1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33 const Expr *E,
34 const ObjCMethodDecl *Method,
35 RValue Result);
36
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
getNullForVariable(llvm::Value * addr)39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40 llvm::Type *type =
41 cast<llvm::PointerType>(addr->getType())->getElementType();
42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44
45 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48 llvm::Constant *C =
49 CGM.getObjCRuntime().GenerateConstantString(E->getString());
50 // FIXME: This bitcast should just be made an invariant on the Runtime.
51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
57 ///
58 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60 // Generate the correct selector for this literal's concrete type.
61 const Expr *SubExpr = E->getSubExpr();
62 // Get the method.
63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64 assert(BoxingMethod && "BoxingMethod is null");
65 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
66 Selector Sel = BoxingMethod->getSelector();
67
68 // Generate a reference to the class pointer, which will be the receiver.
69 // Assumes that the method was introduced in the class that should be
70 // messaged (avoids pulling it out of the result type).
71 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
73 llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
74
75 const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
76 QualType ArgQT = argDecl->getType().getUnqualifiedType();
77 RValue RV = EmitAnyExpr(SubExpr);
78 CallArgList Args;
79 Args.add(RV, ArgQT);
80
81 RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
82 BoxingMethod->getResultType(), Sel, Receiver, Args,
83 ClassDecl, BoxingMethod);
84 return Builder.CreateBitCast(result.getScalarVal(),
85 ConvertType(E->getType()));
86 }
87
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
89 const ObjCMethodDecl *MethodWithObjects) {
90 ASTContext &Context = CGM.getContext();
91 const ObjCDictionaryLiteral *DLE = 0;
92 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
93 if (!ALE)
94 DLE = cast<ObjCDictionaryLiteral>(E);
95
96 // Compute the type of the array we're initializing.
97 uint64_t NumElements =
98 ALE ? ALE->getNumElements() : DLE->getNumElements();
99 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
100 NumElements);
101 QualType ElementType = Context.getObjCIdType().withConst();
102 QualType ElementArrayType
103 = Context.getConstantArrayType(ElementType, APNumElements,
104 ArrayType::Normal, /*IndexTypeQuals=*/0);
105
106 // Allocate the temporary array(s).
107 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
108 llvm::Value *Keys = 0;
109 if (DLE)
110 Keys = CreateMemTemp(ElementArrayType, "keys");
111
112 // Perform the actual initialialization of the array(s).
113 for (uint64_t i = 0; i < NumElements; i++) {
114 if (ALE) {
115 // Emit the initializer.
116 const Expr *Rhs = ALE->getElement(i);
117 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
118 ElementType,
119 Context.getTypeAlignInChars(Rhs->getType()),
120 Context);
121 EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
122 } else {
123 // Emit the key initializer.
124 const Expr *Key = DLE->getKeyValueElement(i).Key;
125 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
126 ElementType,
127 Context.getTypeAlignInChars(Key->getType()),
128 Context);
129 EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
130
131 // Emit the value initializer.
132 const Expr *Value = DLE->getKeyValueElement(i).Value;
133 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
134 ElementType,
135 Context.getTypeAlignInChars(Value->getType()),
136 Context);
137 EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
138 }
139 }
140
141 // Generate the argument list.
142 CallArgList Args;
143 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
144 const ParmVarDecl *argDecl = *PI++;
145 QualType ArgQT = argDecl->getType().getUnqualifiedType();
146 Args.add(RValue::get(Objects), ArgQT);
147 if (DLE) {
148 argDecl = *PI++;
149 ArgQT = argDecl->getType().getUnqualifiedType();
150 Args.add(RValue::get(Keys), ArgQT);
151 }
152 argDecl = *PI;
153 ArgQT = argDecl->getType().getUnqualifiedType();
154 llvm::Value *Count =
155 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
156 Args.add(RValue::get(Count), ArgQT);
157
158 // Generate a reference to the class pointer, which will be the receiver.
159 Selector Sel = MethodWithObjects->getSelector();
160 QualType ResultType = E->getType();
161 const ObjCObjectPointerType *InterfacePointerType
162 = ResultType->getAsObjCInterfacePointerType();
163 ObjCInterfaceDecl *Class
164 = InterfacePointerType->getObjectType()->getInterface();
165 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
166 llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
167
168 // Generate the message send.
169 RValue result
170 = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
171 MethodWithObjects->getResultType(),
172 Sel,
173 Receiver, Args, Class,
174 MethodWithObjects);
175 return Builder.CreateBitCast(result.getScalarVal(),
176 ConvertType(E->getType()));
177 }
178
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
180 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
181 }
182
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
184 const ObjCDictionaryLiteral *E) {
185 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
186 }
187
188 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
190 // Untyped selector.
191 // Note that this implementation allows for non-constant strings to be passed
192 // as arguments to @selector(). Currently, the only thing preventing this
193 // behaviour is the type checking in the front end.
194 return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
195 }
196
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
198 // FIXME: This should pass the Decl not the name.
199 return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
200 }
201
202 /// \brief Adjust the type of the result of an Objective-C message send
203 /// expression when the method has a related result type.
AdjustRelatedResultType(CodeGenFunction & CGF,const Expr * E,const ObjCMethodDecl * Method,RValue Result)204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
205 const Expr *E,
206 const ObjCMethodDecl *Method,
207 RValue Result) {
208 if (!Method)
209 return Result;
210
211 if (!Method->hasRelatedResultType() ||
212 CGF.getContext().hasSameType(E->getType(), Method->getResultType()) ||
213 !Result.isScalar())
214 return Result;
215
216 // We have applied a related result type. Cast the rvalue appropriately.
217 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
218 CGF.ConvertType(E->getType())));
219 }
220
221 /// Decide whether to extend the lifetime of the receiver of a
222 /// returns-inner-pointer message.
223 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
225 switch (message->getReceiverKind()) {
226
227 // For a normal instance message, we should extend unless the
228 // receiver is loaded from a variable with precise lifetime.
229 case ObjCMessageExpr::Instance: {
230 const Expr *receiver = message->getInstanceReceiver();
231 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
232 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
233 receiver = ice->getSubExpr()->IgnoreParens();
234
235 // Only __strong variables.
236 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
237 return true;
238
239 // All ivars and fields have precise lifetime.
240 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
241 return false;
242
243 // Otherwise, check for variables.
244 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
245 if (!declRef) return true;
246 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
247 if (!var) return true;
248
249 // All variables have precise lifetime except local variables with
250 // automatic storage duration that aren't specially marked.
251 return (var->hasLocalStorage() &&
252 !var->hasAttr<ObjCPreciseLifetimeAttr>());
253 }
254
255 case ObjCMessageExpr::Class:
256 case ObjCMessageExpr::SuperClass:
257 // It's never necessary for class objects.
258 return false;
259
260 case ObjCMessageExpr::SuperInstance:
261 // We generally assume that 'self' lives throughout a method call.
262 return false;
263 }
264
265 llvm_unreachable("invalid receiver kind");
266 }
267
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
269 ReturnValueSlot Return) {
270 // Only the lookup mechanism and first two arguments of the method
271 // implementation vary between runtimes. We can get the receiver and
272 // arguments in generic code.
273
274 bool isDelegateInit = E->isDelegateInitCall();
275
276 const ObjCMethodDecl *method = E->getMethodDecl();
277
278 // We don't retain the receiver in delegate init calls, and this is
279 // safe because the receiver value is always loaded from 'self',
280 // which we zero out. We don't want to Block_copy block receivers,
281 // though.
282 bool retainSelf =
283 (!isDelegateInit &&
284 CGM.getLangOpts().ObjCAutoRefCount &&
285 method &&
286 method->hasAttr<NSConsumesSelfAttr>());
287
288 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
289 bool isSuperMessage = false;
290 bool isClassMessage = false;
291 ObjCInterfaceDecl *OID = 0;
292 // Find the receiver
293 QualType ReceiverType;
294 llvm::Value *Receiver = 0;
295 switch (E->getReceiverKind()) {
296 case ObjCMessageExpr::Instance:
297 ReceiverType = E->getInstanceReceiver()->getType();
298 if (retainSelf) {
299 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
300 E->getInstanceReceiver());
301 Receiver = ter.getPointer();
302 if (ter.getInt()) retainSelf = false;
303 } else
304 Receiver = EmitScalarExpr(E->getInstanceReceiver());
305 break;
306
307 case ObjCMessageExpr::Class: {
308 ReceiverType = E->getClassReceiver();
309 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
310 assert(ObjTy && "Invalid Objective-C class message send");
311 OID = ObjTy->getInterface();
312 assert(OID && "Invalid Objective-C class message send");
313 Receiver = Runtime.GetClass(Builder, OID);
314 isClassMessage = true;
315 break;
316 }
317
318 case ObjCMessageExpr::SuperInstance:
319 ReceiverType = E->getSuperType();
320 Receiver = LoadObjCSelf();
321 isSuperMessage = true;
322 break;
323
324 case ObjCMessageExpr::SuperClass:
325 ReceiverType = E->getSuperType();
326 Receiver = LoadObjCSelf();
327 isSuperMessage = true;
328 isClassMessage = true;
329 break;
330 }
331
332 if (retainSelf)
333 Receiver = EmitARCRetainNonBlock(Receiver);
334
335 // In ARC, we sometimes want to "extend the lifetime"
336 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
337 // messages.
338 if (getLangOpts().ObjCAutoRefCount && method &&
339 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
340 shouldExtendReceiverForInnerPointerMessage(E))
341 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
342
343 QualType ResultType =
344 method ? method->getResultType() : E->getType();
345
346 CallArgList Args;
347 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
348
349 // For delegate init calls in ARC, do an unsafe store of null into
350 // self. This represents the call taking direct ownership of that
351 // value. We have to do this after emitting the other call
352 // arguments because they might also reference self, but we don't
353 // have to worry about any of them modifying self because that would
354 // be an undefined read and write of an object in unordered
355 // expressions.
356 if (isDelegateInit) {
357 assert(getLangOpts().ObjCAutoRefCount &&
358 "delegate init calls should only be marked in ARC");
359
360 // Do an unsafe store of null into self.
361 llvm::Value *selfAddr =
362 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
363 assert(selfAddr && "no self entry for a delegate init call?");
364
365 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
366 }
367
368 RValue result;
369 if (isSuperMessage) {
370 // super is only valid in an Objective-C method
371 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
372 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
373 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
374 E->getSelector(),
375 OMD->getClassInterface(),
376 isCategoryImpl,
377 Receiver,
378 isClassMessage,
379 Args,
380 method);
381 } else {
382 result = Runtime.GenerateMessageSend(*this, Return, ResultType,
383 E->getSelector(),
384 Receiver, Args, OID,
385 method);
386 }
387
388 // For delegate init calls in ARC, implicitly store the result of
389 // the call back into self. This takes ownership of the value.
390 if (isDelegateInit) {
391 llvm::Value *selfAddr =
392 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
393 llvm::Value *newSelf = result.getScalarVal();
394
395 // The delegate return type isn't necessarily a matching type; in
396 // fact, it's quite likely to be 'id'.
