1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Support/MDBuilder.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30
CodeGenFunction(CodeGenModule & cgm)31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32 : CodeGenTypeCache(cgm), CGM(cgm),
33 Target(CGM.getContext().getTargetInfo()),
34 Builder(cgm.getModule().getContext()),
35 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
36 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
37 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
38 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
39 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
40 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
41 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
42 TerminateHandler(0), TrapBB(0) {
43
44 CatchUndefined = getContext().getLangOpts().CatchUndefined;
45 CGM.getCXXABI().getMangleContext().startNewFunction();
46 }
47
~CodeGenFunction()48 CodeGenFunction::~CodeGenFunction() {
49 // If there are any unclaimed block infos, go ahead and destroy them
50 // now. This can happen if IR-gen gets clever and skips evaluating
51 // something.
52 if (FirstBlockInfo)
53 destroyBlockInfos(FirstBlockInfo);
54 }
55
56
ConvertTypeForMem(QualType T)57 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
58 return CGM.getTypes().ConvertTypeForMem(T);
59 }
60
ConvertType(QualType T)61 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
62 return CGM.getTypes().ConvertType(T);
63 }
64
hasAggregateLLVMType(QualType type)65 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
66 switch (type.getCanonicalType()->getTypeClass()) {
67 #define TYPE(name, parent)
68 #define ABSTRACT_TYPE(name, parent)
69 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
70 #define DEPENDENT_TYPE(name, parent) case Type::name:
71 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
72 #include "clang/AST/TypeNodes.def"
73 llvm_unreachable("non-canonical or dependent type in IR-generation");
74
75 case Type::Builtin:
76 case Type::Pointer:
77 case Type::BlockPointer:
78 case Type::LValueReference:
79 case Type::RValueReference:
80 case Type::MemberPointer:
81 case Type::Vector:
82 case Type::ExtVector:
83 case Type::FunctionProto:
84 case Type::FunctionNoProto:
85 case Type::Enum:
86 case Type::ObjCObjectPointer:
87 return false;
88
89 // Complexes, arrays, records, and Objective-C objects.
90 case Type::Complex:
91 case Type::ConstantArray:
92 case Type::IncompleteArray:
93 case Type::VariableArray:
94 case Type::Record:
95 case Type::ObjCObject:
96 case Type::ObjCInterface:
97 return true;
98
99 // In IRGen, atomic types are just the underlying type
100 case Type::Atomic:
101 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
102 }
103 llvm_unreachable("unknown type kind!");
104 }
105
EmitReturnBlock()106 void CodeGenFunction::EmitReturnBlock() {
107 // For cleanliness, we try to avoid emitting the return block for
108 // simple cases.
109 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
110
111 if (CurBB) {
112 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
113
114 // We have a valid insert point, reuse it if it is empty or there are no
115 // explicit jumps to the return block.
116 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
117 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
118 delete ReturnBlock.getBlock();
119 } else
120 EmitBlock(ReturnBlock.getBlock());
121 return;
122 }
123
124 // Otherwise, if the return block is the target of a single direct
125 // branch then we can just put the code in that block instead. This
126 // cleans up functions which started with a unified return block.
127 if (ReturnBlock.getBlock()->hasOneUse()) {
128 llvm::BranchInst *BI =
129 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
130 if (BI && BI->isUnconditional() &&
131 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
132 // Reset insertion point, including debug location, and delete the branch.
133 Builder.SetCurrentDebugLocation(BI->getDebugLoc());
134 Builder.SetInsertPoint(BI->getParent());
135 BI->eraseFromParent();
136 delete ReturnBlock.getBlock();
137 return;
138 }
139 }
140
141 // FIXME: We are at an unreachable point, there is no reason to emit the block
142 // unless it has uses. However, we still need a place to put the debug
143 // region.end for now.
144
145 EmitBlock(ReturnBlock.getBlock());
146 }
147
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)148 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
149 if (!BB) return;
150 if (!BB->use_empty())
151 return CGF.CurFn->getBasicBlockList().push_back(BB);
152 delete BB;
153 }
154
FinishFunction(SourceLocation EndLoc)155 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
156 assert(BreakContinueStack.empty() &&
157 "mismatched push/pop in break/continue stack!");
158
159 // Pop any cleanups that might have been associated with the
160 // parameters. Do this in whatever block we're currently in; it's
161 // important to do this before we enter the return block or return
162 // edges will be *really* confused.
163 if (EHStack.stable_begin() != PrologueCleanupDepth)
164 PopCleanupBlocks(PrologueCleanupDepth);
165
166 // Emit function epilog (to return).
