1 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16
17 #include "clang/Basic/AddressSpaces.h"
18 #include "clang/Basic/IdentifierTable.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/OperatorKinds.h"
21 #include "clang/Basic/PartialDiagnostic.h"
22 #include "clang/Basic/VersionTuple.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/LambdaMangleContext.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/PrettyPrinter.h"
27 #include "clang/AST/TemplateName.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/CanonicalType.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/FoldingSet.h"
32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
33 #include "llvm/ADT/OwningPtr.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/TinyPtrVector.h"
36 #include "llvm/Support/Allocator.h"
37 #include <vector>
38
39 namespace llvm {
40 struct fltSemantics;
41 }
42
43 namespace clang {
44 class FileManager;
45 class ASTRecordLayout;
46 class BlockExpr;
47 class CharUnits;
48 class DiagnosticsEngine;
49 class Expr;
50 class ExternalASTSource;
51 class ASTMutationListener;
52 class IdentifierTable;
53 class SelectorTable;
54 class SourceManager;
55 class TargetInfo;
56 class CXXABI;
57 // Decls
58 class DeclContext;
59 class CXXConversionDecl;
60 class CXXMethodDecl;
61 class CXXRecordDecl;
62 class Decl;
63 class FieldDecl;
64 class MangleContext;
65 class ObjCIvarDecl;
66 class ObjCIvarRefExpr;
67 class ObjCPropertyDecl;
68 class ParmVarDecl;
69 class RecordDecl;
70 class StoredDeclsMap;
71 class TagDecl;
72 class TemplateTemplateParmDecl;
73 class TemplateTypeParmDecl;
74 class TranslationUnitDecl;
75 class TypeDecl;
76 class TypedefNameDecl;
77 class UsingDecl;
78 class UsingShadowDecl;
79 class UnresolvedSetIterator;
80
81 namespace Builtin { class Context; }
82
83 /// ASTContext - This class holds long-lived AST nodes (such as types and
84 /// decls) that can be referred to throughout the semantic analysis of a file.
85 class ASTContext : public RefCountedBase<ASTContext> {
this_()86 ASTContext &this_() { return *this; }
87
88 mutable std::vector<Type*> Types;
89 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
90 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
91 mutable llvm::FoldingSet<PointerType> PointerTypes;
92 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
93 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
94 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
95 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
96 mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
97 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
98 mutable std::vector<VariableArrayType*> VariableArrayTypes;
99 mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
100 mutable llvm::FoldingSet<DependentSizedExtVectorType>
101 DependentSizedExtVectorTypes;
102 mutable llvm::FoldingSet<VectorType> VectorTypes;
103 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
104 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
105 FunctionProtoTypes;
106 mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
107 mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
108 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
109 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
110 SubstTemplateTypeParmTypes;
111 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
112 SubstTemplateTypeParmPackTypes;
113 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
114 TemplateSpecializationTypes;
115 mutable llvm::FoldingSet<ParenType> ParenTypes;
116 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
117 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
118 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
119 ASTContext&>
120 DependentTemplateSpecializationTypes;
121 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
122 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
123 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
124 mutable llvm::FoldingSet<AutoType> AutoTypes;
125 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
126 llvm::FoldingSet<AttributedType> AttributedTypes;
127
128 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
129 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
130 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
131 SubstTemplateTemplateParms;
132 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
133 ASTContext&>
134 SubstTemplateTemplateParmPacks;
135
136 /// \brief The set of nested name specifiers.
137 ///
138 /// This set is managed by the NestedNameSpecifier class.
139 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
140 mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
141 friend class NestedNameSpecifier;
142
143 /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
144 /// This is lazily created. This is intentionally not serialized.
145 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
146 ASTRecordLayouts;
147 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
148 ObjCLayouts;
149
150 /// TypeInfoMap - A cache from types to size and alignment information.
151 typedef llvm::DenseMap<const Type*,
152 std::pair<uint64_t, unsigned> > TypeInfoMap;
153 mutable TypeInfoMap MemoizedTypeInfo;
154
155 /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
156 llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
157
158 /// \brief Mapping from ObjCContainers to their ObjCImplementations.
159 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
160
161 /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
162 /// interface.
163 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
164
165 /// \brief Mapping from __block VarDecls to their copy initialization expr.
166 llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
167
168 /// \brief Mapping from class scope functions specialization to their
169 /// template patterns.
170 llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
171 ClassScopeSpecializationPattern;
172
173 /// \brief Representation of a "canonical" template template parameter that
174 /// is used in canonical template names.
175 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
176 TemplateTemplateParmDecl *Parm;
177
178 public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)179 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
180 : Parm(Parm) { }
181
getParam()182 TemplateTemplateParmDecl *getParam() const { return Parm; }
183
Profile(llvm::FoldingSetNodeID & ID)184 void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
185
186 static void Profile(llvm::FoldingSetNodeID &ID,
187 TemplateTemplateParmDecl *Parm);
188 };
189 mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
190 CanonTemplateTemplateParms;
191
192 TemplateTemplateParmDecl *
193 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
194
195 /// \brief The typedef for the __int128_t type.
196 mutable TypedefDecl *Int128Decl;
197
198 /// \brief The typedef for the __uint128_t type.
199 mutable TypedefDecl *UInt128Decl;
200
201 /// BuiltinVaListType - built-in va list type.
202 /// This is initially null and set by Sema::LazilyCreateBuiltin when
203 /// a builtin that takes a valist is encountered.
204 QualType BuiltinVaListType;
205
206 /// \brief The typedef for the predefined 'id' type.
207 mutable TypedefDecl *ObjCIdDecl;
208
209 /// \brief The typedef for the predefined 'SEL' type.
210 mutable TypedefDecl *ObjCSelDecl;
211
212 /// \brief The typedef for the predefined 'Class' type.
213 mutable TypedefDecl *ObjCClassDecl;
214
215 /// \brief The typedef for the predefined 'Protocol' class in Objective-C.
216 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
217
218 // Typedefs which may be provided defining the structure of Objective-C
219 // pseudo-builtins
220 QualType ObjCIdRedefinitionType;
221 QualType ObjCClassRedefinitionType;
222 QualType ObjCSelRedefinitionType;
223
224 QualType ObjCConstantStringType;
225 mutable RecordDecl *CFConstantStringTypeDecl;
226
227 QualType ObjCNSStringType;
228
229 /// \brief The typedef declaration for the Objective-C "instancetype" type.
230 TypedefDecl *ObjCInstanceTypeDecl;
231
232 /// \brief The type for the C FILE type.
233 TypeDecl *FILEDecl;
234
235 /// \brief The type for the C jmp_buf type.
236 TypeDecl *jmp_bufDecl;
237
238 /// \brief The type for the C sigjmp_buf type.
239 TypeDecl *sigjmp_bufDecl;
240
241 /// \brief The type for the C ucontext_t type.
242 TypeDecl *ucontext_tDecl;
243
244 /// \brief Type for the Block descriptor for Blocks CodeGen.
245 ///
246 /// Since this is only used for generation of debug info, it is not
247 /// serialized.
248 mutable RecordDecl *BlockDescriptorType;
249
250 /// \brief Type for the Block descriptor for Blocks CodeGen.
251 ///
252 /// Since this is only used for generation of debug info, it is not
253 /// serialized.
254 mutable RecordDecl *BlockDescriptorExtendedType;
255
256 /// \brief Declaration for the CUDA cudaConfigureCall function.
257 FunctionDecl *cudaConfigureCallDecl;
258
259 TypeSourceInfo NullTypeSourceInfo;
260
261 /// \brief Keeps track of all declaration attributes.
262 ///
263 /// Since so few decls have attrs, we keep them in a hash map instead of
264 /// wasting space in the Decl class.
265 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
266
267 /// \brief Keeps track of the static data member templates from which
268 /// static data members of class template specializations were instantiated.
269 ///
270 /// This data structure stores the mapping from instantiations of static
271 /// data members to the static data member representations within the
272 /// class template from which they were instantiated along with the kind
273 /// of instantiation or specialization (a TemplateSpecializationKind - 1).
274 ///
275 /// Given the following example:
276 ///
277 /// \code
278 /// template<typename T>
279 /// struct X {
280 /// static T value;
281 /// };
282 ///
283 /// template<typename T>
284 /// T X<T>::value = T(17);
285 ///
286 /// int *x = &X<int>::value;
287 /// \endcode
288 ///
289 /// This mapping will contain an entry that maps from the VarDecl for
290 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
291 /// class template X) and will be marked TSK_ImplicitInstantiation.
292 llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
293 InstantiatedFromStaticDataMember;
294
295 /// \brief Keeps track of the declaration from which a UsingDecl was
296 /// created during instantiation. The source declaration is always
297 /// a UsingDecl, an UnresolvedUsingValueDecl, or an
298 /// UnresolvedUsingTypenameDecl.