397 llvm::Type *selfTy =
398 cast<llvm::PointerType>(selfAddr->getType())->getElementType();
399 newSelf = Builder.CreateBitCast(newSelf, selfTy);
400
401 Builder.CreateStore(newSelf, selfAddr);
402 }
403
404 return AdjustRelatedResultType(*this, E, method, result);
405 }
406
407 namespace {
408 struct FinishARCDealloc : EHScopeStack::Cleanup {
Emit__anone81b9c6c0111::FinishARCDealloc409 void Emit(CodeGenFunction &CGF, Flags flags) {
410 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
411
412 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
413 const ObjCInterfaceDecl *iface = impl->getClassInterface();
414 if (!iface->getSuperClass()) return;
415
416 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
417
418 // Call [super dealloc] if we have a superclass.
419 llvm::Value *self = CGF.LoadObjCSelf();
420
421 CallArgList args;
422 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
423 CGF.getContext().VoidTy,
424 method->getSelector(),
425 iface,
426 isCategory,
427 self,
428 /*is class msg*/ false,
429 args,
430 method);
431 }
432 };
433 }
434
435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
436 /// the LLVM function and sets the other context used by
437 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD,SourceLocation StartLoc)438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
439 const ObjCContainerDecl *CD,
440 SourceLocation StartLoc) {
441 FunctionArgList args;
442 // Check if we should generate debug info for this method.
443 if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
444 DebugInfo = CGM.getModuleDebugInfo();
445
446 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
447
448 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
449 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
450
451 args.push_back(OMD->getSelfDecl());
452 args.push_back(OMD->getCmdDecl());
453
454 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
455 E = OMD->param_end(); PI != E; ++PI)
456 args.push_back(*PI);
457
458 CurGD = OMD;
459
460 StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
461
462 // In ARC, certain methods get an extra cleanup.
463 if (CGM.getLangOpts().ObjCAutoRefCount &&
464 OMD->isInstanceMethod() &&
465 OMD->getSelector().isUnarySelector()) {
466 const IdentifierInfo *ident =
467 OMD->getSelector().getIdentifierInfoForSlot(0);
468 if (ident->isStr("dealloc"))
469 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
470 }
471 }
472
473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
474 LValue lvalue, QualType type);
475
476 /// Generate an Objective-C method. An Objective-C method is a C function with
477 /// its pointer, name, and types registered in the class struture.
GenerateObjCMethod(const ObjCMethodDecl * OMD)478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
479 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
480 EmitStmt(OMD->getBody());
481 FinishFunction(OMD->getBodyRBrace());
482 }
483
484 /// emitStructGetterCall - Call the runtime function to load a property
485 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
487 bool isAtomic, bool hasStrong) {
488 ASTContext &Context = CGF.getContext();
489
490 llvm::Value *src =
491 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
492 ivar, 0).getAddress();
493
494 // objc_copyStruct (ReturnValue, &structIvar,
495 // sizeof (Type of Ivar), isAtomic, false);
496 CallArgList args;
497
498 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
499 args.add(RValue::get(dest), Context.VoidPtrTy);
500
501 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
502 args.add(RValue::get(src), Context.VoidPtrTy);
503
504 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
505 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
506 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
507 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
508
509 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
510 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Context.VoidTy, args,
511 FunctionType::ExtInfo(),
512 RequiredArgs::All),
513 fn, ReturnValueSlot(), args);
514 }
515
516 /// Determine whether the given architecture supports unaligned atomic
517 /// accesses. They don't have to be fast, just faster than a function
518 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
520 // FIXME: Allow unaligned atomic load/store on x86. (It is not
521 // currently supported by the backend.)
522 return 0;
523 }
524
525 /// Return the maximum size that permits atomic accesses for the given
526 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
528 llvm::Triple::ArchType arch) {
529 // ARM has 8-byte atomic accesses, but it's not clear whether we
530 // want to rely on them here.
531
532 // In the default case, just assume that any size up to a pointer is
533 // fine given adequate alignment.
534 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
535 }
536
537 namespace {
538 class PropertyImplStrategy {
539 public:
540 enum StrategyKind {
541 /// The 'native' strategy is to use the architecture's provided
542 /// reads and writes.
543 Native,
544
545 /// Use objc_setProperty and objc_getProperty.
546 GetSetProperty,
547
548 /// Use objc_setProperty for the setter, but use expression
549 /// evaluation for the getter.
550 SetPropertyAndExpressionGet,
551
552 /// Use objc_copyStruct.
553 CopyStruct,
554
555 /// The 'expression' strategy is to emit normal assignment or
556 /// lvalue-to-rvalue expressions.
557 Expression
558 };
559
getKind() const560 StrategyKind getKind() const { return StrategyKind(Kind); }
561
hasStrongMember() const562 bool hasStrongMember() const { return HasStrong; }
isAtomic() const563 bool isAtomic() const { return IsAtomic; }
isCopy() const564 bool isCopy() const { return IsCopy; }
565
getIvarSize() const566 CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const567 CharUnits getIvarAlignment() const { return IvarAlignment; }
568
569 PropertyImplStrategy(CodeGenModule &CGM,
570 const ObjCPropertyImplDecl *propImpl);
571
572 private:
573 unsigned Kind : 8;
574 unsigned IsAtomic : 1;
575 unsigned IsCopy : 1;
576 unsigned HasStrong : 1;
577
578 CharUnits IvarSize;
579 CharUnits IvarAlignment;
580 };
581 }
582
583 /// Pick an implementation strategy for the the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
585 const ObjCPropertyImplDecl *propImpl) {
586 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
587 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
588
589 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
590 IsAtomic = prop->isAtomic();
591 HasStrong = false; // doesn't matter here.
592
593 // Evaluate the ivar's size and alignment.
594 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
595 QualType ivarType = ivar->getType();
596 llvm::tie(IvarSize, IvarAlignment)
597 = CGM.getContext().getTypeInfoInChars(ivarType);
598
599 // If we have a copy property, we always have to use getProperty/setProperty.
600 // TODO: we could actually use setProperty and an expression for non-atomics.
601 if (IsCopy) {
602 Kind = GetSetProperty;
603 return;
604 }
605
606 // Handle retain.
607 if (setterKind == ObjCPropertyDecl::Retain) {
608 // In GC-only, there's nothing special that needs to be done.
609 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
610 // fallthrough
611
612 // In ARC, if the property is non-atomic, use expression emission,
613 // which translates to objc_storeStrong. This isn't required, but
614 // it's slightly nicer.
615 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
616 Kind = Expression;
617 return;
618
619 // Otherwise, we need to at least use setProperty. However, if
620 // the property isn't atomic, we can use normal expression
621 // emission for the getter.
622 } else if (!IsAtomic) {
623 Kind = SetPropertyAndExpressionGet;
624 return;
625
626 // Otherwise, we have to use both setProperty and getProperty.
627 } else {
628 Kind = GetSetProperty;
629 return;
630 }
631 }
632
633 // If we're not atomic, just use expression accesses.
634 if (!IsAtomic) {
635 Kind = Expression;
636 return;
637 }
638
639 // Properties on bitfield ivars need to be emitted using expression
640 // accesses even if they're nominally atomic.
641 if (ivar->isBitField()) {
642 Kind = Expression;
643 return;
644 }
645
646 // GC-qualified or ARC-qualified ivars need to be emitted as
647 // expressions. This actually works out to being atomic anyway,
648 // except for ARC __strong, but that should trigger the above code.
649 if (ivarType.hasNonTrivialObjCLifetime() ||
650 (CGM.getLangOpts().getGC() &&
651 CGM.getContext().getObjCGCAttrKind(ivarType))) {
652 Kind = Expression;
653 return;
654 }
655
656 // Compute whether the ivar has strong members.
657 if (CGM.getLangOpts().getGC())
658 if (const RecordType *recordType = ivarType->getAs<RecordType>())
659 HasStrong = recordType->getDecl()->hasObjectMember();
660
661 // We can never access structs with object members with a native
662 // access, because we need to use write barriers. This is what
663 // objc_copyStruct is for.
664 if (HasStrong) {
665 Kind = CopyStruct;
666 return;
667 }
668
669 // Otherwise, this is target-dependent and based on the size and
670 // alignment of the ivar.
671
672 // If the size of the ivar is not a power of two, give up. We don't
673 // want to get into the business of doing compare-and-swaps.
674 if (!IvarSize.isPowerOfTwo()) {
675 Kind = CopyStruct;
676 return;
677 }
678
679 llvm::Triple::ArchType arch =
680 CGM.getContext().getTargetInfo().getTriple().getArch();
681
682 // Most architectures require memory to fit within a single cache
683 // line, so the alignment has to be at least the size of the access.
684 // Otherwise we have to grab a lock.
685 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
686 Kind = CopyStruct;
687 return;
688 }
689
690 // If the ivar's size exceeds the architecture's maximum atomic
691 // access size, we have to use CopyStruct.
692 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
693 Kind = CopyStruct;
694 return;
695 }
696
697 // Otherwise, we can use native loads and stores.
698 Kind = Native;
699 }
700
701 /// GenerateObjCGetter - Generate an Objective-C property getter
702 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
703 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)704 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
705 const ObjCPropertyImplDecl *PID) {
706 llvm::Constant *AtomicHelperFn =
707 GenerateObjCAtomicGetterCopyHelperFunction(PID);
708 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
709 ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
710 assert(OMD && "Invalid call to generate getter (empty method)");
711 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
712
713 generateObjCGetterBody(IMP, PID, AtomicHelperFn);
714
715 FinishFunction();
716 }
717
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)718 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
719 const Expr *getter = propImpl->getGetterCXXConstructor();
720 if (!getter) return true;
721
722 // Sema only makes only of these when the ivar has a C++ class type,
723 // so the form is pretty constrained.
724
725 // If the property has a reference type, we might just be binding a
726 // reference, in which case the result will be a gl-value. We should
727 // treat this as a non-trivial operation.
728 if (getter->isGLValue())
729 return false;
730
731 // If we selected a trivial copy-constructor, we're okay.
732 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
733 return (construct->getConstructor()->isTrivial());
734
735 // The constructor might require cleanups (in which case it's never
736 // trivial).
737 assert(isa<ExprWithCleanups>(getter));
738 return false;
739 }
740
741 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
742 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)743 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
744 llvm::Value *returnAddr,
745 ObjCIvarDecl *ivar,
746 llvm::Constant *AtomicHelperFn) {
747 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
748 // AtomicHelperFn);
749 CallArgList args;
750
751 // The 1st argument is the return Slot.
752 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
753
754 // The 2nd argument is the address of the ivar.
755 llvm::Value *ivarAddr =
756 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
757 CGF.LoadObjCSelf(), ivar, 0).getAddress();
758 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
759 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
760
761 // Third argument is the helper function.
762 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
763
764 llvm::Value *copyCppAtomicObjectFn =
765 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
766 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
767 FunctionType::ExtInfo(),
768 RequiredArgs::All),
769 copyCppAtomicObjectFn, ReturnValueSlot(), args);
770 }
771
772 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)773 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
774 const ObjCPropertyImplDecl *propImpl,
775 llvm::Constant *AtomicHelperFn) {
776 // If there's a non-trivial 'get' expression, we just have to emit that.
