• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements name lookup for C, C++, Objective-C, and
11 //  Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Sema.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/Overload.h"
18 #include "clang/Sema/DeclSpec.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/Sema/ExternalSemaSource.h"
23 #include "clang/Sema/TypoCorrection.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CXXInheritance.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclLookups.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Expr.h"
32 #include "clang/AST/ExprCXX.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/StringMap.h"
39 #include "llvm/ADT/TinyPtrVector.h"
40 #include "llvm/ADT/edit_distance.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 #include <iterator>
44 #include <limits>
45 #include <list>
46 #include <map>
47 #include <set>
48 #include <utility>
49 #include <vector>
50 
51 using namespace clang;
52 using namespace sema;
53 
54 namespace {
55   class UnqualUsingEntry {
56     const DeclContext *Nominated;
57     const DeclContext *CommonAncestor;
58 
59   public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)60     UnqualUsingEntry(const DeclContext *Nominated,
61                      const DeclContext *CommonAncestor)
62       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63     }
64 
getCommonAncestor() const65     const DeclContext *getCommonAncestor() const {
66       return CommonAncestor;
67     }
68 
getNominatedNamespace() const69     const DeclContext *getNominatedNamespace() const {
70       return Nominated;
71     }
72 
73     // Sort by the pointer value of the common ancestor.
74     struct Comparator {
operator ()__anon46b0bd150111::UnqualUsingEntry::Comparator75       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76         return L.getCommonAncestor() < R.getCommonAncestor();
77       }
78 
operator ()__anon46b0bd150111::UnqualUsingEntry::Comparator79       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80         return E.getCommonAncestor() < DC;
81       }
82 
operator ()__anon46b0bd150111::UnqualUsingEntry::Comparator83       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84         return DC < E.getCommonAncestor();
85       }
86     };
87   };
88 
89   /// A collection of using directives, as used by C++ unqualified
90   /// lookup.
91   class UnqualUsingDirectiveSet {
92     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93 
94     ListTy list;
95     llvm::SmallPtrSet<DeclContext*, 8> visited;
96 
97   public:
UnqualUsingDirectiveSet()98     UnqualUsingDirectiveSet() {}
99 
visitScopeChain(Scope * S,Scope * InnermostFileScope)100     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101       // C++ [namespace.udir]p1:
102       //   During unqualified name lookup, the names appear as if they
103       //   were declared in the nearest enclosing namespace which contains
104       //   both the using-directive and the nominated namespace.
105       DeclContext *InnermostFileDC
106         = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107       assert(InnermostFileDC && InnermostFileDC->isFileContext());
108 
109       for (; S; S = S->getParent()) {
110         // C++ [namespace.udir]p1:
111         //   A using-directive shall not appear in class scope, but may
112         //   appear in namespace scope or in block scope.
113         DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114         if (Ctx && Ctx->isFileContext()) {
115           visit(Ctx, Ctx);
116         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117           Scope::udir_iterator I = S->using_directives_begin(),
118                              End = S->using_directives_end();
119           for (; I != End; ++I)
120             visit(*I, InnermostFileDC);
121         }
122       }
123     }
124 
125     // Visits a context and collect all of its using directives
126     // recursively.  Treats all using directives as if they were
127     // declared in the context.
128     //
129     // A given context is only every visited once, so it is important
130     // that contexts be visited from the inside out in order to get
131     // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)132     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133       if (!visited.insert(DC))
134         return;
135 
136       addUsingDirectives(DC, EffectiveDC);
137     }
138 
139     // Visits a using directive and collects all of its using
140     // directives recursively.  Treats all using directives as if they
141     // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)142     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143       DeclContext *NS = UD->getNominatedNamespace();
144       if (!visited.insert(NS))
145         return;
146 
147       addUsingDirective(UD, EffectiveDC);
148       addUsingDirectives(NS, EffectiveDC);
149     }
150 
151     // Adds all the using directives in a context (and those nominated
152     // by its using directives, transitively) as if they appeared in
153     // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)154     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155       SmallVector<DeclContext*,4> queue;
156       while (true) {
157         DeclContext::udir_iterator I, End;
158         for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159           UsingDirectiveDecl *UD = *I;
160           DeclContext *NS = UD->getNominatedNamespace();
161           if (visited.insert(NS)) {
162             addUsingDirective(UD, EffectiveDC);
163             queue.push_back(NS);
164           }
165         }
166 
167         if (queue.empty())
168           return;
169 
170         DC = queue.back();
171         queue.pop_back();
172       }
173     }
174 
175     // Add a using directive as if it had been declared in the given
176     // context.  This helps implement C++ [namespace.udir]p3:
177     //   The using-directive is transitive: if a scope contains a
178     //   using-directive that nominates a second namespace that itself
179     //   contains using-directives, the effect is as if the
180     //   using-directives from the second namespace also appeared in
181     //   the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)182     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183       // Find the common ancestor between the effective context and
184       // the nominated namespace.
185       DeclContext *Common = UD->getNominatedNamespace();
186       while (!Common->Encloses(EffectiveDC))
187         Common = Common->getParent();
188       Common = Common->getPrimaryContext();
189 
190       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191     }
192 
done()193     void done() {
194       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195     }
196 
197     typedef ListTy::const_iterator const_iterator;
198 
begin() const199     const_iterator begin() const { return list.begin(); }
end() const200     const_iterator end() const { return list.end(); }
201 
202     std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const203     getNamespacesFor(DeclContext *DC) const {
204       return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205                               UnqualUsingEntry::Comparator());
206     }
207   };
208 }
209 
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                                bool CPlusPlus,
214                                bool Redeclaration) {
215   unsigned IDNS = 0;
216   switch (NameKind) {
217   case Sema::LookupObjCImplicitSelfParam:
218   case Sema::LookupOrdinaryName:
219   case Sema::LookupRedeclarationWithLinkage:
220     IDNS = Decl::IDNS_Ordinary;
221     if (CPlusPlus) {
222       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223       if (Redeclaration)
224         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225     }
226     break;
227 
228   case Sema::LookupOperatorName:
229     // Operator lookup is its own crazy thing;  it is not the same
230     // as (e.g.) looking up an operator name for redeclaration.
231     assert(!Redeclaration && "cannot do redeclaration operator lookup");
232     IDNS = Decl::IDNS_NonMemberOperator;
233     break;
234 
235   case Sema::LookupTagName:
236     if (CPlusPlus) {
237       IDNS = Decl::IDNS_Type;
238 
239       // When looking for a redeclaration of a tag name, we add:
240       // 1) TagFriend to find undeclared friend decls
241       // 2) Namespace because they can't "overload" with tag decls.
242       // 3) Tag because it includes class templates, which can't
243       //    "overload" with tag decls.
244       if (Redeclaration)
245         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246     } else {
247       IDNS = Decl::IDNS_Tag;
248     }
249     break;
250   case Sema::LookupLabel:
251     IDNS = Decl::IDNS_Label;
252     break;
253 
254   case Sema::LookupMemberName:
255     IDNS = Decl::IDNS_Member;
256     if (CPlusPlus)
257       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258     break;
259 
260   case Sema::LookupNestedNameSpecifierName:
261     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262     break;
263 
264   case Sema::LookupNamespaceName:
265     IDNS = Decl::IDNS_Namespace;
266     break;
267 
268   case Sema::LookupUsingDeclName:
269     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270          | Decl::IDNS_Member | Decl::IDNS_Using;
271     break;
272 
273   case Sema::LookupObjCProtocolName:
274     IDNS = Decl::IDNS_ObjCProtocol;
275     break;
276 
277   case Sema::LookupAnyName:
278     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280       | Decl::IDNS_Type;
281     break;
282   }
283   return IDNS;
284 }
285 
configure()286 void LookupResult::configure() {
287   IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288                  isForRedeclaration());
289 
290   // If we're looking for one of the allocation or deallocation
291   // operators, make sure that the implicitly-declared new and delete
292   // operators can be found.
293   if (!isForRedeclaration()) {
294     switch (NameInfo.getName().getCXXOverloadedOperator()) {
295     case OO_New:
296     case OO_Delete:
297     case OO_Array_New:
298     case OO_Array_Delete:
299       SemaRef.DeclareGlobalNewDelete();
300       break;
301 
302     default:
303       break;
304     }
305   }
306 }
307 
sanityImpl() const308 void LookupResult::sanityImpl() const {
309   // Note that this function is never called by NDEBUG builds. See
310   // LookupResult::sanity().
311   assert(ResultKind != NotFound || Decls.size() == 0);
312   assert(ResultKind != Found || Decls.size() == 1);
313   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
314          (Decls.size() == 1 &&
315           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
316   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
317   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
318          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
319                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
320   assert((Paths != NULL) == (ResultKind == Ambiguous &&
321                              (Ambiguity == AmbiguousBaseSubobjectTypes ||
322                               Ambiguity == AmbiguousBaseSubobjects)));
323 }
324 
325 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)326 void LookupResult::deletePaths(CXXBasePaths *Paths) {
327   delete Paths;
328 }
329 
330 static NamedDecl *getVisibleDecl(NamedDecl *D);
331 
getAcceptableDeclSlow(NamedDecl * D) const332 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
333   return getVisibleDecl(D);
334 }
335 
336 /// Resolves the result kind of this lookup.
resolveKind()337 void LookupResult::resolveKind() {
338   unsigned N = Decls.size();
339 
340   // Fast case: no possible ambiguity.
341   if (N == 0) {
342     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
343     return;
344   }
345 
346   // If there's a single decl, we need to examine it to decide what
347   // kind of lookup this is.
348   if (N == 1) {
349     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
350     if (isa<FunctionTemplateDecl>(D))
351       ResultKind = FoundOverloaded;
352     else if (isa<UnresolvedUsingValueDecl>(D))
353       ResultKind = FoundUnresolvedValue;
354     return;
355   }
356 
357   // Don't do any extra resolution if we've already resolved as ambiguous.
358   if (ResultKind == Ambiguous) return;
359 
360   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
361   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
362 
363   bool Ambiguous = false;
364   bool HasTag = false, HasFunction = false, HasNonFunction = false;
365   bool HasFunctionTemplate = false, HasUnresolved = false;
366 
367   unsigned UniqueTagIndex = 0;
368 
369   unsigned I = 0;
370   while (I < N) {
371     NamedDecl *D = Decls[I]->getUnderlyingDecl();
372     D = cast<NamedDecl>(D->getCanonicalDecl());
373 
374     // Redeclarations of types via typedef can occur both within a scope
375     // and, through using declarations and directives, across scopes. There is
376     // no ambiguity if they all refer to the same type, so unique based on the
377     // canonical type.
378     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
379       if (!TD->getDeclContext()->isRecord()) {
380         QualType T = SemaRef.Context.getTypeDeclType(TD);
381         if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
382           // The type is not unique; pull something off the back and continue
383           // at this index.
384           Decls[I] = Decls[--N];
385           continue;
386         }
387       }
388     }
389 
390     if (!Unique.insert(D)) {
391       // If it's not unique, pull something off the back (and
392       // continue at this index).
393       Decls[I] = Decls[--N];
394       continue;
395     }
396 
397     // Otherwise, do some decl type analysis and then continue.
398 
399     if (isa<UnresolvedUsingValueDecl>(D)) {
400       HasUnresolved = true;
401     } else if (isa<TagDecl>(D)) {
402       if (HasTag)
403         Ambiguous = true;
404       UniqueTagIndex = I;
405       HasTag = true;
406     } else if (isa<FunctionTemplateDecl>(D)) {
407       HasFunction = true;
408       HasFunctionTemplate = true;
409     } else if (isa<FunctionDecl>(D)) {
410       HasFunction = true;
411     } else {
412       if (HasNonFunction)
413         Ambiguous = true;
414       HasNonFunction = true;
415     }
416     I++;
417   }
418 
419   // C++ [basic.scope.hiding]p2:
420   //   A class name or enumeration name can be hidden by the name of
421   //   an object, function, or enumerator declared in the same
422   //   scope. If a class or enumeration name and an object, function,
423   //   or enumerator are declared in the same scope (in any order)
424   //   with the same name, the class or enumeration name is hidden
425   //   wherever the object, function, or enumerator name is visible.
426   // But it's still an error if there are distinct tag types found,
427   // even if they're not visible. (ref?)
428   if (HideTags && HasTag && !Ambiguous &&
429       (HasFunction || HasNonFunction || HasUnresolved)) {
430     if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
431          Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
432       Decls[UniqueTagIndex] = Decls[--N];
433     else
434       Ambiguous = true;
435   }
436 
437   Decls.set_size(N);
438 
439   if (HasNonFunction && (HasFunction || HasUnresolved))
440     Ambiguous = true;
441 
442   if (Ambiguous)
443     setAmbiguous(LookupResult::AmbiguousReference);
444   else if (HasUnresolved)
445     ResultKind = LookupResult::FoundUnresolvedValue;
446   else if (N > 1 || HasFunctionTemplate)
447     ResultKind = LookupResult::FoundOverloaded;
448   else
449     ResultKind = LookupResult::Found;
450 }
451 
addDeclsFromBasePaths(const CXXBasePaths & P)452 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
453   CXXBasePaths::const_paths_iterator I, E;
454   DeclContext::lookup_iterator DI, DE;
455   for (I = P.begin(), E = P.end(); I != E; ++I)
456     for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
457       addDecl(*DI);
458 }
459 
setAmbiguousBaseSubobjects(CXXBasePaths & P)460 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
461   Paths = new CXXBasePaths;
462   Paths->swap(P);
463   addDeclsFromBasePaths(*Paths);
464   resolveKind();
465   setAmbiguous(AmbiguousBaseSubobjects);
466 }
467 
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)468 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
469   Paths = new CXXBasePaths;
470   Paths->swap(P);
471   addDeclsFromBasePaths(*Paths);
472   resolveKind();
473   setAmbiguous(AmbiguousBaseSubobjectTypes);
474 }
475 
print(raw_ostream & Out)476 void LookupResult::print(raw_ostream &Out) {
477   Out << Decls.size() << " result(s)";
478   if (isAmbiguous()) Out << ", ambiguous";
479   if (Paths) Out << ", base paths present";
480 
481   for (iterator I = begin(), E = end(); I != E; ++I) {
482     Out << "\n";
483     (*I)->print(Out, 2);
484   }
485 }
486 
487 /// \brief Lookup a builtin function, when name lookup would otherwise
488 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)489 static bool LookupBuiltin(Sema &S, LookupResult &R) {
490   Sema::LookupNameKind NameKind = R.getLookupKind();
491 
492   // If we didn't find a use of this identifier, and if the identifier
493   // corresponds to a compiler builtin, create the decl object for the builtin
494   // now, injecting it into translation unit scope, and return it.
495   if (NameKind == Sema::LookupOrdinaryName ||
496       NameKind == Sema::LookupRedeclarationWithLinkage) {
497     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
498     if (II) {
499       // If this is a builtin on this (or all) targets, create the decl.
500       if (unsigned BuiltinID = II->getBuiltinID()) {
501         // In C++, we don't have any predefined library functions like
502         // 'malloc'. Instead, we'll just error.
503         if (S.getLangOpts().CPlusPlus &&
504             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
505           return false;
506 
507         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
508                                                  BuiltinID, S.TUScope,
509                                                  R.isForRedeclaration(),
510                                                  R.getNameLoc())) {
511           R.addDecl(D);
512           return true;
513         }
514 
515         if (R.isForRedeclaration()) {
516           // If we're redeclaring this function anyway, forget that
517           // this was a builtin at all.
518           S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
519         }
520 
521         return false;
522       }
523     }
524   }
525 
526   return false;
527 }
528 
529 /// \brief Determine whether we can declare a special member function within
530 /// the class at this point.
CanDeclareSpecialMemberFunction(ASTContext & Context,const CXXRecordDecl * Class)531 static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
532                                             const CXXRecordDecl *Class) {
533   // We need to have a definition for the class.
534   if (!Class->getDefinition() || Class->isDependentContext())
535     return false;
536 
537   // We can't be in the middle of defining the class.
538   if (const RecordType *RecordTy
539                         = Context.getTypeDeclType(Class)->getAs<RecordType>())
540     return !RecordTy->isBeingDefined();
541 
542   return false;
543 }
544 
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)545 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
546   if (!CanDeclareSpecialMemberFunction(Context, Class))
547     return;
548 
549   // If the default constructor has not yet been declared, do so now.
550   if (Class->needsImplicitDefaultConstructor())
551     DeclareImplicitDefaultConstructor(Class);
552 
553   // If the copy constructor has not yet been declared, do so now.
554   if (!Class->hasDeclaredCopyConstructor())
555     DeclareImplicitCopyConstructor(Class);
556 
557   // If the copy assignment operator has not yet been declared, do so now.
558   if (!Class->hasDeclaredCopyAssignment())
559     DeclareImplicitCopyAssignment(Class);
560 
561   if (getLangOpts().CPlusPlus0x) {
562     // If the move constructor has not yet been declared, do so now.