299 ///
300 /// For example:
301 /// \code
302 /// template<typename T>
303 /// struct A {
304 /// void f();
305 /// };
306 ///
307 /// template<typename T>
308 /// struct B : A<T> {
309 /// using A<T>::f;
310 /// };
311 ///
312 /// template struct B<int>;
313 /// \endcode
314 ///
315 /// This mapping will contain an entry that maps from the UsingDecl in
316 /// B<int> to the UnresolvedUsingDecl in B<T>.
317 llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
318
319 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
320 InstantiatedFromUsingShadowDecl;
321
322 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
323
324 /// \brief Mapping that stores the methods overridden by a given C++
325 /// member function.
326 ///
327 /// Since most C++ member functions aren't virtual and therefore
328 /// don't override anything, we store the overridden functions in
329 /// this map on the side rather than within the CXXMethodDecl structure.
330 typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
331 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
332
333 /// \brief Mapping from each declaration context to its corresponding lambda
334 /// mangling context.
335 llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
336
337 /// \brief Mapping that stores parameterIndex values for ParmVarDecls
338 /// when that value exceeds the bitfield size of
339 /// ParmVarDeclBits.ParameterIndex.
340 typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
341 ParameterIndexTable ParamIndices;
342
343 ImportDecl *FirstLocalImport;
344 ImportDecl *LastLocalImport;
345
346 TranslationUnitDecl *TUDecl;
347
348 /// SourceMgr - The associated SourceManager object.
349 SourceManager &SourceMgr;
350
351 /// LangOpts - The language options used to create the AST associated with
352 /// this ASTContext object.
353 LangOptions &LangOpts;
354
355 /// \brief The allocator used to create AST objects.
356 ///
357 /// AST objects are never destructed; rather, all memory associated with the
358 /// AST objects will be released when the ASTContext itself is destroyed.
359 mutable llvm::BumpPtrAllocator BumpAlloc;
360
361 /// \brief Allocator for partial diagnostics.
362 PartialDiagnostic::StorageAllocator DiagAllocator;
363
364 /// \brief The current C++ ABI.
365 OwningPtr<CXXABI> ABI;
366 CXXABI *createCXXABI(const TargetInfo &T);
367
368 /// \brief The logical -> physical address space map.
369 const LangAS::Map *AddrSpaceMap;
370
371 friend class ASTDeclReader;
372 friend class ASTReader;
373 friend class ASTWriter;
374 friend class CXXRecordDecl;
375
376 const TargetInfo *Target;
377 clang::PrintingPolicy PrintingPolicy;
378
379 public:
380 IdentifierTable &Idents;
381 SelectorTable &Selectors;
382 Builtin::Context &BuiltinInfo;
383 mutable DeclarationNameTable DeclarationNames;
384 OwningPtr<ExternalASTSource> ExternalSource;
385 ASTMutationListener *Listener;
386
getPrintingPolicy()387 clang::PrintingPolicy getPrintingPolicy() const { return PrintingPolicy; }
388
setPrintingPolicy(clang::PrintingPolicy Policy)389 void setPrintingPolicy(clang::PrintingPolicy Policy) {
390 PrintingPolicy = Policy;
391 }
392
getSourceManager()393 SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()394 const SourceManager& getSourceManager() const { return SourceMgr; }
395 void *Allocate(unsigned Size, unsigned Align = 8) const {
396 return BumpAlloc.Allocate(Size, Align);
397 }
Deallocate(void * Ptr)398 void Deallocate(void *Ptr) const { }
399
400 /// Return the total amount of physical memory allocated for representing
401 /// AST nodes and type information.
getASTAllocatedMemory()402 size_t getASTAllocatedMemory() const {
403 return BumpAlloc.getTotalMemory();
404 }
405 /// Return the total memory used for various side tables.
406 size_t getSideTableAllocatedMemory() const;
407
getDiagAllocator()408 PartialDiagnostic::StorageAllocator &getDiagAllocator() {
409 return DiagAllocator;
410 }
411
getTargetInfo()412 const TargetInfo &getTargetInfo() const { return *Target; }
413
getLangOpts()414 const LangOptions& getLangOpts() const { return LangOpts; }
415
416 DiagnosticsEngine &getDiagnostics() const;
417
getFullLoc(SourceLocation Loc)418 FullSourceLoc getFullLoc(SourceLocation Loc) const {
419 return FullSourceLoc(Loc,SourceMgr);
420 }
421
422 /// \brief Retrieve the attributes for the given declaration.
423 AttrVec& getDeclAttrs(const Decl *D);
424
425 /// \brief Erase the attributes corresponding to the given declaration.
426 void eraseDeclAttrs(const Decl *D);
427
428 /// \brief If this variable is an instantiated static data member of a
429 /// class template specialization, returns the templated static data member
430 /// from which it was instantiated.
431 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
432 const VarDecl *Var);
433
434 FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
435
436 void setClassScopeSpecializationPattern(FunctionDecl *FD,
437 FunctionDecl *Pattern);
438
439 /// \brief Note that the static data member \p Inst is an instantiation of
440 /// the static data member template \p Tmpl of a class template.
441 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
442 TemplateSpecializationKind TSK,
443 SourceLocation PointOfInstantiation = SourceLocation());
444
445 /// \brief If the given using decl is an instantiation of a
446 /// (possibly unresolved) using decl from a template instantiation,
447 /// return it.
448 NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
449
450 /// \brief Remember that the using decl \p Inst is an instantiation
451 /// of the using decl \p Pattern of a class template.
452 void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
453
454 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
455 UsingShadowDecl *Pattern);
456 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
457
458 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
459
460 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
461
462 /// ZeroBitfieldFollowsNonBitfield - return 'true" if 'FD' is a zero-length
463 /// bitfield which follows the non-bitfield 'LastFD'.
464 bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
465 const FieldDecl *LastFD) const;
466
467 /// ZeroBitfieldFollowsBitfield - return 'true" if 'FD' is a zero-length
468 /// bitfield which follows the bitfield 'LastFD'.
469 bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
470 const FieldDecl *LastFD) const;
471
472 /// BitfieldFollowsBitfield - return 'true" if 'FD' is a
473 /// bitfield which follows the bitfield 'LastFD'.
474 bool BitfieldFollowsBitfield(const FieldDecl *FD,
475 const FieldDecl *LastFD) const;
476
477 /// NonBitfieldFollowsBitfield - return 'true" if 'FD' is not a
478 /// bitfield which follows the bitfield 'LastFD'.
479 bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
480 const FieldDecl *LastFD) const;
481
482 /// BitfieldFollowsNonBitfield - return 'true" if 'FD' is a
483 /// bitfield which follows the none bitfield 'LastFD'.
484 bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
485 const FieldDecl *LastFD) const;
486
487 // Access to the set of methods overridden by the given C++ method.
488 typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
489 overridden_cxx_method_iterator
490 overridden_methods_begin(const CXXMethodDecl *Method) const;
491
492 overridden_cxx_method_iterator
493 overridden_methods_end(const CXXMethodDecl *Method) const;
494
495 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
496
497 /// \brief Note that the given C++ \p Method overrides the given \p
498 /// Overridden method.
499 void addOverriddenMethod(const CXXMethodDecl *Method,
500 const CXXMethodDecl *Overridden);
501
502 /// \brief Notify the AST context that a new import declaration has been
503 /// parsed or implicitly created within this translation unit.
504 void addedLocalImportDecl(ImportDecl *Import);
505
getNextLocalImport(ImportDecl * Import)506 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
507 return Import->NextLocalImport;
508 }
509
510 /// \brief Iterator that visits import declarations.
511 class import_iterator {
512 ImportDecl *Import;
513
514 public:
515 typedef ImportDecl *value_type;
516 typedef ImportDecl *reference;
517 typedef ImportDecl *pointer;
518 typedef int difference_type;
519 typedef std::forward_iterator_tag iterator_category;
520
import_iterator()521 import_iterator() : Import() { }
import_iterator(ImportDecl * Import)522 explicit import_iterator(ImportDecl *Import) : Import(Import) { }
523
524 reference operator*() const { return Import; }
525 pointer operator->() const { return Import; }
526
527 import_iterator &operator++() {
528 Import = ASTContext::getNextLocalImport(Import);
529 return *this;
530 }
531
532 import_iterator operator++(int) {
533 import_iterator Other(*this);
534 ++(*this);
535 return Other;
536 }
537
538 friend bool operator==(import_iterator X, import_iterator Y) {
539 return X.Import == Y.Import;
540 }
541
542 friend bool operator!=(import_iterator X, import_iterator Y) {
543 return X.Import != Y.Import;
544 }
545 };
546
local_import_begin()547 import_iterator local_import_begin() const {
548 return import_iterator(FirstLocalImport);
549 }
local_import_end()550 import_iterator local_import_end() const { return import_iterator(); }
551
getTranslationUnitDecl()552 TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
553
554
555 // Builtin Types.
