1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_VALUE_H
15 #define LLVM_VALUE_H
16
17 #include "llvm/Use.h"
18 #include "llvm/Support/Casting.h"
19
20 namespace llvm {
21
22 class Constant;
23 class Argument;
24 class Instruction;
25 class BasicBlock;
26 class GlobalValue;
27 class Function;
28 class GlobalVariable;
29 class GlobalAlias;
30 class InlineAsm;
31 class ValueSymbolTable;
32 template<typename ValueTy> class StringMapEntry;
33 typedef StringMapEntry<Value*> ValueName;
34 class raw_ostream;
35 class AssemblyAnnotationWriter;
36 class ValueHandleBase;
37 class LLVMContext;
38 class Twine;
39 class MDNode;
40 class Type;
41 class StringRef;
42
43 //===----------------------------------------------------------------------===//
44 // Value Class
45 //===----------------------------------------------------------------------===//
46
47 /// This is a very important LLVM class. It is the base class of all values
48 /// computed by a program that may be used as operands to other values. Value is
49 /// the super class of other important classes such as Instruction and Function.
50 /// All Values have a Type. Type is not a subclass of Value. Some values can
51 /// have a name and they belong to some Module. Setting the name on the Value
52 /// automatically updates the module's symbol table.
53 ///
54 /// Every value has a "use list" that keeps track of which other Values are
55 /// using this Value. A Value can also have an arbitrary number of ValueHandle
56 /// objects that watch it and listen to RAUW and Destroy events. See
57 /// llvm/Support/ValueHandle.h for details.
58 ///
59 /// @brief LLVM Value Representation
60 class Value {
61 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
62 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
63 protected:
64 /// SubclassOptionalData - This member is similar to SubclassData, however it
65 /// is for holding information which may be used to aid optimization, but
66 /// which may be cleared to zero without affecting conservative
67 /// interpretation.
68 unsigned char SubclassOptionalData : 7;
69
70 private:
71 /// SubclassData - This member is defined by this class, but is not used for
72 /// anything. Subclasses can use it to hold whatever state they find useful.
73 /// This field is initialized to zero by the ctor.
74 unsigned short SubclassData;
75
76 Type *VTy;
77 Use *UseList;
78
79 friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
80 friend class ValueHandleBase;
81 ValueName *Name;
82
83 void operator=(const Value &); // Do not implement
84 Value(const Value &); // Do not implement
85
86 protected:
87 /// printCustom - Value subclasses can override this to implement custom
88 /// printing behavior.
89 virtual void printCustom(raw_ostream &O) const;
90
91 Value(Type *Ty, unsigned scid);
92 public:
93 virtual ~Value();
94
95 /// dump - Support for debugging, callable in GDB: V->dump()
96 //
97 void dump() const;
98
99 /// print - Implement operator<< on Value.
100 ///
101 void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
102
103 /// All values are typed, get the type of this value.
104 ///
getType()105 Type *getType() const { return VTy; }
106
107 /// All values hold a context through their type.
108 LLVMContext &getContext() const;
109
110 // All values can potentially be named.
hasName()111 bool hasName() const { return Name != 0 && SubclassID != MDStringVal; }
getValueName()112 ValueName *getValueName() const { return Name; }
setValueName(ValueName * VN)113 void setValueName(ValueName *VN) { Name = VN; }
114
115 /// getName() - Return a constant reference to the value's name. This is cheap
116 /// and guaranteed to return the same reference as long as the value is not
117 /// modified.
118 StringRef getName() const;
119
120 /// setName() - Change the name of the value, choosing a new unique name if
121 /// the provided name is taken.
122 ///
123 /// \arg Name - The new name; or "" if the value's name should be removed.
124 void setName(const Twine &Name);
125
126
127 /// takeName - transfer the name from V to this value, setting V's name to
128 /// empty. It is an error to call V->takeName(V).
129 void takeName(Value *V);
130
131 /// replaceAllUsesWith - Go through the uses list for this definition and make
132 /// each use point to "V" instead of "this". After this completes, 'this's
133 /// use list is guaranteed to be empty.
134 ///
135 void replaceAllUsesWith(Value *V);
136
137 //----------------------------------------------------------------------
138 // Methods for handling the chain of uses of this Value.
139 //
140 typedef value_use_iterator<User> use_iterator;
141 typedef value_use_iterator<const User> const_use_iterator;
142
use_empty()143 bool use_empty() const { return UseList == 0; }
use_begin()144 use_iterator use_begin() { return use_iterator(UseList); }
use_begin()145 const_use_iterator use_begin() const { return const_use_iterator(UseList); }
use_end()146 use_iterator use_end() { return use_iterator(0); }
use_end()147 const_use_iterator use_end() const { return const_use_iterator(0); }
use_back()148 User *use_back() { return *use_begin(); }
use_back()149 const User *use_back() const { return *use_begin(); }
150
151 /// hasOneUse - Return true if there is exactly one user of this value. This
152 /// is specialized because it is a common request and does not require
153 /// traversing the whole use list.
