be converted,
684 // and the complexExpr might need to be promoted.
685 if (order > 0) { // complexExpr is wider
686 // float -> _Complex double
687 if (ConvertOtherExpr) {
688 QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
689 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
690 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
691 CK_FloatingRealToComplex);
692 }
693 return ComplexTy;
694 }
695
696 // otherTy is at least as wide. Find its corresponding complex type.
697 QualType result = (order == 0 ? ComplexTy :
698 S.Context.getComplexType(OtherTy));
699
700 // double -> _Complex double
701 if (ConvertOtherExpr)
702 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
703 CK_FloatingRealToComplex);
704
705 // _Complex float -> _Complex double
706 if (ConvertComplexExpr && order < 0)
707 ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
708 CK_FloatingComplexCast);
709
710 return result;
711 }
712
713 /// \brief Handle arithmetic conversion with complex types. Helper function of
714 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)715 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
716 ExprResult &RHS, QualType LHSType,
717 QualType RHSType,
718 bool IsCompAssign) {
719 // if we have an integer operand, the result is the complex type.
720 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
721 /*skipCast*/false))
722 return LHSType;
723 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
724 /*skipCast*/IsCompAssign))
725 return RHSType;
726
727 // This handles complex/complex, complex/float, or float/complex.
728 // When both operands are complex, the shorter operand is converted to the
729 // type of the longer, and that is the type of the result. This corresponds
730 // to what is done when combining two real floating-point operands.
731 // The fun begins when size promotion occur across type domains.
732 // From H&S 6.3.4: When one operand is complex and the other is a real
733 // floating-point type, the less precise type is converted, within it's
734 // real or complex domain, to the precision of the other type. For example,
735 // when combining a "long double" with a "double _Complex", the
736 // "double _Complex" is promoted to "long double _Complex".
737
738 bool LHSComplexFloat = LHSType->isComplexType();
739 bool RHSComplexFloat = RHSType->isComplexType();
740
741 // If both are complex, just cast to the more precise type.
742 if (LHSComplexFloat && RHSComplexFloat)
743 return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
744 LHSType, RHSType,
745 IsCompAssign);
746
747 // If only one operand is complex, promote it if necessary and convert the
748 // other operand to complex.
749 if (LHSComplexFloat)
750 return handleOtherComplexFloatConversion(
751 S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
752 /*convertOtherExpr*/ true);
753
754 assert(RHSComplexFloat);
755 return handleOtherComplexFloatConversion(
756 S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
757 /*convertOtherExpr*/ !IsCompAssign);
758 }
759
760 /// \brief Hande arithmetic conversion from integer to float. Helper function
761 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)762 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
763 ExprResult &IntExpr,
764 QualType FloatTy, QualType IntTy,
765 bool ConvertFloat, bool ConvertInt) {
766 if (IntTy->isIntegerType()) {
767 if (ConvertInt)
768 // Convert intExpr to the lhs floating point type.
769 IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
770 CK_IntegralToFloating);
771 return FloatTy;
772 }
773
774 // Convert both sides to the appropriate complex float.
775 assert(IntTy->isComplexIntegerType());
776 QualType result = S.Context.getComplexType(FloatTy);
777
778 // _Complex int -> _Complex float
779 if (ConvertInt)
780 IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
781 CK_IntegralComplexToFloatingComplex);
782
783 // float -> _Complex float
784 if (ConvertFloat)
785 FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
786 CK_FloatingRealToComplex);
787
788 return result;
789 }
790
791 /// \brief Handle arithmethic conversion with floating point types. Helper
792 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)793 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
794 ExprResult &RHS, QualType LHSType,
795 QualType RHSType, bool IsCompAssign) {
796 bool LHSFloat = LHSType->isRealFloatingType();
797 bool RHSFloat = RHSType->isRealFloatingType();
798
799 // If we have two real floating types, convert the smaller operand
800 // to the bigger result.
801 if (LHSFloat && RHSFloat) {
802 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
803 if (order > 0) {
804 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
805 return LHSType;
806 }
807
808 assert(order < 0 && "illegal float comparison");
809 if (!IsCompAssign)
810 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
811 return RHSType;
812 }
813
814 if (LHSFloat)
815 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
816 /*convertFloat=*/!IsCompAssign,
817 /*convertInt=*/ true);
818 assert(RHSFloat);
819 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
820 /*convertInt=*/ true,
821 /*convertFloat=*/!IsCompAssign);
822 }
823
824 /// \brief Handle conversions with GCC complex int extension. Helper function
825 /// of UsualArithmeticConversions()
826 // FIXME: if the operands are (int, _Complex long), we currently
827 // don't promote the complex. Also, signedness?
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)828 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
829 ExprResult &RHS, QualType LHSType,
830 QualType RHSType,
831 bool IsCompAssign) {
832 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
833 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
834
835 if (LHSComplexInt && RHSComplexInt) {
836 int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
837 RHSComplexInt->getElementType());
838 assert(order && "inequal types with equal element ordering");
839 if (order > 0) {
840 // _Complex int -> _Complex long
841 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
842 return LHSType;
843 }
844
845 if (!IsCompAssign)
846 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
847 return RHSType;
848 }
849
850 if (LHSComplexInt) {
851 // int -> _Complex int
852 // FIXME: This needs to take integer ranks into account
853 RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
854 CK_IntegralCast);
855 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
856 return LHSType;
857 }
858
859 assert(RHSComplexInt);
860 // int -> _Complex int
861 // FIXME: This needs to take integer ranks into account
862 if (!IsCompAssign) {
863 LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
864 CK_IntegralCast);
865 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
866 }
867 return RHSType;
868 }
869
870 /// \brief Handle integer arithmetic conversions. Helper function of
871 /// UsualArithmeticConversions()
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)872 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
873 ExprResult &RHS, QualType LHSType,
874 QualType RHSType, bool IsCompAssign) {
875 // The rules for this case are in C99 6.3.1.8
876 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
877 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
878 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
879 if (LHSSigned == RHSSigned) {
880 // Same signedness; use the higher-ranked type
881 if (order >= 0) {
882 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
883 return LHSType;
884 } else if (!IsCompAssign)
885 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
886 return RHSType;
887 } else if (order != (LHSSigned ? 1 : -1)) {
888 // The unsigned type has greater than or equal rank to the
889 // signed type, so use the unsigned type
890 if (RHSSigned) {
891 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
892 return LHSType;
893 } else if (!IsCompAssign)
894 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
895 return RHSType;
896 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
897 // The two types are different widths; if we are here, that
898 // means the signed type is larger than the unsigned type, so
899 // use the signed type.
900 if (LHSSigned) {
901 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
902 return LHSType;
903 } else if (!IsCompAssign)
904 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
905 return RHSType;
906 } else {
907 // The signed type is higher-ranked than the unsigned type,
908 // but isn't actually any bigger (like unsigned int and long
909 // on most 32-bit systems). Use the unsigned type corresponding
910 // to the signed type.
911 QualType result =
912 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
913 RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
914 if (!IsCompAssign)
915 LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
916 return result;
917 }
918 }
919
920 /// UsualArithmeticConversions - Performs various conversions that are common to
921 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
922 /// routine returns the first non-arithmetic type found. The client is
923 /// responsible for emitting appropriate error diagnostics.
924 /// FIXME: verify the conversion rules for "complex int" are consistent with
925 /// GCC.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)926 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
927 bool IsCompAssign) {
928 if (!IsCompAssign) {
929 LHS = UsualUnaryConversions(LHS.take());
930 if (LHS.isInvalid())
931 return QualType();
932 }
933
934 RHS = UsualUnaryConversions(RHS.take());
935 if (RHS.isInvalid())
936 return QualType();
937
938 // For conversion purposes, we ignore any qualifiers.
939 // For example, "const float" and "float" are equivalent.
940 QualType LHSType =
941 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
942 QualType RHSType =
943 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
944
945 // If both types are identical, no conversion is needed.
946 if (LHSType == RHSType)
947 return LHSType;
948
949 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
950 // The caller can deal with this (e.g. pointer + int).
951 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
952 return LHSType;
953
954 // Apply unary and bitfield promotions to the LHS's type.
955 QualType LHSUnpromotedType = LHSType;
956 if (LHSType->isPromotableIntegerType())
957 LHSType = Context.getPromotedIntegerType(LHSType);
958 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
959 if (!LHSBitfieldPromoteTy.isNull())
960 LHSType = LHSBitfieldPromoteTy;
961 if (LHSType != LHSUnpromotedType && !IsCompAssign)
962 LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
963
964 // If both types are identical, no conversion is needed.
965 if (LHSType == RHSType)
966 return LHSType;
967
968 // At this point, we have two different arithmetic types.
969
970 // Handle complex types first (C99 6.3.1.8p1).
971 if (LHSType->isComplexType() || RHSType->isComplexType())
972 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
973 IsCompAssign);
974
975 // Now handle "real" floating types (i.e. float, double, long double).
976 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
977 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
978 IsCompAssign);
979
980 // Handle GCC complex int extension.
981 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
982 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
983 IsCompAssign);
984
985 // Finally, we have two differing integer types.
986 return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
987 IsCompAssign);
988 }
989
990 //===----------------------------------------------------------------------===//
991 // Semantic Analysis for various Expression Types
992 //===----------------------------------------------------------------------===//
993
994
995 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,MultiTypeArg ArgTypes,MultiExprArg ArgExprs)996 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
997 SourceLocation DefaultLoc,
998 SourceLocation RParenLoc,
999 Expr *ControllingExpr,
1000 MultiTypeArg ArgTypes,
1001 MultiExprArg ArgExprs) {
1002 unsigned NumAssocs = ArgTypes.size();
1003 assert(NumAssocs == ArgExprs.size());
1004
1005 ParsedType *ParsedTypes = ArgTypes.release();
1006 Expr **Exprs = ArgExprs.release();
1007
1008 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1009 for (unsigned i = 0; i < NumAssocs; ++i) {
1010 if (ParsedTypes[i])
1011 (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1012 else
1013 Types[i] = 0;
1014 }
1015
1016 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1017 ControllingExpr, Types, Exprs,
1018 NumAssocs);
1019 delete [] Types;
1020 return ER;
1021 }
1022
1023 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)1024 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1025 SourceLocation DefaultLoc,
1026 SourceLocation RParenLoc,
1027 Expr *ControllingExpr,
1028 TypeSourceInfo **Types,
1029 Expr **Exprs,
1030 unsigned NumAssocs) {
1031 bool TypeErrorFound = false,
1032 IsResultDependent = ControllingExpr->isTypeDependent(),
1033 ContainsUnexpandedParameterPack
1034 = ControllingExpr->containsUnexpandedParameterPack();
1035
1036 for (unsigned i = 0; i < NumAssocs; ++i) {
1037 if (Exprs[i]->containsUnexpandedParameterPack())
1038 ContainsUnexpandedParameterPack = true;
1039
1040 if (Types[i]) {
1041 if (Types[i]->getType()->containsUnexpandedParameterPack())
1042 ContainsUnexpandedParameterPack = true;
1043
1044 if (Types[i]->getType()->isDependentType()) {
1045 IsResultDependent = true;
1046 } else {
1047 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1048 // complete object type other than a variably modified type."
1049 unsigned D = 0;
1050 if (Types[i]->getType()->isIncompleteType())
1051 D = diag::err_assoc_type_incomplete;
1052 else if (!Types[i]->getType()->isObjectType())
1053 D = diag::err_assoc_type_nonobject;
1054 else if (Types[i]->getType()->isVariablyModifiedType())
1055 D = diag::err_assoc_type_variably_modified;
1056
1057 if (D != 0) {
1058 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1059 << Types[i]->getTypeLoc().getSourceRange()
1060 << Types[i]->getType();
1061 TypeErrorFound = true;
1062 }
1063
1064 // C11 6.5.1.1p2 "No two generic associations in the same generic
1065 // selection shall specify compatible types."
1066 for (unsigned j = i+1; j < NumAssocs; ++j)
1067 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1068 Context.typesAreCompatible(Types[i]->getType(),
1069 Types[j]->getType())) {
1070 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1071 diag::err_assoc_compatible_types)
1072 << Types[j]->getTypeLoc().getSourceRange()
1073 << Types[j]->getType()
1074 << Types[i]->getType();
1075 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1076 diag::note_compat_assoc)
1077 << Types[i]->getTypeLoc().getSourceRange()
1078 << Types[i]->getType();
1079 TypeErrorFound = true;
1080 }
1081 }
1082 }
1083 }
1084 if (TypeErrorFound)
1085 return ExprError();
1086
1087 // If we determined that the generic selection is result-dependent, don't
1088 // try to compute the result expression.
1089 if (IsResultDependent)
1090 return Owned(new (Context) GenericSelectionExpr(
1091 Context, KeyLoc, ControllingExpr,
1092 Types, Exprs, NumAssocs, DefaultLoc,
1093 RParenLoc, ContainsUnexpandedParameterPack));
1094
1095 SmallVector<unsigned, 1> CompatIndices;
1096 unsigned DefaultIndex = -1U;
1097 for (unsigned i = 0; i < NumAssocs; ++i) {
1098 if (!Types[i])
1099 DefaultIndex = i;
1100 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1101 Types[i]->getType()))
1102 CompatIndices.push_back(i);
1103 }
1104
1105 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1106 // type compatible with at most one of the types named in its generic
1107 // association list."
1108 if (CompatIndices.size() > 1) {
1109 // We strip parens here because the controlling expression is typically
1110 // parenthesized in macro definitions.
1111 ControllingExpr = ControllingExpr->IgnoreParens();
1112 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1113 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1114 << (unsigned) CompatIndices.size();
1115 for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1116 E = CompatIndices.end(); I != E; ++I) {
1117 Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1118 diag::note_compat_assoc)
1119 << Types[*I]->getTypeLoc().getSourceRange()
1120 << Types[*I]->getType();
1121 }
1122 return ExprError();
1123 }
1124
1125 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1126 // its controlling expression shall have type compatible with exactly one of
1127 // the types named in its generic association list."
1128 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1129 // We strip parens here because the controlling expression is typically
1130 // parenthesized in macro definitions.
1131 ControllingExpr = ControllingExpr->IgnoreParens();
1132 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1133 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1134 return ExprError();
1135 }
1136
1137 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1138 // type name that is compatible with the type of the controlling expression,
1139 // then the result expression of the generic selection is the expression
1140 // in that generic association. Otherwise, the result expression of the
1141 // generic selection is the expression in the default generic association."
1142 unsigned ResultIndex =
1143 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1144
1145 return Owned(new (Context) GenericSelectionExpr(
1146 Context, KeyLoc, ControllingExpr,
1147 Types, Exprs, NumAssocs, DefaultLoc,
1148 RParenLoc, ContainsUnexpandedParameterPack,
1149 ResultIndex));
1150 }
1151
1152 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1153 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1154 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1155 unsigned Offset) {
1156 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1157 S.getLangOpts());
1158 }
1159
1160 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1161 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1162 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1163 IdentifierInfo *UDSuffix,
1164 SourceLocation UDSuffixLoc,
1165 ArrayRef<Expr*> Args,
1166 SourceLocation LitEndLoc) {
1167 assert(Args.size() <= 2 && "too many arguments for literal operator");
1168
1169 QualType ArgTy[2];
1170 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1171 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1172 if (ArgTy[ArgIdx]->isArrayType())
1173 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1174 }
1175
1176 DeclarationName OpName =
1177 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1178 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1179 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1180
1181 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1182 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1183 /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1184 return ExprError();
1185
1186 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1187 }
1188
1189 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1190 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1191 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1192 /// multiple tokens. However, the common case is that StringToks points to one
1193 /// string.
1194 ///
1195 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks,Scope * UDLScope)1196 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1197 Scope *UDLScope) {
1198 assert(NumStringToks && "Must have at least one string!");
1199
1200 StringLiteralParser Literal(StringToks, NumStringToks, PP);
1201 if (Literal.hadError)
1202 return ExprError();
1203
1204 SmallVector<SourceLocation, 4> StringTokLocs;
1205 for (unsigned i = 0; i != NumStringToks; ++i)
1206 StringTokLocs.push_back(StringToks[i].getLocation());
1207
1208 QualType StrTy = Context.CharTy;
1209 if (Literal.isWide())
1210 StrTy = Context.getWCharType();
1211 else if (Literal.isUTF16())
1212 StrTy = Context.Char16Ty;
1213 else if (Literal.isUTF32())
1214 StrTy = Context.Char32Ty;
1215 else if (Literal.isPascal())
1216 StrTy = Context.UnsignedCharTy;
1217
1218 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1219 if (Literal.isWide())
1220 Kind = StringLiteral::Wide;
1221 else if (Literal.isUTF8())
1222 Kind = StringLiteral::UTF8;
1223 else if (Literal.isUTF16())
1224 Kind = StringLiteral::UTF16;
1225 else if (Literal.isUTF32())
1226 Kind = StringLiteral::UTF32;
1227
1228 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1229 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1230 StrTy.addConst();
1231
1232 // Get an array type for the string, according to C99 6.4.5. This includes
1233 // the nul terminator character as well as the string length for pascal
1234 // strings.
1235 StrTy = Context.getConstantArrayType(StrTy,
1236 llvm::APInt(32, Literal.GetNumStringChars()+1),
1237 ArrayType::Normal, 0);
1238
1239 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1240 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1241 Kind, Literal.Pascal, StrTy,
1242 &StringTokLocs[0],
1243 StringTokLocs.size());
1244 if (Literal.getUDSuffix().empty())
1245 return Owned(Lit);
1246
1247 // We're building a user-defined literal.
1248 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1249 SourceLocation UDSuffixLoc =
1250 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1251 Literal.getUDSuffixOffset());
1252
1253 // Make sure we're allowed user-defined literals here.
1254 if (!UDLScope)
1255 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1256
1257 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1258 // operator "" X (str, len)
1259 QualType SizeType = Context.getSizeType();
1260 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1261 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1262 StringTokLocs[0]);
1263 Expr *Args[] = { Lit, LenArg };
1264 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1265 Args, StringTokLocs.back());
1266 }
1267
1268 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1269 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1270 SourceLocation Loc,
1271 const CXXScopeSpec *SS) {
1272 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1273 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1274 }
1275
1276 /// BuildDeclRefExpr - Build an expression that references a
1277 /// declaration that does not require a closure capture.
1278 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS)1279 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1280 const DeclarationNameInfo &NameInfo,
1281 const CXXScopeSpec *SS) {
1282 if (getLangOpts().CUDA)
1283 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1284 if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1285 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1286 CalleeTarget = IdentifyCUDATarget(Callee);
1287 if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1288 Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1289 << CalleeTarget << D->getIdentifier() << CallerTarget;
1290 Diag(D->getLocation(), diag::note_previous_decl)
1291 << D->getIdentifier();
1292 return ExprError();
1293 }
1294 }
1295
1296 bool refersToEnclosingScope =
1297 (CurContext != D->getDeclContext() &&
1298 D->getDeclContext()->isFunctionOrMethod());
1299
1300 DeclRefExpr *E = DeclRefExpr::Create(Context,
1301 SS ? SS->getWithLocInContext(Context)
1302 : NestedNameSpecifierLoc(),
1303 SourceLocation(),
1304 D, refersToEnclosingScope,
1305 NameInfo, Ty, VK);
1306
1307 MarkDeclRefReferenced(E);
1308
1309 // Just in case we're building an illegal pointer-to-member.
1310 FieldDecl *FD = dyn_cast<FieldDecl>(D);
1311 if (FD && FD->isBitField())
1312 E->setObjectKind(OK_BitField);
1313
1314 return Owned(E);
1315 }
1316
1317 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1318 /// possibly a list of template arguments.
1319 ///
1320 /// If this produces template arguments, it is permitted to call
1321 /// DecomposeTemplateName.
1322 ///
1323 /// This actually loses a lot of source location information for
1324 /// non-standard name kinds; we should consider preserving that in
1325 /// some way.
1326 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1327 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1328 TemplateArgumentListInfo &Buffer,
1329 DeclarationNameInfo &NameInfo,
1330 const TemplateArgumentListInfo *&TemplateArgs) {
1331 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1332 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1333 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1334
1335 ASTTemplateArgsPtr TemplateArgsPtr(*this,
1336 Id.TemplateId->getTemplateArgs(),
1337 Id.TemplateId->NumArgs);
1338 translateTemplateArguments(TemplateArgsPtr, Buffer);
1339 TemplateArgsPtr.release();
1340
1341 TemplateName TName = Id.TemplateId->Template.get();
1342 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1343 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1344 TemplateArgs = &Buffer;
1345 } else {
1346 NameInfo = GetNameFromUnqualifiedId(Id);
1347 TemplateArgs = 0;
1348 }
1349 }
1350
1351 /// Diagnose an empty lookup.
1352 ///
1353 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)1354 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1355 CorrectionCandidateCallback &CCC,
1356 TemplateArgumentListInfo *ExplicitTemplateArgs,
1357 llvm::ArrayRef<Expr *> Args) {
1358 DeclarationName Name = R.getLookupName();
1359
1360 unsigned diagnostic = diag::err_undeclared_var_use;
1361 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1362 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1363 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1364 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1365 diagnostic = diag::err_undeclared_use;
1366 diagnostic_suggest = diag::err_undeclared_use_suggest;
1367 }
1368
1369 // If the original lookup was an unqualified lookup, fake an
1370 // unqualified lookup. This is useful when (for example) the
1371 // original lookup would not have found something because it was a
1372 // dependent name.
1373 DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1374 while (DC) {
1375 if (isa<CXXRecordDecl>(DC)) {
1376 LookupQualifiedName(R, DC);
1377
1378 if (!R.empty()) {
1379 // Don't give errors about ambiguities in this lookup.
1380 R.suppressDiagnostics();
1381
1382 // During a default argument instantiation the CurContext points
1383 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1384 // function parameter list, hence add an explicit check.
1385 bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1386 ActiveTemplateInstantiations.back().Kind ==
1387 ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1388 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1389 bool isInstance = CurMethod &&
1390 CurMethod->isInstance() &&
1391 DC == CurMethod->getParent() && !isDefaultArgument;
1392
1393
1394 // Give a code modification hint to insert 'this->'.
1395 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1396 // Actually quite difficult!
1397 if (isInstance) {
1398 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1399 CallsUndergoingInstantiation.back()->getCallee());
1400 CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1401 CurMethod->getInstantiatedFromMemberFunction());
1402 if (DepMethod) {
1403 if (getLangOpts().MicrosoftMode)
1404 diagnostic = diag::warn_found_via_dependent_bases_lookup;
1405 Diag(R.getNameLoc(), diagnostic) << Name
1406 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1407 QualType DepThisType = DepMethod->getThisType(Context);
1408 CheckCXXThisCapture(R.getNameLoc());
1409 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1410 R.getNameLoc(), DepThisType, false);
1411 TemplateArgumentListInfo TList;
1412 if (ULE->hasExplicitTemplateArgs())
1413 ULE->copyTemplateArgumentsInto(TList);
1414
1415 CXXScopeSpec SS;
1416 SS.Adopt(ULE->getQualifierLoc());
1417 CXXDependentScopeMemberExpr *DepExpr =
1418 CXXDependentScopeMemberExpr::Create(
1419 Context, DepThis, DepThisType, true, SourceLocation(),
1420 SS.getWithLocInContext(Context),
1421 ULE->getTemplateKeywordLoc(), 0,
1422 R.getLookupNameInfo(),
1423 ULE->hasExplicitTemplateArgs() ? &TList : 0);
1424 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1425 } else {
1426 // FIXME: we should be able to handle this case too. It is correct
1427 // to add this-> here. This is a workaround for PR7947.
1428 Diag(R.getNameLoc(), diagnostic) << Name;
1429 }
1430 } else {
1431 if (getLangOpts().MicrosoftMode)
1432 diagnostic = diag::warn_found_via_dependent_bases_lookup;
1433 Diag(R.getNameLoc(), diagnostic) << Name;
1434 }
1435
1436 // Do we really want to note all of these?
1437 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1438 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1439
1440 // Return true if we are inside a default argument instantiation
1441 // and the found name refers to an instance member function, otherwise
1442 // the function calling DiagnoseEmptyLookup will try to create an
1443 // implicit member call and this is wrong for default argument.
1444 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1445 Diag(R.getNameLoc(), diag::err_member_call_without_object);
1446 return true;
1447 }
1448
1449 // Tell the callee to try to recover.
1450 return false;
1451 }
1452
1453 R.clear();
1454 }
1455
1456 // In Microsoft mode, if we are performing lookup from within a friend
1457 // function definition declared at class scope then we must set
1458 // DC to the lexical parent to be able to search into the parent
1459 // class.
1460 if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1461 cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1462 DC->getLexicalParent()->isRecord())
1463 DC = DC->getLexicalParent();
1464 else
1465 DC = DC->getParent();
1466 }
1467
1468 // We didn't find anything, so try to correct for a typo.
1469 TypoCorrection Corrected;
1470 if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1471 S, &SS, CCC))) {
1472 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1473 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1474 R.setLookupName(Corrected.getCorrection());
1475
1476 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1477 if (Corrected.isOverloaded()) {
1478 OverloadCandidateSet OCS(R.getNameLoc());
1479 OverloadCandidateSet::iterator Best;
1480 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1481 CDEnd = Corrected.end();
1482 CD != CDEnd; ++CD) {
1483 if (FunctionTemplateDecl *FTD =
1484 dyn_cast<FunctionTemplateDecl>(*CD))
1485 AddTemplateOverloadCandidate(
1486 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1487 Args, OCS);
1488 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1489 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1490 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1491 Args, OCS);
1492 }
1493 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1494 case OR_Success:
1495 ND = Best->Function;
1496 break;
1497 default:
1498 break;
1499 }
1500 }
1501 R.addDecl(ND);
1502 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1503 if (SS.isEmpty())
1504 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1505 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1506 else
1507 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1508 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1509 << SS.getRange()
1510 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1511 if (ND)
1512 Diag(ND->getLocation(), diag::note_previous_decl)
1513 << CorrectedQuotedStr;
1514
1515 // Tell the callee to try to recover.
1516 return false;
1517 }
1518
1519 if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1520 // FIXME: If we ended up with a typo for a type name or
1521 // Objective-C class name, we're in trouble because the parser
1522 // is in the wrong place to recover. Suggest the typo
1523 // correction, but don't make it a fix-it since we're not going
1524 // to recover well anyway.
1525 if (SS.isEmpty())
1526 Diag(R.getNameLoc(), diagnostic_suggest)
1527 << Name << CorrectedQuotedStr;
1528 else
1529 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1530 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1531 << SS.getRange();
1532
1533 // Don't try to recover; it won't work.
1534 return true;
1535 }
1536 } else {
1537 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1538 // because we aren't able to recover.
1539 if (SS.isEmpty())
1540 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1541 else
1542 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1543 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1544 << SS.getRange();
1545 return true;
1546 }
1547 }
1548 R.clear();
1549
1550 // Emit a special diagnostic for failed member lookups.
1551 // FIXME: computing the declaration context might fail here (?)
1552 if (!SS.isEmpty()) {
1553 Diag(R.getNameLoc(), diag::err_no_member)
1554 << Name << computeDeclContext(SS, false)
1555 << SS.getRange();
1556 return true;
1557 }
1558
1559 // Give up, we can't recover.
1560 Diag(R.getNameLoc(), diagnostic) << Name;
1561 return true;
1562 }
1563
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)1564 ExprResult Sema::ActOnIdExpression(Scope *S,
1565 CXXScopeSpec &SS,
1566 SourceLocation TemplateKWLoc,
1567 UnqualifiedId &Id,
1568 bool HasTrailingLParen,
1569 bool IsAddressOfOperand,
1570 CorrectionCandidateCallback *CCC) {
1571 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1572 "cannot be direct & operand and have a trailing lparen");
1573
1574 if (SS.isInvalid())
1575 return ExprError();
1576
1577 TemplateArgumentListInfo TemplateArgsBuffer;
1578
1579 // Decompose the UnqualifiedId into the following data.
1580 DeclarationNameInfo NameInfo;
1581 const TemplateArgumentListInfo *TemplateArgs;
1582 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1583
1584 DeclarationName Name = NameInfo.getName();
1585 IdentifierInfo *II = Name.getAsIdentifierInfo();
1586 SourceLocation NameLoc = NameInfo.getLoc();
1587
1588 // C++ [temp.dep.expr]p3:
1589 // An id-expression is type-dependent if it contains:
1590 // -- an identifier that was declared with a dependent type,
1591 // (note: handled after lookup)
1592 // -- a template-id that is dependent,
1593 // (note: handled in BuildTemplateIdExpr)
1594 // -- a conversion-function-id that specifies a dependent type,
1595 // -- a nested-name-specifier that contains a class-name that
1596 // names a dependent type.
1597 // Determine whether this is a member of an unknown specialization;
1598 // we need to handle these differently.
1599 bool DependentID = false;
1600 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1601 Name.getCXXNameType()->isDependentType()) {
1602 DependentID = true;
1603 } else if (SS.isSet()) {
1604 if (DeclContext *DC = computeDeclContext(SS, false)) {
1605 if (RequireCompleteDeclContext(SS, DC))
1606 return ExprError();
1607 } else {
1608 DependentID = true;
1609 }
1610 }
1611
1612 if (DependentID)
1613 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1614 IsAddressOfOperand, TemplateArgs);
1615
1616 // Perform the required lookup.
1617 LookupResult R(*this, NameInfo,
1618 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1619 ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1620 if (TemplateArgs) {
1621 // Lookup the template name again to correctly establish the context in
1622 // which it was found. This is really unfortunate as we already did the
1623 // lookup to determine that it was a template name in the first place. If
1624 // this becomes a performance hit, we can work harder to preserve those
1625 // results until we get here but it's likely not worth it.
1626 bool MemberOfUnknownSpecialization;
1627 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1628 MemberOfUnknownSpecialization);
1629
1630 if (MemberOfUnknownSpecialization ||
1631 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1632 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1633 IsAddressOfOperand, TemplateArgs);
1634 } else {
1635 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1636 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1637
1638 // If the result might be in a dependent base class, this is a dependent
1639 // id-expression.
1640 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1641 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1642 IsAddressOfOperand, TemplateArgs);
1643
1644 // If this reference is in an Objective-C method, then we need to do
1645 // some special Objective-C lookup, too.
1646 if (IvarLookupFollowUp) {
1647 ExprResult E(LookupInObjCMethod(R, S, II, true));
1648 if (E.isInvalid())
1649 return ExprError();
1650
1651 if (Expr *Ex = E.takeAs<Expr>())
1652 return Owned(Ex);
1653 }
1654 }
1655
1656 if (R.isAmbiguous())
1657 return ExprError();
1658
1659 // Determine whether this name might be a candidate for
1660 // argument-dependent lookup.
1661 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1662
1663 if (R.empty() && !ADL) {
1664 // Otherwise, this could be an implicitly declared function reference (legal
1665 // in C90, extension in C99, forbidden in C++).
1666 if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1667 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1668 if (D) R.addDecl(D);
1669 }
1670
1671 // If this name wasn't predeclared and if this is not a function
1672 // call, diagnose the problem.
1673 if (R.empty()) {
1674
1675 // In Microsoft mode, if we are inside a template class member function
1676 // and we can't resolve an identifier then assume the identifier is type
1677 // dependent. The goal is to postpone name lookup to instantiation time
1678 // to be able to search into type dependent base classes.
1679 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1680 isa<CXXMethodDecl>(CurContext))
1681 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1682 IsAddressOfOperand, TemplateArgs);
1683
1684 CorrectionCandidateCallback DefaultValidator;
1685 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1686 return ExprError();
1687
1688 assert(!R.empty() &&
1689 "DiagnoseEmptyLookup returned false but added no results");
1690
1691 // If we found an Objective-C instance variable, let
1692 // LookupInObjCMethod build the appropriate expression to
1693 // reference the ivar.
1694 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1695 R.clear();
1696 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1697 // In a hopelessly buggy code, Objective-C instance variable
1698 // lookup fails and no expression will be built to reference it.
1699 if (!E.isInvalid() && !E.get())
1700 return ExprError();
1701 return move(E);
1702 }
1703 }
1704 }
1705
1706 // This is guaranteed from this point on.
1707 assert(!R.empty() || ADL);
1708
1709 // Check whether this might be a C++ implicit instance member access.
1710 // C++ [class.mfct.non-static]p3:
1711 // When an id-expression that is not part of a class member access
1712 // syntax and not used to form a pointer to member is used in the
1713 // body of a non-static member function of class X, if name lookup
1714 // resolves the name in the id-expression to a non-static non-type
1715 // member of some class C, the id-expression is transformed into a
1716 // class member access expression using (*this) as the
1717 // postfix-expression to the left of the . operator.
1718 //
1719 // But we don't actually need to do this for '&' operands if R
1720 // resolved to a function or overloaded function set, because the
1721 // expression is ill-formed if it actually works out to be a
1722 // non-static member function:
1723 //
1724 // C++ [expr.ref]p4:
1725 // Otherwise, if E1.E2 refers to a non-static member function. . .
1726 // [t]he expression can be used only as the left-hand operand of a
1727 // member function call.
1728 //
1729 // There are other safeguards against such uses, but it's important
1730 // to get this right here so that we don't end up making a
1731 // spuriously dependent expression if we're inside a dependent
1732 // instance method.
1733 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1734 bool MightBeImplicitMember;
1735 if (!IsAddressOfOperand)
1736 MightBeImplicitMember = true;
1737 else if (!SS.isEmpty())
1738 MightBeImplicitMember = false;
1739 else if (R.isOverloadedResult())
1740 MightBeImplicitMember = false;
1741 else if (R.isUnresolvableResult())
1742 MightBeImplicitMember = true;
1743 else
1744 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1745 isa<IndirectFieldDecl>(R.getFoundDecl());
1746
1747 if (MightBeImplicitMember)
1748 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1749 R, TemplateArgs);
1750 }
1751
1752 if (TemplateArgs || TemplateKWLoc.isValid())
1753 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1754
1755 return BuildDeclarationNameExpr(SS, R, ADL);
1756 }
1757
1758 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1759 /// declaration name, generally during template instantiation.
1760 /// There's a large number of things which don't need to be done along
1761 /// this path.
1762 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo)1763 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1764 const DeclarationNameInfo &NameInfo) {
1765 DeclContext *DC;
1766 if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1767 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1768 NameInfo, /*TemplateArgs=*/0);
1769
1770 if (RequireCompleteDeclContext(SS, DC))
1771 return ExprError();
1772
1773 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1774 LookupQualifiedName(R, DC);
1775
1776 if (R.isAmbiguous())
1777 return ExprError();
1778
1779 if (R.empty()) {
1780 Diag(NameInfo.getLoc(), diag::err_no_member)
1781 << NameInfo.getName() << DC << SS.getRange();
1782 return ExprError();
1783 }
1784
1785 return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1786 }
1787
1788 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1789 /// detected that we're currently inside an ObjC method. Perform some
1790 /// additional lookup.
1791 ///
1792 /// Ideally, most of this would be done by lookup, but there's
1793 /// actually quite a lot of extra work involved.
1794 ///
1795 /// Returns a null sentinel to indicate trivial success.
1796 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)1797 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1798 IdentifierInfo *II, bool AllowBuiltinCreation) {
1799 SourceLocation Loc = Lookup.getNameLoc();
1800 ObjCMethodDecl *CurMethod = getCurMethodDecl();
1801
1802 // There are two cases to handle here. 1) scoped lookup could have failed,
1803 // in which case we should look for an ivar. 2) scoped lookup could have
1804 // found a decl, but that decl is outside the current instance method (i.e.
1805 // a global variable). In these two cases, we do a lookup for an ivar with
1806 // this name, if the lookup sucedes, we replace it our current decl.
1807
1808 // If we're in a class method, we don't normally want to look for
1809 // ivars. But if we don't find anything else, and there's an
1810 // ivar, that's an error.
1811 bool IsClassMethod = CurMethod->isClassMethod();
1812
1813 bool LookForIvars;
1814 if (Lookup.empty())
1815 LookForIvars = true;
1816 else if (IsClassMethod)
1817 LookForIvars = false;
1818 else
1819 LookForIvars = (Lookup.isSingleResult() &&
1820 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1821 ObjCInterfaceDecl *IFace = 0;
1822 if (LookForIvars) {
1823 IFace = CurMethod->getClassInterface();
1824 ObjCInterfaceDecl *ClassDeclared;
1825 ObjCIvarDecl *IV = 0;
1826 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1827 // Diagnose using an ivar in a class method.
1828 if (IsClassMethod)
1829 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1830 << IV->getDeclName());
1831
1832 // If we're referencing an invalid decl, just return this as a silent
1833 // error node. The error diagnostic was already emitted on the decl.
1834 if (IV->isInvalidDecl())
1835 return ExprError();
1836
1837 // Check if referencing a field with __attribute__((deprecated)).
1838 if (DiagnoseUseOfDecl(IV, Loc))
1839 return ExprError();
1840
1841 // Diagnose the use of an ivar outside of the declaring class.
1842 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1843 !declaresSameEntity(ClassDeclared, IFace) &&
1844 !getLangOpts().DebuggerSupport)
1845 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1846
1847 // FIXME: This should use a new expr for a direct reference, don't
1848 // turn this into Self->ivar, just return a BareIVarExpr or something.
1849 IdentifierInfo &II = Context.Idents.get("self");
1850 UnqualifiedId SelfName;
1851 SelfName.setIdentifier(&II, SourceLocation());
1852 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1853 CXXScopeSpec SelfScopeSpec;
1854 SourceLocation TemplateKWLoc;
1855 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1856 SelfName, false, false);
1857 if (SelfExpr.isInvalid())
1858 return ExprError();
1859
1860 SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1861 if (SelfExpr.isInvalid())
1862 return ExprError();
1863
1864 MarkAnyDeclReferenced(Loc, IV);
1865 return Owned(new (Context)
1866 ObjCIvarRefExpr(IV, IV->getType(), Loc,
1867 SelfExpr.take(), true, true));
1868 }
1869 } else if (CurMethod->isInstanceMethod()) {
1870 // We should warn if a local variable hides an ivar.
1871 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1872 ObjCInterfaceDecl *ClassDeclared;
1873 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1874 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1875 declaresSameEntity(IFace, ClassDeclared))
1876 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1877 }
1878 }
1879 } else if (Lookup.isSingleResult() &&
1880 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1881 // If accessing a stand-alone ivar in a class method, this is an error.
1882 if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1883 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1884 << IV->getDeclName());
1885 }
1886
1887 if (Lookup.empty() && II && AllowBuiltinCreation) {
1888 // FIXME. Consolidate this with similar code in LookupName.
1889 if (unsigned BuiltinID = II->getBuiltinID()) {
1890 if (!(getLangOpts().CPlusPlus &&
1891 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1892 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1893 S, Lookup.isForRedeclaration(),
1894 Lookup.getNameLoc());
1895 if (D) Lookup.addDecl(D);
1896 }
1897 }
1898 }
1899 // Sentinel value saying that we didn't do anything special.
1900 return Owned((Expr*) 0);
1901 }
1902
1903 /// \brief Cast a base object to a member's actual type.
1904 ///
1905 /// Logically this happens in three phases:
1906 ///
1907 /// * First we cast from the base type to the naming class.
1908 /// The naming class is the class into which we were looking
1909 /// when we found the member; it's the qualifier type if a
1910 /// qualifier was provided, and otherwise it's the base type.
1911 ///
1912 /// * Next we cast from the naming class to the declaring class.
1913 /// If the member we found was brought into a class's scope by
1914 /// a using declaration, this is that class; otherwise it's
1915 /// the class declaring the member.
1916 ///
1917 /// * Finally we cast from the declaring class to the "true"
1918 /// declaring class of the member. This conversion does not
1919 /// obey access control.
1920 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)1921 Sema::PerformObjectMemberConversion(Expr *From,
1922 NestedNameSpecifier *Qualifier,
1923 NamedDecl *FoundDecl,
1924 NamedDecl *Member) {
1925 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1926 if (!RD)
1927 return Owned(From);
1928
1929 QualType DestRecordType;
1930 QualType DestType;
1931 QualType FromRecordType;
1932 QualType FromType = From->getType();
1933 bool PointerConversions = false;
1934 if (isa<FieldDecl>(Member)) {
1935 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1936
1937 if (FromType->getAs<PointerType>()) {
1938 DestType = Context.getPointerType(DestRecordType);
1939 FromRecordType = FromType->getPointeeType();
1940 PointerConversions = true;
1941 } else {
1942 DestType = DestRecordType;
1943 FromRecordType = FromType;
1944 }
1945 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1946 if (Method->isStatic())
1947 return Owned(From);
1948
1949 DestType = Method->getThisType(Context);
1950 DestRecordType = DestType->getPointeeType();
1951
1952 if (FromType->getAs<PointerType>()) {
1953 FromRecordType = FromType->getPointeeType();
1954 PointerConversions = true;
1955 } else {
1956 FromRecordType = FromType;
1957 DestType = DestRecordType;
1958 }
1959 } else {
1960 // No conversion necessary.
1961 return Owned(From);
1962 }
1963
1964 if (DestType->isDependentType() || FromType->isDependentType())
1965 return Owned(From);
1966
1967 // If the unqualified types are the same, no conversion is necessary.
1968 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1969 return Owned(From);
1970
1971 SourceRange FromRange = From->getSourceRange();
1972 SourceLocation FromLoc = FromRange.getBegin();
1973
1974 ExprValueKind VK = From->getValueKind();
1975
1976 // C++ [class.member.lookup]p8:
1977 // [...] Ambiguities can often be resolved by qualifying a name with its
1978 // class name.
1979 //
1980 // If the member was a qualified name and the qualified referred to a
1981 // specific base subobject type, we'll cast to that intermediate type
1982 // first and then to the object in which the member is declared. That allows
1983 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1984 //
1985 // class Base { public: int x; };
1986 // class Derived1 : public Base { };
1987 // class Derived2 : public Base { };
1988 // class VeryDerived : public Derived1, public Derived2 { void f(); };
1989 //
1990 // void VeryDerived::f() {
1991 // x = 17; // error: ambiguous base subobjects
1992 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
1993 // }
1994 if (Qualifier) {
1995 QualType QType = QualType(Qualifier->getAsType(), 0);
1996 assert(!QType.isNull() && "lookup done with dependent qualifier?");
1997 assert(QType->isRecordType() && "lookup done with non-record type");
1998
1999 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2000
2001 // In C++98, the qualifier type doesn't actually have to be a base
2002 // type of the object type, in which case we just ignore it.
2003 // Otherwise build the appropriate casts.
2004 if (IsDerivedFrom(FromRecordType, QRecordType)) {
2005 CXXCastPath BasePath;
2006 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2007 FromLoc, FromRange, &BasePath))
2008 return ExprError();
2009
2010 if (PointerConversions)
2011 QType = Context.getPointerType(QType);
2012 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2013 VK, &BasePath).take();
2014
2015 FromType = QType;
2016 FromRecordType = QRecordType;
2017
2018 // If the qualifier type was the same as the destination type,
2019 // we're done.
2020 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2021 return Owned(From);
2022 }
2023 }
2024
2025 bool IgnoreAccess = false;
2026
2027 // If we actually found the member through a using declaration, cast
2028 // down to the using declaration's type.