556 CanQualType VoidTy;
557 CanQualType BoolTy;
558 CanQualType CharTy;
559 CanQualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
560 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
561 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
562 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
563 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
564 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
565 CanQualType FloatTy, DoubleTy, LongDoubleTy;
566 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
567 CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
568 CanQualType VoidPtrTy, NullPtrTy;
569 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
570 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
571 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
572 CanQualType ObjCBuiltinBoolTy;
573
574 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
575 mutable QualType AutoDeductTy; // Deduction against 'auto'.
576 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
577
578 ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
579 IdentifierTable &idents, SelectorTable &sels,
580 Builtin::Context &builtins,
581 unsigned size_reserve,
582 bool DelayInitialization = false);
583
584 ~ASTContext();
585
586 /// \brief Attach an external AST source to the AST context.
587 ///
588 /// The external AST source provides the ability to load parts of
589 /// the abstract syntax tree as needed from some external storage,
590 /// e.g., a precompiled header.
591 void setExternalSource(OwningPtr<ExternalASTSource> &Source);
592
593 /// \brief Retrieve a pointer to the external AST source associated
594 /// with this AST context, if any.
getExternalSource()595 ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
596
597 /// \brief Attach an AST mutation listener to the AST context.
598 ///
599 /// The AST mutation listener provides the ability to track modifications to
600 /// the abstract syntax tree entities committed after they were initially
601 /// created.
setASTMutationListener(ASTMutationListener * Listener)602 void setASTMutationListener(ASTMutationListener *Listener) {
603 this->Listener = Listener;
604 }
605
606 /// \brief Retrieve a pointer to the AST mutation listener associated
607 /// with this AST context, if any.
getASTMutationListener()608 ASTMutationListener *getASTMutationListener() const { return Listener; }
609
610 void PrintStats() const;
getTypes()611 const std::vector<Type*>& getTypes() const { return Types; }
612
613 /// \brief Retrieve the declaration for the 128-bit signed integer type.
614 TypedefDecl *getInt128Decl() const;
615
616 /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
617 TypedefDecl *getUInt128Decl() const;
618
619 //===--------------------------------------------------------------------===//
620 // Type Constructors
621 //===--------------------------------------------------------------------===//
622
623 private:
624 /// getExtQualType - Return a type with extended qualifiers.
625 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
626
627 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
628
629 public:
630 /// getAddSpaceQualType - Return the uniqued reference to the type for an
631 /// address space qualified type with the specified type and address space.
632 /// The resulting type has a union of the qualifiers from T and the address
633 /// space. If T already has an address space specifier, it is silently
634 /// replaced.
635 QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
636
637 /// getObjCGCQualType - Returns the uniqued reference to the type for an
638 /// objc gc qualified type. The retulting type has a union of the qualifiers
639 /// from T and the gc attribute.
640 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
641
642 /// getRestrictType - Returns the uniqued reference to the type for a
643 /// 'restrict' qualified type. The resulting type has a union of the
644 /// qualifiers from T and 'restrict'.
getRestrictType(QualType T)645 QualType getRestrictType(QualType T) const {
646 return T.withFastQualifiers(Qualifiers::Restrict);
647 }
648
649 /// getVolatileType - Returns the uniqued reference to the type for a
650 /// 'volatile' qualified type. The resulting type has a union of the
651 /// qualifiers from T and 'volatile'.
getVolatileType(QualType T)652 QualType getVolatileType(QualType T) const {
653 return T.withFastQualifiers(Qualifiers::Volatile);
654 }
655
656 /// getConstType - Returns the uniqued reference to the type for a
657 /// 'const' qualified type. The resulting type has a union of the
658 /// qualifiers from T and 'const'.
659 ///
660 /// It can be reasonably expected that this will always be
661 /// equivalent to calling T.withConst().
getConstType(QualType T)662 QualType getConstType(QualType T) const { return T.withConst(); }
663
664 /// adjustFunctionType - Change the ExtInfo on a function type.
665 const FunctionType *adjustFunctionType(const FunctionType *Fn,
666 FunctionType::ExtInfo EInfo);
667
668 /// getComplexType - Return the uniqued reference to the type for a complex
669 /// number with the specified element type.
670 QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)671 CanQualType getComplexType(CanQualType T) const {
672 return CanQualType::CreateUnsafe(getComplexType((QualType) T));
673 }
674
675 /// getPointerType - Return the uniqued reference to the type for a pointer to
676 /// the specified type.
677 QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)678 CanQualType getPointerType(CanQualType T) const {
679 return CanQualType::CreateUnsafe(getPointerType((QualType) T));
680 }
681
682 /// getAtomicType - Return the uniqued reference to the atomic type for
683 /// the specified type.
684 QualType getAtomicType(QualType T) const;
685
686 /// getBlockPointerType - Return the uniqued reference to the type for a block
687 /// of the specified type.
688 QualType getBlockPointerType(QualType T) const;
689
690 /// This gets the struct used to keep track of the descriptor for pointer to
691 /// blocks.
692 QualType getBlockDescriptorType() const;
693
694 /// This gets the struct used to keep track of the extended descriptor for
695 /// pointer to blocks.
696 QualType getBlockDescriptorExtendedType() const;
697
setcudaConfigureCallDecl(FunctionDecl * FD)698 void setcudaConfigureCallDecl(FunctionDecl *FD) {
699 cudaConfigureCallDecl = FD;
700 }
getcudaConfigureCallDecl()701 FunctionDecl *getcudaConfigureCallDecl() {
702 return cudaConfigureCallDecl;
703 }
704
705 /// This builds the struct used for __block variables.
706 QualType BuildByRefType(StringRef DeclName, QualType Ty) const;
707
708 /// Returns true iff we need copy/dispose helpers for the given type.
709 bool BlockRequiresCopying(QualType Ty) const;
710
711 /// getLValueReferenceType - Return the uniqued reference to the type for an
712 /// lvalue reference to the specified type.
713 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
714 const;
715
716 /// getRValueReferenceType - Return the uniqued reference to the type for an
717 /// rvalue reference to the specified type.
718 QualType getRValueReferenceType(QualType T) const;
719
720 /// getMemberPointerType - Return the uniqued reference to the type for a
721 /// member pointer to the specified type in the specified class. The class
722 /// is a Type because it could be a dependent name.
723 QualType getMemberPointerType(QualType T, const Type *Cls) const;
724
725 /// getVariableArrayType - Returns a non-unique reference to the type for a
726 /// variable array of the specified element type.
727 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
728 ArrayType::ArraySizeModifier ASM,
729 unsigned IndexTypeQuals,
730 SourceRange Brackets) const;
731
732 /// getDependentSizedArrayType - Returns a non-unique reference to
733 /// the type for a dependently-sized array of the specified element
734 /// type. FIXME: We will need these to be uniqued, or at least
735 /// comparable, at some point.
736 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
737 ArrayType::ArraySizeModifier ASM,
738 unsigned IndexTypeQuals,
739 SourceRange Brackets) const;
740
741 /// getIncompleteArrayType - Returns a unique reference to the type for a
742 /// incomplete array of the specified element type.
743 QualType getIncompleteArrayType(QualType EltTy,
744 ArrayType::ArraySizeModifier ASM,
745 unsigned IndexTypeQuals) const;
746
747 /// getConstantArrayType - Return the unique reference to the type for a
748 /// constant array of the specified element type.
749 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
750 ArrayType::ArraySizeModifier ASM,
751 unsigned IndexTypeQuals) const;
752
753 /// getVariableArrayDecayedType - Returns a vla type where known sizes
754 /// are replaced with [*].
755 QualType getVariableArrayDecayedType(QualType Ty) const;
756
757 /// getVectorType - Return the unique reference to a vector type of
758 /// the specified element type and size. VectorType must be a built-in type.
759 QualType getVectorType(QualType VectorType, unsigned NumElts,
760 VectorType::VectorKind VecKind) const;
761
762 /// getExtVectorType - Return the unique reference to an extended vector type
763 /// of the specified element type and size. VectorType must be a built-in
764 /// type.
765 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
766
767 /// getDependentSizedExtVectorType - Returns a non-unique reference to
768 /// the type for a dependently-sized vector of the specified element
769 /// type. FIXME: We will need these to be uniqued, or at least
770 /// comparable, at some point.
771 QualType getDependentSizedExtVectorType(QualType VectorType,
772 Expr *SizeExpr,
773 SourceLocation AttrLoc) const;
774
775 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
776 ///
777 QualType getFunctionNoProtoType(QualType ResultTy,
778 const FunctionType::ExtInfo &Info) const;
779
getFunctionNoProtoType(QualType ResultTy)780 QualType getFunctionNoProtoType(QualType ResultTy) const {
781 return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
782 }
783
784 /// getFunctionType - Return a normal function type with a typed
785 /// argument list.