167 EmitReturnBlock();
168
169 if (ShouldInstrumentFunction())
170 EmitFunctionInstrumentation("__cyg_profile_func_exit");
171
172 // Emit debug descriptor for function end.
173 if (CGDebugInfo *DI = getDebugInfo()) {
174 DI->setLocation(EndLoc);
175 DI->EmitFunctionEnd(Builder);
176 }
177
178 EmitFunctionEpilog(*CurFnInfo);
179 EmitEndEHSpec(CurCodeDecl);
180
181 assert(EHStack.empty() &&
182 "did not remove all scopes from cleanup stack!");
183
184 // If someone did an indirect goto, emit the indirect goto block at the end of
185 // the function.
186 if (IndirectBranch) {
187 EmitBlock(IndirectBranch->getParent());
188 Builder.ClearInsertionPoint();
189 }
190
191 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
192 llvm::Instruction *Ptr = AllocaInsertPt;
193 AllocaInsertPt = 0;
194 Ptr->eraseFromParent();
195
196 // If someone took the address of a label but never did an indirect goto, we
197 // made a zero entry PHI node, which is illegal, zap it now.
198 if (IndirectBranch) {
199 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
200 if (PN->getNumIncomingValues() == 0) {
201 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
202 PN->eraseFromParent();
203 }
204 }
205
206 EmitIfUsed(*this, EHResumeBlock);
207 EmitIfUsed(*this, TerminateLandingPad);
208 EmitIfUsed(*this, TerminateHandler);
209 EmitIfUsed(*this, UnreachableBlock);
210
211 if (CGM.getCodeGenOpts().EmitDeclMetadata)
212 EmitDeclMetadata();
213 }
214
215 /// ShouldInstrumentFunction - Return true if the current function should be
216 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()217 bool CodeGenFunction::ShouldInstrumentFunction() {
218 if (!CGM.getCodeGenOpts().InstrumentFunctions)
219 return false;
220 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
221 return false;
222 return true;
223 }
224
225 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
226 /// instrumentation function with the current function and the call site, if
227 /// function instrumentation is enabled.
EmitFunctionInstrumentation(const char * Fn)228 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
229 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
230 llvm::PointerType *PointerTy = Int8PtrTy;
231 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
232 llvm::FunctionType *FunctionTy =
233 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
234
235 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
236 llvm::CallInst *CallSite = Builder.CreateCall(
237 CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
238 llvm::ConstantInt::get(Int32Ty, 0),
239 "callsite");
240
241 Builder.CreateCall2(F,
242 llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
243 CallSite);
244 }
245
EmitMCountInstrumentation()246 void CodeGenFunction::EmitMCountInstrumentation() {
247 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
248
249 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
250 Target.getMCountName());
251 Builder.CreateCall(MCountFn);
252 }
253
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation StartLoc)254 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
255 llvm::Function *Fn,
256 const CGFunctionInfo &FnInfo,
257 const FunctionArgList &Args,
258 SourceLocation StartLoc) {
259 const Decl *D = GD.getDecl();
260
261 DidCallStackSave = false;
262 CurCodeDecl = CurFuncDecl = D;
263 FnRetTy = RetTy;
264 CurFn = Fn;
265 CurFnInfo = &FnInfo;
266 assert(CurFn->isDeclaration() && "Function already has body?");
267
268 // Pass inline keyword to optimizer if it appears explicitly on any
269 // declaration.
270 if (!CGM.getCodeGenOpts().NoInline)
271 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
272 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
273 RE = FD->redecls_end(); RI != RE; ++RI)
274 if (RI->isInlineSpecified()) {
275 Fn->addFnAttr(llvm::Attribute::InlineHint);
276 break;
277 }
278
279 if (getContext().getLangOpts().OpenCL) {
280 // Add metadata for a kernel function.
281 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
282 if (FD->hasAttr<OpenCLKernelAttr>()) {
283 llvm::LLVMContext &Context = getLLVMContext();
284 llvm::NamedMDNode *OpenCLMetadata =
285 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
286
287 llvm::Value *Op = Fn;
288 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
289 }
290 }
291
292 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
293
294 // Create a marker to make it easy to insert allocas into the entryblock
295 // later. Don't create this with the builder, because we don't want it
296 // folded.
297 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
298 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
299 if (Builder.isNamePreserving())
300 AllocaInsertPt->setName("allocapt");
301
302 ReturnBlock = getJumpDestInCurrentScope("return");
303
304 Builder.SetInsertPoint(EntryBB);
305
306 // Emit subprogram debug descriptor.