2029 //
2030 // Pointer equality is fine here because only one declaration of a
2031 // class ever has member declarations.
2032 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2033 assert(isa<UsingShadowDecl>(FoundDecl));
2034 QualType URecordType = Context.getTypeDeclType(
2035 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2036
2037 // We only need to do this if the naming-class to declaring-class
2038 // conversion is non-trivial.
2039 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2040 assert(IsDerivedFrom(FromRecordType, URecordType));
2041 CXXCastPath BasePath;
2042 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2043 FromLoc, FromRange, &BasePath))
2044 return ExprError();
2045
2046 QualType UType = URecordType;
2047 if (PointerConversions)
2048 UType = Context.getPointerType(UType);
2049 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2050 VK, &BasePath).take();
2051 FromType = UType;
2052 FromRecordType = URecordType;
2053 }
2054
2055 // We don't do access control for the conversion from the
2056 // declaring class to the true declaring class.
2057 IgnoreAccess = true;
2058 }
2059
2060 CXXCastPath BasePath;
2061 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2062 FromLoc, FromRange, &BasePath,
2063 IgnoreAccess))
2064 return ExprError();
2065
2066 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2067 VK, &BasePath);
2068 }
2069
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2070 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2071 const LookupResult &R,
2072 bool HasTrailingLParen) {
2073 // Only when used directly as the postfix-expression of a call.
2074 if (!HasTrailingLParen)
2075 return false;
2076
2077 // Never if a scope specifier was provided.
2078 if (SS.isSet())
2079 return false;
2080
2081 // Only in C++ or ObjC++.
2082 if (!getLangOpts().CPlusPlus)
2083 return false;
2084
2085 // Turn off ADL when we find certain kinds of declarations during
2086 // normal lookup:
2087 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2088 NamedDecl *D = *I;
2089
2090 // C++0x [basic.lookup.argdep]p3:
2091 // -- a declaration of a class member
2092 // Since using decls preserve this property, we check this on the
2093 // original decl.
2094 if (D->isCXXClassMember())
2095 return false;
2096
2097 // C++0x [basic.lookup.argdep]p3:
2098 // -- a block-scope function declaration that is not a
2099 // using-declaration
2100 // NOTE: we also trigger this for function templates (in fact, we
2101 // don't check the decl type at all, since all other decl types
2102 // turn off ADL anyway).
2103 if (isa<UsingShadowDecl>(D))
2104 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2105 else if (D->getDeclContext()->isFunctionOrMethod())
2106 return false;
2107
2108 // C++0x [basic.lookup.argdep]p3:
2109 // -- a declaration that is neither a function or a function
2110 // template
2111 // And also for builtin functions.
2112 if (isa<FunctionDecl>(D)) {
2113 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2114
2115 // But also builtin functions.
2116 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2117 return false;
2118 } else if (!isa<FunctionTemplateDecl>(D))
2119 return false;
2120 }
2121
2122 return true;
2123 }
2124
2125
2126 /// Diagnoses obvious problems with the use of the given declaration
2127 /// as an expression. This is only actually called for lookups that
2128 /// were not overloaded, and it doesn't promise that the declaration
2129 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2130 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2131 if (isa<TypedefNameDecl>(D)) {
2132 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2133 return true;
2134 }
2135
2136 if (isa<ObjCInterfaceDecl>(D)) {
2137 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2138 return true;
2139 }
2140
2141 if (isa<NamespaceDecl>(D)) {
2142 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2143 return true;
2144 }
2145
2146 return false;
2147 }
2148
2149 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2150 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2151 LookupResult &R,
2152 bool NeedsADL) {
2153 // If this is a single, fully-resolved result and we don't need ADL,
2154 // just build an ordinary singleton decl ref.
2155 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2156 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2157 R.getFoundDecl());
2158
2159 // We only need to check the declaration if there's exactly one
2160 // result, because in the overloaded case the results can only be
2161 // functions and function templates.
2162 if (R.isSingleResult() &&
2163 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2164 return ExprError();
2165
2166 // Otherwise, just build an unresolved lookup expression. Suppress
2167 // any lookup-related diagnostics; we'll hash these out later, when
2168 // we've picked a target.
2169 R.suppressDiagnostics();
2170
2171 UnresolvedLookupExpr *ULE
2172 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2173 SS.getWithLocInContext(Context),
2174 R.getLookupNameInfo(),
2175 NeedsADL, R.isOverloadedResult(),
2176 R.begin(), R.end());
2177
2178 return Owned(ULE);
2179 }
2180
2181 /// \brief Complete semantic analysis for a reference to the given declaration.
2182 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D)2183 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2184 const DeclarationNameInfo &NameInfo,
2185 NamedDecl *D) {
2186 assert(D && "Cannot refer to a NULL declaration");
2187 assert(!isa<FunctionTemplateDecl>(D) &&
2188 "Cannot refer unambiguously to a function template");
2189
2190 SourceLocation Loc = NameInfo.getLoc();
2191 if (CheckDeclInExpr(*this, Loc, D))
2192 return ExprError();
2193
2194 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2195 // Specifically diagnose references to class templates that are missing
2196 // a template argument list.
2197 Diag(Loc, diag::err_template_decl_ref)
2198 << Template << SS.getRange();
2199 Diag(Template->getLocation(), diag::note_template_decl_here);
2200 return ExprError();
2201 }
2202
2203 // Make sure that we're referring to a value.
2204 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2205 if (!VD) {
2206 Diag(Loc, diag::err_ref_non_value)
2207 << D << SS.getRange();
2208 Diag(D->getLocation(), diag::note_declared_at);
2209 return ExprError();
2210 }
2211
2212 // Check whether this declaration can be used. Note that we suppress
2213 // this check when we're going to perform argument-dependent lookup
2214 // on this function name, because this might not be the function
2215 // that overload resolution actually selects.
2216 if (DiagnoseUseOfDecl(VD, Loc))
2217 return ExprError();
2218
2219 // Only create DeclRefExpr's for valid Decl's.
2220 if (VD->isInvalidDecl())
2221 return ExprError();
2222
2223 // Handle members of anonymous structs and unions. If we got here,
2224 // and the reference is to a class member indirect field, then this
2225 // must be the subject of a pointer-to-member expression.
2226 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2227 if (!indirectField->isCXXClassMember())
2228 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2229 indirectField);
2230
2231 {
2232 QualType type = VD->getType();
2233 ExprValueKind valueKind = VK_RValue;
2234
2235 switch (D->getKind()) {
2236 // Ignore all the non-ValueDecl kinds.
2237 #define ABSTRACT_DECL(kind)
2238 #define VALUE(type, base)
2239 #define DECL(type, base) \
2240 case Decl::type:
2241 #include "clang/AST/DeclNodes.inc"
2242 llvm_unreachable("invalid value decl kind");
2243
2244 // These shouldn't make it here.
2245 case Decl::ObjCAtDefsField:
2246 case Decl::ObjCIvar:
2247 llvm_unreachable("forming non-member reference to ivar?");
2248
2249 // Enum constants are always r-values and never references.
2250 // Unresolved using declarations are dependent.
2251 case Decl::EnumConstant:
2252 case Decl::UnresolvedUsingValue:
2253 valueKind = VK_RValue;
2254 break;
2255
2256 // Fields and indirect fields that got here must be for
2257 // pointer-to-member expressions; we just call them l-values for
2258 // internal consistency, because this subexpression doesn't really
2259 // exist in the high-level semantics.
2260 case Decl::Field:
2261 case Decl::IndirectField:
2262 assert(getLangOpts().CPlusPlus &&
2263 "building reference to field in C?");
2264
2265 // These can't have reference type in well-formed programs, but
2266 // for internal consistency we do this anyway.
2267 type = type.getNonReferenceType();
2268 valueKind = VK_LValue;
2269 break;
2270
2271 // Non-type template parameters are either l-values or r-values
2272 // depending on the type.
2273 case Decl::NonTypeTemplateParm: {
2274 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2275 type = reftype->getPointeeType();
2276 valueKind = VK_LValue; // even if the parameter is an r-value reference
2277 break;
2278 }
2279
2280 // For non-references, we need to strip qualifiers just in case
2281 // the template parameter was declared as 'const int' or whatever.
2282 valueKind = VK_RValue;
2283 type = type.getUnqualifiedType();
2284 break;
2285 }
2286
2287 case Decl::Var:
2288 // In C, "extern void blah;" is valid and is an r-value.
2289 if (!getLangOpts().CPlusPlus &&
2290 !type.hasQualifiers() &&
2291 type->isVoidType()) {
2292 valueKind = VK_RValue;
2293 break;
2294 }
2295 // fallthrough
2296
2297 case Decl::ImplicitParam:
2298 case Decl::ParmVar: {
2299 // These are always l-values.
2300 valueKind = VK_LValue;
2301 type = type.getNonReferenceType();
2302
2303 // FIXME: Does the addition of const really only apply in
2304 // potentially-evaluated contexts? Since the variable isn't actually
2305 // captured in an unevaluated context, it seems that the answer is no.
2306 if (ExprEvalContexts.back().Context != Sema::Unevaluated) {
2307 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2308 if (!CapturedType.isNull())
2309 type = CapturedType;
2310 }
2311
2312 break;
2313 }
2314
2315 case Decl::Function: {
2316 const FunctionType *fty = type->castAs<FunctionType>();
2317
2318 // If we're referring to a function with an __unknown_anytype
2319 // result type, make the entire expression __unknown_anytype.
2320 if (fty->getResultType() == Context.UnknownAnyTy) {
2321 type = Context.UnknownAnyTy;
2322 valueKind = VK_RValue;
2323 break;
2324 }
2325
2326 // Functions are l-values in C++.
2327 if (getLangOpts().CPlusPlus) {
2328 valueKind = VK_LValue;
2329 break;
2330 }
2331
2332 // C99 DR 316 says that, if a function type comes from a
2333 // function definition (without a prototype), that type is only
2334 // used for checking compatibility. Therefore, when referencing
2335 // the function, we pretend that we don't have the full function
2336 // type.
2337 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2338 isa<FunctionProtoType>(fty))
2339 type = Context.getFunctionNoProtoType(fty->getResultType(),
2340 fty->getExtInfo());
2341
2342 // Functions are r-values in C.
2343 valueKind = VK_RValue;
2344 break;
2345 }
2346
2347 case Decl::CXXMethod:
2348 // If we're referring to a method with an __unknown_anytype
2349 // result type, make the entire expression __unknown_anytype.
2350 // This should only be possible with a type written directly.
2351 if (const FunctionProtoType *proto
2352 = dyn_cast<FunctionProtoType>(VD->getType()))
2353 if (proto->getResultType() == Context.UnknownAnyTy) {
2354 type = Context.UnknownAnyTy;
2355 valueKind = VK_RValue;
2356 break;
2357 }
2358
2359 // C++ methods are l-values if static, r-values if non-static.
2360 if (cast<CXXMethodDecl>(VD)->isStatic()) {
2361 valueKind = VK_LValue;
2362 break;
2363 }
2364 // fallthrough
2365
2366 case Decl::CXXConversion:
2367 case Decl::CXXDestructor:
2368 case Decl::CXXConstructor:
2369 valueKind = VK_RValue;
2370 break;
2371 }
2372
2373 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2374 }
2375 }
2376
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2377 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2378 PredefinedExpr::IdentType IT;
2379
2380 switch (Kind) {
2381 default: llvm_unreachable("Unknown simple primary expr!");
2382 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2383 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2384 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2385 }
2386
2387 // Pre-defined identifiers are of type char[x], where x is the length of the
2388 // string.
2389
2390 Decl *currentDecl = getCurFunctionOrMethodDecl();
2391 if (!currentDecl && getCurBlock())
2392 currentDecl = getCurBlock()->TheDecl;
2393 if (!currentDecl) {
2394 Diag(Loc, diag::ext_predef_outside_function);
2395 currentDecl = Context.getTranslationUnitDecl();
2396 }
2397
2398 QualType ResTy;
2399 if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2400 ResTy = Context.DependentTy;
2401 } else {
2402 unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2403
2404 llvm::APInt LengthI(32, Length + 1);
2405 ResTy = Context.CharTy.withConst();
2406 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2407 }
2408 return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2409 }
2410
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)2411 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2412 SmallString<16> CharBuffer;
2413 bool Invalid = false;
2414 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2415 if (Invalid)
2416 return ExprError();
2417
2418 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2419 PP, Tok.getKind());
2420 if (Literal.hadError())
2421 return ExprError();
2422
2423 QualType Ty;
2424 if (Literal.isWide())
2425 Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2426 else if (Literal.isUTF16())
2427 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2428 else if (Literal.isUTF32())
2429 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2430 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2431 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
2432 else
2433 Ty = Context.CharTy; // 'x' -> char in C++
2434
2435 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2436 if (Literal.isWide())
2437 Kind = CharacterLiteral::Wide;
2438 else if (Literal.isUTF16())
2439 Kind = CharacterLiteral::UTF16;
2440 else if (Literal.isUTF32())
2441 Kind = CharacterLiteral::UTF32;
2442
2443 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2444 Tok.getLocation());
2445
2446 if (Literal.getUDSuffix().empty())
2447 return Owned(Lit);
2448
2449 // We're building a user-defined literal.
2450 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2451 SourceLocation UDSuffixLoc =
2452 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2453
2454 // Make sure we're allowed user-defined literals here.
2455 if (!UDLScope)
2456 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2457
2458 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2459 // operator "" X (ch)
2460 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2461 llvm::makeArrayRef(&Lit, 1),
2462 Tok.getLocation());
2463 }
2464
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)2465 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2466 unsigned IntSize = Context.getTargetInfo().getIntWidth();
2467 return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2468 Context.IntTy, Loc));
2469 }
2470
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)2471 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2472 QualType Ty, SourceLocation Loc) {
2473 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2474
2475 using llvm::APFloat;
2476 APFloat Val(Format);
2477
2478 APFloat::opStatus result = Literal.GetFloatValue(Val);
2479
2480 // Overflow is always an error, but underflow is only an error if
2481 // we underflowed to zero (APFloat reports denormals as underflow).
2482 if ((result & APFloat::opOverflow) ||
2483 ((result & APFloat::opUnderflow) && Val.isZero())) {
2484 unsigned diagnostic;
2485 SmallString<20> buffer;
2486 if (result & APFloat::opOverflow) {
2487 diagnostic = diag::warn_float_overflow;
2488 APFloat::getLargest(Format).toString(buffer);
2489 } else {
2490 diagnostic = diag::warn_float_underflow;
2491 APFloat::getSmallest(Format).toString(buffer);
2492 }
2493
2494 S.Diag(Loc, diagnostic)
2495 << Ty
2496 << StringRef(buffer.data(), buffer.size());
2497 }
2498
2499 bool isExact = (result == APFloat::opOK);
2500 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2501 }
2502
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)2503 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2504 // Fast path for a single digit (which is quite common). A single digit
2505 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2506 if (Tok.getLength() == 1) {
2507 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2508 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2509 }
2510
2511 SmallString<512> IntegerBuffer;
2512 // Add padding so that NumericLiteralParser can overread by one character.
2513 IntegerBuffer.resize(Tok.getLength()+1);
2514 const char *ThisTokBegin = &IntegerBuffer[0];
2515
2516 // Get the spelling of the token, which eliminates trigraphs, etc.
2517 bool Invalid = false;
2518 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2519 if (Invalid)
2520 return ExprError();
2521
2522 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2523 Tok.getLocation(), PP);
2524 if (Literal.hadError)
2525 return ExprError();
2526
2527 if (Literal.hasUDSuffix()) {
2528 // We're building a user-defined literal.
2529 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2530 SourceLocation UDSuffixLoc =
2531 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2532
2533 // Make sure we're allowed user-defined literals here.
2534 if (!UDLScope)
2535 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2536
2537 QualType CookedTy;
2538 if (Literal.isFloatingLiteral()) {
2539 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2540 // long double, the literal is treated as a call of the form
2541 // operator "" X (f L)
2542 CookedTy = Context.LongDoubleTy;
2543 } else {
2544 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2545 // unsigned long long, the literal is treated as a call of the form
2546 // operator "" X (n ULL)
2547 CookedTy = Context.UnsignedLongLongTy;
2548 }
2549
2550 DeclarationName OpName =
2551 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2552 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2553 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2554
2555 // Perform literal operator lookup to determine if we're building a raw
2556 // literal or a cooked one.
2557 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2558 switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2559 /*AllowRawAndTemplate*/true)) {
2560 case LOLR_Error:
2561 return ExprError();
2562
2563 case LOLR_Cooked: {
2564 Expr *Lit;
2565 if (Literal.isFloatingLiteral()) {
2566 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2567 } else {
2568 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2569 if (Literal.GetIntegerValue(ResultVal))
2570 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2571 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2572 Tok.getLocation());
2573 }
2574 return BuildLiteralOperatorCall(R, OpNameInfo,
2575 llvm::makeArrayRef(&Lit, 1),
2576 Tok.getLocation());
2577 }
2578
2579 case LOLR_Raw: {
2580 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2581 // literal is treated as a call of the form
2582 // operator "" X ("n")
2583 SourceLocation TokLoc = Tok.getLocation();
2584 unsigned Length = Literal.getUDSuffixOffset();
2585 QualType StrTy = Context.getConstantArrayType(
2586 Context.CharTy, llvm::APInt(32, Length + 1),
2587 ArrayType::Normal, 0);
2588 Expr *Lit = StringLiteral::Create(
2589 Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2590 /*Pascal*/false, StrTy, &TokLoc, 1);
2591 return BuildLiteralOperatorCall(R, OpNameInfo,
2592 llvm::makeArrayRef(&Lit, 1), TokLoc);
2593 }
2594
2595 case LOLR_Template:
2596 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2597 // template), L is treated as a call fo the form
2598 // operator "" X <'c1', 'c2', ... 'ck'>()
2599 // where n is the source character sequence c1 c2 ... ck.
2600 TemplateArgumentListInfo ExplicitArgs;
2601 unsigned CharBits = Context.getIntWidth(Context.CharTy);
2602 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2603 llvm::APSInt Value(CharBits, CharIsUnsigned);
2604 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2605 Value = ThisTokBegin[I];
2606 TemplateArgument Arg(Value, Context.CharTy);
2607 TemplateArgumentLocInfo ArgInfo;
2608 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2609 }
2610 return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2611 Tok.getLocation(), &ExplicitArgs);
2612 }
2613
2614 llvm_unreachable("unexpected literal operator lookup result");
2615 }
2616
2617 Expr *Res;
2618
2619 if (Literal.isFloatingLiteral()) {
2620 QualType Ty;
2621 if (Literal.isFloat)
2622 Ty = Context.FloatTy;
2623 else if (!Literal.isLong)
2624 Ty = Context.DoubleTy;
2625 else
2626 Ty = Context.LongDoubleTy;
2627
2628 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2629
2630 if (Ty == Context.DoubleTy) {
2631 if (getLangOpts().SinglePrecisionConstants) {
2632 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2633 } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2634 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2635 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2636 }
2637 }
2638 } else if (!Literal.isIntegerLiteral()) {
2639 return ExprError();
2640 } else {
2641 QualType Ty;
2642
2643 // long long is a C99 feature.
2644 if (!getLangOpts().C99 && Literal.isLongLong)
2645 Diag(Tok.getLocation(),
2646 getLangOpts().CPlusPlus0x ?
2647 diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2648
2649 // Get the value in the widest-possible width.
2650 llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
2651
2652 if (Literal.GetIntegerValue(ResultVal)) {
2653 // If this value didn't fit into uintmax_t, warn and force to ull.
2654 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2655 Ty = Context.UnsignedLongLongTy;
2656 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2657 "long long is not intmax_t?");
2658 } else {
2659 // If this value fits into a ULL, try to figure out what else it fits into
2660 // according to the rules of C99 6.4.4.1p5.
2661
2662 // Octal, Hexadecimal, and integers with a U suffix are allowed to
2663 // be an unsigned int.
2664 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2665
2666 // Check from smallest to largest, picking the smallest type we can.
2667 unsigned Width = 0;
2668 if (!Literal.isLong && !Literal.isLongLong) {
2669 // Are int/unsigned possibilities?
2670 unsigned IntSize = Context.getTargetInfo().getIntWidth();
2671
2672 // Does it fit in a unsigned int?
2673 if (ResultVal.isIntN(IntSize)) {
2674 // Does it fit in a signed int?
2675 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2676 Ty = Context.IntTy;
2677 else if (AllowUnsigned)
2678 Ty = Context.UnsignedIntTy;
2679 Width = IntSize;
2680 }
2681 }
2682
2683 // Are long/unsigned long possibilities?
2684 if (Ty.isNull() && !Literal.isLongLong) {
2685 unsigned LongSize = Context.getTargetInfo().getLongWidth();
2686
2687 // Does it fit in a unsigned long?
2688 if (ResultVal.isIntN(LongSize)) {
2689 // Does it fit in a signed long?
2690 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2691 Ty = Context.LongTy;
2692 else if (AllowUnsigned)
2693 Ty = Context.UnsignedLongTy;
2694 Width = LongSize;
2695 }
2696 }
2697
2698 // Finally, check long long if needed.
2699 if (Ty.isNull()) {
2700 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2701
2702 // Does it fit in a unsigned long long?
2703 if (ResultVal.isIntN(LongLongSize)) {
2704 // Does it fit in a signed long long?
2705 // To be compatible with MSVC, hex integer literals ending with the
2706 // LL or i64 suffix are always signed in Microsoft mode.
2707 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2708 (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2709 Ty = Context.LongLongTy;
2710 else if (AllowUnsigned)
2711 Ty = Context.UnsignedLongLongTy;
2712 Width = LongLongSize;
2713 }
2714 }
2715
2716 // If we still couldn't decide a type, we probably have something that
2717 // does not fit in a signed long long, but has no U suffix.
2718 if (Ty.isNull()) {
2719 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2720 Ty = Context.UnsignedLongLongTy;
2721 Width = Context.getTargetInfo().getLongLongWidth();
2722 }
2723
2724 if (ResultVal.getBitWidth() != Width)
2725 ResultVal = ResultVal.trunc(Width);
2726 }
2727 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2728 }
2729
2730 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2731 if (Literal.isImaginary)
2732 Res = new (Context) ImaginaryLiteral(Res,
2733 Context.getComplexType(Res->getType()));
2734
2735 return Owned(Res);
2736 }
2737
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)2738 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2739 assert((E != 0) && "ActOnParenExpr() missing expr");
2740 return Owned(new (Context) ParenExpr(L, R, E));
2741 }
2742
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)2743 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2744 SourceLocation Loc,
2745 SourceRange ArgRange) {
2746 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2747 // scalar or vector data type argument..."
2748 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2749 // type (C99 6.2.5p18) or void.
2750 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2751 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2752 << T << ArgRange;
2753 return true;
2754 }
2755
2756 assert((T->isVoidType() || !T->isIncompleteType()) &&
2757 "Scalar types should always be complete");
2758 return false;
2759 }
2760
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2761 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2762 SourceLocation Loc,
2763 SourceRange ArgRange,
2764 UnaryExprOrTypeTrait TraitKind) {
2765 // C99 6.5.3.4p1:
2766 if (T->isFunctionType()) {
2767 // alignof(function) is allowed as an extension.
2768 if (TraitKind == UETT_SizeOf)
2769 S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2770 return false;
2771 }
2772
2773 // Allow sizeof(void)/alignof(void) as an extension.
2774 if (T->isVoidType()) {
2775 S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2776 return false;
2777 }
2778
2779 return true;
2780 }
2781
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2782 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2783 SourceLocation Loc,
2784 SourceRange ArgRange,
2785 UnaryExprOrTypeTrait TraitKind) {
2786 // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2787 if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
2788 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2789 << T << (TraitKind == UETT_SizeOf)
2790 << ArgRange;
2791 return true;
2792 }
2793
2794 return false;
2795 }
2796
2797 /// \brief Check the constrains on expression operands to unary type expression
2798 /// and type traits.
2799 ///
2800 /// Completes any types necessary and validates the constraints on the operand
2801 /// expression. The logic mostly mirrors the type-based overload, but may modify
2802 /// the expression as it completes the type for that expression through template
2803 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)2804 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2805 UnaryExprOrTypeTrait ExprKind) {
2806 QualType ExprTy = E->getType();
2807
2808 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2809 // the result is the size of the referenced type."
2810 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2811 // result shall be the alignment of the referenced type."
2812 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2813 ExprTy = Ref->getPointeeType();
2814
2815 if (ExprKind == UETT_VecStep)
2816 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2817 E->getSourceRange());
2818
2819 // Whitelist some types as extensions
2820 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2821 E->getSourceRange(), ExprKind))
2822 return false;
2823
2824 if (RequireCompleteExprType(E,
2825 PDiag(diag::err_sizeof_alignof_incomplete_type)
2826 << ExprKind << E->getSourceRange(),
2827 std::make_pair(SourceLocation(), PDiag(0))))
2828 return true;
2829
2830 // Completeing the expression's type may have changed it.
2831 ExprTy = E->getType();
2832 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2833 ExprTy = Ref->getPointeeType();
2834
2835 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2836 E->getSourceRange(), ExprKind))
2837 return true;
2838
2839 if (ExprKind == UETT_SizeOf) {
2840 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2841 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2842 QualType OType = PVD->getOriginalType();
2843 QualType Type = PVD->getType();
2844 if (Type->isPointerType() && OType->isArrayType()) {
2845 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2846 << Type << OType;
2847 Diag(PVD->getLocation(), diag::note_declared_at);
2848 }
2849 }
2850 }
2851 }
2852
2853 return false;
2854 }
2855
2856 /// \brief Check the constraints on operands to unary expression and type
2857 /// traits.
2858 ///
2859 /// This will complete any types necessary, and validate the various constraints
2860 /// on those operands.
2861 ///
2862 /// The UsualUnaryConversions() function is *not* called by this routine.
2863 /// C99 6.3.2.1p[2-4] all state:
2864 /// Except when it is the operand of the sizeof operator ...
2865 ///
2866 /// C++ [expr.sizeof]p4
2867 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2868 /// standard conversions are not applied to the operand of sizeof.
2869 ///
2870 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)2871 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
2872 SourceLocation OpLoc,
2873 SourceRange ExprRange,
2874 UnaryExprOrTypeTrait ExprKind) {
2875 if (ExprType->isDependentType())
2876 return false;
2877
2878 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2879 // the result is the size of the referenced type."
2880 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2881 // result shall be the alignment of the referenced type."
2882 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
2883 ExprType = Ref->getPointeeType();
2884
2885 if (ExprKind == UETT_VecStep)
2886 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
2887
2888 // Whitelist some types as extensions
2889 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
2890 ExprKind))
2891 return false;
2892
2893 if (RequireCompleteType(OpLoc, ExprType,
2894 PDiag(diag::err_sizeof_alignof_incomplete_type)
2895 << ExprKind << ExprRange))
2896 return true;
2897
2898 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
2899 ExprKind))
2900 return true;
2901
2902 return false;
2903 }
2904
CheckAlignOfExpr(Sema & S,Expr * E)2905 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
2906 E = E->IgnoreParens();
2907
2908 // alignof decl is always ok.
2909 if (isa<DeclRefExpr>(E))
2910 return false;
2911
2912 // Cannot know anything else if the expression is dependent.
2913 if (E->isTypeDependent())
2914 return false;
2915
2916 if (E->getBitField()) {
2917 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
2918 << 1 << E->getSourceRange();
2919 return true;
2920 }
2921
2922 // Alignment of a field access is always okay, so long as it isn't a
2923 // bit-field.
2924 if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2925 if (isa<FieldDecl>(ME->getMemberDecl()))
2926 return false;
2927
2928 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
2929 }
2930
CheckVecStepExpr(Expr * E)2931 bool Sema::CheckVecStepExpr(Expr *E) {
2932 E = E->IgnoreParens();
2933
2934 // Cannot know anything else if the expression is dependent.
2935 if (E->isTypeDependent())
2936 return false;
2937
2938 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
2939 }
2940
2941 /// \brief Build a sizeof or alignof expression given a type operand.
2942 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2943 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
2944 SourceLocation OpLoc,
2945 UnaryExprOrTypeTrait ExprKind,
2946 SourceRange R) {
2947 if (!TInfo)
2948 return ExprError();
2949
2950 QualType T = TInfo->getType();
2951
2952 if (!T->isDependentType() &&
2953 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
2954 return ExprError();
2955
2956 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2957 return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
2958 Context.getSizeType(),
2959 OpLoc, R.getEnd()));
2960 }
2961
2962 /// \brief Build a sizeof or alignof expression given an expression
2963 /// operand.
2964 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)2965 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
2966 UnaryExprOrTypeTrait ExprKind) {
2967 ExprResult PE = CheckPlaceholderExpr(E);
2968 if (PE.isInvalid())
2969 return ExprError();
2970
2971 E = PE.get();
2972
2973 // Verify that the operand is valid.
2974 bool isInvalid = false;
2975 if (E->isTypeDependent()) {
2976 // Delay type-checking for type-dependent expressions.
2977 } else if (ExprKind == UETT_AlignOf) {
2978 isInvalid = CheckAlignOfExpr(*this, E);
2979 } else if (ExprKind == UETT_VecStep) {
2980 isInvalid = CheckVecStepExpr(E);
2981 } else if (E->getBitField()) { // C99 6.5.3.4p1.
2982 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
2983 isInvalid = true;
2984 } else {
2985 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
2986 }
2987
2988 if (isInvalid)
2989 return ExprError();
2990
2991 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
2992 PE = TranformToPotentiallyEvaluated(E);
2993 if (PE.isInvalid()) return ExprError();
2994 E = PE.take();
2995 }
2996
2997 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2998 return Owned(new (Context) UnaryExprOrTypeTraitExpr(
2999 ExprKind, E, Context.getSizeType(), OpLoc,
3000 E->getSourceRange().getEnd()));
3001 }
3002
3003 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3004 /// expr and the same for @c alignof and @c __alignof
3005 /// Note that the ArgRange is invalid if isType is false.
3006 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,const SourceRange & ArgRange)3007 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3008 UnaryExprOrTypeTrait ExprKind, bool IsType,
3009 void *TyOrEx, const SourceRange &ArgRange) {
3010 // If error parsing type, ignore.
3011 if (TyOrEx == 0) return ExprError();
3012
3013 if (IsType) {
3014 TypeSourceInfo *TInfo;
3015 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3016 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3017 }
3018
3019 Expr *ArgEx = (Expr *)TyOrEx;
3020 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3021 return move(Result);
3022 }
3023
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3024 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3025 bool IsReal) {
3026 if (V.get()->isTypeDependent())
3027 return S.Context.DependentTy;
3028
3029 // _Real and _Imag are only l-values for normal l-values.
3030 if (V.get()->getObjectKind() != OK_Ordinary) {
3031 V = S.DefaultLvalueConversion(V.take());
3032 if (V.isInvalid())
3033 return QualType();
3034 }
3035
3036 // These operators return the element type of a complex type.
3037 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3038 return CT->getElementType();
3039
3040 // Otherwise they pass through real integer and floating point types here.
3041 if (V.get()->getType()->isArithmeticType())
3042 return V.get()->getType();
3043
3044 // Test for placeholders.
3045 ExprResult PR = S.CheckPlaceholderExpr(V.get());
3046 if (PR.isInvalid()) return QualType();
3047 if (PR.get() != V.get()) {
3048 V = move(PR);
3049 return CheckRealImagOperand(S, V, Loc, IsReal);
3050 }
3051
3052 // Reject anything else.
3053 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3054 << (IsReal ? "__real" : "__imag");
3055 return QualType();
3056 }
3057
3058
3059
3060 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3061 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3062 tok::TokenKind Kind, Expr *Input) {
3063 UnaryOperatorKind Opc;
3064 switch (Kind) {
3065 default: llvm_unreachable("Unknown unary op!");
3066 case tok::plusplus: Opc = UO_PostInc; break;
3067 case tok::minusminus: Opc = UO_PostDec; break;
3068 }
3069
3070 // Since this might is a postfix expression, get rid of ParenListExprs.
3071 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3072 if (Result.isInvalid()) return ExprError();
3073 Input = Result.take();
3074
3075 return BuildUnaryOp(S, OpLoc, Opc, Input);
3076 }
3077
3078 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3079 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3080 Expr *Idx, SourceLocation RLoc) {
3081 // Since this might be a postfix expression, get rid of ParenListExprs.
3082 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3083 if (Result.isInvalid()) return ExprError();
3084 Base = Result.take();
3085
3086 Expr *LHSExp = Base, *RHSExp = Idx;
3087
3088 if (getLangOpts().CPlusPlus &&
3089 (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3090 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3091 Context.DependentTy,
3092 VK_LValue, OK_Ordinary,
3093 RLoc));
3094 }
3095
3096 if (getLangOpts().CPlusPlus &&
3097 (LHSExp->getType()->isRecordType() ||
3098 LHSExp->getType()->isEnumeralType() ||
3099 RHSExp->getType()->isRecordType() ||
3100 RHSExp->getType()->isEnumeralType()) &&
3101 !LHSExp->getType()->isObjCObjectPointerType()) {
3102 return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3103 }
3104
3105 return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3106 }
3107
3108
3109 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3110 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3111 Expr *Idx, SourceLocation RLoc) {
3112 Expr *LHSExp = Base;
3113 Expr *RHSExp = Idx;
3114
3115 // Perform default conversions.
3116 if (!LHSExp->getType()->getAs<VectorType>()) {
3117 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3118 if (Result.isInvalid())
3119 return ExprError();
3120 LHSExp = Result.take();
3121 }
3122 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3123 if (Result.isInvalid())
3124 return ExprError();
3125 RHSExp = Result.take();
3126
3127 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3128 ExprValueKind VK = VK_LValue;
3129 ExprObjectKind OK = OK_Ordinary;
3130
3131 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3132 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3133 // in the subscript position. As a result, we need to derive the array base
3134 // and index from the expression types.
3135 Expr *BaseExpr, *IndexExpr;
3136 QualType ResultType;
3137 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3138 BaseExpr = LHSExp;
3139 IndexExpr = RHSExp;
3140 ResultType = Context.DependentTy;
3141 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3142 BaseExpr = LHSExp;
3143 IndexExpr = RHSExp;
3144 ResultType = PTy->getPointeeType();
3145 } else if (const ObjCObjectPointerType *PTy =
3146 LHSTy->getAs<ObjCObjectPointerType>()) {
3147 BaseExpr = LHSExp;
3148 IndexExpr = RHSExp;
3149 Result = BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3150 if (!Result.isInvalid())
3151 return Owned(Result.take());
3152 ResultType = PTy->getPointeeType();
3153 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3154 // Handle the uncommon case of "123[Ptr]".
3155 BaseExpr = RHSExp;
3156 IndexExpr = LHSExp;
3157 ResultType = PTy->getPointeeType();
3158 } else if (const ObjCObjectPointerType *PTy =
3159 RHSTy->getAs<ObjCObjectPointerType>()) {
3160 // Handle the uncommon case of "123[Ptr]".
3161 BaseExpr = RHSExp;
3162 IndexExpr = LHSExp;
3163 ResultType = PTy->getPointeeType();
3164 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3165 BaseExpr = LHSExp; // vectors: V[123]
3166 IndexExpr = RHSExp;
3167 VK = LHSExp->getValueKind();
3168 if (VK != VK_RValue)
3169 OK = OK_VectorComponent;
3170
3171 // FIXME: need to deal with const...
3172 ResultType = VTy->getElementType();
3173 } else if (LHSTy->isArrayType()) {
3174 // If we see an array that wasn't promoted by
3175 // DefaultFunctionArrayLvalueConversion, it must be an array that
3176 // wasn't promoted because of the C90 rule that doesn't
3177 // allow promoting non-lvalue arrays. Warn, then
3178 // force the promotion here.
3179 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3180 LHSExp->getSourceRange();
3181 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3182 CK_ArrayToPointerDecay).take();
3183 LHSTy = LHSExp->getType();
3184
3185 BaseExpr = LHSExp;
3186 IndexExpr = RHSExp;
3187 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3188 } else if (RHSTy->isArrayType()) {
3189 // Same as previous, except for 123[f().a] case
3190 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3191 RHSExp->getSourceRange();
3192 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3193 CK_ArrayToPointerDecay).take();
3194 RHSTy = RHSExp->getType();
3195
3196 BaseExpr = RHSExp;
3197 IndexExpr = LHSExp;
3198 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3199 } else {
3200 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3201 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3202 }
3203 // C99 6.5.2.1p1
3204 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3205 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3206 << IndexExpr->getSourceRange());
3207
3208 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3209 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3210 && !IndexExpr->isTypeDependent())
3211 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3212
3213 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3214 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3215 // type. Note that Functions are not objects, and that (in C99 parlance)
3216 // incomplete types are not object types.
3217 if (ResultType->isFunctionType()) {
3218 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3219 << ResultType << BaseExpr->getSourceRange();
3220 return ExprError();
3221 }
3222
3223 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3224 // GNU extension: subscripting on pointer to void
3225 Diag(LLoc, diag::ext_gnu_subscript_void_type)
3226 << BaseExpr->getSourceRange();
3227
3228 // C forbids expressions of unqualified void type from being l-values.
3229 // See IsCForbiddenLValueType.
3230 if (!ResultType.hasQualifiers()) VK = VK_RValue;
3231 } else if (!ResultType->isDependentType() &&
3232 RequireCompleteType(LLoc, ResultType,
3233 PDiag(diag::err_subscript_incomplete_type)
3234 << BaseExpr->getSourceRange()))
3235 return ExprError();
3236
3237 // Diagnose bad cases where we step over interface counts.
3238 if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3239 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3240 << ResultType << BaseExpr->getSourceRange();
3241 return ExprError();
3242 }
3243
3244 assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3245 !ResultType.isCForbiddenLValueType());
3246
3247 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3248 ResultType, VK, OK, RLoc));
3249 }
3250
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3251 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3252 FunctionDecl *FD,
3253 ParmVarDecl *Param) {
3254 if (Param->hasUnparsedDefaultArg()) {
3255 Diag(CallLoc,
3256 diag::err_use_of_default_argument_to_function_declared_later) <<
3257 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3258 Diag(UnparsedDefaultArgLocs[Param],
3259 diag::note_default_argument_declared_here);
3260 return ExprError();
3261 }
3262
3263 if (Param->hasUninstantiatedDefaultArg()) {
3264 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3265
3266 // Instantiate the expression.
3267 MultiLevelTemplateArgumentList ArgList
3268 = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3269
3270 std::pair<const TemplateArgument *, unsigned> Innermost
3271 = ArgList.getInnermost();
3272 InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3273 Innermost.second);
3274
3275 ExprResult Result;
3276 {
3277 // C++ [dcl.fct.default]p5:
3278 // The names in the [default argument] expression are bound, and
3279 // the semantic constraints are checked, at the point where the
3280 // default argument expression appears.
3281 ContextRAII SavedContext(*this, FD);
3282 LocalInstantiationScope Local(*this);
3283 Result = SubstExpr(UninstExpr, ArgList);
3284 }
3285 if (Result.isInvalid())
3286 return ExprError();
3287
3288 // Check the expression as an initializer for the parameter.
3289 InitializedEntity Entity
3290 = InitializedEntity::InitializeParameter(Context, Param);
3291 InitializationKind Kind
3292 = InitializationKind::CreateCopy(Param->getLocation(),
3293 /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3294 Expr *ResultE = Result.takeAs<Expr>();
3295
3296 InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3297 Result = InitSeq.Perform(*this, Entity, Kind,
3298 MultiExprArg(*this, &ResultE, 1));
3299 if (Result.isInvalid())
3300 return ExprError();
3301
3302 // Build the default argument expression.
3303 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3304 Result.takeAs<Expr>()));
3305 }
3306
3307 // If the default expression creates temporaries, we need to
3308 // push them to the current stack of expression temporaries so they'll
3309 // be properly destroyed.
3310 // FIXME: We should really be rebuilding the default argument with new
3311 // bound temporaries; see the comment in PR5810.
3312 // We don't need to do that with block decls, though, because
3313 // blocks in default argument expression can never capture anything.
3314 if (isa<ExprWithCleanups>(Param->getInit())) {
3315 // Set the "needs cleanups" bit regardless of whether there are
3316 // any explicit objects.
3317 ExprNeedsCleanups = true;
3318
3319 // Append all the objects to the cleanup list. Right now, this
3320 // should always be a no-op, because blocks in default argument
3321 // expressions should never be able to capture anything.
3322 assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3323 "default argument expression has capturing blocks?");
3324 }
3325
3326 // We already type-checked the argument, so we know it works.
3327 // Just mark all of the declarations in this potentially-evaluated expression
3328 // as being "referenced".
3329 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3330 /*SkipLocalVariables=*/true);
3331 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3332 }
3333
3334 /// ConvertArgumentsForCall - Converts the arguments specified in
3335 /// Args/NumArgs to the parameter types of the function FDecl with
3336 /// function prototype Proto. Call is the call expression itself, and
3337 /// Fn is the function expression. For a C++ member function, this
3338 /// routine does not attempt to convert the object argument. Returns
3339 /// true if the call is ill-formed.
3340 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,bool IsExecConfig)3341 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3342 FunctionDecl *FDecl,
3343 const FunctionProtoType *Proto,
3344 Expr **Args, unsigned NumArgs,
3345 SourceLocation RParenLoc,
3346 bool IsExecConfig) {
3347 // Bail out early if calling a builtin with custom typechecking.
3348 // We don't need to do this in the
3349 if (FDecl)
3350 if (unsigned ID = FDecl->getBuiltinID())
3351 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3352 return false;
3353
3354 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3355 // assignment, to the types of the corresponding parameter, ...
3356 unsigned NumArgsInProto = Proto->getNumArgs();
3357 bool Invalid = false;
3358 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3359 unsigned FnKind = Fn->getType()->isBlockPointerType()
3360 ? 1 /* block */
3361 : (IsExecConfig ? 3 /* kernel function (exec config) */
3362 : 0 /* function */);
3363
3364 // If too few arguments are available (and we don't have default
3365 // arguments for the remaining parameters), don't make the call.
3366 if (NumArgs < NumArgsInProto) {
3367 if (NumArgs < MinArgs) {
3368 Diag(RParenLoc, MinArgs == NumArgsInProto
3369 ? diag::err_typecheck_call_too_few_args
3370 : diag::err_typecheck_call_too_few_args_at_least)
3371 << FnKind
3372 << MinArgs << NumArgs << Fn->getSourceRange();
3373
3374 // Emit the location of the prototype.
3375 if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3376 Diag(FDecl->getLocStart(), diag::note_callee_decl)
3377 << FDecl;
3378
3379 return true;
3380 }
3381 Call->setNumArgs(Context, NumArgsInProto);
3382 }
3383
3384 // If too many are passed and not variadic, error on the extras and drop
3385 // them.
3386 if (NumArgs > NumArgsInProto) {
3387 if (!Proto->isVariadic()) {
3388 Diag(Args[NumArgsInProto]->getLocStart(),
3389 MinArgs == NumArgsInProto
3390 ? diag::err_typecheck_call_too_many_args
3391 : diag::err_typecheck_call_too_many_args_at_most)
3392 << FnKind
3393 << NumArgsInProto << NumArgs << Fn->getSourceRange()
3394 << SourceRange(Args[NumArgsInProto]->getLocStart(),
3395 Args[NumArgs-1]->getLocEnd());
3396
3397 // Emit the location of the prototype.