786 QualType getFunctionType(QualType ResultTy,
787 const QualType *Args, unsigned NumArgs,
788 const FunctionProtoType::ExtProtoInfo &EPI) const;
789
790 /// getTypeDeclType - Return the unique reference to the type for
791 /// the specified type declaration.
792 QualType getTypeDeclType(const TypeDecl *Decl,
793 const TypeDecl *PrevDecl = 0) const {
794 assert(Decl && "Passed null for Decl param");
795 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
796
797 if (PrevDecl) {
798 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
799 Decl->TypeForDecl = PrevDecl->TypeForDecl;
800 return QualType(PrevDecl->TypeForDecl, 0);
801 }
802
803 return getTypeDeclTypeSlow(Decl);
804 }
805
806 /// getTypedefType - Return the unique reference to the type for the
807 /// specified typedef-name decl.
808 QualType getTypedefType(const TypedefNameDecl *Decl,
809 QualType Canon = QualType()) const;
810
811 QualType getRecordType(const RecordDecl *Decl) const;
812
813 QualType getEnumType(const EnumDecl *Decl) const;
814
815 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
816
817 QualType getAttributedType(AttributedType::Kind attrKind,
818 QualType modifiedType,
819 QualType equivalentType);
820
821 QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
822 QualType Replacement) const;
823 QualType getSubstTemplateTypeParmPackType(
824 const TemplateTypeParmType *Replaced,
825 const TemplateArgument &ArgPack);
826
827 QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
828 bool ParameterPack,
829 TemplateTypeParmDecl *ParmDecl = 0) const;
830
831 QualType getTemplateSpecializationType(TemplateName T,
832 const TemplateArgument *Args,
833 unsigned NumArgs,
834 QualType Canon = QualType()) const;
835
836 QualType getCanonicalTemplateSpecializationType(TemplateName T,
837 const TemplateArgument *Args,
838 unsigned NumArgs) const;
839
840 QualType getTemplateSpecializationType(TemplateName T,
841 const TemplateArgumentListInfo &Args,
842 QualType Canon = QualType()) const;
843
844 TypeSourceInfo *
845 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
846 const TemplateArgumentListInfo &Args,
847 QualType Canon = QualType()) const;
848
849 QualType getParenType(QualType NamedType) const;
850
851 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
852 NestedNameSpecifier *NNS,
853 QualType NamedType) const;
854 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
855 NestedNameSpecifier *NNS,
856 const IdentifierInfo *Name,
857 QualType Canon = QualType()) const;
858
859 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
860 NestedNameSpecifier *NNS,
861 const IdentifierInfo *Name,
862 const TemplateArgumentListInfo &Args) const;
863 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
864 NestedNameSpecifier *NNS,
865 const IdentifierInfo *Name,
866 unsigned NumArgs,
867 const TemplateArgument *Args) const;
868
869 QualType getPackExpansionType(QualType Pattern,
870 llvm::Optional<unsigned> NumExpansions);
871
872 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
873 ObjCInterfaceDecl *PrevDecl = 0) const;
874
875 QualType getObjCObjectType(QualType Base,
876 ObjCProtocolDecl * const *Protocols,
877 unsigned NumProtocols) const;
878
879 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
880 /// for the given ObjCObjectType.
881 QualType getObjCObjectPointerType(QualType OIT) const;
882
883 /// getTypeOfType - GCC extension.
884 QualType getTypeOfExprType(Expr *e) const;
885 QualType getTypeOfType(QualType t) const;
886
887 /// getDecltypeType - C++0x decltype.
888 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
889
890 /// getUnaryTransformType - unary type transforms
891 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
892 UnaryTransformType::UTTKind UKind) const;
893
894 /// getAutoType - C++0x deduced auto type.
895 QualType getAutoType(QualType DeducedType) const;
896
897 /// getAutoDeductType - C++0x deduction pattern for 'auto' type.
898 QualType getAutoDeductType() const;
899
900 /// getAutoRRefDeductType - C++0x deduction pattern for 'auto &&' type.
901 QualType getAutoRRefDeductType() const;
902
903 /// getTagDeclType - Return the unique reference to the type for the
904 /// specified TagDecl (struct/union/class/enum) decl.
905 QualType getTagDeclType(const TagDecl *Decl) const;
906
907 /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
908 /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
909 CanQualType getSizeType() const;
910
911 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5),
912 /// defined in <stdint.h>.
913 CanQualType getIntMaxType() const;
914
915 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5),
916 /// defined in <stdint.h>.
917 CanQualType getUIntMaxType() const;
918
919 /// getWCharType - In C++, this returns the unique wchar_t type. In C99, this
920 /// returns a type compatible with the type defined in <stddef.h> as defined
921 /// by the target.
getWCharType()922 QualType getWCharType() const { return WCharTy; }
923
924 /// getSignedWCharType - Return the type of "signed wchar_t".
925 /// Used when in C++, as a GCC extension.
926 QualType getSignedWCharType() const;
927
928 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
929 /// Used when in C++, as a GCC extension.
930 QualType getUnsignedWCharType() const;
931
932 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
933 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
934 QualType getPointerDiffType() const;
935
936 // getCFConstantStringType - Return the C structure type used to represent
937 // constant CFStrings.
938 QualType getCFConstantStringType() const;
939
940 /// Get the structure type used to representation CFStrings, or NULL
941 /// if it hasn't yet been built.
getRawCFConstantStringType()942 QualType getRawCFConstantStringType() const {
943 if (CFConstantStringTypeDecl)
944 return getTagDeclType(CFConstantStringTypeDecl);
945 return QualType();
946 }
947 void setCFConstantStringType(QualType T);
948
949 // This setter/getter represents the ObjC type for an NSConstantString.
950 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()951 QualType getObjCConstantStringInterface() const {
952 return ObjCConstantStringType;
953 }
954
getObjCNSStringType()955 QualType getObjCNSStringType() const {
956 return ObjCNSStringType;
957 }
958
setObjCNSStringType(QualType T)959 void setObjCNSStringType(QualType T) {
960 ObjCNSStringType = T;
961 }
962
963 /// \brief Retrieve the type that 'id' has been defined to, which may be
964 /// different from the built-in 'id' if 'id' has been typedef'd.
getObjCIdRedefinitionType()965 QualType getObjCIdRedefinitionType() const {
966 if (ObjCIdRedefinitionType.isNull())
967 return getObjCIdType();
968 return ObjCIdRedefinitionType;
969 }
970
971 /// \brief Set the user-written type that redefines 'id'.
setObjCIdRedefinitionType(QualType RedefType)972 void setObjCIdRedefinitionType(QualType RedefType) {
973 ObjCIdRedefinitionType = RedefType;
974 }
975
976 /// \brief Retrieve the type that 'Class' has been defined to, which may be
977 /// different from the built-in 'Class' if 'Class' has been typedef'd.
getObjCClassRedefinitionType()978 QualType getObjCClassRedefinitionType() const {
979 if (ObjCClassRedefinitionType.isNull())
980 return getObjCClassType();
981 return ObjCClassRedefinitionType;
982 }
983
984 /// \brief Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)985 void setObjCClassRedefinitionType(QualType RedefType) {
986 ObjCClassRedefinitionType = RedefType;
987 }
988
989 /// \brief Retrieve the type that 'SEL' has been defined to, which may be
990 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()991 QualType getObjCSelRedefinitionType() const {
992 if (ObjCSelRedefinitionType.isNull())
993 return getObjCSelType();
994 return ObjCSelRedefinitionType;
995 }
996
997
998 /// \brief Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)999 void setObjCSelRedefinitionType(QualType RedefType) {
1000 ObjCSelRedefinitionType = RedefType;
1001 }
1002
1003 /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1004 /// otherwise, returns a NULL type;
getObjCInstanceType()1005 QualType getObjCInstanceType() {
1006 return getTypeDeclType(getObjCInstanceTypeDecl());
1007 }
1008
1009 /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1010 /// "instancetype" type.
1011 TypedefDecl *getObjCInstanceTypeDecl();
1012
1013 /// \brief Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1014 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1015
1016 /// \brief Retrieve the C FILE type.
getFILEType()1017 QualType getFILEType() const {
1018 if (FILEDecl)
1019 return getTypeDeclType(FILEDecl);
1020 return QualType();
1021 }
1022
1023 /// \brief Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1024 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1025 this->jmp_bufDecl = jmp_bufDecl;
1026 }
1027
1028 /// \brief Retrieve the C jmp_buf type.
getjmp_bufType()1029 QualType getjmp_bufType() const {
1030 if (jmp_bufDecl)
1031 return getTypeDeclType(jmp_bufDecl);
1032 return QualType();
1033 }
1034
1035 /// \brief Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1036 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1037 this->sigjmp_bufDecl = sigjmp_bufDecl;
1038 }
1039
1040 /// \brief Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1041 QualType getsigjmp_bufType() const {
1042 if (sigjmp_bufDecl)
1043 return getTypeDeclType(sigjmp_bufDecl);
1044 return QualType();
1045 }
1046
1047 /// \brief Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1048 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1049 this->ucontext_tDecl = ucontext_tDecl;
1050 }
1051
1052 /// \brief Retrieve the C ucontext_t type.
getucontext_tType()1053 QualType getucontext_tType() const {
1054 if (ucontext_tDecl)
1055 return getTypeDeclType(ucontext_tDecl);
1056 return QualType();
1057 }
1058
1059 /// \brief The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1060 QualType getLogicalOperationType() const {
1061 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1062 }
1063
1064 /// getObjCEncodingForType - Emit the ObjC type encoding for the
1065 /// given type into \arg S. If \arg NameFields is specified then
1066 /// record field names are also encoded.