563     if (Class->needsImplicitMoveConstructor())
564       DeclareImplicitMoveConstructor(Class); // might not actually do it
565 
566     // If the move assignment operator has not yet been declared, do so now.
567     if (Class->needsImplicitMoveAssignment())
568       DeclareImplicitMoveAssignment(Class); // might not actually do it
569   }
570 
571   // If the destructor has not yet been declared, do so now.
572   if (!Class->hasDeclaredDestructor())
573     DeclareImplicitDestructor(Class);
574 }
575 
576 /// \brief Determine whether this is the name of an implicitly-declared
577 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)578 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
579   switch (Name.getNameKind()) {
580   case DeclarationName::CXXConstructorName:
581   case DeclarationName::CXXDestructorName:
582     return true;
583 
584   case DeclarationName::CXXOperatorName:
585     return Name.getCXXOverloadedOperator() == OO_Equal;
586 
587   default:
588     break;
589   }
590 
591   return false;
592 }
593 
594 /// \brief If there are any implicit member functions with the given name
595 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)596 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
597                                                    DeclarationName Name,
598                                                    const DeclContext *DC) {
599   if (!DC)
600     return;
601 
602   switch (Name.getNameKind()) {
603   case DeclarationName::CXXConstructorName:
604     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
605       if (Record->getDefinition() &&
606           CanDeclareSpecialMemberFunction(S.Context, Record)) {
607         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
608         if (Record->needsImplicitDefaultConstructor())
609           S.DeclareImplicitDefaultConstructor(Class);
610         if (!Record->hasDeclaredCopyConstructor())
611           S.DeclareImplicitCopyConstructor(Class);
612         if (S.getLangOpts().CPlusPlus0x &&
613             Record->needsImplicitMoveConstructor())
614           S.DeclareImplicitMoveConstructor(Class);
615       }
616     break;
617 
618   case DeclarationName::CXXDestructorName:
619     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
620       if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
621           CanDeclareSpecialMemberFunction(S.Context, Record))
622         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
623     break;
624 
625   case DeclarationName::CXXOperatorName:
626     if (Name.getCXXOverloadedOperator() != OO_Equal)
627       break;
628 
629     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
630       if (Record->getDefinition() &&
631           CanDeclareSpecialMemberFunction(S.Context, Record)) {
632         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
633         if (!Record->hasDeclaredCopyAssignment())
634           S.DeclareImplicitCopyAssignment(Class);
635         if (S.getLangOpts().CPlusPlus0x &&
636             Record->needsImplicitMoveAssignment())
637           S.DeclareImplicitMoveAssignment(Class);
638       }
639     }
640     break;
641 
642   default:
643     break;
644   }
645 }
646 
647 // Adds all qualifying matches for a name within a decl context to the
648 // given lookup result.  Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)649 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
650   bool Found = false;
651 
652   // Lazily declare C++ special member functions.
653   if (S.getLangOpts().CPlusPlus)
654     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
655 
656   // Perform lookup into this declaration context.
657   DeclContext::lookup_const_iterator I, E;
658   for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
659     NamedDecl *D = *I;
660     if ((D = R.getAcceptableDecl(D))) {
661       R.addDecl(D);
662       Found = true;
663     }
664   }
665 
666   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
667     return true;
668 
669   if (R.getLookupName().getNameKind()
670         != DeclarationName::CXXConversionFunctionName ||
671       R.getLookupName().getCXXNameType()->isDependentType() ||
672       !isa<CXXRecordDecl>(DC))
673     return Found;
674 
675   // C++ [temp.mem]p6:
676   //   A specialization of a conversion function template is not found by
677   //   name lookup. Instead, any conversion function templates visible in the
678   //   context of the use are considered. [...]
679   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
680   if (!Record->isCompleteDefinition())
681     return Found;
682 
683   const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
684   for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
685          UEnd = Unresolved->end(); U != UEnd; ++U) {
686     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
687     if (!ConvTemplate)
688       continue;
689 
690     // When we're performing lookup for the purposes of redeclaration, just
691     // add the conversion function template. When we deduce template
692     // arguments for specializations, we'll end up unifying the return
693     // type of the new declaration with the type of the function template.
694     if (R.isForRedeclaration()) {
695       R.addDecl(ConvTemplate);
696       Found = true;
697       continue;
698     }
699 
700     // C++ [temp.mem]p6:
701     //   [...] For each such operator, if argument deduction succeeds
702     //   (14.9.2.3), the resulting specialization is used as if found by
703     //   name lookup.
704     //
705     // When referencing a conversion function for any purpose other than
706     // a redeclaration (such that we'll be building an expression with the
707     // result), perform template argument deduction and place the
708     // specialization into the result set. We do this to avoid forcing all
709     // callers to perform special deduction for conversion functions.
710     TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
711     FunctionDecl *Specialization = 0;
712 
713     const FunctionProtoType *ConvProto
714       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
715     assert(ConvProto && "Nonsensical conversion function template type");
716 
717     // Compute the type of the function that we would expect the conversion
718     // function to have, if it were to match the name given.
719     // FIXME: Calling convention!
720     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
721     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
722     EPI.ExceptionSpecType = EST_None;
723     EPI.NumExceptions = 0;
724     QualType ExpectedType
725       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
726                                             0, 0, EPI);
727 
728     // Perform template argument deduction against the type that we would
729     // expect the function to have.
730     if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
731                                             Specialization, Info)
732           == Sema::TDK_Success) {
733       R.addDecl(Specialization);
734       Found = true;
735     }
736   }
737 
738   return Found;
739 }
740 
741 // Performs C++ unqualified lookup into the given file context.
742 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)743 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
744                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
745 
746   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
747 
748   // Perform direct name lookup into the LookupCtx.
749   bool Found = LookupDirect(S, R, NS);
750 
751   // Perform direct name lookup into the namespaces nominated by the
752   // using directives whose common ancestor is this namespace.
753   UnqualUsingDirectiveSet::const_iterator UI, UEnd;
754   llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
755 
756   for (; UI != UEnd; ++UI)
757     if (LookupDirect(S, R, UI->getNominatedNamespace()))
758       Found = true;
759 
760   R.resolveKind();
761 
762   return Found;
763 }
764 
isNamespaceOrTranslationUnitScope(Scope * S)765 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
766   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
767     return Ctx->isFileContext();
768   return false;
769 }
770 
771 // Find the next outer declaration context from this scope. This
772 // routine actually returns the semantic outer context, which may
773 // differ from the lexical context (encoded directly in the Scope
774 // stack) when we are parsing a member of a class template. In this
775 // case, the second element of the pair will be true, to indicate that
776 // name lookup should continue searching in this semantic context when
777 // it leaves the current template parameter scope.
findOuterContext(Scope * S)778 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
779   DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
780   DeclContext *Lexical = 0;
781   for (Scope *OuterS = S->getParent(); OuterS;
782        OuterS = OuterS->getParent()) {
783     if (OuterS->getEntity()) {
784       Lexical = static_cast<DeclContext *>(OuterS->getEntity());
785       break;
786     }
787   }
788 
789   // C++ [temp.local]p8:
790   //   In the definition of a member of a class template that appears
791   //   outside of the namespace containing the class template
792   //   definition, the name of a template-parameter hides the name of
793   //   a member of this namespace.
794   //
795   // Example:
796   //
797   //   namespace N {
798   //     class C { };
799   //
800   //     template<class T> class B {
801   //       void f(T);
802   //     };
803   //   }
804   //
805   //   template<class C> void N::B<C>::f(C) {
806   //     C b;  // C is the template parameter, not N::C
807   //   }
808   //
809   // In this example, the lexical context we return is the
810   // TranslationUnit, while the semantic context is the namespace N.
811   if (!Lexical || !DC || !S->getParent() ||
812       !S->getParent()->isTemplateParamScope())
813     return std::make_pair(Lexical, false);
814 
815   // Find the outermost template parameter scope.
816   // For the example, this is the scope for the template parameters of
817   // template<class C>.
818   Scope *OutermostTemplateScope = S->getParent();
819   while (OutermostTemplateScope->getParent() &&
820          OutermostTemplateScope->getParent()->isTemplateParamScope())
821     OutermostTemplateScope = OutermostTemplateScope->getParent();
822 
823   // Find the namespace context in which the original scope occurs. In
824   // the example, this is namespace N.
825   DeclContext *Semantic = DC;
826   while (!Semantic->isFileContext())
827     Semantic = Semantic->getParent();
828 
829   // Find the declaration context just outside of the template
830   // parameter scope. This is the context in which the template is
831   // being lexically declaration (a namespace context). In the
832   // example, this is the global scope.
833   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
834       Lexical->Encloses(Semantic))
835     return std::make_pair(Semantic, true);
836 
837   return std::make_pair(Lexical, false);
838 }
839 
CppLookupName(LookupResult & R,Scope * S)840 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
841   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
842 
843   DeclarationName Name = R.getLookupName();
844 
845   // If this is the name of an implicitly-declared special member function,
846   // go through the scope stack to implicitly declare
847   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
848     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
849       if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
850         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
851   }
852 
853   // Implicitly declare member functions with the name we're looking for, if in
854   // fact we are in a scope where it matters.
855 
856   Scope *Initial = S;
857   IdentifierResolver::iterator
858     I = IdResolver.begin(Name),
859     IEnd = IdResolver.end();
860 
861   // First we lookup local scope.
862   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
863   // ...During unqualified name lookup (3.4.1), the names appear as if
864   // they were declared in the nearest enclosing namespace which contains
865   // both the using-directive and the nominated namespace.
866   // [Note: in this context, "contains" means "contains directly or
867   // indirectly".
868   //
869   // For example:
870   // namespace A { int i; }
871   // void foo() {
872   //   int i;
873   //   {
874   //     using namespace A;
875   //     ++i; // finds local 'i', A::i appears at global scope
876   //   }
877   // }
878   //
879   DeclContext *OutsideOfTemplateParamDC = 0;
880   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
881     DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
882 
883     // Check whether the IdResolver has anything in this scope.
884     bool Found = false;
885     for (; I != IEnd && S->isDeclScope(*I); ++I) {
886       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
887         Found = true;
888         R.addDecl(ND);
889       }
890     }
891     if (Found) {
892       R.resolveKind();
893       if (S->isClassScope())
894         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
895           R.setNamingClass(Record);
896       return true;
897     }
898 
899     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
900         S->getParent() && !S->getParent()->isTemplateParamScope()) {
901       // We've just searched the last template parameter scope and
902       // found nothing, so look into the the contexts between the
903       // lexical and semantic declaration contexts returned by
904       // findOuterContext(). This implements the name lookup behavior
905       // of C++ [temp.local]p8.
906       Ctx = OutsideOfTemplateParamDC;
907       OutsideOfTemplateParamDC = 0;
908     }
909 
910     if (Ctx) {
911       DeclContext *OuterCtx;
912       bool SearchAfterTemplateScope;
913       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
914       if (SearchAfterTemplateScope)
915         OutsideOfTemplateParamDC = OuterCtx;
916 
917       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
918         // We do not directly look into transparent contexts, since
919         // those entities will be found in the nearest enclosing
920         // non-transparent context.
921         if (Ctx->isTransparentContext())
922           continue;
923 
924         // We do not look directly into function or method contexts,
925         // since all of the local variables and parameters of the
926         // function/method are present within the Scope.
927         if (Ctx->isFunctionOrMethod()) {
928           // If we have an Objective-C instance method, look for ivars
929           // in the corresponding interface.
930           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
931             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
932               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
933                 ObjCInterfaceDecl *ClassDeclared;
934                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
935                                                  Name.getAsIdentifierInfo(),
936                                                              ClassDeclared)) {
937                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
938                     R.addDecl(ND);
939                     R.resolveKind();
940                     return true;
941                   }
942                 }
943               }
944           }
945 
946           continue;
947         }
948 
949         // Perform qualified name lookup into this context.
950         // FIXME: In some cases, we know that every name that could be found by
951         // this qualified name lookup will also be on the identifier chain. For
952         // example, inside a class without any base classes, we never need to
953         // perform qualified lookup because all of the members are on top of the
954         // identifier chain.
955         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
956           return true;
957       }
958     }
959   }
960 
961   // Stop if we ran out of scopes.
962   // FIXME:  This really, really shouldn't be happening.
963   if (!S) return false;
964 
965   // If we are looking for members, no need to look into global/namespace scope.
966   if (R.getLookupKind() == LookupMemberName)
967     return false;
968 
969   // Collect UsingDirectiveDecls in all scopes, and recursively all
970   // nominated namespaces by those using-directives.
971   //
972   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
973   // don't build it for each lookup!
974 
975   UnqualUsingDirectiveSet UDirs;
976   UDirs.visitScopeChain(Initial, S);
977   UDirs.done();
978 
979   // Lookup namespace scope, and global scope.
980   // Unqualified name lookup in C++ requires looking into scopes
981   // that aren't strictly lexical, and therefore we walk through the
982   // context as well as walking through the scopes.
983 
984   for (; S; S = S->getParent()) {
985     // Check whether the IdResolver has anything in this scope.
986     bool Found = false;
987     for (; I != IEnd && S->isDeclScope(*I); ++I) {
988       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
989         // We found something.  Look for anything else in our scope
990         // with this same name and in an acceptable identifier
991         // namespace, so that we can construct an overload set if we
992         // need to.
993         Found = true;
994         R.addDecl(ND);
995       }
996     }
997 
998     if (Found && S->isTemplateParamScope()) {
999       R.resolveKind();
1000       return true;
1001     }
1002 
1003     DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1004     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1005         S->getParent() && !S->getParent()->isTemplateParamScope()) {
1006       // We've just searched the last template parameter scope and
1007       // found nothing, so look into the the contexts between the
1008       // lexical and semantic declaration contexts returned by
1009       // findOuterContext(). This implements the name lookup behavior
1010       // of C++ [temp.local]p8.
1011       Ctx = OutsideOfTemplateParamDC;
1012       OutsideOfTemplateParamDC = 0;
1013     }
1014 
1015     if (Ctx) {
1016       DeclContext *OuterCtx;
1017       bool SearchAfterTemplateScope;
1018       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1019       if (SearchAfterTemplateScope)
1020         OutsideOfTemplateParamDC = OuterCtx;
1021 
1022       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1023         // We do not directly look into transparent contexts, since
1024         // those entities will be found in the nearest enclosing
1025         // non-transparent context.
1026         if (Ctx->isTransparentContext())
1027           continue;
1028 
1029         // If we have a context, and it's not a context stashed in the
1030         // template parameter scope for an out-of-line definition, also
1031         // look into that context.
1032         if (!(Found && S && S->isTemplateParamScope())) {
1033           assert(Ctx->isFileContext() &&
1034               "We should have been looking only at file context here already.");
1035 
1036           // Look into context considering using-directives.
1037           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1038             Found = true;
1039         }
1040 
1041         if (Found) {
1042           R.resolveKind();
1043           return true;
1044         }
1045 
1046         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1047           return false;
1048       }
1049     }
1050 
1051     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1052       return false;
1053   }
1054 
1055   return !R.empty();
1056 }
1057 
1058 /// \brief Retrieve the visible declaration corresponding to D, if any.
1059 ///
1060 /// This routine determines whether the declaration D is visible in the current
1061 /// module, with the current imports. If not, it checks whether any
1062 /// redeclaration of D is visible, and if so, returns that declaration.
1063 ///
1064 /// \returns D, or a visible previous declaration of D, whichever is more recent
1065 /// and visible. If no declaration of D is visible, returns null.
getVisibleDecl(NamedDecl * D)1066 static NamedDecl *getVisibleDecl(NamedDecl *D) {
1067   if (LookupResult::isVisible(D))
1068     return D;
1069 
1070   for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1071        RD != RDEnd; ++RD) {
1072     if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1073       if (LookupResult::isVisible(ND))
1074         return ND;
1075     }
1076   }
1077 
1078   return 0;
1079 }
1080 
1081 /// @brief Perform unqualified name lookup starting from a given
1082 /// scope.
1083 ///
1084 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1085 /// used to find names within the current scope. For example, 'x' in
1086 /// @code
1087 /// int x;
1088 /// int f() {
1089 ///   return x; // unqualified name look finds 'x' in the global scope
1090 /// }
1091 /// @endcode
1092 ///
1093 /// Different lookup criteria can find different names. For example, a
1094 /// particular scope can have both a struct and a function of the same
1095 /// name, and each can be found by certain lookup criteria. For more
1096 /// information about lookup criteria, see the documentation for the
1097 /// class LookupCriteria.
1098 ///
1099 /// @param S        The scope from which unqualified name lookup will
1100 /// begin. If the lookup criteria permits, name lookup may also search
1101 /// in the parent scopes.
1102 ///
1103 /// @param Name     The name of the entity that we are searching for.
1104 ///
1105 /// @param Loc      If provided, the source location where we're performing
1106 /// name lookup. At present, this is only used to produce diagnostics when
1107 /// C library functions (like "malloc") are implicitly declared.