307 if (CGDebugInfo *DI = getDebugInfo()) {
308 unsigned NumArgs = 0;
309 QualType *ArgsArray = new QualType[Args.size()];
310 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
311 i != e; ++i) {
312 ArgsArray[NumArgs++] = (*i)->getType();
313 }
314
315 QualType FnType =
316 getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
317 FunctionProtoType::ExtProtoInfo());
318
319 delete[] ArgsArray;
320
321 DI->setLocation(StartLoc);
322 DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
323 }
324
325 if (ShouldInstrumentFunction())
326 EmitFunctionInstrumentation("__cyg_profile_func_enter");
327
328 if (CGM.getCodeGenOpts().InstrumentForProfiling)
329 EmitMCountInstrumentation();
330
331 if (RetTy->isVoidType()) {
332 // Void type; nothing to return.
333 ReturnValue = 0;
334 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
335 hasAggregateLLVMType(CurFnInfo->getReturnType())) {
336 // Indirect aggregate return; emit returned value directly into sret slot.
337 // This reduces code size, and affects correctness in C++.
338 ReturnValue = CurFn->arg_begin();
339 } else {
340 ReturnValue = CreateIRTemp(RetTy, "retval");
341
342 // Tell the epilog emitter to autorelease the result. We do this
343 // now so that various specialized functions can suppress it
344 // during their IR-generation.
345 if (getLangOpts().ObjCAutoRefCount &&
346 !CurFnInfo->isReturnsRetained() &&
347 RetTy->isObjCRetainableType())
348 AutoreleaseResult = true;
349 }
350
351 EmitStartEHSpec(CurCodeDecl);
352
353 PrologueCleanupDepth = EHStack.stable_begin();
354 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
355
356 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
357 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
358 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
359 if (MD->getParent()->isLambda() &&
360 MD->getOverloadedOperator() == OO_Call) {
361 // We're in a lambda; figure out the captures.
362 MD->getParent()->getCaptureFields(LambdaCaptureFields,
363 LambdaThisCaptureField);
364 if (LambdaThisCaptureField) {
365 // If this lambda captures this, load it.
366 QualType LambdaTagType =
367 getContext().getTagDeclType(LambdaThisCaptureField->getParent());
368 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
369 LambdaTagType);
370 LValue ThisLValue = EmitLValueForField(LambdaLV,
371 LambdaThisCaptureField);
372 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
373 }
374 } else {
375 // Not in a lambda; just use 'this' from the method.
376 // FIXME: Should we generate a new load for each use of 'this'? The
377 // fast register allocator would be happier...
378 CXXThisValue = CXXABIThisValue;
379 }
380 }
381
382 // If any of the arguments have a variably modified type, make sure to
383 // emit the type size.
384 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
385 i != e; ++i) {
386 QualType Ty = (*i)->getType();
387
388 if (Ty->isVariablyModifiedType())
389 EmitVariablyModifiedType(Ty);
390 }
391 // Emit a location at the end of the prologue.
392 if (CGDebugInfo *DI = getDebugInfo())
393 DI->EmitLocation(Builder, StartLoc);
394 }
395
EmitFunctionBody(FunctionArgList & Args)396 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
397 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
398 assert(FD->getBody());
399 EmitStmt(FD->getBody());
400 }
401
402 /// Tries to mark the given function nounwind based on the
403 /// non-existence of any throwing calls within it. We believe this is
404 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)405 static void TryMarkNoThrow(llvm::Function *F) {
406 // LLVM treats 'nounwind' on a function as part of the type, so we
407 // can't do this on functions that can be overwritten.
408 if (F->mayBeOverridden()) return;
409
410 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
411 for (llvm::BasicBlock::iterator
412 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
413 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
414 if (!Call->doesNotThrow())
415 return;
416 } else if (isa<llvm::ResumeInst>(&*BI)) {
417 return;
418 }
419 F->setDoesNotThrow(true);
420 }
421
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)422 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
423 const CGFunctionInfo &FnInfo) {
424 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
425
426 // Check if we should generate debug info for this function.
427 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
428 DebugInfo = CGM.getModuleDebugInfo();
429
430 FunctionArgList Args;
431 QualType ResTy = FD->getResultType();
432
433 CurGD = GD;
434 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
435 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
436
437 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
438 Args.push_back(FD->getParamDecl(i));
439
440 SourceRange BodyRange;
441 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
442
443 // Emit the standard function prologue.