777 if (!hasTrivialGetExpr(propImpl)) {
778 if (!AtomicHelperFn) {
779 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
780 /*nrvo*/ 0);
781 EmitReturnStmt(ret);
782 }
783 else {
784 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
785 emitCPPObjectAtomicGetterCall(*this, ReturnValue,
786 ivar, AtomicHelperFn);
787 }
788 return;
789 }
790
791 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
792 QualType propType = prop->getType();
793 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
794
795 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
796
797 // Pick an implementation strategy.
798 PropertyImplStrategy strategy(CGM, propImpl);
799 switch (strategy.getKind()) {
800 case PropertyImplStrategy::Native: {
801 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
802
803 // Currently, all atomic accesses have to be through integer
804 // types, so there's no point in trying to pick a prettier type.
805 llvm::Type *bitcastType =
806 llvm::Type::getIntNTy(getLLVMContext(),
807 getContext().toBits(strategy.getIvarSize()));
808 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
809
810 // Perform an atomic load. This does not impose ordering constraints.
811 llvm::Value *ivarAddr = LV.getAddress();
812 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
813 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
814 load->setAlignment(strategy.getIvarAlignment().getQuantity());
815 load->setAtomic(llvm::Unordered);
816
817 // Store that value into the return address. Doing this with a
818 // bitcast is likely to produce some pretty ugly IR, but it's not
819 // the *most* terrible thing in the world.
820 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
821
822 // Make sure we don't do an autorelease.
823 AutoreleaseResult = false;
824 return;
825 }
826
827 case PropertyImplStrategy::GetSetProperty: {
828 llvm::Value *getPropertyFn =
829 CGM.getObjCRuntime().GetPropertyGetFunction();
830 if (!getPropertyFn) {
831 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
832 return;
833 }
834
835 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
836 // FIXME: Can't this be simpler? This might even be worse than the
837 // corresponding gcc code.
838 llvm::Value *cmd =
839 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
840 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
841 llvm::Value *ivarOffset =
842 EmitIvarOffset(classImpl->getClassInterface(), ivar);
843
844 CallArgList args;
845 args.add(RValue::get(self), getContext().getObjCIdType());
846 args.add(RValue::get(cmd), getContext().getObjCSelType());
847 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
848 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
849 getContext().BoolTy);
850
851 // FIXME: We shouldn't need to get the function info here, the
852 // runtime already should have computed it to build the function.
853 RValue RV = EmitCall(getTypes().arrangeFunctionCall(propType, args,
854 FunctionType::ExtInfo(),
855 RequiredArgs::All),
856 getPropertyFn, ReturnValueSlot(), args);
857
858 // We need to fix the type here. Ivars with copy & retain are
859 // always objects so we don't need to worry about complex or
860 // aggregates.
861 RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
862 getTypes().ConvertType(propType)));
863
864 EmitReturnOfRValue(RV, propType);
865
866 // objc_getProperty does an autorelease, so we should suppress ours.
867 AutoreleaseResult = false;
868
869 return;
870 }
871
872 case PropertyImplStrategy::CopyStruct:
873 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
874 strategy.hasStrongMember());
875 return;
876
877 case PropertyImplStrategy::Expression:
878 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
879 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
880
881 QualType ivarType = ivar->getType();
882 if (ivarType->isAnyComplexType()) {
883 ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
884 LV.isVolatileQualified());
885 StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
886 } else if (hasAggregateLLVMType(ivarType)) {
887 // The return value slot is guaranteed to not be aliased, but
888 // that's not necessarily the same as "on the stack", so
889 // we still potentially need objc_memmove_collectable.
890 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
891 } else {
892 llvm::Value *value;
893 if (propType->isReferenceType()) {
894 value = LV.getAddress();
895 } else {
896 // We want to load and autoreleaseReturnValue ARC __weak ivars.
897 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
898 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
899
900 // Otherwise we want to do a simple load, suppressing the
901 // final autorelease.
902 } else {
903 value = EmitLoadOfLValue(LV).getScalarVal();
904 AutoreleaseResult = false;
905 }
906
907 value = Builder.CreateBitCast(value, ConvertType(propType));
908 }
909
910 EmitReturnOfRValue(RValue::get(value), propType);
911 }
912 return;
913 }
914
915 }
916 llvm_unreachable("bad @property implementation strategy!");
917 }
918
919 /// emitStructSetterCall - Call the runtime function to store the value
920 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)921 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
922 ObjCIvarDecl *ivar) {
923 // objc_copyStruct (&structIvar, &Arg,
924 // sizeof (struct something), true, false);
925 CallArgList args;
926
927 // The first argument is the address of the ivar.
928 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
929 CGF.LoadObjCSelf(), ivar, 0)
930 .getAddress();
931 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
932 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
933
934 // The second argument is the address of the parameter variable.
935 ParmVarDecl *argVar = *OMD->param_begin();
936 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
937 VK_LValue, SourceLocation());
938 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
939 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
940 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
941
942 // The third argument is the sizeof the type.
943 llvm::Value *size =
944 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
945 args.add(RValue::get(size), CGF.getContext().getSizeType());
946
947 // The fourth argument is the 'isAtomic' flag.
948 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
949
950 // The fifth argument is the 'hasStrong' flag.
951 // FIXME: should this really always be false?
952 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
953
954 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
955 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
956 FunctionType::ExtInfo(),
957 RequiredArgs::All),
958 copyStructFn, ReturnValueSlot(), args);
959 }
960
961 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
962 /// the value from the first formal parameter into the given ivar, using
963 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)964 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
965 ObjCMethodDecl *OMD,
966 ObjCIvarDecl *ivar,
967 llvm::Constant *AtomicHelperFn) {
968 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
969 // AtomicHelperFn);
970 CallArgList args;
971
972 // The first argument is the address of the ivar.
973 llvm::Value *ivarAddr =
974 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
975 CGF.LoadObjCSelf(), ivar, 0).getAddress();
976 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
977 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
978
979 // The second argument is the address of the parameter variable.
980 ParmVarDecl *argVar = *OMD->param_begin();
981 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
982 VK_LValue, SourceLocation());
983 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
984 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
985 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
986
987 // Third argument is the helper function.
988 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
989
990 llvm::Value *copyCppAtomicObjectFn =
991 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
992 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
993 FunctionType::ExtInfo(),
994 RequiredArgs::All),
995 copyCppAtomicObjectFn, ReturnValueSlot(), args);
996
997
998 }
999
1000
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1001 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1002 Expr *setter = PID->getSetterCXXAssignment();
1003 if (!setter) return true;
1004
1005 // Sema only makes only of these when the ivar has a C++ class type,
1006 // so the form is pretty constrained.
1007
1008 // An operator call is trivial if the function it calls is trivial.
1009 // This also implies that there's nothing non-trivial going on with
1010 // the arguments, because operator= can only be trivial if it's a
1011 // synthesized assignment operator and therefore both parameters are
1012 // references.
1013 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1014 if (const FunctionDecl *callee
1015 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1016 if (callee->isTrivial())
1017 return true;
1018 return false;
1019 }
1020
1021 assert(isa<ExprWithCleanups>(setter));
1022 return false;
1023 }
1024
UseOptimizedSetter(CodeGenModule & CGM)1025 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1026 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1027 return false;
1028 const TargetInfo &Target = CGM.getContext().getTargetInfo();
1029
1030 if (Target.getPlatformName() != "macosx")
1031 return false;
1032
1033 return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
1034 }
1035
1036 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1037 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1038 const ObjCPropertyImplDecl *propImpl,
1039 llvm::Constant *AtomicHelperFn) {
1040 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1041 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1042 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1043
1044 // Just use the setter expression if Sema gave us one and it's
1045 // non-trivial.
1046 if (!hasTrivialSetExpr(propImpl)) {
1047 if (!AtomicHelperFn)
1048 // If non-atomic, assignment is called directly.
1049 EmitStmt(propImpl->getSetterCXXAssignment());
1050 else
1051 // If atomic, assignment is called via a locking api.
1052 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1053 AtomicHelperFn);
1054 return;
1055 }
1056
1057 PropertyImplStrategy strategy(CGM, propImpl);
1058 switch (strategy.getKind()) {
1059 case PropertyImplStrategy::Native: {
1060 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1061
1062 LValue ivarLValue =
1063 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1064 llvm::Value *ivarAddr = ivarLValue.getAddress();
1065
1066 // Currently, all atomic accesses have to be through integer
1067 // types, so there's no point in trying to pick a prettier type.
1068 llvm::Type *bitcastType =
1069 llvm::Type::getIntNTy(getLLVMContext(),
1070 getContext().toBits(strategy.getIvarSize()));
1071 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1072
1073 // Cast both arguments to the chosen operation type.
1074 argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1075 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1076
1077 // This bitcast load is likely to cause some nasty IR.
1078 llvm::Value *load = Builder.CreateLoad(argAddr);
1079
1080 // Perform an atomic store. There are no memory ordering requirements.
1081 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1082 store->setAlignment(strategy.getIvarAlignment().getQuantity());
1083 store->setAtomic(llvm::Unordered);
1084 return;
1085 }
1086
1087 case PropertyImplStrategy::GetSetProperty:
1088 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1089
1090 llvm::Value *setOptimizedPropertyFn = 0;
1091 llvm::Value *setPropertyFn = 0;
1092 if (UseOptimizedSetter(CGM)) {
1093 // 10.8 code and GC is off
1094 setOptimizedPropertyFn =
1095 CGM.getObjCRuntime()
1096 .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1097 strategy.isCopy());
1098 if (!setOptimizedPropertyFn) {
1099 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1100 return;
1101 }
1102 }
1103 else {
1104 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1105 if (!setPropertyFn) {
1106 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1107 return;
1108 }
1109 }
1110
1111 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1112 // <is-atomic>, <is-copy>).
1113 llvm::Value *cmd =
1114 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1115 llvm::Value *self =
1116 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1117 llvm::Value *ivarOffset =
1118 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1119 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1120 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1121
1122 CallArgList args;
1123 args.add(RValue::get(self), getContext().getObjCIdType());
1124 args.add(RValue::get(cmd), getContext().getObjCSelType());
1125 if (setOptimizedPropertyFn) {
1126 args.add(RValue::get(arg), getContext().getObjCIdType());
1127 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1128 EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
1129 FunctionType::ExtInfo(),
1130 RequiredArgs::All),
1131 setOptimizedPropertyFn, ReturnValueSlot(), args);
1132 } else {
1133 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1134 args.add(RValue::get(arg), getContext().getObjCIdType());
1135 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1136 getContext().BoolTy);
1137 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1138 getContext().BoolTy);
1139 // FIXME: We shouldn't need to get the function info here, the runtime
1140 // already should have computed it to build the function.
1141 EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
1142 FunctionType::ExtInfo(),
1143 RequiredArgs::All),
1144 setPropertyFn, ReturnValueSlot(), args);
1145 }
1146
1147 return;
1148 }
1149
1150 case PropertyImplStrategy::CopyStruct:
1151 emitStructSetterCall(*this, setterMethod, ivar);
1152 return;
1153
1154 case PropertyImplStrategy::Expression:
1155 break;
1156 }
1157
1158 // Otherwise, fake up some ASTs and emit a normal assignment.
