• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 Apple Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #ifndef DFGJITCompiler_h
27 #define DFGJITCompiler_h
28 
29 #if ENABLE(DFG_JIT)
30 
31 #include <assembler/MacroAssembler.h>
32 #include <bytecode/CodeBlock.h>
33 #include <dfg/DFGGraph.h>
34 #include <jit/JITCode.h>
35 
36 namespace JSC {
37 
38 class AbstractSamplingCounter;
39 class CodeBlock;
40 class JSGlobalData;
41 
42 namespace DFG {
43 
44 class JITCodeGenerator;
45 class NonSpeculativeJIT;
46 class SpeculativeJIT;
47 class SpeculationRecovery;
48 
49 struct EntryLocation;
50 struct SpeculationCheck;
51 
52 // Abstracted sequential numbering of available machine registers (as opposed to MacroAssembler::RegisterID,
53 // which are non-sequential, and not abstracted from the register numbering used by the underlying processor).
54 enum GPRReg { gpr0, gpr1, gpr2, gpr3, gpr4, gpr5, numberOfGPRs, InvalidGPRReg = 0xFFFFFFFF };
55 enum FPRReg { fpr0, fpr1, fpr2, fpr3, fpr4, fpr5, numberOfFPRs, InvalidFPRReg = 0xFFFFFFFF };
56 
57 // GPRReg/FPRReg are enum types to provide type checking at compile time, use these method to iterate.
next(GPRReg & reg)58 inline GPRReg next(GPRReg& reg)
59 {
60     ASSERT(reg < numberOfGPRs);
61     return reg = static_cast<GPRReg>(reg + 1);
62 }
next(FPRReg & reg)63 inline FPRReg next(FPRReg& reg)
64 {
65     ASSERT(reg < numberOfFPRs);
66     return reg = static_cast<FPRReg>(reg + 1);
67 }
68 
69 // === CallRecord ===
70 //
71 // A record of a call out from JIT code to a helper function.
72 // Every CallRecord contains a reference to the call instruction & the function
73 // that it needs to be linked to. Calls that might throw an exception also record
74 // the Jump taken on exception (unset if not present), and ExceptionInfo (presently
75 // an unsigned, bytecode index) used to recover handler/source info.
76 struct CallRecord {
77     // Constructor for a call with no exception handler.
CallRecordCallRecord78     CallRecord(MacroAssembler::Call call, FunctionPtr function)
79         : m_call(call)
80         , m_function(function)
81     {
82     }
83 
84     // Constructor for a call with an exception handler.
CallRecordCallRecord85     CallRecord(MacroAssembler::Call call, FunctionPtr function, MacroAssembler::Jump exceptionCheck, ExceptionInfo exceptionInfo)
86         : m_call(call)
87         , m_function(function)
88         , m_exceptionCheck(exceptionCheck)
89         , m_exceptionInfo(exceptionInfo)
90     {
91     }
92 
93     MacroAssembler::Call m_call;
94     FunctionPtr m_function;
95     MacroAssembler::Jump m_exceptionCheck;
96     ExceptionInfo m_exceptionInfo;
97 };
98 
99 // === JITCompiler ===
100 //
101 // DFG::JITCompiler is responsible for generating JIT code from the dataflow graph.
102 // It does so by delegating to the speculative & non-speculative JITs, which
103 // generate to a MacroAssembler (which the JITCompiler owns through an inheritance
104 // relationship). The JITCompiler holds references to information required during
105 // compilation, and also records information used in linking (e.g. a list of all
106 // call to be linked).
107 class JITCompiler : public MacroAssembler {
108 public:
JITCompiler(JSGlobalData * globalData,Graph & dfg,CodeBlock * codeBlock)109     JITCompiler(JSGlobalData* globalData, Graph& dfg, CodeBlock* codeBlock)
110         : m_globalData(globalData)
111         , m_graph(dfg)
112         , m_codeBlock(codeBlock)
113     {
114     }
115 
116     void compileFunction(JITCode& entry, MacroAssemblerCodePtr& entryWithArityCheck);
117 
118     // Accessors for properties.
graph()119     Graph& graph() { return m_graph; }
codeBlock()120     CodeBlock* codeBlock() { return m_codeBlock; }
globalData()121     JSGlobalData* globalData() { return m_globalData; }
122 
123 #if CPU(X86_64)
124     // These registers match the old JIT.
125     static const RegisterID timeoutCheckRegister = X86Registers::r12;
126     static const RegisterID callFrameRegister = X86Registers::r13;
127     static const RegisterID tagTypeNumberRegister = X86Registers::r14;
128     static const RegisterID tagMaskRegister = X86Registers::r15;
129 
130     // Temporary registers (these correspond to the temporary GPRReg/FPRReg
131     // registers i.e. regT0 and grp0 refer to the same thing, grp0 being
132     // the abstracted, sequential name, and regT0 being the machine register
133     // number in the instruction set, as provided by the MacroAssembler).