444 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
445
446 // Generate the body of the function.
447 if (isa<CXXDestructorDecl>(FD))
448 EmitDestructorBody(Args);
449 else if (isa<CXXConstructorDecl>(FD))
450 EmitConstructorBody(Args);
451 else if (getContext().getLangOpts().CUDA &&
452 !CGM.getCodeGenOpts().CUDAIsDevice &&
453 FD->hasAttr<CUDAGlobalAttr>())
454 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
455 else if (isa<CXXConversionDecl>(FD) &&
456 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
457 // The lambda conversion to block pointer is special; the semantics can't be
458 // expressed in the AST, so IRGen needs to special-case it.
459 EmitLambdaToBlockPointerBody(Args);
460 } else if (isa<CXXMethodDecl>(FD) &&
461 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
462 // The lambda "__invoke" function is special, because it forwards or
463 // clones the body of the function call operator (but is actually static).
464 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
465 }
466 else
467 EmitFunctionBody(Args);
468
469 // Emit the standard function epilogue.
470 FinishFunction(BodyRange.getEnd());
471
472 // If we haven't marked the function nothrow through other means, do
473 // a quick pass now to see if we can.
474 if (!CurFn->doesNotThrow())
475 TryMarkNoThrow(CurFn);
476 }
477
478 /// ContainsLabel - Return true if the statement contains a label in it. If
479 /// this statement is not executed normally, it not containing a label means
480 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)481 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
482 // Null statement, not a label!
483 if (S == 0) return false;
484
485 // If this is a label, we have to emit the code, consider something like:
486 // if (0) { ... foo: bar(); } goto foo;
487 //
488 // TODO: If anyone cared, we could track __label__'s, since we know that you
489 // can't jump to one from outside their declared region.
490 if (isa<LabelStmt>(S))
491 return true;
492
493 // If this is a case/default statement, and we haven't seen a switch, we have
494 // to emit the code.
495 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
496 return true;
497
498 // If this is a switch statement, we want to ignore cases below it.
499 if (isa<SwitchStmt>(S))
500 IgnoreCaseStmts = true;
501
502 // Scan subexpressions for verboten labels.
503 for (Stmt::const_child_range I = S->children(); I; ++I)
504 if (ContainsLabel(*I, IgnoreCaseStmts))
505 return true;
506
507 return false;
508 }
509
510 /// containsBreak - Return true if the statement contains a break out of it.
511 /// If the statement (recursively) contains a switch or loop with a break
512 /// inside of it, this is fine.
containsBreak(const Stmt * S)513 bool CodeGenFunction::containsBreak(const Stmt *S) {
514 // Null statement, not a label!
515 if (S == 0) return false;
516
517 // If this is a switch or loop that defines its own break scope, then we can
518 // include it and anything inside of it.
519 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
520 isa<ForStmt>(S))
521 return false;
522
523 if (isa<BreakStmt>(S))
524 return true;
525
526 // Scan subexpressions for verboten breaks.
527 for (Stmt::const_child_range I = S->children(); I; ++I)
528 if (containsBreak(*I))
529 return true;
530
531 return false;
532 }
533
534
535 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
536 /// to a constant, or if it does but contains a label, return false. If it
537 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool)538 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
539 bool &ResultBool) {
540 llvm::APInt ResultInt;
541 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
542 return false;
543
544 ResultBool = ResultInt.getBoolValue();
545 return true;
546 }
547
548 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
549 /// to a constant, or if it does but contains a label, return false. If it
550 /// constant folds return true and set the folded value.
551 bool CodeGenFunction::
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APInt & ResultInt)552 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
553 // FIXME: Rename and handle conversion of other evaluatable things
554 // to bool.
555 llvm::APSInt Int;
556 if (!Cond->EvaluateAsInt(Int, getContext()))
557 return false; // Not foldable, not integer or not fully evaluatable.
558
559 if (CodeGenFunction::ContainsLabel(Cond))
560 return false; // Contains a label.
561
562 ResultInt = Int;
563 return true;
564 }
565
566
567
568 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
569 /// statement) to the specified blocks. Based on the condition, this might try
570 /// to simplify the codegen of the conditional based on the branch.
571 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock)572 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
573 llvm::BasicBlock *TrueBlock,
574 llvm::BasicBlock *FalseBlock) {
575 Cond = Cond->IgnoreParens();
576
577 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
578 // Handle X && Y in a condition.
579 if (CondBOp->getOpcode() == BO_LAnd) {
580 // If we have "1 && X", simplify the code. "0 && X" would have constant
581 // folded if the case was simple enough.