1159 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1160 DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1161 VK_LValue, SourceLocation());
1162 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1163 selfDecl->getType(), CK_LValueToRValue, &self,
1164 VK_RValue);
1165 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1166 SourceLocation(), &selfLoad, true, true);
1167
1168 ParmVarDecl *argDecl = *setterMethod->param_begin();
1169 QualType argType = argDecl->getType().getNonReferenceType();
1170 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1171 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1172 argType.getUnqualifiedType(), CK_LValueToRValue,
1173 &arg, VK_RValue);
1174
1175 // The property type can differ from the ivar type in some situations with
1176 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1177 // The following absurdity is just to ensure well-formed IR.
1178 CastKind argCK = CK_NoOp;
1179 if (ivarRef.getType()->isObjCObjectPointerType()) {
1180 if (argLoad.getType()->isObjCObjectPointerType())
1181 argCK = CK_BitCast;
1182 else if (argLoad.getType()->isBlockPointerType())
1183 argCK = CK_BlockPointerToObjCPointerCast;
1184 else
1185 argCK = CK_CPointerToObjCPointerCast;
1186 } else if (ivarRef.getType()->isBlockPointerType()) {
1187 if (argLoad.getType()->isBlockPointerType())
1188 argCK = CK_BitCast;
1189 else
1190 argCK = CK_AnyPointerToBlockPointerCast;
1191 } else if (ivarRef.getType()->isPointerType()) {
1192 argCK = CK_BitCast;
1193 }
1194 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1195 ivarRef.getType(), argCK, &argLoad,
1196 VK_RValue);
1197 Expr *finalArg = &argLoad;
1198 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1199 argLoad.getType()))
1200 finalArg = &argCast;
1201
1202
1203 BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1204 ivarRef.getType(), VK_RValue, OK_Ordinary,
1205 SourceLocation());
1206 EmitStmt(&assign);
1207 }
1208
1209 /// GenerateObjCSetter - Generate an Objective-C property setter
1210 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
1211 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1212 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1213 const ObjCPropertyImplDecl *PID) {
1214 llvm::Constant *AtomicHelperFn =
1215 GenerateObjCAtomicSetterCopyHelperFunction(PID);
1216 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1217 ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1218 assert(OMD && "Invalid call to generate setter (empty method)");
1219 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1220
1221 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1222
1223 FinishFunction();
1224 }
1225
1226 namespace {
1227 struct DestroyIvar : EHScopeStack::Cleanup {
1228 private:
1229 llvm::Value *addr;
1230 const ObjCIvarDecl *ivar;
1231 CodeGenFunction::Destroyer *destroyer;
1232 bool useEHCleanupForArray;
1233 public:
DestroyIvar__anone81b9c6c0311::DestroyIvar1234 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1235 CodeGenFunction::Destroyer *destroyer,
1236 bool useEHCleanupForArray)
1237 : addr(addr), ivar(ivar), destroyer(destroyer),
1238 useEHCleanupForArray(useEHCleanupForArray) {}
1239
Emit__anone81b9c6c0311::DestroyIvar1240 void Emit(CodeGenFunction &CGF, Flags flags) {
1241 LValue lvalue
1242 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1243 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1244 flags.isForNormalCleanup() && useEHCleanupForArray);
1245 }
1246 };
1247 }
1248
1249 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1250 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1251 llvm::Value *addr,
1252 QualType type) {
1253 llvm::Value *null = getNullForVariable(addr);
1254 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1255 }
1256
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1257 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1258 ObjCImplementationDecl *impl) {
1259 CodeGenFunction::RunCleanupsScope scope(CGF);
1260
1261 llvm::Value *self = CGF.LoadObjCSelf();
1262
1263 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1264 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1265 ivar; ivar = ivar->getNextIvar()) {
1266 QualType type = ivar->getType();
1267
1268 // Check whether the ivar is a destructible type.
1269 QualType::DestructionKind dtorKind = type.isDestructedType();
1270 if (!dtorKind) continue;
1271
1272 CodeGenFunction::Destroyer *destroyer = 0;
1273
1274 // Use a call to objc_storeStrong to destroy strong ivars, for the
1275 // general benefit of the tools.
1276 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1277 destroyer = destroyARCStrongWithStore;
1278
1279 // Otherwise use the default for the destruction kind.
1280 } else {
1281 destroyer = CGF.getDestroyer(dtorKind);
1282 }
1283
1284 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1285
1286 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1287 cleanupKind & EHCleanup);
1288 }
1289
1290 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1291 }
1292
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1293 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1294 ObjCMethodDecl *MD,
1295 bool ctor) {
1296 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1297 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1298
1299 // Emit .cxx_construct.
1300 if (ctor) {
1301 // Suppress the final autorelease in ARC.
1302 AutoreleaseResult = false;
1303
1304 SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1305 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1306 E = IMP->init_end(); B != E; ++B) {
1307 CXXCtorInitializer *IvarInit = (*B);
1308 FieldDecl *Field = IvarInit->getAnyMember();
1309 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1310 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1311 LoadObjCSelf(), Ivar, 0);
1312 EmitAggExpr(IvarInit->getInit(),
1313 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1314 AggValueSlot::DoesNotNeedGCBarriers,
1315 AggValueSlot::IsNotAliased));
1316 }
1317 // constructor returns 'self'.
1318 CodeGenTypes &Types = CGM.getTypes();
1319 QualType IdTy(CGM.getContext().getObjCIdType());
1320 llvm::Value *SelfAsId =
1321 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1322 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1323
1324 // Emit .cxx_destruct.
1325 } else {
1326 emitCXXDestructMethod(*this, IMP);
1327 }
1328 FinishFunction();
1329 }
1330
IndirectObjCSetterArg(const CGFunctionInfo & FI)1331 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1332 CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1333 it++; it++;
1334 const ABIArgInfo &AI = it->info;
1335 // FIXME. Is this sufficient check?
1336 return (AI.getKind() == ABIArgInfo::Indirect);
1337 }
1338
IvarTypeWithAggrGCObjects(QualType Ty)1339 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1340 if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1341 return false;
1342 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1343 return FDTTy->getDecl()->hasObjectMember();
1344 return false;
1345 }
1346
LoadObjCSelf()1347 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1348 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1349 return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1350 }
1351
TypeOfSelfObject()1352 QualType CodeGenFunction::TypeOfSelfObject() {
1353 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1354 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1355 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1356 getContext().getCanonicalType(selfDecl->getType()));
1357 return PTy->getPointeeType();
1358 }
1359
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1360 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1361 llvm::Constant *EnumerationMutationFn =
1362 CGM.getObjCRuntime().EnumerationMutationFunction();
1363
1364 if (!EnumerationMutationFn) {
1365 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1366 return;
1367 }
1368
1369 CGDebugInfo *DI = getDebugInfo();
1370 if (DI)
1371 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1372
1373 // The local variable comes into scope immediately.
1374 AutoVarEmission variable = AutoVarEmission::invalid();
1375 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1376 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1377
1378 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1379
1380 // Fast enumeration state.
1381 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1382 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1383 EmitNullInitialization(StatePtr, StateTy);
1384
1385 // Number of elements in the items array.
1386 static const unsigned NumItems = 16;
1387
1388 // Fetch the countByEnumeratingWithState:objects:count: selector.
1389 IdentifierInfo *II[] = {
1390 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1391 &CGM.getContext().Idents.get("objects"),
1392 &CGM.getContext().Idents.get("count")
1393 };
1394 Selector FastEnumSel =
1395 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1396
1397 QualType ItemsTy =
1398 getContext().getConstantArrayType(getContext().getObjCIdType(),
1399 llvm::APInt(32, NumItems),
1400 ArrayType::Normal, 0);
1401 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1402
1403 // Emit the collection pointer. In ARC, we do a retain.
1404 llvm::Value *Collection;
1405 if (getLangOpts().ObjCAutoRefCount) {
1406 Collection = EmitARCRetainScalarExpr(S.getCollection());
1407
1408 // Enter a cleanup to do the release.
1409 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1410 } else {
1411 Collection = EmitScalarExpr(S.getCollection());
1412 }
1413
1414 // The 'continue' label needs to appear within the cleanup for the
1415 // collection object.
1416 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1417
1418 // Send it our message:
1419 CallArgList Args;
1420
1421 // The first argument is a temporary of the enumeration-state type.
1422 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1423
1424 // The second argument is a temporary array with space for NumItems
1425 // pointers. We'll actually be loading elements from the array
1426 // pointer written into the control state; this buffer is so that
1427 // collections that *aren't* backed by arrays can still queue up
1428 // batches of elements.
1429 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1430
1431 // The third argument is the capacity of that temporary array.
1432 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1433 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1434 Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1435
1436 // Start the enumeration.
1437 RValue CountRV =
1438 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1439 getContext().UnsignedLongTy,
1440 FastEnumSel,
1441 Collection, Args);
1442
1443 // The initial number of objects that were returned in the buffer.
1444 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1445
1446 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1447 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1448
1449 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1450
1451 // If the limit pointer was zero to begin with, the collection is
1452 // empty; skip all this.
1453 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1454 EmptyBB, LoopInitBB);
1455
1456 // Otherwise, initialize the loop.
1457 EmitBlock(LoopInitBB);
1458
1459 // Save the initial mutations value. This is the value at an
1460 // address that was written into the state object by
1461 // countByEnumeratingWithState:objects:count:.
1462 llvm::Value *StateMutationsPtrPtr =
1463 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1464 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1465 "mutationsptr");
1466
1467 llvm::Value *initialMutations =
1468 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1469
1470 // Start looping. This is the point we return to whenever we have a
1471 // fresh, non-empty batch of objects.
1472 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1473 EmitBlock(LoopBodyBB);
1474
1475 // The current index into the buffer.
1476 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1477 index->addIncoming(zero, LoopInitBB);
1478
1479 // The current buffer size.
1480 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1481 count->addIncoming(initialBufferLimit, LoopInitBB);
1482
1483 // Check whether the mutations value has changed from where it was
1484 // at start. StateMutationsPtr should actually be invariant between
1485 // refreshes.
1486 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1487 llvm::Value *currentMutations
1488 = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1489
1490 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1491 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1492
1493 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1494 WasNotMutatedBB, WasMutatedBB);
1495
1496 // If so, call the enumeration-mutation function.
1497 EmitBlock(WasMutatedBB);
1498 llvm::Value *V =
1499 Builder.CreateBitCast(Collection,
1500 ConvertType(getContext().getObjCIdType()));
1501 CallArgList Args2;
1502 Args2.add(RValue::get(V), getContext().getObjCIdType());
1503 // FIXME: We shouldn't need to get the function info here, the runtime already
1504 // should have computed it to build the function.
1505 EmitCall(CGM.getTypes().arrangeFunctionCall(getContext().VoidTy, Args2,
1506 FunctionType::ExtInfo(),
1507 RequiredArgs::All),
1508 EnumerationMutationFn, ReturnValueSlot(), Args2);
1509
1510 // Otherwise, or if the mutation function returns, just continue.
1511 EmitBlock(WasNotMutatedBB);
1512
1513 // Initialize the element variable.
1514 RunCleanupsScope elementVariableScope(*this);
1515 bool elementIsVariable;
1516 LValue elementLValue;
1517 QualType elementType;
1518 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1519 // Initialize the variable, in case it's a __block variable or something.