3398 if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3399 Diag(FDecl->getLocStart(), diag::note_callee_decl)
3400 << FDecl;
3401
3402 // This deletes the extra arguments.
3403 Call->setNumArgs(Context, NumArgsInProto);
3404 return true;
3405 }
3406 }
3407 SmallVector<Expr *, 8> AllArgs;
3408 VariadicCallType CallType =
3409 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3410 if (Fn->getType()->isBlockPointerType())
3411 CallType = VariadicBlock; // Block
3412 else if (isa<MemberExpr>(Fn))
3413 CallType = VariadicMethod;
3414 Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3415 Proto, 0, Args, NumArgs, AllArgs, CallType);
3416 if (Invalid)
3417 return true;
3418 unsigned TotalNumArgs = AllArgs.size();
3419 for (unsigned i = 0; i < TotalNumArgs; ++i)
3420 Call->setArg(i, AllArgs[i]);
3421
3422 return false;
3423 }
3424
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,Expr ** Args,unsigned NumArgs,SmallVector<Expr *,8> & AllArgs,VariadicCallType CallType,bool AllowExplicit)3425 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3426 FunctionDecl *FDecl,
3427 const FunctionProtoType *Proto,
3428 unsigned FirstProtoArg,
3429 Expr **Args, unsigned NumArgs,
3430 SmallVector<Expr *, 8> &AllArgs,
3431 VariadicCallType CallType,
3432 bool AllowExplicit) {
3433 unsigned NumArgsInProto = Proto->getNumArgs();
3434 unsigned NumArgsToCheck = NumArgs;
3435 bool Invalid = false;
3436 if (NumArgs != NumArgsInProto)
3437 // Use default arguments for missing arguments
3438 NumArgsToCheck = NumArgsInProto;
3439 unsigned ArgIx = 0;
3440 // Continue to check argument types (even if we have too few/many args).
3441 for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3442 QualType ProtoArgType = Proto->getArgType(i);
3443
3444 Expr *Arg;
3445 ParmVarDecl *Param;
3446 if (ArgIx < NumArgs) {
3447 Arg = Args[ArgIx++];
3448
3449 if (RequireCompleteType(Arg->getLocStart(),
3450 ProtoArgType,
3451 PDiag(diag::err_call_incomplete_argument)
3452 << Arg->getSourceRange()))
3453 return true;
3454
3455 // Pass the argument
3456 Param = 0;
3457 if (FDecl && i < FDecl->getNumParams())
3458 Param = FDecl->getParamDecl(i);
3459
3460 // Strip the unbridged-cast placeholder expression off, if applicable.
3461 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3462 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3463 (!Param || !Param->hasAttr<CFConsumedAttr>()))
3464 Arg = stripARCUnbridgedCast(Arg);
3465
3466 InitializedEntity Entity =
3467 Param? InitializedEntity::InitializeParameter(Context, Param)
3468 : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3469 Proto->isArgConsumed(i));
3470 ExprResult ArgE = PerformCopyInitialization(Entity,
3471 SourceLocation(),
3472 Owned(Arg),
3473 /*TopLevelOfInitList=*/false,
3474 AllowExplicit);
3475 if (ArgE.isInvalid())
3476 return true;
3477
3478 Arg = ArgE.takeAs<Expr>();
3479 } else {
3480 Param = FDecl->getParamDecl(i);
3481
3482 ExprResult ArgExpr =
3483 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3484 if (ArgExpr.isInvalid())
3485 return true;
3486
3487 Arg = ArgExpr.takeAs<Expr>();
3488 }
3489
3490 // Check for array bounds violations for each argument to the call. This
3491 // check only triggers warnings when the argument isn't a more complex Expr
3492 // with its own checking, such as a BinaryOperator.
3493 CheckArrayAccess(Arg);
3494
3495 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3496 CheckStaticArrayArgument(CallLoc, Param, Arg);
3497
3498 AllArgs.push_back(Arg);
3499 }
3500
3501 // If this is a variadic call, handle args passed through "...".
3502 if (CallType != VariadicDoesNotApply) {
3503
3504 // Assume that extern "C" functions with variadic arguments that
3505 // return __unknown_anytype aren't *really* variadic.
3506 if (Proto->getResultType() == Context.UnknownAnyTy &&
3507 FDecl && FDecl->isExternC()) {
3508 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3509 ExprResult arg;
3510 if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3511 arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3512 else
3513 arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3514 Invalid |= arg.isInvalid();
3515 AllArgs.push_back(arg.take());
3516 }
3517
3518 // Otherwise do argument promotion, (C99 6.5.2.2p7).
3519 } else {
3520 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3521 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3522 FDecl);
3523 Invalid |= Arg.isInvalid();
3524 AllArgs.push_back(Arg.take());
3525 }
3526 }
3527
3528 // Check for array bounds violations.
3529 for (unsigned i = ArgIx; i != NumArgs; ++i)
3530 CheckArrayAccess(Args[i]);
3531 }
3532 return Invalid;
3533 }
3534
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)3535 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3536 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3537 if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3538 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3539 << ATL->getLocalSourceRange();
3540 }
3541
3542 /// CheckStaticArrayArgument - If the given argument corresponds to a static
3543 /// array parameter, check that it is non-null, and that if it is formed by
3544 /// array-to-pointer decay, the underlying array is sufficiently large.
3545 ///
3546 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3547 /// array type derivation, then for each call to the function, the value of the
3548 /// corresponding actual argument shall provide access to the first element of
3549 /// an array with at least as many elements as specified by the size expression.
3550 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)3551 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3552 ParmVarDecl *Param,
3553 const Expr *ArgExpr) {
3554 // Static array parameters are not supported in C++.
3555 if (!Param || getLangOpts().CPlusPlus)
3556 return;
3557
3558 QualType OrigTy = Param->getOriginalType();
3559
3560 const ArrayType *AT = Context.getAsArrayType(OrigTy);
3561 if (!AT || AT->getSizeModifier() != ArrayType::Static)
3562 return;
3563
3564 if (ArgExpr->isNullPointerConstant(Context,
3565 Expr::NPC_NeverValueDependent)) {
3566 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3567 DiagnoseCalleeStaticArrayParam(*this, Param);
3568 return;
3569 }
3570
3571 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3572 if (!CAT)
3573 return;
3574
3575 const ConstantArrayType *ArgCAT =
3576 Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3577 if (!ArgCAT)
3578 return;
3579
3580 if (ArgCAT->getSize().ult(CAT->getSize())) {
3581 Diag(CallLoc, diag::warn_static_array_too_small)
3582 << ArgExpr->getSourceRange()
3583 << (unsigned) ArgCAT->getSize().getZExtValue()
3584 << (unsigned) CAT->getSize().getZExtValue();
3585 DiagnoseCalleeStaticArrayParam(*this, Param);
3586 }
3587 }
3588
3589 /// Given a function expression of unknown-any type, try to rebuild it
3590 /// to have a function type.
3591 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3592
3593 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3594 /// This provides the location of the left/right parens and a list of comma
3595 /// locations.
3596 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)3597 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3598 MultiExprArg ArgExprs, SourceLocation RParenLoc,
3599 Expr *ExecConfig, bool IsExecConfig) {
3600 unsigned NumArgs = ArgExprs.size();
3601
3602 // Since this might be a postfix expression, get rid of ParenListExprs.
3603 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3604 if (Result.isInvalid()) return ExprError();
3605 Fn = Result.take();
3606
3607 Expr **Args = ArgExprs.release();
3608
3609 if (getLangOpts().CPlusPlus) {
3610 // If this is a pseudo-destructor expression, build the call immediately.
3611 if (isa<CXXPseudoDestructorExpr>(Fn)) {
3612 if (NumArgs > 0) {
3613 // Pseudo-destructor calls should not have any arguments.
3614 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3615 << FixItHint::CreateRemoval(
3616 SourceRange(Args[0]->getLocStart(),
3617 Args[NumArgs-1]->getLocEnd()));
3618 }
3619
3620 return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3621 VK_RValue, RParenLoc));
3622 }
3623
3624 // Determine whether this is a dependent call inside a C++ template,
3625 // in which case we won't do any semantic analysis now.
3626 // FIXME: Will need to cache the results of name lookup (including ADL) in
3627 // Fn.
3628 bool Dependent = false;
3629 if (Fn->isTypeDependent())
3630 Dependent = true;
3631 else if (Expr::hasAnyTypeDependentArguments(
3632 llvm::makeArrayRef(Args, NumArgs)))
3633 Dependent = true;
3634
3635 if (Dependent) {
3636 if (ExecConfig) {
3637 return Owned(new (Context) CUDAKernelCallExpr(
3638 Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3639 Context.DependentTy, VK_RValue, RParenLoc));
3640 } else {
3641 return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3642 Context.DependentTy, VK_RValue,
3643 RParenLoc));
3644 }
3645 }
3646
3647 // Determine whether this is a call to an object (C++ [over.call.object]).
3648 if (Fn->getType()->isRecordType())
3649 return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3650 RParenLoc));
3651
3652 if (Fn->getType() == Context.UnknownAnyTy) {
3653 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3654 if (result.isInvalid()) return ExprError();
3655 Fn = result.take();
3656 }
3657
3658 if (Fn->getType() == Context.BoundMemberTy) {
3659 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3660 RParenLoc);
3661 }
3662 }
3663
3664 // Check for overloaded calls. This can happen even in C due to extensions.
3665 if (Fn->getType() == Context.OverloadTy) {
3666 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3667
3668 // We aren't supposed to apply this logic for if there's an '&' involved.
3669 if (!find.HasFormOfMemberPointer) {
3670 OverloadExpr *ovl = find.Expression;
3671 if (isa<UnresolvedLookupExpr>(ovl)) {
3672 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3673 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3674 RParenLoc, ExecConfig);
3675 } else {
3676 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3677 RParenLoc);
3678 }
3679 }
3680 }
3681
3682 // If we're directly calling a function, get the appropriate declaration.
3683 if (Fn->getType() == Context.UnknownAnyTy) {
3684 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3685 if (result.isInvalid()) return ExprError();
3686 Fn = result.take();
3687 }
3688
3689 Expr *NakedFn = Fn->IgnoreParens();
3690
3691 NamedDecl *NDecl = 0;
3692 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3693 if (UnOp->getOpcode() == UO_AddrOf)
3694 NakedFn = UnOp->getSubExpr()->IgnoreParens();
3695
3696 if (isa<DeclRefExpr>(NakedFn))
3697 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3698 else if (isa<MemberExpr>(NakedFn))
3699 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3700
3701 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3702 ExecConfig, IsExecConfig);
3703 }
3704
3705 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)3706 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3707 MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3708 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3709 if (!ConfigDecl)
3710 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3711 << "cudaConfigureCall");
3712 QualType ConfigQTy = ConfigDecl->getType();
3713
3714 DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3715 ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3716 MarkFunctionReferenced(LLLLoc, ConfigDecl);
3717
3718 return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3719 /*IsExecConfig=*/true);
3720 }
3721
3722 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3723 ///
3724 /// __builtin_astype( value, dst type )
3725 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)3726 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3727 SourceLocation BuiltinLoc,
3728 SourceLocation RParenLoc) {
3729 ExprValueKind VK = VK_RValue;
3730 ExprObjectKind OK = OK_Ordinary;
3731 QualType DstTy = GetTypeFromParser(ParsedDestTy);
3732 QualType SrcTy = E->getType();
3733 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3734 return ExprError(Diag(BuiltinLoc,
3735 diag::err_invalid_astype_of_different_size)
3736 << DstTy
3737 << SrcTy
3738 << E->getSourceRange());
3739 return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3740 RParenLoc));
3741 }
3742
3743 /// BuildResolvedCallExpr - Build a call to a resolved expression,
3744 /// i.e. an expression not of \p OverloadTy. The expression should
3745 /// unary-convert to an expression of function-pointer or
3746 /// block-pointer type.
3747 ///
3748 /// \param NDecl the declaration being called, if available
3749 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)3750 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3751 SourceLocation LParenLoc,
3752 Expr **Args, unsigned NumArgs,
3753 SourceLocation RParenLoc,
3754 Expr *Config, bool IsExecConfig) {
3755 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3756
3757 // Promote the function operand.
3758 ExprResult Result = UsualUnaryConversions(Fn);
3759 if (Result.isInvalid())
3760 return ExprError();
3761 Fn = Result.take();
3762
3763 // Make the call expr early, before semantic checks. This guarantees cleanup
3764 // of arguments and function on error.
3765 CallExpr *TheCall;
3766 if (Config) {
3767 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3768 cast<CallExpr>(Config),
3769 Args, NumArgs,
3770 Context.BoolTy,
3771 VK_RValue,
3772 RParenLoc);
3773 } else {
3774 TheCall = new (Context) CallExpr(Context, Fn,
3775 Args, NumArgs,
3776 Context.BoolTy,
3777 VK_RValue,
3778 RParenLoc);
3779 }
3780
3781 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3782
3783 // Bail out early if calling a builtin with custom typechecking.
3784 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3785 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3786
3787 retry:
3788 const FunctionType *FuncT;
3789 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3790 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3791 // have type pointer to function".
3792 FuncT = PT->getPointeeType()->getAs<FunctionType>();
3793 if (FuncT == 0)
3794 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3795 << Fn->getType() << Fn->getSourceRange());
3796 } else if (const BlockPointerType *BPT =
3797 Fn->getType()->getAs<BlockPointerType>()) {
3798 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3799 } else {
3800 // Handle calls to expressions of unknown-any type.
3801 if (Fn->getType() == Context.UnknownAnyTy) {
3802 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3803 if (rewrite.isInvalid()) return ExprError();
3804 Fn = rewrite.take();
3805 TheCall->setCallee(Fn);
3806 goto retry;
3807 }
3808
3809 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3810 << Fn->getType() << Fn->getSourceRange());
3811 }
3812
3813 if (getLangOpts().CUDA) {
3814 if (Config) {
3815 // CUDA: Kernel calls must be to global functions
3816 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3817 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3818 << FDecl->getName() << Fn->getSourceRange());
3819
3820 // CUDA: Kernel function must have 'void' return type
3821 if (!FuncT->getResultType()->isVoidType())
3822 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3823 << Fn->getType() << Fn->getSourceRange());
3824 } else {
3825 // CUDA: Calls to global functions must be configured
3826 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
3827 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
3828 << FDecl->getName() << Fn->getSourceRange());
3829 }
3830 }
3831
3832 // Check for a valid return type
3833 if (CheckCallReturnType(FuncT->getResultType(),
3834 Fn->getLocStart(), TheCall,
3835 FDecl))
3836 return ExprError();
3837
3838 // We know the result type of the call, set it.
3839 TheCall->setType(FuncT->getCallResultType(Context));
3840 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3841
3842 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3843 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3844 RParenLoc, IsExecConfig))
3845 return ExprError();
3846 } else {
3847 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3848
3849 if (FDecl) {
3850 // Check if we have too few/too many template arguments, based
3851 // on our knowledge of the function definition.
3852 const FunctionDecl *Def = 0;
3853 if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3854 const FunctionProtoType *Proto
3855 = Def->getType()->getAs<FunctionProtoType>();
3856 if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
3857 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3858 << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3859 }
3860
3861 // If the function we're calling isn't a function prototype, but we have
3862 // a function prototype from a prior declaratiom, use that prototype.
3863 if (!FDecl->hasPrototype())
3864 Proto = FDecl->getType()->getAs<FunctionProtoType>();
3865 }
3866
3867 // Promote the arguments (C99 6.5.2.2p6).
3868 for (unsigned i = 0; i != NumArgs; i++) {
3869 Expr *Arg = Args[i];
3870
3871 if (Proto && i < Proto->getNumArgs()) {
3872 InitializedEntity Entity
3873 = InitializedEntity::InitializeParameter(Context,
3874 Proto->getArgType(i),
3875 Proto->isArgConsumed(i));
3876 ExprResult ArgE = PerformCopyInitialization(Entity,
3877 SourceLocation(),
3878 Owned(Arg));
3879 if (ArgE.isInvalid())
3880 return true;
3881
3882 Arg = ArgE.takeAs<Expr>();
3883
3884 } else {
3885 ExprResult ArgE = DefaultArgumentPromotion(Arg);
3886
3887 if (ArgE.isInvalid())
3888 return true;
3889
3890 Arg = ArgE.takeAs<Expr>();
3891 }
3892
3893 if (RequireCompleteType(Arg->getLocStart(),
3894 Arg->getType(),
3895 PDiag(diag::err_call_incomplete_argument)
3896 << Arg->getSourceRange()))
3897 return ExprError();
3898
3899 TheCall->setArg(i, Arg);
3900 }
3901 }
3902
3903 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3904 if (!Method->isStatic())
3905 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3906 << Fn->getSourceRange());
3907
3908 // Check for sentinels
3909 if (NDecl)
3910 DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3911
3912 // Do special checking on direct calls to functions.
3913 if (FDecl) {
3914 if (CheckFunctionCall(FDecl, TheCall))
3915 return ExprError();
3916
3917 if (BuiltinID)
3918 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3919 } else if (NDecl) {
3920 if (CheckBlockCall(NDecl, TheCall))
3921 return ExprError();
3922 }
3923
3924 return MaybeBindToTemporary(TheCall);
3925 }
3926
3927 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)3928 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3929 SourceLocation RParenLoc, Expr *InitExpr) {
3930 assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3931 // FIXME: put back this assert when initializers are worked out.
3932 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3933
3934 TypeSourceInfo *TInfo;
3935 QualType literalType = GetTypeFromParser(Ty, &TInfo);
3936 if (!TInfo)
3937 TInfo = Context.getTrivialTypeSourceInfo(literalType);
3938
3939 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3940 }
3941
3942 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)3943 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3944 SourceLocation RParenLoc, Expr *LiteralExpr) {
3945 QualType literalType = TInfo->getType();
3946
3947 if (literalType->isArrayType()) {
3948 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
3949 PDiag(diag::err_illegal_decl_array_incomplete_type)
3950 << SourceRange(LParenLoc,
3951 LiteralExpr->getSourceRange().getEnd())))
3952 return ExprError();
3953 if (literalType->isVariableArrayType())
3954 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3955 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
3956 } else if (!literalType->isDependentType() &&
3957 RequireCompleteType(LParenLoc, literalType,
3958 PDiag(diag::err_typecheck_decl_incomplete_type)
3959 << SourceRange(LParenLoc,
3960 LiteralExpr->getSourceRange().getEnd())))
3961 return ExprError();
3962
3963 InitializedEntity Entity
3964 = InitializedEntity::InitializeTemporary(literalType);
3965 InitializationKind Kind
3966 = InitializationKind::CreateCStyleCast(LParenLoc,
3967 SourceRange(LParenLoc, RParenLoc),
3968 /*InitList=*/true);
3969 InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
3970 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3971 MultiExprArg(*this, &LiteralExpr, 1),
3972 &literalType);
3973 if (Result.isInvalid())
3974 return ExprError();
3975 LiteralExpr = Result.get();
3976
3977 bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3978 if (isFileScope) { // 6.5.2.5p3
3979 if (CheckForConstantInitializer(LiteralExpr, literalType))
3980 return ExprError();
3981 }
3982
3983 // In C, compound literals are l-values for some reason.
3984 ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
3985
3986 return MaybeBindToTemporary(
3987 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3988 VK, LiteralExpr, isFileScope));
3989 }
3990
3991 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)3992 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
3993 SourceLocation RBraceLoc) {
3994 unsigned NumInit = InitArgList.size();
3995 Expr **InitList = InitArgList.release();
3996
3997 // Immediately handle non-overload placeholders. Overloads can be
3998 // resolved contextually, but everything else here can't.
3999 for (unsigned I = 0; I != NumInit; ++I) {
4000 if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
4001 ExprResult result = CheckPlaceholderExpr(InitList[I]);
4002
4003 // Ignore failures; dropping the entire initializer list because
4004 // of one failure would be terrible for indexing/etc.
4005 if (result.isInvalid()) continue;
4006
4007 InitList[I] = result.take();
4008 }
4009 }
4010
4011 // Semantic analysis for initializers is done by ActOnDeclarator() and
4012 // CheckInitializer() - it requires knowledge of the object being intialized.
4013
4014 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4015 NumInit, RBraceLoc);
4016 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4017 return Owned(E);
4018 }
4019
4020 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(Sema & S,ExprResult & E)4021 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4022 assert(E.get()->getType()->isBlockPointerType());
4023 assert(E.get()->isRValue());
4024
4025 // Only do this in an r-value context.
4026 if (!S.getLangOpts().ObjCAutoRefCount) return;
4027
4028 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4029 CK_ARCExtendBlockObject, E.get(),
4030 /*base path*/ 0, VK_RValue);
4031 S.ExprNeedsCleanups = true;
4032 }
4033
4034 /// Prepare a conversion of the given expression to an ObjC object
4035 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)4036 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4037 QualType type = E.get()->getType();
4038 if (type->isObjCObjectPointerType()) {
4039 return CK_BitCast;
4040 } else if (type->isBlockPointerType()) {
4041 maybeExtendBlockObject(*this, E);
4042 return CK_BlockPointerToObjCPointerCast;
4043 } else {
4044 assert(type->isPointerType());
4045 return CK_CPointerToObjCPointerCast;
4046 }
4047 }
4048
4049 /// Prepares for a scalar cast, performing all the necessary stages
4050 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)4051 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4052 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4053 // Also, callers should have filtered out the invalid cases with
4054 // pointers. Everything else should be possible.
4055
4056 QualType SrcTy = Src.get()->getType();
4057 if (const AtomicType *SrcAtomicTy = SrcTy->getAs<AtomicType>())
4058 SrcTy = SrcAtomicTy->getValueType();
4059 if (const AtomicType *DestAtomicTy = DestTy->getAs<AtomicType>())
4060 DestTy = DestAtomicTy->getValueType();
4061
4062 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4063 return CK_NoOp;
4064
4065 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4066 case Type::STK_MemberPointer:
4067 llvm_unreachable("member pointer type in C");
4068
4069 case Type::STK_CPointer:
4070 case Type::STK_BlockPointer:
4071 case Type::STK_ObjCObjectPointer:
4072 switch (DestTy->getScalarTypeKind()) {
4073 case Type::STK_CPointer:
4074 return CK_BitCast;
4075 case Type::STK_BlockPointer:
4076 return (SrcKind == Type::STK_BlockPointer
4077 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4078 case Type::STK_ObjCObjectPointer:
4079 if (SrcKind == Type::STK_ObjCObjectPointer)
4080 return CK_BitCast;
4081 if (SrcKind == Type::STK_CPointer)
4082 return CK_CPointerToObjCPointerCast;
4083 maybeExtendBlockObject(*this, Src);
4084 return CK_BlockPointerToObjCPointerCast;
4085 case Type::STK_Bool:
4086 return CK_PointerToBoolean;
4087 case Type::STK_Integral:
4088 return CK_PointerToIntegral;
4089 case Type::STK_Floating:
4090 case Type::STK_FloatingComplex:
4091 case Type::STK_IntegralComplex:
4092 case Type::STK_MemberPointer:
4093 llvm_unreachable("illegal cast from pointer");
4094 }
4095 llvm_unreachable("Should have returned before this");
4096
4097 case Type::STK_Bool: // casting from bool is like casting from an integer
4098 case Type::STK_Integral:
4099 switch (DestTy->getScalarTypeKind()) {
4100 case Type::STK_CPointer:
4101 case Type::STK_ObjCObjectPointer:
4102 case Type::STK_BlockPointer:
4103 if (Src.get()->isNullPointerConstant(Context,
4104 Expr::NPC_ValueDependentIsNull))
4105 return CK_NullToPointer;
4106 return CK_IntegralToPointer;
4107 case Type::STK_Bool:
4108 return CK_IntegralToBoolean;
4109 case Type::STK_Integral:
4110 return CK_IntegralCast;
4111 case Type::STK_Floating:
4112 return CK_IntegralToFloating;
4113 case Type::STK_IntegralComplex:
4114 Src = ImpCastExprToType(Src.take(),
4115 DestTy->castAs<ComplexType>()->getElementType(),
4116 CK_IntegralCast);
4117 return CK_IntegralRealToComplex;
4118 case Type::STK_FloatingComplex:
4119 Src = ImpCastExprToType(Src.take(),
4120 DestTy->castAs<ComplexType>()->getElementType(),
4121 CK_IntegralToFloating);
4122 return CK_FloatingRealToComplex;
4123 case Type::STK_MemberPointer:
4124 llvm_unreachable("member pointer type in C");
4125 }
4126 llvm_unreachable("Should have returned before this");
4127
4128 case Type::STK_Floating:
4129 switch (DestTy->getScalarTypeKind()) {
4130 case Type::STK_Floating:
4131 return CK_FloatingCast;
4132 case Type::STK_Bool:
4133 return CK_FloatingToBoolean;
4134 case Type::STK_Integral:
4135 return CK_FloatingToIntegral;
4136 case Type::STK_FloatingComplex:
4137 Src = ImpCastExprToType(Src.take(),
4138 DestTy->castAs<ComplexType>()->getElementType(),
4139 CK_FloatingCast);
4140 return CK_FloatingRealToComplex;
4141 case Type::STK_IntegralComplex:
4142 Src = ImpCastExprToType(Src.take(),
4143 DestTy->castAs<ComplexType>()->getElementType(),
4144 CK_FloatingToIntegral);
4145 return CK_IntegralRealToComplex;
4146 case Type::STK_CPointer:
4147 case Type::STK_ObjCObjectPointer:
4148 case Type::STK_BlockPointer:
4149 llvm_unreachable("valid float->pointer cast?");
4150 case Type::STK_MemberPointer:
4151 llvm_unreachable("member pointer type in C");
4152 }
4153 llvm_unreachable("Should have returned before this");
4154
4155 case Type::STK_FloatingComplex:
4156 switch (DestTy->getScalarTypeKind()) {
4157 case Type::STK_FloatingComplex:
4158 return CK_FloatingComplexCast;
4159 case Type::STK_IntegralComplex:
4160 return CK_FloatingComplexToIntegralComplex;
4161 case Type::STK_Floating: {
4162 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4163 if (Context.hasSameType(ET, DestTy))
4164 return CK_FloatingComplexToReal;
4165 Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4166 return CK_FloatingCast;
4167 }
4168 case Type::STK_Bool:
4169 return CK_FloatingComplexToBoolean;
4170 case Type::STK_Integral:
4171 Src = ImpCastExprToType(Src.take(),
4172 SrcTy->castAs<ComplexType>()->getElementType(),
4173 CK_FloatingComplexToReal);
4174 return CK_FloatingToIntegral;
4175 case Type::STK_CPointer:
4176 case Type::STK_ObjCObjectPointer:
4177 case Type::STK_BlockPointer:
4178 llvm_unreachable("valid complex float->pointer cast?");
4179 case Type::STK_MemberPointer:
4180 llvm_unreachable("member pointer type in C");
4181 }
4182 llvm_unreachable("Should have returned before this");
4183
4184 case Type::STK_IntegralComplex:
4185 switch (DestTy->getScalarTypeKind()) {
4186 case Type::STK_FloatingComplex:
4187 return CK_IntegralComplexToFloatingComplex;
4188 case Type::STK_IntegralComplex:
4189 return CK_IntegralComplexCast;
4190 case Type::STK_Integral: {
4191 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4192 if (Context.hasSameType(ET, DestTy))
4193 return CK_IntegralComplexToReal;
4194 Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4195 return CK_IntegralCast;
4196 }
4197 case Type::STK_Bool:
4198 return CK_IntegralComplexToBoolean;
4199 case Type::STK_Floating:
4200 Src = ImpCastExprToType(Src.take(),
4201 SrcTy->castAs<ComplexType>()->getElementType(),
4202 CK_IntegralComplexToReal);
4203 return CK_IntegralToFloating;
4204 case Type::STK_CPointer:
4205 case Type::STK_ObjCObjectPointer:
4206 case Type::STK_BlockPointer:
4207 llvm_unreachable("valid complex int->pointer cast?");
4208 case Type::STK_MemberPointer:
4209 llvm_unreachable("member pointer type in C");
4210 }
4211 llvm_unreachable("Should have returned before this");
4212 }
4213
4214 llvm_unreachable("Unhandled scalar cast");
4215 }
4216
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4217 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4218 CastKind &Kind) {
4219 assert(VectorTy->isVectorType() && "Not a vector type!");
4220
4221 if (Ty->isVectorType() || Ty->isIntegerType()) {
4222 if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4223 return Diag(R.getBegin(),
4224 Ty->isVectorType() ?
4225 diag::err_invalid_conversion_between_vectors :
4226 diag::err_invalid_conversion_between_vector_and_integer)
4227 << VectorTy << Ty << R;
4228 } else
4229 return Diag(R.getBegin(),
4230 diag::err_invalid_conversion_between_vector_and_scalar)
4231 << VectorTy << Ty << R;
4232
4233 Kind = CK_BitCast;
4234 return false;
4235 }
4236
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4237 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4238 Expr *CastExpr, CastKind &Kind) {
4239 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4240
4241 QualType SrcTy = CastExpr->getType();
4242
4243 // If SrcTy is a VectorType, the total size must match to explicitly cast to
4244 // an ExtVectorType.
4245 // In OpenCL, casts between vectors of different types are not allowed.
4246 // (See OpenCL 6.2).
4247 if (SrcTy->isVectorType()) {
4248 if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4249 || (getLangOpts().OpenCL &&
4250 (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4251 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4252 << DestTy << SrcTy << R;
4253 return ExprError();
4254 }
4255 Kind = CK_BitCast;
4256 return Owned(CastExpr);
4257 }
4258
4259 // All non-pointer scalars can be cast to ExtVector type. The appropriate
4260 // conversion will take place first from scalar to elt type, and then
4261 // splat from elt type to vector.
4262 if (SrcTy->isPointerType())
4263 return Diag(R.getBegin(),
4264 diag::err_invalid_conversion_between_vector_and_scalar)
4265 << DestTy << SrcTy << R;
4266
4267 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4268 ExprResult CastExprRes = Owned(CastExpr);
4269 CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4270 if (CastExprRes.isInvalid())
4271 return ExprError();
4272 CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4273
4274 Kind = CK_VectorSplat;
4275 return Owned(CastExpr);
4276 }
4277
4278 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)4279 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4280 Declarator &D, ParsedType &Ty,
4281 SourceLocation RParenLoc, Expr *CastExpr) {
4282 assert(!D.isInvalidType() && (CastExpr != 0) &&
4283 "ActOnCastExpr(): missing type or expr");
4284
4285 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4286 if (D.isInvalidType())
4287 return ExprError();
4288
4289 if (getLangOpts().CPlusPlus) {
4290 // Check that there are no default arguments (C++ only).
4291 CheckExtraCXXDefaultArguments(D);
4292 }
4293
4294 checkUnusedDeclAttributes(D);
4295
4296 QualType castType = castTInfo->getType();
4297 Ty = CreateParsedType(castType, castTInfo);
4298
4299 bool isVectorLiteral = false;
4300
4301 // Check for an altivec or OpenCL literal,
4302 // i.e. all the elements are integer constants.
4303 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4304 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4305 if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4306 && castType->isVectorType() && (PE || PLE)) {
4307 if (PLE && PLE->getNumExprs() == 0) {
4308 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4309 return ExprError();
4310 }
4311 if (PE || PLE->getNumExprs() == 1) {
4312 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4313 if (!E->getType()->isVectorType())
4314 isVectorLiteral = true;
4315 }
4316 else
4317 isVectorLiteral = true;
4318 }
4319
4320 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4321 // then handle it as such.
4322 if (isVectorLiteral)
4323 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4324
4325 // If the Expr being casted is a ParenListExpr, handle it specially.
4326 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4327 // sequence of BinOp comma operators.
4328 if (isa<ParenListExpr>(CastExpr)) {
4329 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4330 if (Result.isInvalid()) return ExprError();
4331 CastExpr = Result.take();
4332 }
4333
4334 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4335 }
4336
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)4337 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4338 SourceLocation RParenLoc, Expr *E,
4339 TypeSourceInfo *TInfo) {
4340 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4341 "Expected paren or paren list expression");
4342
4343 Expr **exprs;
4344 unsigned numExprs;
4345 Expr *subExpr;
4346 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4347 exprs = PE->getExprs();
4348 numExprs = PE->getNumExprs();
4349 } else {
4350 subExpr = cast<ParenExpr>(E)->getSubExpr();
4351 exprs = &subExpr;
4352 numExprs = 1;
4353 }
4354
4355 QualType Ty = TInfo->getType();
4356 assert(Ty->isVectorType() && "Expected vector type");
4357
4358 SmallVector<Expr *, 8> initExprs;
4359 const VectorType *VTy = Ty->getAs<VectorType>();
4360 unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4361
4362 // '(...)' form of vector initialization in AltiVec: the number of
4363 // initializers must be one or must match the size of the vector.
4364 // If a single value is specified in the initializer then it will be
4365 // replicated to all the components of the vector
4366 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4367 // The number of initializers must be one or must match the size of the
4368 // vector. If a single value is specified in the initializer then it will
4369 // be replicated to all the components of the vector
4370 if (numExprs == 1) {
4371 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4372 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4373 if (Literal.isInvalid())
4374 return ExprError();
4375 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4376 PrepareScalarCast(Literal, ElemTy));
4377 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4378 }
4379 else if (numExprs < numElems) {
4380 Diag(E->getExprLoc(),
4381 diag::err_incorrect_number_of_vector_initializers);
4382 return ExprError();
4383 }
4384 else
4385 initExprs.append(exprs, exprs + numExprs);
4386 }
4387 else {
4388 // For OpenCL, when the number of initializers is a single value,
4389 // it will be replicated to all components of the vector.
4390 if (getLangOpts().OpenCL &&
4391 VTy->getVectorKind() == VectorType::GenericVector &&
4392 numExprs == 1) {
4393 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4394 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4395 if (Literal.isInvalid())
4396 return ExprError();
4397 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4398 PrepareScalarCast(Literal, ElemTy));
4399 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4400 }
4401
4402 initExprs.append(exprs, exprs + numExprs);
4403 }
4404 // FIXME: This means that pretty-printing the final AST will produce curly
4405 // braces instead of the original commas.
4406 InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4407 &initExprs[0],
4408 initExprs.size(), RParenLoc);
4409 initE->setType(Ty);
4410 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4411 }
4412
4413 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4414 /// the ParenListExpr into a sequence of comma binary operators.
4415 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)4416 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4417 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4418 if (!E)
4419 return Owned(OrigExpr);
4420
4421 ExprResult Result(E->getExpr(0));
4422
4423 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4424 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4425 E->getExpr(i));
4426
4427 if (Result.isInvalid()) return ExprError();
4428
4429 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4430 }
4431
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)4432 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4433 SourceLocation R,
4434 MultiExprArg Val) {
4435 unsigned nexprs = Val.size();
4436 Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4437 assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4438 Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4439 return Owned(expr);
4440 }
4441
4442 /// \brief Emit a specialized diagnostic when one expression is a null pointer
4443 /// constant and the other is not a pointer. Returns true if a diagnostic is
4444 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)4445 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4446 SourceLocation QuestionLoc) {
4447 Expr *NullExpr = LHSExpr;
4448 Expr *NonPointerExpr = RHSExpr;
4449 Expr::NullPointerConstantKind NullKind =
4450 NullExpr->isNullPointerConstant(Context,
4451 Expr::NPC_ValueDependentIsNotNull);
4452
4453 if (NullKind == Expr::NPCK_NotNull) {
4454 NullExpr = RHSExpr;
4455 NonPointerExpr = LHSExpr;
4456 NullKind =
4457 NullExpr->isNullPointerConstant(Context,
4458 Expr::NPC_ValueDependentIsNotNull);
4459 }
4460
4461 if (NullKind == Expr::NPCK_NotNull)
4462 return false;
4463
4464 if (NullKind == Expr::NPCK_ZeroInteger) {
4465 // In this case, check to make sure that we got here from a "NULL"
4466 // string in the source code.
4467 NullExpr = NullExpr->IgnoreParenImpCasts();
4468 SourceLocation loc = NullExpr->getExprLoc();
4469 if (!findMacroSpelling(loc, "NULL"))
4470 return false;
4471 }
4472
4473 int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4474 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4475 << NonPointerExpr->getType() << DiagType
4476 << NonPointerExpr->getSourceRange();
4477 return true;
4478 }
4479
4480 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond)4481 static bool checkCondition(Sema &S, Expr *Cond) {
4482 QualType CondTy = Cond->getType();
4483
4484 // C99 6.5.15p2
4485 if (CondTy->isScalarType()) return false;
4486
4487 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4488 if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4489 return false;
4490
4491 // Emit the proper error message.
4492 S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4493 diag::err_typecheck_cond_expect_scalar :
4494 diag::err_typecheck_cond_expect_scalar_or_vector)
4495 << CondTy;
4496 return true;
4497 }
4498
4499 /// \brief Return false if the two expressions can be converted to a vector,
4500 /// true otherwise
checkConditionalConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy)4501 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4502 ExprResult &RHS,
4503 QualType CondTy) {
4504 // Both operands should be of scalar type.
4505 if (!LHS.get()->getType()->isScalarType()) {
4506 S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4507 << CondTy;
4508 return true;
4509 }
4510 if (!RHS.get()->getType()->isScalarType()) {
4511 S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4512 << CondTy;
4513 return true;
4514 }
4515
4516 // Implicity convert these scalars to the type of the condition.
4517 LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4518 RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4519 return false;
4520 }
4521
4522 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)4523 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4524 ExprResult &RHS) {
4525 Expr *LHSExpr = LHS.get();
4526 Expr *RHSExpr = RHS.get();
4527
4528 if (!LHSExpr->getType()->isVoidType())
4529 S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4530 << RHSExpr->getSourceRange();
4531 if (!RHSExpr->getType()->isVoidType())
4532 S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4533 << LHSExpr->getSourceRange();
4534 LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4535 RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4536 return S.Context.VoidTy;
4537 }
4538
4539 /// \brief Return false if the NullExpr can be promoted to PointerTy,
4540 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)4541 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4542 QualType PointerTy) {
4543 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4544 !NullExpr.get()->isNullPointerConstant(S.Context,
4545 Expr::NPC_ValueDependentIsNull))
4546 return true;
4547
4548 NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4549 return false;
4550 }
4551
4552 /// \brief Checks compatibility between two pointers and return the resulting
4553 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4554 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4555 ExprResult &RHS,
4556 SourceLocation Loc) {
4557 QualType LHSTy = LHS.get()->getType();
4558 QualType RHSTy = RHS.get()->getType();
4559
4560 if (S.Context.hasSameType(LHSTy, RHSTy)) {
4561 // Two identical pointers types are always compatible.
4562 return LHSTy;
4563 }
4564
4565 QualType lhptee, rhptee;
4566
4567 // Get the pointee types.
4568 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4569 lhptee = LHSBTy->getPointeeType();
4570 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4571 } else {
4572 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4573 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4574 }
4575
4576 // C99 6.5.15p6: If both operands are pointers to compatible types or to
4577 // differently qualified versions of compatible types, the result type is
4578 // a pointer to an appropriately qualified version of the composite
4579 // type.
4580
4581 // Only CVR-qualifiers exist in the standard, and the differently-qualified
4582 // clause doesn't make sense for our extensions. E.g. address space 2 should
4583 // be incompatible with address space 3: they may live on different devices or
4584 // anything.
4585 Qualifiers lhQual = lhptee.getQualifiers();
4586 Qualifiers rhQual = rhptee.getQualifiers();
4587
4588 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4589 lhQual.removeCVRQualifiers();
4590 rhQual.removeCVRQualifiers();
4591
4592 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4593 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4594
4595 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4596
4597 if (CompositeTy.isNull()) {
4598 S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4599 << LHSTy << RHSTy << LHS.get()->getSourceRange()
4600 << RHS.get()->getSourceRange();
4601 // In this situation, we assume void* type. No especially good
4602 // reason, but this is what gcc does, and we do have to pick
4603 // to get a consistent AST.
4604 QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4605 LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4606 RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4607 return incompatTy;
4608 }
4609
4610 // The pointer types are compatible.
4611 QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4612 ResultTy = S.Context.getPointerType(ResultTy);
4613
4614 LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4615 RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4616 return ResultTy;
4617 }
4618
4619 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4620 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4621 ExprResult &LHS,
4622 ExprResult &RHS,
4623 SourceLocation Loc) {
4624 QualType LHSTy = LHS.get()->getType();
4625 QualType RHSTy = RHS.get()->getType();
4626
4627 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4628 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4629 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4630 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4631 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4632 return destType;
4633 }
4634 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4635 << LHSTy << RHSTy << LHS.get()->getSourceRange()
4636 << RHS.get()->getSourceRange();
4637 return QualType();
4638 }
4639
4640 // We have 2 block pointer types.
4641 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4642 }
4643
4644 /// \brief Return the resulting type when the operands are both pointers.
4645 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4646 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4647 ExprResult &RHS,
4648 SourceLocation Loc) {
4649 // get the pointer types
4650 QualType LHSTy = LHS.get()->getType();
4651 QualType RHSTy = RHS.get()->getType();
4652
4653 // get the "pointed to" types
4654 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4655 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4656
4657 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4658 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4659 // Figure out necessary qualifiers (C99 6.5.15p6)
4660 QualType destPointee
4661 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4662 QualType destType = S.Context.getPointerType(destPointee);
4663 // Add qualifiers if necessary.
4664 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4665 // Promote to void*.
4666 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4667 return destType;
4668 }
4669 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4670 QualType destPointee
4671 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4672 QualType destType = S.Context.getPointerType(destPointee);
4673 // Add qualifiers if necessary.
4674 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4675 // Promote to void*.
4676 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4677 return destType;
4678 }
4679
4680 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4681 }
4682
4683 /// \brief Return false if the first expression is not an integer and the second
4684 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)4685 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4686 Expr* PointerExpr, SourceLocation Loc,
4687 bool IsIntFirstExpr) {
4688 if (!PointerExpr->getType()->isPointerType() ||
4689 !Int.get()->getType()->isIntegerType())
4690 return false;
4691
4692 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4693 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4694
4695 S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4696 << Expr1->getType() << Expr2->getType()
4697 << Expr1->getSourceRange() << Expr2->getSourceRange();
4698 Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4699 CK_IntegralToPointer);
4700 return true;
4701 }
4702
4703 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4704 /// In that case, LHS = cond.
4705 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4706 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4707 ExprResult &RHS, ExprValueKind &VK,
4708 ExprObjectKind &OK,
4709 SourceLocation QuestionLoc) {
4710
4711 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4712 if (!LHSResult.isUsable()) return QualType();
4713 LHS = move(LHSResult);
4714
4715 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4716 if (!RHSResult.isUsable()) return QualType();
4717 RHS = move(RHSResult);
4718
4719 // C++ is sufficiently different to merit its own checker.
