• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_VALUE_H
15 #define LLVM_VALUE_H
16 
17 #include "llvm/Use.h"
18 #include "llvm/Support/Casting.h"
19 
20 namespace llvm {
21 
22 class Constant;
23 class Argument;
24 class Instruction;
25 class BasicBlock;
26 class GlobalValue;
27 class Function;
28 class GlobalVariable;
29 class GlobalAlias;
30 class InlineAsm;
31 class ValueSymbolTable;
32 template<typename ValueTy> class StringMapEntry;
33 typedef StringMapEntry<Value*> ValueName;
34 class raw_ostream;
35 class AssemblyAnnotationWriter;
36 class ValueHandleBase;
37 class LLVMContext;
38 class Twine;
39 class MDNode;
40 class Type;
41 class StringRef;
42 
43 //===----------------------------------------------------------------------===//
44 //                                 Value Class
45 //===----------------------------------------------------------------------===//
46 
47 /// This is a very important LLVM class. It is the base class of all values
48 /// computed by a program that may be used as operands to other values. Value is
49 /// the super class of other important classes such as Instruction and Function.
50 /// All Values have a Type. Type is not a subclass of Value. Some values can
51 /// have a name and they belong to some Module.  Setting the name on the Value
52 /// automatically updates the module's symbol table.
53 ///
54 /// Every value has a "use list" that keeps track of which other Values are
55 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
56 /// objects that watch it and listen to RAUW and Destroy events.  See
57 /// llvm/Support/ValueHandle.h for details.
58 ///
59 /// @brief LLVM Value Representation
60 class Value {
61   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
62   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
63 protected:
64   /// SubclassOptionalData - This member is similar to SubclassData, however it
65   /// is for holding information which may be used to aid optimization, but
66   /// which may be cleared to zero without affecting conservative
67   /// interpretation.
68   unsigned char SubclassOptionalData : 7;
69 
70 private:
71   /// SubclassData - This member is defined by this class, but is not used for
72   /// anything.  Subclasses can use it to hold whatever state they find useful.
73   /// This field is initialized to zero by the ctor.
74   unsigned short SubclassData;
75 
76   Type *VTy;
77   Use *UseList;
78 
79   friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
80   friend class ValueHandleBase;
81   ValueName *Name;
82 
83   void operator=(const Value &);     // Do not implement
84   Value(const Value &);              // Do not implement
85 
86 protected:
87   /// printCustom - Value subclasses can override this to implement custom
88   /// printing behavior.
89   virtual void printCustom(raw_ostream &O) const;
90 
91   Value(Type *Ty, unsigned scid);
92 public:
93   virtual ~Value();
94 
95   /// dump - Support for debugging, callable in GDB: V->dump()
96   //
97   void dump() const;
98 
99   /// print - Implement operator<< on Value.
100   ///
101   void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
102 
103   /// All values are typed, get the type of this value.
104   ///
getType()105   Type *getType() const { return VTy; }
106 
107   /// All values hold a context through their type.
108   LLVMContext &getContext() const;
109 
110   // All values can potentially be named.
hasName()111   bool hasName() const { return Name != 0 && SubclassID != MDStringVal; }
getValueName()112   ValueName *getValueName() const { return Name; }
setValueName(ValueName * VN)113   void setValueName(ValueName *VN) { Name = VN; }
114 
115   /// getName() - Return a constant reference to the value's name. This is cheap
116   /// and guaranteed to return the same reference as long as the value is not
117   /// modified.
118   StringRef getName() const;
119 
120   /// setName() - Change the name of the value, choosing a new unique name if
121   /// the provided name is taken.
122   ///
123   /// \arg Name - The new name; or "" if the value's name should be removed.
124   void setName(const Twine &Name);
125 
126 
127   /// takeName - transfer the name from V to this value, setting V's name to
128   /// empty.  It is an error to call V->takeName(V).