1520 EmitAutoVarInit(variable);
1521
1522 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1523 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1524 VK_LValue, SourceLocation());
1525 elementLValue = EmitLValue(&tempDRE);
1526 elementType = D->getType();
1527 elementIsVariable = true;
1528
1529 if (D->isARCPseudoStrong())
1530 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1531 } else {
1532 elementLValue = LValue(); // suppress warning
1533 elementType = cast<Expr>(S.getElement())->getType();
1534 elementIsVariable = false;
1535 }
1536 llvm::Type *convertedElementType = ConvertType(elementType);
1537
1538 // Fetch the buffer out of the enumeration state.
1539 // TODO: this pointer should actually be invariant between
1540 // refreshes, which would help us do certain loop optimizations.
1541 llvm::Value *StateItemsPtr =
1542 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1543 llvm::Value *EnumStateItems =
1544 Builder.CreateLoad(StateItemsPtr, "stateitems");
1545
1546 // Fetch the value at the current index from the buffer.
1547 llvm::Value *CurrentItemPtr =
1548 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1549 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1550
1551 // Cast that value to the right type.
1552 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1553 "currentitem");
1554
1555 // Make sure we have an l-value. Yes, this gets evaluated every
1556 // time through the loop.
1557 if (!elementIsVariable) {
1558 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1559 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1560 } else {
1561 EmitScalarInit(CurrentItem, elementLValue);
1562 }
1563
1564 // If we do have an element variable, this assignment is the end of
1565 // its initialization.
1566 if (elementIsVariable)
1567 EmitAutoVarCleanups(variable);
1568
1569 // Perform the loop body, setting up break and continue labels.
1570 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1571 {
1572 RunCleanupsScope Scope(*this);
1573 EmitStmt(S.getBody());
1574 }
1575 BreakContinueStack.pop_back();
1576
1577 // Destroy the element variable now.
1578 elementVariableScope.ForceCleanup();
1579
1580 // Check whether there are more elements.
1581 EmitBlock(AfterBody.getBlock());
1582
1583 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1584
1585 // First we check in the local buffer.
1586 llvm::Value *indexPlusOne
1587 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1588
1589 // If we haven't overrun the buffer yet, we can continue.
1590 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1591 LoopBodyBB, FetchMoreBB);
1592
1593 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1594 count->addIncoming(count, AfterBody.getBlock());
1595
1596 // Otherwise, we have to fetch more elements.
1597 EmitBlock(FetchMoreBB);
1598
1599 CountRV =
1600 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1601 getContext().UnsignedLongTy,
1602 FastEnumSel,
1603 Collection, Args);
1604
1605 // If we got a zero count, we're done.
1606 llvm::Value *refetchCount = CountRV.getScalarVal();
1607
1608 // (note that the message send might split FetchMoreBB)
1609 index->addIncoming(zero, Builder.GetInsertBlock());
1610 count->addIncoming(refetchCount, Builder.GetInsertBlock());
1611
1612 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1613 EmptyBB, LoopBodyBB);
1614
1615 // No more elements.
1616 EmitBlock(EmptyBB);
1617
1618 if (!elementIsVariable) {
1619 // If the element was not a declaration, set it to be null.
1620
1621 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1622 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1623 EmitStoreThroughLValue(RValue::get(null), elementLValue);
1624 }
1625
1626 if (DI)
1627 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1628
1629 // Leave the cleanup we entered in ARC.
1630 if (getLangOpts().ObjCAutoRefCount)
1631 PopCleanupBlock();
1632
1633 EmitBlock(LoopEnd.getBlock());
1634 }
1635
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)1636 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1637 CGM.getObjCRuntime().EmitTryStmt(*this, S);
1638 }
1639
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)1640 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1641 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1642 }
1643
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)1644 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1645 const ObjCAtSynchronizedStmt &S) {
1646 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1647 }
1648
1649 /// Produce the code for a CK_ARCProduceObject. Just does a
1650 /// primitive retain.
EmitObjCProduceObject(QualType type,llvm::Value * value)1651 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1652 llvm::Value *value) {
1653 return EmitARCRetain(type, value);
1654 }
1655
1656 namespace {
1657 struct CallObjCRelease : EHScopeStack::Cleanup {
CallObjCRelease__anone81b9c6c0411::CallObjCRelease1658 CallObjCRelease(llvm::Value *object) : object(object) {}
1659 llvm::Value *object;
1660
Emit__anone81b9c6c0411::CallObjCRelease1661 void Emit(CodeGenFunction &CGF, Flags flags) {
1662 CGF.EmitARCRelease(object, /*precise*/ true);
1663 }
1664 };
1665 }
1666
1667 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
1668 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)1669 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1670 llvm::Value *object) {
1671 // If we're in a conditional branch, we need to make the cleanup
1672 // conditional.
1673 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1674 return object;
1675 }
1676
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)1677 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1678 llvm::Value *value) {
1679 return EmitARCRetainAutorelease(type, value);
1680 }
1681
1682
createARCRuntimeFunction(CodeGenModule & CGM,llvm::FunctionType * type,StringRef fnName)1683 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1684 llvm::FunctionType *type,
1685 StringRef fnName) {
1686 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1687
1688 // In -fobjc-no-arc-runtime, emit weak references to the runtime
1689 // support library.
1690 if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC)
1691 if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
1692 f->setLinkage(llvm::Function::ExternalWeakLinkage);
1693
1694 return fn;
1695 }
1696
1697 /// Perform an operation having the signature
1698 /// i8* (i8*)
1699 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Constant * & fn,StringRef fnName)1700 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1701 llvm::Value *value,
1702 llvm::Constant *&fn,
1703 StringRef fnName) {
1704 if (isa<llvm::ConstantPointerNull>(value)) return value;
1705
1706 if (!fn) {
1707 std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1708 llvm::FunctionType *fnType =
1709 llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1710 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1711 }
1712
1713 // Cast the argument to 'id'.
1714 llvm::Type *origType = value->getType();
1715 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1716
1717 // Call the function.
1718 llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1719 call->setDoesNotThrow();
1720
1721 // Cast the result back to the original type.
1722 return CGF.Builder.CreateBitCast(call, origType);
1723 }
1724
1725 /// Perform an operation having the following signature:
1726 /// i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Constant * & fn,StringRef fnName)1727 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1728 llvm::Value *addr,
1729 llvm::Constant *&fn,
1730 StringRef fnName) {
1731 if (!fn) {
1732 std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1733 llvm::FunctionType *fnType =
1734 llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1735 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1736 }
1737
1738 // Cast the argument to 'id*'.
1739 llvm::Type *origType = addr->getType();
1740 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1741
1742 // Call the function.
1743 llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1744 call->setDoesNotThrow();
1745
1746 // Cast the result back to a dereference of the original type.
1747 llvm::Value *result = call;
1748 if (origType != CGF.Int8PtrPtrTy)
1749 result = CGF.Builder.CreateBitCast(result,
1750 cast<llvm::PointerType>(origType)->getElementType());
1751
1752 return result;
1753 }
1754
1755 /// Perform an operation having the following signature:
1756 /// i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool ignored)1757 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1758 llvm::Value *addr,
1759 llvm::Value *value,
1760 llvm::Constant *&fn,
1761 StringRef fnName,
1762 bool ignored) {
1763 assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1764 == value->getType());
1765
1766 if (!fn) {
1767 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1768
1769 llvm::FunctionType *fnType
1770 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1771 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1772 }
1773
1774 llvm::Type *origType = value->getType();
1775
1776 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1777 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1778
1779 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1780 result->setDoesNotThrow();
1781
1782 if (ignored) return 0;
1783
1784 return CGF.Builder.CreateBitCast(result, origType);
1785 }
1786
1787 /// Perform an operation having the following signature:
1788 /// void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,llvm::Value * dst,llvm::Value * src,llvm::Constant * & fn,StringRef fnName)1789 static void emitARCCopyOperation(CodeGenFunction &CGF,
1790 llvm::Value *dst,
1791 llvm::Value *src,
1792 llvm::Constant *&fn,
1793 StringRef fnName) {
1794 assert(dst->getType() == src->getType());
1795
1796 if (!fn) {
1797 std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1798 llvm::FunctionType *fnType
1799 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1800 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1801 }
1802
1803 dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1804 src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1805
1806 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1807 result->setDoesNotThrow();
1808 }
1809
1810 /// Produce the code to do a retain. Based on the type, calls one of:
1811 /// call i8* @objc_retain(i8* %value)
1812 /// call i8* @objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)1813 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1814 if (type->isBlockPointerType())
1815 return EmitARCRetainBlock(value, /*mandatory*/ false);
1816 else
1817 return EmitARCRetainNonBlock(value);
1818 }
1819
1820 /// Retain the given object, with normal retain semantics.
1821 /// call i8* @objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)1822 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1823 return emitARCValueOperation(*this, value,
1824 CGM.getARCEntrypoints().objc_retain,
1825 "objc_retain");
1826 }
1827
1828 /// Retain the given block, with _Block_copy semantics.
1829 /// call i8* @objc_retainBlock(i8* %value)
1830 ///
1831 /// \param mandatory - If false, emit the call with metadata
1832 /// indicating that it's okay for the optimizer to eliminate this call
1833 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)1834 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1835 bool mandatory) {
1836 llvm::Value *result
1837 = emitARCValueOperation(*this, value,
1838 CGM.getARCEntrypoints().objc_retainBlock,
1839 "objc_retainBlock");
1840
1841 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1842 // tell the optimizer that it doesn't need to do this copy if the
1843 // block doesn't escape, where being passed as an argument doesn't
1844 // count as escaping.
1845 if (!mandatory && isa<llvm::Instruction>(result)) {
1846 llvm::CallInst *call
1847 = cast<llvm::CallInst>(result->stripPointerCasts());
1848 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1849
1850 SmallVector<llvm::Value*,1> args;
1851 call->setMetadata("clang.arc.copy_on_escape",
1852 llvm::MDNode::get(Builder.getContext(), args));
1853 }
1854
1855 return result;
1856 }
1857
1858 /// Retain the given object which is the result of a function call.
1859 /// call i8* @objc_retainAutoreleasedReturnValue(i8* %value)
1860 ///
1861 /// Yes, this function name is one character away from a different
1862 /// call with completely different semantics.
1863 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)1864 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1865 // Fetch the void(void) inline asm which marks that we're going to
1866 // retain the autoreleased return value.
1867 llvm::InlineAsm *&marker
1868 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1869 if (!marker) {
1870 StringRef assembly
1871 = CGM.getTargetCodeGenInfo()
1872 .getARCRetainAutoreleasedReturnValueMarker();
1873
1874 // If we have an empty assembly string, there's nothing to do.
1875 if (assembly.empty()) {
1876
1877 // Otherwise, at -O0, build an inline asm that we're going to call
1878 // in a moment.
1879 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1880 llvm::FunctionType *type =
1881 llvm::FunctionType::get(VoidTy, /*variadic*/false);
1882
1883 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1884
1885 // If we're at -O1 and above, we don't want to litter the code
1886 // with this marker yet, so leave a breadcrumb for the ARC
1887 // optimizer to pick up.