1108 ///
1109 /// @returns The result of name lookup, which includes zero or more
1110 /// declarations and possibly additional information used to diagnose
1111 /// ambiguities.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1112 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1113   DeclarationName Name = R.getLookupName();
1114   if (!Name) return false;
1115 
1116   LookupNameKind NameKind = R.getLookupKind();
1117 
1118   if (!getLangOpts().CPlusPlus) {
1119     // Unqualified name lookup in C/Objective-C is purely lexical, so
1120     // search in the declarations attached to the name.
1121     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1122       // Find the nearest non-transparent declaration scope.
1123       while (!(S->getFlags() & Scope::DeclScope) ||
1124              (S->getEntity() &&
1125               static_cast<DeclContext *>(S->getEntity())
1126                 ->isTransparentContext()))
1127         S = S->getParent();
1128     }
1129 
1130     unsigned IDNS = R.getIdentifierNamespace();
1131 
1132     // Scan up the scope chain looking for a decl that matches this
1133     // identifier that is in the appropriate namespace.  This search
1134     // should not take long, as shadowing of names is uncommon, and
1135     // deep shadowing is extremely uncommon.
1136     bool LeftStartingScope = false;
1137 
1138     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1139                                    IEnd = IdResolver.end();
1140          I != IEnd; ++I)
1141       if ((*I)->isInIdentifierNamespace(IDNS)) {
1142         if (NameKind == LookupRedeclarationWithLinkage) {
1143           // Determine whether this (or a previous) declaration is
1144           // out-of-scope.
1145           if (!LeftStartingScope && !S->isDeclScope(*I))
1146             LeftStartingScope = true;
1147 
1148           // If we found something outside of our starting scope that
1149           // does not have linkage, skip it.
1150           if (LeftStartingScope && !((*I)->hasLinkage()))
1151             continue;
1152         }
1153         else if (NameKind == LookupObjCImplicitSelfParam &&
1154                  !isa<ImplicitParamDecl>(*I))
1155           continue;
1156 
1157         // If this declaration is module-private and it came from an AST
1158         // file, we can't see it.
1159         NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1160         if (!D)
1161           continue;
1162 
1163         R.addDecl(D);
1164 
1165         // Check whether there are any other declarations with the same name
1166         // and in the same scope.
1167         if (I != IEnd) {
1168           // Find the scope in which this declaration was declared (if it
1169           // actually exists in a Scope).
1170           while (S && !S->isDeclScope(D))
1171             S = S->getParent();
1172 
1173           // If the scope containing the declaration is the translation unit,
1174           // then we'll need to perform our checks based on the matching
1175           // DeclContexts rather than matching scopes.
1176           if (S && isNamespaceOrTranslationUnitScope(S))
1177             S = 0;
1178 
1179           // Compute the DeclContext, if we need it.
1180           DeclContext *DC = 0;
1181           if (!S)
1182             DC = (*I)->getDeclContext()->getRedeclContext();
1183 
1184           IdentifierResolver::iterator LastI = I;
1185           for (++LastI; LastI != IEnd; ++LastI) {
1186             if (S) {
1187               // Match based on scope.
1188               if (!S->isDeclScope(*LastI))
1189                 break;
1190             } else {
1191               // Match based on DeclContext.
1192               DeclContext *LastDC
1193                 = (*LastI)->getDeclContext()->getRedeclContext();
1194               if (!LastDC->Equals(DC))
1195                 break;
1196             }
1197 
1198             // If the declaration isn't in the right namespace, skip it.
1199             if (!(*LastI)->isInIdentifierNamespace(IDNS))
1200               continue;
1201 
1202             D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1203             if (D)
1204               R.addDecl(D);
1205           }
1206 
1207           R.resolveKind();
1208         }
1209         return true;
1210       }
1211   } else {
1212     // Perform C++ unqualified name lookup.
1213     if (CppLookupName(R, S))
1214       return true;
1215   }
1216 
1217   // If we didn't find a use of this identifier, and if the identifier
1218   // corresponds to a compiler builtin, create the decl object for the builtin
1219   // now, injecting it into translation unit scope, and return it.
1220   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1221     return true;
1222 
1223   // If we didn't find a use of this identifier, the ExternalSource
1224   // may be able to handle the situation.
1225   // Note: some lookup failures are expected!
1226   // See e.g. R.isForRedeclaration().
1227   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1228 }
1229 
1230 /// @brief Perform qualified name lookup in the namespaces nominated by
1231 /// using directives by the given context.
1232 ///
1233 /// C++98 [namespace.qual]p2:
1234 ///   Given X::m (where X is a user-declared namespace), or given ::m
1235 ///   (where X is the global namespace), let S be the set of all
1236 ///   declarations of m in X and in the transitive closure of all
1237 ///   namespaces nominated by using-directives in X and its used
1238 ///   namespaces, except that using-directives are ignored in any
1239 ///   namespace, including X, directly containing one or more
1240 ///   declarations of m. No namespace is searched more than once in
1241 ///   the lookup of a name. If S is the empty set, the program is
1242 ///   ill-formed. Otherwise, if S has exactly one member, or if the
1243 ///   context of the reference is a using-declaration
1244 ///   (namespace.udecl), S is the required set of declarations of
1245 ///   m. Otherwise if the use of m is not one that allows a unique
1246 ///   declaration to be chosen from S, the program is ill-formed.
1247 /// C++98 [namespace.qual]p5:
1248 ///   During the lookup of a qualified namespace member name, if the
1249 ///   lookup finds more than one declaration of the member, and if one
1250 ///   declaration introduces a class name or enumeration name and the
1251 ///   other declarations either introduce the same object, the same
1252 ///   enumerator or a set of functions, the non-type name hides the
1253 ///   class or enumeration name if and only if the declarations are
1254 ///   from the same namespace; otherwise (the declarations are from
1255 ///   different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1256 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1257                                                  DeclContext *StartDC) {
1258   assert(StartDC->isFileContext() && "start context is not a file context");
1259 
1260   DeclContext::udir_iterator I = StartDC->using_directives_begin();
1261   DeclContext::udir_iterator E = StartDC->using_directives_end();
1262 
1263   if (I == E) return false;
1264 
1265   // We have at least added all these contexts to the queue.
1266   llvm::SmallPtrSet<DeclContext*, 8> Visited;
1267   Visited.insert(StartDC);
1268 
1269   // We have not yet looked into these namespaces, much less added
1270   // their "using-children" to the queue.
1271   SmallVector<NamespaceDecl*, 8> Queue;
1272 
1273   // We have already looked into the initial namespace; seed the queue
1274   // with its using-children.
1275   for (; I != E; ++I) {
1276     NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1277     if (Visited.insert(ND))
1278       Queue.push_back(ND);
1279   }
1280 
1281   // The easiest way to implement the restriction in [namespace.qual]p5
1282   // is to check whether any of the individual results found a tag
1283   // and, if so, to declare an ambiguity if the final result is not
1284   // a tag.
1285   bool FoundTag = false;
1286   bool FoundNonTag = false;
1287 
1288   LookupResult LocalR(LookupResult::Temporary, R);
1289 
1290   bool Found = false;
1291   while (!Queue.empty()) {
1292     NamespaceDecl *ND = Queue.back();
1293     Queue.pop_back();
1294 
1295     // We go through some convolutions here to avoid copying results
1296     // between LookupResults.
1297     bool UseLocal = !R.empty();
1298     LookupResult &DirectR = UseLocal ? LocalR : R;
1299     bool FoundDirect = LookupDirect(S, DirectR, ND);
1300 
1301     if (FoundDirect) {
1302       // First do any local hiding.
1303       DirectR.resolveKind();
1304 
1305       // If the local result is a tag, remember that.
1306       if (DirectR.isSingleTagDecl())
1307         FoundTag = true;
1308       else
1309         FoundNonTag = true;
1310 
1311       // Append the local results to the total results if necessary.
1312       if (UseLocal) {
1313         R.addAllDecls(LocalR);
1314         LocalR.clear();
1315       }
1316     }
1317 
1318     // If we find names in this namespace, ignore its using directives.
1319     if (FoundDirect) {
1320       Found = true;
1321       continue;
1322     }
1323 
1324     for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1325       NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1326       if (Visited.insert(Nom))
1327         Queue.push_back(Nom);
1328     }
1329   }
1330 
1331   if (Found) {
1332     if (FoundTag && FoundNonTag)
1333       R.setAmbiguousQualifiedTagHiding();
1334     else
1335       R.resolveKind();
1336   }
1337 
1338   return Found;
1339 }
1340 
1341 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1342 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1343                             CXXBasePath &Path,
1344                             void *Name) {
1345   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1346 
1347   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1348   Path.Decls = BaseRecord->lookup(N);
1349   return Path.Decls.first != Path.Decls.second;
1350 }
1351 
1352 /// \brief Determine whether the given set of member declarations contains only
1353 /// static members, nested types, and enumerators.
1354 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1355 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1356   Decl *D = (*First)->getUnderlyingDecl();
1357   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1358     return true;
1359 
1360   if (isa<CXXMethodDecl>(D)) {
1361     // Determine whether all of the methods are static.
1362     bool AllMethodsAreStatic = true;
1363     for(; First != Last; ++First) {
1364       D = (*First)->getUnderlyingDecl();
1365 
1366       if (!isa<CXXMethodDecl>(D)) {
1367         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1368         break;
1369       }
1370 
1371       if (!cast<CXXMethodDecl>(D)->isStatic()) {
1372         AllMethodsAreStatic = false;
1373         break;
1374       }
1375     }
1376 
1377     if (AllMethodsAreStatic)
1378       return true;
1379   }
1380 
1381   return false;
1382 }
1383 
1384 /// \brief Perform qualified name lookup into a given context.
1385 ///
1386 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1387 /// names when the context of those names is explicit specified, e.g.,
1388 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1389 ///
1390 /// Different lookup criteria can find different names. For example, a
1391 /// particular scope can have both a struct and a function of the same
1392 /// name, and each can be found by certain lookup criteria. For more
1393 /// information about lookup criteria, see the documentation for the
1394 /// class LookupCriteria.
1395 ///
1396 /// \param R captures both the lookup criteria and any lookup results found.
1397 ///
1398 /// \param LookupCtx The context in which qualified name lookup will
1399 /// search. If the lookup criteria permits, name lookup may also search
1400 /// in the parent contexts or (for C++ classes) base classes.
1401 ///
1402 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1403 /// occurs as part of unqualified name lookup.
1404 ///
1405 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1406 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1407                                bool InUnqualifiedLookup) {
1408   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1409 
1410   if (!R.getLookupName())
1411     return false;
1412 
1413   // Make sure that the declaration context is complete.
1414   assert((!isa<TagDecl>(LookupCtx) ||
1415           LookupCtx->isDependentContext() ||
1416           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1417           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1418          "Declaration context must already be complete!");
1419 
1420   // Perform qualified name lookup into the LookupCtx.
1421   if (LookupDirect(*this, R, LookupCtx)) {
1422     R.resolveKind();
1423     if (isa<CXXRecordDecl>(LookupCtx))
1424       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1425     return true;
1426   }
1427 
1428   // Don't descend into implied contexts for redeclarations.
1429   // C++98 [namespace.qual]p6:
1430   //   In a declaration for a namespace member in which the
1431   //   declarator-id is a qualified-id, given that the qualified-id
1432   //   for the namespace member has the form
1433   //     nested-name-specifier unqualified-id
1434   //   the unqualified-id shall name a member of the namespace
1435   //   designated by the nested-name-specifier.
1436   // See also [class.mfct]p5 and [class.static.data]p2.
1437   if (R.isForRedeclaration())
1438     return false;
1439 
1440   // If this is a namespace, look it up in the implied namespaces.
1441   if (LookupCtx->isFileContext())
1442     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1443 
1444   // If this isn't a C++ class, we aren't allowed to look into base
1445   // classes, we're done.
1446   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1447   if (!LookupRec || !LookupRec->getDefinition())
1448     return false;
1449 
1450   // If we're performing qualified name lookup into a dependent class,
1451   // then we are actually looking into a current instantiation. If we have any
1452   // dependent base classes, then we either have to delay lookup until
1453   // template instantiation time (at which point all bases will be available)
1454   // or we have to fail.
1455   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1456       LookupRec->hasAnyDependentBases()) {
1457     R.setNotFoundInCurrentInstantiation();
1458     return false;
1459   }
1460 
1461   // Perform lookup into our base classes.
1462   CXXBasePaths Paths;
1463   Paths.setOrigin(LookupRec);
1464 
1465   // Look for this member in our base classes
1466   CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1467   switch (R.getLookupKind()) {
1468     case LookupObjCImplicitSelfParam:
1469     case LookupOrdinaryName:
1470     case LookupMemberName:
1471     case LookupRedeclarationWithLinkage:
1472       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1473       break;
1474 
1475     case LookupTagName:
1476       BaseCallback = &CXXRecordDecl::FindTagMember;
1477       break;
1478 
1479     case LookupAnyName:
1480       BaseCallback = &LookupAnyMember;
1481       break;
1482 
1483     case LookupUsingDeclName:
1484       // This lookup is for redeclarations only.
1485 
1486     case LookupOperatorName:
1487     case LookupNamespaceName:
1488     case LookupObjCProtocolName:
1489     case LookupLabel:
1490       // These lookups will never find a member in a C++ class (or base class).
1491       return false;
1492 
1493     case LookupNestedNameSpecifierName:
1494       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1495       break;
1496   }
1497 
1498   if (!LookupRec->lookupInBases(BaseCallback,
1499                                 R.getLookupName().getAsOpaquePtr(), Paths))
1500     return false;
1501 
1502   R.setNamingClass(LookupRec);
1503 
1504   // C++ [class.member.lookup]p2:
1505   //   [...] If the resulting set of declarations are not all from
1506   //   sub-objects of the same type, or the set has a nonstatic member
1507   //   and includes members from distinct sub-objects, there is an
1508   //   ambiguity and the program is ill-formed. Otherwise that set is
1509   //   the result of the lookup.
1510   QualType SubobjectType;
1511   int SubobjectNumber = 0;
1512   AccessSpecifier SubobjectAccess = AS_none;
1513 
1514   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1515        Path != PathEnd; ++Path) {
1516     const CXXBasePathElement &PathElement = Path->back();
1517 
1518     // Pick the best (i.e. most permissive i.e. numerically lowest) access
1519     // across all paths.
1520     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1521 
1522     // Determine whether we're looking at a distinct sub-object or not.
1523     if (SubobjectType.isNull()) {
1524       // This is the first subobject we've looked at. Record its type.
1525       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1526       SubobjectNumber = PathElement.SubobjectNumber;
1527       continue;
1528     }
1529 
1530     if (SubobjectType
1531                  != Context.getCanonicalType(PathElement.Base->getType())) {
1532       // We found members of the given name in two subobjects of
1533       // different types. If the declaration sets aren't the same, this
1534       // this lookup is ambiguous.
1535       if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1536         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1537         DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1538         DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1539 
1540         while (FirstD != FirstPath->Decls.second &&
1541                CurrentD != Path->Decls.second) {
1542          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1543              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1544            break;
1545 
1546           ++FirstD;
1547           ++CurrentD;
1548         }
1549 
1550         if (FirstD == FirstPath->Decls.second &&
1551             CurrentD == Path->Decls.second)
1552           continue;
1553       }
1554 
1555       R.setAmbiguousBaseSubobjectTypes(Paths);
1556       return true;
1557     }
1558 
1559     if (SubobjectNumber != PathElement.SubobjectNumber) {
1560       // We have a different subobject of the same type.
1561 
1562       // C++ [class.member.lookup]p5:
1563       //   A static member, a nested type or an enumerator defined in
1564       //   a base class T can unambiguously be found even if an object
1565       //   has more than one base class subobject of type T.
1566       if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1567         continue;
1568 
1569       // We have found a nonstatic member name in multiple, distinct
1570       // subobjects. Name lookup is ambiguous.
1571       R.setAmbiguousBaseSubobjects(Paths);
1572       return true;
1573     }
1574   }
1575 
1576   // Lookup in a base class succeeded; return these results.
1577 
1578   DeclContext::lookup_iterator I, E;
1579   for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1580     NamedDecl *D = *I;
1581     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1582                                                     D->getAccess());
1583     R.addDecl(D, AS);
1584   }
1585   R.resolveKind();
1586   return true;
1587 }
1588 
1589 /// @brief Performs name lookup for a name that was parsed in the
1590 /// source code, and may contain a C++ scope specifier.
1591 ///
1592 /// This routine is a convenience routine meant to be called from
1593 /// contexts that receive a name and an optional C++ scope specifier
1594 /// (e.g., "N::M::x"). It will then perform either qualified or
1595 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1596 /// respectively) on the given name and return those results.
1597 ///
1598 /// @param S        The scope from which unqualified name lookup will
1599 /// begin.
1600 ///
1601 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1602 ///
1603 /// @param EnteringContext Indicates whether we are going to enter the
1604 /// context of the scope-specifier SS (if present).
1605 ///
1606 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1607 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1608                             bool AllowBuiltinCreation, bool EnteringContext) {
1609   if (SS && SS->isInvalid()) {
1610     // When the scope specifier is invalid, don't even look for
1611     // anything.