4720 if (getLangOpts().CPlusPlus)
4721 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4722
4723 VK = VK_RValue;
4724 OK = OK_Ordinary;
4725
4726 Cond = UsualUnaryConversions(Cond.take());
4727 if (Cond.isInvalid())
4728 return QualType();
4729 LHS = UsualUnaryConversions(LHS.take());
4730 if (LHS.isInvalid())
4731 return QualType();
4732 RHS = UsualUnaryConversions(RHS.take());
4733 if (RHS.isInvalid())
4734 return QualType();
4735
4736 QualType CondTy = Cond.get()->getType();
4737 QualType LHSTy = LHS.get()->getType();
4738 QualType RHSTy = RHS.get()->getType();
4739
4740 // first, check the condition.
4741 if (checkCondition(*this, Cond.get()))
4742 return QualType();
4743
4744 // Now check the two expressions.
4745 if (LHSTy->isVectorType() || RHSTy->isVectorType())
4746 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4747
4748 // OpenCL: If the condition is a vector, and both operands are scalar,
4749 // attempt to implicity convert them to the vector type to act like the
4750 // built in select.
4751 if (getLangOpts().OpenCL && CondTy->isVectorType())
4752 if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4753 return QualType();
4754
4755 // If both operands have arithmetic type, do the usual arithmetic conversions
4756 // to find a common type: C99 6.5.15p3,5.
4757 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4758 UsualArithmeticConversions(LHS, RHS);
4759 if (LHS.isInvalid() || RHS.isInvalid())
4760 return QualType();
4761 return LHS.get()->getType();
4762 }
4763
4764 // If both operands are the same structure or union type, the result is that
4765 // type.
4766 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
4767 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4768 if (LHSRT->getDecl() == RHSRT->getDecl())
4769 // "If both the operands have structure or union type, the result has
4770 // that type." This implies that CV qualifiers are dropped.
4771 return LHSTy.getUnqualifiedType();
4772 // FIXME: Type of conditional expression must be complete in C mode.
4773 }
4774
4775 // C99 6.5.15p5: "If both operands have void type, the result has void type."
4776 // The following || allows only one side to be void (a GCC-ism).
4777 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4778 return checkConditionalVoidType(*this, LHS, RHS);
4779 }
4780
4781 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4782 // the type of the other operand."
4783 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4784 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4785
4786 // All objective-c pointer type analysis is done here.
4787 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4788 QuestionLoc);
4789 if (LHS.isInvalid() || RHS.isInvalid())
4790 return QualType();
4791 if (!compositeType.isNull())
4792 return compositeType;
4793
4794
4795 // Handle block pointer types.
4796 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4797 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4798 QuestionLoc);
4799
4800 // Check constraints for C object pointers types (C99 6.5.15p3,6).
4801 if (LHSTy->isPointerType() && RHSTy->isPointerType())
4802 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4803 QuestionLoc);
4804
4805 // GCC compatibility: soften pointer/integer mismatch. Note that
4806 // null pointers have been filtered out by this point.
4807 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4808 /*isIntFirstExpr=*/true))
4809 return RHSTy;
4810 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4811 /*isIntFirstExpr=*/false))
4812 return LHSTy;
4813
4814 // Emit a better diagnostic if one of the expressions is a null pointer
4815 // constant and the other is not a pointer type. In this case, the user most
4816 // likely forgot to take the address of the other expression.
4817 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4818 return QualType();
4819
4820 // Otherwise, the operands are not compatible.
4821 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4822 << LHSTy << RHSTy << LHS.get()->getSourceRange()
4823 << RHS.get()->getSourceRange();
4824 return QualType();
4825 }
4826
4827 /// FindCompositeObjCPointerType - Helper method to find composite type of
4828 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4829 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4830 SourceLocation QuestionLoc) {
4831 QualType LHSTy = LHS.get()->getType();
4832 QualType RHSTy = RHS.get()->getType();
4833
4834 // Handle things like Class and struct objc_class*. Here we case the result
4835 // to the pseudo-builtin, because that will be implicitly cast back to the
4836 // redefinition type if an attempt is made to access its fields.
4837 if (LHSTy->isObjCClassType() &&
4838 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
4839 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4840 return LHSTy;
4841 }
4842 if (RHSTy->isObjCClassType() &&
4843 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
4844 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4845 return RHSTy;
4846 }
4847 // And the same for struct objc_object* / id
4848 if (LHSTy->isObjCIdType() &&
4849 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
4850 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4851 return LHSTy;
4852 }
4853 if (RHSTy->isObjCIdType() &&
4854 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
4855 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4856 return RHSTy;
4857 }
4858 // And the same for struct objc_selector* / SEL
4859 if (Context.isObjCSelType(LHSTy) &&
4860 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
4861 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4862 return LHSTy;
4863 }
4864 if (Context.isObjCSelType(RHSTy) &&
4865 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
4866 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4867 return RHSTy;
4868 }
4869 // Check constraints for Objective-C object pointers types.
4870 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4871
4872 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4873 // Two identical object pointer types are always compatible.
4874 return LHSTy;
4875 }
4876 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
4877 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
4878 QualType compositeType = LHSTy;
4879
4880 // If both operands are interfaces and either operand can be
4881 // assigned to the other, use that type as the composite
4882 // type. This allows
4883 // xxx ? (A*) a : (B*) b
4884 // where B is a subclass of A.
4885 //
4886 // Additionally, as for assignment, if either type is 'id'
4887 // allow silent coercion. Finally, if the types are
4888 // incompatible then make sure to use 'id' as the composite
4889 // type so the result is acceptable for sending messages to.
4890
4891 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4892 // It could return the composite type.
4893 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4894 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4895 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4896 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4897 } else if ((LHSTy->isObjCQualifiedIdType() ||
4898 RHSTy->isObjCQualifiedIdType()) &&
4899 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4900 // Need to handle "id<xx>" explicitly.
4901 // GCC allows qualified id and any Objective-C type to devolve to
4902 // id. Currently localizing to here until clear this should be
4903 // part of ObjCQualifiedIdTypesAreCompatible.
4904 compositeType = Context.getObjCIdType();
4905 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4906 compositeType = Context.getObjCIdType();
4907 } else if (!(compositeType =
4908 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4909 ;
4910 else {
4911 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4912 << LHSTy << RHSTy
4913 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4914 QualType incompatTy = Context.getObjCIdType();
4915 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4916 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4917 return incompatTy;
4918 }
4919 // The object pointer types are compatible.
4920 LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
4921 RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
4922 return compositeType;
4923 }
4924 // Check Objective-C object pointer types and 'void *'
4925 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4926 if (getLangOpts().ObjCAutoRefCount) {
4927 // ARC forbids the implicit conversion of object pointers to 'void *',
4928 // so these types are not compatible.
4929 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4930 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4931 LHS = RHS = true;
4932 return QualType();
4933 }
4934 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4935 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4936 QualType destPointee
4937 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4938 QualType destType = Context.getPointerType(destPointee);
4939 // Add qualifiers if necessary.
4940 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4941 // Promote to void*.
4942 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4943 return destType;
4944 }
4945 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4946 if (getLangOpts().ObjCAutoRefCount) {
4947 // ARC forbids the implicit conversion of object pointers to 'void *',
4948 // so these types are not compatible.
4949 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4950 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4951 LHS = RHS = true;
4952 return QualType();
4953 }
4954 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4955 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4956 QualType destPointee
4957 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4958 QualType destType = Context.getPointerType(destPointee);
4959 // Add qualifiers if necessary.
4960 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4961 // Promote to void*.
4962 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4963 return destType;
4964 }
4965 return QualType();
4966 }
4967
4968 /// SuggestParentheses - Emit a note with a fixit hint that wraps
4969 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)4970 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
4971 const PartialDiagnostic &Note,
4972 SourceRange ParenRange) {
4973 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
4974 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
4975 EndLoc.isValid()) {
4976 Self.Diag(Loc, Note)
4977 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
4978 << FixItHint::CreateInsertion(EndLoc, ")");
4979 } else {
4980 // We can't display the parentheses, so just show the bare note.
4981 Self.Diag(Loc, Note) << ParenRange;
4982 }
4983 }
4984
IsArithmeticOp(BinaryOperatorKind Opc)4985 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
4986 return Opc >= BO_Mul && Opc <= BO_Shr;
4987 }
4988
4989 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
4990 /// expression, either using a built-in or overloaded operator,
4991 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
4992 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)4993 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
4994 Expr **RHSExprs) {
4995 // Don't strip parenthesis: we should not warn if E is in parenthesis.
4996 E = E->IgnoreImpCasts();
4997 E = E->IgnoreConversionOperator();
4998 E = E->IgnoreImpCasts();
4999
5000 // Built-in binary operator.
5001 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5002 if (IsArithmeticOp(OP->getOpcode())) {
5003 *Opcode = OP->getOpcode();
5004 *RHSExprs = OP->getRHS();
5005 return true;
5006 }
5007 }
5008
5009 // Overloaded operator.
5010 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5011 if (Call->getNumArgs() != 2)
5012 return false;
5013
5014 // Make sure this is really a binary operator that is safe to pass into
5015 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5016 OverloadedOperatorKind OO = Call->getOperator();
5017 if (OO < OO_Plus || OO > OO_Arrow)
5018 return false;
5019
5020 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5021 if (IsArithmeticOp(OpKind)) {
5022 *Opcode = OpKind;
5023 *RHSExprs = Call->getArg(1);
5024 return true;
5025 }
5026 }
5027
5028 return false;
5029 }
5030
IsLogicOp(BinaryOperatorKind Opc)5031 static bool IsLogicOp(BinaryOperatorKind Opc) {
5032 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5033 }
5034
5035 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5036 /// or is a logical expression such as (x==y) which has int type, but is
5037 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)5038 static bool ExprLooksBoolean(Expr *E) {
5039 E = E->IgnoreParenImpCasts();
5040
5041 if (E->getType()->isBooleanType())
5042 return true;
5043 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5044 return IsLogicOp(OP->getOpcode());
5045 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5046 return OP->getOpcode() == UO_LNot;
5047
5048 return false;
5049 }
5050
5051 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5052 /// and binary operator are mixed in a way that suggests the programmer assumed
5053 /// the conditional operator has higher precedence, for example:
5054 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)5055 static void DiagnoseConditionalPrecedence(Sema &Self,
5056 SourceLocation OpLoc,
5057 Expr *Condition,
5058 Expr *LHSExpr,
5059 Expr *RHSExpr) {
5060 BinaryOperatorKind CondOpcode;
5061 Expr *CondRHS;
5062
5063 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5064 return;
5065 if (!ExprLooksBoolean(CondRHS))
5066 return;
5067
5068 // The condition is an arithmetic binary expression, with a right-
5069 // hand side that looks boolean, so warn.
5070
5071 Self.Diag(OpLoc, diag::warn_precedence_conditional)
5072 << Condition->getSourceRange()
5073 << BinaryOperator::getOpcodeStr(CondOpcode);
5074
5075 SuggestParentheses(Self, OpLoc,
5076 Self.PDiag(diag::note_precedence_conditional_silence)
5077 << BinaryOperator::getOpcodeStr(CondOpcode),
5078 SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5079
5080 SuggestParentheses(Self, OpLoc,
5081 Self.PDiag(diag::note_precedence_conditional_first),
5082 SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5083 }
5084
5085 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5086 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)5087 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5088 SourceLocation ColonLoc,
5089 Expr *CondExpr, Expr *LHSExpr,
5090 Expr *RHSExpr) {
5091 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5092 // was the condition.
5093 OpaqueValueExpr *opaqueValue = 0;
5094 Expr *commonExpr = 0;
5095 if (LHSExpr == 0) {
5096 commonExpr = CondExpr;
5097
5098 // We usually want to apply unary conversions *before* saving, except
5099 // in the special case of a C++ l-value conditional.
5100 if (!(getLangOpts().CPlusPlus
5101 && !commonExpr->isTypeDependent()
5102 && commonExpr->getValueKind() == RHSExpr->getValueKind()
5103 && commonExpr->isGLValue()
5104 && commonExpr->isOrdinaryOrBitFieldObject()
5105 && RHSExpr->isOrdinaryOrBitFieldObject()
5106 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5107 ExprResult commonRes = UsualUnaryConversions(commonExpr);
5108 if (commonRes.isInvalid())
5109 return ExprError();
5110 commonExpr = commonRes.take();
5111 }
5112
5113 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5114 commonExpr->getType(),
5115 commonExpr->getValueKind(),
5116 commonExpr->getObjectKind(),
5117 commonExpr);
5118 LHSExpr = CondExpr = opaqueValue;
5119 }
5120
5121 ExprValueKind VK = VK_RValue;
5122 ExprObjectKind OK = OK_Ordinary;
5123 ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5124 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5125 VK, OK, QuestionLoc);
5126 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5127 RHS.isInvalid())
5128 return ExprError();
5129
5130 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5131 RHS.get());
5132
5133 if (!commonExpr)
5134 return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5135 LHS.take(), ColonLoc,
5136 RHS.take(), result, VK, OK));
5137
5138 return Owned(new (Context)
5139 BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5140 RHS.take(), QuestionLoc, ColonLoc, result, VK,
5141 OK));
5142 }
5143
5144 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5145 // being closely modeled after the C99 spec:-). The odd characteristic of this
5146 // routine is it effectively iqnores the qualifiers on the top level pointee.
5147 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5148 // FIXME: add a couple examples in this comment.
5149 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5150 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5151 assert(LHSType.isCanonical() && "LHS not canonicalized!");
5152 assert(RHSType.isCanonical() && "RHS not canonicalized!");
5153
5154 // get the "pointed to" type (ignoring qualifiers at the top level)
5155 const Type *lhptee, *rhptee;
5156 Qualifiers lhq, rhq;
5157 llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5158 llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5159
5160 Sema::AssignConvertType ConvTy = Sema::Compatible;
5161
5162 // C99 6.5.16.1p1: This following citation is common to constraints
5163 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5164 // qualifiers of the type *pointed to* by the right;
5165 Qualifiers lq;
5166
5167 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5168 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5169 lhq.compatiblyIncludesObjCLifetime(rhq)) {
5170 // Ignore lifetime for further calculation.
5171 lhq.removeObjCLifetime();
5172 rhq.removeObjCLifetime();
5173 }
5174
5175 if (!lhq.compatiblyIncludes(rhq)) {
5176 // Treat address-space mismatches as fatal. TODO: address subspaces
5177 if (lhq.getAddressSpace() != rhq.getAddressSpace())
5178 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5179
5180 // It's okay to add or remove GC or lifetime qualifiers when converting to
5181 // and from void*.
5182 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5183 .compatiblyIncludes(
5184 rhq.withoutObjCGCAttr().withoutObjCLifetime())
5185 && (lhptee->isVoidType() || rhptee->isVoidType()))
5186 ; // keep old
5187
5188 // Treat lifetime mismatches as fatal.
5189 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5190 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5191
5192 // For GCC compatibility, other qualifier mismatches are treated
5193 // as still compatible in C.
5194 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5195 }
5196
5197 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5198 // incomplete type and the other is a pointer to a qualified or unqualified
5199 // version of void...
5200 if (lhptee->isVoidType()) {
5201 if (rhptee->isIncompleteOrObjectType())
5202 return ConvTy;
5203
5204 // As an extension, we allow cast to/from void* to function pointer.
5205 assert(rhptee->isFunctionType());
5206 return Sema::FunctionVoidPointer;
5207 }
5208
5209 if (rhptee->isVoidType()) {
5210 if (lhptee->isIncompleteOrObjectType())
5211 return ConvTy;
5212
5213 // As an extension, we allow cast to/from void* to function pointer.
5214 assert(lhptee->isFunctionType());
5215 return Sema::FunctionVoidPointer;
5216 }
5217
5218 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5219 // unqualified versions of compatible types, ...
5220 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5221 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5222 // Check if the pointee types are compatible ignoring the sign.
5223 // We explicitly check for char so that we catch "char" vs
5224 // "unsigned char" on systems where "char" is unsigned.
5225 if (lhptee->isCharType())
5226 ltrans = S.Context.UnsignedCharTy;
5227 else if (lhptee->hasSignedIntegerRepresentation())
5228 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5229
5230 if (rhptee->isCharType())
5231 rtrans = S.Context.UnsignedCharTy;
5232 else if (rhptee->hasSignedIntegerRepresentation())
5233 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5234
5235 if (ltrans == rtrans) {
5236 // Types are compatible ignoring the sign. Qualifier incompatibility
5237 // takes priority over sign incompatibility because the sign
5238 // warning can be disabled.
5239 if (ConvTy != Sema::Compatible)
5240 return ConvTy;
5241
5242 return Sema::IncompatiblePointerSign;
5243 }
5244
5245 // If we are a multi-level pointer, it's possible that our issue is simply
5246 // one of qualification - e.g. char ** -> const char ** is not allowed. If
5247 // the eventual target type is the same and the pointers have the same
5248 // level of indirection, this must be the issue.
5249 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5250 do {
5251 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5252 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5253 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5254
5255 if (lhptee == rhptee)
5256 return Sema::IncompatibleNestedPointerQualifiers;
5257 }
5258
5259 // General pointer incompatibility takes priority over qualifiers.
5260 return Sema::IncompatiblePointer;
5261 }
5262 if (!S.getLangOpts().CPlusPlus &&
5263 S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5264 return Sema::IncompatiblePointer;
5265 return ConvTy;
5266 }
5267
5268 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5269 /// block pointer types are compatible or whether a block and normal pointer
5270 /// are compatible. It is more restrict than comparing two function pointer
5271 // types.
5272 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5273 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5274 QualType RHSType) {
5275 assert(LHSType.isCanonical() && "LHS not canonicalized!");
5276 assert(RHSType.isCanonical() && "RHS not canonicalized!");
5277
5278 QualType lhptee, rhptee;
5279
5280 // get the "pointed to" type (ignoring qualifiers at the top level)
5281 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5282 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5283
5284 // In C++, the types have to match exactly.
5285 if (S.getLangOpts().CPlusPlus)
5286 return Sema::IncompatibleBlockPointer;
5287
5288 Sema::AssignConvertType ConvTy = Sema::Compatible;
5289
5290 // For blocks we enforce that qualifiers are identical.
5291 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5292 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5293
5294 if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5295 return Sema::IncompatibleBlockPointer;
5296
5297 return ConvTy;
5298 }
5299
5300 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5301 /// for assignment compatibility.
5302 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5303 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5304 QualType RHSType) {
5305 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5306 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5307
5308 if (LHSType->isObjCBuiltinType()) {
5309 // Class is not compatible with ObjC object pointers.
5310 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5311 !RHSType->isObjCQualifiedClassType())
5312 return Sema::IncompatiblePointer;
5313 return Sema::Compatible;
5314 }
5315 if (RHSType->isObjCBuiltinType()) {
5316 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5317 !LHSType->isObjCQualifiedClassType())
5318 return Sema::IncompatiblePointer;
5319 return Sema::Compatible;
5320 }
5321 QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5322 QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5323
5324 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5325 // make an exception for id<P>
5326 !LHSType->isObjCQualifiedIdType())
5327 return Sema::CompatiblePointerDiscardsQualifiers;
5328
5329 if (S.Context.typesAreCompatible(LHSType, RHSType))
5330 return Sema::Compatible;
5331 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5332 return Sema::IncompatibleObjCQualifiedId;
5333 return Sema::IncompatiblePointer;
5334 }
5335
5336 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)5337 Sema::CheckAssignmentConstraints(SourceLocation Loc,
5338 QualType LHSType, QualType RHSType) {
5339 // Fake up an opaque expression. We don't actually care about what
5340 // cast operations are required, so if CheckAssignmentConstraints
5341 // adds casts to this they'll be wasted, but fortunately that doesn't
5342 // usually happen on valid code.
5343 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5344 ExprResult RHSPtr = &RHSExpr;
5345 CastKind K = CK_Invalid;
5346
5347 return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5348 }
5349
5350 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5351 /// has code to accommodate several GCC extensions when type checking
5352 /// pointers. Here are some objectionable examples that GCC considers warnings:
5353 ///
5354 /// int a, *pint;
5355 /// short *pshort;
5356 /// struct foo *pfoo;
5357 ///
5358 /// pint = pshort; // warning: assignment from incompatible pointer type
5359 /// a = pint; // warning: assignment makes integer from pointer without a cast
5360 /// pint = a; // warning: assignment makes pointer from integer without a cast
5361 /// pint = pfoo; // warning: assignment from incompatible pointer type
5362 ///
5363 /// As a result, the code for dealing with pointers is more complex than the
5364 /// C99 spec dictates.
5365 ///
5366 /// Sets 'Kind' for any result kind except Incompatible.
5367 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind)5368 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5369 CastKind &Kind) {
5370 QualType RHSType = RHS.get()->getType();
5371 QualType OrigLHSType = LHSType;
5372
5373 // Get canonical types. We're not formatting these types, just comparing
5374 // them.
5375 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5376 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5377
5378
5379 // Common case: no conversion required.
5380 if (LHSType == RHSType) {
5381 Kind = CK_NoOp;
5382 return Compatible;
5383 }
5384
5385 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5386 if (AtomicTy->getValueType() == RHSType) {
5387 Kind = CK_NonAtomicToAtomic;
5388 return Compatible;
5389 }
5390 }
5391
5392 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(RHSType)) {
5393 if (AtomicTy->getValueType() == LHSType) {
5394 Kind = CK_AtomicToNonAtomic;
5395 return Compatible;
5396 }
5397 }
5398
5399
5400 // If the left-hand side is a reference type, then we are in a
5401 // (rare!) case where we've allowed the use of references in C,
5402 // e.g., as a parameter type in a built-in function. In this case,
5403 // just make sure that the type referenced is compatible with the
5404 // right-hand side type. The caller is responsible for adjusting
5405 // LHSType so that the resulting expression does not have reference
5406 // type.
5407 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5408 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5409 Kind = CK_LValueBitCast;
5410 return Compatible;
5411 }
5412 return Incompatible;
5413 }
5414
5415 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5416 // to the same ExtVector type.
5417 if (LHSType->isExtVectorType()) {
5418 if (RHSType->isExtVectorType())
5419 return Incompatible;
5420 if (RHSType->isArithmeticType()) {
5421 // CK_VectorSplat does T -> vector T, so first cast to the
5422 // element type.
5423 QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5424 if (elType != RHSType) {
5425 Kind = PrepareScalarCast(RHS, elType);
5426 RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5427 }
5428 Kind = CK_VectorSplat;
5429 return Compatible;
5430 }
5431 }
5432
5433 // Conversions to or from vector type.
5434 if (LHSType->isVectorType() || RHSType->isVectorType()) {
5435 if (LHSType->isVectorType() && RHSType->isVectorType()) {
5436 // Allow assignments of an AltiVec vector type to an equivalent GCC
5437 // vector type and vice versa
5438 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5439 Kind = CK_BitCast;
5440 return Compatible;
5441 }
5442
5443 // If we are allowing lax vector conversions, and LHS and RHS are both
5444 // vectors, the total size only needs to be the same. This is a bitcast;
5445 // no bits are changed but the result type is different.
5446 if (getLangOpts().LaxVectorConversions &&
5447 (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5448 Kind = CK_BitCast;
5449 return IncompatibleVectors;
5450 }
5451 }
5452 return Incompatible;
5453 }
5454
5455 // Arithmetic conversions.
5456 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5457 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5458 Kind = PrepareScalarCast(RHS, LHSType);
5459 return Compatible;
5460 }
5461
5462 // Conversions to normal pointers.
5463 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5464 // U* -> T*
5465 if (isa<PointerType>(RHSType)) {
5466 Kind = CK_BitCast;
5467 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5468 }
5469
5470 // int -> T*
5471 if (RHSType->isIntegerType()) {
5472 Kind = CK_IntegralToPointer; // FIXME: null?
5473 return IntToPointer;
5474 }
5475
5476 // C pointers are not compatible with ObjC object pointers,
5477 // with two exceptions:
5478 if (isa<ObjCObjectPointerType>(RHSType)) {
5479 // - conversions to void*
5480 if (LHSPointer->getPointeeType()->isVoidType()) {
5481 Kind = CK_BitCast;
5482 return Compatible;
5483 }
5484
5485 // - conversions from 'Class' to the redefinition type
5486 if (RHSType->isObjCClassType() &&
5487 Context.hasSameType(LHSType,
5488 Context.getObjCClassRedefinitionType())) {
5489 Kind = CK_BitCast;
5490 return Compatible;
5491 }
5492
5493 Kind = CK_BitCast;
5494 return IncompatiblePointer;
5495 }
5496
5497 // U^ -> void*
5498 if (RHSType->getAs<BlockPointerType>()) {
5499 if (LHSPointer->getPointeeType()->isVoidType()) {
5500 Kind = CK_BitCast;
5501 return Compatible;
5502 }
5503 }
5504
5505 return Incompatible;
5506 }
5507
5508 // Conversions to block pointers.
5509 if (isa<BlockPointerType>(LHSType)) {
5510 // U^ -> T^
5511 if (RHSType->isBlockPointerType()) {
5512 Kind = CK_BitCast;
5513 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5514 }
5515
5516 // int or null -> T^
5517 if (RHSType->isIntegerType()) {
5518 Kind = CK_IntegralToPointer; // FIXME: null
5519 return IntToBlockPointer;
5520 }
5521
5522 // id -> T^
5523 if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5524 Kind = CK_AnyPointerToBlockPointerCast;
5525 return Compatible;
5526 }
5527
5528 // void* -> T^
5529 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5530 if (RHSPT->getPointeeType()->isVoidType()) {
5531 Kind = CK_AnyPointerToBlockPointerCast;
5532 return Compatible;
5533 }
5534
5535 return Incompatible;
5536 }
5537
5538 // Conversions to Objective-C pointers.
5539 if (isa<ObjCObjectPointerType>(LHSType)) {
5540 // A* -> B*
5541 if (RHSType->isObjCObjectPointerType()) {
5542 Kind = CK_BitCast;
5543 Sema::AssignConvertType result =
5544 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5545 if (getLangOpts().ObjCAutoRefCount &&
5546 result == Compatible &&
5547 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5548 result = IncompatibleObjCWeakRef;
5549 return result;
5550 }
5551
5552 // int or null -> A*
5553 if (RHSType->isIntegerType()) {
5554 Kind = CK_IntegralToPointer; // FIXME: null
5555 return IntToPointer;
5556 }
5557
5558 // In general, C pointers are not compatible with ObjC object pointers,
5559 // with two exceptions:
5560 if (isa<PointerType>(RHSType)) {
5561 Kind = CK_CPointerToObjCPointerCast;
5562
5563 // - conversions from 'void*'
5564 if (RHSType->isVoidPointerType()) {
5565 return Compatible;
5566 }
5567
5568 // - conversions to 'Class' from its redefinition type
5569 if (LHSType->isObjCClassType() &&
5570 Context.hasSameType(RHSType,
5571 Context.getObjCClassRedefinitionType())) {
5572 return Compatible;
5573 }
5574
5575 return IncompatiblePointer;
5576 }
5577
5578 // T^ -> A*
5579 if (RHSType->isBlockPointerType()) {
5580 maybeExtendBlockObject(*this, RHS);
5581 Kind = CK_BlockPointerToObjCPointerCast;
5582 return Compatible;
5583 }
5584
5585 return Incompatible;
5586 }
5587
5588 // Conversions from pointers that are not covered by the above.
5589 if (isa<PointerType>(RHSType)) {
5590 // T* -> _Bool
5591 if (LHSType == Context.BoolTy) {
5592 Kind = CK_PointerToBoolean;
5593 return Compatible;
5594 }
5595
5596 // T* -> int
5597 if (LHSType->isIntegerType()) {
5598 Kind = CK_PointerToIntegral;
5599 return PointerToInt;
5600 }
5601
5602 return Incompatible;
5603 }
5604
5605 // Conversions from Objective-C pointers that are not covered by the above.
5606 if (isa<ObjCObjectPointerType>(RHSType)) {
5607 // T* -> _Bool
5608 if (LHSType == Context.BoolTy) {
5609 Kind = CK_PointerToBoolean;
5610 return Compatible;
5611 }
5612
5613 // T* -> int
5614 if (LHSType->isIntegerType()) {
5615 Kind = CK_PointerToIntegral;
5616 return PointerToInt;
5617 }
5618
5619 return Incompatible;
5620 }
5621
5622 // struct A -> struct B
5623 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5624 if (Context.typesAreCompatible(LHSType, RHSType)) {
5625 Kind = CK_NoOp;
5626 return Compatible;
5627 }
5628 }
5629
5630 return Incompatible;
5631 }
5632
5633 /// \brief Constructs a transparent union from an expression that is
5634 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)5635 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5636 ExprResult &EResult, QualType UnionType,
5637 FieldDecl *Field) {
5638 // Build an initializer list that designates the appropriate member
5639 // of the transparent union.
5640 Expr *E = EResult.take();
5641 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5642 &E, 1,
5643 SourceLocation());
5644 Initializer->setType(UnionType);
5645 Initializer->setInitializedFieldInUnion(Field);
5646
5647 // Build a compound literal constructing a value of the transparent
5648 // union type from this initializer list.
5649 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5650 EResult = S.Owned(
5651 new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5652 VK_RValue, Initializer, false));
5653 }
5654
5655 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)5656 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5657 ExprResult &RHS) {
5658 QualType RHSType = RHS.get()->getType();
5659
5660 // If the ArgType is a Union type, we want to handle a potential
5661 // transparent_union GCC extension.
5662 const RecordType *UT = ArgType->getAsUnionType();
5663 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5664 return Incompatible;
5665
5666 // The field to initialize within the transparent union.
5667 RecordDecl *UD = UT->getDecl();
5668 FieldDecl *InitField = 0;
5669 // It's compatible if the expression matches any of the fields.
5670 for (RecordDecl::field_iterator it = UD->field_begin(),
5671 itend = UD->field_end();
5672 it != itend; ++it) {
5673 if (it->getType()->isPointerType()) {
5674 // If the transparent union contains a pointer type, we allow:
5675 // 1) void pointer
5676 // 2) null pointer constant
5677 if (RHSType->isPointerType())
5678 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5679 RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5680 InitField = *it;
5681 break;
5682 }
5683
5684 if (RHS.get()->isNullPointerConstant(Context,
5685 Expr::NPC_ValueDependentIsNull)) {
5686 RHS = ImpCastExprToType(RHS.take(), it->getType(),
5687 CK_NullToPointer);
5688 InitField = *it;
5689 break;
5690 }
5691 }
5692
5693 CastKind Kind = CK_Invalid;
5694 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5695 == Compatible) {
5696 RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5697 InitField = *it;
5698 break;
5699 }
5700 }
5701
5702 if (!InitField)
5703 return Incompatible;
5704
5705 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5706 return Compatible;
5707 }
5708
5709 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & RHS,bool Diagnose)5710 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5711 bool Diagnose) {
5712 if (getLangOpts().CPlusPlus) {
5713 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5714 // C++ 5.17p3: If the left operand is not of class type, the
5715 // expression is implicitly converted (C++ 4) to the
5716 // cv-unqualified type of the left operand.
5717 ExprResult Res;
5718 if (Diagnose) {
5719 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5720 AA_Assigning);
5721 } else {
5722 ImplicitConversionSequence ICS =
5723 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5724 /*SuppressUserConversions=*/false,
5725 /*AllowExplicit=*/false,
5726 /*InOverloadResolution=*/false,
5727 /*CStyle=*/false,
5728 /*AllowObjCWritebackConversion=*/false);
5729 if (ICS.isFailure())
5730 return Incompatible;
5731 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5732 ICS, AA_Assigning);
5733 }
5734 if (Res.isInvalid())
5735 return Incompatible;
5736 Sema::AssignConvertType result = Compatible;
5737 if (getLangOpts().ObjCAutoRefCount &&
5738 !CheckObjCARCUnavailableWeakConversion(LHSType,
5739 RHS.get()->getType()))
5740 result = IncompatibleObjCWeakRef;
5741 RHS = move(Res);
5742 return result;
5743 }
5744
5745 // FIXME: Currently, we fall through and treat C++ classes like C
5746 // structures.
5747 // FIXME: We also fall through for atomics; not sure what should
5748 // happen there, though.
5749 }
5750
5751 // C99 6.5.16.1p1: the left operand is a pointer and the right is
5752 // a null pointer constant.
5753 if ((LHSType->isPointerType() ||
5754 LHSType->isObjCObjectPointerType() ||
5755 LHSType->isBlockPointerType())
5756 && RHS.get()->isNullPointerConstant(Context,
5757 Expr::NPC_ValueDependentIsNull)) {
5758 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5759 return Compatible;
5760 }
5761
5762 // This check seems unnatural, however it is necessary to ensure the proper
5763 // conversion of functions/arrays. If the conversion were done for all
5764 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5765 // expressions that suppress this implicit conversion (&, sizeof).
5766 //
5767 // Suppress this for references: C++ 8.5.3p5.
5768 if (!LHSType->isReferenceType()) {
5769 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5770 if (RHS.isInvalid())
5771 return Incompatible;
5772 }
5773
5774 CastKind Kind = CK_Invalid;
5775 Sema::AssignConvertType result =
5776 CheckAssignmentConstraints(LHSType, RHS, Kind);
5777
5778 // C99 6.5.16.1p2: The value of the right operand is converted to the
5779 // type of the assignment expression.
5780 // CheckAssignmentConstraints allows the left-hand side to be a reference,
5781 // so that we can use references in built-in functions even in C.
5782 // The getNonReferenceType() call makes sure that the resulting expression
5783 // does not have reference type.
5784 if (result != Incompatible && RHS.get()->getType() != LHSType)
5785 RHS = ImpCastExprToType(RHS.take(),
5786 LHSType.getNonLValueExprType(Context), Kind);
5787 return result;
5788 }
5789
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)5790 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5791 ExprResult &RHS) {
5792 Diag(Loc, diag::err_typecheck_invalid_operands)
5793 << LHS.get()->getType() << RHS.get()->getType()
5794 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5795 return QualType();
5796 }
5797
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)5798 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5799 SourceLocation Loc, bool IsCompAssign) {
5800 if (!IsCompAssign) {
5801 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5802 if (LHS.isInvalid())
5803 return QualType();
5804 }
5805 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5806 if (RHS.isInvalid())
5807 return QualType();
5808
5809 // For conversion purposes, we ignore any qualifiers.
5810 // For example, "const float" and "float" are equivalent.
5811 QualType LHSType =
5812 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5813 QualType RHSType =
5814 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5815
5816 // If the vector types are identical, return.
5817 if (LHSType == RHSType)
5818 return LHSType;
5819
5820 // Handle the case of equivalent AltiVec and GCC vector types
5821 if (LHSType->isVectorType() && RHSType->isVectorType() &&
5822 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5823 if (LHSType->isExtVectorType()) {
5824 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5825 return LHSType;
5826 }
5827
5828 if (!IsCompAssign)
5829 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
5830 return RHSType;
5831 }
5832
5833 if (getLangOpts().LaxVectorConversions &&
5834 Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
5835 // If we are allowing lax vector conversions, and LHS and RHS are both
5836 // vectors, the total size only needs to be the same. This is a
5837 // bitcast; no bits are changed but the result type is different.
5838 // FIXME: Should we really be allowing this?
5839 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5840 return LHSType;
5841 }
5842
5843 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5844 // swap back (so that we don't reverse the inputs to a subtract, for instance.
5845 bool swapped = false;
5846 if (RHSType->isExtVectorType() && !IsCompAssign) {
5847 swapped = true;
5848 std::swap(RHS, LHS);
5849 std::swap(RHSType, LHSType);
5850 }
5851
5852 // Handle the case of an ext vector and scalar.
5853 if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
5854 QualType EltTy = LV->getElementType();
5855 if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
5856 int order = Context.getIntegerTypeOrder(EltTy, RHSType);
5857 if (order > 0)
5858 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
5859 if (order >= 0) {
5860 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5861 if (swapped) std::swap(RHS, LHS);
5862 return LHSType;
5863 }
5864 }
5865 if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
5866 RHSType->isRealFloatingType()) {
5867 int order = Context.getFloatingTypeOrder(EltTy, RHSType);
5868 if (order > 0)
5869 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
5870 if (order >= 0) {
5871 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5872 if (swapped) std::swap(RHS, LHS);
5873 return LHSType;
5874 }
5875 }
5876 }
5877
5878 // Vectors of different size or scalar and non-ext-vector are errors.
5879 if (swapped) std::swap(RHS, LHS);
5880 Diag(Loc, diag::err_typecheck_vector_not_convertable)
5881 << LHS.get()->getType() << RHS.get()->getType()
5882 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5883 return QualType();
5884 }
5885
5886 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
5887 // expression. These are mainly cases where the null pointer is used as an
5888 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)5889 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
5890 SourceLocation Loc, bool IsCompare) {
5891 // The canonical way to check for a GNU null is with isNullPointerConstant,
5892 // but we use a bit of a hack here for speed; this is a relatively
5893 // hot path, and isNullPointerConstant is slow.
5894 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
5895 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
5896
5897 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
5898
5899 // Avoid analyzing cases where the result will either be invalid (and
5900 // diagnosed as such) or entirely valid and not something to warn about.
5901 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
5902 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
5903 return;
5904
5905 // Comparison operations would not make sense with a null pointer no matter
5906 // what the other expression is.
5907 if (!IsCompare) {
5908 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
5909 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
5910 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
5911 return;
5912 }
5913
5914 // The rest of the operations only make sense with a null pointer
5915 // if the other expression is a pointer.
5916 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
5917 NonNullType->canDecayToPointerType())
5918 return;
5919
5920 S.Diag(Loc, diag::warn_null_in_comparison_operation)
5921 << LHSNull /* LHS is NULL */ << NonNullType
5922 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5923 }
5924
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)5925 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
5926 SourceLocation Loc,
5927 bool IsCompAssign, bool IsDiv) {
5928 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5929
5930 if (LHS.get()->getType()->isVectorType() ||
5931 RHS.get()->getType()->isVectorType())
5932 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5933
5934 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5935 if (LHS.isInvalid() || RHS.isInvalid())
5936 return QualType();
5937
5938
5939 if (!LHS.get()->getType()->isArithmeticType() ||
5940 !RHS.get()->getType()->isArithmeticType()) {
5941 if (IsCompAssign &&
5942 LHS.get()->getType()->isAtomicType() &&
5943 RHS.get()->getType()->isArithmeticType())
5944 return compType;
5945 return InvalidOperands(Loc, LHS, RHS);
5946 }
5947
5948 // Check for division by zero.
5949 if (IsDiv &&
5950 RHS.get()->isNullPointerConstant(Context,
5951 Expr::NPC_ValueDependentIsNotNull))
5952 DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
5953 << RHS.get()->getSourceRange());
5954
5955 return compType;
5956 }
5957
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)5958 QualType Sema::CheckRemainderOperands(
5959 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
5960 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5961
5962 if (LHS.get()->getType()->isVectorType() ||
5963 RHS.get()->getType()->isVectorType()) {
5964 if (LHS.get()->getType()->hasIntegerRepresentation() &&
5965 RHS.get()->getType()->hasIntegerRepresentation())
5966 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5967 return InvalidOperands(Loc, LHS, RHS);
5968 }
5969
5970 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5971 if (LHS.isInvalid() || RHS.isInvalid())
5972 return QualType();
5973
5974 if (!LHS.get()->getType()->isIntegerType() ||
5975 !RHS.get()->getType()->isIntegerType())
5976 return InvalidOperands(Loc, LHS, RHS);
5977
5978 // Check for remainder by zero.
5979 if (RHS.get()->isNullPointerConstant(Context,
5980 Expr::NPC_ValueDependentIsNotNull))
5981 DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
5982 << RHS.get()->getSourceRange());
5983
5984 return compType;
5985 }
5986
5987 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)5988 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
5989 Expr *LHSExpr, Expr *RHSExpr) {
5990 S.Diag(Loc, S.getLangOpts().CPlusPlus
5991 ? diag::err_typecheck_pointer_arith_void_type
5992 : diag::ext_gnu_void_ptr)
5993 << 1 /* two pointers */ << LHSExpr->getSourceRange()
5994 << RHSExpr->getSourceRange();
5995 }
5996
5997 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)5998 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
5999 Expr *Pointer) {
6000 S.Diag(Loc, S.getLangOpts().CPlusPlus
6001 ? diag::err_typecheck_pointer_arith_void_type
6002 : diag::ext_gnu_void_ptr)
6003 << 0 /* one pointer */ << Pointer->getSourceRange();
6004 }
6005
6006 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6007 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6008 Expr *LHS, Expr *RHS) {
6009 assert(LHS->getType()->isAnyPointerType());
6010 assert(RHS->getType()->isAnyPointerType());
6011 S.Diag(Loc, S.getLangOpts().CPlusPlus
6012 ? diag::err_typecheck_pointer_arith_function_type
6013 : diag::ext_gnu_ptr_func_arith)
6014 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6015 // We only show the second type if it differs from the first.
6016 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6017 RHS->getType())
6018 << RHS->getType()->getPointeeType()
6019 << LHS->getSourceRange() << RHS->getSourceRange();
6020 }
6021
6022 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6023 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6024 Expr *Pointer) {
6025 assert(Pointer->getType()->isAnyPointerType());
6026 S.Diag(Loc, S.getLangOpts().CPlusPlus
6027 ? diag::err_typecheck_pointer_arith_function_type
6028 : diag::ext_gnu_ptr_func_arith)
6029 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6030 << 0 /* one pointer, so only one type */
6031 << Pointer->getSourceRange();
6032 }
6033
6034 /// \brief Emit error if Operand is incomplete pointer type
6035 ///
6036 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)6037 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6038 Expr *Operand) {
6039 if ((Operand->getType()->isPointerType() &&
6040 !Operand->getType()->isDependentType()) ||
6041 Operand->getType()->isObjCObjectPointerType()) {
6042 QualType PointeeTy = Operand->getType()->getPointeeType();
6043 if (S.RequireCompleteType(
6044 Loc, PointeeTy,
6045 S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6046 << PointeeTy << Operand->getSourceRange()))
6047 return true;
6048 }
6049 return false;
6050 }
6051
6052 /// \brief Check the validity of an arithmetic pointer operand.
6053 ///
6054 /// If the operand has pointer type, this code will check for pointer types
6055 /// which are invalid in arithmetic operations. These will be diagnosed
6056 /// appropriately, including whether or not the use is supported as an
6057 /// extension.
6058 ///
6059 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)6060 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6061 Expr *Operand) {
6062 if (!Operand->getType()->isAnyPointerType()) return true;
6063
6064 QualType PointeeTy = Operand->getType()->getPointeeType();
6065 if (PointeeTy->isVoidType()) {
6066 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6067 return !S.getLangOpts().CPlusPlus;
6068 }
6069 if (PointeeTy->isFunctionType()) {
6070 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6071 return !S.getLangOpts().CPlusPlus;
6072 }
6073
6074 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6075
6076 return true;
6077 }
6078
6079 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6080 /// operands.
6081 ///
6082 /// This routine will diagnose any invalid arithmetic on pointer operands much
6083 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
6084 /// for emitting a single diagnostic even for operations where both LHS and RHS
6085 /// are (potentially problematic) pointers.
6086 ///
6087 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6088 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6089 Expr *LHSExpr, Expr *RHSExpr) {
6090 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6091 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6092 if (!isLHSPointer && !isRHSPointer) return true;
6093
6094 QualType LHSPointeeTy, RHSPointeeTy;
6095 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6096 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6097
6098 // Check for arithmetic on pointers to incomplete types.