1888 } else {
1889 llvm::NamedMDNode *metadata =
1890 CGM.getModule().getOrInsertNamedMetadata(
1891 "clang.arc.retainAutoreleasedReturnValueMarker");
1892 assert(metadata->getNumOperands() <= 1);
1893 if (metadata->getNumOperands() == 0) {
1894 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1895 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1896 }
1897 }
1898 }
1899
1900 // Call the marker asm if we made one, which we do only at -O0.
1901 if (marker) Builder.CreateCall(marker);
1902
1903 return emitARCValueOperation(*this, value,
1904 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1905 "objc_retainAutoreleasedReturnValue");
1906 }
1907
1908 /// Release the given object.
1909 /// call void @objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,bool precise)1910 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1911 if (isa<llvm::ConstantPointerNull>(value)) return;
1912
1913 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1914 if (!fn) {
1915 std::vector<llvm::Type*> args(1, Int8PtrTy);
1916 llvm::FunctionType *fnType =
1917 llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1918 fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1919 }
1920
1921 // Cast the argument to 'id'.
1922 value = Builder.CreateBitCast(value, Int8PtrTy);
1923
1924 // Call objc_release.
1925 llvm::CallInst *call = Builder.CreateCall(fn, value);
1926 call->setDoesNotThrow();
1927
1928 if (!precise) {
1929 SmallVector<llvm::Value*,1> args;
1930 call->setMetadata("clang.imprecise_release",
1931 llvm::MDNode::get(Builder.getContext(), args));
1932 }
1933 }
1934
1935 /// Store into a strong object. Always calls this:
1936 /// call void @objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(llvm::Value * addr,llvm::Value * value,bool ignored)1937 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1938 llvm::Value *value,
1939 bool ignored) {
1940 assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1941 == value->getType());
1942
1943 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1944 if (!fn) {
1945 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1946 llvm::FunctionType *fnType
1947 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1948 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1949 }
1950
1951 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1952 llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1953
1954 Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1955
1956 if (ignored) return 0;
1957 return value;
1958 }
1959
1960 /// Store into a strong object. Sometimes calls this:
1961 /// call void @objc_storeStrong(i8** %addr, i8* %value)
1962 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)1963 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
1964 llvm::Value *newValue,
1965 bool ignored) {
1966 QualType type = dst.getType();
1967 bool isBlock = type->isBlockPointerType();
1968
1969 // Use a store barrier at -O0 unless this is a block type or the
1970 // lvalue is inadequately aligned.
1971 if (shouldUseFusedARCCalls() &&
1972 !isBlock &&
1973 (dst.getAlignment().isZero() ||
1974 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
1975 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
1976 }
1977
1978 // Otherwise, split it out.
1979
1980 // Retain the new value.
1981 newValue = EmitARCRetain(type, newValue);
1982
1983 // Read the old value.
1984 llvm::Value *oldValue = EmitLoadOfScalar(dst);
1985
1986 // Store. We do this before the release so that any deallocs won't
1987 // see the old value.
1988 EmitStoreOfScalar(newValue, dst);
1989
1990 // Finally, release the old value.
1991 EmitARCRelease(oldValue, /*precise*/ false);
1992
1993 return newValue;
1994 }
1995
1996 /// Autorelease the given object.
1997 /// call i8* @objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)1998 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
1999 return emitARCValueOperation(*this, value,
2000 CGM.getARCEntrypoints().objc_autorelease,
2001 "objc_autorelease");
2002 }
2003
2004 /// Autorelease the given object.
2005 /// call i8* @objc_autoreleaseReturnValue(i8* %value)
2006 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2007 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2008 return emitARCValueOperation(*this, value,
2009 CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2010 "objc_autoreleaseReturnValue");
2011 }
2012
2013 /// Do a fused retain/autorelease of the given object.
2014 /// call i8* @objc_retainAutoreleaseReturnValue(i8* %value)
2015 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2016 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2017 return emitARCValueOperation(*this, value,
2018 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2019 "objc_retainAutoreleaseReturnValue");
2020 }
2021
2022 /// Do a fused retain/autorelease of the given object.
2023 /// call i8* @objc_retainAutorelease(i8* %value)
2024 /// or
2025 /// %retain = call i8* @objc_retainBlock(i8* %value)
2026 /// call i8* @objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2027 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2028 llvm::Value *value) {
2029 if (!type->isBlockPointerType())
2030 return EmitARCRetainAutoreleaseNonBlock(value);
2031
2032 if (isa<llvm::ConstantPointerNull>(value)) return value;
2033
2034 llvm::Type *origType = value->getType();
2035 value = Builder.CreateBitCast(value, Int8PtrTy);
2036 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2037 value = EmitARCAutorelease(value);
2038 return Builder.CreateBitCast(value, origType);
2039 }
2040
2041 /// Do a fused retain/autorelease of the given object.
2042 /// call i8* @objc_retainAutorelease(i8* %value)
2043 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2044 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2045 return emitARCValueOperation(*this, value,
2046 CGM.getARCEntrypoints().objc_retainAutorelease,
2047 "objc_retainAutorelease");
2048 }
2049
2050 /// i8* @objc_loadWeak(i8** %addr)
2051 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(llvm::Value * addr)2052 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2053 return emitARCLoadOperation(*this, addr,
2054 CGM.getARCEntrypoints().objc_loadWeak,
2055 "objc_loadWeak");
2056 }
2057
2058 /// i8* @objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(llvm::Value * addr)2059 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2060 return emitARCLoadOperation(*this, addr,
2061 CGM.getARCEntrypoints().objc_loadWeakRetained,
2062 "objc_loadWeakRetained");
2063 }
2064
2065 /// i8* @objc_storeWeak(i8** %addr, i8* %value)
2066 /// Returns %value.
EmitARCStoreWeak(llvm::Value * addr,llvm::Value * value,bool ignored)2067 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2068 llvm::Value *value,
2069 bool ignored) {
2070 return emitARCStoreOperation(*this, addr, value,
2071 CGM.getARCEntrypoints().objc_storeWeak,
2072 "objc_storeWeak", ignored);
2073 }
2074
2075 /// i8* @objc_initWeak(i8** %addr, i8* %value)
2076 /// Returns %value. %addr is known to not have a current weak entry.
2077 /// Essentially equivalent to:
2078 /// *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(llvm::Value * addr,llvm::Value * value)2079 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2080 // If we're initializing to null, just write null to memory; no need
2081 // to get the runtime involved. But don't do this if optimization
2082 // is enabled, because accounting for this would make the optimizer
2083 // much more complicated.
2084 if (isa<llvm::ConstantPointerNull>(value) &&
2085 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2086 Builder.CreateStore(value, addr);
2087 return;
2088 }
2089
2090 emitARCStoreOperation(*this, addr, value,
2091 CGM.getARCEntrypoints().objc_initWeak,
2092 "objc_initWeak", /*ignored*/ true);
2093 }
2094
2095 /// void @objc_destroyWeak(i8** %addr)
2096 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(llvm::Value * addr)2097 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2098 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2099 if (!fn) {
2100 std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2101 llvm::FunctionType *fnType =
2102 llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2103 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2104 }
2105
2106 // Cast the argument to 'id*'.
2107 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2108
2109 llvm::CallInst *call = Builder.CreateCall(fn, addr);
2110 call->setDoesNotThrow();
2111 }
2112
2113 /// void @objc_moveWeak(i8** %dest, i8** %src)
2114 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2115 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(llvm::Value * dst,llvm::Value * src)2116 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2117 emitARCCopyOperation(*this, dst, src,
2118 CGM.getARCEntrypoints().objc_moveWeak,
2119 "objc_moveWeak");
2120 }
2121
2122 /// void @objc_copyWeak(i8** %dest, i8** %src)
2123 /// Disregards the current value in %dest. Essentially
2124 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(llvm::Value * dst,llvm::Value * src)2125 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2126 emitARCCopyOperation(*this, dst, src,
2127 CGM.getARCEntrypoints().objc_copyWeak,
2128 "objc_copyWeak");
2129 }
2130
2131 /// Produce the code to do a objc_autoreleasepool_push.
2132 /// call i8* @objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2133 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2134 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2135 if (!fn) {
2136 llvm::FunctionType *fnType =
2137 llvm::FunctionType::get(Int8PtrTy, false);
2138 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2139 }
2140
2141 llvm::CallInst *call = Builder.CreateCall(fn);
2142 call->setDoesNotThrow();
2143
2144 return call;
2145 }
2146
2147 /// Produce the code to do a primitive release.
2148 /// call void @objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2149 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2150 assert(value->getType() == Int8PtrTy);
2151
2152 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2153 if (!fn) {
2154 std::vector<llvm::Type*> args(1, Int8PtrTy);
2155 llvm::FunctionType *fnType =
2156 llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2157
2158 // We don't want to use a weak import here; instead we should not
2159 // fall into this path.
2160 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2161 }
2162
2163 llvm::CallInst *call = Builder.CreateCall(fn, value);
2164 call->setDoesNotThrow();
2165 }
2166
2167 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2168 /// Which is: [[NSAutoreleasePool alloc] init];
2169 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2170 /// init is declared as: - (id) init; in its NSObject super class.
2171 ///
EmitObjCMRRAutoreleasePoolPush()2172 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2173 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2174 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2175 // [NSAutoreleasePool alloc]
2176 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2177 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2178 CallArgList Args;
2179 RValue AllocRV =
2180 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2181 getContext().getObjCIdType(),
2182 AllocSel, Receiver, Args);
2183
2184 // [Receiver init]
2185 Receiver = AllocRV.getScalarVal();
2186 II = &CGM.getContext().Idents.get("init");
2187 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2188 RValue InitRV =
2189 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2190 getContext().getObjCIdType(),
2191 InitSel, Receiver, Args);
2192 return InitRV.getScalarVal();
2193 }
2194
2195 /// Produce the code to do a primitive release.
2196 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2197 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2198 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2199 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2200 CallArgList Args;
2201 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2202 getContext().VoidTy, DrainSel, Arg, Args);
2203 }
2204
destroyARCStrongPrecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2205 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2206 llvm::Value *addr,
2207 QualType type) {
2208 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2209 CGF.EmitARCRelease(ptr, /*precise*/ true);
2210 }
2211
destroyARCStrongImprecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2212 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2213 llvm::Value *addr,
2214 QualType type) {
2215 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2216 CGF.EmitARCRelease(ptr, /*precise*/ false);
2217 }
2218
destroyARCWeak(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2219 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2220 llvm::Value *addr,
2221 QualType type) {
2222 CGF.EmitARCDestroyWeak(addr);
2223 }
2224
2225 namespace {
2226 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2227 llvm::Value *Token;
2228
CallObjCAutoreleasePoolObject__anone81b9c6c0511::CallObjCAutoreleasePoolObject2229 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2230
Emit__anone81b9c6c0511::CallObjCAutoreleasePoolObject2231 void Emit(CodeGenFunction &CGF, Flags flags) {
2232 CGF.EmitObjCAutoreleasePoolPop(Token);
2233 }
2234 };
2235 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2236 llvm::Value *Token;
2237
CallObjCMRRAutoreleasePoolObject__anone81b9c6c0511::CallObjCMRRAutoreleasePoolObject2238 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2239
Emit__anone81b9c6c0511::CallObjCMRRAutoreleasePoolObject2240 void Emit(CodeGenFunction &CGF, Flags flags) {
2241 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2242 }
2243 };
2244 }
2245
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2246 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2247 if (CGM.getLangOpts().ObjCAutoRefCount)
2248 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2249 else
2250 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2251 }
2252
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2253 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2254 LValue lvalue,
2255 QualType type) {
2256 switch (type.getObjCLifetime()) {
2257 case Qualifiers::OCL_None:
2258 case Qualifiers::OCL_ExplicitNone:
2259 case Qualifiers::OCL_Strong:
2260 case Qualifiers::OCL_Autoreleasing:
2261 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2262 false);
2263
2264 case Qualifiers::OCL_Weak:
2265 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2266 true);
2267 }
2268
2269 llvm_unreachable("impossible lifetime!");
2270 }
2271
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2272 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2273 const Expr *e) {
2274 e = e->IgnoreParens();
2275 QualType type = e->getType();
2276
2277 // If we're loading retained from a __strong xvalue, we can avoid
2278 // an extra retain/release pair by zeroing out the source of this
2279 // "move" operation.