1612     return false;
1613   }
1614 
1615   if (SS && SS->isSet()) {
1616     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1617       // We have resolved the scope specifier to a particular declaration
1618       // contex, and will perform name lookup in that context.
1619       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1620         return false;
1621 
1622       R.setContextRange(SS->getRange());
1623       return LookupQualifiedName(R, DC);
1624     }
1625 
1626     // We could not resolve the scope specified to a specific declaration
1627     // context, which means that SS refers to an unknown specialization.
1628     // Name lookup can't find anything in this case.
1629     R.setNotFoundInCurrentInstantiation();
1630     R.setContextRange(SS->getRange());
1631     return false;
1632   }
1633 
1634   // Perform unqualified name lookup starting in the given scope.
1635   return LookupName(R, S, AllowBuiltinCreation);
1636 }
1637 
1638 
1639 /// @brief Produce a diagnostic describing the ambiguity that resulted
1640 /// from name lookup.
1641 ///
1642 /// @param Result       The ambiguous name lookup result.
1643 ///
1644 /// @param Name         The name of the entity that name lookup was
1645 /// searching for.
1646 ///
1647 /// @param NameLoc      The location of the name within the source code.
1648 ///
1649 /// @param LookupRange  A source range that provides more
1650 /// source-location information concerning the lookup itself. For
1651 /// example, this range might highlight a nested-name-specifier that
1652 /// precedes the name.
1653 ///
1654 /// @returns true
DiagnoseAmbiguousLookup(LookupResult & Result)1655 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1656   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1657 
1658   DeclarationName Name = Result.getLookupName();
1659   SourceLocation NameLoc = Result.getNameLoc();
1660   SourceRange LookupRange = Result.getContextRange();
1661 
1662   switch (Result.getAmbiguityKind()) {
1663   case LookupResult::AmbiguousBaseSubobjects: {
1664     CXXBasePaths *Paths = Result.getBasePaths();
1665     QualType SubobjectType = Paths->front().back().Base->getType();
1666     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1667       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1668       << LookupRange;
1669 
1670     DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1671     while (isa<CXXMethodDecl>(*Found) &&
1672            cast<CXXMethodDecl>(*Found)->isStatic())
1673       ++Found;
1674 
1675     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1676 
1677     return true;
1678   }
1679 
1680   case LookupResult::AmbiguousBaseSubobjectTypes: {
1681     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1682       << Name << LookupRange;
1683 
1684     CXXBasePaths *Paths = Result.getBasePaths();
1685     std::set<Decl *> DeclsPrinted;
1686     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1687                                       PathEnd = Paths->end();
1688          Path != PathEnd; ++Path) {
1689       Decl *D = *Path->Decls.first;
1690       if (DeclsPrinted.insert(D).second)
1691         Diag(D->getLocation(), diag::note_ambiguous_member_found);
1692     }
1693 
1694     return true;
1695   }
1696 
1697   case LookupResult::AmbiguousTagHiding: {
1698     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1699 
1700     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1701 
1702     LookupResult::iterator DI, DE = Result.end();
1703     for (DI = Result.begin(); DI != DE; ++DI)
1704       if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1705         TagDecls.insert(TD);
1706         Diag(TD->getLocation(), diag::note_hidden_tag);
1707       }
1708 
1709     for (DI = Result.begin(); DI != DE; ++DI)
1710       if (!isa<TagDecl>(*DI))
1711         Diag((*DI)->getLocation(), diag::note_hiding_object);
1712 
1713     // For recovery purposes, go ahead and implement the hiding.
1714     LookupResult::Filter F = Result.makeFilter();
1715     while (F.hasNext()) {
1716       if (TagDecls.count(F.next()))
1717         F.erase();
1718     }
1719     F.done();
1720 
1721     return true;
1722   }
1723 
1724   case LookupResult::AmbiguousReference: {
1725     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1726 
1727     LookupResult::iterator DI = Result.begin(), DE = Result.end();
1728     for (; DI != DE; ++DI)
1729       Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1730 
1731     return true;
1732   }
1733   }
1734 
1735   llvm_unreachable("unknown ambiguity kind");
1736 }
1737 
1738 namespace {
1739   struct AssociatedLookup {
AssociatedLookup__anon46b0bd150211::AssociatedLookup1740     AssociatedLookup(Sema &S,
1741                      Sema::AssociatedNamespaceSet &Namespaces,
1742                      Sema::AssociatedClassSet &Classes)
1743       : S(S), Namespaces(Namespaces), Classes(Classes) {
1744     }
1745 
1746     Sema &S;
1747     Sema::AssociatedNamespaceSet &Namespaces;
1748     Sema::AssociatedClassSet &Classes;
1749   };
1750 }
1751 
1752 static void
1753 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1754 
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1755 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1756                                       DeclContext *Ctx) {
1757   // Add the associated namespace for this class.
1758 
1759   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1760   // be a locally scoped record.
1761 
1762   // We skip out of inline namespaces. The innermost non-inline namespace
1763   // contains all names of all its nested inline namespaces anyway, so we can
1764   // replace the entire inline namespace tree with its root.
1765   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1766          Ctx->isInlineNamespace())
1767     Ctx = Ctx->getParent();
1768 
1769   if (Ctx->isFileContext())
1770     Namespaces.insert(Ctx->getPrimaryContext());
1771 }
1772 
1773 // \brief Add the associated classes and namespaces for argument-dependent
1774 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1775 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1776 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1777                                   const TemplateArgument &Arg) {
1778   // C++ [basic.lookup.koenig]p2, last bullet:
1779   //   -- [...] ;
1780   switch (Arg.getKind()) {
1781     case TemplateArgument::Null:
1782       break;
1783 
1784     case TemplateArgument::Type:
1785       // [...] the namespaces and classes associated with the types of the
1786       // template arguments provided for template type parameters (excluding
1787       // template template parameters)
1788       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1789       break;
1790 
1791     case TemplateArgument::Template:
1792     case TemplateArgument::TemplateExpansion: {
1793       // [...] the namespaces in which any template template arguments are
1794       // defined; and the classes in which any member templates used as
1795       // template template arguments are defined.
1796       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1797       if (ClassTemplateDecl *ClassTemplate
1798                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1799         DeclContext *Ctx = ClassTemplate->getDeclContext();
1800         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1801           Result.Classes.insert(EnclosingClass);
1802         // Add the associated namespace for this class.
1803         CollectEnclosingNamespace(Result.Namespaces, Ctx);
1804       }
1805       break;
1806     }
1807 
1808     case TemplateArgument::Declaration:
1809     case TemplateArgument::Integral:
1810     case TemplateArgument::Expression:
1811       // [Note: non-type template arguments do not contribute to the set of
1812       //  associated namespaces. ]
1813       break;
1814 
1815     case TemplateArgument::Pack:
1816       for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1817                                         PEnd = Arg.pack_end();
1818            P != PEnd; ++P)
1819         addAssociatedClassesAndNamespaces(Result, *P);
1820       break;
1821   }
1822 }
1823 
1824 // \brief Add the associated classes and namespaces for
1825 // argument-dependent lookup with an argument of class type
1826 // (C++ [basic.lookup.koenig]p2).
1827 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)1828 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1829                                   CXXRecordDecl *Class) {
1830 
1831   // Just silently ignore anything whose name is __va_list_tag.
1832   if (Class->getDeclName() == Result.S.VAListTagName)
1833     return;
1834 
1835   // C++ [basic.lookup.koenig]p2:
1836   //   [...]
1837   //     -- If T is a class type (including unions), its associated
1838   //        classes are: the class itself; the class of which it is a
1839   //        member, if any; and its direct and indirect base
1840   //        classes. Its associated namespaces are the namespaces in
1841   //        which its associated classes are defined.
1842 
1843   // Add the class of which it is a member, if any.
1844   DeclContext *Ctx = Class->getDeclContext();
1845   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1846     Result.Classes.insert(EnclosingClass);
1847   // Add the associated namespace for this class.
1848   CollectEnclosingNamespace(Result.Namespaces, Ctx);
1849 
1850   // Add the class itself. If we've already seen this class, we don't
1851   // need to visit base classes.
1852   if (!Result.Classes.insert(Class))
1853     return;
1854 
1855   // -- If T is a template-id, its associated namespaces and classes are
1856   //    the namespace in which the template is defined; for member
1857   //    templates, the member template's class; the namespaces and classes
1858   //    associated with the types of the template arguments provided for
1859   //    template type parameters (excluding template template parameters); the
1860   //    namespaces in which any template template arguments are defined; and
1861   //    the classes in which any member templates used as template template
1862   //    arguments are defined. [Note: non-type template arguments do not
1863   //    contribute to the set of associated namespaces. ]
1864   if (ClassTemplateSpecializationDecl *Spec
1865         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1866     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1867     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1868       Result.Classes.insert(EnclosingClass);
1869     // Add the associated namespace for this class.
1870     CollectEnclosingNamespace(Result.Namespaces, Ctx);
1871 
1872     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1873     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1874       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1875   }
1876 
1877   // Only recurse into base classes for complete types.
1878   if (!Class->hasDefinition()) {
1879     // FIXME: we might need to instantiate templates here
1880     return;
1881   }
1882 
1883   // Add direct and indirect base classes along with their associated
1884   // namespaces.
1885   SmallVector<CXXRecordDecl *, 32> Bases;
1886   Bases.push_back(Class);
1887   while (!Bases.empty()) {
1888     // Pop this class off the stack.
1889     Class = Bases.back();
1890     Bases.pop_back();
1891 
1892     // Visit the base classes.
1893     for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1894                                          BaseEnd = Class->bases_end();
1895          Base != BaseEnd; ++Base) {
1896       const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1897       // In dependent contexts, we do ADL twice, and the first time around,
1898       // the base type might be a dependent TemplateSpecializationType, or a
1899       // TemplateTypeParmType. If that happens, simply ignore it.
1900       // FIXME: If we want to support export, we probably need to add the
1901       // namespace of the template in a TemplateSpecializationType, or even
1902       // the classes and namespaces of known non-dependent arguments.
1903       if (!BaseType)
1904         continue;
1905       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1906       if (Result.Classes.insert(BaseDecl)) {
1907         // Find the associated namespace for this base class.
1908         DeclContext *BaseCtx = BaseDecl->getDeclContext();
1909         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1910 
1911         // Make sure we visit the bases of this base class.
1912         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1913           Bases.push_back(BaseDecl);
1914       }
1915     }
1916   }
1917 }
1918 
1919 // \brief Add the associated classes and namespaces for
1920 // argument-dependent lookup with an argument of type T
1921 // (C++ [basic.lookup.koenig]p2).
1922 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)1923 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1924   // C++ [basic.lookup.koenig]p2:
1925   //
1926   //   For each argument type T in the function call, there is a set
1927   //   of zero or more associated namespaces and a set of zero or more
1928   //   associated classes to be considered. The sets of namespaces and
1929   //   classes is determined entirely by the types of the function
1930   //   arguments (and the namespace of any template template
1931   //   argument). Typedef names and using-declarations used to specify
1932   //   the types do not contribute to this set. The sets of namespaces
1933   //   and classes are determined in the following way:
1934 
1935   SmallVector<const Type *, 16> Queue;
1936   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1937 
1938   while (true) {
1939     switch (T->getTypeClass()) {
1940 
1941 #define TYPE(Class, Base)
1942 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1943 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1944 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1945 #define ABSTRACT_TYPE(Class, Base)
1946 #include "clang/AST/TypeNodes.def"
1947       // T is canonical.  We can also ignore dependent types because
1948       // we don't need to do ADL at the definition point, but if we
1949       // wanted to implement template export (or if we find some other
1950       // use for associated classes and namespaces...) this would be
1951       // wrong.
1952       break;
1953 
1954     //    -- If T is a pointer to U or an array of U, its associated
1955     //       namespaces and classes are those associated with U.
1956     case Type::Pointer:
1957       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1958       continue;
1959     case Type::ConstantArray:
1960     case Type::IncompleteArray:
1961     case Type::VariableArray:
1962       T = cast<ArrayType>(T)->getElementType().getTypePtr();
1963       continue;
1964 
1965     //     -- If T is a fundamental type, its associated sets of
1966     //        namespaces and classes are both empty.
1967     case Type::Builtin:
1968       break;
1969 
1970     //     -- If T is a class type (including unions), its associated
1971     //        classes are: the class itself; the class of which it is a
1972     //        member, if any; and its direct and indirect base
1973     //        classes. Its associated namespaces are the namespaces in
1974     //        which its associated classes are defined.
1975     case Type::Record: {
1976       CXXRecordDecl *Class
1977         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1978       addAssociatedClassesAndNamespaces(Result, Class);
1979       break;
1980     }
1981 
1982     //     -- If T is an enumeration type, its associated namespace is
1983     //        the namespace in which it is defined. If it is class
1984     //        member, its associated class is the member's class; else
1985     //        it has no associated class.
1986     case Type::Enum: {
1987       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1988 
1989       DeclContext *Ctx = Enum->getDeclContext();
1990       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1991         Result.Classes.insert(EnclosingClass);
1992 
1993       // Add the associated namespace for this class.
1994       CollectEnclosingNamespace(Result.Namespaces, Ctx);
1995 
1996       break;
1997     }
1998 
1999     //     -- If T is a function type, its associated namespaces and
2000     //        classes are those associated with the function parameter
2001     //        types and those associated with the return type.
2002     case Type::FunctionProto: {
2003       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2004       for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2005                                              ArgEnd = Proto->arg_type_end();
2006              Arg != ArgEnd; ++Arg)
2007         Queue.push_back(Arg->getTypePtr());
2008       // fallthrough
2009     }
2010     case Type::FunctionNoProto: {
2011       const FunctionType *FnType = cast<FunctionType>(T);
2012       T = FnType->getResultType().getTypePtr();
2013       continue;
2014     }
2015 
2016     //     -- If T is a pointer to a member function of a class X, its
2017     //        associated namespaces and classes are those associated
2018     //        with the function parameter types and return type,
2019     //        together with those associated with X.
2020     //
2021     //     -- If T is a pointer to a data member of class X, its
2022     //        associated namespaces and classes are those associated
2023     //        with the member type together with those associated with
2024     //        X.
2025     case Type::MemberPointer: {
2026       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2027 
2028       // Queue up the class type into which this points.
2029       Queue.push_back(MemberPtr->getClass());
2030 
2031       // And directly continue with the pointee type.
2032       T = MemberPtr->getPointeeType().getTypePtr();
2033       continue;
2034     }
2035 
2036     // As an extension, treat this like a normal pointer.
2037     case Type::BlockPointer:
2038       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2039       continue;
2040 
2041     // References aren't covered by the standard, but that's such an
2042     // obvious defect that we cover them anyway.
2043     case Type::LValueReference:
2044     case Type::RValueReference:
2045       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2046       continue;
2047 
2048     // These are fundamental types.
2049     case Type::Vector:
2050     case Type::ExtVector:
2051     case Type::Complex:
2052       break;
2053 
2054     // If T is an Objective-C object or interface type, or a pointer to an
2055     // object or interface type, the associated namespace is the global
2056     // namespace.
2057     case Type::ObjCObject:
2058     case Type::ObjCInterface:
2059     case Type::ObjCObjectPointer:
2060       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2061       break;
2062 
2063     // Atomic types are just wrappers; use the associations of the
2064     // contained type.
2065     case Type::Atomic:
2066       T = cast<AtomicType>(T)->getValueType().getTypePtr();
2067       continue;
2068     }
2069 
2070     if (Queue.empty()) break;
2071     T = Queue.back();
2072     Queue.pop_back();
2073   }
2074 }
2075 
2076 /// \brief Find the associated classes and namespaces for
2077 /// argument-dependent lookup for a call with the given set of
2078 /// arguments.
2079 ///
2080 /// This routine computes the sets of associated classes and associated
2081 /// namespaces searched by argument-dependent lookup
2082 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2083 void
FindAssociatedClassesAndNamespaces(llvm::ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)2084 Sema::FindAssociatedClassesAndNamespaces(llvm::ArrayRef<Expr *> Args,
2085                                  AssociatedNamespaceSet &AssociatedNamespaces,
2086                                  AssociatedClassSet &AssociatedClasses) {
2087   AssociatedNamespaces.clear();
2088   AssociatedClasses.clear();
2089 
2090   AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
2091 
2092   // C++ [basic.lookup.koenig]p2:
2093   //   For each argument type T in the function call, there is a set
2094   //   of zero or more associated namespaces and a set of zero or more
2095   //   associated classes to be considered. The sets of namespaces and
2096   //   classes is determined entirely by the types of the function
2097   //   arguments (and the namespace of any template template
2098   //   argument).