6099 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6100 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6101 if (isLHSVoidPtr || isRHSVoidPtr) {
6102 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6103 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6104 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6105
6106 return !S.getLangOpts().CPlusPlus;
6107 }
6108
6109 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6110 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6111 if (isLHSFuncPtr || isRHSFuncPtr) {
6112 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6113 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6114 RHSExpr);
6115 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6116
6117 return !S.getLangOpts().CPlusPlus;
6118 }
6119
6120 if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
6121 if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
6122
6123 return true;
6124 }
6125
6126 /// \brief Check bad cases where we step over interface counts.
checkArithmethicPointerOnNonFragileABI(Sema & S,SourceLocation OpLoc,Expr * Op)6127 static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
6128 SourceLocation OpLoc,
6129 Expr *Op) {
6130 assert(Op->getType()->isAnyPointerType());
6131 QualType PointeeTy = Op->getType()->getPointeeType();
6132 if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
6133 return true;
6134
6135 S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6136 << PointeeTy << Op->getSourceRange();
6137 return false;
6138 }
6139
6140 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6141 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)6142 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6143 Expr *LHSExpr, Expr *RHSExpr) {
6144 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6145 Expr* IndexExpr = RHSExpr;
6146 if (!StrExpr) {
6147 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6148 IndexExpr = LHSExpr;
6149 }
6150
6151 bool IsStringPlusInt = StrExpr &&
6152 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6153 if (!IsStringPlusInt)
6154 return;
6155
6156 llvm::APSInt index;
6157 if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6158 unsigned StrLenWithNull = StrExpr->getLength() + 1;
6159 if (index.isNonNegative() &&
6160 index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6161 index.isUnsigned()))
6162 return;
6163 }
6164
6165 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6166 Self.Diag(OpLoc, diag::warn_string_plus_int)
6167 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6168
6169 // Only print a fixit for "str" + int, not for int + "str".
6170 if (IndexExpr == RHSExpr) {
6171 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6172 Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6173 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6174 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6175 << FixItHint::CreateInsertion(EndLoc, "]");
6176 } else
6177 Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6178 }
6179
6180 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6181 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6182 Expr *LHSExpr, Expr *RHSExpr) {
6183 assert(LHSExpr->getType()->isAnyPointerType());
6184 assert(RHSExpr->getType()->isAnyPointerType());
6185 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6186 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6187 << RHSExpr->getSourceRange();
6188 }
6189
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType * CompLHSTy)6190 QualType Sema::CheckAdditionOperands( // C99 6.5.6
6191 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6192 QualType* CompLHSTy) {
6193 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6194
6195 if (LHS.get()->getType()->isVectorType() ||
6196 RHS.get()->getType()->isVectorType()) {
6197 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6198 if (CompLHSTy) *CompLHSTy = compType;
6199 return compType;
6200 }
6201
6202 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6203 if (LHS.isInvalid() || RHS.isInvalid())
6204 return QualType();
6205
6206 // Diagnose "string literal" '+' int.
6207 if (Opc == BO_Add)
6208 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6209
6210 // handle the common case first (both operands are arithmetic).
6211 if (LHS.get()->getType()->isArithmeticType() &&
6212 RHS.get()->getType()->isArithmeticType()) {
6213 if (CompLHSTy) *CompLHSTy = compType;
6214 return compType;
6215 }
6216
6217 if (LHS.get()->getType()->isAtomicType() &&
6218 RHS.get()->getType()->isArithmeticType()) {
6219 *CompLHSTy = LHS.get()->getType();
6220 return compType;
6221 }
6222
6223 // Put any potential pointer into PExp
6224 Expr* PExp = LHS.get(), *IExp = RHS.get();
6225 if (IExp->getType()->isAnyPointerType())
6226 std::swap(PExp, IExp);
6227
6228 if (!PExp->getType()->isAnyPointerType())
6229 return InvalidOperands(Loc, LHS, RHS);
6230
6231 if (!IExp->getType()->isIntegerType())
6232 return InvalidOperands(Loc, LHS, RHS);
6233
6234 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6235 return QualType();
6236
6237 // Diagnose bad cases where we step over interface counts.
6238 if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
6239 return QualType();
6240
6241 // Check array bounds for pointer arithemtic
6242 CheckArrayAccess(PExp, IExp);
6243
6244 if (CompLHSTy) {
6245 QualType LHSTy = Context.isPromotableBitField(LHS.get());
6246 if (LHSTy.isNull()) {
6247 LHSTy = LHS.get()->getType();
6248 if (LHSTy->isPromotableIntegerType())
6249 LHSTy = Context.getPromotedIntegerType(LHSTy);
6250 }
6251 *CompLHSTy = LHSTy;
6252 }
6253
6254 return PExp->getType();
6255 }
6256
6257 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)6258 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6259 SourceLocation Loc,
6260 QualType* CompLHSTy) {
6261 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6262
6263 if (LHS.get()->getType()->isVectorType() ||
6264 RHS.get()->getType()->isVectorType()) {
6265 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6266 if (CompLHSTy) *CompLHSTy = compType;
6267 return compType;
6268 }
6269
6270 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6271 if (LHS.isInvalid() || RHS.isInvalid())
6272 return QualType();
6273
6274 // Enforce type constraints: C99 6.5.6p3.
6275
6276 // Handle the common case first (both operands are arithmetic).
6277 if (LHS.get()->getType()->isArithmeticType() &&
6278 RHS.get()->getType()->isArithmeticType()) {
6279 if (CompLHSTy) *CompLHSTy = compType;
6280 return compType;
6281 }
6282
6283 if (LHS.get()->getType()->isAtomicType() &&
6284 RHS.get()->getType()->isArithmeticType()) {
6285 *CompLHSTy = LHS.get()->getType();
6286 return compType;
6287 }
6288
6289 // Either ptr - int or ptr - ptr.
6290 if (LHS.get()->getType()->isAnyPointerType()) {
6291 QualType lpointee = LHS.get()->getType()->getPointeeType();
6292
6293 // Diagnose bad cases where we step over interface counts.
6294 if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
6295 return QualType();
6296
6297 // The result type of a pointer-int computation is the pointer type.
6298 if (RHS.get()->getType()->isIntegerType()) {
6299 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6300 return QualType();
6301
6302 // Check array bounds for pointer arithemtic
6303 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6304 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6305
6306 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6307 return LHS.get()->getType();
6308 }
6309
6310 // Handle pointer-pointer subtractions.
6311 if (const PointerType *RHSPTy
6312 = RHS.get()->getType()->getAs<PointerType>()) {
6313 QualType rpointee = RHSPTy->getPointeeType();
6314
6315 if (getLangOpts().CPlusPlus) {
6316 // Pointee types must be the same: C++ [expr.add]
6317 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6318 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6319 }
6320 } else {
6321 // Pointee types must be compatible C99 6.5.6p3
6322 if (!Context.typesAreCompatible(
6323 Context.getCanonicalType(lpointee).getUnqualifiedType(),
6324 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6325 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6326 return QualType();
6327 }
6328 }
6329
6330 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6331 LHS.get(), RHS.get()))
6332 return QualType();
6333
6334 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6335 return Context.getPointerDiffType();
6336 }
6337 }
6338
6339 return InvalidOperands(Loc, LHS, RHS);
6340 }
6341
isScopedEnumerationType(QualType T)6342 static bool isScopedEnumerationType(QualType T) {
6343 if (const EnumType *ET = dyn_cast<EnumType>(T))
6344 return ET->getDecl()->isScoped();
6345 return false;
6346 }
6347
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType LHSType)6348 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6349 SourceLocation Loc, unsigned Opc,
6350 QualType LHSType) {
6351 llvm::APSInt Right;
6352 // Check right/shifter operand
6353 if (RHS.get()->isValueDependent() ||
6354 !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6355 return;
6356
6357 if (Right.isNegative()) {
6358 S.DiagRuntimeBehavior(Loc, RHS.get(),
6359 S.PDiag(diag::warn_shift_negative)
6360 << RHS.get()->getSourceRange());
6361 return;
6362 }
6363 llvm::APInt LeftBits(Right.getBitWidth(),
6364 S.Context.getTypeSize(LHS.get()->getType()));
6365 if (Right.uge(LeftBits)) {
6366 S.DiagRuntimeBehavior(Loc, RHS.get(),
6367 S.PDiag(diag::warn_shift_gt_typewidth)
6368 << RHS.get()->getSourceRange());
6369 return;
6370 }
6371 if (Opc != BO_Shl)
6372 return;
6373
6374 // When left shifting an ICE which is signed, we can check for overflow which
6375 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6376 // integers have defined behavior modulo one more than the maximum value
6377 // representable in the result type, so never warn for those.
6378 llvm::APSInt Left;
6379 if (LHS.get()->isValueDependent() ||
6380 !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6381 LHSType->hasUnsignedIntegerRepresentation())
6382 return;
6383 llvm::APInt ResultBits =
6384 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6385 if (LeftBits.uge(ResultBits))
6386 return;
6387 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6388 Result = Result.shl(Right);
6389
6390 // Print the bit representation of the signed integer as an unsigned
6391 // hexadecimal number.
6392 SmallString<40> HexResult;
6393 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6394
6395 // If we are only missing a sign bit, this is less likely to result in actual
6396 // bugs -- if the result is cast back to an unsigned type, it will have the
6397 // expected value. Thus we place this behind a different warning that can be
6398 // turned off separately if needed.
6399 if (LeftBits == ResultBits - 1) {
6400 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6401 << HexResult.str() << LHSType
6402 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6403 return;
6404 }
6405
6406 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6407 << HexResult.str() << Result.getMinSignedBits() << LHSType
6408 << Left.getBitWidth() << LHS.get()->getSourceRange()
6409 << RHS.get()->getSourceRange();
6410 }
6411
6412 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,bool IsCompAssign)6413 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6414 SourceLocation Loc, unsigned Opc,
6415 bool IsCompAssign) {
6416 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6417
6418 // C99 6.5.7p2: Each of the operands shall have integer type.
6419 if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6420 !RHS.get()->getType()->hasIntegerRepresentation())
6421 return InvalidOperands(Loc, LHS, RHS);
6422
6423 // C++0x: Don't allow scoped enums. FIXME: Use something better than
6424 // hasIntegerRepresentation() above instead of this.
6425 if (isScopedEnumerationType(LHS.get()->getType()) ||
6426 isScopedEnumerationType(RHS.get()->getType())) {
6427 return InvalidOperands(Loc, LHS, RHS);
6428 }
6429
6430 // Vector shifts promote their scalar inputs to vector type.
6431 if (LHS.get()->getType()->isVectorType() ||
6432 RHS.get()->getType()->isVectorType())
6433 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6434
6435 // Shifts don't perform usual arithmetic conversions, they just do integer
6436 // promotions on each operand. C99 6.5.7p3
6437
6438 // For the LHS, do usual unary conversions, but then reset them away
6439 // if this is a compound assignment.
6440 ExprResult OldLHS = LHS;
6441 LHS = UsualUnaryConversions(LHS.take());
6442 if (LHS.isInvalid())
6443 return QualType();
6444 QualType LHSType = LHS.get()->getType();
6445 if (IsCompAssign) LHS = OldLHS;
6446
6447 // The RHS is simpler.
6448 RHS = UsualUnaryConversions(RHS.take());
6449 if (RHS.isInvalid())
6450 return QualType();
6451
6452 // Sanity-check shift operands
6453 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6454
6455 // "The type of the result is that of the promoted left operand."
6456 return LHSType;
6457 }
6458
IsWithinTemplateSpecialization(Decl * D)6459 static bool IsWithinTemplateSpecialization(Decl *D) {
6460 if (DeclContext *DC = D->getDeclContext()) {
6461 if (isa<ClassTemplateSpecializationDecl>(DC))
6462 return true;
6463 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6464 return FD->isFunctionTemplateSpecialization();
6465 }
6466 return false;
6467 }
6468
6469 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6470 static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6471 ExprResult &RHS) {
6472 QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6473 QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6474
6475 const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6476 if (!LHSEnumType)
6477 return;
6478 const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6479 if (!RHSEnumType)
6480 return;
6481
6482 // Ignore anonymous enums.
6483 if (!LHSEnumType->getDecl()->getIdentifier())
6484 return;
6485 if (!RHSEnumType->getDecl()->getIdentifier())
6486 return;
6487
6488 if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6489 return;
6490
6491 S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6492 << LHSStrippedType << RHSStrippedType
6493 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6494 }
6495
6496 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6497 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6498 ExprResult &LHS, ExprResult &RHS,
6499 bool IsError) {
6500 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6501 : diag::ext_typecheck_comparison_of_distinct_pointers)
6502 << LHS.get()->getType() << RHS.get()->getType()
6503 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6504 }
6505
6506 /// \brief Returns false if the pointers are converted to a composite type,
6507 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6508 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6509 ExprResult &LHS, ExprResult &RHS) {
6510 // C++ [expr.rel]p2:
6511 // [...] Pointer conversions (4.10) and qualification
6512 // conversions (4.4) are performed on pointer operands (or on
6513 // a pointer operand and a null pointer constant) to bring
6514 // them to their composite pointer type. [...]
6515 //
6516 // C++ [expr.eq]p1 uses the same notion for (in)equality
6517 // comparisons of pointers.
6518
6519 // C++ [expr.eq]p2:
6520 // In addition, pointers to members can be compared, or a pointer to
6521 // member and a null pointer constant. Pointer to member conversions
6522 // (4.11) and qualification conversions (4.4) are performed to bring
6523 // them to a common type. If one operand is a null pointer constant,
6524 // the common type is the type of the other operand. Otherwise, the
6525 // common type is a pointer to member type similar (4.4) to the type
6526 // of one of the operands, with a cv-qualification signature (4.4)
6527 // that is the union of the cv-qualification signatures of the operand
6528 // types.
6529
6530 QualType LHSType = LHS.get()->getType();
6531 QualType RHSType = RHS.get()->getType();
6532 assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6533 (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6534
6535 bool NonStandardCompositeType = false;
6536 bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6537 QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6538 if (T.isNull()) {
6539 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6540 return true;
6541 }
6542
6543 if (NonStandardCompositeType)
6544 S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6545 << LHSType << RHSType << T << LHS.get()->getSourceRange()
6546 << RHS.get()->getSourceRange();
6547
6548 LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6549 RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6550 return false;
6551 }
6552
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6553 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6554 ExprResult &LHS,
6555 ExprResult &RHS,
6556 bool IsError) {
6557 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6558 : diag::ext_typecheck_comparison_of_fptr_to_void)
6559 << LHS.get()->getType() << RHS.get()->getType()
6560 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6561 }
6562
6563 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc,bool IsRelational)6564 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6565 SourceLocation Loc, unsigned OpaqueOpc,
6566 bool IsRelational) {
6567 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6568
6569 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6570
6571 // Handle vector comparisons separately.
6572 if (LHS.get()->getType()->isVectorType() ||
6573 RHS.get()->getType()->isVectorType())
6574 return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6575
6576 QualType LHSType = LHS.get()->getType();
6577 QualType RHSType = RHS.get()->getType();
6578
6579 Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6580 Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6581
6582 checkEnumComparison(*this, Loc, LHS, RHS);
6583
6584 if (!LHSType->hasFloatingRepresentation() &&
6585 !(LHSType->isBlockPointerType() && IsRelational) &&
6586 !LHS.get()->getLocStart().isMacroID() &&
6587 !RHS.get()->getLocStart().isMacroID()) {
6588 // For non-floating point types, check for self-comparisons of the form
6589 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6590 // often indicate logic errors in the program.
6591 //
6592 // NOTE: Don't warn about comparison expressions resulting from macro
6593 // expansion. Also don't warn about comparisons which are only self
6594 // comparisons within a template specialization. The warnings should catch
6595 // obvious cases in the definition of the template anyways. The idea is to
6596 // warn when the typed comparison operator will always evaluate to the same
6597 // result.
6598 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6599 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6600 if (DRL->getDecl() == DRR->getDecl() &&
6601 !IsWithinTemplateSpecialization(DRL->getDecl())) {
6602 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6603 << 0 // self-
6604 << (Opc == BO_EQ
6605 || Opc == BO_LE
6606 || Opc == BO_GE));
6607 } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6608 !DRL->getDecl()->getType()->isReferenceType() &&
6609 !DRR->getDecl()->getType()->isReferenceType()) {
6610 // what is it always going to eval to?
6611 char always_evals_to;
6612 switch(Opc) {
6613 case BO_EQ: // e.g. array1 == array2
6614 always_evals_to = 0; // false
6615 break;
6616 case BO_NE: // e.g. array1 != array2
6617 always_evals_to = 1; // true
6618 break;
6619 default:
6620 // best we can say is 'a constant'
6621 always_evals_to = 2; // e.g. array1 <= array2
6622 break;
6623 }
6624 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6625 << 1 // array
6626 << always_evals_to);
6627 }
6628 }
6629 }
6630
6631 if (isa<CastExpr>(LHSStripped))
6632 LHSStripped = LHSStripped->IgnoreParenCasts();
6633 if (isa<CastExpr>(RHSStripped))
6634 RHSStripped = RHSStripped->IgnoreParenCasts();
6635
6636 // Warn about comparisons against a string constant (unless the other
6637 // operand is null), the user probably wants strcmp.
6638 Expr *literalString = 0;
6639 Expr *literalStringStripped = 0;
6640 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6641 !RHSStripped->isNullPointerConstant(Context,
6642 Expr::NPC_ValueDependentIsNull)) {
6643 literalString = LHS.get();
6644 literalStringStripped = LHSStripped;
6645 } else if ((isa<StringLiteral>(RHSStripped) ||
6646 isa<ObjCEncodeExpr>(RHSStripped)) &&
6647 !LHSStripped->isNullPointerConstant(Context,
6648 Expr::NPC_ValueDependentIsNull)) {
6649 literalString = RHS.get();
6650 literalStringStripped = RHSStripped;
6651 }
6652
6653 if (literalString) {
6654 std::string resultComparison;
6655 switch (Opc) {
6656 case BO_LT: resultComparison = ") < 0"; break;
6657 case BO_GT: resultComparison = ") > 0"; break;
6658 case BO_LE: resultComparison = ") <= 0"; break;
6659 case BO_GE: resultComparison = ") >= 0"; break;
6660 case BO_EQ: resultComparison = ") == 0"; break;
6661 case BO_NE: resultComparison = ") != 0"; break;
6662 default: llvm_unreachable("Invalid comparison operator");
6663 }
6664
6665 DiagRuntimeBehavior(Loc, 0,
6666 PDiag(diag::warn_stringcompare)
6667 << isa<ObjCEncodeExpr>(literalStringStripped)
6668 << literalString->getSourceRange());
6669 }
6670 }
6671
6672 // C99 6.5.8p3 / C99 6.5.9p4
6673 if (LHS.get()->getType()->isArithmeticType() &&
6674 RHS.get()->getType()->isArithmeticType()) {
6675 UsualArithmeticConversions(LHS, RHS);
6676 if (LHS.isInvalid() || RHS.isInvalid())
6677 return QualType();
6678 }
6679 else {
6680 LHS = UsualUnaryConversions(LHS.take());
6681 if (LHS.isInvalid())
6682 return QualType();
6683
6684 RHS = UsualUnaryConversions(RHS.take());
6685 if (RHS.isInvalid())
6686 return QualType();
6687 }
6688
6689 LHSType = LHS.get()->getType();
6690 RHSType = RHS.get()->getType();
6691
6692 // The result of comparisons is 'bool' in C++, 'int' in C.
6693 QualType ResultTy = Context.getLogicalOperationType();
6694
6695 if (IsRelational) {
6696 if (LHSType->isRealType() && RHSType->isRealType())
6697 return ResultTy;
6698 } else {
6699 // Check for comparisons of floating point operands using != and ==.
6700 if (LHSType->hasFloatingRepresentation())
6701 CheckFloatComparison(Loc, LHS.get(), RHS.get());
6702
6703 if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
6704 return ResultTy;
6705 }
6706
6707 bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
6708 Expr::NPC_ValueDependentIsNull);
6709 bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
6710 Expr::NPC_ValueDependentIsNull);
6711
6712 // All of the following pointer-related warnings are GCC extensions, except
6713 // when handling null pointer constants.
6714 if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
6715 QualType LCanPointeeTy =
6716 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6717 QualType RCanPointeeTy =
6718 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6719
6720 if (getLangOpts().CPlusPlus) {
6721 if (LCanPointeeTy == RCanPointeeTy)
6722 return ResultTy;
6723 if (!IsRelational &&
6724 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6725 // Valid unless comparison between non-null pointer and function pointer
6726 // This is a gcc extension compatibility comparison.
6727 // In a SFINAE context, we treat this as a hard error to maintain
6728 // conformance with the C++ standard.
6729 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6730 && !LHSIsNull && !RHSIsNull) {
6731 diagnoseFunctionPointerToVoidComparison(
6732 *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
6733
6734 if (isSFINAEContext())
6735 return QualType();
6736
6737 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6738 return ResultTy;
6739 }
6740 }
6741
6742 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6743 return QualType();
6744 else
6745 return ResultTy;
6746 }
6747 // C99 6.5.9p2 and C99 6.5.8p2
6748 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6749 RCanPointeeTy.getUnqualifiedType())) {
6750 // Valid unless a relational comparison of function pointers
6751 if (IsRelational && LCanPointeeTy->isFunctionType()) {
6752 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6753 << LHSType << RHSType << LHS.get()->getSourceRange()
6754 << RHS.get()->getSourceRange();
6755 }
6756 } else if (!IsRelational &&
6757 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6758 // Valid unless comparison between non-null pointer and function pointer
6759 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6760 && !LHSIsNull && !RHSIsNull)
6761 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
6762 /*isError*/false);
6763 } else {
6764 // Invalid
6765 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
6766 }
6767 if (LCanPointeeTy != RCanPointeeTy) {
6768 if (LHSIsNull && !RHSIsNull)
6769 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6770 else
6771 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6772 }
6773 return ResultTy;
6774 }
6775
6776 if (getLangOpts().CPlusPlus) {
6777 // Comparison of nullptr_t with itself.
6778 if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
6779 return ResultTy;
6780
6781 // Comparison of pointers with null pointer constants and equality
6782 // comparisons of member pointers to null pointer constants.
6783 if (RHSIsNull &&
6784 ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
6785 (!IsRelational &&
6786 (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
6787 RHS = ImpCastExprToType(RHS.take(), LHSType,
6788 LHSType->isMemberPointerType()
6789 ? CK_NullToMemberPointer
6790 : CK_NullToPointer);
6791 return ResultTy;
6792 }
6793 if (LHSIsNull &&
6794 ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
6795 (!IsRelational &&
6796 (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
6797 LHS = ImpCastExprToType(LHS.take(), RHSType,
6798 RHSType->isMemberPointerType()
6799 ? CK_NullToMemberPointer
6800 : CK_NullToPointer);
6801 return ResultTy;
6802 }
6803
6804 // Comparison of member pointers.
6805 if (!IsRelational &&
6806 LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
6807 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6808 return QualType();
6809 else
6810 return ResultTy;
6811 }
6812
6813 // Handle scoped enumeration types specifically, since they don't promote
6814 // to integers.
6815 if (LHS.get()->getType()->isEnumeralType() &&
6816 Context.hasSameUnqualifiedType(LHS.get()->getType(),
6817 RHS.get()->getType()))
6818 return ResultTy;
6819 }
6820
6821 // Handle block pointer types.
6822 if (!IsRelational && LHSType->isBlockPointerType() &&
6823 RHSType->isBlockPointerType()) {
6824 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
6825 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
6826
6827 if (!LHSIsNull && !RHSIsNull &&
6828 !Context.typesAreCompatible(lpointee, rpointee)) {
6829 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6830 << LHSType << RHSType << LHS.get()->getSourceRange()
6831 << RHS.get()->getSourceRange();
6832 }
6833 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6834 return ResultTy;
6835 }
6836
6837 // Allow block pointers to be compared with null pointer constants.
6838 if (!IsRelational
6839 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
6840 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
6841 if (!LHSIsNull && !RHSIsNull) {
6842 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
6843 ->getPointeeType()->isVoidType())
6844 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
6845 ->getPointeeType()->isVoidType())))
6846 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6847 << LHSType << RHSType << LHS.get()->getSourceRange()
6848 << RHS.get()->getSourceRange();
6849 }
6850 if (LHSIsNull && !RHSIsNull)
6851 LHS = ImpCastExprToType(LHS.take(), RHSType,
6852 RHSType->isPointerType() ? CK_BitCast
6853 : CK_AnyPointerToBlockPointerCast);
6854 else
6855 RHS = ImpCastExprToType(RHS.take(), LHSType,
6856 LHSType->isPointerType() ? CK_BitCast
6857 : CK_AnyPointerToBlockPointerCast);
6858 return ResultTy;
6859 }
6860
6861 if (LHSType->isObjCObjectPointerType() ||
6862 RHSType->isObjCObjectPointerType()) {
6863 const PointerType *LPT = LHSType->getAs<PointerType>();
6864 const PointerType *RPT = RHSType->getAs<PointerType>();
6865 if (LPT || RPT) {
6866 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
6867 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
6868
6869 if (!LPtrToVoid && !RPtrToVoid &&
6870 !Context.typesAreCompatible(LHSType, RHSType)) {
6871 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6872 /*isError*/false);
6873 }
6874 if (LHSIsNull && !RHSIsNull)
6875 LHS = ImpCastExprToType(LHS.take(), RHSType,
6876 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6877 else
6878 RHS = ImpCastExprToType(RHS.take(), LHSType,
6879 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6880 return ResultTy;
6881 }
6882 if (LHSType->isObjCObjectPointerType() &&
6883 RHSType->isObjCObjectPointerType()) {
6884 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
6885 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6886 /*isError*/false);
6887 if (LHSIsNull && !RHSIsNull)
6888 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6889 else
6890 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6891 return ResultTy;
6892 }
6893 }
6894 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
6895 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
6896 unsigned DiagID = 0;
6897 bool isError = false;
6898 if ((LHSIsNull && LHSType->isIntegerType()) ||
6899 (RHSIsNull && RHSType->isIntegerType())) {
6900 if (IsRelational && !getLangOpts().CPlusPlus)
6901 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6902 } else if (IsRelational && !getLangOpts().CPlusPlus)
6903 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6904 else if (getLangOpts().CPlusPlus) {
6905 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6906 isError = true;
6907 } else
6908 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6909
6910 if (DiagID) {
6911 Diag(Loc, DiagID)
6912 << LHSType << RHSType << LHS.get()->getSourceRange()
6913 << RHS.get()->getSourceRange();
6914 if (isError)
6915 return QualType();
6916 }
6917
6918 if (LHSType->isIntegerType())
6919 LHS = ImpCastExprToType(LHS.take(), RHSType,
6920 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6921 else
6922 RHS = ImpCastExprToType(RHS.take(), LHSType,
6923 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6924 return ResultTy;
6925 }
6926
6927 // Handle block pointers.
6928 if (!IsRelational && RHSIsNull
6929 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
6930 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6931 return ResultTy;
6932 }
6933 if (!IsRelational && LHSIsNull
6934 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
6935 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
6936 return ResultTy;
6937 }
6938
6939 return InvalidOperands(Loc, LHS, RHS);
6940 }
6941
6942
6943 // Return a signed type that is of identical size and number of elements.
6944 // For floating point vectors, return an integer type of identical size
6945 // and number of elements.
GetSignedVectorType(QualType V)6946 QualType Sema::GetSignedVectorType(QualType V) {
6947 const VectorType *VTy = V->getAs<VectorType>();
6948 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6949 if (TypeSize == Context.getTypeSize(Context.CharTy))
6950 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
6951 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
6952 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
6953 else if (TypeSize == Context.getTypeSize(Context.IntTy))
6954 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6955 else if (TypeSize == Context.getTypeSize(Context.LongTy))
6956 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6957 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6958 "Unhandled vector element size in vector compare");
6959 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6960 }
6961
6962 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
6963 /// operates on extended vector types. Instead of producing an IntTy result,
6964 /// like a scalar comparison, a vector comparison produces a vector of integer
6965 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)6966 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
6967 SourceLocation Loc,
6968 bool IsRelational) {
6969 // Check to make sure we're operating on vectors of the same type and width,
6970 // Allowing one side to be a scalar of element type.
6971 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
6972 if (vType.isNull())
6973 return vType;
6974
6975 QualType LHSType = LHS.get()->getType();
6976
6977 // If AltiVec, the comparison results in a numeric type, i.e.
6978 // bool for C++, int for C
6979 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
6980 return Context.getLogicalOperationType();
6981
6982 // For non-floating point types, check for self-comparisons of the form
6983 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6984 // often indicate logic errors in the program.
6985 if (!LHSType->hasFloatingRepresentation()) {
6986 if (DeclRefExpr* DRL
6987 = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
6988 if (DeclRefExpr* DRR
6989 = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
6990 if (DRL->getDecl() == DRR->getDecl())
6991 DiagRuntimeBehavior(Loc, 0,
6992 PDiag(diag::warn_comparison_always)
6993 << 0 // self-
6994 << 2 // "a constant"
6995 );
6996 }
6997
6998 // Check for comparisons of floating point operands using != and ==.
6999 if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7000 assert (RHS.get()->getType()->hasFloatingRepresentation());
7001 CheckFloatComparison(Loc, LHS.get(), RHS.get());
7002 }
7003
7004 // Return a signed type for the vector.
7005 return GetSignedVectorType(LHSType);
7006 }
7007
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7008 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7009 SourceLocation Loc) {
7010 // Ensure that either both operands are of the same vector type, or
7011 // one operand is of a vector type and the other is of its element type.
7012 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7013 if (vType.isNull() || vType->isFloatingType())
7014 return InvalidOperands(Loc, LHS, RHS);
7015
7016 return GetSignedVectorType(LHS.get()->getType());
7017 }
7018
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7019 inline QualType Sema::CheckBitwiseOperands(
7020 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7021 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7022
7023 if (LHS.get()->getType()->isVectorType() ||
7024 RHS.get()->getType()->isVectorType()) {
7025 if (LHS.get()->getType()->hasIntegerRepresentation() &&
7026 RHS.get()->getType()->hasIntegerRepresentation())
7027 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7028
7029 return InvalidOperands(Loc, LHS, RHS);
7030 }
7031
7032 ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7033 QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7034 IsCompAssign);
7035 if (LHSResult.isInvalid() || RHSResult.isInvalid())
7036 return QualType();
7037 LHS = LHSResult.take();
7038 RHS = RHSResult.take();
7039
7040 if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
7041 RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
7042 return compType;
7043 return InvalidOperands(Loc, LHS, RHS);
7044 }
7045
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc)7046 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7047 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7048
7049 // Check vector operands differently.
7050 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7051 return CheckVectorLogicalOperands(LHS, RHS, Loc);
7052
7053 // Diagnose cases where the user write a logical and/or but probably meant a
7054 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
7055 // is a constant.
7056 if (LHS.get()->getType()->isIntegerType() &&
7057 !LHS.get()->getType()->isBooleanType() &&
7058 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7059 // Don't warn in macros or template instantiations.
7060 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7061 // If the RHS can be constant folded, and if it constant folds to something
7062 // that isn't 0 or 1 (which indicate a potential logical operation that
7063 // happened to fold to true/false) then warn.
7064 // Parens on the RHS are ignored.
7065 llvm::APSInt Result;
7066 if (RHS.get()->EvaluateAsInt(Result, Context))
7067 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7068 (Result != 0 && Result != 1)) {
7069 Diag(Loc, diag::warn_logical_instead_of_bitwise)
7070 << RHS.get()->getSourceRange()
7071 << (Opc == BO_LAnd ? "&&" : "||");
7072 // Suggest replacing the logical operator with the bitwise version
7073 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7074 << (Opc == BO_LAnd ? "&" : "|")
7075 << FixItHint::CreateReplacement(SourceRange(
7076 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7077 getLangOpts())),
7078 Opc == BO_LAnd ? "&" : "|");
7079 if (Opc == BO_LAnd)
7080 // Suggest replacing "Foo() && kNonZero" with "Foo()"
7081 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7082 << FixItHint::CreateRemoval(
7083 SourceRange(
7084 Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7085 0, getSourceManager(),
7086 getLangOpts()),
7087 RHS.get()->getLocEnd()));
7088 }
7089 }
7090
7091 if (!Context.getLangOpts().CPlusPlus) {
7092 LHS = UsualUnaryConversions(LHS.take());
7093 if (LHS.isInvalid())
7094 return QualType();
7095
7096 RHS = UsualUnaryConversions(RHS.take());
7097 if (RHS.isInvalid())
7098 return QualType();
7099
7100 if (!LHS.get()->getType()->isScalarType() ||
7101 !RHS.get()->getType()->isScalarType())
7102 return InvalidOperands(Loc, LHS, RHS);
7103
7104 return Context.IntTy;
7105 }
7106
7107 // The following is safe because we only use this method for
7108 // non-overloadable operands.
7109
7110 // C++ [expr.log.and]p1
7111 // C++ [expr.log.or]p1
7112 // The operands are both contextually converted to type bool.
7113 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7114 if (LHSRes.isInvalid())
7115 return InvalidOperands(Loc, LHS, RHS);
7116 LHS = move(LHSRes);
7117
7118 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7119 if (RHSRes.isInvalid())
7120 return InvalidOperands(Loc, LHS, RHS);
7121 RHS = move(RHSRes);
7122
7123 // C++ [expr.log.and]p2
7124 // C++ [expr.log.or]p2
7125 // The result is a bool.
7126 return Context.BoolTy;
7127 }
7128
7129 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7130 /// is a read-only property; return true if so. A readonly property expression
7131 /// depends on various declarations and thus must be treated specially.
7132 ///
IsReadonlyProperty(Expr * E,Sema & S)7133 static bool IsReadonlyProperty(Expr *E, Sema &S) {
7134 const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7135 if (!PropExpr) return false;
7136 if (PropExpr->isImplicitProperty()) return false;
7137
7138 ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7139 QualType BaseType = PropExpr->isSuperReceiver() ?
7140 PropExpr->getSuperReceiverType() :
7141 PropExpr->getBase()->getType();
7142
7143 if (const ObjCObjectPointerType *OPT =
7144 BaseType->getAsObjCInterfacePointerType())
7145 if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7146 if (S.isPropertyReadonly(PDecl, IFace))
7147 return true;
7148 return false;
7149 }
7150
IsReadonlyMessage(Expr * E,Sema & S)7151 static bool IsReadonlyMessage(Expr *E, Sema &S) {
7152 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7153 if (!ME) return false;
7154 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7155 ObjCMessageExpr *Base =
7156 dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7157 if (!Base) return false;
7158 return Base->getMethodDecl() != 0;
7159 }
7160
7161 /// Is the given expression (which must be 'const') a reference to a
7162 /// variable which was originally non-const, but which has become
7163 /// 'const' due to being captured within a block?
7164 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)7165 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7166 assert(E->isLValue() && E->getType().isConstQualified());
7167 E = E->IgnoreParens();
7168
7169 // Must be a reference to a declaration from an enclosing scope.
7170 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7171 if (!DRE) return NCCK_None;
7172 if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7173
7174 // The declaration must be a variable which is not declared 'const'.
7175 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7176 if (!var) return NCCK_None;
7177 if (var->getType().isConstQualified()) return NCCK_None;
7178 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7179
7180 // Decide whether the first capture was for a block or a lambda.
7181 DeclContext *DC = S.CurContext;
7182 while (DC->getParent() != var->getDeclContext())
7183 DC = DC->getParent();
7184 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7185 }
7186
7187 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
7188 /// emit an error and return true. If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)7189 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7190 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7191 SourceLocation OrigLoc = Loc;
7192 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7193 &Loc);
7194 if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7195 IsLV = Expr::MLV_ReadonlyProperty;
7196 else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7197 IsLV = Expr::MLV_InvalidMessageExpression;
7198 if (IsLV == Expr::MLV_Valid)
7199 return false;
7200
7201 unsigned Diag = 0;
7202 bool NeedType = false;
7203 switch (IsLV) { // C99 6.5.16p2
7204 case Expr::MLV_ConstQualified:
7205 Diag = diag::err_typecheck_assign_const;
7206
7207 // Use a specialized diagnostic when we're assigning to an object
7208 // from an enclosing function or block.
7209 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7210 if (NCCK == NCCK_Block)
7211 Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7212 else
7213 Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7214 break;
7215 }
7216
7217 // In ARC, use some specialized diagnostics for occasions where we
7218 // infer 'const'. These are always pseudo-strong variables.
7219 if (S.getLangOpts().ObjCAutoRefCount) {
7220 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7221 if (declRef && isa<VarDecl>(declRef->getDecl())) {
7222 VarDecl *var = cast<VarDecl>(declRef->getDecl());
7223
7224 // Use the normal diagnostic if it's pseudo-__strong but the
7225 // user actually wrote 'const'.
7226 if (var->isARCPseudoStrong() &&
7227 (!var->getTypeSourceInfo() ||
7228 !var->getTypeSourceInfo()->getType().isConstQualified())) {
7229 // There are two pseudo-strong cases:
7230 // - self
7231 ObjCMethodDecl *method = S.getCurMethodDecl();
7232 if (method && var == method->getSelfDecl())
7233 Diag = method->isClassMethod()
7234 ? diag::err_typecheck_arc_assign_self_class_method
7235 : diag::err_typecheck_arc_assign_self;
7236
7237 // - fast enumeration variables
7238 else
7239 Diag = diag::err_typecheck_arr_assign_enumeration;
7240
7241 SourceRange Assign;
7242 if (Loc != OrigLoc)
7243 Assign = SourceRange(OrigLoc, OrigLoc);
7244 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7245 // We need to preserve the AST regardless, so migration tool
7246 // can do its job.
7247 return false;
7248 }
7249 }
7250 }
7251
7252 break;
7253 case Expr::MLV_ArrayType:
7254 Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7255 NeedType = true;
7256 break;
7257 case Expr::MLV_NotObjectType:
7258 Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7259 NeedType = true;
7260 break;
7261 case Expr::MLV_LValueCast:
7262 Diag = diag::err_typecheck_lvalue_casts_not_supported;
7263 break;
7264 case Expr::MLV_Valid:
7265 llvm_unreachable("did not take early return for MLV_Valid");
7266 case Expr::MLV_InvalidExpression:
7267 case Expr::MLV_MemberFunction:
7268 case Expr::MLV_ClassTemporary:
7269 Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7270 break;
7271 case Expr::MLV_IncompleteType:
7272 case Expr::MLV_IncompleteVoidType:
7273 return S.RequireCompleteType(Loc, E->getType(),
7274 S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
7275 << E->getSourceRange());
7276 case Expr::MLV_DuplicateVectorComponents:
7277 Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7278 break;
7279 case Expr::MLV_ReadonlyProperty:
7280 case Expr::MLV_NoSetterProperty:
7281 llvm_unreachable("readonly properties should be processed differently");
7282 case Expr::MLV_InvalidMessageExpression:
7283 Diag = diag::error_readonly_message_assignment;
7284 break;
7285 case Expr::MLV_SubObjCPropertySetting:
7286 Diag = diag::error_no_subobject_property_setting;
7287 break;
7288 }
7289
7290 SourceRange Assign;
7291 if (Loc != OrigLoc)
7292 Assign = SourceRange(OrigLoc, OrigLoc);
7293 if (NeedType)
7294 S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7295 else
7296 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7297 return true;
7298 }
7299
7300
7301
7302 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)7303 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7304 SourceLocation Loc,
7305 QualType CompoundType) {
7306 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7307
7308 // Verify that LHS is a modifiable lvalue, and emit error if not.
7309 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7310 return QualType();
7311
7312 QualType LHSType = LHSExpr->getType();
7313 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7314 CompoundType;
7315 AssignConvertType ConvTy;
7316 if (CompoundType.isNull()) {
7317 QualType LHSTy(LHSType);
7318 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7319 if (RHS.isInvalid())
7320 return QualType();
7321 // Special case of NSObject attributes on c-style pointer types.
7322 if (ConvTy == IncompatiblePointer &&
7323 ((Context.isObjCNSObjectType(LHSType) &&
7324 RHSType->isObjCObjectPointerType()) ||
7325 (Context.isObjCNSObjectType(RHSType) &&
7326 LHSType->isObjCObjectPointerType())))
7327 ConvTy = Compatible;
7328
7329 if (ConvTy == Compatible &&
7330 LHSType->isObjCObjectType())
7331 Diag(Loc, diag::err_objc_object_assignment)
7332 << LHSType;
7333
7334 // If the RHS is a unary plus or minus, check to see if they = and + are
7335 // right next to each other. If so, the user may have typo'd "x =+ 4"
7336 // instead of "x += 4".
7337 Expr *RHSCheck = RHS.get();
7338 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7339 RHSCheck = ICE->getSubExpr();
7340 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7341 if ((UO->getOpcode() == UO_Plus ||
7342 UO->getOpcode() == UO_Minus) &&
7343 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7344 // Only if the two operators are exactly adjacent.
7345 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7346 // And there is a space or other character before the subexpr of the
7347 // unary +/-. We don't want to warn on "x=-1".
7348 Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7349 UO->getSubExpr()->getLocStart().isFileID()) {
7350 Diag(Loc, diag::warn_not_compound_assign)
7351 << (UO->getOpcode() == UO_Plus ? "+" : "-")
7352 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7353 }
7354 }
7355
7356 if (ConvTy == Compatible) {
7357 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7358 checkRetainCycles(LHSExpr, RHS.get());
7359 else if (getLangOpts().ObjCAutoRefCount)
7360 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7361 }
7362 } else {
7363 // Compound assignment "x += y"
7364 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7365 }
7366
7367 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7368 RHS.get(), AA_Assigning))
7369 return QualType();
7370
7371 CheckForNullPointerDereference(*this, LHSExpr);
7372
7373 // C99 6.5.16p3: The type of an assignment expression is the type of the
7374 // left operand unless the left operand has qualified type, in which case
7375 // it is the unqualified version of the type of the left operand.
7376 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7377 // is converted to the type of the assignment expression (above).
7378 // C++ 5.17p1: the type of the assignment expression is that of its left
7379 // operand.
7380 return (getLangOpts().CPlusPlus
7381 ? LHSType : LHSType.getUnqualifiedType());
7382 }
7383
7384 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7385 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7386 SourceLocation Loc) {
7387 S.DiagnoseUnusedExprResult(LHS.get());
7388
7389 LHS = S.CheckPlaceholderExpr(LHS.take());
7390 RHS = S.CheckPlaceholderExpr(RHS.take());
7391 if (LHS.isInvalid() || RHS.isInvalid())
7392 return QualType();
7393
7394 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7395 // operands, but not unary promotions.
7396 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7397
7398 // So we treat the LHS as a ignored value, and in C++ we allow the
7399 // containing site to determine what should be done with the RHS.