1067 void getObjCEncodingForType(QualType t, std::string &S,
1068 const FieldDecl *Field=0) const;
1069
1070 void getLegacyIntegralTypeEncoding(QualType &t) const;
1071
1072 // Put the string version of type qualifiers into S.
1073 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1074 std::string &S) const;
1075
1076 /// getObjCEncodingForFunctionDecl - Returns the encoded type for this
1077 /// function. This is in the same format as Objective-C method encodings.
1078 ///
1079 /// \returns true if an error occurred (e.g., because one of the parameter
1080 /// types is incomplete), false otherwise.
1081 bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1082
1083 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
1084 /// declaration.
1085 ///
1086 /// \returns true if an error occurred (e.g., because one of the parameter
1087 /// types is incomplete), false otherwise.
1088 bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1089 bool Extended = false)
1090 const;
1091
1092 /// getObjCEncodingForBlock - Return the encoded type for this block
1093 /// declaration.
1094 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1095
1096 /// getObjCEncodingForPropertyDecl - Return the encoded type for
1097 /// this method declaration. If non-NULL, Container must be either
1098 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1099 /// only be NULL when getting encodings for protocol properties.
1100 void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1101 const Decl *Container,
1102 std::string &S) const;
1103
1104 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1105 ObjCProtocolDecl *rProto) const;
1106
1107 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
1108 /// purpose in characters.
1109 CharUnits getObjCEncodingTypeSize(QualType t) const;
1110
1111 /// \brief Retrieve the typedef corresponding to the predefined 'id' type
1112 /// in Objective-C.
1113 TypedefDecl *getObjCIdDecl() const;
1114
1115 /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
1116 /// Sema. id is always a (typedef for a) pointer type, a pointer to a struct.
getObjCIdType()1117 QualType getObjCIdType() const {
1118 return getTypeDeclType(getObjCIdDecl());
1119 }
1120
1121 /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1122 /// in Objective-C.
1123 TypedefDecl *getObjCSelDecl() const;
1124
1125 /// \brief Retrieve the type that corresponds to the predefined Objective-C
1126 /// 'SEL' type.
getObjCSelType()1127 QualType getObjCSelType() const {
1128 return getTypeDeclType(getObjCSelDecl());
1129 }
1130
1131 /// \brief Retrieve the typedef declaration corresponding to the predefined
1132 /// Objective-C 'Class' type.
1133 TypedefDecl *getObjCClassDecl() const;
1134
1135 /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
1136 /// Sema. 'Class' is always a (typedef for a) pointer type, a pointer to a
1137 /// struct.
getObjCClassType()1138 QualType getObjCClassType() const {
1139 return getTypeDeclType(getObjCClassDecl());
1140 }
1141
1142 /// \brief Retrieve the Objective-C class declaration corresponding to
1143 /// the predefined 'Protocol' class.
1144 ObjCInterfaceDecl *getObjCProtocolDecl() const;
1145
1146 /// \brief Retrieve the type of the Objective-C "Protocol" class.
getObjCProtoType()1147 QualType getObjCProtoType() const {
1148 return getObjCInterfaceType(getObjCProtocolDecl());
1149 }
1150
1151 void setBuiltinVaListType(QualType T);
getBuiltinVaListType()1152 QualType getBuiltinVaListType() const { return BuiltinVaListType; }
1153
1154 /// getCVRQualifiedType - Returns a type with additional const,
1155 /// volatile, or restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)1156 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1157 return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1158 }
1159
1160 /// getQualifiedType - Un-split a SplitQualType.
getQualifiedType(SplitQualType split)1161 QualType getQualifiedType(SplitQualType split) const {
1162 return getQualifiedType(split.Ty, split.Quals);
1163 }
1164
1165 /// getQualifiedType - Returns a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)1166 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1167 if (!Qs.hasNonFastQualifiers())
1168 return T.withFastQualifiers(Qs.getFastQualifiers());
1169 QualifierCollector Qc(Qs);
1170 const Type *Ptr = Qc.strip(T);
1171 return getExtQualType(Ptr, Qc);
1172 }
1173
1174 /// getQualifiedType - Returns a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)1175 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1176 if (!Qs.hasNonFastQualifiers())
1177 return QualType(T, Qs.getFastQualifiers());
1178 return getExtQualType(T, Qs);
1179 }
1180
1181 /// getLifetimeQualifiedType - Returns a type with the given
1182 /// lifetime qualifier.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)1183 QualType getLifetimeQualifiedType(QualType type,
1184 Qualifiers::ObjCLifetime lifetime) {
1185 assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1186 assert(lifetime != Qualifiers::OCL_None);
1187
1188 Qualifiers qs;
1189 qs.addObjCLifetime(lifetime);
1190 return getQualifiedType(type, qs);
1191 }
1192
1193 DeclarationNameInfo getNameForTemplate(TemplateName Name,
1194 SourceLocation NameLoc) const;
1195
1196 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1197 UnresolvedSetIterator End) const;
1198
1199 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1200 bool TemplateKeyword,
1201 TemplateDecl *Template) const;
1202
1203 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1204 const IdentifierInfo *Name) const;
1205 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1206 OverloadedOperatorKind Operator) const;
1207 TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1208 TemplateName replacement) const;
1209 TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1210 const TemplateArgument &ArgPack) const;
1211
1212 enum GetBuiltinTypeError {
1213 GE_None, //< No error
1214 GE_Missing_stdio, //< Missing a type from <stdio.h>
1215 GE_Missing_setjmp, //< Missing a type from <setjmp.h>
1216 GE_Missing_ucontext //< Missing a type from <ucontext.h>
1217 };
1218
1219 /// GetBuiltinType - Return the type for the specified builtin. If
1220 /// IntegerConstantArgs is non-null, it is filled in with a bitmask of
1221 /// arguments to the builtin that are required to be integer constant
1222 /// expressions.
1223 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1224 unsigned *IntegerConstantArgs = 0) const;
1225
1226 private:
1227 CanQualType getFromTargetType(unsigned Type) const;
1228 std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1229
1230 //===--------------------------------------------------------------------===//
1231 // Type Predicates.
1232 //===--------------------------------------------------------------------===//
1233
1234 public:
1235 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
1236 /// garbage collection attribute.
1237 ///
1238 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1239
1240 /// areCompatibleVectorTypes - Return true if the given vector types
1241 /// are of the same unqualified type or if they are equivalent to the same
1242 /// GCC vector type, ignoring whether they are target-specific (AltiVec or
1243 /// Neon) types.
1244 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1245
1246 /// isObjCNSObjectType - Return true if this is an NSObject object with
1247 /// its NSObject attribute set.
isObjCNSObjectType(QualType Ty)1248 static bool isObjCNSObjectType(QualType Ty) {
1249 return Ty->isObjCNSObjectType();
1250 }
1251
1252 //===--------------------------------------------------------------------===//
1253 // Type Sizing and Analysis
1254 //===--------------------------------------------------------------------===//
1255
1256 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1257 /// scalar floating point type.
1258 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1259
1260 /// getTypeInfo - Get the size and alignment of the specified complete type in
1261 /// bits.
1262 std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)1263 std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1264 return getTypeInfo(T.getTypePtr());
1265 }
1266
1267 /// getTypeSize - Return the size of the specified type, in bits. This method
1268 /// does not work on incomplete types.
getTypeSize(QualType T)1269 uint64_t getTypeSize(QualType T) const {
1270 return getTypeInfo(T).first;
1271 }
getTypeSize(const Type * T)1272 uint64_t getTypeSize(const Type *T) const {
1273 return getTypeInfo(T).first;
1274 }
1275
1276 /// getCharWidth - Return the size of the character type, in bits
getCharWidth()1277 uint64_t getCharWidth() const {
1278 return getTypeSize(CharTy);
1279 }
1280
1281 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1282 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1283
1284 /// toBits - Convert a size in characters to a size in bits.
1285 int64_t toBits(CharUnits CharSize) const;
1286
1287 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1288 /// This method does not work on incomplete types.