2099   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2100     Expr *Arg = Args[ArgIdx];
2101 
2102     if (Arg->getType() != Context.OverloadTy) {
2103       addAssociatedClassesAndNamespaces(Result, Arg->getType());
2104       continue;
2105     }
2106 
2107     // [...] In addition, if the argument is the name or address of a
2108     // set of overloaded functions and/or function templates, its
2109     // associated classes and namespaces are the union of those
2110     // associated with each of the members of the set: the namespace
2111     // in which the function or function template is defined and the
2112     // classes and namespaces associated with its (non-dependent)
2113     // parameter types and return type.
2114     Arg = Arg->IgnoreParens();
2115     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2116       if (unaryOp->getOpcode() == UO_AddrOf)
2117         Arg = unaryOp->getSubExpr();
2118 
2119     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2120     if (!ULE) continue;
2121 
2122     for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2123            I != E; ++I) {
2124       // Look through any using declarations to find the underlying function.
2125       NamedDecl *Fn = (*I)->getUnderlyingDecl();
2126 
2127       FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2128       if (!FDecl)
2129         FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2130 
2131       // Add the classes and namespaces associated with the parameter
2132       // types and return type of this function.
2133       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2134     }
2135   }
2136 }
2137 
2138 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2139 /// an acceptable non-member overloaded operator for a call whose
2140 /// arguments have types T1 (and, if non-empty, T2). This routine
2141 /// implements the check in C++ [over.match.oper]p3b2 concerning
2142 /// enumeration types.
2143 static bool
IsAcceptableNonMemberOperatorCandidate(FunctionDecl * Fn,QualType T1,QualType T2,ASTContext & Context)2144 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2145                                        QualType T1, QualType T2,
2146                                        ASTContext &Context) {
2147   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2148     return true;
2149 
2150   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2151     return true;
2152 
2153   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2154   if (Proto->getNumArgs() < 1)
2155     return false;
2156 
2157   if (T1->isEnumeralType()) {
2158     QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2159     if (Context.hasSameUnqualifiedType(T1, ArgType))
2160       return true;
2161   }
2162 
2163   if (Proto->getNumArgs() < 2)
2164     return false;
2165 
2166   if (!T2.isNull() && T2->isEnumeralType()) {
2167     QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2168     if (Context.hasSameUnqualifiedType(T2, ArgType))
2169       return true;
2170   }
2171 
2172   return false;
2173 }
2174 
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2175 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2176                                   SourceLocation Loc,
2177                                   LookupNameKind NameKind,
2178                                   RedeclarationKind Redecl) {
2179   LookupResult R(*this, Name, Loc, NameKind, Redecl);
2180   LookupName(R, S);
2181   return R.getAsSingle<NamedDecl>();
2182 }
2183 
2184 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)2185 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2186                                        SourceLocation IdLoc,
2187                                        RedeclarationKind Redecl) {
2188   Decl *D = LookupSingleName(TUScope, II, IdLoc,
2189                              LookupObjCProtocolName, Redecl);
2190   return cast_or_null<ObjCProtocolDecl>(D);
2191 }
2192 
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2193 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2194                                         QualType T1, QualType T2,
2195                                         UnresolvedSetImpl &Functions) {
2196   // C++ [over.match.oper]p3:
2197   //     -- The set of non-member candidates is the result of the
2198   //        unqualified lookup of operator@ in the context of the
2199   //        expression according to the usual rules for name lookup in
2200   //        unqualified function calls (3.4.2) except that all member
2201   //        functions are ignored. However, if no operand has a class
2202   //        type, only those non-member functions in the lookup set
2203   //        that have a first parameter of type T1 or "reference to
2204   //        (possibly cv-qualified) T1", when T1 is an enumeration
2205   //        type, or (if there is a right operand) a second parameter
2206   //        of type T2 or "reference to (possibly cv-qualified) T2",
2207   //        when T2 is an enumeration type, are candidate functions.
2208   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2209   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2210   LookupName(Operators, S);
2211 
2212   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2213 
2214   if (Operators.empty())
2215     return;
2216 
2217   for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2218        Op != OpEnd; ++Op) {
2219     NamedDecl *Found = (*Op)->getUnderlyingDecl();
2220     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2221       if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2222         Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2223     } else if (FunctionTemplateDecl *FunTmpl
2224                  = dyn_cast<FunctionTemplateDecl>(Found)) {
2225       // FIXME: friend operators?
2226       // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2227       // later?
2228       if (!FunTmpl->getDeclContext()->isRecord())
2229         Functions.addDecl(*Op, Op.getAccess());
2230     }
2231   }
2232 }
2233 
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2234 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2235                                                             CXXSpecialMember SM,
2236                                                             bool ConstArg,
2237                                                             bool VolatileArg,
2238                                                             bool RValueThis,
2239                                                             bool ConstThis,
2240                                                             bool VolatileThis) {
2241   RD = RD->getDefinition();
2242   assert((RD && !RD->isBeingDefined()) &&
2243          "doing special member lookup into record that isn't fully complete");
2244   if (RValueThis || ConstThis || VolatileThis)
2245     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2246            "constructors and destructors always have unqualified lvalue this");
2247   if (ConstArg || VolatileArg)
2248     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2249            "parameter-less special members can't have qualified arguments");
2250 
2251   llvm::FoldingSetNodeID ID;
2252   ID.AddPointer(RD);
2253   ID.AddInteger(SM);
2254   ID.AddInteger(ConstArg);
2255   ID.AddInteger(VolatileArg);
2256   ID.AddInteger(RValueThis);
2257   ID.AddInteger(ConstThis);
2258   ID.AddInteger(VolatileThis);
2259 
2260   void *InsertPoint;
2261   SpecialMemberOverloadResult *Result =
2262     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2263 
2264   // This was already cached
2265   if (Result)
2266     return Result;
2267 
2268   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2269   Result = new (Result) SpecialMemberOverloadResult(ID);
2270   SpecialMemberCache.InsertNode(Result, InsertPoint);
2271 
2272   if (SM == CXXDestructor) {
2273     if (!RD->hasDeclaredDestructor())
2274       DeclareImplicitDestructor(RD);
2275     CXXDestructorDecl *DD = RD->getDestructor();
2276     assert(DD && "record without a destructor");
2277     Result->setMethod(DD);
2278     Result->setKind(DD->isDeleted() ?
2279                     SpecialMemberOverloadResult::NoMemberOrDeleted :
2280                     SpecialMemberOverloadResult::SuccessNonConst);
2281     return Result;
2282   }
2283 
2284   // Prepare for overload resolution. Here we construct a synthetic argument
2285   // if necessary and make sure that implicit functions are declared.
2286   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2287   DeclarationName Name;
2288   Expr *Arg = 0;
2289   unsigned NumArgs;
2290 
2291   if (SM == CXXDefaultConstructor) {
2292     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2293     NumArgs = 0;
2294     if (RD->needsImplicitDefaultConstructor())
2295       DeclareImplicitDefaultConstructor(RD);
2296   } else {
2297     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2298       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2299       if (!RD->hasDeclaredCopyConstructor())
2300         DeclareImplicitCopyConstructor(RD);
2301       if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveConstructor())
2302         DeclareImplicitMoveConstructor(RD);
2303     } else {
2304       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2305       if (!RD->hasDeclaredCopyAssignment())
2306         DeclareImplicitCopyAssignment(RD);
2307       if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveAssignment())
2308         DeclareImplicitMoveAssignment(RD);
2309     }
2310 
2311     QualType ArgType = CanTy;
2312     if (ConstArg)
2313       ArgType.addConst();
2314     if (VolatileArg)
2315       ArgType.addVolatile();
2316 
2317     // This isn't /really/ specified by the standard, but it's implied
2318     // we should be working from an RValue in the case of move to ensure
2319     // that we prefer to bind to rvalue references, and an LValue in the
2320     // case of copy to ensure we don't bind to rvalue references.
2321     // Possibly an XValue is actually correct in the case of move, but
2322     // there is no semantic difference for class types in this restricted
2323     // case.
2324     ExprValueKind VK;
2325     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2326       VK = VK_LValue;
2327     else
2328       VK = VK_RValue;
2329 
2330     NumArgs = 1;
2331     Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType, VK);
2332   }
2333 
2334   // Create the object argument
2335   QualType ThisTy = CanTy;
2336   if (ConstThis)
2337     ThisTy.addConst();
2338   if (VolatileThis)
2339     ThisTy.addVolatile();
2340   Expr::Classification Classification =
2341     (new (Context) OpaqueValueExpr(SourceLocation(), ThisTy,
2342                                    RValueThis ? VK_RValue : VK_LValue))->
2343         Classify(Context);
2344 
2345   // Now we perform lookup on the name we computed earlier and do overload
2346   // resolution. Lookup is only performed directly into the class since there
2347   // will always be a (possibly implicit) declaration to shadow any others.
2348   OverloadCandidateSet OCS((SourceLocation()));
2349   DeclContext::lookup_iterator I, E;
2350   SpecialMemberOverloadResult::Kind SuccessKind =
2351       SpecialMemberOverloadResult::SuccessNonConst;
2352 
2353   llvm::tie(I, E) = RD->lookup(Name);
2354   assert((I != E) &&
2355          "lookup for a constructor or assignment operator was empty");
2356   for ( ; I != E; ++I) {
2357     Decl *Cand = *I;
2358 
2359     if (Cand->isInvalidDecl())
2360       continue;
2361 
2362     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2363       // FIXME: [namespace.udecl]p15 says that we should only consider a
2364       // using declaration here if it does not match a declaration in the
2365       // derived class. We do not implement this correctly in other cases
2366       // either.
2367       Cand = U->getTargetDecl();
2368 
2369       if (Cand->isInvalidDecl())
2370         continue;
2371     }
2372 
2373     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2374       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2375         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2376                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
2377                            OCS, true);
2378       else
2379         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2380                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2381 
2382       // Here we're looking for a const parameter to speed up creation of
2383       // implicit copy methods.
2384       if ((SM == CXXCopyAssignment && M->isCopyAssignmentOperator()) ||
2385           (SM == CXXCopyConstructor &&
2386             cast<CXXConstructorDecl>(M)->isCopyConstructor())) {
2387         QualType ArgType = M->getType()->getAs<FunctionProtoType>()->getArgType(0);
2388         if (!ArgType->isReferenceType() ||
2389             ArgType->getPointeeType().isConstQualified())
2390           SuccessKind = SpecialMemberOverloadResult::SuccessConst;
2391       }
2392     } else if (FunctionTemplateDecl *Tmpl =
2393                  dyn_cast<FunctionTemplateDecl>(Cand)) {
2394       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2395         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2396                                    RD, 0, ThisTy, Classification,
2397                                    llvm::makeArrayRef(&Arg, NumArgs),
2398                                    OCS, true);
2399       else
2400         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2401                                      0, llvm::makeArrayRef(&Arg, NumArgs),
2402                                      OCS, true);
2403     } else {
2404       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2405     }
2406   }
2407 
2408   OverloadCandidateSet::iterator Best;
2409   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2410     case OR_Success:
2411       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2412       Result->setKind(SuccessKind);
2413       break;
2414 
2415     case OR_Deleted:
2416       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2417       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2418       break;
2419 
2420     case OR_Ambiguous:
2421       Result->setMethod(0);
2422       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2423       break;
2424 
2425     case OR_No_Viable_Function:
2426       Result->setMethod(0);
2427       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2428       break;
2429   }
2430 
2431   return Result;
2432 }
2433 
2434 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2435 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2436   SpecialMemberOverloadResult *Result =
2437     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2438                         false, false);
2439 
2440   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2441 }
2442 
2443 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals,bool * ConstParamMatch)2444 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2445                                                    unsigned Quals,
2446                                                    bool *ConstParamMatch) {
2447   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2448          "non-const, non-volatile qualifiers for copy ctor arg");
2449   SpecialMemberOverloadResult *Result =
2450     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2451                         Quals & Qualifiers::Volatile, false, false, false);
2452 
2453   if (ConstParamMatch)
2454     *ConstParamMatch = Result->hasConstParamMatch();
2455 
2456   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2457 }
2458 
2459 /// \brief Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class)2460 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class) {
2461   SpecialMemberOverloadResult *Result =
2462     LookupSpecialMember(Class, CXXMoveConstructor, false,
2463                         false, false, false, false);
2464 
2465   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2466 }
2467 
2468 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2469 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2470   // If the implicit constructors have not yet been declared, do so now.
2471   if (CanDeclareSpecialMemberFunction(Context, Class)) {
2472     if (Class->needsImplicitDefaultConstructor())
2473       DeclareImplicitDefaultConstructor(Class);
2474     if (!Class->hasDeclaredCopyConstructor())
2475       DeclareImplicitCopyConstructor(Class);
2476     if (getLangOpts().CPlusPlus0x && Class->needsImplicitMoveConstructor())
2477       DeclareImplicitMoveConstructor(Class);
2478   }
2479 
2480   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2481   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2482   return Class->lookup(Name);
2483 }
2484 
2485 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals,bool * ConstParamMatch)2486 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2487                                              unsigned Quals, bool RValueThis,
2488                                              unsigned ThisQuals,
2489                                              bool *ConstParamMatch) {
2490   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2491          "non-const, non-volatile qualifiers for copy assignment arg");
2492   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2493          "non-const, non-volatile qualifiers for copy assignment this");
2494   SpecialMemberOverloadResult *Result =
2495     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2496                         Quals & Qualifiers::Volatile, RValueThis,
2497                         ThisQuals & Qualifiers::Const,
2498                         ThisQuals & Qualifiers::Volatile);
2499 
2500   if (ConstParamMatch)
2501     *ConstParamMatch = Result->hasConstParamMatch();
2502 
2503   return Result->getMethod();
2504 }
2505 
2506 /// \brief Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,bool RValueThis,unsigned ThisQuals)2507 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2508                                             bool RValueThis,
2509                                             unsigned ThisQuals) {
2510   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2511          "non-const, non-volatile qualifiers for copy assignment this");
2512   SpecialMemberOverloadResult *Result =
2513     LookupSpecialMember(Class, CXXMoveAssignment, false, false, RValueThis,
2514                         ThisQuals & Qualifiers::Const,
2515                         ThisQuals & Qualifiers::Volatile);
2516 
2517   return Result->getMethod();
2518 }
2519 
2520 /// \brief Look for the destructor of the given class.
2521 ///
2522 /// During semantic analysis, this routine should be used in lieu of
2523 /// CXXRecordDecl::getDestructor().
2524 ///
2525 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2526 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2527   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2528                                                      false, false, false,
2529                                                      false, false)->getMethod());
2530 }
2531 
2532 /// LookupLiteralOperator - Determine which literal operator should be used for
2533 /// a user-defined literal, per C++11 [lex.ext].
2534 ///
2535 /// Normal overload resolution is not used to select which literal operator to
2536 /// call for a user-defined literal. Look up the provided literal operator name,
2537 /// and filter the results to the appropriate set for the given argument types.
2538 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRawAndTemplate)2539 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2540                             ArrayRef<QualType> ArgTys,
2541                             bool AllowRawAndTemplate) {
2542   LookupName(R, S);
2543   assert(R.getResultKind() != LookupResult::Ambiguous &&
2544          "literal operator lookup can't be ambiguous");
2545 
2546   // Filter the lookup results appropriately.
2547   LookupResult::Filter F = R.makeFilter();
2548 
2549   bool FoundTemplate = false;
2550   bool FoundRaw = false;
2551   bool FoundExactMatch = false;
2552 
2553   while (F.hasNext()) {
2554     Decl *D = F.next();
2555     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2556       D = USD->getTargetDecl();
2557 
2558     bool IsTemplate = isa<FunctionTemplateDecl>(D);
2559     bool IsRaw = false;
2560     bool IsExactMatch = false;
2561 
2562     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2563       if (FD->getNumParams() == 1 &&
2564           FD->getParamDecl(0)->getType()->getAs<PointerType>())
2565         IsRaw = true;
2566       else {
2567         IsExactMatch = true;
2568         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2569           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2570           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2571             IsExactMatch = false;
2572             break;
2573           }
2574         }
2575       }
2576     }
2577 
2578     if (IsExactMatch) {
2579       FoundExactMatch = true;
2580       AllowRawAndTemplate = false;
2581       if (FoundRaw || FoundTemplate) {
2582         // Go through again and remove the raw and template decls we've
2583         // already found.
2584         F.restart();
2585         FoundRaw = FoundTemplate = false;
2586       }
2587     } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2588       FoundTemplate |= IsTemplate;
2589       FoundRaw |= IsRaw;
2590     } else {
2591       F.erase();
2592     }
2593   }
2594 
2595   F.done();
2596 
2597   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2598   // parameter type, that is used in preference to a raw literal operator
2599   // or literal operator template.
2600   if (FoundExactMatch)
2601     return LOLR_Cooked;
2602 
2603   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2604   // operator template, but not both.
2605   if (FoundRaw && FoundTemplate) {
2606     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2607     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2608       Decl *D = *I;
2609       if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2610         D = USD->getTargetDecl();
2611       if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2612         D = FunTmpl->getTemplatedDecl();
2613       NoteOverloadCandidate(cast<FunctionDecl>(D));
2614     }
2615     return LOLR_Error;
2616   }
2617 
2618   if (FoundRaw)
2619     return LOLR_Raw;
2620 
2621   if (FoundTemplate)
2622     return LOLR_Template;
2623 
2624   // Didn't find anything we could use.