7400 LHS = S.IgnoredValueConversions(LHS.take());
7401 if (LHS.isInvalid())
7402 return QualType();
7403
7404 if (!S.getLangOpts().CPlusPlus) {
7405 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7406 if (RHS.isInvalid())
7407 return QualType();
7408 if (!RHS.get()->getType()->isVoidType())
7409 S.RequireCompleteType(Loc, RHS.get()->getType(),
7410 diag::err_incomplete_type);
7411 }
7412
7413 return RHS.get()->getType();
7414 }
7415
7416 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7417 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)7418 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7419 ExprValueKind &VK,
7420 SourceLocation OpLoc,
7421 bool IsInc, bool IsPrefix) {
7422 if (Op->isTypeDependent())
7423 return S.Context.DependentTy;
7424
7425 QualType ResType = Op->getType();
7426 // Atomic types can be used for increment / decrement where the non-atomic
7427 // versions can, so ignore the _Atomic() specifier for the purpose of
7428 // checking.
7429 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7430 ResType = ResAtomicType->getValueType();
7431
7432 assert(!ResType.isNull() && "no type for increment/decrement expression");
7433
7434 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7435 // Decrement of bool is not allowed.
7436 if (!IsInc) {
7437 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7438 return QualType();
7439 }
7440 // Increment of bool sets it to true, but is deprecated.
7441 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7442 } else if (ResType->isRealType()) {
7443 // OK!
7444 } else if (ResType->isAnyPointerType()) {
7445 // C99 6.5.2.4p2, 6.5.6p2
7446 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7447 return QualType();
7448
7449 // Diagnose bad cases where we step over interface counts.
7450 else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
7451 return QualType();
7452 } else if (ResType->isAnyComplexType()) {
7453 // C99 does not support ++/-- on complex types, we allow as an extension.
7454 S.Diag(OpLoc, diag::ext_integer_increment_complex)
7455 << ResType << Op->getSourceRange();
7456 } else if (ResType->isPlaceholderType()) {
7457 ExprResult PR = S.CheckPlaceholderExpr(Op);
7458 if (PR.isInvalid()) return QualType();
7459 return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7460 IsInc, IsPrefix);
7461 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7462 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7463 } else {
7464 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7465 << ResType << int(IsInc) << Op->getSourceRange();
7466 return QualType();
7467 }
7468 // At this point, we know we have a real, complex or pointer type.
7469 // Now make sure the operand is a modifiable lvalue.
7470 if (CheckForModifiableLvalue(Op, OpLoc, S))
7471 return QualType();
7472 // In C++, a prefix increment is the same type as the operand. Otherwise
7473 // (in C or with postfix), the increment is the unqualified type of the
7474 // operand.
7475 if (IsPrefix && S.getLangOpts().CPlusPlus) {
7476 VK = VK_LValue;
7477 return ResType;
7478 } else {
7479 VK = VK_RValue;
7480 return ResType.getUnqualifiedType();
7481 }
7482 }
7483
7484
7485 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7486 /// This routine allows us to typecheck complex/recursive expressions
7487 /// where the declaration is needed for type checking. We only need to
7488 /// handle cases when the expression references a function designator
7489 /// or is an lvalue. Here are some examples:
7490 /// - &(x) => x
7491 /// - &*****f => f for f a function designator.
7492 /// - &s.xx => s
7493 /// - &s.zz[1].yy -> s, if zz is an array
7494 /// - *(x + 1) -> x, if x is an array
7495 /// - &"123"[2] -> 0
7496 /// - & __real__ x -> x
getPrimaryDecl(Expr * E)7497 static ValueDecl *getPrimaryDecl(Expr *E) {
7498 switch (E->getStmtClass()) {
7499 case Stmt::DeclRefExprClass:
7500 return cast<DeclRefExpr>(E)->getDecl();
7501 case Stmt::MemberExprClass:
7502 // If this is an arrow operator, the address is an offset from
7503 // the base's value, so the object the base refers to is
7504 // irrelevant.
7505 if (cast<MemberExpr>(E)->isArrow())
7506 return 0;
7507 // Otherwise, the expression refers to a part of the base
7508 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7509 case Stmt::ArraySubscriptExprClass: {
7510 // FIXME: This code shouldn't be necessary! We should catch the implicit
7511 // promotion of register arrays earlier.
7512 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7513 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7514 if (ICE->getSubExpr()->getType()->isArrayType())
7515 return getPrimaryDecl(ICE->getSubExpr());
7516 }
7517 return 0;
7518 }
7519 case Stmt::UnaryOperatorClass: {
7520 UnaryOperator *UO = cast<UnaryOperator>(E);
7521
7522 switch(UO->getOpcode()) {
7523 case UO_Real:
7524 case UO_Imag:
7525 case UO_Extension:
7526 return getPrimaryDecl(UO->getSubExpr());
7527 default:
7528 return 0;
7529 }
7530 }
7531 case Stmt::ParenExprClass:
7532 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7533 case Stmt::ImplicitCastExprClass:
7534 // If the result of an implicit cast is an l-value, we care about
7535 // the sub-expression; otherwise, the result here doesn't matter.
7536 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7537 default:
7538 return 0;
7539 }
7540 }
7541
7542 namespace {
7543 enum {
7544 AO_Bit_Field = 0,
7545 AO_Vector_Element = 1,
7546 AO_Property_Expansion = 2,
7547 AO_Register_Variable = 3,
7548 AO_No_Error = 4
7549 };
7550 }
7551 /// \brief Diagnose invalid operand for address of operations.
7552 ///
7553 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)7554 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7555 Expr *E, unsigned Type) {
7556 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7557 }
7558
7559 /// CheckAddressOfOperand - The operand of & must be either a function
7560 /// designator or an lvalue designating an object. If it is an lvalue, the
7561 /// object cannot be declared with storage class register or be a bit field.
7562 /// Note: The usual conversions are *not* applied to the operand of the &
7563 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7564 /// In C++, the operand might be an overloaded function name, in which case
7565 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(Sema & S,ExprResult & OrigOp,SourceLocation OpLoc)7566 static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7567 SourceLocation OpLoc) {
7568 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7569 if (PTy->getKind() == BuiltinType::Overload) {
7570 if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7571 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7572 << OrigOp.get()->getSourceRange();
7573 return QualType();
7574 }
7575
7576 return S.Context.OverloadTy;
7577 }
7578
7579 if (PTy->getKind() == BuiltinType::UnknownAny)
7580 return S.Context.UnknownAnyTy;
7581
7582 if (PTy->getKind() == BuiltinType::BoundMember) {
7583 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7584 << OrigOp.get()->getSourceRange();
7585 return QualType();
7586 }
7587
7588 OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7589 if (OrigOp.isInvalid()) return QualType();
7590 }
7591
7592 if (OrigOp.get()->isTypeDependent())
7593 return S.Context.DependentTy;
7594
7595 assert(!OrigOp.get()->getType()->isPlaceholderType());
7596
7597 // Make sure to ignore parentheses in subsequent checks
7598 Expr *op = OrigOp.get()->IgnoreParens();
7599
7600 if (S.getLangOpts().C99) {
7601 // Implement C99-only parts of addressof rules.
7602 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7603 if (uOp->getOpcode() == UO_Deref)
7604 // Per C99 6.5.3.2, the address of a deref always returns a valid result
7605 // (assuming the deref expression is valid).
7606 return uOp->getSubExpr()->getType();
7607 }
7608 // Technically, there should be a check for array subscript
7609 // expressions here, but the result of one is always an lvalue anyway.
7610 }
7611 ValueDecl *dcl = getPrimaryDecl(op);
7612 Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7613 unsigned AddressOfError = AO_No_Error;
7614
7615 if (lval == Expr::LV_ClassTemporary) {
7616 bool sfinae = S.isSFINAEContext();
7617 S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7618 : diag::ext_typecheck_addrof_class_temporary)
7619 << op->getType() << op->getSourceRange();
7620 if (sfinae)
7621 return QualType();
7622 } else if (isa<ObjCSelectorExpr>(op)) {
7623 return S.Context.getPointerType(op->getType());
7624 } else if (lval == Expr::LV_MemberFunction) {
7625 // If it's an instance method, make a member pointer.
7626 // The expression must have exactly the form &A::foo.
7627
7628 // If the underlying expression isn't a decl ref, give up.
7629 if (!isa<DeclRefExpr>(op)) {
7630 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7631 << OrigOp.get()->getSourceRange();
7632 return QualType();
7633 }
7634 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7635 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7636
7637 // The id-expression was parenthesized.
7638 if (OrigOp.get() != DRE) {
7639 S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7640 << OrigOp.get()->getSourceRange();
7641
7642 // The method was named without a qualifier.
7643 } else if (!DRE->getQualifier()) {
7644 S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7645 << op->getSourceRange();
7646 }
7647
7648 return S.Context.getMemberPointerType(op->getType(),
7649 S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7650 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7651 // C99 6.5.3.2p1
7652 // The operand must be either an l-value or a function designator
7653 if (!op->getType()->isFunctionType()) {
7654 // Use a special diagnostic for loads from property references.
7655 if (isa<PseudoObjectExpr>(op)) {
7656 AddressOfError = AO_Property_Expansion;
7657 } else {
7658 // FIXME: emit more specific diag...
7659 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7660 << op->getSourceRange();
7661 return QualType();
7662 }
7663 }
7664 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7665 // The operand cannot be a bit-field
7666 AddressOfError = AO_Bit_Field;
7667 } else if (op->getObjectKind() == OK_VectorComponent) {
7668 // The operand cannot be an element of a vector
7669 AddressOfError = AO_Vector_Element;
7670 } else if (dcl) { // C99 6.5.3.2p1
7671 // We have an lvalue with a decl. Make sure the decl is not declared
7672 // with the register storage-class specifier.
7673 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7674 // in C++ it is not error to take address of a register
7675 // variable (c++03 7.1.1P3)
7676 if (vd->getStorageClass() == SC_Register &&
7677 !S.getLangOpts().CPlusPlus) {
7678 AddressOfError = AO_Register_Variable;
7679 }
7680 } else if (isa<FunctionTemplateDecl>(dcl)) {
7681 return S.Context.OverloadTy;
7682 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7683 // Okay: we can take the address of a field.
7684 // Could be a pointer to member, though, if there is an explicit
7685 // scope qualifier for the class.
7686 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7687 DeclContext *Ctx = dcl->getDeclContext();
7688 if (Ctx && Ctx->isRecord()) {
7689 if (dcl->getType()->isReferenceType()) {
7690 S.Diag(OpLoc,
7691 diag::err_cannot_form_pointer_to_member_of_reference_type)
7692 << dcl->getDeclName() << dcl->getType();
7693 return QualType();
7694 }
7695
7696 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7697 Ctx = Ctx->getParent();
7698 return S.Context.getMemberPointerType(op->getType(),
7699 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7700 }
7701 }
7702 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
7703 llvm_unreachable("Unknown/unexpected decl type");
7704 }
7705
7706 if (AddressOfError != AO_No_Error) {
7707 diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
7708 return QualType();
7709 }
7710
7711 if (lval == Expr::LV_IncompleteVoidType) {
7712 // Taking the address of a void variable is technically illegal, but we
7713 // allow it in cases which are otherwise valid.
7714 // Example: "extern void x; void* y = &x;".
7715 S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7716 }
7717
7718 // If the operand has type "type", the result has type "pointer to type".
7719 if (op->getType()->isObjCObjectType())
7720 return S.Context.getObjCObjectPointerType(op->getType());
7721 return S.Context.getPointerType(op->getType());
7722 }
7723
7724 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)7725 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7726 SourceLocation OpLoc) {
7727 if (Op->isTypeDependent())
7728 return S.Context.DependentTy;
7729
7730 ExprResult ConvResult = S.UsualUnaryConversions(Op);
7731 if (ConvResult.isInvalid())
7732 return QualType();
7733 Op = ConvResult.take();
7734 QualType OpTy = Op->getType();
7735 QualType Result;
7736
7737 if (isa<CXXReinterpretCastExpr>(Op)) {
7738 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
7739 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
7740 Op->getSourceRange());
7741 }
7742
7743 // Note that per both C89 and C99, indirection is always legal, even if OpTy
7744 // is an incomplete type or void. It would be possible to warn about
7745 // dereferencing a void pointer, but it's completely well-defined, and such a
7746 // warning is unlikely to catch any mistakes.
7747 if (const PointerType *PT = OpTy->getAs<PointerType>())
7748 Result = PT->getPointeeType();
7749 else if (const ObjCObjectPointerType *OPT =
7750 OpTy->getAs<ObjCObjectPointerType>())
7751 Result = OPT->getPointeeType();
7752 else {
7753 ExprResult PR = S.CheckPlaceholderExpr(Op);
7754 if (PR.isInvalid()) return QualType();
7755 if (PR.take() != Op)
7756 return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7757 }
7758
7759 if (Result.isNull()) {
7760 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7761 << OpTy << Op->getSourceRange();
7762 return QualType();
7763 }
7764
7765 // Dereferences are usually l-values...
7766 VK = VK_LValue;
7767
7768 // ...except that certain expressions are never l-values in C.
7769 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
7770 VK = VK_RValue;
7771
7772 return Result;
7773 }
7774
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)7775 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7776 tok::TokenKind Kind) {
7777 BinaryOperatorKind Opc;
7778 switch (Kind) {
7779 default: llvm_unreachable("Unknown binop!");
7780 case tok::periodstar: Opc = BO_PtrMemD; break;
7781 case tok::arrowstar: Opc = BO_PtrMemI; break;
7782 case tok::star: Opc = BO_Mul; break;
7783 case tok::slash: Opc = BO_Div; break;
7784 case tok::percent: Opc = BO_Rem; break;
7785 case tok::plus: Opc = BO_Add; break;
7786 case tok::minus: Opc = BO_Sub; break;
7787 case tok::lessless: Opc = BO_Shl; break;
7788 case tok::greatergreater: Opc = BO_Shr; break;
7789 case tok::lessequal: Opc = BO_LE; break;
7790 case tok::less: Opc = BO_LT; break;
7791 case tok::greaterequal: Opc = BO_GE; break;
7792 case tok::greater: Opc = BO_GT; break;
7793 case tok::exclaimequal: Opc = BO_NE; break;
7794 case tok::equalequal: Opc = BO_EQ; break;
7795 case tok::amp: Opc = BO_And; break;
7796 case tok::caret: Opc = BO_Xor; break;
7797 case tok::pipe: Opc = BO_Or; break;
7798 case tok::ampamp: Opc = BO_LAnd; break;
7799 case tok::pipepipe: Opc = BO_LOr; break;
7800 case tok::equal: Opc = BO_Assign; break;
7801 case tok::starequal: Opc = BO_MulAssign; break;
7802 case tok::slashequal: Opc = BO_DivAssign; break;
7803 case tok::percentequal: Opc = BO_RemAssign; break;
7804 case tok::plusequal: Opc = BO_AddAssign; break;
7805 case tok::minusequal: Opc = BO_SubAssign; break;
7806 case tok::lesslessequal: Opc = BO_ShlAssign; break;
7807 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
7808 case tok::ampequal: Opc = BO_AndAssign; break;
7809 case tok::caretequal: Opc = BO_XorAssign; break;
7810 case tok::pipeequal: Opc = BO_OrAssign; break;
7811 case tok::comma: Opc = BO_Comma; break;
7812 }
7813 return Opc;
7814 }
7815
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)7816 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7817 tok::TokenKind Kind) {
7818 UnaryOperatorKind Opc;
7819 switch (Kind) {
7820 default: llvm_unreachable("Unknown unary op!");
7821 case tok::plusplus: Opc = UO_PreInc; break;
7822 case tok::minusminus: Opc = UO_PreDec; break;
7823 case tok::amp: Opc = UO_AddrOf; break;
7824 case tok::star: Opc = UO_Deref; break;
7825 case tok::plus: Opc = UO_Plus; break;
7826 case tok::minus: Opc = UO_Minus; break;
7827 case tok::tilde: Opc = UO_Not; break;
7828 case tok::exclaim: Opc = UO_LNot; break;
7829 case tok::kw___real: Opc = UO_Real; break;
7830 case tok::kw___imag: Opc = UO_Imag; break;
7831 case tok::kw___extension__: Opc = UO_Extension; break;
7832 }
7833 return Opc;
7834 }
7835
7836 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7837 /// This warning is only emitted for builtin assignment operations. It is also
7838 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)7839 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
7840 SourceLocation OpLoc) {
7841 if (!S.ActiveTemplateInstantiations.empty())
7842 return;
7843 if (OpLoc.isInvalid() || OpLoc.isMacroID())
7844 return;
7845 LHSExpr = LHSExpr->IgnoreParenImpCasts();
7846 RHSExpr = RHSExpr->IgnoreParenImpCasts();
7847 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
7848 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
7849 if (!LHSDeclRef || !RHSDeclRef ||
7850 LHSDeclRef->getLocation().isMacroID() ||
7851 RHSDeclRef->getLocation().isMacroID())
7852 return;
7853 const ValueDecl *LHSDecl =
7854 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
7855 const ValueDecl *RHSDecl =
7856 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
7857 if (LHSDecl != RHSDecl)
7858 return;
7859 if (LHSDecl->getType().isVolatileQualified())
7860 return;
7861 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
7862 if (RefTy->getPointeeType().isVolatileQualified())
7863 return;
7864
7865 S.Diag(OpLoc, diag::warn_self_assignment)
7866 << LHSDeclRef->getType()
7867 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7868 }
7869
7870 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
7871 /// operator @p Opc at location @c TokLoc. This routine only supports
7872 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)7873 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7874 BinaryOperatorKind Opc,
7875 Expr *LHSExpr, Expr *RHSExpr) {
7876 if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
7877 // The syntax only allows initializer lists on the RHS of assignment,
7878 // so we don't need to worry about accepting invalid code for
7879 // non-assignment operators.
7880 // C++11 5.17p9:
7881 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
7882 // of x = {} is x = T().
7883 InitializationKind Kind =
7884 InitializationKind::CreateDirectList(RHSExpr->getLocStart());
7885 InitializedEntity Entity =
7886 InitializedEntity::InitializeTemporary(LHSExpr->getType());
7887 InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
7888 ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
7889 MultiExprArg(&RHSExpr, 1));
7890 if (Init.isInvalid())
7891 return Init;
7892 RHSExpr = Init.take();
7893 }
7894
7895 ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
7896 QualType ResultTy; // Result type of the binary operator.
7897 // The following two variables are used for compound assignment operators
7898 QualType CompLHSTy; // Type of LHS after promotions for computation
7899 QualType CompResultTy; // Type of computation result
7900 ExprValueKind VK = VK_RValue;
7901 ExprObjectKind OK = OK_Ordinary;
7902
7903 switch (Opc) {
7904 case BO_Assign:
7905 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
7906 if (getLangOpts().CPlusPlus &&
7907 LHS.get()->getObjectKind() != OK_ObjCProperty) {
7908 VK = LHS.get()->getValueKind();
7909 OK = LHS.get()->getObjectKind();
7910 }
7911 if (!ResultTy.isNull())
7912 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
7913 break;
7914 case BO_PtrMemD:
7915 case BO_PtrMemI:
7916 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
7917 Opc == BO_PtrMemI);
7918 break;
7919 case BO_Mul:
7920 case BO_Div:
7921 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
7922 Opc == BO_Div);
7923 break;
7924 case BO_Rem:
7925 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
7926 break;
7927 case BO_Add:
7928 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
7929 break;
7930 case BO_Sub:
7931 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
7932 break;
7933 case BO_Shl:
7934 case BO_Shr:
7935 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
7936 break;
7937 case BO_LE:
7938 case BO_LT:
7939 case BO_GE:
7940 case BO_GT:
7941 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
7942 break;
7943 case BO_EQ:
7944 case BO_NE:
7945 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
7946 break;
7947 case BO_And:
7948 case BO_Xor:
7949 case BO_Or:
7950 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
7951 break;
7952 case BO_LAnd:
7953 case BO_LOr:
7954 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
7955 break;
7956 case BO_MulAssign:
7957 case BO_DivAssign:
7958 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
7959 Opc == BO_DivAssign);
7960 CompLHSTy = CompResultTy;
7961 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7962 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7963 break;
7964 case BO_RemAssign:
7965 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
7966 CompLHSTy = CompResultTy;
7967 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7968 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7969 break;
7970 case BO_AddAssign:
7971 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
7972 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7973 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7974 break;
7975 case BO_SubAssign:
7976 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
7977 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7978 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7979 break;
7980 case BO_ShlAssign:
7981 case BO_ShrAssign:
7982 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
7983 CompLHSTy = CompResultTy;
7984 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7985 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7986 break;
7987 case BO_AndAssign:
7988 case BO_XorAssign:
7989 case BO_OrAssign:
7990 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
7991 CompLHSTy = CompResultTy;
7992 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7993 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7994 break;
7995 case BO_Comma:
7996 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
7997 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
7998 VK = RHS.get()->getValueKind();
7999 OK = RHS.get()->getObjectKind();
8000 }
8001 break;
8002 }
8003 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8004 return ExprError();
8005
8006 // Check for array bounds violations for both sides of the BinaryOperator
8007 CheckArrayAccess(LHS.get());
8008 CheckArrayAccess(RHS.get());
8009
8010 if (CompResultTy.isNull())
8011 return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8012 ResultTy, VK, OK, OpLoc));
8013 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8014 OK_ObjCProperty) {
8015 VK = VK_LValue;
8016 OK = LHS.get()->getObjectKind();
8017 }
8018 return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8019 ResultTy, VK, OK, CompLHSTy,
8020 CompResultTy, OpLoc));
8021 }
8022
8023 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8024 /// operators are mixed in a way that suggests that the programmer forgot that
8025 /// comparison operators have higher precedence. The most typical example of
8026 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8027 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8028 SourceLocation OpLoc, Expr *LHSExpr,
8029 Expr *RHSExpr) {
8030 typedef BinaryOperator BinOp;
8031 BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8032 RHSopc = static_cast<BinOp::Opcode>(-1);
8033 if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8034 LHSopc = BO->getOpcode();
8035 if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8036 RHSopc = BO->getOpcode();
8037
8038 // Subs are not binary operators.
8039 if (LHSopc == -1 && RHSopc == -1)
8040 return;
8041
8042 // Bitwise operations are sometimes used as eager logical ops.
8043 // Don't diagnose this.
8044 if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8045 (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8046 return;
8047
8048 bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8049 bool isRightComp = BinOp::isComparisonOp(RHSopc);
8050 if (!isLeftComp && !isRightComp) return;
8051
8052 SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8053 OpLoc)
8054 : SourceRange(OpLoc, RHSExpr->getLocEnd());
8055 std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8056 : BinOp::getOpcodeStr(RHSopc);
8057 SourceRange ParensRange = isLeftComp ?
8058 SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8059 RHSExpr->getLocEnd())
8060 : SourceRange(LHSExpr->getLocStart(),
8061 cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8062
8063 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8064 << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8065 SuggestParentheses(Self, OpLoc,
8066 Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8067 RHSExpr->getSourceRange());
8068 SuggestParentheses(Self, OpLoc,
8069 Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8070 ParensRange);
8071 }
8072
8073 /// \brief It accepts a '&' expr that is inside a '|' one.
8074 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8075 /// in parentheses.
8076 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8077 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8078 BinaryOperator *Bop) {
8079 assert(Bop->getOpcode() == BO_And);
8080 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8081 << Bop->getSourceRange() << OpLoc;
8082 SuggestParentheses(Self, Bop->getOperatorLoc(),
8083 Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8084 Bop->getSourceRange());
8085 }
8086
8087 /// \brief It accepts a '&&' expr that is inside a '||' one.
8088 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8089 /// in parentheses.
8090 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8091 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8092 BinaryOperator *Bop) {
8093 assert(Bop->getOpcode() == BO_LAnd);
8094 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8095 << Bop->getSourceRange() << OpLoc;
8096 SuggestParentheses(Self, Bop->getOperatorLoc(),
8097 Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8098 Bop->getSourceRange());
8099 }
8100
8101 /// \brief Returns true if the given expression can be evaluated as a constant
8102 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)8103 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8104 bool Res;
8105 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8106 }
8107
8108 /// \brief Returns true if the given expression can be evaluated as a constant
8109 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)8110 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8111 bool Res;
8112 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8113 }
8114
8115 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8116 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8117 Expr *LHSExpr, Expr *RHSExpr) {
8118 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8119 if (Bop->getOpcode() == BO_LAnd) {
8120 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8121 if (EvaluatesAsFalse(S, RHSExpr))
8122 return;
8123 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8124 if (!EvaluatesAsTrue(S, Bop->getLHS()))
8125 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8126 } else if (Bop->getOpcode() == BO_LOr) {
8127 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8128 // If it's "a || b && 1 || c" we didn't warn earlier for
8129 // "a || b && 1", but warn now.
8130 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8131 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8132 }
8133 }
8134 }
8135 }
8136
8137 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8138 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8139 Expr *LHSExpr, Expr *RHSExpr) {
8140 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8141 if (Bop->getOpcode() == BO_LAnd) {
8142 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8143 if (EvaluatesAsFalse(S, LHSExpr))
8144 return;
8145 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8146 if (!EvaluatesAsTrue(S, Bop->getRHS()))
8147 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8148 }
8149 }
8150 }
8151
8152 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)8153 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8154 Expr *OrArg) {
8155 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8156 if (Bop->getOpcode() == BO_And)
8157 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8158 }
8159 }
8160
8161 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8162 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8163 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8164 SourceLocation OpLoc, Expr *LHSExpr,
8165 Expr *RHSExpr){
8166 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8167 if (BinaryOperator::isBitwiseOp(Opc))
8168 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8169
8170 // Diagnose "arg1 & arg2 | arg3"
8171 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8172 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8173 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8174 }
8175
8176 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8177 // We don't warn for 'assert(a || b && "bad")' since this is safe.
8178 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8179 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8180 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8181 }
8182 }
8183
8184 // Binary Operators. 'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)8185 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8186 tok::TokenKind Kind,
8187 Expr *LHSExpr, Expr *RHSExpr) {
8188 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8189 assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8190 assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8191
8192 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8193 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8194
8195 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8196 }
8197
8198 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)8199 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8200 BinaryOperatorKind Opc,
8201 Expr *LHS, Expr *RHS) {
8202 // Find all of the overloaded operators visible from this
8203 // point. We perform both an operator-name lookup from the local
8204 // scope and an argument-dependent lookup based on the types of
8205 // the arguments.
8206 UnresolvedSet<16> Functions;
8207 OverloadedOperatorKind OverOp
8208 = BinaryOperator::getOverloadedOperator(Opc);
8209 if (Sc && OverOp != OO_None)
8210 S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8211 RHS->getType(), Functions);
8212
8213 // Build the (potentially-overloaded, potentially-dependent)
8214 // binary operation.
8215 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8216 }
8217
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8218 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8219 BinaryOperatorKind Opc,
8220 Expr *LHSExpr, Expr *RHSExpr) {
8221 // We want to end up calling one of checkPseudoObjectAssignment
8222 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8223 // both expressions are overloadable or either is type-dependent),
8224 // or CreateBuiltinBinOp (in any other case). We also want to get
8225 // any placeholder types out of the way.
8226
8227 // Handle pseudo-objects in the LHS.
8228 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8229 // Assignments with a pseudo-object l-value need special analysis.
8230 if (pty->getKind() == BuiltinType::PseudoObject &&
8231 BinaryOperator::isAssignmentOp(Opc))
8232 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8233
8234 // Don't resolve overloads if the other type is overloadable.
8235 if (pty->getKind() == BuiltinType::Overload) {
8236 // We can't actually test that if we still have a placeholder,
8237 // though. Fortunately, none of the exceptions we see in that
8238 // code below are valid when the LHS is an overload set. Note
8239 // that an overload set can be dependently-typed, but it never
8240 // instantiates to having an overloadable type.
8241 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8242 if (resolvedRHS.isInvalid()) return ExprError();
8243 RHSExpr = resolvedRHS.take();
8244
8245 if (RHSExpr->isTypeDependent() ||
8246 RHSExpr->getType()->isOverloadableType())
8247 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8248 }
8249
8250 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8251 if (LHS.isInvalid()) return ExprError();
8252 LHSExpr = LHS.take();
8253 }
8254
8255 // Handle pseudo-objects in the RHS.
8256 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8257 // An overload in the RHS can potentially be resolved by the type
8258 // being assigned to.
8259 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8260 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8261 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8262
8263 if (LHSExpr->getType()->isOverloadableType())
8264 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8265
8266 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8267 }
8268
8269 // Don't resolve overloads if the other type is overloadable.
8270 if (pty->getKind() == BuiltinType::Overload &&
8271 LHSExpr->getType()->isOverloadableType())
8272 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8273
8274 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8275 if (!resolvedRHS.isUsable()) return ExprError();
8276 RHSExpr = resolvedRHS.take();
8277 }
8278
8279 if (getLangOpts().CPlusPlus) {
8280 // If either expression is type-dependent, always build an
8281 // overloaded op.
8282 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8283 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8284
8285 // Otherwise, build an overloaded op if either expression has an
8286 // overloadable type.
8287 if (LHSExpr->getType()->isOverloadableType() ||
8288 RHSExpr->getType()->isOverloadableType())
8289 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8290 }
8291
8292 // Build a built-in binary operation.
8293 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8294 }
8295
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)8296 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8297 UnaryOperatorKind Opc,
8298 Expr *InputExpr) {
8299 ExprResult Input = Owned(InputExpr);
8300 ExprValueKind VK = VK_RValue;
8301 ExprObjectKind OK = OK_Ordinary;
8302 QualType resultType;
8303 switch (Opc) {
8304 case UO_PreInc:
8305 case UO_PreDec:
8306 case UO_PostInc:
8307 case UO_PostDec:
8308 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8309 Opc == UO_PreInc ||
8310 Opc == UO_PostInc,
8311 Opc == UO_PreInc ||
8312 Opc == UO_PreDec);
8313 break;
8314 case UO_AddrOf:
8315 resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8316 break;
8317 case UO_Deref: {
8318 Input = DefaultFunctionArrayLvalueConversion(Input.take());
8319 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8320 break;
8321 }
8322 case UO_Plus:
8323 case UO_Minus:
8324 Input = UsualUnaryConversions(Input.take());
8325 if (Input.isInvalid()) return ExprError();
8326 resultType = Input.get()->getType();
8327 if (resultType->isDependentType())
8328 break;
8329 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8330 resultType->isVectorType())
8331 break;
8332 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8333 resultType->isEnumeralType())
8334 break;
8335 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8336 Opc == UO_Plus &&
8337 resultType->isPointerType())
8338 break;
8339
8340 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8341 << resultType << Input.get()->getSourceRange());
8342
8343 case UO_Not: // bitwise complement
8344 Input = UsualUnaryConversions(Input.take());
8345 if (Input.isInvalid()) return ExprError();
8346 resultType = Input.get()->getType();
8347 if (resultType->isDependentType())
8348 break;
8349 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8350 if (resultType->isComplexType() || resultType->isComplexIntegerType())
8351 // C99 does not support '~' for complex conjugation.
8352 Diag(OpLoc, diag::ext_integer_complement_complex)
8353 << resultType << Input.get()->getSourceRange();
8354 else if (resultType->hasIntegerRepresentation())
8355 break;
8356 else {
8357 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8358 << resultType << Input.get()->getSourceRange());
8359 }
8360 break;
8361
8362 case UO_LNot: // logical negation
8363 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8364 Input = DefaultFunctionArrayLvalueConversion(Input.take());
8365 if (Input.isInvalid()) return ExprError();
8366 resultType = Input.get()->getType();
8367
8368 // Though we still have to promote half FP to float...
8369 if (resultType->isHalfType()) {
8370 Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8371 resultType = Context.FloatTy;
8372 }
8373
8374 if (resultType->isDependentType())
8375 break;
8376 if (resultType->isScalarType()) {
8377 // C99 6.5.3.3p1: ok, fallthrough;
8378 if (Context.getLangOpts().CPlusPlus) {
8379 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8380 // operand contextually converted to bool.
8381 Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8382 ScalarTypeToBooleanCastKind(resultType));
8383 }
8384 } else if (resultType->isExtVectorType()) {
8385 // Vector logical not returns the signed variant of the operand type.
8386 resultType = GetSignedVectorType(resultType);
8387 break;
8388 } else {
8389 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8390 << resultType << Input.get()->getSourceRange());
8391 }
8392
8393 // LNot always has type int. C99 6.5.3.3p5.
8394 // In C++, it's bool. C++ 5.3.1p8
8395 resultType = Context.getLogicalOperationType();
8396 break;
8397 case UO_Real:
8398 case UO_Imag:
8399 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8400 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8401 // complex l-values to ordinary l-values and all other values to r-values.
8402 if (Input.isInvalid()) return ExprError();
8403 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8404 if (Input.get()->getValueKind() != VK_RValue &&
8405 Input.get()->getObjectKind() == OK_Ordinary)
8406 VK = Input.get()->getValueKind();
8407 } else if (!getLangOpts().CPlusPlus) {
8408 // In C, a volatile scalar is read by __imag. In C++, it is not.
8409 Input = DefaultLvalueConversion(Input.take());
8410 }
8411 break;
8412 case UO_Extension:
8413 resultType = Input.get()->getType();
8414 VK = Input.get()->getValueKind();
8415 OK = Input.get()->getObjectKind();
8416 break;
8417 }
8418 if (resultType.isNull() || Input.isInvalid())
8419 return ExprError();
8420
8421 // Check for array bounds violations in the operand of the UnaryOperator,
8422 // except for the '*' and '&' operators that have to be handled specially
8423 // by CheckArrayAccess (as there are special cases like &array[arraysize]
8424 // that are explicitly defined as valid by the standard).
8425 if (Opc != UO_AddrOf && Opc != UO_Deref)
8426 CheckArrayAccess(Input.get());
8427
8428 return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8429 VK, OK, OpLoc));
8430 }
8431
8432 /// \brief Determine whether the given expression is a qualified member
8433 /// access expression, of a form that could be turned into a pointer to member
8434 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)8435 static bool isQualifiedMemberAccess(Expr *E) {
8436 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8437 if (!DRE->getQualifier())
8438 return false;
8439
8440 ValueDecl *VD = DRE->getDecl();
8441 if (!VD->isCXXClassMember())
8442 return false;
8443
8444 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8445 return true;
8446 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8447 return Method->isInstance();
8448
8449 return false;
8450 }
8451
8452 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8453 if (!ULE->getQualifier())
8454 return false;
8455
8456 for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8457 DEnd = ULE->decls_end();
8458 D != DEnd; ++D) {
8459 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8460 if (Method->isInstance())
8461 return true;
8462 } else {
8463 // Overload set does not contain methods.
8464 break;
8465 }
8466 }
8467
8468 return false;
8469 }
8470
8471 return false;
8472 }
8473
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)8474 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8475 UnaryOperatorKind Opc, Expr *Input) {
8476 // First things first: handle placeholders so that the
8477 // overloaded-operator check considers the right type.
8478 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8479 // Increment and decrement of pseudo-object references.
8480 if (pty->getKind() == BuiltinType::PseudoObject &&
8481 UnaryOperator::isIncrementDecrementOp(Opc))
8482 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8483
8484 // extension is always a builtin operator.
8485 if (Opc == UO_Extension)
8486 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8487
8488 // & gets special logic for several kinds of placeholder.
8489 // The builtin code knows what to do.
8490 if (Opc == UO_AddrOf &&
8491 (pty->getKind() == BuiltinType::Overload ||
8492 pty->getKind() == BuiltinType::UnknownAny ||
8493 pty->getKind() == BuiltinType::BoundMember))
8494 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8495
8496 // Anything else needs to be handled now.
8497 ExprResult Result = CheckPlaceholderExpr(Input);
8498 if (Result.isInvalid()) return ExprError();
8499 Input = Result.take();
8500 }
8501
8502 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8503 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8504 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8505 // Find all of the overloaded operators visible from this
8506 // point. We perform both an operator-name lookup from the local
8507 // scope and an argument-dependent lookup based on the types of
8508 // the arguments.
8509 UnresolvedSet<16> Functions;
8510 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8511 if (S && OverOp != OO_None)
8512 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8513 Functions);
8514
8515 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8516 }
8517
8518 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8519 }
8520
8521 // Unary Operators. 'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)8522 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8523 tok::TokenKind Op, Expr *Input) {
8524 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8525 }
8526
8527 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)8528 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8529 LabelDecl *TheDecl) {
8530 TheDecl->setUsed();
8531 // Create the AST node. The address of a label always has type 'void*'.
8532 return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8533 Context.getPointerType(Context.VoidTy)));
8534 }
8535
8536 /// Given the last statement in a statement-expression, check whether
8537 /// the result is a producing expression (like a call to an
8538 /// ns_returns_retained function) and, if so, rebuild it to hoist the
8539 /// release out of the full-expression. Otherwise, return null.
8540 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)8541 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8542 // Should always be wrapped with one of these.
8543 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8544 if (!cleanups) return 0;
8545
8546 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8547 if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8548 return 0;
8549
8550 // Splice out the cast. This shouldn't modify any interesting
8551 // features of the statement.
8552 Expr *producer = cast->getSubExpr();
8553 assert(producer->getType() == cast->getType());
8554 assert(producer->getValueKind() == cast->getValueKind());
8555 cleanups->setSubExpr(producer);
8556 return cleanups;
8557 }
8558
ActOnStartStmtExpr()8559 void Sema::ActOnStartStmtExpr() {
8560 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8561 }
8562
ActOnStmtExprError()8563 void Sema::ActOnStmtExprError() {
8564 // Note that function is also called by TreeTransform when leaving a
8565 // StmtExpr scope without rebuilding anything.
8566
8567 DiscardCleanupsInEvaluationContext();
8568 PopExpressionEvaluationContext();
8569 }
8570
8571 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)8572 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8573 SourceLocation RPLoc) { // "({..})"
8574 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8575 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8576
8577 if (hasAnyUnrecoverableErrorsInThisFunction())
8578 DiscardCleanupsInEvaluationContext();
8579 assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8580 PopExpressionEvaluationContext();
8581
8582 bool isFileScope
8583 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8584 if (isFileScope)
8585 return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8586
8587 // FIXME: there are a variety of strange constraints to enforce here, for
8588 // example, it is not possible to goto into a stmt expression apparently.
8589 // More semantic analysis is needed.
8590
8591 // If there are sub stmts in the compound stmt, take the type of the last one
8592 // as the type of the stmtexpr.
8593 QualType Ty = Context.VoidTy;
8594 bool StmtExprMayBindToTemp = false;
8595 if (!Compound->body_empty()) {
8596 Stmt *LastStmt = Compound->body_back();
8597 LabelStmt *LastLabelStmt = 0;
8598 // If LastStmt is a label, skip down through into the body.
8599 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8600 LastLabelStmt = Label;
8601 LastStmt = Label->getSubStmt();
8602 }
8603
8604 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8605 // Do function/array conversion on the last expression, but not
8606 // lvalue-to-rvalue. However, initialize an unqualified type.
8607 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8608 if (LastExpr.isInvalid())
8609 return ExprError();
8610 Ty = LastExpr.get()->getType().getUnqualifiedType();
8611
8612 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8613 // In ARC, if the final expression ends in a consume, splice
8614 // the consume out and bind it later. In the alternate case
8615 // (when dealing with a retainable type), the result
8616 // initialization will create a produce. In both cases the
8617 // result will be +1, and we'll need to balance that out with
8618 // a bind.
8619 if (Expr *rebuiltLastStmt
8620 = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8621 LastExpr = rebuiltLastStmt;
8622 } else {
8623 LastExpr = PerformCopyInitialization(
8624 InitializedEntity::InitializeResult(LPLoc,
8625 Ty,
8626 false),
8627 SourceLocation(),
8628 LastExpr);
8629 }
8630
8631 if (LastExpr.isInvalid())
8632 return ExprError();
8633 if (LastExpr.get() != 0) {
8634 if (!LastLabelStmt)
8635 Compound->setLastStmt(LastExpr.take());
8636 else
8637 LastLabelStmt->setSubStmt(LastExpr.take());
8638 StmtExprMayBindToTemp = true;
8639 }
8640 }
8641 }
8642 }
8643
8644 // FIXME: Check that expression type is complete/non-abstract; statement
8645 // expressions are not lvalues.
8646 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8647 if (StmtExprMayBindToTemp)
8648 return MaybeBindToTemporary(ResStmtExpr);
8649 return Owned(ResStmtExpr);
8650 }
8651
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)8652 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8653 TypeSourceInfo *TInfo,
8654 OffsetOfComponent *CompPtr,
8655 unsigned NumComponents,
8656 SourceLocation RParenLoc) {
8657 QualType ArgTy = TInfo->getType();
8658 bool Dependent = ArgTy->isDependentType();
8659 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8660
8661 // We must have at least one component that refers to the type, and the first
8662 // one is known to be a field designator. Verify that the ArgTy represents
8663 // a struct/union/class.
8664 if (!Dependent && !ArgTy->isRecordType())
8665 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8666 << ArgTy << TypeRange);
8667
8668 // Type must be complete per C99 7.17p3 because a declaring a variable
8669 // with an incomplete type would be ill-formed.
8670 if (!Dependent
8671 && RequireCompleteType(BuiltinLoc, ArgTy,
8672 PDiag(diag::err_offsetof_incomplete_type)
8673 << TypeRange))
8674 return ExprError();
8675
8676 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8677 // GCC extension, diagnose them.
8678 // FIXME: This diagnostic isn't actually visible because the location is in
8679 // a system header!
8680 if (NumComponents != 1)
8681 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8682 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8683
8684 bool DidWarnAboutNonPOD = false;
8685 QualType CurrentType = ArgTy;
8686 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8687 SmallVector<OffsetOfNode, 4> Comps;
8688 SmallVector<Expr*, 4> Exprs;
8689 for (unsigned i = 0; i != NumComponents; ++i) {
8690 const OffsetOfComponent &OC = CompPtr[i];
8691 if (OC.isBrackets) {
8692 // Offset of an array sub-field. TODO: Should we allow vector elements?
8693 if (!CurrentType->isDependentType()) {
8694 const ArrayType *AT = Context.getAsArrayType(CurrentType);
8695 if(!AT)
8696 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8697 << CurrentType);
8698 CurrentType = AT->getElementType();
8699 } else
8700 CurrentType = Context.DependentTy;
8701
8702 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
8703 if (IdxRval.isInvalid())
8704 return ExprError();
8705 Expr *Idx = IdxRval.take();
8706
8707 // The expression must be an integral expression.
8708 // FIXME: An integral constant expression?
8709 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8710 !Idx->getType()->isIntegerType())
8711 return ExprError(Diag(Idx->getLocStart(),
8712 diag::err_typecheck_subscript_not_integer)
8713 << Idx->getSourceRange());
8714
8715 // Record this array index.
8716 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8717 Exprs.push_back(Idx);
8718 continue;
8719 }
8720
8721 // Offset of a field.
8722 if (CurrentType->isDependentType()) {
8723 // We have the offset of a field, but we can't look into the dependent
8724 // type. Just record the identifier of the field.
8725 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8726 CurrentType = Context.DependentTy;
8727 continue;
8728 }
8729
8730 // We need to have a complete type to look into.
8731 if (RequireCompleteType(OC.LocStart, CurrentType,
8732 diag::err_offsetof_incomplete_type))
8733 return ExprError();
8734
8735 // Look for the designated field.