154 ///
hasOneUse()155 bool hasOneUse() const {
156 const_use_iterator I = use_begin(), E = use_end();
157 if (I == E) return false;
158 return ++I == E;
159 }
160
161 /// hasNUses - Return true if this Value has exactly N users.
162 ///
163 bool hasNUses(unsigned N) const;
164
165 /// hasNUsesOrMore - Return true if this value has N users or more. This is
166 /// logically equivalent to getNumUses() >= N.
167 ///
168 bool hasNUsesOrMore(unsigned N) const;
169
170 bool isUsedInBasicBlock(const BasicBlock *BB) const;
171
172 /// getNumUses - This method computes the number of uses of this Value. This
173 /// is a linear time operation. Use hasOneUse, hasNUses, or hasNUsesOrMore
174 /// to check for specific values.
175 unsigned getNumUses() const;
176
177 /// addUse - This method should only be used by the Use class.
178 ///
addUse(Use & U)179 void addUse(Use &U) { U.addToList(&UseList); }
180
181 /// An enumeration for keeping track of the concrete subclass of Value that
182 /// is actually instantiated. Values of this enumeration are kept in the
183 /// Value classes SubclassID field. They are used for concrete type
184 /// identification.
185 enum ValueTy {
186 ArgumentVal, // This is an instance of Argument
187 BasicBlockVal, // This is an instance of BasicBlock
188 FunctionVal, // This is an instance of Function
189 GlobalAliasVal, // This is an instance of GlobalAlias
190 GlobalVariableVal, // This is an instance of GlobalVariable
191 UndefValueVal, // This is an instance of UndefValue
192 BlockAddressVal, // This is an instance of BlockAddress
193 ConstantExprVal, // This is an instance of ConstantExpr
194 ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
195 ConstantDataArrayVal, // This is an instance of ConstantDataArray
196 ConstantDataVectorVal, // This is an instance of ConstantDataVector
197 ConstantIntVal, // This is an instance of ConstantInt
198 ConstantFPVal, // This is an instance of ConstantFP
199 ConstantArrayVal, // This is an instance of ConstantArray
200 ConstantStructVal, // This is an instance of ConstantStruct
201 ConstantVectorVal, // This is an instance of ConstantVector
202 ConstantPointerNullVal, // This is an instance of ConstantPointerNull
203 MDNodeVal, // This is an instance of MDNode
204 MDStringVal, // This is an instance of MDString
205 InlineAsmVal, // This is an instance of InlineAsm
206 PseudoSourceValueVal, // This is an instance of PseudoSourceValue
207 FixedStackPseudoSourceValueVal, // This is an instance of
208 // FixedStackPseudoSourceValue
209 InstructionVal, // This is an instance of Instruction
210 // Enum values starting at InstructionVal are used for Instructions;
211 // don't add new values here!
212
213 // Markers:
214 ConstantFirstVal = FunctionVal,
215 ConstantLastVal = ConstantPointerNullVal
216 };
217
218 /// getValueID - Return an ID for the concrete type of this object. This is
219 /// used to implement the classof checks. This should not be used for any
220 /// other purpose, as the values may change as LLVM evolves. Also, note that
221 /// for instructions, the Instruction's opcode is added to InstructionVal. So
222 /// this means three things:
223 /// # there is no value with code InstructionVal (no opcode==0).
224 /// # there are more possible values for the value type than in ValueTy enum.
225 /// # the InstructionVal enumerator must be the highest valued enumerator in
226 /// the ValueTy enum.
getValueID()227 unsigned getValueID() const {
228 return SubclassID;
229 }
230
231 /// getRawSubclassOptionalData - Return the raw optional flags value
232 /// contained in this value. This should only be used when testing two
233 /// Values for equivalence.
getRawSubclassOptionalData()234 unsigned getRawSubclassOptionalData() const {
235 return SubclassOptionalData;
236 }
237
238 /// clearSubclassOptionalData - Clear the optional flags contained in
239 /// this value.
clearSubclassOptionalData()240 void clearSubclassOptionalData() {
241 SubclassOptionalData = 0;
242 }
243
244 /// hasSameSubclassOptionalData - Test whether the optional flags contained
245 /// in this value are equal to the optional flags in the given value.
hasSameSubclassOptionalData(const Value * V)246 bool hasSameSubclassOptionalData(const Value *V) const {
247 return SubclassOptionalData == V->SubclassOptionalData;
248 }
249
250 /// intersectOptionalDataWith - Clear any optional flags in this value
251 /// that are not also set in the given value.
intersectOptionalDataWith(const Value * V)252 void intersectOptionalDataWith(const Value *V) {
253 SubclassOptionalData &= V->SubclassOptionalData;
254 }
255
256 /// hasValueHandle - Return true if there is a value handle associated with
257 /// this value.
hasValueHandle()258 bool hasValueHandle() const { return HasValueHandle; }
259
260 // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value *)261 static inline bool classof(const Value *) {
262 return true; // Values are always values.
263 }
264
265 /// stripPointerCasts - This method strips off any unneeded pointer casts and
266 /// all-zero GEPs from the specified value, returning the original uncasted
267 /// value. If this is called on a non-pointer value, it returns 'this'.