2625   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2626     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2627     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2628   return LOLR_Error;
2629 }
2630 
insert(NamedDecl * New)2631 void ADLResult::insert(NamedDecl *New) {
2632   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2633 
2634   // If we haven't yet seen a decl for this key, or the last decl
2635   // was exactly this one, we're done.
2636   if (Old == 0 || Old == New) {
2637     Old = New;
2638     return;
2639   }
2640 
2641   // Otherwise, decide which is a more recent redeclaration.
2642   FunctionDecl *OldFD, *NewFD;
2643   if (isa<FunctionTemplateDecl>(New)) {
2644     OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2645     NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2646   } else {
2647     OldFD = cast<FunctionDecl>(Old);
2648     NewFD = cast<FunctionDecl>(New);
2649   }
2650 
2651   FunctionDecl *Cursor = NewFD;
2652   while (true) {
2653     Cursor = Cursor->getPreviousDecl();
2654 
2655     // If we got to the end without finding OldFD, OldFD is the newer
2656     // declaration;  leave things as they are.
2657     if (!Cursor) return;
2658 
2659     // If we do find OldFD, then NewFD is newer.
2660     if (Cursor == OldFD) break;
2661 
2662     // Otherwise, keep looking.
2663   }
2664 
2665   Old = New;
2666 }
2667 
ArgumentDependentLookup(DeclarationName Name,bool Operator,SourceLocation Loc,llvm::ArrayRef<Expr * > Args,ADLResult & Result,bool StdNamespaceIsAssociated)2668 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2669                                    SourceLocation Loc,
2670                                    llvm::ArrayRef<Expr *> Args,
2671                                    ADLResult &Result,
2672                                    bool StdNamespaceIsAssociated) {
2673   // Find all of the associated namespaces and classes based on the
2674   // arguments we have.
2675   AssociatedNamespaceSet AssociatedNamespaces;
2676   AssociatedClassSet AssociatedClasses;
2677   FindAssociatedClassesAndNamespaces(Args,
2678                                      AssociatedNamespaces,
2679                                      AssociatedClasses);
2680   if (StdNamespaceIsAssociated && StdNamespace)
2681     AssociatedNamespaces.insert(getStdNamespace());
2682 
2683   QualType T1, T2;
2684   if (Operator) {
2685     T1 = Args[0]->getType();
2686     if (Args.size() >= 2)
2687       T2 = Args[1]->getType();
2688   }
2689 
2690   // Try to complete all associated classes, in case they contain a
2691   // declaration of a friend function.
2692   for (AssociatedClassSet::iterator C = AssociatedClasses.begin(),
2693                                     CEnd = AssociatedClasses.end();
2694        C != CEnd; ++C)
2695     RequireCompleteType(Loc, Context.getRecordType(*C), 0);
2696 
2697   // C++ [basic.lookup.argdep]p3:
2698   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2699   //   and let Y be the lookup set produced by argument dependent
2700   //   lookup (defined as follows). If X contains [...] then Y is
2701   //   empty. Otherwise Y is the set of declarations found in the
2702   //   namespaces associated with the argument types as described
2703   //   below. The set of declarations found by the lookup of the name
2704   //   is the union of X and Y.
2705   //
2706   // Here, we compute Y and add its members to the overloaded
2707   // candidate set.
2708   for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2709                                      NSEnd = AssociatedNamespaces.end();
2710        NS != NSEnd; ++NS) {
2711     //   When considering an associated namespace, the lookup is the
2712     //   same as the lookup performed when the associated namespace is
2713     //   used as a qualifier (3.4.3.2) except that:
2714     //
2715     //     -- Any using-directives in the associated namespace are
2716     //        ignored.
2717     //
2718     //     -- Any namespace-scope friend functions declared in
2719     //        associated classes are visible within their respective
2720     //        namespaces even if they are not visible during an ordinary
2721     //        lookup (11.4).
2722     DeclContext::lookup_iterator I, E;
2723     for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2724       NamedDecl *D = *I;
2725       // If the only declaration here is an ordinary friend, consider
2726       // it only if it was declared in an associated classes.
2727       if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2728         DeclContext *LexDC = D->getLexicalDeclContext();
2729         if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2730           continue;
2731       }
2732 
2733       if (isa<UsingShadowDecl>(D))
2734         D = cast<UsingShadowDecl>(D)->getTargetDecl();
2735 
2736       if (isa<FunctionDecl>(D)) {
2737         if (Operator &&
2738             !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2739                                                     T1, T2, Context))
2740           continue;
2741       } else if (!isa<FunctionTemplateDecl>(D))
2742         continue;
2743 
2744       Result.insert(D);
2745     }
2746   }
2747 }
2748 
2749 //----------------------------------------------------------------------------
2750 // Search for all visible declarations.
2751 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2752 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2753 
2754 namespace {
2755 
2756 class ShadowContextRAII;
2757 
2758 class VisibleDeclsRecord {
2759 public:
2760   /// \brief An entry in the shadow map, which is optimized to store a
2761   /// single declaration (the common case) but can also store a list
2762   /// of declarations.
2763   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2764 
2765 private:
2766   /// \brief A mapping from declaration names to the declarations that have
2767   /// this name within a particular scope.
2768   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2769 
2770   /// \brief A list of shadow maps, which is used to model name hiding.
2771   std::list<ShadowMap> ShadowMaps;
2772 
2773   /// \brief The declaration contexts we have already visited.
2774   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2775 
2776   friend class ShadowContextRAII;
2777 
2778 public:
2779   /// \brief Determine whether we have already visited this context
2780   /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2781   bool visitedContext(DeclContext *Ctx) {
2782     return !VisitedContexts.insert(Ctx);
2783   }
2784 
alreadyVisitedContext(DeclContext * Ctx)2785   bool alreadyVisitedContext(DeclContext *Ctx) {
2786     return VisitedContexts.count(Ctx);
2787   }
2788 
2789   /// \brief Determine whether the given declaration is hidden in the
2790   /// current scope.
2791   ///
2792   /// \returns the declaration that hides the given declaration, or
2793   /// NULL if no such declaration exists.
2794   NamedDecl *checkHidden(NamedDecl *ND);
2795 
2796   /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2797   void add(NamedDecl *ND) {
2798     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2799   }
2800 };
2801 
2802 /// \brief RAII object that records when we've entered a shadow context.
2803 class ShadowContextRAII {
2804   VisibleDeclsRecord &Visible;
2805 
2806   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2807 
2808 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2809   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2810     Visible.ShadowMaps.push_back(ShadowMap());
2811   }
2812 
~ShadowContextRAII()2813   ~ShadowContextRAII() {
2814     Visible.ShadowMaps.pop_back();
2815   }
2816 };
2817 
2818 } // end anonymous namespace
2819 
checkHidden(NamedDecl * ND)2820 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2821   // Look through using declarations.
2822   ND = ND->getUnderlyingDecl();
2823 
2824   unsigned IDNS = ND->getIdentifierNamespace();
2825   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2826   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2827        SM != SMEnd; ++SM) {
2828     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2829     if (Pos == SM->end())
2830       continue;
2831 
2832     for (ShadowMapEntry::iterator I = Pos->second.begin(),
2833                                IEnd = Pos->second.end();
2834          I != IEnd; ++I) {
2835       // A tag declaration does not hide a non-tag declaration.
2836       if ((*I)->hasTagIdentifierNamespace() &&
2837           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2838                    Decl::IDNS_ObjCProtocol)))
2839         continue;
2840 
2841       // Protocols are in distinct namespaces from everything else.
2842       if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2843            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2844           (*I)->getIdentifierNamespace() != IDNS)
2845         continue;
2846 
2847       // Functions and function templates in the same scope overload
2848       // rather than hide.  FIXME: Look for hiding based on function
2849       // signatures!
2850       if ((*I)->isFunctionOrFunctionTemplate() &&
2851           ND->isFunctionOrFunctionTemplate() &&
2852           SM == ShadowMaps.rbegin())
2853         continue;
2854 
2855       // We've found a declaration that hides this one.
2856       return *I;
2857     }
2858   }
2859 
2860   return 0;
2861 }
2862 
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2863 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2864                                bool QualifiedNameLookup,
2865                                bool InBaseClass,
2866                                VisibleDeclConsumer &Consumer,
2867                                VisibleDeclsRecord &Visited) {
2868   if (!Ctx)
2869     return;
2870 
2871   // Make sure we don't visit the same context twice.
2872   if (Visited.visitedContext(Ctx->getPrimaryContext()))
2873     return;
2874 
2875   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2876     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2877 
2878   // Enumerate all of the results in this context.
2879   for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2880                                       LEnd = Ctx->lookups_end();
2881        L != LEnd; ++L) {
2882     for (DeclContext::lookup_result R = *L; R.first != R.second; ++R.first) {
2883       if (NamedDecl *ND = dyn_cast<NamedDecl>(*R.first)) {
2884         if ((ND = Result.getAcceptableDecl(ND))) {
2885           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2886           Visited.add(ND);
2887         }
2888       }
2889     }
2890   }
2891 
2892   // Traverse using directives for qualified name lookup.
2893   if (QualifiedNameLookup) {
2894     ShadowContextRAII Shadow(Visited);
2895     DeclContext::udir_iterator I, E;
2896     for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2897       LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2898                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
2899     }
2900   }
2901 
2902   // Traverse the contexts of inherited C++ classes.
2903   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2904     if (!Record->hasDefinition())
2905       return;
2906 
2907     for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2908                                          BEnd = Record->bases_end();
2909          B != BEnd; ++B) {
2910       QualType BaseType = B->getType();
2911 
2912       // Don't look into dependent bases, because name lookup can't look
2913       // there anyway.
2914       if (BaseType->isDependentType())
2915         continue;
2916 
2917       const RecordType *Record = BaseType->getAs<RecordType>();
2918       if (!Record)
2919         continue;
2920 
2921       // FIXME: It would be nice to be able to determine whether referencing
2922       // a particular member would be ambiguous. For example, given
2923       //
2924       //   struct A { int member; };
2925       //   struct B { int member; };
2926       //   struct C : A, B { };
2927       //
2928       //   void f(C *c) { c->### }
2929       //
2930       // accessing 'member' would result in an ambiguity. However, we
2931       // could be smart enough to qualify the member with the base
2932       // class, e.g.,
2933       //
2934       //   c->B::member
2935       //
2936       // or
2937       //
2938       //   c->A::member
2939 
2940       // Find results in this base class (and its bases).
2941       ShadowContextRAII Shadow(Visited);
2942       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2943                          true, Consumer, Visited);
2944     }
2945   }
2946 
2947   // Traverse the contexts of Objective-C classes.
2948   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2949     // Traverse categories.
2950     for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2951          Category; Category = Category->getNextClassCategory()) {
2952       ShadowContextRAII Shadow(Visited);
2953       LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2954                          Consumer, Visited);
2955     }
2956 
2957     // Traverse protocols.
2958     for (ObjCInterfaceDecl::all_protocol_iterator
2959          I = IFace->all_referenced_protocol_begin(),
2960          E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2961       ShadowContextRAII Shadow(Visited);
2962       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2963                          Visited);
2964     }
2965 
2966     // Traverse the superclass.
2967     if (IFace->getSuperClass()) {
2968       ShadowContextRAII Shadow(Visited);
2969       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2970                          true, Consumer, Visited);
2971     }
2972 
2973     // If there is an implementation, traverse it. We do this to find
2974     // synthesized ivars.
2975     if (IFace->getImplementation()) {
2976       ShadowContextRAII Shadow(Visited);
2977       LookupVisibleDecls(IFace->getImplementation(), Result,
2978                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
2979     }
2980   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2981     for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2982            E = Protocol->protocol_end(); I != E; ++I) {
2983       ShadowContextRAII Shadow(Visited);
2984       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2985                          Visited);
2986     }
2987   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2988     for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2989            E = Category->protocol_end(); I != E; ++I) {
2990       ShadowContextRAII Shadow(Visited);
2991       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2992                          Visited);
2993     }
2994 
2995     // If there is an implementation, traverse it.
2996     if (Category->getImplementation()) {
2997       ShadowContextRAII Shadow(Visited);
2998       LookupVisibleDecls(Category->getImplementation(), Result,
2999                          QualifiedNameLookup, true, Consumer, Visited);
3000     }
3001   }
3002 }
3003 
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)3004 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3005                                UnqualUsingDirectiveSet &UDirs,
3006                                VisibleDeclConsumer &Consumer,
3007                                VisibleDeclsRecord &Visited) {
3008   if (!S)
3009     return;
3010 
3011   if (!S->getEntity() ||
3012       (!S->getParent() &&
3013        !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
3014       ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
3015     // Walk through the declarations in this Scope.
3016     for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
3017          D != DEnd; ++D) {
3018       if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
3019         if ((ND = Result.getAcceptableDecl(ND))) {
3020           Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
3021           Visited.add(ND);
3022         }
3023     }
3024   }
3025 
3026   // FIXME: C++ [temp.local]p8
3027   DeclContext *Entity = 0;
3028   if (S->getEntity()) {
3029     // Look into this scope's declaration context, along with any of its
3030     // parent lookup contexts (e.g., enclosing classes), up to the point
3031     // where we hit the context stored in the next outer scope.
3032     Entity = (DeclContext *)S->getEntity();
3033     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3034 
3035     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3036          Ctx = Ctx->getLookupParent()) {
3037       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3038         if (Method->isInstanceMethod()) {
3039           // For instance methods, look for ivars in the method's interface.
3040           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3041                                   Result.getNameLoc(), Sema::LookupMemberName);
3042           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3043             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3044                                /*InBaseClass=*/false, Consumer, Visited);
3045           }
3046         }
3047 
3048         // We've already performed all of the name lookup that we need
3049         // to for Objective-C methods; the next context will be the
3050         // outer scope.
3051         break;
3052       }
3053 
3054       if (Ctx->isFunctionOrMethod())
3055         continue;
3056 
3057       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3058                          /*InBaseClass=*/false, Consumer, Visited);
3059     }
3060   } else if (!S->getParent()) {
3061     // Look into the translation unit scope. We walk through the translation
3062     // unit's declaration context, because the Scope itself won't have all of
3063     // the declarations if we loaded a precompiled header.
3064     // FIXME: We would like the translation unit's Scope object to point to the
3065     // translation unit, so we don't need this special "if" branch. However,
3066     // doing so would force the normal C++ name-lookup code to look into the
3067     // translation unit decl when the IdentifierInfo chains would suffice.
3068     // Once we fix that problem (which is part of a more general "don't look
3069     // in DeclContexts unless we have to" optimization), we can eliminate this.
3070     Entity = Result.getSema().Context.getTranslationUnitDecl();
3071     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3072                        /*InBaseClass=*/false, Consumer, Visited);
3073   }
3074 
3075   if (Entity) {
3076     // Lookup visible declarations in any namespaces found by using
3077     // directives.
3078     UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3079     llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3080     for (; UI != UEnd; ++UI)
3081       LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3082                          Result, /*QualifiedNameLookup=*/false,
3083                          /*InBaseClass=*/false, Consumer, Visited);
3084   }
3085 
3086   // Lookup names in the parent scope.
3087   ShadowContextRAII Shadow(Visited);
3088   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3089 }
3090 
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3091 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3092                               VisibleDeclConsumer &Consumer,
3093                               bool IncludeGlobalScope) {
3094   // Determine the set of using directives available during
3095   // unqualified name lookup.
3096   Scope *Initial = S;
3097   UnqualUsingDirectiveSet UDirs;
3098   if (getLangOpts().CPlusPlus) {
3099     // Find the first namespace or translation-unit scope.
3100     while (S && !isNamespaceOrTranslationUnitScope(S))
3101       S = S->getParent();
3102 
3103     UDirs.visitScopeChain(Initial, S);
3104   }
3105   UDirs.done();
3106 
3107   // Look for visible declarations.
3108   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3109   VisibleDeclsRecord Visited;
3110   if (!IncludeGlobalScope)
3111     Visited.visitedContext(Context.getTranslationUnitDecl());
3112   ShadowContextRAII Shadow(Visited);
3113   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3114 }
3115 
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)3116 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3117                               VisibleDeclConsumer &Consumer,
3118                               bool IncludeGlobalScope) {
3119   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3120   VisibleDeclsRecord Visited;
3121   if (!IncludeGlobalScope)
3122     Visited.visitedContext(Context.getTranslationUnitDecl());
3123   ShadowContextRAII Shadow(Visited);
3124   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3125                        /*InBaseClass=*/false, Consumer, Visited);
3126 }
3127 
3128 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3129 /// If GnuLabelLoc is a valid source location, then this is a definition
3130 /// of an __label__ label name, otherwise it is a normal label definition
3131 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)3132 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3133                                      SourceLocation GnuLabelLoc) {
3134   // Do a lookup to see if we have a label with this name already.