8736 const RecordType *RC = CurrentType->getAs<RecordType>();
8737 if (!RC)
8738 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8739 << CurrentType);
8740 RecordDecl *RD = RC->getDecl();
8741
8742 // C++ [lib.support.types]p5:
8743 // The macro offsetof accepts a restricted set of type arguments in this
8744 // International Standard. type shall be a POD structure or a POD union
8745 // (clause 9).
8746 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8747 if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
8748 DiagRuntimeBehavior(BuiltinLoc, 0,
8749 PDiag(diag::warn_offsetof_non_pod_type)
8750 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8751 << CurrentType))
8752 DidWarnAboutNonPOD = true;
8753 }
8754
8755 // Look for the field.
8756 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8757 LookupQualifiedName(R, RD);
8758 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8759 IndirectFieldDecl *IndirectMemberDecl = 0;
8760 if (!MemberDecl) {
8761 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8762 MemberDecl = IndirectMemberDecl->getAnonField();
8763 }
8764
8765 if (!MemberDecl)
8766 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8767 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8768 OC.LocEnd));
8769
8770 // C99 7.17p3:
8771 // (If the specified member is a bit-field, the behavior is undefined.)
8772 //
8773 // We diagnose this as an error.
8774 if (MemberDecl->isBitField()) {
8775 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8776 << MemberDecl->getDeclName()
8777 << SourceRange(BuiltinLoc, RParenLoc);
8778 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8779 return ExprError();
8780 }
8781
8782 RecordDecl *Parent = MemberDecl->getParent();
8783 if (IndirectMemberDecl)
8784 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8785
8786 // If the member was found in a base class, introduce OffsetOfNodes for
8787 // the base class indirections.
8788 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8789 /*DetectVirtual=*/false);
8790 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8791 CXXBasePath &Path = Paths.front();
8792 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8793 B != BEnd; ++B)
8794 Comps.push_back(OffsetOfNode(B->Base));
8795 }
8796
8797 if (IndirectMemberDecl) {
8798 for (IndirectFieldDecl::chain_iterator FI =
8799 IndirectMemberDecl->chain_begin(),
8800 FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8801 assert(isa<FieldDecl>(*FI));
8802 Comps.push_back(OffsetOfNode(OC.LocStart,
8803 cast<FieldDecl>(*FI), OC.LocEnd));
8804 }
8805 } else
8806 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8807
8808 CurrentType = MemberDecl->getType().getNonReferenceType();
8809 }
8810
8811 return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8812 TInfo, Comps.data(), Comps.size(),
8813 Exprs.data(), Exprs.size(), RParenLoc));
8814 }
8815
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)8816 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8817 SourceLocation BuiltinLoc,
8818 SourceLocation TypeLoc,
8819 ParsedType ParsedArgTy,
8820 OffsetOfComponent *CompPtr,
8821 unsigned NumComponents,
8822 SourceLocation RParenLoc) {
8823
8824 TypeSourceInfo *ArgTInfo;
8825 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
8826 if (ArgTy.isNull())
8827 return ExprError();
8828
8829 if (!ArgTInfo)
8830 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8831
8832 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8833 RParenLoc);
8834 }
8835
8836
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)8837 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8838 Expr *CondExpr,
8839 Expr *LHSExpr, Expr *RHSExpr,
8840 SourceLocation RPLoc) {
8841 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8842
8843 ExprValueKind VK = VK_RValue;
8844 ExprObjectKind OK = OK_Ordinary;
8845 QualType resType;
8846 bool ValueDependent = false;
8847 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8848 resType = Context.DependentTy;
8849 ValueDependent = true;
8850 } else {
8851 // The conditional expression is required to be a constant expression.
8852 llvm::APSInt condEval(32);
8853 ExprResult CondICE = VerifyIntegerConstantExpression(CondExpr, &condEval,
8854 PDiag(diag::err_typecheck_choose_expr_requires_constant), false);
8855 if (CondICE.isInvalid())
8856 return ExprError();
8857 CondExpr = CondICE.take();
8858
8859 // If the condition is > zero, then the AST type is the same as the LSHExpr.
8860 Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8861
8862 resType = ActiveExpr->getType();
8863 ValueDependent = ActiveExpr->isValueDependent();
8864 VK = ActiveExpr->getValueKind();
8865 OK = ActiveExpr->getObjectKind();
8866 }
8867
8868 return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8869 resType, VK, OK, RPLoc,
8870 resType->isDependentType(),
8871 ValueDependent));
8872 }
8873
8874 //===----------------------------------------------------------------------===//
8875 // Clang Extensions.
8876 //===----------------------------------------------------------------------===//
8877
8878 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)8879 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
8880 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8881 PushBlockScope(CurScope, Block);
8882 CurContext->addDecl(Block);
8883 if (CurScope)
8884 PushDeclContext(CurScope, Block);
8885 else
8886 CurContext = Block;
8887
8888 getCurBlock()->HasImplicitReturnType = true;
8889
8890 // Enter a new evaluation context to insulate the block from any
8891 // cleanups from the enclosing full-expression.
8892 PushExpressionEvaluationContext(PotentiallyEvaluated);
8893 }
8894
ActOnBlockArguments(Declarator & ParamInfo,Scope * CurScope)8895 void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8896 assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8897 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8898 BlockScopeInfo *CurBlock = getCurBlock();
8899
8900 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8901 QualType T = Sig->getType();
8902
8903 // GetTypeForDeclarator always produces a function type for a block
8904 // literal signature. Furthermore, it is always a FunctionProtoType
8905 // unless the function was written with a typedef.
8906 assert(T->isFunctionType() &&
8907 "GetTypeForDeclarator made a non-function block signature");
8908
8909 // Look for an explicit signature in that function type.
8910 FunctionProtoTypeLoc ExplicitSignature;
8911
8912 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8913 if (isa<FunctionProtoTypeLoc>(tmp)) {
8914 ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8915
8916 // Check whether that explicit signature was synthesized by
8917 // GetTypeForDeclarator. If so, don't save that as part of the
8918 // written signature.
8919 if (ExplicitSignature.getLocalRangeBegin() ==
8920 ExplicitSignature.getLocalRangeEnd()) {
8921 // This would be much cheaper if we stored TypeLocs instead of
8922 // TypeSourceInfos.
8923 TypeLoc Result = ExplicitSignature.getResultLoc();
8924 unsigned Size = Result.getFullDataSize();
8925 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8926 Sig->getTypeLoc().initializeFullCopy(Result, Size);
8927
8928 ExplicitSignature = FunctionProtoTypeLoc();
8929 }
8930 }
8931
8932 CurBlock->TheDecl->setSignatureAsWritten(Sig);
8933 CurBlock->FunctionType = T;
8934
8935 const FunctionType *Fn = T->getAs<FunctionType>();
8936 QualType RetTy = Fn->getResultType();
8937 bool isVariadic =
8938 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8939
8940 CurBlock->TheDecl->setIsVariadic(isVariadic);
8941
8942 // Don't allow returning a objc interface by value.
8943 if (RetTy->isObjCObjectType()) {
8944 Diag(ParamInfo.getLocStart(),
8945 diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8946 return;
8947 }
8948
8949 // Context.DependentTy is used as a placeholder for a missing block
8950 // return type. TODO: what should we do with declarators like:
8951 // ^ * { ... }
8952 // If the answer is "apply template argument deduction"....
8953 if (RetTy != Context.DependentTy) {
8954 CurBlock->ReturnType = RetTy;
8955 CurBlock->TheDecl->setBlockMissingReturnType(false);
8956 CurBlock->HasImplicitReturnType = false;
8957 }
8958
8959 // Push block parameters from the declarator if we had them.
8960 SmallVector<ParmVarDecl*, 8> Params;
8961 if (ExplicitSignature) {
8962 for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8963 ParmVarDecl *Param = ExplicitSignature.getArg(I);
8964 if (Param->getIdentifier() == 0 &&
8965 !Param->isImplicit() &&
8966 !Param->isInvalidDecl() &&
8967 !getLangOpts().CPlusPlus)
8968 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8969 Params.push_back(Param);
8970 }
8971
8972 // Fake up parameter variables if we have a typedef, like
8973 // ^ fntype { ... }
8974 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8975 for (FunctionProtoType::arg_type_iterator
8976 I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8977 ParmVarDecl *Param =
8978 BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8979 ParamInfo.getLocStart(),
8980 *I);
8981 Params.push_back(Param);
8982 }
8983 }
8984
8985 // Set the parameters on the block decl.
8986 if (!Params.empty()) {
8987 CurBlock->TheDecl->setParams(Params);
8988 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
8989 CurBlock->TheDecl->param_end(),
8990 /*CheckParameterNames=*/false);
8991 }
8992
8993 // Finally we can process decl attributes.
8994 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
8995
8996 // Put the parameter variables in scope. We can bail out immediately
8997 // if we don't have any.
8998 if (Params.empty())
8999 return;
9000
9001 for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9002 E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9003 (*AI)->setOwningFunction(CurBlock->TheDecl);
9004
9005 // If this has an identifier, add it to the scope stack.
9006 if ((*AI)->getIdentifier()) {
9007 CheckShadow(CurBlock->TheScope, *AI);
9008
9009 PushOnScopeChains(*AI, CurBlock->TheScope);
9010 }
9011 }
9012 }
9013
9014 /// ActOnBlockError - If there is an error parsing a block, this callback
9015 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)9016 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9017 // Leave the expression-evaluation context.
9018 DiscardCleanupsInEvaluationContext();
9019 PopExpressionEvaluationContext();
9020
9021 // Pop off CurBlock, handle nested blocks.
9022 PopDeclContext();
9023 PopFunctionScopeInfo();
9024 }
9025
9026 /// ActOnBlockStmtExpr - This is called when the body of a block statement
9027 /// literal was successfully completed. ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)9028 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9029 Stmt *Body, Scope *CurScope) {
9030 // If blocks are disabled, emit an error.
9031 if (!LangOpts.Blocks)
9032 Diag(CaretLoc, diag::err_blocks_disable);
9033
9034 // Leave the expression-evaluation context.
9035 if (hasAnyUnrecoverableErrorsInThisFunction())
9036 DiscardCleanupsInEvaluationContext();
9037 assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9038 PopExpressionEvaluationContext();
9039
9040 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9041
9042 PopDeclContext();
9043
9044 QualType RetTy = Context.VoidTy;
9045 if (!BSI->ReturnType.isNull())
9046 RetTy = BSI->ReturnType;
9047
9048 bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9049 QualType BlockTy;
9050
9051 // Set the captured variables on the block.
9052 // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9053 SmallVector<BlockDecl::Capture, 4> Captures;
9054 for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9055 CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9056 if (Cap.isThisCapture())
9057 continue;
9058 BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9059 Cap.isNested(), Cap.getCopyExpr());
9060 Captures.push_back(NewCap);
9061 }
9062 BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9063 BSI->CXXThisCaptureIndex != 0);
9064
9065 // If the user wrote a function type in some form, try to use that.
9066 if (!BSI->FunctionType.isNull()) {
9067 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9068
9069 FunctionType::ExtInfo Ext = FTy->getExtInfo();
9070 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9071
9072 // Turn protoless block types into nullary block types.
9073 if (isa<FunctionNoProtoType>(FTy)) {
9074 FunctionProtoType::ExtProtoInfo EPI;
9075 EPI.ExtInfo = Ext;
9076 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9077
9078 // Otherwise, if we don't need to change anything about the function type,
9079 // preserve its sugar structure.
9080 } else if (FTy->getResultType() == RetTy &&
9081 (!NoReturn || FTy->getNoReturnAttr())) {
9082 BlockTy = BSI->FunctionType;
9083
9084 // Otherwise, make the minimal modifications to the function type.
9085 } else {
9086 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9087 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9088 EPI.TypeQuals = 0; // FIXME: silently?
9089 EPI.ExtInfo = Ext;
9090 BlockTy = Context.getFunctionType(RetTy,
9091 FPT->arg_type_begin(),
9092 FPT->getNumArgs(),
9093 EPI);
9094 }
9095
9096 // If we don't have a function type, just build one from nothing.
9097 } else {
9098 FunctionProtoType::ExtProtoInfo EPI;
9099 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9100 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9101 }
9102
9103 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9104 BSI->TheDecl->param_end());
9105 BlockTy = Context.getBlockPointerType(BlockTy);
9106
9107 // If needed, diagnose invalid gotos and switches in the block.
9108 if (getCurFunction()->NeedsScopeChecking() &&
9109 !hasAnyUnrecoverableErrorsInThisFunction())
9110 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9111
9112 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9113
9114 computeNRVO(Body, getCurBlock());
9115
9116 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9117 const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9118 PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9119
9120 // If the block isn't obviously global, i.e. it captures anything at
9121 // all, then we need to do a few things in the surrounding context:
9122 if (Result->getBlockDecl()->hasCaptures()) {
9123 // First, this expression has a new cleanup object.
9124 ExprCleanupObjects.push_back(Result->getBlockDecl());
9125 ExprNeedsCleanups = true;
9126
9127 // It also gets a branch-protected scope if any of the captured
9128 // variables needs destruction.
9129 for (BlockDecl::capture_const_iterator
9130 ci = Result->getBlockDecl()->capture_begin(),
9131 ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9132 const VarDecl *var = ci->getVariable();
9133 if (var->getType().isDestructedType() != QualType::DK_none) {
9134 getCurFunction()->setHasBranchProtectedScope();
9135 break;
9136 }
9137 }
9138 }
9139
9140 return Owned(Result);
9141 }
9142
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)9143 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9144 Expr *E, ParsedType Ty,
9145 SourceLocation RPLoc) {
9146 TypeSourceInfo *TInfo;
9147 GetTypeFromParser(Ty, &TInfo);
9148 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9149 }
9150
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)9151 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9152 Expr *E, TypeSourceInfo *TInfo,
9153 SourceLocation RPLoc) {
9154 Expr *OrigExpr = E;
9155
9156 // Get the va_list type
9157 QualType VaListType = Context.getBuiltinVaListType();
9158 if (VaListType->isArrayType()) {
9159 // Deal with implicit array decay; for example, on x86-64,
9160 // va_list is an array, but it's supposed to decay to
9161 // a pointer for va_arg.
9162 VaListType = Context.getArrayDecayedType(VaListType);
9163 // Make sure the input expression also decays appropriately.
9164 ExprResult Result = UsualUnaryConversions(E);
9165 if (Result.isInvalid())
9166 return ExprError();
9167 E = Result.take();
9168 } else {
9169 // Otherwise, the va_list argument must be an l-value because
9170 // it is modified by va_arg.
9171 if (!E->isTypeDependent() &&
9172 CheckForModifiableLvalue(E, BuiltinLoc, *this))
9173 return ExprError();
9174 }
9175
9176 if (!E->isTypeDependent() &&
9177 !Context.hasSameType(VaListType, E->getType())) {
9178 return ExprError(Diag(E->getLocStart(),
9179 diag::err_first_argument_to_va_arg_not_of_type_va_list)
9180 << OrigExpr->getType() << E->getSourceRange());
9181 }
9182
9183 if (!TInfo->getType()->isDependentType()) {
9184 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9185 PDiag(diag::err_second_parameter_to_va_arg_incomplete)
9186 << TInfo->getTypeLoc().getSourceRange()))
9187 return ExprError();
9188
9189 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9190 TInfo->getType(),
9191 PDiag(diag::err_second_parameter_to_va_arg_abstract)
9192 << TInfo->getTypeLoc().getSourceRange()))
9193 return ExprError();
9194
9195 if (!TInfo->getType().isPODType(Context)) {
9196 Diag(TInfo->getTypeLoc().getBeginLoc(),
9197 TInfo->getType()->isObjCLifetimeType()
9198 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9199 : diag::warn_second_parameter_to_va_arg_not_pod)
9200 << TInfo->getType()
9201 << TInfo->getTypeLoc().getSourceRange();
9202 }
9203
9204 // Check for va_arg where arguments of the given type will be promoted
9205 // (i.e. this va_arg is guaranteed to have undefined behavior).
9206 QualType PromoteType;
9207 if (TInfo->getType()->isPromotableIntegerType()) {
9208 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9209 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9210 PromoteType = QualType();
9211 }
9212 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9213 PromoteType = Context.DoubleTy;
9214 if (!PromoteType.isNull())
9215 Diag(TInfo->getTypeLoc().getBeginLoc(),
9216 diag::warn_second_parameter_to_va_arg_never_compatible)
9217 << TInfo->getType()
9218 << PromoteType
9219 << TInfo->getTypeLoc().getSourceRange();
9220 }
9221
9222 QualType T = TInfo->getType().getNonLValueExprType(Context);
9223 return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9224 }
9225
ActOnGNUNullExpr(SourceLocation TokenLoc)9226 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9227 // The type of __null will be int or long, depending on the size of
9228 // pointers on the target.
9229 QualType Ty;
9230 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9231 if (pw == Context.getTargetInfo().getIntWidth())
9232 Ty = Context.IntTy;
9233 else if (pw == Context.getTargetInfo().getLongWidth())
9234 Ty = Context.LongTy;
9235 else if (pw == Context.getTargetInfo().getLongLongWidth())
9236 Ty = Context.LongLongTy;
9237 else {
9238 llvm_unreachable("I don't know size of pointer!");
9239 }
9240
9241 return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9242 }
9243
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint)9244 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9245 Expr *SrcExpr, FixItHint &Hint) {
9246 if (!SemaRef.getLangOpts().ObjC1)
9247 return;
9248
9249 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9250 if (!PT)
9251 return;
9252
9253 // Check if the destination is of type 'id'.
9254 if (!PT->isObjCIdType()) {
9255 // Check if the destination is the 'NSString' interface.
9256 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9257 if (!ID || !ID->getIdentifier()->isStr("NSString"))
9258 return;
9259 }
9260
9261 // Ignore any parens, implicit casts (should only be
9262 // array-to-pointer decays), and not-so-opaque values. The last is
9263 // important for making this trigger for property assignments.
9264 SrcExpr = SrcExpr->IgnoreParenImpCasts();
9265 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9266 if (OV->getSourceExpr())
9267 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9268
9269 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9270 if (!SL || !SL->isAscii())
9271 return;
9272
9273 Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9274 }
9275
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)9276 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9277 SourceLocation Loc,
9278 QualType DstType, QualType SrcType,
9279 Expr *SrcExpr, AssignmentAction Action,
9280 bool *Complained) {
9281 if (Complained)
9282 *Complained = false;
9283
9284 // Decode the result (notice that AST's are still created for extensions).
9285 bool CheckInferredResultType = false;
9286 bool isInvalid = false;
9287 unsigned DiagKind = 0;
9288 FixItHint Hint;
9289 ConversionFixItGenerator ConvHints;
9290 bool MayHaveConvFixit = false;
9291 bool MayHaveFunctionDiff = false;
9292
9293 switch (ConvTy) {
9294 case Compatible: return false;
9295 case PointerToInt:
9296 DiagKind = diag::ext_typecheck_convert_pointer_int;
9297 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9298 MayHaveConvFixit = true;
9299 break;
9300 case IntToPointer:
9301 DiagKind = diag::ext_typecheck_convert_int_pointer;
9302 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9303 MayHaveConvFixit = true;
9304 break;
9305 case IncompatiblePointer:
9306 MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9307 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9308 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9309 SrcType->isObjCObjectPointerType();
9310 if (Hint.isNull() && !CheckInferredResultType) {
9311 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9312 }
9313 MayHaveConvFixit = true;
9314 break;
9315 case IncompatiblePointerSign:
9316 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9317 break;
9318 case FunctionVoidPointer:
9319 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9320 break;
9321 case IncompatiblePointerDiscardsQualifiers: {
9322 // Perform array-to-pointer decay if necessary.
9323 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9324
9325 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9326 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9327 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9328 DiagKind = diag::err_typecheck_incompatible_address_space;
9329 break;
9330
9331
9332 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9333 DiagKind = diag::err_typecheck_incompatible_ownership;
9334 break;
9335 }
9336
9337 llvm_unreachable("unknown error case for discarding qualifiers!");
9338 // fallthrough
9339 }
9340 case CompatiblePointerDiscardsQualifiers:
9341 // If the qualifiers lost were because we were applying the
9342 // (deprecated) C++ conversion from a string literal to a char*
9343 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
9344 // Ideally, this check would be performed in
9345 // checkPointerTypesForAssignment. However, that would require a
9346 // bit of refactoring (so that the second argument is an
9347 // expression, rather than a type), which should be done as part
9348 // of a larger effort to fix checkPointerTypesForAssignment for
9349 // C++ semantics.
9350 if (getLangOpts().CPlusPlus &&
9351 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9352 return false;
9353 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9354 break;
9355 case IncompatibleNestedPointerQualifiers:
9356 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9357 break;
9358 case IntToBlockPointer:
9359 DiagKind = diag::err_int_to_block_pointer;
9360 break;
9361 case IncompatibleBlockPointer:
9362 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9363 break;
9364 case IncompatibleObjCQualifiedId:
9365 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9366 // it can give a more specific diagnostic.
9367 DiagKind = diag::warn_incompatible_qualified_id;
9368 break;
9369 case IncompatibleVectors:
9370 DiagKind = diag::warn_incompatible_vectors;
9371 break;
9372 case IncompatibleObjCWeakRef:
9373 DiagKind = diag::err_arc_weak_unavailable_assign;
9374 break;
9375 case Incompatible:
9376 DiagKind = diag::err_typecheck_convert_incompatible;
9377 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9378 MayHaveConvFixit = true;
9379 isInvalid = true;
9380 MayHaveFunctionDiff = true;
9381 break;
9382 }
9383
9384 QualType FirstType, SecondType;
9385 switch (Action) {
9386 case AA_Assigning:
9387 case AA_Initializing:
9388 // The destination type comes first.
9389 FirstType = DstType;
9390 SecondType = SrcType;
9391 break;
9392
9393 case AA_Returning:
9394 case AA_Passing:
9395 case AA_Converting:
9396 case AA_Sending:
9397 case AA_Casting:
9398 // The source type comes first.
9399 FirstType = SrcType;
9400 SecondType = DstType;
9401 break;
9402 }
9403
9404 PartialDiagnostic FDiag = PDiag(DiagKind);
9405 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9406
9407 // If we can fix the conversion, suggest the FixIts.
9408 assert(ConvHints.isNull() || Hint.isNull());
9409 if (!ConvHints.isNull()) {
9410 for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9411 HE = ConvHints.Hints.end(); HI != HE; ++HI)
9412 FDiag << *HI;
9413 } else {
9414 FDiag << Hint;
9415 }
9416 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9417
9418 if (MayHaveFunctionDiff)
9419 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9420
9421 Diag(Loc, FDiag);
9422
9423 if (SecondType == Context.OverloadTy)
9424 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9425 FirstType);
9426
9427 if (CheckInferredResultType)
9428 EmitRelatedResultTypeNote(SrcExpr);
9429
9430 if (Complained)
9431 *Complained = true;
9432 return isInvalid;
9433 }
9434
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)9435 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9436 llvm::APSInt *Result) {
9437 return VerifyIntegerConstantExpression(E, Result,
9438 PDiag(diag::err_expr_not_ice) << LangOpts.CPlusPlus);
9439 }
9440
9441 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,const PartialDiagnostic & NotIceDiag,bool AllowFold,const PartialDiagnostic & FoldDiag)9442 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9443 const PartialDiagnostic &NotIceDiag,
9444 bool AllowFold,
9445 const PartialDiagnostic &FoldDiag) {
9446 SourceLocation DiagLoc = E->getLocStart();
9447
9448 if (getLangOpts().CPlusPlus0x) {
9449 // C++11 [expr.const]p5:
9450 // If an expression of literal class type is used in a context where an
9451 // integral constant expression is required, then that class type shall
9452 // have a single non-explicit conversion function to an integral or
9453 // unscoped enumeration type
9454 ExprResult Converted;
9455 if (NotIceDiag.getDiagID()) {
9456 Converted = ConvertToIntegralOrEnumerationType(
9457 DiagLoc, E,
9458 PDiag(diag::err_ice_not_integral),
9459 PDiag(diag::err_ice_incomplete_type),
9460 PDiag(diag::err_ice_explicit_conversion),
9461 PDiag(diag::note_ice_conversion_here),
9462 PDiag(diag::err_ice_ambiguous_conversion),
9463 PDiag(diag::note_ice_conversion_here),
9464 PDiag(0),
9465 /*AllowScopedEnumerations*/ false);
9466 } else {
9467 // The caller wants to silently enquire whether this is an ICE. Don't
9468 // produce any diagnostics if it isn't.
9469 Converted = ConvertToIntegralOrEnumerationType(
9470 DiagLoc, E, PDiag(), PDiag(), PDiag(), PDiag(),
9471 PDiag(), PDiag(), PDiag(), false);
9472 }
9473 if (Converted.isInvalid())
9474 return Converted;
9475 E = Converted.take();
9476 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9477 return ExprError();
9478 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9479 // An ICE must be of integral or unscoped enumeration type.
9480 if (NotIceDiag.getDiagID())
9481 Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
9482 return ExprError();
9483 }
9484
9485 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9486 // in the non-ICE case.
9487 if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9488 if (Result)
9489 *Result = E->EvaluateKnownConstInt(Context);
9490 return Owned(E);
9491 }
9492
9493 Expr::EvalResult EvalResult;
9494 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9495 EvalResult.Diag = &Notes;
9496
9497 // Try to evaluate the expression, and produce diagnostics explaining why it's
9498 // not a constant expression as a side-effect.
9499 bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9500 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9501
9502 // In C++11, we can rely on diagnostics being produced for any expression
9503 // which is not a constant expression. If no diagnostics were produced, then
9504 // this is a constant expression.
9505 if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9506 if (Result)
9507 *Result = EvalResult.Val.getInt();
9508 return Owned(E);
9509 }
9510
9511 // If our only note is the usual "invalid subexpression" note, just point
9512 // the caret at its location rather than producing an essentially
9513 // redundant note.
9514 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9515 diag::note_invalid_subexpr_in_const_expr) {
9516 DiagLoc = Notes[0].first;
9517 Notes.clear();
9518 }
9519
9520 if (!Folded || !AllowFold) {
9521 if (NotIceDiag.getDiagID()) {
9522 Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
9523 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9524 Diag(Notes[I].first, Notes[I].second);
9525 }
9526
9527 return ExprError();
9528 }
9529
9530 if (FoldDiag.getDiagID())
9531 Diag(DiagLoc, FoldDiag) << E->getSourceRange();
9532 else
9533 Diag(DiagLoc, diag::ext_expr_not_ice)
9534 << E->getSourceRange() << LangOpts.CPlusPlus;
9535 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9536 Diag(Notes[I].first, Notes[I].second);
9537
9538 if (Result)
9539 *Result = EvalResult.Val.getInt();
9540 return Owned(E);
9541 }
9542
9543 namespace {
9544 // Handle the case where we conclude a expression which we speculatively
9545 // considered to be unevaluated is actually evaluated.
9546 class TransformToPE : public TreeTransform<TransformToPE> {
9547 typedef TreeTransform<TransformToPE> BaseTransform;
9548
9549 public:
TransformToPE(Sema & SemaRef)9550 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
9551
9552 // Make sure we redo semantic analysis
AlwaysRebuild()9553 bool AlwaysRebuild() { return true; }
9554
9555 // Make sure we handle LabelStmts correctly.
9556 // FIXME: This does the right thing, but maybe we need a more general
9557 // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)9558 StmtResult TransformLabelStmt(LabelStmt *S) {
9559 S->getDecl()->setStmt(0);
9560 return BaseTransform::TransformLabelStmt(S);
9561 }
9562
9563 // We need to special-case DeclRefExprs referring to FieldDecls which
9564 // are not part of a member pointer formation; normal TreeTransforming
9565 // doesn't catch this case because of the way we represent them in the AST.
9566 // FIXME: This is a bit ugly; is it really the best way to handle this
9567 // case?
9568 //
9569 // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)9570 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
9571 if (isa<FieldDecl>(E->getDecl()) &&
9572 SemaRef.ExprEvalContexts.back().Context != Sema::Unevaluated)
9573 return SemaRef.Diag(E->getLocation(),
9574 diag::err_invalid_non_static_member_use)
9575 << E->getDecl() << E->getSourceRange();
9576
9577 return BaseTransform::TransformDeclRefExpr(E);
9578 }
9579
9580 // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)9581 ExprResult TransformUnaryOperator(UnaryOperator *E) {
9582 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
9583 return E;
9584
9585 return BaseTransform::TransformUnaryOperator(E);
9586 }
9587
TransformLambdaExpr(LambdaExpr * E)9588 ExprResult TransformLambdaExpr(LambdaExpr *E) {
9589 // Lambdas never need to be transformed.
9590 return E;
9591 }
9592 };
9593 }
9594
TranformToPotentiallyEvaluated(Expr * E)9595 ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
9596 assert(ExprEvalContexts.back().Context == Unevaluated &&
9597 "Should only transform unevaluated expressions");
9598 ExprEvalContexts.back().Context =
9599 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
9600 if (ExprEvalContexts.back().Context == Unevaluated)
9601 return E;
9602 return TransformToPE(*this).TransformExpr(E);
9603 }
9604
9605 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)9606 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
9607 Decl *LambdaContextDecl,
9608 bool IsDecltype) {
9609 ExprEvalContexts.push_back(
9610 ExpressionEvaluationContextRecord(NewContext,
9611 ExprCleanupObjects.size(),
9612 ExprNeedsCleanups,
9613 LambdaContextDecl,
9614 IsDecltype));
9615 ExprNeedsCleanups = false;
9616 if (!MaybeODRUseExprs.empty())
9617 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
9618 }
9619
PopExpressionEvaluationContext()9620 void Sema::PopExpressionEvaluationContext() {
9621 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
9622
9623 if (!Rec.Lambdas.empty()) {
9624 if (Rec.Context == Unevaluated) {
9625 // C++11 [expr.prim.lambda]p2:
9626 // A lambda-expression shall not appear in an unevaluated operand
9627 // (Clause 5).
9628 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
9629 Diag(Rec.Lambdas[I]->getLocStart(),
9630 diag::err_lambda_unevaluated_operand);
9631 } else {
9632 // Mark the capture expressions odr-used. This was deferred
9633 // during lambda expression creation.
9634 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
9635 LambdaExpr *Lambda = Rec.Lambdas[I];
9636 for (LambdaExpr::capture_init_iterator
9637 C = Lambda->capture_init_begin(),
9638 CEnd = Lambda->capture_init_end();
9639 C != CEnd; ++C) {
9640 MarkDeclarationsReferencedInExpr(*C);
9641 }
9642 }
9643 }
9644 }
9645
9646 // When are coming out of an unevaluated context, clear out any
9647 // temporaries that we may have created as part of the evaluation of
9648 // the expression in that context: they aren't relevant because they
9649 // will never be constructed.
9650 if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
9651 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
9652 ExprCleanupObjects.end());
9653 ExprNeedsCleanups = Rec.ParentNeedsCleanups;
9654 CleanupVarDeclMarking();
9655 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
9656 // Otherwise, merge the contexts together.
9657 } else {
9658 ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
9659 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
9660 Rec.SavedMaybeODRUseExprs.end());
9661 }
9662
9663 // Pop the current expression evaluation context off the stack.
9664 ExprEvalContexts.pop_back();
9665 }
9666
DiscardCleanupsInEvaluationContext()9667 void Sema::DiscardCleanupsInEvaluationContext() {
9668 ExprCleanupObjects.erase(
9669 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
9670 ExprCleanupObjects.end());
9671 ExprNeedsCleanups = false;
9672 MaybeODRUseExprs.clear();
9673 }
9674
HandleExprEvaluationContextForTypeof(Expr * E)9675 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
9676 if (!E->getType()->isVariablyModifiedType())
9677 return E;
9678 return TranformToPotentiallyEvaluated(E);
9679 }
9680
IsPotentiallyEvaluatedContext(Sema & SemaRef)9681 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
9682 // Do not mark anything as "used" within a dependent context; wait for
9683 // an instantiation.
9684 if (SemaRef.CurContext->isDependentContext())
9685 return false;
9686
9687 switch (SemaRef.ExprEvalContexts.back().Context) {
9688 case Sema::Unevaluated:
9689 // We are in an expression that is not potentially evaluated; do nothing.
9690 // (Depending on how you read the standard, we actually do need to do
9691 // something here for null pointer constants, but the standard's
9692 // definition of a null pointer constant is completely crazy.)
9693 return false;
9694
9695 case Sema::ConstantEvaluated:
9696 case Sema::PotentiallyEvaluated:
9697 // We are in a potentially evaluated expression (or a constant-expression
9698 // in C++03); we need to do implicit template instantiation, implicitly
9699 // define class members, and mark most declarations as used.
9700 return true;
9701
9702 case Sema::PotentiallyEvaluatedIfUsed:
9703 // Referenced declarations will only be used if the construct in the
9704 // containing expression is used.
9705 return false;
9706 }
9707 llvm_unreachable("Invalid context");
9708 }
9709
9710 /// \brief Mark a function referenced, and check whether it is odr-used
9711 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func)9712 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
9713 assert(Func && "No function?");
9714
9715 Func->setReferenced();
9716
9717 // Don't mark this function as used multiple times, unless it's a constexpr
9718 // function which we need to instantiate.
9719 if (Func->isUsed(false) &&
9720 !(Func->isConstexpr() && !Func->getBody() &&
9721 Func->isImplicitlyInstantiable()))
9722 return;
9723
9724 if (!IsPotentiallyEvaluatedContext(*this))
9725 return;
9726
9727 // Note that this declaration has been used.
9728 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
9729 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
9730 if (Constructor->isDefaultConstructor()) {
9731 if (Constructor->isTrivial())
9732 return;
9733 if (!Constructor->isUsed(false))
9734 DefineImplicitDefaultConstructor(Loc, Constructor);
9735 } else if (Constructor->isCopyConstructor()) {
9736 if (!Constructor->isUsed(false))
9737 DefineImplicitCopyConstructor(Loc, Constructor);
9738 } else if (Constructor->isMoveConstructor()) {
9739 if (!Constructor->isUsed(false))
9740 DefineImplicitMoveConstructor(Loc, Constructor);
9741 }
9742 }
9743
9744 MarkVTableUsed(Loc, Constructor->getParent());
9745 } else if (CXXDestructorDecl *Destructor =
9746 dyn_cast<CXXDestructorDecl>(Func)) {
9747 if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
9748 !Destructor->isUsed(false))
9749 DefineImplicitDestructor(Loc, Destructor);
9750 if (Destructor->isVirtual())
9751 MarkVTableUsed(Loc, Destructor->getParent());
9752 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
9753 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
9754 MethodDecl->isOverloadedOperator() &&
9755 MethodDecl->getOverloadedOperator() == OO_Equal) {
9756 if (!MethodDecl->isUsed(false)) {
9757 if (MethodDecl->isCopyAssignmentOperator())
9758 DefineImplicitCopyAssignment(Loc, MethodDecl);
9759 else
9760 DefineImplicitMoveAssignment(Loc, MethodDecl);
9761 }
9762 } else if (isa<CXXConversionDecl>(MethodDecl) &&
9763 MethodDecl->getParent()->isLambda()) {
9764 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
9765 if (Conversion->isLambdaToBlockPointerConversion())
9766 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
9767 else
9768 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
9769 } else if (MethodDecl->isVirtual())
9770 MarkVTableUsed(Loc, MethodDecl->getParent());
9771 }
9772
9773 // Recursive functions should be marked when used from another function.
9774 // FIXME: Is this really right?
9775 if (CurContext == Func) return;
9776
9777 // Instantiate the exception specification for any function which is
9778 // used: CodeGen will need it.
9779 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
9780 if (FPT && FPT->getExceptionSpecType() == EST_Uninstantiated)
9781 InstantiateExceptionSpec(Loc, Func);
9782
9783 // Implicit instantiation of function templates and member functions of
9784 // class templates.
9785 if (Func->isImplicitlyInstantiable()) {
9786 bool AlreadyInstantiated = false;
9787 SourceLocation PointOfInstantiation = Loc;
9788 if (FunctionTemplateSpecializationInfo *SpecInfo
9789 = Func->getTemplateSpecializationInfo()) {
9790 if (SpecInfo->getPointOfInstantiation().isInvalid())
9791 SpecInfo->setPointOfInstantiation(Loc);
9792 else if (SpecInfo->getTemplateSpecializationKind()
9793 == TSK_ImplicitInstantiation) {
9794 AlreadyInstantiated = true;
9795 PointOfInstantiation = SpecInfo->getPointOfInstantiation();
9796 }
9797 } else if (MemberSpecializationInfo *MSInfo
9798 = Func->getMemberSpecializationInfo()) {
9799 if (MSInfo->getPointOfInstantiation().isInvalid())
9800 MSInfo->setPointOfInstantiation(Loc);
9801 else if (MSInfo->getTemplateSpecializationKind()
9802 == TSK_ImplicitInstantiation) {
9803 AlreadyInstantiated = true;
9804 PointOfInstantiation = MSInfo->getPointOfInstantiation();
9805 }
9806 }
9807
9808 if (!AlreadyInstantiated || Func->isConstexpr()) {
9809 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
9810 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
9811 PendingLocalImplicitInstantiations.push_back(
9812 std::make_pair(Func, PointOfInstantiation));
9813 else if (Func->isConstexpr())
9814 // Do not defer instantiations of constexpr functions, to avoid the
9815 // expression evaluator needing to call back into Sema if it sees a
9816 // call to such a function.
9817 InstantiateFunctionDefinition(PointOfInstantiation, Func);
9818 else {
9819 PendingInstantiations.push_back(std::make_pair(Func,
9820 PointOfInstantiation));
9821 // Notify the consumer that a function was implicitly instantiated.
9822 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
9823 }
9824 }
9825 } else {
9826 // Walk redefinitions, as some of them may be instantiable.
9827 for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
9828 e(Func->redecls_end()); i != e; ++i) {
9829 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
9830 MarkFunctionReferenced(Loc, *i);
9831 }
9832 }
9833
9834 // Keep track of used but undefined functions.
9835 if (!Func->isPure() && !Func->hasBody() &&
9836 Func->getLinkage() != ExternalLinkage) {
9837 SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
9838 if (old.isInvalid()) old = Loc;
9839 }
9840
9841 Func->setUsed(true);
9842 }
9843
9844 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)9845 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
9846 VarDecl *var, DeclContext *DC) {
9847 DeclContext *VarDC = var->getDeclContext();
9848
9849 // If the parameter still belongs to the translation unit, then
9850 // we're actually just using one parameter in the declaration of
9851 // the next.
9852 if (isa<ParmVarDecl>(var) &&
9853 isa<TranslationUnitDecl>(VarDC))
9854 return;
9855
9856 // For C code, don't diagnose about capture if we're not actually in code
9857 // right now; it's impossible to write a non-constant expression outside of
9858 // function context, so we'll get other (more useful) diagnostics later.
9859 //
9860 // For C++, things get a bit more nasty... it would be nice to suppress this
9861 // diagnostic for certain cases like using a local variable in an array bound
9862 // for a member of a local class, but the correct predicate is not obvious.
9863 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
9864 return;
9865
9866 if (isa<CXXMethodDecl>(VarDC) &&
9867 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
9868 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
9869 << var->getIdentifier();
9870 } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
9871 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
9872 << var->getIdentifier() << fn->getDeclName();
9873 } else if (isa<BlockDecl>(VarDC)) {
9874 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
9875 << var->getIdentifier();
9876 } else {
9877 // FIXME: Is there any other context where a local variable can be
9878 // declared?
9879 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
9880 << var->getIdentifier();
9881 }
9882
9883 S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
9884 << var->getIdentifier();
9885
9886 // FIXME: Add additional diagnostic info about class etc. which prevents
9887 // capture.
9888 }
9889
9890 /// \brief Capture the given variable in the given lambda expression.
captureInLambda(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc)9891 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
9892 VarDecl *Var, QualType FieldType,
9893 QualType DeclRefType,
9894 SourceLocation Loc) {
9895 CXXRecordDecl *Lambda = LSI->Lambda;
9896
9897 // Build the non-static data member.
9898 FieldDecl *Field
9899 = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
9900 S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
9901 0, false, false);
9902 Field->setImplicit(true);
9903 Field->setAccess(AS_private);
9904 Lambda->addDecl(Field);
9905
9906 // C++11 [expr.prim.lambda]p21:
9907 // When the lambda-expression is evaluated, the entities that
9908 // are captured by copy are used to direct-initialize each
9909 // corresponding non-static data member of the resulting closure
9910 // object. (For array members, the array elements are
9911 // direct-initialized in increasing subscript order.) These
9912 // initializations are performed in the (unspecified) order in
9913 // which the non-static data members are declared.
9914
9915 // Introduce a new evaluation context for the initialization, so
9916 // that temporaries introduced as part of the capture are retained
9917 // to be re-"exported" from the lambda expression itself.
9918 S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
9919
9920 // C++ [expr.prim.labda]p12:
9921 // An entity captured by a lambda-expression is odr-used (3.2) in
9922 // the scope containing the lambda-expression.
9923 Expr *Ref = new (S.Context) DeclRefExpr(Var, false, DeclRefType,
9924 VK_LValue, Loc);
9925 Var->setReferenced(true);
9926 Var->setUsed(true);
9927
9928 // When the field has array type, create index variables for each
9929 // dimension of the array. We use these index variables to subscript
9930 // the source array, and other clients (e.g., CodeGen) will perform
9931 // the necessary iteration with these index variables.
9932 SmallVector<VarDecl *, 4> IndexVariables;
9933 QualType BaseType = FieldType;
9934 QualType SizeType = S.Context.getSizeType();
9935 LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
9936 while (const ConstantArrayType *Array
9937 = S.Context.getAsConstantArrayType(BaseType)) {
9938 // Create the iteration variable for this array index.
9939 IdentifierInfo *IterationVarName = 0;
9940 {
9941 SmallString<8> Str;
9942 llvm::raw_svector_ostream OS(Str);
9943 OS << "__i" << IndexVariables.size();
9944 IterationVarName = &S.Context.Idents.get(OS.str());
9945 }
9946 VarDecl *IterationVar
9947 = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9948 IterationVarName, SizeType,
9949 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9950 SC_None, SC_None);
9951 IndexVariables.push_back(IterationVar);
9952 LSI->ArrayIndexVars.push_back(IterationVar);
9953
9954 // Create a reference to the iteration variable.
9955 ExprResult IterationVarRef
9956 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
9957 assert(!IterationVarRef.isInvalid() &&
9958 "Reference to invented variable cannot fail!");
9959 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
9960 assert(!IterationVarRef.isInvalid() &&
9961 "Conversion of invented variable cannot fail!");
9962
9963 // Subscript the array with this iteration variable.
9964 ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
9965 Ref, Loc, IterationVarRef.take(), Loc);
9966 if (Subscript.isInvalid()) {
9967 S.CleanupVarDeclMarking();
9968 S.DiscardCleanupsInEvaluationContext();
9969 S.PopExpressionEvaluationContext();
9970 return ExprError();
9971 }
9972
9973 Ref = Subscript.take();
9974 BaseType = Array->getElementType();
9975 }
9976
9977 // Construct the entity that we will be initializing. For an array, this
9978 // will be first element in the array, which may require several levels
9979 // of array-subscript entities.