129   void takeName(Value *V);
130 
131   /// replaceAllUsesWith - Go through the uses list for this definition and make
132   /// each use point to "V" instead of "this".  After this completes, 'this's
133   /// use list is guaranteed to be empty.
134   ///
135   void replaceAllUsesWith(Value *V);
136 
137   //----------------------------------------------------------------------
138   // Methods for handling the chain of uses of this Value.
139   //
140   typedef value_use_iterator<User>       use_iterator;
141   typedef value_use_iterator<const User> const_use_iterator;
142 
use_empty()143   bool               use_empty() const { return UseList == 0; }
use_begin()144   use_iterator       use_begin()       { return use_iterator(UseList); }
use_begin()145   const_use_iterator use_begin() const { return const_use_iterator(UseList); }
use_end()146   use_iterator       use_end()         { return use_iterator(0);   }
use_end()147   const_use_iterator use_end()   const { return const_use_iterator(0);   }
use_back()148   User              *use_back()        { return *use_begin(); }
use_back()149   const User        *use_back()  const { return *use_begin(); }
150 
151   /// hasOneUse - Return true if there is exactly one user of this value.  This
152   /// is specialized because it is a common request and does not require
153   /// traversing the whole use list.
154   ///
hasOneUse()155   bool hasOneUse() const {
156     const_use_iterator I = use_begin(), E = use_end();
157     if (I == E) return false;
158     return ++I == E;
159   }
160 
161   /// hasNUses - Return true if this Value has exactly N users.
162   ///
163   bool hasNUses(unsigned N) const;
164 
165   /// hasNUsesOrMore - Return true if this value has N users or more.  This is
166   /// logically equivalent to getNumUses() >= N.
167   ///
168   bool hasNUsesOrMore(unsigned N) const;
169 
170   bool isUsedInBasicBlock(const BasicBlock *BB) const;
171 
172   /// getNumUses - This method computes the number of uses of this Value.  This
173   /// is a linear time operation.  Use hasOneUse, hasNUses, or hasNUsesOrMore
174   /// to check for specific values.
175   unsigned getNumUses() const;
176 
177   /// addUse - This method should only be used by the Use class.
178   ///
addUse(Use & U)179   void addUse(Use &U) { U.addToList(&UseList); }
180 
181   /// An enumeration for keeping track of the concrete subclass of Value that
182   /// is actually instantiated. Values of this enumeration are kept in the
183   /// Value classes SubclassID field. They are used for concrete type
184   /// identification.
185   enum ValueTy {
186     ArgumentVal,              // This is an instance of Argument
187     BasicBlockVal,            // This is an instance of BasicBlock
188     FunctionVal,              // This is an instance of Function
189     GlobalAliasVal,           // This is an instance of GlobalAlias
190     GlobalVariableVal,        // This is an instance of GlobalVariable
191     UndefValueVal,            // This is an instance of UndefValue
192     BlockAddressVal,          // This is an instance of BlockAddress
193     ConstantExprVal,          // This is an instance of ConstantExpr
194     ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
195     ConstantDataArrayVal,     // This is an instance of ConstantDataArray
196     ConstantDataVectorVal,    // This is an instance of ConstantDataVector
197     ConstantIntVal,           // This is an instance of ConstantInt
198     ConstantFPVal,            // This is an instance of ConstantFP
199     ConstantArrayVal,         // This is an instance of ConstantArray
200     ConstantStructVal,        // This is an instance of ConstantStruct
201     ConstantVectorVal,        // This is an instance of ConstantVector
202     ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
203     MDNodeVal,                // This is an instance of MDNode
204     MDStringVal,              // This is an instance of MDString
205     InlineAsmVal,             // This is an instance of InlineAsm
206     PseudoSourceValueVal,     // This is an instance of PseudoSourceValue
207     FixedStackPseudoSourceValueVal, // This is an instance of
208                                     // FixedStackPseudoSourceValue
209     InstructionVal,           // This is an instance of Instruction
210     // Enum values starting at InstructionVal are used for Instructions;
211     // don't add new values here!