2280 if (e->isXValue() &&
2281 !type.isConstQualified() &&
2282 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2283 // Emit the lvalue.
2284 LValue lv = CGF.EmitLValue(e);
2285
2286 // Load the object pointer.
2287 llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2288
2289 // Set the source pointer to NULL.
2290 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2291
2292 return TryEmitResult(result, true);
2293 }
2294
2295 // As a very special optimization, in ARC++, if the l-value is the
2296 // result of a non-volatile assignment, do a simple retain of the
2297 // result of the call to objc_storeWeak instead of reloading.
2298 if (CGF.getLangOpts().CPlusPlus &&
2299 !type.isVolatileQualified() &&
2300 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2301 isa<BinaryOperator>(e) &&
2302 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2303 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2304
2305 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2306 }
2307
2308 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2309 llvm::Value *value);
2310
2311 /// Given that the given expression is some sort of call (which does
2312 /// not return retained), emit a retain following it.
emitARCRetainCall(CodeGenFunction & CGF,const Expr * e)2313 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2314 llvm::Value *value = CGF.EmitScalarExpr(e);
2315 return emitARCRetainAfterCall(CGF, value);
2316 }
2317
emitARCRetainAfterCall(CodeGenFunction & CGF,llvm::Value * value)2318 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2319 llvm::Value *value) {
2320 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2321 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2322
2323 // Place the retain immediately following the call.
2324 CGF.Builder.SetInsertPoint(call->getParent(),
2325 ++llvm::BasicBlock::iterator(call));
2326 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2327
2328 CGF.Builder.restoreIP(ip);
2329 return value;
2330 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2331 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2332
2333 // Place the retain at the beginning of the normal destination block.
2334 llvm::BasicBlock *BB = invoke->getNormalDest();
2335 CGF.Builder.SetInsertPoint(BB, BB->begin());
2336 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2337
2338 CGF.Builder.restoreIP(ip);
2339 return value;
2340
2341 // Bitcasts can arise because of related-result returns. Rewrite
2342 // the operand.
2343 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2344 llvm::Value *operand = bitcast->getOperand(0);
2345 operand = emitARCRetainAfterCall(CGF, operand);
2346 bitcast->setOperand(0, operand);
2347 return bitcast;
2348
2349 // Generic fall-back case.
2350 } else {
2351 // Retain using the non-block variant: we never need to do a copy
2352 // of a block that's been returned to us.
2353 return CGF.EmitARCRetainNonBlock(value);
2354 }
2355 }
2356
2357 /// Determine whether it might be important to emit a separate
2358 /// objc_retain_block on the result of the given expression, or
2359 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)2360 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2361 assert(e->getType()->isBlockPointerType());
2362 e = e->IgnoreParens();
2363
2364 // For future goodness, emit block expressions directly in +1
2365 // contexts if we can.
2366 if (isa<BlockExpr>(e))
2367 return false;
2368
2369 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2370 switch (cast->getCastKind()) {
2371 // Emitting these operations in +1 contexts is goodness.
2372 case CK_LValueToRValue:
2373 case CK_ARCReclaimReturnedObject:
2374 case CK_ARCConsumeObject:
2375 case CK_ARCProduceObject:
2376 return false;
2377
2378 // These operations preserve a block type.
2379 case CK_NoOp:
2380 case CK_BitCast:
2381 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2382
2383 // These operations are known to be bad (or haven't been considered).
2384 case CK_AnyPointerToBlockPointerCast:
2385 default:
2386 return true;
2387 }
2388 }
2389
2390 return true;
2391 }
2392
2393 /// Try to emit a PseudoObjectExpr at +1.
2394 ///
2395 /// This massively duplicates emitPseudoObjectRValue.
tryEmitARCRetainPseudoObject(CodeGenFunction & CGF,const PseudoObjectExpr * E)2396 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2397 const PseudoObjectExpr *E) {
2398 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2399
2400 // Find the result expression.
2401 const Expr *resultExpr = E->getResultExpr();
2402 assert(resultExpr);
2403 TryEmitResult result;
2404
2405 for (PseudoObjectExpr::const_semantics_iterator
2406 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2407 const Expr *semantic = *i;
2408
2409 // If this semantic expression is an opaque value, bind it
2410 // to the result of its source expression.
2411 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2412 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2413 OVMA opaqueData;
2414
2415 // If this semantic is the result of the pseudo-object
2416 // expression, try to evaluate the source as +1.
2417 if (ov == resultExpr) {
2418 assert(!OVMA::shouldBindAsLValue(ov));
2419 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2420 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2421
2422 // Otherwise, just bind it.
2423 } else {
2424 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2425 }
2426 opaques.push_back(opaqueData);
2427
2428 // Otherwise, if the expression is the result, evaluate it
2429 // and remember the result.
2430 } else if (semantic == resultExpr) {
2431 result = tryEmitARCRetainScalarExpr(CGF, semantic);
2432
2433 // Otherwise, evaluate the expression in an ignored context.
2434 } else {
2435 CGF.EmitIgnoredExpr(semantic);
2436 }
2437 }
2438
2439 // Unbind all the opaques now.
2440 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2441 opaques[i].unbind(CGF);
2442
2443 return result;
2444 }
2445
2446 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)2447 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2448 // Look through cleanups.
2449 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2450 CGF.enterFullExpression(cleanups);
2451 CodeGenFunction::RunCleanupsScope scope(CGF);
2452 return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2453 }
2454
2455 // The desired result type, if it differs from the type of the
2456 // ultimate opaque expression.
2457 llvm::Type *resultType = 0;
2458
2459 while (true) {
2460 e = e->IgnoreParens();
2461
2462 // There's a break at the end of this if-chain; anything
2463 // that wants to keep looping has to explicitly continue.
2464 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2465 switch (ce->getCastKind()) {
2466 // No-op casts don't change the type, so we just ignore them.
2467 case CK_NoOp:
2468 e = ce->getSubExpr();
2469 continue;
2470
2471 case CK_LValueToRValue: {
2472 TryEmitResult loadResult
2473 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2474 if (resultType) {
2475 llvm::Value *value = loadResult.getPointer();
2476 value = CGF.Builder.CreateBitCast(value, resultType);
2477 loadResult.setPointer(value);
2478 }
2479 return loadResult;
2480 }
2481
2482 // These casts can change the type, so remember that and
2483 // soldier on. We only need to remember the outermost such
2484 // cast, though.
2485 case CK_CPointerToObjCPointerCast:
2486 case CK_BlockPointerToObjCPointerCast:
2487 case CK_AnyPointerToBlockPointerCast:
2488 case CK_BitCast:
2489 if (!resultType)
2490 resultType = CGF.ConvertType(ce->getType());
2491 e = ce->getSubExpr();
2492 assert(e->getType()->hasPointerRepresentation());
2493 continue;
2494
2495 // For consumptions, just emit the subexpression and thus elide
2496 // the retain/release pair.
2497 case CK_ARCConsumeObject: {
2498 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2499 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2500 return TryEmitResult(result, true);
2501 }
2502
2503 // Block extends are net +0. Naively, we could just recurse on
2504 // the subexpression, but actually we need to ensure that the
2505 // value is copied as a block, so there's a little filter here.
2506 case CK_ARCExtendBlockObject: {
2507 llvm::Value *result; // will be a +0 value
2508
2509 // If we can't safely assume the sub-expression will produce a
2510 // block-copied value, emit the sub-expression at +0.
2511 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2512 result = CGF.EmitScalarExpr(ce->getSubExpr());
2513
2514 // Otherwise, try to emit the sub-expression at +1 recursively.
2515 } else {
2516 TryEmitResult subresult
2517 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2518 result = subresult.getPointer();
2519
2520 // If that produced a retained value, just use that,
2521 // possibly casting down.
2522 if (subresult.getInt()) {
2523 if (resultType)
2524 result = CGF.Builder.CreateBitCast(result, resultType);
2525 return TryEmitResult(result, true);
2526 }
2527
2528 // Otherwise it's +0.
2529 }
2530
2531 // Retain the object as a block, then cast down.
2532 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2533 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2534 return TryEmitResult(result, true);
2535 }
2536
2537 // For reclaims, emit the subexpression as a retained call and
2538 // skip the consumption.
2539 case CK_ARCReclaimReturnedObject: {
2540 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2541 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2542 return TryEmitResult(result, true);
2543 }
2544
2545 default:
2546 break;
2547 }
2548
2549 // Skip __extension__.
2550 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2551 if (op->getOpcode() == UO_Extension) {
2552 e = op->getSubExpr();
2553 continue;
2554 }
2555
2556 // For calls and message sends, use the retained-call logic.
2557 // Delegate inits are a special case in that they're the only
2558 // returns-retained expression that *isn't* surrounded by
2559 // a consume.
2560 } else if (isa<CallExpr>(e) ||
2561 (isa<ObjCMessageExpr>(e) &&
2562 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2563 llvm::Value *result = emitARCRetainCall(CGF, e);
2564 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2565 return TryEmitResult(result, true);
2566
2567 // Look through pseudo-object expressions.
2568 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2569 TryEmitResult result
2570 = tryEmitARCRetainPseudoObject(CGF, pseudo);
2571 if (resultType) {
2572 llvm::Value *value = result.getPointer();
2573 value = CGF.Builder.CreateBitCast(value, resultType);
2574 result.setPointer(value);
2575 }
2576 return result;
2577 }
2578
2579 // Conservatively halt the search at any other expression kind.
2580 break;
2581 }
2582
2583 // We didn't find an obvious production, so emit what we've got and
2584 // tell the caller that we didn't manage to retain.