9980 SmallVector<InitializedEntity, 4> Entities;
9981 Entities.reserve(1 + IndexVariables.size());
9982 Entities.push_back(
9983 InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
9984 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
9985 Entities.push_back(InitializedEntity::InitializeElement(S.Context,
9986 0,
9987 Entities.back()));
9988
9989 InitializationKind InitKind
9990 = InitializationKind::CreateDirect(Loc, Loc, Loc);
9991 InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
9992 ExprResult Result(true);
9993 if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
9994 Result = Init.Perform(S, Entities.back(), InitKind,
9995 MultiExprArg(S, &Ref, 1));
9996
9997 // If this initialization requires any cleanups (e.g., due to a
9998 // default argument to a copy constructor), note that for the
9999 // lambda.
10000 if (S.ExprNeedsCleanups)
10001 LSI->ExprNeedsCleanups = true;
10002
10003 // Exit the expression evaluation context used for the capture.
10004 S.CleanupVarDeclMarking();
10005 S.DiscardCleanupsInEvaluationContext();
10006 S.PopExpressionEvaluationContext();
10007 return Result;
10008 }
10009
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType)10010 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10011 TryCaptureKind Kind, SourceLocation EllipsisLoc,
10012 bool BuildAndDiagnose,
10013 QualType &CaptureType,
10014 QualType &DeclRefType) {
10015 bool Nested = false;
10016
10017 DeclContext *DC = CurContext;
10018 if (Var->getDeclContext() == DC) return true;
10019 if (!Var->hasLocalStorage()) return true;
10020
10021 bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10022
10023 // Walk up the stack to determine whether we can capture the variable,
10024 // performing the "simple" checks that don't depend on type. We stop when
10025 // we've either hit the declared scope of the variable or find an existing
10026 // capture of that variable.
10027 CaptureType = Var->getType();
10028 DeclRefType = CaptureType.getNonReferenceType();
10029 bool Explicit = (Kind != TryCapture_Implicit);
10030 unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10031 do {
10032 // Only block literals and lambda expressions can capture; other
10033 // scopes don't work.
10034 DeclContext *ParentDC;
10035 if (isa<BlockDecl>(DC))
10036 ParentDC = DC->getParent();
10037 else if (isa<CXXMethodDecl>(DC) &&
10038 cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10039 cast<CXXRecordDecl>(DC->getParent())->isLambda())
10040 ParentDC = DC->getParent()->getParent();
10041 else {
10042 if (BuildAndDiagnose)
10043 diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10044 return true;
10045 }
10046
10047 CapturingScopeInfo *CSI =
10048 cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10049
10050 // Check whether we've already captured it.
10051 if (CSI->CaptureMap.count(Var)) {
10052 // If we found a capture, any subcaptures are nested.
10053 Nested = true;
10054
10055 // Retrieve the capture type for this variable.
10056 CaptureType = CSI->getCapture(Var).getCaptureType();
10057
10058 // Compute the type of an expression that refers to this variable.
10059 DeclRefType = CaptureType.getNonReferenceType();
10060
10061 const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10062 if (Cap.isCopyCapture() &&
10063 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10064 DeclRefType.addConst();
10065 break;
10066 }
10067
10068 bool IsBlock = isa<BlockScopeInfo>(CSI);
10069 bool IsLambda = !IsBlock;
10070
10071 // Lambdas are not allowed to capture unnamed variables
10072 // (e.g. anonymous unions).
10073 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10074 // assuming that's the intent.
10075 if (IsLambda && !Var->getDeclName()) {
10076 if (BuildAndDiagnose) {
10077 Diag(Loc, diag::err_lambda_capture_anonymous_var);
10078 Diag(Var->getLocation(), diag::note_declared_at);
10079 }
10080 return true;
10081 }
10082
10083 // Prohibit variably-modified types; they're difficult to deal with.
10084 if (Var->getType()->isVariablyModifiedType()) {
10085 if (BuildAndDiagnose) {
10086 if (IsBlock)
10087 Diag(Loc, diag::err_ref_vm_type);
10088 else
10089 Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10090 Diag(Var->getLocation(), diag::note_previous_decl)
10091 << Var->getDeclName();
10092 }
10093 return true;
10094 }
10095
10096 // Lambdas are not allowed to capture __block variables; they don't
10097 // support the expected semantics.
10098 if (IsLambda && HasBlocksAttr) {
10099 if (BuildAndDiagnose) {
10100 Diag(Loc, diag::err_lambda_capture_block)
10101 << Var->getDeclName();
10102 Diag(Var->getLocation(), diag::note_previous_decl)
10103 << Var->getDeclName();
10104 }
10105 return true;
10106 }
10107
10108 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10109 // No capture-default
10110 if (BuildAndDiagnose) {
10111 Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10112 Diag(Var->getLocation(), diag::note_previous_decl)
10113 << Var->getDeclName();
10114 Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10115 diag::note_lambda_decl);
10116 }
10117 return true;
10118 }
10119
10120 FunctionScopesIndex--;
10121 DC = ParentDC;
10122 Explicit = false;
10123 } while (!Var->getDeclContext()->Equals(DC));
10124
10125 // Walk back down the scope stack, computing the type of the capture at
10126 // each step, checking type-specific requirements, and adding captures if
10127 // requested.
10128 for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10129 ++I) {
10130 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10131
10132 // Compute the type of the capture and of a reference to the capture within
10133 // this scope.
10134 if (isa<BlockScopeInfo>(CSI)) {
10135 Expr *CopyExpr = 0;
10136 bool ByRef = false;
10137
10138 // Blocks are not allowed to capture arrays.
10139 if (CaptureType->isArrayType()) {
10140 if (BuildAndDiagnose) {
10141 Diag(Loc, diag::err_ref_array_type);
10142 Diag(Var->getLocation(), diag::note_previous_decl)
10143 << Var->getDeclName();
10144 }
10145 return true;
10146 }
10147
10148 // Forbid the block-capture of autoreleasing variables.
10149 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10150 if (BuildAndDiagnose) {
10151 Diag(Loc, diag::err_arc_autoreleasing_capture)
10152 << /*block*/ 0;
10153 Diag(Var->getLocation(), diag::note_previous_decl)
10154 << Var->getDeclName();
10155 }
10156 return true;
10157 }
10158
10159 if (HasBlocksAttr || CaptureType->isReferenceType()) {
10160 // Block capture by reference does not change the capture or
10161 // declaration reference types.
10162 ByRef = true;
10163 } else {
10164 // Block capture by copy introduces 'const'.
10165 CaptureType = CaptureType.getNonReferenceType().withConst();
10166 DeclRefType = CaptureType;
10167
10168 if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10169 if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10170 // The capture logic needs the destructor, so make sure we mark it.
10171 // Usually this is unnecessary because most local variables have
10172 // their destructors marked at declaration time, but parameters are
10173 // an exception because it's technically only the call site that
10174 // actually requires the destructor.
10175 if (isa<ParmVarDecl>(Var))
10176 FinalizeVarWithDestructor(Var, Record);
10177
10178 // According to the blocks spec, the capture of a variable from
10179 // the stack requires a const copy constructor. This is not true
10180 // of the copy/move done to move a __block variable to the heap.
10181 Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10182 DeclRefType.withConst(),
10183 VK_LValue, Loc);
10184 ExprResult Result
10185 = PerformCopyInitialization(
10186 InitializedEntity::InitializeBlock(Var->getLocation(),
10187 CaptureType, false),
10188 Loc, Owned(DeclRef));
10189
10190 // Build a full-expression copy expression if initialization
10191 // succeeded and used a non-trivial constructor. Recover from
10192 // errors by pretending that the copy isn't necessary.
10193 if (!Result.isInvalid() &&
10194 !cast<CXXConstructExpr>(Result.get())->getConstructor()
10195 ->isTrivial()) {
10196 Result = MaybeCreateExprWithCleanups(Result);
10197 CopyExpr = Result.take();
10198 }
10199 }
10200 }
10201 }
10202
10203 // Actually capture the variable.
10204 if (BuildAndDiagnose)
10205 CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10206 SourceLocation(), CaptureType, CopyExpr);
10207 Nested = true;
10208 continue;
10209 }
10210
10211 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10212
10213 // Determine whether we are capturing by reference or by value.
10214 bool ByRef = false;
10215 if (I == N - 1 && Kind != TryCapture_Implicit) {
10216 ByRef = (Kind == TryCapture_ExplicitByRef);
10217 } else {
10218 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10219 }
10220
10221 // Compute the type of the field that will capture this variable.
10222 if (ByRef) {
10223 // C++11 [expr.prim.lambda]p15:
10224 // An entity is captured by reference if it is implicitly or
10225 // explicitly captured but not captured by copy. It is
10226 // unspecified whether additional unnamed non-static data
10227 // members are declared in the closure type for entities
10228 // captured by reference.
10229 //
10230 // FIXME: It is not clear whether we want to build an lvalue reference
10231 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10232 // to do the former, while EDG does the latter. Core issue 1249 will
10233 // clarify, but for now we follow GCC because it's a more permissive and
10234 // easily defensible position.
10235 CaptureType = Context.getLValueReferenceType(DeclRefType);
10236 } else {
10237 // C++11 [expr.prim.lambda]p14:
10238 // For each entity captured by copy, an unnamed non-static
10239 // data member is declared in the closure type. The
10240 // declaration order of these members is unspecified. The type
10241 // of such a data member is the type of the corresponding
10242 // captured entity if the entity is not a reference to an
10243 // object, or the referenced type otherwise. [Note: If the
10244 // captured entity is a reference to a function, the
10245 // corresponding data member is also a reference to a
10246 // function. - end note ]
10247 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10248 if (!RefType->getPointeeType()->isFunctionType())
10249 CaptureType = RefType->getPointeeType();
10250 }
10251
10252 // Forbid the lambda copy-capture of autoreleasing variables.
10253 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10254 if (BuildAndDiagnose) {
10255 Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10256 Diag(Var->getLocation(), diag::note_previous_decl)
10257 << Var->getDeclName();
10258 }
10259 return true;
10260 }
10261 }
10262
10263 // Capture this variable in the lambda.
10264 Expr *CopyExpr = 0;
10265 if (BuildAndDiagnose) {
10266 ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10267 DeclRefType, Loc);
10268 if (!Result.isInvalid())
10269 CopyExpr = Result.take();
10270 }
10271
10272 // Compute the type of a reference to this captured variable.
10273 if (ByRef)
10274 DeclRefType = CaptureType.getNonReferenceType();
10275 else {
10276 // C++ [expr.prim.lambda]p5:
10277 // The closure type for a lambda-expression has a public inline
10278 // function call operator [...]. This function call operator is
10279 // declared const (9.3.1) if and only if the lambda-expression’s
10280 // parameter-declaration-clause is not followed by mutable.
10281 DeclRefType = CaptureType.getNonReferenceType();
10282 if (!LSI->Mutable && !CaptureType->isReferenceType())
10283 DeclRefType.addConst();
10284 }
10285
10286 // Add the capture.
10287 if (BuildAndDiagnose)
10288 CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10289 EllipsisLoc, CaptureType, CopyExpr);
10290 Nested = true;
10291 }
10292
10293 return false;
10294 }
10295
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)10296 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10297 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10298 QualType CaptureType;
10299 QualType DeclRefType;
10300 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10301 /*BuildAndDiagnose=*/true, CaptureType,
10302 DeclRefType);
10303 }
10304
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)10305 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10306 QualType CaptureType;
10307 QualType DeclRefType;
10308
10309 // Determine whether we can capture this variable.
10310 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10311 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10312 return QualType();
10313
10314 return DeclRefType;
10315 }
10316
MarkVarDeclODRUsed(Sema & SemaRef,VarDecl * Var,SourceLocation Loc)10317 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10318 SourceLocation Loc) {
10319 // Keep track of used but undefined variables.
10320 // FIXME: We shouldn't suppress this warning for static data members.
10321 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10322 Var->getLinkage() != ExternalLinkage &&
10323 !(Var->isStaticDataMember() && Var->hasInit())) {
10324 SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10325 if (old.isInvalid()) old = Loc;
10326 }
10327
10328 SemaRef.tryCaptureVariable(Var, Loc);
10329
10330 Var->setUsed(true);
10331 }
10332
UpdateMarkingForLValueToRValue(Expr * E)10333 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10334 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10335 // an object that satisfies the requirements for appearing in a
10336 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10337 // is immediately applied." This function handles the lvalue-to-rvalue
10338 // conversion part.
10339 MaybeODRUseExprs.erase(E->IgnoreParens());
10340 }
10341
ActOnConstantExpression(ExprResult Res)10342 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10343 if (!Res.isUsable())
10344 return Res;
10345
10346 // If a constant-expression is a reference to a variable where we delay
10347 // deciding whether it is an odr-use, just assume we will apply the
10348 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
10349 // (a non-type template argument), we have special handling anyway.
10350 UpdateMarkingForLValueToRValue(Res.get());
10351 return Res;
10352 }
10353
CleanupVarDeclMarking()10354 void Sema::CleanupVarDeclMarking() {
10355 for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10356 e = MaybeODRUseExprs.end();
10357 i != e; ++i) {
10358 VarDecl *Var;
10359 SourceLocation Loc;
10360 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10361 Var = cast<VarDecl>(DRE->getDecl());
10362 Loc = DRE->getLocation();
10363 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10364 Var = cast<VarDecl>(ME->getMemberDecl());
10365 Loc = ME->getMemberLoc();
10366 } else {
10367 llvm_unreachable("Unexpcted expression");
10368 }
10369
10370 MarkVarDeclODRUsed(*this, Var, Loc);
10371 }
10372
10373 MaybeODRUseExprs.clear();
10374 }
10375
10376 // Mark a VarDecl referenced, and perform the necessary handling to compute
10377 // odr-uses.
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)10378 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10379 VarDecl *Var, Expr *E) {
10380 Var->setReferenced();
10381
10382 if (!IsPotentiallyEvaluatedContext(SemaRef))
10383 return;
10384
10385 // Implicit instantiation of static data members of class templates.
10386 if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10387 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10388 assert(MSInfo && "Missing member specialization information?");
10389 bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10390 if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10391 (!AlreadyInstantiated ||
10392 Var->isUsableInConstantExpressions(SemaRef.Context))) {
10393 if (!AlreadyInstantiated) {
10394 // This is a modification of an existing AST node. Notify listeners.
10395 if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10396 L->StaticDataMemberInstantiated(Var);
10397 MSInfo->setPointOfInstantiation(Loc);
10398 }
10399 SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10400 if (Var->isUsableInConstantExpressions(SemaRef.Context))
10401 // Do not defer instantiations of variables which could be used in a
10402 // constant expression.
10403 SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10404 else
10405 SemaRef.PendingInstantiations.push_back(
10406 std::make_pair(Var, PointOfInstantiation));
10407 }
10408 }
10409
10410 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10411 // an object that satisfies the requirements for appearing in a
10412 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10413 // is immediately applied." We check the first part here, and
10414 // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10415 // Note that we use the C++11 definition everywhere because nothing in
10416 // C++03 depends on whether we get the C++03 version correct. This does not
10417 // apply to references, since they are not objects.
10418 const VarDecl *DefVD;
10419 if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10420 Var->isUsableInConstantExpressions(SemaRef.Context) &&
10421 Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10422 SemaRef.MaybeODRUseExprs.insert(E);
10423 else
10424 MarkVarDeclODRUsed(SemaRef, Var, Loc);
10425 }
10426
10427 /// \brief Mark a variable referenced, and check whether it is odr-used
10428 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
10429 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)10430 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10431 DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10432 }
10433
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E)10434 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10435 Decl *D, Expr *E) {
10436 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10437 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10438 return;
10439 }
10440
10441 SemaRef.MarkAnyDeclReferenced(Loc, D);
10442 }
10443
10444 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)10445 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10446 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10447 }
10448
10449 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)10450 void Sema::MarkMemberReferenced(MemberExpr *E) {
10451 MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10452 }
10453
10454 /// \brief Perform marking for a reference to an arbitrary declaration. It
10455 /// marks the declaration referenced, and performs odr-use checking for functions
10456 /// and variables. This method should not be used when building an normal
10457 /// expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D)10458 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10459 if (VarDecl *VD = dyn_cast<VarDecl>(D))
10460 MarkVariableReferenced(Loc, VD);
10461 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10462 MarkFunctionReferenced(Loc, FD);
10463 else
10464 D->setReferenced();
10465 }
10466
10467 namespace {
10468 // Mark all of the declarations referenced
10469 // FIXME: Not fully implemented yet! We need to have a better understanding
10470 // of when we're entering
10471 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10472 Sema &S;
10473 SourceLocation Loc;
10474
10475 public:
10476 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10477
MarkReferencedDecls(Sema & S,SourceLocation Loc)10478 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10479
10480 bool TraverseTemplateArgument(const TemplateArgument &Arg);
10481 bool TraverseRecordType(RecordType *T);
10482 };
10483 }
10484
TraverseTemplateArgument(const TemplateArgument & Arg)10485 bool MarkReferencedDecls::TraverseTemplateArgument(
10486 const TemplateArgument &Arg) {
10487 if (Arg.getKind() == TemplateArgument::Declaration) {
10488 if (Decl *D = Arg.getAsDecl())
10489 S.MarkAnyDeclReferenced(Loc, D);
10490 }
10491
10492 return Inherited::TraverseTemplateArgument(Arg);
10493 }
10494
TraverseRecordType(RecordType * T)10495 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
10496 if (ClassTemplateSpecializationDecl *Spec
10497 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
10498 const TemplateArgumentList &Args = Spec->getTemplateArgs();
10499 return TraverseTemplateArguments(Args.data(), Args.size());
10500 }
10501
10502 return true;
10503 }
10504
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)10505 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
10506 MarkReferencedDecls Marker(*this, Loc);
10507 Marker.TraverseType(Context.getCanonicalType(T));
10508 }
10509
10510 namespace {
10511 /// \brief Helper class that marks all of the declarations referenced by
10512 /// potentially-evaluated subexpressions as "referenced".
10513 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
10514 Sema &S;
10515 bool SkipLocalVariables;
10516
10517 public:
10518 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
10519
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)10520 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
10521 : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
10522
VisitDeclRefExpr(DeclRefExpr * E)10523 void VisitDeclRefExpr(DeclRefExpr *E) {
10524 // If we were asked not to visit local variables, don't.
10525 if (SkipLocalVariables) {
10526 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
10527 if (VD->hasLocalStorage())
10528 return;
10529 }
10530
10531 S.MarkDeclRefReferenced(E);
10532 }
10533
VisitMemberExpr(MemberExpr * E)10534 void VisitMemberExpr(MemberExpr *E) {
10535 S.MarkMemberReferenced(E);
10536 Inherited::VisitMemberExpr(E);
10537 }
10538
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)10539 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
10540 S.MarkFunctionReferenced(E->getLocStart(),
10541 const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
10542 Visit(E->getSubExpr());
10543 }
10544
VisitCXXNewExpr(CXXNewExpr * E)10545 void VisitCXXNewExpr(CXXNewExpr *E) {
10546 if (E->getOperatorNew())
10547 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
10548 if (E->getOperatorDelete())
10549 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10550 Inherited::VisitCXXNewExpr(E);
10551 }
10552
VisitCXXDeleteExpr(CXXDeleteExpr * E)10553 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
10554 if (E->getOperatorDelete())
10555 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10556 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
10557 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
10558 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
10559 S.MarkFunctionReferenced(E->getLocStart(),
10560 S.LookupDestructor(Record));
10561 }
10562
10563 Inherited::VisitCXXDeleteExpr(E);
10564 }
10565
VisitCXXConstructExpr(CXXConstructExpr * E)10566 void VisitCXXConstructExpr(CXXConstructExpr *E) {
10567 S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
10568 Inherited::VisitCXXConstructExpr(E);
10569 }
10570
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)10571 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
10572 Visit(E->getExpr());
10573 }
10574
VisitImplicitCastExpr(ImplicitCastExpr * E)10575 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10576 Inherited::VisitImplicitCastExpr(E);
10577
10578 if (E->getCastKind() == CK_LValueToRValue)
10579 S.UpdateMarkingForLValueToRValue(E->getSubExpr());
10580 }
10581 };
10582 }
10583
10584 /// \brief Mark any declarations that appear within this expression or any
10585 /// potentially-evaluated subexpressions as "referenced".
10586 ///
10587 /// \param SkipLocalVariables If true, don't mark local variables as
10588 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)10589 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
10590 bool SkipLocalVariables) {
10591 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
10592 }
10593
10594 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
10595 /// of the program being compiled.
10596 ///
10597 /// This routine emits the given diagnostic when the code currently being
10598 /// type-checked is "potentially evaluated", meaning that there is a
10599 /// possibility that the code will actually be executable. Code in sizeof()
10600 /// expressions, code used only during overload resolution, etc., are not
10601 /// potentially evaluated. This routine will suppress such diagnostics or,
10602 /// in the absolutely nutty case of potentially potentially evaluated
10603 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
10604 /// later.
10605 ///
10606 /// This routine should be used for all diagnostics that describe the run-time
10607 /// behavior of a program, such as passing a non-POD value through an ellipsis.
10608 /// Failure to do so will likely result in spurious diagnostics or failures
10609 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)10610 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
10611 const PartialDiagnostic &PD) {
10612 switch (ExprEvalContexts.back().Context) {
10613 case Unevaluated:
10614 // The argument will never be evaluated, so don't complain.
10615 break;
10616
10617 case ConstantEvaluated:
10618 // Relevant diagnostics should be produced by constant evaluation.
10619 break;
10620
10621 case PotentiallyEvaluated:
10622 case PotentiallyEvaluatedIfUsed:
10623 if (Statement && getCurFunctionOrMethodDecl()) {
10624 FunctionScopes.back()->PossiblyUnreachableDiags.
10625 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
10626 }
10627 else
10628 Diag(Loc, PD);
10629
10630 return true;
10631 }
10632
10633 return false;
10634 }
10635
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)10636 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
10637 CallExpr *CE, FunctionDecl *FD) {
10638 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
10639 return false;
10640
10641 // If we're inside a decltype's expression, don't check for a valid return
10642 // type or construct temporaries until we know whether this is the last call.
10643 if (ExprEvalContexts.back().IsDecltype) {
10644 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
10645 return false;
10646 }
10647
10648 PartialDiagnostic Note =
10649 FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
10650 << FD->getDeclName() : PDiag();
10651 SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
10652
10653 if (RequireCompleteType(Loc, ReturnType,
10654 FD ?
10655 PDiag(diag::err_call_function_incomplete_return)
10656 << CE->getSourceRange() << FD->getDeclName() :
10657 PDiag(diag::err_call_incomplete_return)
10658 << CE->getSourceRange(),
10659 std::make_pair(NoteLoc, Note)))
10660 return true;
10661
10662 return false;
10663 }
10664
10665 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
10666 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)10667 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
10668 SourceLocation Loc;
10669
10670 unsigned diagnostic = diag::warn_condition_is_assignment;
10671 bool IsOrAssign = false;
10672
10673 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
10674 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
10675 return;
10676
10677 IsOrAssign = Op->getOpcode() == BO_OrAssign;
10678
10679 // Greylist some idioms by putting them into a warning subcategory.
10680 if (ObjCMessageExpr *ME
10681 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
10682 Selector Sel = ME->getSelector();
10683
10684 // self = [<foo> init...]
10685 if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
10686 diagnostic = diag::warn_condition_is_idiomatic_assignment;
10687
10688 // <foo> = [<bar> nextObject]
10689 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
10690 diagnostic = diag::warn_condition_is_idiomatic_assignment;
10691 }
10692
10693 Loc = Op->getOperatorLoc();
10694 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
10695 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
10696 return;
10697
10698 IsOrAssign = Op->getOperator() == OO_PipeEqual;
10699 Loc = Op->getOperatorLoc();
10700 } else {
10701 // Not an assignment.
10702 return;
10703 }
10704
10705 Diag(Loc, diagnostic) << E->getSourceRange();
10706
10707 SourceLocation Open = E->getLocStart();
10708 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
10709 Diag(Loc, diag::note_condition_assign_silence)
10710 << FixItHint::CreateInsertion(Open, "(")
10711 << FixItHint::CreateInsertion(Close, ")");
10712
10713 if (IsOrAssign)
10714 Diag(Loc, diag::note_condition_or_assign_to_comparison)
10715 << FixItHint::CreateReplacement(Loc, "!=");
10716 else
10717 Diag(Loc, diag::note_condition_assign_to_comparison)
10718 << FixItHint::CreateReplacement(Loc, "==");
10719 }
10720
10721 /// \brief Redundant parentheses over an equality comparison can indicate
10722 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)10723 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
10724 // Don't warn if the parens came from a macro.
10725 SourceLocation parenLoc = ParenE->getLocStart();
10726 if (parenLoc.isInvalid() || parenLoc.isMacroID())
10727 return;
10728 // Don't warn for dependent expressions.
10729 if (ParenE->isTypeDependent())
10730 return;
10731
10732 Expr *E = ParenE->IgnoreParens();
10733
10734 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
10735 if (opE->getOpcode() == BO_EQ &&
10736 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
10737 == Expr::MLV_Valid) {
10738 SourceLocation Loc = opE->getOperatorLoc();
10739
10740 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
10741 SourceRange ParenERange = ParenE->getSourceRange();
10742 Diag(Loc, diag::note_equality_comparison_silence)
10743 << FixItHint::CreateRemoval(ParenERange.getBegin())
10744 << FixItHint::CreateRemoval(ParenERange.getEnd());
10745 Diag(Loc, diag::note_equality_comparison_to_assign)
10746 << FixItHint::CreateReplacement(Loc, "=");
10747 }
10748 }
10749
CheckBooleanCondition(Expr * E,SourceLocation Loc)10750 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
10751 DiagnoseAssignmentAsCondition(E);
10752 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
10753 DiagnoseEqualityWithExtraParens(parenE);
10754
10755 ExprResult result = CheckPlaceholderExpr(E);
10756 if (result.isInvalid()) return ExprError();
10757 E = result.take();
10758
10759 if (!E->isTypeDependent()) {
10760 if (getLangOpts().CPlusPlus)
10761 return CheckCXXBooleanCondition(E); // C++ 6.4p4
10762
10763 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
10764 if (ERes.isInvalid())
10765 return ExprError();
10766 E = ERes.take();
10767
10768 QualType T = E->getType();
10769 if (!T->isScalarType()) { // C99 6.8.4.1p1
10770 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
10771 << T << E->getSourceRange();
10772 return ExprError();
10773 }
10774 }
10775
10776 return Owned(E);
10777 }
10778
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)10779 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
10780 Expr *SubExpr) {
10781 if (!SubExpr)
10782 return ExprError();
10783
10784 return CheckBooleanCondition(SubExpr, Loc);
10785 }
10786
10787 namespace {
10788 /// A visitor for rebuilding a call to an __unknown_any expression
10789 /// to have an appropriate type.
10790 struct RebuildUnknownAnyFunction
10791 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
10792
10793 Sema &S;
10794
RebuildUnknownAnyFunction__anon7c81a41a0611::RebuildUnknownAnyFunction10795 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
10796
VisitStmt__anon7c81a41a0611::RebuildUnknownAnyFunction10797 ExprResult VisitStmt(Stmt *S) {
10798 llvm_unreachable("unexpected statement!");
10799 }
10800
VisitExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10801 ExprResult VisitExpr(Expr *E) {
10802 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
10803 << E->getSourceRange();
10804 return ExprError();
10805 }
10806
10807 /// Rebuild an expression which simply semantically wraps another
10808 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10809 template <class T> ExprResult rebuildSugarExpr(T *E) {
10810 ExprResult SubResult = Visit(E->getSubExpr());
10811 if (SubResult.isInvalid()) return ExprError();
10812
10813 Expr *SubExpr = SubResult.take();
10814 E->setSubExpr(SubExpr);
10815 E->setType(SubExpr->getType());
10816 E->setValueKind(SubExpr->getValueKind());
10817 assert(E->getObjectKind() == OK_Ordinary);
10818 return E;
10819 }
10820
VisitParenExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10821 ExprResult VisitParenExpr(ParenExpr *E) {
10822 return rebuildSugarExpr(E);
10823 }
10824
VisitUnaryExtension__anon7c81a41a0611::RebuildUnknownAnyFunction10825 ExprResult VisitUnaryExtension(UnaryOperator *E) {
10826 return rebuildSugarExpr(E);
10827 }
10828
VisitUnaryAddrOf__anon7c81a41a0611::RebuildUnknownAnyFunction10829 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
10830 ExprResult SubResult = Visit(E->getSubExpr());
10831 if (SubResult.isInvalid()) return ExprError();
10832
10833 Expr *SubExpr = SubResult.take();
10834 E->setSubExpr(SubExpr);
10835 E->setType(S.Context.getPointerType(SubExpr->getType()));
10836 assert(E->getValueKind() == VK_RValue);
10837 assert(E->getObjectKind() == OK_Ordinary);
10838 return E;
10839 }
10840
resolveDecl__anon7c81a41a0611::RebuildUnknownAnyFunction10841 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
10842 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
10843
10844 E->setType(VD->getType());
10845
10846 assert(E->getValueKind() == VK_RValue);
10847 if (S.getLangOpts().CPlusPlus &&
10848 !(isa<CXXMethodDecl>(VD) &&
10849 cast<CXXMethodDecl>(VD)->isInstance()))
10850 E->setValueKind(VK_LValue);
10851
10852 return E;
10853 }
10854
VisitMemberExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10855 ExprResult VisitMemberExpr(MemberExpr *E) {
10856 return resolveDecl(E, E->getMemberDecl());
10857 }
10858
VisitDeclRefExpr__anon7c81a41a0611::RebuildUnknownAnyFunction10859 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
10860 return resolveDecl(E, E->getDecl());
10861 }
10862 };
10863 }
10864
10865 /// Given a function expression of unknown-any type, try to rebuild it
10866 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)10867 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
10868 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
10869 if (Result.isInvalid()) return ExprError();
10870 return S.DefaultFunctionArrayConversion(Result.take());
10871 }
10872
10873 namespace {
10874 /// A visitor for rebuilding an expression of type __unknown_anytype
10875 /// into one which resolves the type directly on the referring
10876 /// expression. Strict preservation of the original source
10877 /// structure is not a goal.
10878 struct RebuildUnknownAnyExpr
10879 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
10880
10881 Sema &S;
10882
10883 /// The current destination type.
10884 QualType DestType;
10885
RebuildUnknownAnyExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10886 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
10887 : S(S), DestType(CastType) {}
10888
VisitStmt__anon7c81a41a0711::RebuildUnknownAnyExpr10889 ExprResult VisitStmt(Stmt *S) {
10890 llvm_unreachable("unexpected statement!");
10891 }
10892
VisitExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10893 ExprResult VisitExpr(Expr *E) {
10894 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
10895 << E->getSourceRange();
10896 return ExprError();
10897 }
10898
10899 ExprResult VisitCallExpr(CallExpr *E);
10900 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
10901
10902 /// Rebuild an expression which simply semantically wraps another
10903 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10904 template <class T> ExprResult rebuildSugarExpr(T *E) {
10905 ExprResult SubResult = Visit(E->getSubExpr());
10906 if (SubResult.isInvalid()) return ExprError();
10907 Expr *SubExpr = SubResult.take();
10908 E->setSubExpr(SubExpr);
10909 E->setType(SubExpr->getType());
10910 E->setValueKind(SubExpr->getValueKind());
10911 assert(E->getObjectKind() == OK_Ordinary);
10912 return E;
10913 }
10914
VisitParenExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10915 ExprResult VisitParenExpr(ParenExpr *E) {
10916 return rebuildSugarExpr(E);
10917 }
10918
VisitUnaryExtension__anon7c81a41a0711::RebuildUnknownAnyExpr10919 ExprResult VisitUnaryExtension(UnaryOperator *E) {
10920 return rebuildSugarExpr(E);
10921 }
10922
VisitUnaryAddrOf__anon7c81a41a0711::RebuildUnknownAnyExpr10923 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
10924 const PointerType *Ptr = DestType->getAs<PointerType>();
10925 if (!Ptr) {
10926 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
10927 << E->getSourceRange();
10928 return ExprError();
10929 }
10930 assert(E->getValueKind() == VK_RValue);
10931 assert(E->getObjectKind() == OK_Ordinary);
10932 E->setType(DestType);
10933
10934 // Build the sub-expression as if it were an object of the pointee type.
10935 DestType = Ptr->getPointeeType();
10936 ExprResult SubResult = Visit(E->getSubExpr());
10937 if (SubResult.isInvalid()) return ExprError();
10938 E->setSubExpr(SubResult.take());
10939 return E;
10940 }
10941
10942 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
10943
10944 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
10945
VisitMemberExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10946 ExprResult VisitMemberExpr(MemberExpr *E) {
10947 return resolveDecl(E, E->getMemberDecl());
10948 }
10949
VisitDeclRefExpr__anon7c81a41a0711::RebuildUnknownAnyExpr10950 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
10951 return resolveDecl(E, E->getDecl());
10952 }
10953 };
10954 }
10955
10956 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)10957 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
10958 Expr *CalleeExpr = E->getCallee();
10959
10960 enum FnKind {
10961 FK_MemberFunction,
10962 FK_FunctionPointer,
10963 FK_BlockPointer
10964 };
10965
10966 FnKind Kind;
10967 QualType CalleeType = CalleeExpr->getType();
10968 if (CalleeType == S.Context.BoundMemberTy) {
10969 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
10970 Kind = FK_MemberFunction;
10971 CalleeType = Expr::findBoundMemberType(CalleeExpr);
10972 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
10973 CalleeType = Ptr->getPointeeType();
10974 Kind = FK_FunctionPointer;
10975 } else {
10976 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
10977 Kind = FK_BlockPointer;
10978 }
10979 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
10980
10981 // Verify that this is a legal result type of a function.
10982 if (DestType->isArrayType() || DestType->isFunctionType()) {
10983 unsigned diagID = diag::err_func_returning_array_function;
10984 if (Kind == FK_BlockPointer)
10985 diagID = diag::err_block_returning_array_function;
10986
10987 S.Diag(E->getExprLoc(), diagID)
10988 << DestType->isFunctionType() << DestType;
10989 return ExprError();
10990 }
10991
10992 // Otherwise, go ahead and set DestType as the call's result.
10993 E->setType(DestType.getNonLValueExprType(S.Context));
10994 E->setValueKind(Expr::getValueKindForType(DestType));
10995 assert(E->getObjectKind() == OK_Ordinary);
10996
10997 // Rebuild the function type, replacing the result type with DestType.
10998 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
10999 DestType = S.Context.getFunctionType(DestType,
11000 Proto->arg_type_begin(),
11001 Proto->getNumArgs(),
11002 Proto->getExtProtoInfo());
11003 else
11004 DestType = S.Context.getFunctionNoProtoType(DestType,
11005 FnType->getExtInfo());
11006
11007 // Rebuild the appropriate pointer-to-function type.
11008 switch (Kind) {
11009 case FK_MemberFunction:
11010 // Nothing to do.
11011 break;
11012
11013 case FK_FunctionPointer:
11014 DestType = S.Context.getPointerType(DestType);
11015 break;
11016
11017 case FK_BlockPointer:
11018 DestType = S.Context.getBlockPointerType(DestType);
11019 break;
11020 }
11021
11022 // Finally, we can recurse.
11023 ExprResult CalleeResult = Visit(CalleeExpr);
11024 if (!CalleeResult.isUsable()) return ExprError();
11025 E->setCallee(CalleeResult.take());
11026
11027 // Bind a temporary if necessary.
11028 return S.MaybeBindToTemporary(E);
11029 }
11030
VisitObjCMessageExpr(ObjCMessageExpr * E)11031 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11032 // Verify that this is a legal result type of a call.
11033 if (DestType->isArrayType() || DestType->isFunctionType()) {
11034 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11035 << DestType->isFunctionType() << DestType;
11036 return ExprError();
11037 }
11038
11039 // Rewrite the method result type if available.
11040 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11041 assert(Method->getResultType() == S.Context.UnknownAnyTy);
11042 Method->setResultType(DestType);
11043 }
11044
11045 // Change the type of the message.
11046 E->setType(DestType.getNonReferenceType());
11047 E->setValueKind(Expr::getValueKindForType(DestType));
11048
11049 return S.MaybeBindToTemporary(E);
11050 }
11051
VisitImplicitCastExpr(ImplicitCastExpr * E)11052 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11053 // The only case we should ever see here is a function-to-pointer decay.
11054 if (E->getCastKind() == CK_FunctionToPointerDecay) {
11055 assert(E->getValueKind() == VK_RValue);
11056 assert(E->getObjectKind() == OK_Ordinary);
11057
11058 E->setType(DestType);
11059
11060 // Rebuild the sub-expression as the pointee (function) type.
11061 DestType = DestType->castAs<PointerType>()->getPointeeType();
11062
11063 ExprResult Result = Visit(E->getSubExpr());
11064 if (!Result.isUsable()) return ExprError();
11065
11066 E->setSubExpr(Result.take());
11067 return S.Owned(E);
11068 } else if (E->getCastKind() == CK_LValueToRValue) {
11069 assert(E->getValueKind() == VK_RValue);
11070 assert(E->getObjectKind() == OK_Ordinary);
11071
11072 assert(isa<BlockPointerType>(E->getType()));
11073
11074 E->setType(DestType);
11075
11076 // The sub-expression has to be a lvalue reference, so rebuild it as such.
11077 DestType = S.Context.getLValueReferenceType(DestType);
11078
11079 ExprResult Result = Visit(E->getSubExpr());
11080 if (!Result.isUsable()) return ExprError();
11081
11082 E->setSubExpr(Result.take());
11083 return S.Owned(E);
11084 } else {
11085 llvm_unreachable("Unhandled cast type!");
11086 }
11087 }
11088
resolveDecl(Expr * E,ValueDecl * VD)11089 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11090 ExprValueKind ValueKind = VK_LValue;
11091 QualType Type = DestType;
11092
11093 // We know how to make this work for certain kinds of decls:
11094
11095 // - functions
11096 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11097 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11098 DestType = Ptr->getPointeeType();
11099 ExprResult Result = resolveDecl(E, VD);
11100 if (Result.isInvalid()) return ExprError();
11101 return S.ImpCastExprToType(Result.take(), Type,
11102 CK_FunctionToPointerDecay, VK_RValue);
11103 }
11104
11105 if (!Type->isFunctionType()) {
11106 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11107 << VD << E->getSourceRange();
11108 return ExprError();
11109 }
11110
11111 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11112 if (MD->isInstance()) {
11113 ValueKind = VK_RValue;
11114 Type = S.Context.BoundMemberTy;
11115 }
11116
11117 // Function references aren't l-values in C.
11118 if (!S.getLangOpts().CPlusPlus)
11119 ValueKind = VK_RValue;
11120
11121 // - variables
11122 } else if (isa<VarDecl>(VD)) {
11123 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11124 Type = RefTy->getPointeeType();
11125 } else if (Type->isFunctionType()) {
11126 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11127 << VD << E->getSourceRange();
11128 return ExprError();
11129 }
11130
11131 // - nothing else
11132 } else {
11133 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11134 << VD << E->getSourceRange();
11135 return ExprError();
11136 }
11137
11138 VD->setType(DestType);
11139 E->setType(Type);
11140 E->setValueKind(ValueKind);
11141 return S.Owned(E);
11142 }
11143
11144 /// Check a cast of an unknown-any type. We intentionally only
11145 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)11146 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11147 Expr *CastExpr, CastKind &CastKind,
11148 ExprValueKind &VK, CXXCastPath &Path) {
11149 // Rewrite the casted expression from scratch.
11150 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11151 if (!result.isUsable()) return ExprError();
11152
11153 CastExpr = result.take();
11154 VK = CastExpr->getValueKind();
11155 CastKind = CK_NoOp;
11156
11157 return CastExpr;
11158 }
11159
forceUnknownAnyToType(Expr * E,QualType ToType)11160 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11161 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11162 }
11163
diagnoseUnknownAnyExpr(Sema & S,Expr * E)11164 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11165 Expr *orig = E;
11166 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11167 while (true) {
11168 E = E->IgnoreParenImpCasts();
11169 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11170 E = call->getCallee();
11171 diagID = diag::err_uncasted_call_of_unknown_any;
11172 } else {
11173 break;
11174 }
11175 }
11176
11177 SourceLocation loc;
11178 NamedDecl *d;
11179 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11180 loc = ref->getLocation();
11181 d = ref->getDecl();
11182 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11183 loc = mem->getMemberLoc();
11184 d = mem->getMemberDecl();
11185 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11186 diagID = diag::err_uncasted_call_of_unknown_any;
11187 loc = msg->getSelectorStartLoc();
11188 d = msg->getMethodDecl();
11189 if (!d) {
11190 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11191 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11192 << orig->getSourceRange();
11193 return ExprError();
11194 }
11195 } else {
11196 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11197 << E->getSourceRange();
11198 return ExprError();
11199 }
11200
11201 S.Diag(loc, diagID) << d << orig->getSourceRange();
11202
11203 // Never recoverable.
11204 return ExprError();
11205 }
11206
11207 /// Check for operands with placeholder types and complain if found.
11208 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)11209 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11210 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11211 if (!placeholderType) return Owned(E);
11212
11213 switch (placeholderType->getKind()) {
11214
11215 // Overloaded expressions.
11216 case BuiltinType::Overload: {
11217 // Try to resolve a single function template specialization.
11218 // This is obligatory.
11219 ExprResult result = Owned(E);
11220 if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11221 return result;
11222
11223 // If that failed, try to recover with a call.
11224 } else {
11225 tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11226 /*complain*/ true);
11227 return result;
11228 }
11229 }
11230
11231 // Bound member functions.
11232 case BuiltinType::BoundMember: {
11233 ExprResult result = Owned(E);
11234 tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11235 /*complain*/ true);
11236 return result;
11237 }
11238
11239 // ARC unbridged casts.
11240 case BuiltinType::ARCUnbridgedCast: {
11241 Expr *realCast = stripARCUnbridgedCast(E);
11242 diagnoseARCUnbridgedCast(realCast);
11243 return Owned(realCast);
11244 }
11245
11246 // Expressions of unknown type.
11247 case BuiltinType::UnknownAny:
11248 return diagnoseUnknownAnyExpr(*this, E);
11249
11250 // Pseudo-objects.
11251 case BuiltinType::PseudoObject:
11252 return checkPseudoObjectRValue(E);
11253
11254 // Everything else should be impossible.
11255 #define BUILTIN_TYPE(Id, SingletonId) \
11256 case BuiltinType::Id:
11257 #define PLACEHOLDER_TYPE(Id, SingletonId)
11258 #include "clang/AST/BuiltinTypes.def"
11259 break;
11260 }
11261
11262 llvm_unreachable("invalid placeholder type!");
11263 }
11264
CheckCaseExpression(Expr * E)11265 bool Sema::CheckCaseExpression(Expr *E) {
11266 if (E->isTypeDependent())
11267 return true;
11268 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11269 return E->getType()->isIntegralOrEnumerationType();
11270 return false;
11271 }
11272
11273 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11274 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)11275 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11276 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11277 "Unknown Objective-C Boolean value!");
11278 return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11279 Context.ObjCBuiltinBoolTy, OpLoc));
11280 }
11281