134     static const RegisterID regT0 = X86Registers::eax;
135     static const RegisterID regT1 = X86Registers::edx;
136     static const RegisterID regT2 = X86Registers::ecx;
137     static const RegisterID regT3 = X86Registers::ebx;
138     static const RegisterID regT4 = X86Registers::edi;
139     static const RegisterID regT5 = X86Registers::esi;
140     static const FPRegisterID fpRegT0 = X86Registers::xmm0;
141     static const FPRegisterID fpRegT1 = X86Registers::xmm1;
142     static const FPRegisterID fpRegT2 = X86Registers::xmm2;
143     static const FPRegisterID fpRegT3 = X86Registers::xmm3;
144     static const FPRegisterID fpRegT4 = X86Registers::xmm4;
145     static const FPRegisterID fpRegT5 = X86Registers::xmm5;
146 
147     // These constants provide both RegisterID & GPRReg style names for the
148     // general purpose argument & return value register.
149     static const GPRReg argumentGPR0 = gpr4;
150     static const GPRReg argumentGPR1 = gpr5;
151     static const GPRReg argumentGPR2 = gpr1;
152     static const GPRReg argumentGPR3 = gpr2;
153     static const RegisterID argumentRegister0 = regT4;
154     static const RegisterID argumentRegister1 = regT5;
155     static const RegisterID argumentRegister2 = regT1;
156     static const RegisterID argumentRegister3 = regT2;
157     static const GPRReg returnValueGPR = gpr0;
158     static const RegisterID returnValueRegister = regT0;
159     static const RegisterID returnValueRegister2 = regT1;
160 
161     // These constants provide both FPRegisterID & FPRReg style names for the
162     // floating point argument & return value register.
163     static const FPRReg argumentFPR0 = fpr0;
164     static const FPRReg argumentFPR1 = fpr1;
165     static const FPRReg argumentFPR2 = fpr2;
166     static const FPRReg argumentFPR3 = fpr3;
167     static const FPRegisterID fpArgumentRegister0 = fpRegT0;
168     static const FPRegisterID fpArgumentRegister1 = fpRegT1;
169     static const FPRegisterID fpArgumentRegister2 = fpRegT2;
170     static const FPRegisterID fpArgumentRegister3 = fpRegT3;
171     static const FPRReg returnValueFPR = fpr0;
172     static const FPRegisterID fpReturnValueRegister = fpRegT0;
173 
174 
preserveReturnAddressAfterCall(RegisterID reg)175     void preserveReturnAddressAfterCall(RegisterID reg)
176     {
177         pop(reg);
178     }
179 
restoreReturnAddressBeforeReturn(RegisterID reg)180     void restoreReturnAddressBeforeReturn(RegisterID reg)
181     {
182         push(reg);
183     }
184 
restoreReturnAddressBeforeReturn(Address address)185     void restoreReturnAddressBeforeReturn(Address address)
186     {
187         push(address);
188     }
189 
emitGetFromCallFrameHeaderPtr(RegisterFile::CallFrameHeaderEntry entry,RegisterID to)190     void emitGetFromCallFrameHeaderPtr(RegisterFile::CallFrameHeaderEntry entry, RegisterID to)
191     {
192         loadPtr(Address(callFrameRegister, entry * sizeof(Register)), to);
193     }
emitPutToCallFrameHeader(RegisterID from,RegisterFile::CallFrameHeaderEntry entry)194     void emitPutToCallFrameHeader(RegisterID from, RegisterFile::CallFrameHeaderEntry entry)
195     {
196         storePtr(from, Address(callFrameRegister, entry * sizeof(Register)));
197     }
198 
emitPutImmediateToCallFrameHeader(void * value,RegisterFile::CallFrameHeaderEntry entry)199     void emitPutImmediateToCallFrameHeader(void* value, RegisterFile::CallFrameHeaderEntry entry)
200     {
201         storePtr(TrustedImmPtr(value), Address(callFrameRegister, entry * sizeof(Register)));
202     }
203 #endif
204 
addressForArgument(int32_t argument)205     Address addressForArgument(int32_t argument)
206     {
207         return Address(callFrameRegister, (argument - (m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize)) * sizeof(Register));
208     }
209 
addressForGlobalVar(RegisterID global,int32_t varNumber)210     static Address addressForGlobalVar(RegisterID global, int32_t varNumber)
211     {
212         return Address(global, varNumber * sizeof(Register));
213     }
214 
addressFor(VirtualRegister virtualRegister)215     static Address addressFor(VirtualRegister virtualRegister)
216     {
217         return Address(callFrameRegister, virtualRegister * sizeof(Register));
218     }
219 
220     // These methods provide mapping from sequential register numbering (GPRReg/FPRReg)
221     // to machine register numbering (RegisterID/FPRegisterID).
gprToRegisterID(GPRReg reg)222     static RegisterID gprToRegisterID(GPRReg reg)
223     {
224         ASSERT(reg < numberOfGPRs);
225         static const RegisterID idForRegister[numberOfGPRs] = { regT0, regT1, regT2, regT3, regT4, regT5 };
226         return idForRegister[reg];
227     }
fprToRegisterID(FPRReg reg)228     static FPRegisterID fprToRegisterID(FPRReg reg)
229     {
230         ASSERT(reg < numberOfFPRs);
231         static const FPRegisterID idForRegister[numberOfFPRs] = { fpRegT0, fpRegT1, fpRegT2, fpRegT3, fpRegT4, fpRegT5 };
232         return idForRegister[reg];
233     }
234 
235     // Add a call out from JIT code, without an exception check.
appendCall(const FunctionPtr & function)236     void appendCall(const FunctionPtr& function)
237     {
238         m_calls.append(CallRecord(call(), function));
239         // FIXME: should be able to JIT_ASSERT here that globalData->exception is null on return back to JIT code.