3135   NamedDecl *Res = 0;
3136 
3137   if (GnuLabelLoc.isValid()) {
3138     // Local label definitions always shadow existing labels.
3139     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3140     Scope *S = CurScope;
3141     PushOnScopeChains(Res, S, true);
3142     return cast<LabelDecl>(Res);
3143   }
3144 
3145   // Not a GNU local label.
3146   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3147   // If we found a label, check to see if it is in the same context as us.
3148   // When in a Block, we don't want to reuse a label in an enclosing function.
3149   if (Res && Res->getDeclContext() != CurContext)
3150     Res = 0;
3151   if (Res == 0) {
3152     // If not forward referenced or defined already, create the backing decl.
3153     Res = LabelDecl::Create(Context, CurContext, Loc, II);
3154     Scope *S = CurScope->getFnParent();
3155     assert(S && "Not in a function?");
3156     PushOnScopeChains(Res, S, true);
3157   }
3158   return cast<LabelDecl>(Res);
3159 }
3160 
3161 //===----------------------------------------------------------------------===//
3162 // Typo correction
3163 //===----------------------------------------------------------------------===//
3164 
3165 namespace {
3166 
3167 typedef llvm::StringMap<TypoCorrection, llvm::BumpPtrAllocator> TypoResultsMap;
3168 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3169 
3170 static const unsigned MaxTypoDistanceResultSets = 5;
3171 
3172 class TypoCorrectionConsumer : public VisibleDeclConsumer {
3173   /// \brief The name written that is a typo in the source.
3174   StringRef Typo;
3175 
3176   /// \brief The results found that have the smallest edit distance
3177   /// found (so far) with the typo name.
3178   ///
3179   /// The pointer value being set to the current DeclContext indicates
3180   /// whether there is a keyword with this name.
3181   TypoEditDistanceMap BestResults;
3182 
3183   Sema &SemaRef;
3184 
3185 public:
TypoCorrectionConsumer(Sema & SemaRef,IdentifierInfo * Typo)3186   explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3187     : Typo(Typo->getName()),
3188       SemaRef(SemaRef) { }
3189 
3190   virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3191                          bool InBaseClass);
3192   void FoundName(StringRef Name);
3193   void addKeywordResult(StringRef Keyword);
3194   void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3195                NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3196   void addCorrection(TypoCorrection Correction);
3197 
3198   typedef TypoResultsMap::iterator result_iterator;
3199   typedef TypoEditDistanceMap::iterator distance_iterator;
begin()3200   distance_iterator begin() { return BestResults.begin(); }
end()3201   distance_iterator end()  { return BestResults.end(); }
erase(distance_iterator I)3202   void erase(distance_iterator I) { BestResults.erase(I); }
size() const3203   unsigned size() const { return BestResults.size(); }
empty() const3204   bool empty() const { return BestResults.empty(); }
3205 
operator [](StringRef Name)3206   TypoCorrection &operator[](StringRef Name) {
3207     return BestResults.begin()->second[Name];
3208   }
3209 
getBestEditDistance(bool Normalized)3210   unsigned getBestEditDistance(bool Normalized) {
3211     if (BestResults.empty())
3212       return (std::numeric_limits<unsigned>::max)();
3213 
3214     unsigned BestED = BestResults.begin()->first;
3215     return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3216   }
3217 };
3218 
3219 }
3220 
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)3221 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3222                                        DeclContext *Ctx, bool InBaseClass) {
3223   // Don't consider hidden names for typo correction.
3224   if (Hiding)
3225     return;
3226 
3227   // Only consider entities with identifiers for names, ignoring
3228   // special names (constructors, overloaded operators, selectors,
3229   // etc.).
3230   IdentifierInfo *Name = ND->getIdentifier();
3231   if (!Name)
3232     return;
3233 
3234   FoundName(Name->getName());
3235 }
3236 
FoundName(StringRef Name)3237 void TypoCorrectionConsumer::FoundName(StringRef Name) {
3238   // Use a simple length-based heuristic to determine the minimum possible
3239   // edit distance. If the minimum isn't good enough, bail out early.
3240   unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3241   if (MinED && Typo.size() / MinED < 3)
3242     return;
3243 
3244   // Compute an upper bound on the allowable edit distance, so that the
3245   // edit-distance algorithm can short-circuit.
3246   unsigned UpperBound = (Typo.size() + 2) / 3;
3247 
3248   // Compute the edit distance between the typo and the name of this
3249   // entity, and add the identifier to the list of results.
3250   addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3251 }
3252 
addKeywordResult(StringRef Keyword)3253 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3254   // Compute the edit distance between the typo and this keyword,
3255   // and add the keyword to the list of results.
3256   addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3257 }
3258 
addName(StringRef Name,NamedDecl * ND,unsigned Distance,NestedNameSpecifier * NNS,bool isKeyword)3259 void TypoCorrectionConsumer::addName(StringRef Name,
3260                                      NamedDecl *ND,
3261                                      unsigned Distance,
3262                                      NestedNameSpecifier *NNS,
3263                                      bool isKeyword) {
3264   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3265   if (isKeyword) TC.makeKeyword();
3266   addCorrection(TC);
3267 }
3268 
addCorrection(TypoCorrection Correction)3269 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3270   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3271   TypoResultsMap &Map = BestResults[Correction.getEditDistance(false)];
3272 
3273   TypoCorrection &CurrentCorrection = Map[Name];
3274   if (!CurrentCorrection ||
3275       // FIXME: The following should be rolled up into an operator< on
3276       // TypoCorrection with a more principled definition.
3277       CurrentCorrection.isKeyword() < Correction.isKeyword() ||
3278       Correction.getAsString(SemaRef.getLangOpts()) <
3279       CurrentCorrection.getAsString(SemaRef.getLangOpts()))
3280     CurrentCorrection = Correction;
3281 
3282   while (BestResults.size() > MaxTypoDistanceResultSets)
3283     erase(llvm::prior(BestResults.end()));
3284 }
3285 
3286 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3287 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3288 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)3289 static void getNestedNameSpecifierIdentifiers(
3290     NestedNameSpecifier *NNS,
3291     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3292   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3293     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3294   else
3295     Identifiers.clear();
3296 
3297   const IdentifierInfo *II = NULL;
3298 
3299   switch (NNS->getKind()) {
3300   case NestedNameSpecifier::Identifier:
3301     II = NNS->getAsIdentifier();
3302     break;
3303 
3304   case NestedNameSpecifier::Namespace:
3305     if (NNS->getAsNamespace()->isAnonymousNamespace())
3306       return;
3307     II = NNS->getAsNamespace()->getIdentifier();
3308     break;
3309 
3310   case NestedNameSpecifier::NamespaceAlias:
3311     II = NNS->getAsNamespaceAlias()->getIdentifier();
3312     break;
3313 
3314   case NestedNameSpecifier::TypeSpecWithTemplate:
3315   case NestedNameSpecifier::TypeSpec:
3316     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3317     break;
3318 
3319   case NestedNameSpecifier::Global:
3320     return;
3321   }
3322 
3323   if (II)
3324     Identifiers.push_back(II);
3325 }
3326 
3327 namespace {
3328 
3329 class SpecifierInfo {
3330  public:
3331   DeclContext* DeclCtx;
3332   NestedNameSpecifier* NameSpecifier;
3333   unsigned EditDistance;
3334 
SpecifierInfo(DeclContext * Ctx,NestedNameSpecifier * NNS,unsigned ED)3335   SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3336       : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3337 };
3338 
3339 typedef SmallVector<DeclContext*, 4> DeclContextList;
3340 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3341 
3342 class NamespaceSpecifierSet {
3343   ASTContext &Context;
3344   DeclContextList CurContextChain;
3345   SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3346   SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3347   bool isSorted;
3348 
3349   SpecifierInfoList Specifiers;
3350   llvm::SmallSetVector<unsigned, 4> Distances;
3351   llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3352 
3353   /// \brief Helper for building the list of DeclContexts between the current
3354   /// context and the top of the translation unit
3355   static DeclContextList BuildContextChain(DeclContext *Start);
3356 
3357   void SortNamespaces();
3358 
3359  public:
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)3360   NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3361                         CXXScopeSpec *CurScopeSpec)
3362       : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3363         isSorted(true) {
3364     if (CurScopeSpec && CurScopeSpec->getScopeRep())
3365       getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3366                                         CurNameSpecifierIdentifiers);
3367     // Build the list of identifiers that would be used for an absolute
3368     // (from the global context) NestedNameSpecifier refering to the current
3369     // context.
3370     for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3371                                         CEnd = CurContextChain.rend();
3372          C != CEnd; ++C) {
3373       if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3374         CurContextIdentifiers.push_back(ND->getIdentifier());
3375     }
3376   }
3377 
3378   /// \brief Add the namespace to the set, computing the corresponding
3379   /// NestedNameSpecifier and its distance in the process.
3380   void AddNamespace(NamespaceDecl *ND);
3381 
3382   typedef SpecifierInfoList::iterator iterator;
begin()3383   iterator begin() {
3384     if (!isSorted) SortNamespaces();
3385     return Specifiers.begin();
3386   }
end()3387   iterator end() { return Specifiers.end(); }
3388 };
3389 
3390 }
3391 
BuildContextChain(DeclContext * Start)3392 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3393   assert(Start && "Bulding a context chain from a null context");
3394   DeclContextList Chain;
3395   for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3396        DC = DC->getLookupParent()) {
3397     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3398     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3399         !(ND && ND->isAnonymousNamespace()))
3400       Chain.push_back(DC->getPrimaryContext());
3401   }
3402   return Chain;
3403 }
3404 
SortNamespaces()3405 void NamespaceSpecifierSet::SortNamespaces() {
3406   SmallVector<unsigned, 4> sortedDistances;
3407   sortedDistances.append(Distances.begin(), Distances.end());
3408 
3409   if (sortedDistances.size() > 1)
3410     std::sort(sortedDistances.begin(), sortedDistances.end());
3411 
3412   Specifiers.clear();
3413   for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3414                                        DIEnd = sortedDistances.end();
3415        DI != DIEnd; ++DI) {
3416     SpecifierInfoList &SpecList = DistanceMap[*DI];
3417     Specifiers.append(SpecList.begin(), SpecList.end());
3418   }
3419 
3420   isSorted = true;
3421 }
3422 
AddNamespace(NamespaceDecl * ND)3423 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3424   DeclContext *Ctx = cast<DeclContext>(ND);
3425   NestedNameSpecifier *NNS = NULL;
3426   unsigned NumSpecifiers = 0;
3427   DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3428   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3429 
3430   // Eliminate common elements from the two DeclContext chains.
3431   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3432                                       CEnd = CurContextChain.rend();
3433        C != CEnd && !NamespaceDeclChain.empty() &&
3434        NamespaceDeclChain.back() == *C; ++C) {
3435     NamespaceDeclChain.pop_back();
3436   }
3437 
3438   // Add an explicit leading '::' specifier if needed.
3439   if (NamespaceDecl *ND =
3440         NamespaceDeclChain.empty() ? NULL :
3441           dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3442     IdentifierInfo *Name = ND->getIdentifier();
3443     if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3444                   Name) != CurContextIdentifiers.end() ||
3445         std::find(CurNameSpecifierIdentifiers.begin(),
3446                   CurNameSpecifierIdentifiers.end(),
3447                   Name) != CurNameSpecifierIdentifiers.end()) {
3448       NamespaceDeclChain = FullNamespaceDeclChain;
3449       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3450     }
3451   }
3452 
3453   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3454   for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3455                                       CEnd = NamespaceDeclChain.rend();
3456        C != CEnd; ++C) {
3457     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3458     if (ND) {
3459       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3460       ++NumSpecifiers;
3461     }
3462   }
3463 
3464   // If the built NestedNameSpecifier would be replacing an existing
3465   // NestedNameSpecifier, use the number of component identifiers that
3466   // would need to be changed as the edit distance instead of the number
3467   // of components in the built NestedNameSpecifier.
3468   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3469     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3470     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3471     NumSpecifiers = llvm::ComputeEditDistance(
3472       llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3473       llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3474   }
3475 
3476   isSorted = false;
3477   Distances.insert(NumSpecifiers);
3478   DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3479 }
3480 
3481 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup)3482 static void LookupPotentialTypoResult(Sema &SemaRef,
3483                                       LookupResult &Res,
3484                                       IdentifierInfo *Name,
3485                                       Scope *S, CXXScopeSpec *SS,
3486                                       DeclContext *MemberContext,
3487                                       bool EnteringContext,
3488                                       bool isObjCIvarLookup) {
3489   Res.suppressDiagnostics();
3490   Res.clear();
3491   Res.setLookupName(Name);
3492   if (MemberContext) {
3493     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3494       if (isObjCIvarLookup) {
3495         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3496           Res.addDecl(Ivar);
3497           Res.resolveKind();
3498           return;
3499         }
3500       }
3501 
3502       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3503         Res.addDecl(Prop);
3504         Res.resolveKind();
3505         return;
3506       }
3507     }
3508 
3509     SemaRef.LookupQualifiedName(Res, MemberContext);
3510     return;
3511   }
3512 
3513   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3514                            EnteringContext);
3515 
3516   // Fake ivar lookup; this should really be part of
3517   // LookupParsedName.
3518   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3519     if (Method->isInstanceMethod() && Method->getClassInterface() &&
3520         (Res.empty() ||
3521          (Res.isSingleResult() &&
3522           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3523        if (ObjCIvarDecl *IV
3524              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3525          Res.addDecl(IV);
3526          Res.resolveKind();
3527        }
3528      }
3529   }
3530 }
3531 
3532 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC)3533 static void AddKeywordsToConsumer(Sema &SemaRef,
3534                                   TypoCorrectionConsumer &Consumer,
3535                                   Scope *S, CorrectionCandidateCallback &CCC) {
3536   if (CCC.WantObjCSuper)
3537     Consumer.addKeywordResult("super");
3538 
3539   if (CCC.WantTypeSpecifiers) {
3540     // Add type-specifier keywords to the set of results.
3541     const char *CTypeSpecs[] = {
3542       "char", "const", "double", "enum", "float", "int", "long", "short",
3543       "signed", "struct", "union", "unsigned", "void", "volatile",
3544       "_Complex", "_Imaginary",
3545       // storage-specifiers as well
3546       "extern", "inline", "static", "typedef"
3547     };
3548 
3549     const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3550     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3551       Consumer.addKeywordResult(CTypeSpecs[I]);
3552 
3553     if (SemaRef.getLangOpts().C99)
3554       Consumer.addKeywordResult("restrict");
3555     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3556       Consumer.addKeywordResult("bool");
3557     else if (SemaRef.getLangOpts().C99)
3558       Consumer.addKeywordResult("_Bool");
3559 
3560     if (SemaRef.getLangOpts().CPlusPlus) {
3561       Consumer.addKeywordResult("class");
3562       Consumer.addKeywordResult("typename");
3563       Consumer.addKeywordResult("wchar_t");
3564 
3565       if (SemaRef.getLangOpts().CPlusPlus0x) {
3566         Consumer.addKeywordResult("char16_t");
3567         Consumer.addKeywordResult("char32_t");
3568         Consumer.addKeywordResult("constexpr");
3569         Consumer.addKeywordResult("decltype");
3570         Consumer.addKeywordResult("thread_local");
3571       }
3572     }
3573 
3574     if (SemaRef.getLangOpts().GNUMode)
3575       Consumer.addKeywordResult("typeof");
3576   }
3577 
3578   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3579     Consumer.addKeywordResult("const_cast");
3580     Consumer.addKeywordResult("dynamic_cast");
3581     Consumer.addKeywordResult("reinterpret_cast");
3582     Consumer.addKeywordResult("static_cast");
3583   }
3584 
3585   if (CCC.WantExpressionKeywords) {
3586     Consumer.addKeywordResult("sizeof");
3587     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3588       Consumer.addKeywordResult("false");
3589       Consumer.addKeywordResult("true");
3590     }
3591 
3592     if (SemaRef.getLangOpts().CPlusPlus) {
3593       const char *CXXExprs[] = {
3594         "delete", "new", "operator", "throw", "typeid"
3595       };
3596       const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3597       for (unsigned I = 0; I != NumCXXExprs; ++I)
3598         Consumer.addKeywordResult(CXXExprs[I]);
3599 
3600       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3601           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3602         Consumer.addKeywordResult("this");
3603 
3604       if (SemaRef.getLangOpts().CPlusPlus0x) {
3605         Consumer.addKeywordResult("alignof");
3606         Consumer.addKeywordResult("nullptr");
3607       }
3608     }
3609   }
3610 
3611   if (CCC.WantRemainingKeywords) {
3612     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3613       // Statements.