1289 CharUnits getTypeSizeInChars(QualType T) const;
1290 CharUnits getTypeSizeInChars(const Type *T) const;
1291
1292 /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
1293 /// This method does not work on incomplete types.
getTypeAlign(QualType T)1294 unsigned getTypeAlign(QualType T) const {
1295 return getTypeInfo(T).second;
1296 }
getTypeAlign(const Type * T)1297 unsigned getTypeAlign(const Type *T) const {
1298 return getTypeInfo(T).second;
1299 }
1300
1301 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1302 /// characters. This method does not work on incomplete types.
1303 CharUnits getTypeAlignInChars(QualType T) const;
1304 CharUnits getTypeAlignInChars(const Type *T) const;
1305
1306 std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1307 std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1308
1309 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1310 /// type for the current target in bits. This can be different than the ABI
1311 /// alignment in cases where it is beneficial for performance to overalign
1312 /// a data type.
1313 unsigned getPreferredTypeAlign(const Type *T) const;
1314
1315 /// getDeclAlign - Return a conservative estimate of the alignment of
1316 /// the specified decl. Note that bitfields do not have a valid alignment, so
1317 /// this method will assert on them.
1318 /// If @p RefAsPointee, references are treated like their underlying type
1319 /// (for alignof), else they're treated like pointers (for CodeGen).
1320 CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1321
1322 /// getASTRecordLayout - Get or compute information about the layout of the
1323 /// specified record (struct/union/class), which indicates its size and field
1324 /// position information.
1325 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1326
1327 /// getASTObjCInterfaceLayout - Get or compute information about the
1328 /// layout of the specified Objective-C interface.
1329 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1330 const;
1331
1332 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1333 bool Simple = false) const;
1334
1335 /// getASTObjCImplementationLayout - Get or compute information about
1336 /// the layout of the specified Objective-C implementation. This may
1337 /// differ from the interface if synthesized ivars are present.
1338 const ASTRecordLayout &
1339 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1340
1341 /// getKeyFunction - Get the key function for the given record decl, or NULL
1342 /// if there isn't one. The key function is, according to the Itanium C++ ABI
1343 /// section 5.2.3:
1344 ///
1345 /// ...the first non-pure virtual function that is not inline at the point
1346 /// of class definition.
1347 const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1348
1349 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1350 uint64_t getFieldOffset(const ValueDecl *FD) const;
1351
1352 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1353
1354 MangleContext *createMangleContext();
1355
1356 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1357 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1358
1359 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1360 void CollectInheritedProtocols(const Decl *CDecl,
1361 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1362
1363 //===--------------------------------------------------------------------===//
1364 // Type Operators
1365 //===--------------------------------------------------------------------===//
1366
1367 /// getCanonicalType - Return the canonical (structural) type corresponding to
1368 /// the specified potentially non-canonical type. The non-canonical version
1369 /// of a type may have many "decorated" versions of types. Decorators can
1370 /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1371 /// to be free of any of these, allowing two canonical types to be compared
1372 /// for exact equality with a simple pointer comparison.
getCanonicalType(QualType T)1373 CanQualType getCanonicalType(QualType T) const {
1374 return CanQualType::CreateUnsafe(T.getCanonicalType());
1375 }
1376
getCanonicalType(const Type * T)1377 const Type *getCanonicalType(const Type *T) const {
1378 return T->getCanonicalTypeInternal().getTypePtr();
1379 }
1380
1381 /// getCanonicalParamType - Return the canonical parameter type
1382 /// corresponding to the specific potentially non-canonical one.
1383 /// Qualifiers are stripped off, functions are turned into function
1384 /// pointers, and arrays decay one level into pointers.
1385 CanQualType getCanonicalParamType(QualType T) const;
1386
1387 /// \brief Determine whether the given types are equivalent.
hasSameType(QualType T1,QualType T2)1388 bool hasSameType(QualType T1, QualType T2) const {
1389 return getCanonicalType(T1) == getCanonicalType(T2);
1390 }
1391
1392 /// \brief Returns this type as a completely-unqualified array type,
1393 /// capturing the qualifiers in Quals. This will remove the minimal amount of
1394 /// sugaring from the types, similar to the behavior of
1395 /// QualType::getUnqualifiedType().
1396 ///
1397 /// \param T is the qualified type, which may be an ArrayType
1398 ///
1399 /// \param Quals will receive the full set of qualifiers that were
1400 /// applied to the array.
1401 ///
1402 /// \returns if this is an array type, the completely unqualified array type
1403 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1404 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1405
1406 /// \brief Determine whether the given types are equivalent after
1407 /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)1408 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1409 return getCanonicalType(T1).getTypePtr() ==
1410 getCanonicalType(T2).getTypePtr();
1411 }
1412
1413 bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1414
1415 /// \brief Retrieves the "canonical" nested name specifier for a
1416 /// given nested name specifier.
1417 ///
1418 /// The canonical nested name specifier is a nested name specifier
1419 /// that uniquely identifies a type or namespace within the type
1420 /// system. For example, given:
1421 ///
1422 /// \code
1423 /// namespace N {
1424 /// struct S {
1425 /// template<typename T> struct X { typename T* type; };
1426 /// };
1427 /// }
1428 ///
1429 /// template<typename T> struct Y {
1430 /// typename N::S::X<T>::type member;
1431 /// };
1432 /// \endcode
1433 ///
1434 /// Here, the nested-name-specifier for N::S::X<T>:: will be
1435 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1436 /// by declarations in the type system and the canonical type for
1437 /// the template type parameter 'T' is template-param-0-0.
1438 NestedNameSpecifier *
1439 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1440
1441 /// \brief Retrieves the default calling convention to use for
1442 /// C++ instance methods.
1443 CallingConv getDefaultMethodCallConv();
1444
1445 /// \brief Retrieves the canonical representation of the given
1446 /// calling convention.
getCanonicalCallConv(CallingConv CC)1447 CallingConv getCanonicalCallConv(CallingConv CC) const {
1448 if (!LangOpts.MRTD && CC == CC_C)
1449 return CC_Default;
1450 return CC;
1451 }
1452
1453 /// \brief Determines whether two calling conventions name the same
1454 /// calling convention.
isSameCallConv(CallingConv lcc,CallingConv rcc)1455 bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1456 return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1457 }
1458
1459 /// \brief Retrieves the "canonical" template name that refers to a
1460 /// given template.
1461 ///
1462 /// The canonical template name is the simplest expression that can
1463 /// be used to refer to a given template. For most templates, this
1464 /// expression is just the template declaration itself. For example,
1465 /// the template std::vector can be referred to via a variety of
1466 /// names---std::vector, ::std::vector, vector (if vector is in
1467 /// scope), etc.---but all of these names map down to the same
1468 /// TemplateDecl, which is used to form the canonical template name.
1469 ///
1470 /// Dependent template names are more interesting. Here, the
1471 /// template name could be something like T::template apply or
1472 /// std::allocator<T>::template rebind, where the nested name
1473 /// specifier itself is dependent. In this case, the canonical
1474 /// template name uses the shortest form of the dependent
1475 /// nested-name-specifier, which itself contains all canonical
1476 /// types, values, and templates.
1477 TemplateName getCanonicalTemplateName(TemplateName Name) const;
1478
1479 /// \brief Determine whether the given template names refer to the same
1480 /// template.
1481 bool hasSameTemplateName(TemplateName X, TemplateName Y);
1482
1483 /// \brief Retrieve the "canonical" template argument.
1484 ///
1485 /// The canonical template argument is the simplest template argument
1486 /// (which may be a type, value, expression, or declaration) that
1487 /// expresses the value of the argument.
1488 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1489 const;
1490
1491 /// Type Query functions. If the type is an instance of the specified class,
1492 /// return the Type pointer for the underlying maximally pretty type. This
1493 /// is a member of ASTContext because this may need to do some amount of
1494 /// canonicalization, e.g. to move type qualifiers into the element type.
1495 const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)1496 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1497 return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1498 }
getAsVariableArrayType(QualType T)1499 const VariableArrayType *getAsVariableArrayType(QualType T) const {
1500 return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1501 }
getAsIncompleteArrayType(QualType T)1502 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1503 return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1504 }
getAsDependentSizedArrayType(QualType T)1505 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1506 const {
1507 return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1508 }
1509
1510 /// getBaseElementType - Returns the innermost element type of an array type.
1511 /// For example, will return "int" for int[m][n]
1512 QualType getBaseElementType(const ArrayType *VAT) const;
1513
1514 /// getBaseElementType - Returns the innermost element type of a type
1515 /// (which needn't actually be an array type).
1516 QualType getBaseElementType(QualType QT) const;
1517
1518 /// getConstantArrayElementCount - Returns number of constant array elements.
1519 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1520
1521 /// \brief Perform adjustment on the parameter type of a function.
1522 ///
1523 /// This routine adjusts the given parameter type @p T to the actual
1524 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1525 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1526 QualType getAdjustedParameterType(QualType T);
1527
1528 /// \brief Retrieve the parameter type as adjusted for use in the signature
1529 /// of a function, decaying array and function types and removing top-level
1530 /// cv-qualifiers.