582 bool ConstantBool = false;
583 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
584 ConstantBool) {
585 // br(1 && X) -> br(X).
586 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
587 }
588
589 // If we have "X && 1", simplify the code to use an uncond branch.
590 // "X && 0" would have been constant folded to 0.
591 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
592 ConstantBool) {
593 // br(X && 1) -> br(X).
594 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
595 }
596
597 // Emit the LHS as a conditional. If the LHS conditional is false, we
598 // want to jump to the FalseBlock.
599 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
600
601 ConditionalEvaluation eval(*this);
602 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
603 EmitBlock(LHSTrue);
604
605 // Any temporaries created here are conditional.
606 eval.begin(*this);
607 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
608 eval.end(*this);
609
610 return;
611 }
612
613 if (CondBOp->getOpcode() == BO_LOr) {
614 // If we have "0 || X", simplify the code. "1 || X" would have constant
615 // folded if the case was simple enough.
616 bool ConstantBool = false;
617 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
618 !ConstantBool) {
619 // br(0 || X) -> br(X).
620 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
621 }
622
623 // If we have "X || 0", simplify the code to use an uncond branch.
624 // "X || 1" would have been constant folded to 1.
625 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
626 !ConstantBool) {
627 // br(X || 0) -> br(X).
628 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
629 }
630
631 // Emit the LHS as a conditional. If the LHS conditional is true, we
632 // want to jump to the TrueBlock.
633 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
634
635 ConditionalEvaluation eval(*this);
636 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
637 EmitBlock(LHSFalse);
638
639 // Any temporaries created here are conditional.
640 eval.begin(*this);
641 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
642 eval.end(*this);
643
644 return;
645 }
646 }
647
648 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
649 // br(!x, t, f) -> br(x, f, t)
650 if (CondUOp->getOpcode() == UO_LNot)
651 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
652 }
653
654 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
655 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
656 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
657 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
658
659 ConditionalEvaluation cond(*this);
660 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
661
662 cond.begin(*this);
663 EmitBlock(LHSBlock);
664 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
665 cond.end(*this);
666
667 cond.begin(*this);
668 EmitBlock(RHSBlock);
669 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
670 cond.end(*this);
671
672 return;
673 }
674
675 // Emit the code with the fully general case.
676 llvm::Value *CondV = EvaluateExprAsBool(Cond);
677 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
678 }
679
680 /// ErrorUnsupported - Print out an error that codegen doesn't support the
681 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)682 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
683 bool OmitOnError) {
684 CGM.ErrorUnsupported(S, Type, OmitOnError);
685 }
686
687 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
688 /// variable-length array whose elements have a non-zero bit-pattern.
689 ///
690 /// \param src - a char* pointing to the bit-pattern for a single
691 /// base element of the array
692 /// \param sizeInChars - the total size of the VLA, in chars
693 /// \param align - the total alignment of the VLA
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,llvm::Value * dest,llvm::Value * src,llvm::Value * sizeInChars)694 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
695 llvm::Value *dest, llvm::Value *src,
696 llvm::Value *sizeInChars) {
697 std::pair<CharUnits,CharUnits> baseSizeAndAlign
698 = CGF.getContext().getTypeInfoInChars(baseType);
699
700 CGBuilderTy &Builder = CGF.Builder;
701
702 llvm::Value *baseSizeInChars
703 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
704
705 llvm::Type *i8p = Builder.getInt8PtrTy();
706
707 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
708 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
709
710 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
711 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
712 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
713
714 // Make a loop over the VLA. C99 guarantees that the VLA element
715 // count must be nonzero.
716 CGF.EmitBlock(loopBB);
717
718 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
719 cur->addIncoming(begin, originBB);
720
721 // memcpy the individual element bit-pattern.
722 Builder.CreateMemCpy(cur, src, baseSizeInChars,
723 baseSizeAndAlign.second.getQuantity(),
724 /*volatile*/ false);
725
726 // Go to the next element.
727 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
728
729 // Leave if that's the end of the VLA.
730 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
731 Builder.CreateCondBr(done, contBB, loopBB);
732 cur->addIncoming(next, loopBB);
733
734 CGF.EmitBlock(contBB);
735 }
736
737 void
EmitNullInitialization(llvm::Value * DestPtr,QualType Ty)738 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
739 // Ignore empty classes in C++.
740 if (getContext().getLangOpts().CPlusPlus) {
741 if (const RecordType *RT = Ty->getAs<RecordType>()) {
742 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
743 return;
744 }
745 }
746
747 // Cast the dest ptr to the appropriate i8 pointer type.