3614       const char *CStmts[] = {
3615         "do", "else", "for", "goto", "if", "return", "switch", "while" };
3616       const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3617       for (unsigned I = 0; I != NumCStmts; ++I)
3618         Consumer.addKeywordResult(CStmts[I]);
3619 
3620       if (SemaRef.getLangOpts().CPlusPlus) {
3621         Consumer.addKeywordResult("catch");
3622         Consumer.addKeywordResult("try");
3623       }
3624 
3625       if (S && S->getBreakParent())
3626         Consumer.addKeywordResult("break");
3627 
3628       if (S && S->getContinueParent())
3629         Consumer.addKeywordResult("continue");
3630 
3631       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3632         Consumer.addKeywordResult("case");
3633         Consumer.addKeywordResult("default");
3634       }
3635     } else {
3636       if (SemaRef.getLangOpts().CPlusPlus) {
3637         Consumer.addKeywordResult("namespace");
3638         Consumer.addKeywordResult("template");
3639       }
3640 
3641       if (S && S->isClassScope()) {
3642         Consumer.addKeywordResult("explicit");
3643         Consumer.addKeywordResult("friend");
3644         Consumer.addKeywordResult("mutable");
3645         Consumer.addKeywordResult("private");
3646         Consumer.addKeywordResult("protected");
3647         Consumer.addKeywordResult("public");
3648         Consumer.addKeywordResult("virtual");
3649       }
3650     }
3651 
3652     if (SemaRef.getLangOpts().CPlusPlus) {
3653       Consumer.addKeywordResult("using");
3654 
3655       if (SemaRef.getLangOpts().CPlusPlus0x)
3656         Consumer.addKeywordResult("static_assert");
3657     }
3658   }
3659 }
3660 
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)3661 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3662                               TypoCorrection &Candidate) {
3663   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3664   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3665 }
3666 
3667 /// \brief Try to "correct" a typo in the source code by finding
3668 /// visible declarations whose names are similar to the name that was
3669 /// present in the source code.
3670 ///
3671 /// \param TypoName the \c DeclarationNameInfo structure that contains
3672 /// the name that was present in the source code along with its location.
3673 ///
3674 /// \param LookupKind the name-lookup criteria used to search for the name.
3675 ///
3676 /// \param S the scope in which name lookup occurs.
3677 ///
3678 /// \param SS the nested-name-specifier that precedes the name we're
3679 /// looking for, if present.
3680 ///
3681 /// \param CCC A CorrectionCandidateCallback object that provides further
3682 /// validation of typo correction candidates. It also provides flags for
3683 /// determining the set of keywords permitted.
3684 ///
3685 /// \param MemberContext if non-NULL, the context in which to look for
3686 /// a member access expression.
3687 ///
3688 /// \param EnteringContext whether we're entering the context described by
3689 /// the nested-name-specifier SS.
3690 ///
3691 /// \param OPT when non-NULL, the search for visible declarations will
3692 /// also walk the protocols in the qualified interfaces of \p OPT.
3693 ///
3694 /// \returns a \c TypoCorrection containing the corrected name if the typo
3695 /// along with information such as the \c NamedDecl where the corrected name
3696 /// was declared, and any additional \c NestedNameSpecifier needed to access
3697 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)3698 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3699                                  Sema::LookupNameKind LookupKind,
3700                                  Scope *S, CXXScopeSpec *SS,
3701                                  CorrectionCandidateCallback &CCC,
3702                                  DeclContext *MemberContext,
3703                                  bool EnteringContext,
3704                                  const ObjCObjectPointerType *OPT) {
3705   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3706     return TypoCorrection();
3707 
3708   // In Microsoft mode, don't perform typo correction in a template member
3709   // function dependent context because it interferes with the "lookup into
3710   // dependent bases of class templates" feature.
3711   if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3712       isa<CXXMethodDecl>(CurContext))
3713     return TypoCorrection();
3714 
3715   // We only attempt to correct typos for identifiers.
3716   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3717   if (!Typo)
3718     return TypoCorrection();
3719 
3720   // If the scope specifier itself was invalid, don't try to correct
3721   // typos.
3722   if (SS && SS->isInvalid())
3723     return TypoCorrection();
3724 
3725   // Never try to correct typos during template deduction or
3726   // instantiation.
3727   if (!ActiveTemplateInstantiations.empty())
3728     return TypoCorrection();
3729 
3730   NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3731 
3732   TypoCorrectionConsumer Consumer(*this, Typo);
3733 
3734   // If a callback object considers an empty typo correction candidate to be
3735   // viable, assume it does not do any actual validation of the candidates.
3736   TypoCorrection EmptyCorrection;
3737   bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3738 
3739   // Perform name lookup to find visible, similarly-named entities.
3740   bool IsUnqualifiedLookup = false;
3741   DeclContext *QualifiedDC = MemberContext;
3742   if (MemberContext) {
3743     LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3744 
3745     // Look in qualified interfaces.
3746     if (OPT) {
3747       for (ObjCObjectPointerType::qual_iterator
3748              I = OPT->qual_begin(), E = OPT->qual_end();
3749            I != E; ++I)
3750         LookupVisibleDecls(*I, LookupKind, Consumer);
3751     }
3752   } else if (SS && SS->isSet()) {
3753     QualifiedDC = computeDeclContext(*SS, EnteringContext);
3754     if (!QualifiedDC)
3755       return TypoCorrection();
3756 
3757     // Provide a stop gap for files that are just seriously broken.  Trying
3758     // to correct all typos can turn into a HUGE performance penalty, causing
3759     // some files to take minutes to get rejected by the parser.
3760     if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3761       return TypoCorrection();
3762     ++TyposCorrected;
3763 
3764     LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3765   } else {
3766     IsUnqualifiedLookup = true;
3767     UnqualifiedTyposCorrectedMap::iterator Cached
3768       = UnqualifiedTyposCorrected.find(Typo);
3769     if (Cached != UnqualifiedTyposCorrected.end()) {
3770       // Add the cached value, unless it's a keyword or fails validation. In the
3771       // keyword case, we'll end up adding the keyword below.
3772       if (Cached->second) {
3773         if (!Cached->second.isKeyword() &&
3774             isCandidateViable(CCC, Cached->second))
3775           Consumer.addCorrection(Cached->second);
3776       } else {
3777         // Only honor no-correction cache hits when a callback that will validate
3778         // correction candidates is not being used.
3779         if (!ValidatingCallback)
3780           return TypoCorrection();
3781       }
3782     }
3783     if (Cached == UnqualifiedTyposCorrected.end()) {
3784       // Provide a stop gap for files that are just seriously broken.  Trying
3785       // to correct all typos can turn into a HUGE performance penalty, causing
3786       // some files to take minutes to get rejected by the parser.
3787       if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3788         return TypoCorrection();
3789     }
3790   }
3791 
3792   // Determine whether we are going to search in the various namespaces for
3793   // corrections.
3794   bool SearchNamespaces
3795     = getLangOpts().CPlusPlus &&
3796       (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3797 
3798   if (IsUnqualifiedLookup || SearchNamespaces) {
3799     // For unqualified lookup, look through all of the names that we have
3800     // seen in this translation unit.
3801     // FIXME: Re-add the ability to skip very unlikely potential corrections.
3802     for (IdentifierTable::iterator I = Context.Idents.begin(),
3803                                 IEnd = Context.Idents.end();
3804          I != IEnd; ++I)
3805       Consumer.FoundName(I->getKey());
3806 
3807     // Walk through identifiers in external identifier sources.
3808     // FIXME: Re-add the ability to skip very unlikely potential corrections.
3809     if (IdentifierInfoLookup *External
3810                             = Context.Idents.getExternalIdentifierLookup()) {
3811       OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3812       do {
3813         StringRef Name = Iter->Next();
3814         if (Name.empty())
3815           break;
3816 
3817         Consumer.FoundName(Name);
3818       } while (true);
3819     }
3820   }
3821 
3822   AddKeywordsToConsumer(*this, Consumer, S, CCC);
3823 
3824   // If we haven't found anything, we're done.
3825   if (Consumer.empty()) {
3826     // If this was an unqualified lookup, note that no correction was found.
3827     if (IsUnqualifiedLookup)
3828       (void)UnqualifiedTyposCorrected[Typo];
3829 
3830     return TypoCorrection();
3831   }
3832 
3833   // Make sure that the user typed at least 3 characters for each correction
3834   // made. Otherwise, we don't even both looking at the results.
3835   unsigned ED = Consumer.getBestEditDistance(true);
3836   if (ED > 0 && Typo->getName().size() / ED < 3) {
3837     // If this was an unqualified lookup, note that no correction was found.
3838     if (IsUnqualifiedLookup)
3839       (void)UnqualifiedTyposCorrected[Typo];
3840 
3841     return TypoCorrection();
3842   }
3843 
3844   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3845   // to search those namespaces.
3846   if (SearchNamespaces) {
3847     // Load any externally-known namespaces.
3848     if (ExternalSource && !LoadedExternalKnownNamespaces) {
3849       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3850       LoadedExternalKnownNamespaces = true;
3851       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3852       for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3853         KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3854     }
3855 
3856     for (llvm::DenseMap<NamespaceDecl*, bool>::iterator
3857            KNI = KnownNamespaces.begin(),
3858            KNIEnd = KnownNamespaces.end();
3859          KNI != KNIEnd; ++KNI)
3860       Namespaces.AddNamespace(KNI->first);
3861   }
3862 
3863   // Weed out any names that could not be found by name lookup or, if a
3864   // CorrectionCandidateCallback object was provided, failed validation.
3865   llvm::SmallVector<TypoCorrection, 16> QualifiedResults;
3866   LookupResult TmpRes(*this, TypoName, LookupKind);
3867   TmpRes.suppressDiagnostics();
3868   while (!Consumer.empty()) {
3869     TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3870     unsigned ED = DI->first;
3871     for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3872                                               IEnd = DI->second.end();
3873          I != IEnd; /* Increment in loop. */) {
3874       // If the item already has been looked up or is a keyword, keep it.
3875       // If a validator callback object was given, drop the correction
3876       // unless it passes validation.
3877       if (I->second.isResolved()) {
3878         TypoCorrectionConsumer::result_iterator Prev = I;
3879         ++I;
3880         if (!isCandidateViable(CCC, Prev->second))
3881           DI->second.erase(Prev);
3882         continue;
3883       }
3884 
3885       // Perform name lookup on this name.
3886       IdentifierInfo *Name = I->second.getCorrectionAsIdentifierInfo();
3887       LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3888                                 EnteringContext, CCC.IsObjCIvarLookup);
3889 
3890       switch (TmpRes.getResultKind()) {
3891       case LookupResult::NotFound:
3892       case LookupResult::NotFoundInCurrentInstantiation:
3893       case LookupResult::FoundUnresolvedValue:
3894         QualifiedResults.push_back(I->second);
3895         // We didn't find this name in our scope, or didn't like what we found;
3896         // ignore it.
3897         {
3898           TypoCorrectionConsumer::result_iterator Next = I;
3899           ++Next;
3900           DI->second.erase(I);
3901           I = Next;
3902         }
3903         break;
3904 
3905       case LookupResult::Ambiguous:
3906         // We don't deal with ambiguities.
3907         return TypoCorrection();
3908 
3909       case LookupResult::FoundOverloaded: {
3910         TypoCorrectionConsumer::result_iterator Prev = I;
3911         // Store all of the Decls for overloaded symbols
3912         for (LookupResult::iterator TRD = TmpRes.begin(),
3913                                  TRDEnd = TmpRes.end();
3914              TRD != TRDEnd; ++TRD)
3915           I->second.addCorrectionDecl(*TRD);
3916         ++I;
3917         if (!isCandidateViable(CCC, Prev->second))
3918           DI->second.erase(Prev);
3919         break;
3920       }
3921 
3922       case LookupResult::Found: {
3923         TypoCorrectionConsumer::result_iterator Prev = I;
3924         I->second.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3925         ++I;
3926         if (!isCandidateViable(CCC, Prev->second))
3927           DI->second.erase(Prev);
3928         break;
3929       }
3930 
3931       }
3932     }
3933 
3934     if (DI->second.empty())
3935       Consumer.erase(DI);
3936     else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
3937       // If there are results in the closest possible bucket, stop
3938       break;
3939 
3940     // Only perform the qualified lookups for C++
3941     if (SearchNamespaces) {
3942       TmpRes.suppressDiagnostics();
3943       for (llvm::SmallVector<TypoCorrection,
3944                              16>::iterator QRI = QualifiedResults.begin(),
3945                                         QRIEnd = QualifiedResults.end();
3946            QRI != QRIEnd; ++QRI) {
3947         for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3948                                           NIEnd = Namespaces.end();
3949              NI != NIEnd; ++NI) {
3950           DeclContext *Ctx = NI->DeclCtx;
3951 
3952           // FIXME: Stop searching once the namespaces are too far away to create
3953           // acceptable corrections for this identifier (since the namespaces
3954           // are sorted in ascending order by edit distance).
3955 
3956           TmpRes.clear();
3957           TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
3958           if (!LookupQualifiedName(TmpRes, Ctx)) continue;
3959 
3960           // Any corrections added below will be validated in subsequent
3961           // iterations of the main while() loop over the Consumer's contents.
3962           switch (TmpRes.getResultKind()) {
3963           case LookupResult::Found: {
3964             TypoCorrection TC(*QRI);
3965             TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3966             TC.setCorrectionSpecifier(NI->NameSpecifier);
3967             TC.setQualifierDistance(NI->EditDistance);
3968             Consumer.addCorrection(TC);
3969             break;
3970           }
3971           case LookupResult::FoundOverloaded: {
3972             TypoCorrection TC(*QRI);
3973             TC.setCorrectionSpecifier(NI->NameSpecifier);
3974             TC.setQualifierDistance(NI->EditDistance);
3975             for (LookupResult::iterator TRD = TmpRes.begin(),
3976                                      TRDEnd = TmpRes.end();
3977                  TRD != TRDEnd; ++TRD)
3978               TC.addCorrectionDecl(*TRD);
3979             Consumer.addCorrection(TC);
3980             break;
3981           }
3982           case LookupResult::NotFound:
3983           case LookupResult::NotFoundInCurrentInstantiation:
3984           case LookupResult::Ambiguous:
3985           case LookupResult::FoundUnresolvedValue:
3986             break;
3987           }
3988         }
3989       }
3990     }
3991 
3992     QualifiedResults.clear();
3993   }
3994 
3995   // No corrections remain...
3996   if (Consumer.empty()) return TypoCorrection();
3997 
3998   TypoResultsMap &BestResults = Consumer.begin()->second;
3999   ED = TypoCorrection::NormalizeEditDistance(Consumer.begin()->first);
4000 
4001   if (ED > 0 && Typo->getName().size() / ED < 3) {
4002     // If this was an unqualified lookup and we believe the callback
4003     // object wouldn't have filtered out possible corrections, note
4004     // that no correction was found.
4005     if (IsUnqualifiedLookup && !ValidatingCallback)
4006       (void)UnqualifiedTyposCorrected[Typo];
4007 
4008     return TypoCorrection();
4009   }
4010 
4011   // If only a single name remains, return that result.
4012   if (BestResults.size() == 1) {
4013     const llvm::StringMapEntry<TypoCorrection> &Correction = *(BestResults.begin());
4014     const TypoCorrection &Result = Correction.second;
4015 
4016     // Don't correct to a keyword that's the same as the typo; the keyword
4017     // wasn't actually in scope.
4018     if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4019 
4020     // Record the correction for unqualified lookup.
4021     if (IsUnqualifiedLookup)
4022       UnqualifiedTyposCorrected[Typo] = Result;
4023 
4024     return Result;
4025   }
4026   else if (BestResults.size() > 1
4027            // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4028            // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4029            // some instances of CTC_Unknown, while WantRemainingKeywords is true
4030            // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4031            && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4032            && BestResults["super"].isKeyword()) {
4033     // Prefer 'super' when we're completing in a message-receiver
4034     // context.
4035 
4036     // Don't correct to a keyword that's the same as the typo; the keyword
4037     // wasn't actually in scope.
4038     if (ED == 0) return TypoCorrection();
4039 
4040     // Record the correction for unqualified lookup.
4041     if (IsUnqualifiedLookup)
4042       UnqualifiedTyposCorrected[Typo] = BestResults["super"];
4043 
4044     return BestResults["super"];
4045   }
4046 
4047   // If this was an unqualified lookup and we believe the callback object did
4048   // not filter out possible corrections, note that no correction was found.
4049   if (IsUnqualifiedLookup && !ValidatingCallback)
4050     (void)UnqualifiedTyposCorrected[Typo];
4051 
4052   return TypoCorrection();
4053 }
4054 
addCorrectionDecl(NamedDecl * CDecl)4055 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4056   if (!CDecl) return;
4057 
4058   if (isKeyword())
4059     CorrectionDecls.clear();
4060 
4061   CorrectionDecls.push_back(CDecl);
4062 
4063   if (!CorrectionName)
4064     CorrectionName = CDecl->getDeclName();
4065 }
4066 
getAsString(const LangOptions & LO) const4067 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4068   if (CorrectionNameSpec) {
4069     std::string tmpBuffer;
4070     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4071     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4072     CorrectionName.printName(PrefixOStream);
4073     return PrefixOStream.str();
4074   }
4075 
4076   return CorrectionName.getAsString();
4077 }
4078