212 
213     // Markers:
214     ConstantFirstVal = FunctionVal,
215     ConstantLastVal  = ConstantPointerNullVal
216   };
217 
218   /// getValueID - Return an ID for the concrete type of this object.  This is
219   /// used to implement the classof checks.  This should not be used for any
220   /// other purpose, as the values may change as LLVM evolves.  Also, note that
221   /// for instructions, the Instruction's opcode is added to InstructionVal. So
222   /// this means three things:
223   /// # there is no value with code InstructionVal (no opcode==0).
224   /// # there are more possible values for the value type than in ValueTy enum.
225   /// # the InstructionVal enumerator must be the highest valued enumerator in
226   ///   the ValueTy enum.
getValueID()227   unsigned getValueID() const {
228     return SubclassID;
229   }
230 
231   /// getRawSubclassOptionalData - Return the raw optional flags value
232   /// contained in this value. This should only be used when testing two
233   /// Values for equivalence.
getRawSubclassOptionalData()234   unsigned getRawSubclassOptionalData() const {
235     return SubclassOptionalData;
236   }
237 
238   /// clearSubclassOptionalData - Clear the optional flags contained in
239   /// this value.
clearSubclassOptionalData()240   void clearSubclassOptionalData() {
241     SubclassOptionalData = 0;
242   }
243 
244   /// hasSameSubclassOptionalData - Test whether the optional flags contained
245   /// in this value are equal to the optional flags in the given value.
hasSameSubclassOptionalData(const Value * V)246   bool hasSameSubclassOptionalData(const Value *V) const {
247     return SubclassOptionalData == V->SubclassOptionalData;
248   }
249 
250   /// intersectOptionalDataWith - Clear any optional flags in this value
251   /// that are not also set in the given value.
intersectOptionalDataWith(const Value * V)252   void intersectOptionalDataWith(const Value *V) {
253     SubclassOptionalData &= V->SubclassOptionalData;
254   }
255 
256   /// hasValueHandle - Return true if there is a value handle associated with
257   /// this value.
hasValueHandle()258   bool hasValueHandle() const { return HasValueHandle; }
259 
260   // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value *)261   static inline bool classof(const Value *) {
262     return true; // Values are always values.
263   }
264 
265   /// stripPointerCasts - This method strips off any unneeded pointer casts and
266   /// all-zero GEPs from the specified value, returning the original uncasted
267   /// value. If this is called on a non-pointer value, it returns 'this'.
268   Value *stripPointerCasts();
stripPointerCasts()269   const Value *stripPointerCasts() const {
270     return const_cast<Value*>(this)->stripPointerCasts();
271   }
272 
273   /// stripInBoundsConstantOffsets - This method strips off unneeded pointer casts and
274   /// all-constant GEPs from the specified value, returning the original
275   /// pointer value. If this is called on a non-pointer value, it returns
276   /// 'this'.
277   Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()278   const Value *stripInBoundsConstantOffsets() const {
279     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
280   }
281 
282   /// stripInBoundsOffsets - This method strips off unneeded pointer casts and
283   /// any in-bounds Offsets from the specified value, returning the original
284   /// pointer value. If this is called on a non-pointer value, it returns
285   /// 'this'.
286   Value *stripInBoundsOffsets();
stripInBoundsOffsets()287   const Value *stripInBoundsOffsets() const {
288     return const_cast<Value*>(this)->stripInBoundsOffsets();
289   }
290 
291   /// isDereferenceablePointer - Test if this value is always a pointer to
292   /// allocated and suitably aligned memory for a simple load or store.
293   bool isDereferenceablePointer() const;
294 
295   /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
296   /// return the value in the PHI node corresponding to PredBB.  If not, return
297   /// ourself.  This is useful if you want to know the value something has in a
298   /// predecessor block.