268 Value *stripPointerCasts();
stripPointerCasts()269 const Value *stripPointerCasts() const {
270 return const_cast<Value*>(this)->stripPointerCasts();
271 }
272
273 /// stripInBoundsConstantOffsets - This method strips off unneeded pointer casts and
274 /// all-constant GEPs from the specified value, returning the original
275 /// pointer value. If this is called on a non-pointer value, it returns
276 /// 'this'.
277 Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()278 const Value *stripInBoundsConstantOffsets() const {
279 return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
280 }
281
282 /// stripInBoundsOffsets - This method strips off unneeded pointer casts and
283 /// any in-bounds Offsets from the specified value, returning the original
284 /// pointer value. If this is called on a non-pointer value, it returns
285 /// 'this'.
286 Value *stripInBoundsOffsets();
stripInBoundsOffsets()287 const Value *stripInBoundsOffsets() const {
288 return const_cast<Value*>(this)->stripInBoundsOffsets();
289 }
290
291 /// isDereferenceablePointer - Test if this value is always a pointer to
292 /// allocated and suitably aligned memory for a simple load or store.
293 bool isDereferenceablePointer() const;
294
295 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
296 /// return the value in the PHI node corresponding to PredBB. If not, return
297 /// ourself. This is useful if you want to know the value something has in a
298 /// predecessor block.
299 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
300
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)301 const Value *DoPHITranslation(const BasicBlock *CurBB,
302 const BasicBlock *PredBB) const{
303 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
304 }
305
306 /// MaximumAlignment - This is the greatest alignment value supported by
307 /// load, store, and alloca instructions, and global values.
308 static const unsigned MaximumAlignment = 1u << 29;
309
310 /// mutateType - Mutate the type of this Value to be of the specified type.
311 /// Note that this is an extremely dangerous operation which can create
312 /// completely invalid IR very easily. It is strongly recommended that you
313 /// recreate IR objects with the right types instead of mutating them in
314 /// place.
mutateType(Type * Ty)315 void mutateType(Type *Ty) {
316 VTy = Ty;
317 }
318
319 protected:
getSubclassDataFromValue()320 unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)321 void setValueSubclassData(unsigned short D) { SubclassData = D; }
322 };
323
324 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
325 V.print(OS);
326 return OS;
327 }
328
set(Value * V)329 void Use::set(Value *V) {
330 if (Val) removeFromList();
331 Val = V;
332 if (V) V->addUse(*this);
333 }
334
335
336 // isa - Provide some specializations of isa so that we don't have to include
337 // the subtype header files to test to see if the value is a subclass...
338 //
339 template <> struct isa_impl<Constant, Value> {
340 static inline bool doit(const Value &Val) {
341 return Val.getValueID() >= Value::ConstantFirstVal &&
342 Val.getValueID() <= Value::ConstantLastVal;
343 }
344 };
345
346 template <> struct isa_impl<Argument, Value> {
347 static inline bool doit (const Value &Val) {
348 return Val.getValueID() == Value::ArgumentVal;
349 }
350 };
351
352 template <> struct isa_impl<InlineAsm, Value> {
353 static inline bool doit(const Value &Val) {
354 return Val.getValueID() == Value::InlineAsmVal;
355 }
356 };
357
358 template <> struct isa_impl<Instruction, Value> {
359 static inline bool doit(const Value &Val) {
360 return Val.getValueID() >= Value::InstructionVal;
361 }
362 };
363
364 template <> struct isa_impl<BasicBlock, Value> {
365 static inline bool doit(const Value &Val) {
366 return Val.getValueID() == Value::BasicBlockVal;
367 }
368 };
369
370 template <> struct isa_impl<Function, Value> {
371 static inline bool doit(const Value &Val) {
372 return Val.getValueID() == Value::FunctionVal;
373 }
374 };
375
376 template <> struct isa_impl<GlobalVariable, Value> {
377 static inline bool doit(const Value &Val) {
378 return Val.getValueID() == Value::GlobalVariableVal;
379 }
380 };
381
382 template <> struct isa_impl<GlobalAlias, Value> {
383 static inline bool doit(const Value &Val) {
384 return Val.getValueID() == Value::GlobalAliasVal;
385 }
386 };
387
388 template <> struct isa_impl<GlobalValue, Value> {
389 static inline bool doit(const Value &Val) {
390 return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
391 isa<GlobalAlias>(Val);
392 }
393 };
394
395 template <> struct isa_impl<MDNode, Value> {
396 static inline bool doit(const Value &Val) {
397 return Val.getValueID() == Value::MDNodeVal;
398 }
399 };
400
401 // Value* is only 4-byte aligned.
402 template<>
403 class PointerLikeTypeTraits<Value*> {
404 typedef Value* PT;
405 public:
406 static inline void *getAsVoidPointer(PT P) { return P; }
407 static inline PT getFromVoidPointer(void *P) {
408 return static_cast<PT>(P);
409 }
410 enum { NumLowBitsAvailable = 2 };
411 };
412
413 } // End llvm namespace
414
415 #endif
416