748 unsigned DestAS =
749 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
750 llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
751 if (DestPtr->getType() != BP)
752 DestPtr = Builder.CreateBitCast(DestPtr, BP);
753
754 // Get size and alignment info for this aggregate.
755 std::pair<CharUnits, CharUnits> TypeInfo =
756 getContext().getTypeInfoInChars(Ty);
757 CharUnits Size = TypeInfo.first;
758 CharUnits Align = TypeInfo.second;
759
760 llvm::Value *SizeVal;
761 const VariableArrayType *vla;
762
763 // Don't bother emitting a zero-byte memset.
764 if (Size.isZero()) {
765 // But note that getTypeInfo returns 0 for a VLA.
766 if (const VariableArrayType *vlaType =
767 dyn_cast_or_null<VariableArrayType>(
768 getContext().getAsArrayType(Ty))) {
769 QualType eltType;
770 llvm::Value *numElts;
771 llvm::tie(numElts, eltType) = getVLASize(vlaType);
772
773 SizeVal = numElts;
774 CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
775 if (!eltSize.isOne())
776 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
777 vla = vlaType;
778 } else {
779 return;
780 }
781 } else {
782 SizeVal = CGM.getSize(Size);
783 vla = 0;
784 }
785
786 // If the type contains a pointer to data member we can't memset it to zero.
787 // Instead, create a null constant and copy it to the destination.
788 // TODO: there are other patterns besides zero that we can usefully memset,
789 // like -1, which happens to be the pattern used by member-pointers.
790 if (!CGM.getTypes().isZeroInitializable(Ty)) {
791 // For a VLA, emit a single element, then splat that over the VLA.
792 if (vla) Ty = getContext().getBaseElementType(vla);
793
794 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
795
796 llvm::GlobalVariable *NullVariable =
797 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
798 /*isConstant=*/true,
799 llvm::GlobalVariable::PrivateLinkage,
800 NullConstant, Twine());
801 llvm::Value *SrcPtr =
802 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
803
804 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
805
806 // Get and call the appropriate llvm.memcpy overload.
807 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
808 return;
809 }
810
811 // Otherwise, just memset the whole thing to zero. This is legal
812 // because in LLVM, all default initializers (other than the ones we just
813 // handled above) are guaranteed to have a bit pattern of all zeros.
814 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
815 Align.getQuantity(), false);
816 }
817
GetAddrOfLabel(const LabelDecl * L)818 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
819 // Make sure that there is a block for the indirect goto.
820 if (IndirectBranch == 0)
821 GetIndirectGotoBlock();
822
823 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
824
825 // Make sure the indirect branch includes all of the address-taken blocks.
826 IndirectBranch->addDestination(BB);
827 return llvm::BlockAddress::get(CurFn, BB);
828 }
829
GetIndirectGotoBlock()830 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
831 // If we already made the indirect branch for indirect goto, return its block.
832 if (IndirectBranch) return IndirectBranch->getParent();
833
834 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
835
836 // Create the PHI node that indirect gotos will add entries to.
837 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
838 "indirect.goto.dest");
839
840 // Create the indirect branch instruction.
841 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
842 return IndirectBranch->getParent();
843 }
844
845 /// Computes the length of an array in elements, as well as the base
846 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,llvm::Value * & addr)847 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
848 QualType &baseType,
849 llvm::Value *&addr) {
850 const ArrayType *arrayType = origArrayType;
851
852 // If it's a VLA, we have to load the stored size. Note that
853 // this is the size of the VLA in bytes, not its size in elements.
854 llvm::Value *numVLAElements = 0;
855 if (isa<VariableArrayType>(arrayType)) {
856 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
857
858 // Walk into all VLAs. This doesn't require changes to addr,
859 // which has type T* where T is the first non-VLA element type.
860 do {
861 QualType elementType = arrayType->getElementType();
862 arrayType = getContext().getAsArrayType(elementType);
863
864 // If we only have VLA components, 'addr' requires no adjustment.
865 if (!arrayType) {
866 baseType = elementType;
867 return numVLAElements;
868 }
869 } while (isa<VariableArrayType>(arrayType));
870
871 // We get out here only if we find a constant array type
872 // inside the VLA.
873 }
874
875 // We have some number of constant-length arrays, so addr should
876 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
877 // down to the first element of addr.
878 SmallVector<llvm::Value*, 8> gepIndices;
879
880 // GEP down to the array type.