299   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
300 
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)301   const Value *DoPHITranslation(const BasicBlock *CurBB,
302                                 const BasicBlock *PredBB) const{
303     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
304   }
305 
306   /// MaximumAlignment - This is the greatest alignment value supported by
307   /// load, store, and alloca instructions, and global values.
308   static const unsigned MaximumAlignment = 1u << 29;
309 
310   /// mutateType - Mutate the type of this Value to be of the specified type.
311   /// Note that this is an extremely dangerous operation which can create
312   /// completely invalid IR very easily.  It is strongly recommended that you
313   /// recreate IR objects with the right types instead of mutating them in
314   /// place.
mutateType(Type * Ty)315   void mutateType(Type *Ty) {
316     VTy = Ty;
317   }
318 
319 protected:
getSubclassDataFromValue()320   unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)321   void setValueSubclassData(unsigned short D) { SubclassData = D; }
322 };
323 
324 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
325   V.print(OS);
326   return OS;
327 }
328 
set(Value * V)329 void Use::set(Value *V) {
330   if (Val) removeFromList();
331   Val = V;
332   if (V) V->addUse(*this);
333 }
334 
335 
336 // isa - Provide some specializations of isa so that we don't have to include
337 // the subtype header files to test to see if the value is a subclass...
338 //
339 template <> struct isa_impl<Constant, Value> {
340   static inline bool doit(const Value &Val) {
341     return Val.getValueID() >= Value::ConstantFirstVal &&
342       Val.getValueID() <= Value::ConstantLastVal;
343   }
344 };
345 
346 template <> struct isa_impl<Argument, Value> {
347   static inline bool doit (const Value &Val) {
348     return Val.getValueID() == Value::ArgumentVal;
349   }
350 };
351 
352 template <> struct isa_impl<InlineAsm, Value> {
353   static inline bool doit(const Value &Val) {
354     return Val.getValueID() == Value::InlineAsmVal;
355   }
356 };
357 
358 template <> struct isa_impl<Instruction, Value> {
359   static inline bool doit(const Value &Val) {
360     return Val.getValueID() >= Value::InstructionVal;
361   }
362 };
363 
364 template <> struct isa_impl<BasicBlock, Value> {
365   static inline bool doit(const Value &Val) {
366     return Val.getValueID() == Value::BasicBlockVal;
367   }
368 };
369 
370 template <> struct isa_impl<Function, Value> {
371   static inline bool doit(const Value &Val) {
372     return Val.getValueID() == Value::FunctionVal;
373   }
374 };
375 
376 template <> struct isa_impl<GlobalVariable, Value> {
377   static inline bool doit(const Value &Val) {
378     return Val.getValueID() == Value::GlobalVariableVal;
379   }
380 };
381 
382 template <> struct isa_impl<GlobalAlias, Value> {
383   static inline bool doit(const Value &Val) {
384     return Val.getValueID() == Value::GlobalAliasVal;
385   }
386 };
387 
388 template <> struct isa_impl<GlobalValue, Value> {
389   static inline bool doit(const Value &Val) {
390     return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
391       isa<GlobalAlias>(Val);
392   }
393 };
394 
395 template <> struct isa_impl<MDNode, Value> {
396   static inline bool doit(const Value &Val) {
397     return Val.getValueID() == Value::MDNodeVal;
398   }
399 };
400 
401 // Value* is only 4-byte aligned.
402 template<>
403 class PointerLikeTypeTraits<Value*> {
404   typedef Value* PT;
405 public:
406   static inline void *getAsVoidPointer(PT P) { return P; }
407   static inline PT getFromVoidPointer(void *P) {
408     return static_cast<PT>(P);
409   }
410   enum { NumLowBitsAvailable = 2 };
411 };
412 
413 } // End llvm namespace
414 
415 #endif
416