1531 QualType getSignatureParameterType(QualType T);
1532
1533 /// getArrayDecayedType - Return the properly qualified result of decaying the
1534 /// specified array type to a pointer. This operation is non-trivial when
1535 /// handling typedefs etc. The canonical type of "T" must be an array type,
1536 /// this returns a pointer to a properly qualified element of the array.
1537 ///
1538 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1539 QualType getArrayDecayedType(QualType T) const;
1540
1541 /// getPromotedIntegerType - Returns the type that Promotable will
1542 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1543 /// integer type.
1544 QualType getPromotedIntegerType(QualType PromotableType) const;
1545
1546 /// \brief Recurses in pointer/array types until it finds an objc retainable
1547 /// type and returns its ownership.
1548 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1549
1550 /// \brief Whether this is a promotable bitfield reference according
1551 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1552 ///
1553 /// \returns the type this bit-field will promote to, or NULL if no
1554 /// promotion occurs.
1555 QualType isPromotableBitField(Expr *E) const;
1556
1557 /// getIntegerTypeOrder - Returns the highest ranked integer type:
1558 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
1559 /// LHS < RHS, return -1.
1560 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1561
1562 /// getFloatingTypeOrder - Compare the rank of the two specified floating
1563 /// point types, ignoring the domain of the type (i.e. 'double' ==
1564 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
1565 /// LHS < RHS, return -1.
1566 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1567
1568 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1569 /// point or a complex type (based on typeDomain/typeSize).
1570 /// 'typeDomain' is a real floating point or complex type.
1571 /// 'typeSize' is a real floating point or complex type.
1572 QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1573 QualType typeDomain) const;
1574
getTargetAddressSpace(QualType T)1575 unsigned getTargetAddressSpace(QualType T) const {
1576 return getTargetAddressSpace(T.getQualifiers());
1577 }
1578
getTargetAddressSpace(Qualifiers Q)1579 unsigned getTargetAddressSpace(Qualifiers Q) const {
1580 return getTargetAddressSpace(Q.getAddressSpace());
1581 }
1582
getTargetAddressSpace(unsigned AS)1583 unsigned getTargetAddressSpace(unsigned AS) const {
1584 if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1585 return AS;
1586 else
1587 return (*AddrSpaceMap)[AS - LangAS::Offset];
1588 }
1589
1590 private:
1591 // Helper for integer ordering
1592 unsigned getIntegerRank(const Type *T) const;
1593
1594 public:
1595
1596 //===--------------------------------------------------------------------===//
1597 // Type Compatibility Predicates
1598 //===--------------------------------------------------------------------===//
1599
1600 /// Compatibility predicates used to check assignment expressions.
1601 bool typesAreCompatible(QualType T1, QualType T2,
1602 bool CompareUnqualified = false); // C99 6.2.7p1
1603
1604 bool propertyTypesAreCompatible(QualType, QualType);
1605 bool typesAreBlockPointerCompatible(QualType, QualType);
1606
isObjCIdType(QualType T)1607 bool isObjCIdType(QualType T) const {
1608 return T == getObjCIdType();
1609 }
isObjCClassType(QualType T)1610 bool isObjCClassType(QualType T) const {
1611 return T == getObjCClassType();
1612 }
isObjCSelType(QualType T)1613 bool isObjCSelType(QualType T) const {
1614 return T == getObjCSelType();
1615 }
1616 bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1617 bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1618 bool ForCompare);
1619
1620 bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1621
1622 // Check the safety of assignment from LHS to RHS
1623 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1624 const ObjCObjectPointerType *RHSOPT);
1625 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1626 const ObjCObjectType *RHS);
1627 bool canAssignObjCInterfacesInBlockPointer(
1628 const ObjCObjectPointerType *LHSOPT,
1629 const ObjCObjectPointerType *RHSOPT,
1630 bool BlockReturnType);
1631 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1632 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1633 const ObjCObjectPointerType *RHSOPT);
1634 bool canBindObjCObjectType(QualType To, QualType From);
1635
1636 // Functions for calculating composite types
1637 QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1638 bool Unqualified = false, bool BlockReturnType = false);
1639 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1640 bool Unqualified = false);
1641 QualType mergeFunctionArgumentTypes(QualType, QualType,
1642 bool OfBlockPointer=false,
1643 bool Unqualified = false);
1644 QualType mergeTransparentUnionType(QualType, QualType,
1645 bool OfBlockPointer=false,
1646 bool Unqualified = false);
1647
1648 QualType mergeObjCGCQualifiers(QualType, QualType);
1649
1650 bool FunctionTypesMatchOnNSConsumedAttrs(
1651 const FunctionProtoType *FromFunctionType,
1652 const FunctionProtoType *ToFunctionType);
1653
ResetObjCLayout(const ObjCContainerDecl * CD)1654 void ResetObjCLayout(const ObjCContainerDecl *CD) {
1655 ObjCLayouts[CD] = 0;
1656 }
1657
1658 //===--------------------------------------------------------------------===//
1659 // Integer Predicates
1660 //===--------------------------------------------------------------------===//
1661
1662 // The width of an integer, as defined in C99 6.2.6.2. This is the number
1663 // of bits in an integer type excluding any padding bits.
1664 unsigned getIntWidth(QualType T) const;
1665
1666 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1667 // unsigned integer type. This method takes a signed type, and returns the
1668 // corresponding unsigned integer type.
1669 QualType getCorrespondingUnsignedType(QualType T);
1670
1671 //===--------------------------------------------------------------------===//
1672 // Type Iterators.
1673 //===--------------------------------------------------------------------===//
1674
1675 typedef std::vector<Type*>::iterator type_iterator;
1676 typedef std::vector<Type*>::const_iterator const_type_iterator;
1677
types_begin()1678 type_iterator types_begin() { return Types.begin(); }
types_end()1679 type_iterator types_end() { return Types.end(); }
types_begin()1680 const_type_iterator types_begin() const { return Types.begin(); }
types_end()1681 const_type_iterator types_end() const { return Types.end(); }
1682
1683 //===--------------------------------------------------------------------===//
1684 // Integer Values
1685 //===--------------------------------------------------------------------===//
1686
1687 /// MakeIntValue - Make an APSInt of the appropriate width and
1688 /// signedness for the given \arg Value and integer \arg Type.
MakeIntValue(uint64_t Value,QualType Type)1689 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1690 llvm::APSInt Res(getIntWidth(Type),
1691 !Type->isSignedIntegerOrEnumerationType());
1692 Res = Value;
1693 return Res;
1694 }
1695
1696 bool isSentinelNullExpr(const Expr *E);
1697
1698 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1699 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1700 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1701 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
1702
1703 /// \brief returns true if there is at lease one @implementation in TU.
AnyObjCImplementation()1704 bool AnyObjCImplementation() {
1705 return !ObjCImpls.empty();
1706 }
1707
1708 /// \brief Set the implementation of ObjCInterfaceDecl.
1709 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1710 ObjCImplementationDecl *ImplD);
1711 /// \brief Set the implementation of ObjCCategoryDecl.
1712 void setObjCImplementation(ObjCCategoryDecl *CatD,
1713 ObjCCategoryImplDecl *ImplD);
1714
1715 /// \brief Get the duplicate declaration of a ObjCMethod in the same
1716 /// interface, or null if non exists.
getObjCMethodRedeclaration(const ObjCMethodDecl * MD)1717 const ObjCMethodDecl *getObjCMethodRedeclaration(
1718 const ObjCMethodDecl *MD) const {
1719 llvm::DenseMap<const ObjCMethodDecl*, const ObjCMethodDecl*>::const_iterator
1720 I = ObjCMethodRedecls.find(MD);
1721 if (I == ObjCMethodRedecls.end())
1722 return 0;
1723 return I->second;
1724 }
1725
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)1726 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
1727 const ObjCMethodDecl *Redecl) {
1728 ObjCMethodRedecls[MD] = Redecl;
1729 }
1730
1731 /// \brief Returns the objc interface that \arg ND belongs to if it is a
1732 /// objc method/property/ivar etc. that is part of an interface,
1733 /// otherwise returns null.
1734 ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
1735
1736 /// \brief Set the copy inialization expression of a block var decl.
1737 void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1738 /// \brief Get the copy initialization expression of VarDecl,or NULL if
1739 /// none exists.
1740 Expr *getBlockVarCopyInits(const VarDecl*VD);
1741
1742 /// \brief Allocate an uninitialized TypeSourceInfo.
1743 ///
1744 /// The caller should initialize the memory held by TypeSourceInfo using
1745 /// the TypeLoc wrappers.
1746 ///
1747 /// \param T the type that will be the basis for type source info. This type
1748 /// should refer to how the declarator was written in source code, not to
1749 /// what type semantic analysis resolved the declarator to.
1750 ///
1751 /// \param Size the size of the type info to create, or 0 if the size
1752 /// should be calculated based on the type.