881 llvm::ConstantInt *zero = Builder.getInt32(0);
882 gepIndices.push_back(zero);
883
884 // It's more efficient to calculate the count from the LLVM
885 // constant-length arrays than to re-evaluate the array bounds.
886 uint64_t countFromCLAs = 1;
887
888 llvm::ArrayType *llvmArrayType =
889 cast<llvm::ArrayType>(
890 cast<llvm::PointerType>(addr->getType())->getElementType());
891 while (true) {
892 assert(isa<ConstantArrayType>(arrayType));
893 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
894 == llvmArrayType->getNumElements());
895
896 gepIndices.push_back(zero);
897 countFromCLAs *= llvmArrayType->getNumElements();
898
899 llvmArrayType =
900 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
901 if (!llvmArrayType) break;
902
903 arrayType = getContext().getAsArrayType(arrayType->getElementType());
904 assert(arrayType && "LLVM and Clang types are out-of-synch");
905 }
906
907 baseType = arrayType->getElementType();
908
909 // Create the actual GEP.
910 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
911
912 llvm::Value *numElements
913 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
914
915 // If we had any VLA dimensions, factor them in.
916 if (numVLAElements)
917 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
918
919 return numElements;
920 }
921
922 std::pair<llvm::Value*, QualType>
getVLASize(QualType type)923 CodeGenFunction::getVLASize(QualType type) {
924 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
925 assert(vla && "type was not a variable array type!");
926 return getVLASize(vla);
927 }
928
929 std::pair<llvm::Value*, QualType>
getVLASize(const VariableArrayType * type)930 CodeGenFunction::getVLASize(const VariableArrayType *type) {
931 // The number of elements so far; always size_t.
932 llvm::Value *numElements = 0;
933
934 QualType elementType;
935 do {
936 elementType = type->getElementType();
937 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
938 assert(vlaSize && "no size for VLA!");
939 assert(vlaSize->getType() == SizeTy);
940
941 if (!numElements) {
942 numElements = vlaSize;
943 } else {
944 // It's undefined behavior if this wraps around, so mark it that way.
945 numElements = Builder.CreateNUWMul(numElements, vlaSize);
946 }
947 } while ((type = getContext().getAsVariableArrayType(elementType)));
948
949 return std::pair<llvm::Value*,QualType>(numElements, elementType);
950 }
951
EmitVariablyModifiedType(QualType type)952 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
953 assert(type->isVariablyModifiedType() &&
954 "Must pass variably modified type to EmitVLASizes!");
955
956 EnsureInsertPoint();
957
958 // We're going to walk down into the type and look for VLA
959 // expressions.
960 do {
961 assert(type->isVariablyModifiedType());
962
963 const Type *ty = type.getTypePtr();
964 switch (ty->getTypeClass()) {
965
966 #define TYPE(Class, Base)
967 #define ABSTRACT_TYPE(Class, Base)
968 #define NON_CANONICAL_TYPE(Class, Base)
969 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
970 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
971 #include "clang/AST/TypeNodes.def"
972 llvm_unreachable("unexpected dependent type!");
973
974 // These types are never variably-modified.
975 case Type::Builtin:
976 case Type::Complex:
977 case Type::Vector:
978 case Type::ExtVector:
979 case Type::Record:
980 case Type::Enum:
981 case Type::Elaborated:
982 case Type::TemplateSpecialization:
983 case Type::ObjCObject:
984 case Type::ObjCInterface:
985 case Type::ObjCObjectPointer:
986 llvm_unreachable("type class is never variably-modified!");
987
988 case Type::Pointer:
989 type = cast<PointerType>(ty)->getPointeeType();
990 break;
991
992 case Type::BlockPointer:
993 type = cast<BlockPointerType>(ty)->getPointeeType();
994 break;
995
996 case Type::LValueReference:
997 case Type::RValueReference:
998 type = cast<ReferenceType>(ty)->getPointeeType();
999 break;
1000
1001 case Type::MemberPointer:
1002 type = cast<MemberPointerType>(ty)->getPointeeType();
1003 break;
1004
1005 case Type::ConstantArray:
1006 case Type::IncompleteArray:
1007 // Losing element qualification here is fine.
1008 type = cast<ArrayType>(ty)->getElementType();
1009 break;
1010
1011 case Type::VariableArray: {
1012 // Losing element qualification here is fine.
1013 const VariableArrayType *vat = cast<VariableArrayType>(ty);
1014
1015 // Unknown size indication requires no size computation.
1016 // Otherwise, evaluate and record it.