240     }
241 
242     // Add a call out from JIT code, with an exception check.
appendCallWithExceptionCheck(const FunctionPtr & function,unsigned exceptionInfo)243     void appendCallWithExceptionCheck(const FunctionPtr& function, unsigned exceptionInfo)
244     {
245         Call functionCall = call();
246         Jump exceptionCheck = branchTestPtr(NonZero, AbsoluteAddress(&globalData()->exception));
247         m_calls.append(CallRecord(functionCall, function, exceptionCheck, exceptionInfo));
248     }
249 
250     // Helper methods to check nodes for constants.
isConstant(NodeIndex nodeIndex)251     bool isConstant(NodeIndex nodeIndex)
252     {
253         return graph()[nodeIndex].isConstant();
254     }
isInt32Constant(NodeIndex nodeIndex)255     bool isInt32Constant(NodeIndex nodeIndex)
256     {
257         return graph()[nodeIndex].op == Int32Constant;
258     }
isDoubleConstant(NodeIndex nodeIndex)259     bool isDoubleConstant(NodeIndex nodeIndex)
260     {
261         return graph()[nodeIndex].op == DoubleConstant;
262     }
isJSConstant(NodeIndex nodeIndex)263     bool isJSConstant(NodeIndex nodeIndex)
264     {
265         return graph()[nodeIndex].op == JSConstant;
266     }
267 
268     // Helper methods get constant values from nodes.
valueOfInt32Constant(NodeIndex nodeIndex)269     int32_t valueOfInt32Constant(NodeIndex nodeIndex)
270     {
271         ASSERT(isInt32Constant(nodeIndex));
272         return graph()[nodeIndex].int32Constant();
273     }
valueOfDoubleConstant(NodeIndex nodeIndex)274     double valueOfDoubleConstant(NodeIndex nodeIndex)
275     {
276         ASSERT(isDoubleConstant(nodeIndex));
277         return graph()[nodeIndex].numericConstant();
278     }
valueOfJSConstant(NodeIndex nodeIndex)279     JSValue valueOfJSConstant(NodeIndex nodeIndex)
280     {
281         ASSERT(isJSConstant(nodeIndex));
282         unsigned constantIndex = graph()[nodeIndex].constantNumber();
283         return codeBlock()->constantRegister(FirstConstantRegisterIndex + constantIndex).get();
284     }
285 
286     // These methods JIT generate dynamic, debug-only checks - akin to ASSERTs.
287 #if DFG_JIT_ASSERT
288     void jitAssertIsInt32(GPRReg);
289     void jitAssertIsJSInt32(GPRReg);
290     void jitAssertIsJSNumber(GPRReg);
291     void jitAssertIsJSDouble(GPRReg);
292 #else
jitAssertIsInt32(GPRReg)293     void jitAssertIsInt32(GPRReg) {}
jitAssertIsJSInt32(GPRReg)294     void jitAssertIsJSInt32(GPRReg) {}
jitAssertIsJSNumber(GPRReg)295     void jitAssertIsJSNumber(GPRReg) {}
jitAssertIsJSDouble(GPRReg)296     void jitAssertIsJSDouble(GPRReg) {}
297 #endif
298 
299 #if ENABLE(SAMPLING_COUNTERS)
300     // Debug profiling tool.
301     void emitCount(AbstractSamplingCounter&, uint32_t increment = 1);
302 #endif
303 
304 private:
305     // These methods used in linking the speculative & non-speculative paths together.
306     void fillNumericToDouble(NodeIndex, FPRReg, GPRReg temporary);
307     void fillInt32ToInteger(NodeIndex, GPRReg);
308     void fillToJS(NodeIndex, GPRReg);
309     void jumpFromSpeculativeToNonSpeculative(const SpeculationCheck&, const EntryLocation&, SpeculationRecovery*);
310     void linkSpeculationChecks(SpeculativeJIT&, NonSpeculativeJIT&);
311 
312     // The globalData, used to access constants such as the vPtrs.
313     JSGlobalData* m_globalData;
314 
315     // The dataflow graph currently being generated.
316     Graph& m_graph;
317 
318     // The codeBlock currently being generated, used to access information such as constant values, immediates.
319     CodeBlock* m_codeBlock;
320 
321     // Vector of calls out from JIT code, including exception handler information.
322     Vector<CallRecord> m_calls;
323 };
324 
325 } } // namespace JSC::DFG
326 
327 #endif
328 #endif
329 
330