2585 llvm::Value *result = CGF.EmitScalarExpr(e);
2586 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2587 return TryEmitResult(result, false);
2588 }
2589
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2590 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2591 LValue lvalue,
2592 QualType type) {
2593 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2594 llvm::Value *value = result.getPointer();
2595 if (!result.getInt())
2596 value = CGF.EmitARCRetain(type, value);
2597 return value;
2598 }
2599
2600 /// EmitARCRetainScalarExpr - Semantically equivalent to
2601 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2602 /// best-effort attempt to peephole expressions that naturally produce
2603 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)2604 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2605 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2606 llvm::Value *value = result.getPointer();
2607 if (!result.getInt())
2608 value = EmitARCRetain(e->getType(), value);
2609 return value;
2610 }
2611
2612 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)2613 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2614 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2615 llvm::Value *value = result.getPointer();
2616 if (result.getInt())
2617 value = EmitARCAutorelease(value);
2618 else
2619 value = EmitARCRetainAutorelease(e->getType(), value);
2620 return value;
2621 }
2622
EmitARCExtendBlockObject(const Expr * e)2623 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2624 llvm::Value *result;
2625 bool doRetain;
2626
2627 if (shouldEmitSeparateBlockRetain(e)) {
2628 result = EmitScalarExpr(e);
2629 doRetain = true;
2630 } else {
2631 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2632 result = subresult.getPointer();
2633 doRetain = !subresult.getInt();
2634 }
2635
2636 if (doRetain)
2637 result = EmitARCRetainBlock(result, /*mandatory*/ true);
2638 return EmitObjCConsumeObject(e->getType(), result);
2639 }
2640
EmitObjCThrowOperand(const Expr * expr)2641 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2642 // In ARC, retain and autorelease the expression.
2643 if (getLangOpts().ObjCAutoRefCount) {
2644 // Do so before running any cleanups for the full-expression.
2645 // tryEmitARCRetainScalarExpr does make an effort to do things
2646 // inside cleanups, but there are crazy cases like
2647 // @throw A().foo;
2648 // where a full retain+autorelease is required and would
2649 // otherwise happen after the destructor for the temporary.
2650 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2651 enterFullExpression(ewc);
2652 expr = ewc->getSubExpr();
2653 }
2654
2655 CodeGenFunction::RunCleanupsScope cleanups(*this);
2656 return EmitARCRetainAutoreleaseScalarExpr(expr);
2657 }
2658
2659 // Otherwise, use the normal scalar-expression emission. The
2660 // exception machinery doesn't do anything special with the
2661 // exception like retaining it, so there's no safety associated with
2662 // only running cleanups after the throw has started, and when it
2663 // matters it tends to be substantially inferior code.
2664 return EmitScalarExpr(expr);
2665 }
2666
2667 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)2668 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2669 bool ignored) {
2670 // Evaluate the RHS first.
2671 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2672 llvm::Value *value = result.getPointer();
2673
2674 bool hasImmediateRetain = result.getInt();
2675
2676 // If we didn't emit a retained object, and the l-value is of block
2677 // type, then we need to emit the block-retain immediately in case
2678 // it invalidates the l-value.
2679 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2680 value = EmitARCRetainBlock(value, /*mandatory*/ false);
2681 hasImmediateRetain = true;
2682 }
2683
2684 LValue lvalue = EmitLValue(e->getLHS());
2685
2686 // If the RHS was emitted retained, expand this.
2687 if (hasImmediateRetain) {
2688 llvm::Value *oldValue =
2689 EmitLoadOfScalar(lvalue);
2690 EmitStoreOfScalar(value, lvalue);
2691 EmitARCRelease(oldValue, /*precise*/ false);
2692 } else {
2693 value = EmitARCStoreStrong(lvalue, value, ignored);
2694 }
2695
2696 return std::pair<LValue,llvm::Value*>(lvalue, value);
2697 }
2698
2699 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)2700 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2701 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2702 LValue lvalue = EmitLValue(e->getLHS());
2703
2704 EmitStoreOfScalar(value, lvalue);
2705
2706 return std::pair<LValue,llvm::Value*>(lvalue, value);
2707 }
2708
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)2709 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2710 const ObjCAutoreleasePoolStmt &ARPS) {
2711 const Stmt *subStmt = ARPS.getSubStmt();
2712 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2713
2714 CGDebugInfo *DI = getDebugInfo();
2715 if (DI)
2716 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2717
2718 // Keep track of the current cleanup stack depth.
2719 RunCleanupsScope Scope(*this);
2720 if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) {
2721 llvm::Value *token = EmitObjCAutoreleasePoolPush();
2722 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2723 } else {
2724 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2725 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2726 }
2727
2728 for (CompoundStmt::const_body_iterator I = S.body_begin(),
2729 E = S.body_end(); I != E; ++I)
2730 EmitStmt(*I);
2731
2732 if (DI)
2733 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2734 }
2735
2736 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2737 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)2738 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2739 // We just use an inline assembly.
2740 llvm::FunctionType *extenderType
2741 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2742 llvm::Value *extender
2743 = llvm::InlineAsm::get(extenderType,
2744 /* assembly */ "",
2745 /* constraints */ "r",
2746 /* side effects */ true);
2747
2748 object = Builder.CreateBitCast(object, VoidPtrTy);
2749 Builder.CreateCall(extender, object)->setDoesNotThrow();
2750 }
2751
2752 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2753 /// non-trivial copy assignment function, produce following helper function.
2754 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2755 ///
2756 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2757 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2758 const ObjCPropertyImplDecl *PID) {
2759 // FIXME. This api is for NeXt runtime only for now.
2760 if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
2761 return 0;
2762 QualType Ty = PID->getPropertyIvarDecl()->getType();
2763 if (!Ty->isRecordType())
2764 return 0;
2765 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2766 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2767 return 0;
2768 llvm::Constant * HelperFn = 0;
2769 if (hasTrivialSetExpr(PID))
2770 return 0;
2771 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2772 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2773 return HelperFn;
2774
2775 ASTContext &C = getContext();
2776 IdentifierInfo *II
2777 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2778 FunctionDecl *FD = FunctionDecl::Create(C,
2779 C.getTranslationUnitDecl(),
2780 SourceLocation(),
2781 SourceLocation(), II, C.VoidTy, 0,
2782 SC_Static,
2783 SC_None,
2784 false,
2785 false);
2786
2787 QualType DestTy = C.getPointerType(Ty);
2788 QualType SrcTy = Ty;
2789 SrcTy.addConst();
2790 SrcTy = C.getPointerType(SrcTy);
2791
2792 FunctionArgList args;
2793 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2794 args.push_back(&dstDecl);
2795 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2796 args.push_back(&srcDecl);
2797
2798 const CGFunctionInfo &FI =
2799 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2800 FunctionType::ExtInfo(),
2801 RequiredArgs::All);
2802
2803 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2804
2805 llvm::Function *Fn =
2806 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2807 "__assign_helper_atomic_property_",
2808 &CGM.getModule());
2809
2810 if (CGM.getModuleDebugInfo())
2811 DebugInfo = CGM.getModuleDebugInfo();
2812
2813
2814 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2815
2816 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2817 VK_RValue, SourceLocation());
2818 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2819 VK_LValue, OK_Ordinary, SourceLocation());
2820
2821 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2822 VK_RValue, SourceLocation());
2823 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2824 VK_LValue, OK_Ordinary, SourceLocation());
2825
2826 Expr *Args[2] = { &DST, &SRC };
2827 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2828 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2829 Args, 2, DestTy->getPointeeType(),
2830 VK_LValue, SourceLocation());
2831
2832 EmitStmt(&TheCall);
2833
2834 FinishFunction();
2835 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2836 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2837 return HelperFn;
2838 }
2839
2840 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2841 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2842 const ObjCPropertyImplDecl *PID) {
2843 // FIXME. This api is for NeXt runtime only for now.
2844 if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
2845 return 0;
2846 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2847 QualType Ty = PD->getType();
2848 if (!Ty->isRecordType())
2849 return 0;
2850 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2851 return 0;
2852 llvm::Constant * HelperFn = 0;
2853
2854 if (hasTrivialGetExpr(PID))
2855 return 0;
2856 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2857 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2858 return HelperFn;
2859
2860
2861 ASTContext &C = getContext();
2862 IdentifierInfo *II
2863 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2864 FunctionDecl *FD = FunctionDecl::Create(C,
2865 C.getTranslationUnitDecl(),
2866 SourceLocation(),
2867 SourceLocation(), II, C.VoidTy, 0,
2868 SC_Static,
2869 SC_None,
2870 false,
2871 false);
2872
2873 QualType DestTy = C.getPointerType(Ty);
2874 QualType SrcTy = Ty;
2875 SrcTy.addConst();
2876 SrcTy = C.getPointerType(SrcTy);
2877
2878 FunctionArgList args;
2879 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2880 args.push_back(&dstDecl);
2881 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2882 args.push_back(&srcDecl);
2883
2884 const CGFunctionInfo &FI =
2885 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2886 FunctionType::ExtInfo(),
2887 RequiredArgs::All);
2888
2889 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2890
2891 llvm::Function *Fn =
2892 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2893 "__copy_helper_atomic_property_", &CGM.getModule());
2894
2895 if (CGM.getModuleDebugInfo())
2896 DebugInfo = CGM.getModuleDebugInfo();
2897
2898
2899 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2900
2901 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2902 VK_RValue, SourceLocation());
2903
2904 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2905 VK_LValue, OK_Ordinary, SourceLocation());
2906
2907 CXXConstructExpr *CXXConstExpr =
2908 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2909
2910 SmallVector<Expr*, 4> ConstructorArgs;
2911 ConstructorArgs.push_back(&SRC);
2912 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2913 ++A;
2914
2915 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2916 A != AEnd; ++A)
2917 ConstructorArgs.push_back(*A);
2918
2919 CXXConstructExpr *TheCXXConstructExpr =
2920 CXXConstructExpr::Create(C, Ty, SourceLocation(),
2921 CXXConstExpr->getConstructor(),
2922 CXXConstExpr->isElidable(),
2923 &ConstructorArgs[0], ConstructorArgs.size(),
2924 CXXConstExpr->hadMultipleCandidates(),
2925 CXXConstExpr->isListInitialization(),
2926 CXXConstExpr->requiresZeroInitialization(),
2927 CXXConstExpr->getConstructionKind(),
2928 SourceRange());
2929
2930 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2931 VK_RValue, SourceLocation());
2932
2933 RValue DV = EmitAnyExpr(&DstExpr);
2934 CharUnits Alignment
2935 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2936 EmitAggExpr(TheCXXConstructExpr,
2937 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2938 AggValueSlot::IsDestructed,
2939 AggValueSlot::DoesNotNeedGCBarriers,
2940 AggValueSlot::IsNotAliased));
2941
2942 FinishFunction();
2943 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2944 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2945 return HelperFn;
2946 }
2947
2948 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)2949 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
2950 // Get selectors for retain/autorelease.
2951 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
2952 Selector CopySelector =
2953 getContext().Selectors.getNullarySelector(CopyID);
2954 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
2955 Selector AutoreleaseSelector =
2956 getContext().Selectors.getNullarySelector(AutoreleaseID);
2957
2958 // Emit calls to retain/autorelease.
2959 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2960 llvm::Value *Val = Block;
2961 RValue Result;
2962 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2963 Ty, CopySelector,
2964 Val, CallArgList(), 0, 0);
2965 Val = Result.getScalarVal();
2966 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2967 Ty, AutoreleaseSelector,
2968 Val, CallArgList(), 0, 0);
2969 Val = Result.getScalarVal();
2970 return Val;
2971 }
2972
2973
~CGObjCRuntime()2974 CGObjCRuntime::~CGObjCRuntime() {}
2975