1017 if (const Expr *size = vat->getSizeExpr()) {
1018 // It's possible that we might have emitted this already,
1019 // e.g. with a typedef and a pointer to it.
1020 llvm::Value *&entry = VLASizeMap[size];
1021 if (!entry) {
1022 // Always zexting here would be wrong if it weren't
1023 // undefined behavior to have a negative bound.
1024 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1025 /*signed*/ false);
1026 }
1027 }
1028 type = vat->getElementType();
1029 break;
1030 }
1031
1032 case Type::FunctionProto:
1033 case Type::FunctionNoProto:
1034 type = cast<FunctionType>(ty)->getResultType();
1035 break;
1036
1037 case Type::Paren:
1038 case Type::TypeOf:
1039 case Type::UnaryTransform:
1040 case Type::Attributed:
1041 case Type::SubstTemplateTypeParm:
1042 // Keep walking after single level desugaring.
1043 type = type.getSingleStepDesugaredType(getContext());
1044 break;
1045
1046 case Type::Typedef:
1047 case Type::Decltype:
1048 case Type::Auto:
1049 // Stop walking: nothing to do.
1050 return;
1051
1052 case Type::TypeOfExpr:
1053 // Stop walking: emit typeof expression.
1054 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1055 return;
1056
1057 case Type::Atomic:
1058 type = cast<AtomicType>(ty)->getValueType();
1059 break;
1060 }
1061 } while (type->isVariablyModifiedType());
1062 }
1063
EmitVAListRef(const Expr * E)1064 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1065 if (getContext().getBuiltinVaListType()->isArrayType())
1066 return EmitScalarExpr(E);
1067 return EmitLValue(E).getAddress();
1068 }
1069
EmitDeclRefExprDbgValue(const DeclRefExpr * E,llvm::Constant * Init)1070 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1071 llvm::Constant *Init) {
1072 assert (Init && "Invalid DeclRefExpr initializer!");
1073 if (CGDebugInfo *Dbg = getDebugInfo())
1074 Dbg->EmitGlobalVariable(E->getDecl(), Init);
1075 }
1076
1077 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)1078 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1079 // At the moment, the only aggressive peephole we do in IR gen
1080 // is trunc(zext) folding, but if we add more, we can easily
1081 // extend this protection.
1082
1083 if (!rvalue.isScalar()) return PeepholeProtection();
1084 llvm::Value *value = rvalue.getScalarVal();
1085 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1086
1087 // Just make an extra bitcast.
1088 assert(HaveInsertPoint());
1089 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1090 Builder.GetInsertBlock());
1091
1092 PeepholeProtection protection;
1093 protection.Inst = inst;
1094 return protection;
1095 }
1096
unprotectFromPeepholes(PeepholeProtection protection)1097 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1098 if (!protection.Inst) return;
1099
1100 // In theory, we could try to duplicate the peepholes now, but whatever.
1101 protection.Inst->eraseFromParent();
1102 }
1103
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,llvm::StringRef AnnotationStr,SourceLocation Location)1104 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1105 llvm::Value *AnnotatedVal,
1106 llvm::StringRef AnnotationStr,
1107 SourceLocation Location) {
1108 llvm::Value *Args[4] = {
1109 AnnotatedVal,
1110 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1111 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1112 CGM.EmitAnnotationLineNo(Location)
1113 };
1114 return Builder.CreateCall(AnnotationFn, Args);
1115 }
1116
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)1117 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1118 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1119 // FIXME We create a new bitcast for every annotation because that's what
1120 // llvm-gcc was doing.
1121 for (specific_attr_iterator<AnnotateAttr>
1122 ai = D->specific_attr_begin<AnnotateAttr>(),
1123 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1124 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1125 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1126 (*ai)->getAnnotation(), D->getLocation());
1127 }
1128
EmitFieldAnnotations(const FieldDecl * D,llvm::Value * V)1129 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1130 llvm::Value *V) {
1131 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1132 llvm::Type *VTy = V->getType();
1133 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1134 CGM.Int8PtrTy);
1135
1136 for (specific_attr_iterator<AnnotateAttr>
1137 ai = D->specific_attr_begin<AnnotateAttr>(),
1138 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1139 // FIXME Always emit the cast inst so we can differentiate between
1140 // annotation on the first field of a struct and annotation on the struct
1141 // itself.
1142 if (VTy != CGM.Int8PtrTy)
1143 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1144 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1145 V = Builder.CreateBitCast(V, VTy);
1146 }
1147
1148 return V;
1149 }
1150