1753 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1754
1755 /// \brief Allocate a TypeSourceInfo where all locations have been
1756 /// initialized to a given location, which defaults to the empty
1757 /// location.
1758 TypeSourceInfo *
1759 getTrivialTypeSourceInfo(QualType T,
1760 SourceLocation Loc = SourceLocation()) const;
1761
getNullTypeSourceInfo()1762 TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1763
1764 /// \brief Add a deallocation callback that will be invoked when the
1765 /// ASTContext is destroyed.
1766 ///
1767 /// \brief Callback A callback function that will be invoked on destruction.
1768 ///
1769 /// \brief Data Pointer data that will be provided to the callback function
1770 /// when it is called.
1771 void AddDeallocation(void (*Callback)(void*), void *Data);
1772
1773 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1774 GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1775
1776 /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1777 /// lazily, only when used; this is only relevant for function or file scoped
1778 /// var definitions.
1779 ///
1780 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1781 /// it is not used.
1782 bool DeclMustBeEmitted(const Decl *D);
1783
1784 /// \brief Retrieve the lambda mangling number for a lambda expression.
1785 unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
1786
1787 /// \brief Used by ParmVarDecl to store on the side the
1788 /// index of the parameter when it exceeds the size of the normal bitfield.
1789 void setParameterIndex(const ParmVarDecl *D, unsigned index);
1790
1791 /// \brief Used by ParmVarDecl to retrieve on the side the
1792 /// index of the parameter when it exceeds the size of the normal bitfield.
1793 unsigned getParameterIndex(const ParmVarDecl *D) const;
1794
1795 //===--------------------------------------------------------------------===//
1796 // Statistics
1797 //===--------------------------------------------------------------------===//
1798
1799 /// \brief The number of implicitly-declared default constructors.
1800 static unsigned NumImplicitDefaultConstructors;
1801
1802 /// \brief The number of implicitly-declared default constructors for
1803 /// which declarations were built.
1804 static unsigned NumImplicitDefaultConstructorsDeclared;
1805
1806 /// \brief The number of implicitly-declared copy constructors.
1807 static unsigned NumImplicitCopyConstructors;
1808
1809 /// \brief The number of implicitly-declared copy constructors for
1810 /// which declarations were built.
1811 static unsigned NumImplicitCopyConstructorsDeclared;
1812
1813 /// \brief The number of implicitly-declared move constructors.
1814 static unsigned NumImplicitMoveConstructors;
1815
1816 /// \brief The number of implicitly-declared move constructors for
1817 /// which declarations were built.
1818 static unsigned NumImplicitMoveConstructorsDeclared;
1819
1820 /// \brief The number of implicitly-declared copy assignment operators.
1821 static unsigned NumImplicitCopyAssignmentOperators;
1822
1823 /// \brief The number of implicitly-declared copy assignment operators for
1824 /// which declarations were built.
1825 static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
1826
1827 /// \brief The number of implicitly-declared move assignment operators.
1828 static unsigned NumImplicitMoveAssignmentOperators;
1829
1830 /// \brief The number of implicitly-declared move assignment operators for
1831 /// which declarations were built.
1832 static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
1833
1834 /// \brief The number of implicitly-declared destructors.
1835 static unsigned NumImplicitDestructors;
1836
1837 /// \brief The number of implicitly-declared destructors for which
1838 /// declarations were built.
1839 static unsigned NumImplicitDestructorsDeclared;
1840
1841 private:
1842 ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1843 void operator=(const ASTContext&); // DO NOT IMPLEMENT
1844
1845 public:
1846 /// \brief Initialize built-in types.
1847 ///
1848 /// This routine may only be invoked once for a given ASTContext object.
1849 /// It is normally invoked by the ASTContext constructor. However, the
1850 /// constructor can be asked to delay initialization, which places the burden
1851 /// of calling this function on the user of that object.
1852 ///
1853 /// \param Target The target
1854 void InitBuiltinTypes(const TargetInfo &Target);
1855
1856 private:
1857 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1858
1859 // Return the ObjC type encoding for a given type.
1860 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1861 bool ExpandPointedToStructures,
1862 bool ExpandStructures,
1863 const FieldDecl *Field,
1864 bool OutermostType = false,
1865 bool EncodingProperty = false,
1866 bool StructField = false,
1867 bool EncodeBlockParameters = false,
1868 bool EncodeClassNames = false) const;
1869
1870 // Adds the encoding of the structure's members.
1871 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
1872 const FieldDecl *Field,
1873 bool includeVBases = true) const;
1874
1875 // Adds the encoding of a method parameter or return type.
1876 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
1877 QualType T, std::string& S,
1878 bool Extended) const;
1879
1880 const ASTRecordLayout &
1881 getObjCLayout(const ObjCInterfaceDecl *D,
1882 const ObjCImplementationDecl *Impl) const;
1883
1884 private:
1885 /// \brief A set of deallocations that should be performed when the
1886 /// ASTContext is destroyed.
1887 SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1888
1889 // FIXME: This currently contains the set of StoredDeclMaps used
1890 // by DeclContext objects. This probably should not be in ASTContext,
1891 // but we include it here so that ASTContext can quickly deallocate them.
1892 llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1893
1894 /// \brief A counter used to uniquely identify "blocks".
1895 mutable unsigned int UniqueBlockByRefTypeID;
1896
1897 friend class DeclContext;
1898 friend class DeclarationNameTable;
1899 void ReleaseDeclContextMaps();
1900 };
1901
1902 /// @brief Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)1903 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
1904 IdentifierInfo* II = &Ctx.Idents.get(name);
1905 return Ctx.Selectors.getSelector(0, &II);
1906 }
1907
1908 /// @brief Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)1909 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
1910 IdentifierInfo* II = &Ctx.Idents.get(name);
1911 return Ctx.Selectors.getSelector(1, &II);
1912 }
1913
1914 } // end namespace clang
1915
1916 // operator new and delete aren't allowed inside namespaces.
1917
1918 /// @brief Placement new for using the ASTContext's allocator.
1919 ///
1920 /// This placement form of operator new uses the ASTContext's allocator for
1921 /// obtaining memory.
1922 ///
1923 /// IMPORTANT: These are also declared in clang/AST/Attr.h! Any changes here
1924 /// need to also be made there.
1925 ///
1926 /// We intentionally avoid using a nothrow specification here so that the calls
1927 /// to this operator will not perform a null check on the result -- the
1928 /// underlying allocator never returns null pointers.
1929 ///
1930 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1931 /// @code
1932 /// // Default alignment (8)
1933 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1934 /// // Specific alignment
1935 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1936 /// @endcode
1937 /// Please note that you cannot use delete on the pointer; it must be
1938 /// deallocated using an explicit destructor call followed by
1939 /// @c Context.Deallocate(Ptr).
1940 ///
1941 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1942 /// @param C The ASTContext that provides the allocator.
1943 /// @param Alignment The alignment of the allocated memory (if the underlying
1944 /// allocator supports it).
1945 /// @return The allocated memory. Could be NULL.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)1946 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
1947 size_t Alignment) {
1948 return C.Allocate(Bytes, Alignment);
1949 }
1950 /// @brief Placement delete companion to the new above.
1951 ///
1952 /// This operator is just a companion to the new above. There is no way of
1953 /// invoking it directly; see the new operator for more details. This operator
1954 /// is called implicitly by the compiler if a placement new expression using
1955 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)1956 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
1957 C.Deallocate(Ptr);
1958 }
1959
1960 /// This placement form of operator new[] uses the ASTContext's allocator for
1961 /// obtaining memory.
1962 ///
1963 /// We intentionally avoid using a nothrow specification here so that the calls
1964 /// to this operator will not perform a null check on the result -- the
1965 /// underlying allocator never returns null pointers.
1966 ///
1967 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1968 /// @code
1969 /// // Default alignment (8)
1970 /// char *data = new (Context) char[10];
1971 /// // Specific alignment
1972 /// char *data = new (Context, 4) char[10];
1973 /// @endcode
1974 /// Please note that you cannot use delete on the pointer; it must be
1975 /// deallocated using an explicit destructor call followed by
1976 /// @c Context.Deallocate(Ptr).
1977 ///
1978 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1979 /// @param C The ASTContext that provides the allocator.
1980 /// @param Alignment The alignment of the allocated memory (if the underlying
1981 /// allocator supports it).
1982 /// @return The allocated memory. Could be NULL.
1983 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
1984 size_t Alignment = 8) {
1985 return C.Allocate(Bytes, Alignment);
1986 }
1987
1988 /// @brief Placement delete[] companion to the new[] above.
1989 ///
1990 /// This operator is just a companion to the new[] above. There is no way of
1991 /// invoking it directly; see the new[] operator for more details. This operator
1992 /// is called implicitly by the compiler if a placement new[] expression using
1993 /// the ASTContext throws in the object constructor.
1994 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
1995 C.Deallocate(Ptr);
1996 }
1997
1998 #endif
1999