1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/CXXFieldCollector.h"
16 #include "clang/Sema/Scope.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/AST/ASTConsumer.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/ASTMutationListener.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/CXXInheritance.h"
25 #include "clang/AST/DeclVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/AST/RecursiveASTVisitor.h"
29 #include "clang/AST/StmtVisitor.h"
30 #include "clang/AST/TypeLoc.h"
31 #include "clang/AST/TypeOrdering.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Lex/Preprocessor.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include <map>
39 #include <set>
40
41 using namespace clang;
42
43 //===----------------------------------------------------------------------===//
44 // CheckDefaultArgumentVisitor
45 //===----------------------------------------------------------------------===//
46
47 namespace {
48 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49 /// the default argument of a parameter to determine whether it
50 /// contains any ill-formed subexpressions. For example, this will
51 /// diagnose the use of local variables or parameters within the
52 /// default argument expression.
53 class CheckDefaultArgumentVisitor
54 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55 Expr *DefaultArg;
56 Sema *S;
57
58 public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)59 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60 : DefaultArg(defarg), S(s) {}
61
62 bool VisitExpr(Expr *Node);
63 bool VisitDeclRefExpr(DeclRefExpr *DRE);
64 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65 bool VisitLambdaExpr(LambdaExpr *Lambda);
66 };
67
68 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)69 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70 bool IsInvalid = false;
71 for (Stmt::child_range I = Node->children(); I; ++I)
72 IsInvalid |= Visit(*I);
73 return IsInvalid;
74 }
75
76 /// VisitDeclRefExpr - Visit a reference to a declaration, to
77 /// determine whether this declaration can be used in the default
78 /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)79 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80 NamedDecl *Decl = DRE->getDecl();
81 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82 // C++ [dcl.fct.default]p9
83 // Default arguments are evaluated each time the function is
84 // called. The order of evaluation of function arguments is
85 // unspecified. Consequently, parameters of a function shall not
86 // be used in default argument expressions, even if they are not
87 // evaluated. Parameters of a function declared before a default
88 // argument expression are in scope and can hide namespace and
89 // class member names.
90 return S->Diag(DRE->getLocStart(),
91 diag::err_param_default_argument_references_param)
92 << Param->getDeclName() << DefaultArg->getSourceRange();
93 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94 // C++ [dcl.fct.default]p7
95 // Local variables shall not be used in default argument
96 // expressions.
97 if (VDecl->isLocalVarDecl())
98 return S->Diag(DRE->getLocStart(),
99 diag::err_param_default_argument_references_local)
100 << VDecl->getDeclName() << DefaultArg->getSourceRange();
101 }
102
103 return false;
104 }
105
106 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)107 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108 // C++ [dcl.fct.default]p8:
109 // The keyword this shall not be used in a default argument of a
110 // member function.
111 return S->Diag(ThisE->getLocStart(),
112 diag::err_param_default_argument_references_this)
113 << ThisE->getSourceRange();
114 }
115
VisitLambdaExpr(LambdaExpr * Lambda)116 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117 // C++11 [expr.lambda.prim]p13:
118 // A lambda-expression appearing in a default argument shall not
119 // implicitly or explicitly capture any entity.
120 if (Lambda->capture_begin() == Lambda->capture_end())
121 return false;
122
123 return S->Diag(Lambda->getLocStart(),
124 diag::err_lambda_capture_default_arg);
125 }
126 }
127
CalledDecl(SourceLocation CallLoc,CXXMethodDecl * Method)128 void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
129 CXXMethodDecl *Method) {
130 // If we have an MSAny or unknown spec already, don't bother.
131 if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132 return;
133
134 const FunctionProtoType *Proto
135 = Method->getType()->getAs<FunctionProtoType>();
136 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
137 if (!Proto)
138 return;
139
140 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
141
142 // If this function can throw any exceptions, make a note of that.
143 if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
144 ClearExceptions();
145 ComputedEST = EST;
146 return;
147 }
148
149 // FIXME: If the call to this decl is using any of its default arguments, we
150 // need to search them for potentially-throwing calls.
151
152 // If this function has a basic noexcept, it doesn't affect the outcome.
153 if (EST == EST_BasicNoexcept)
154 return;
155
156 // If we have a throw-all spec at this point, ignore the function.
157 if (ComputedEST == EST_None)
158 return;
159
160 // If we're still at noexcept(true) and there's a nothrow() callee,
161 // change to that specification.
162 if (EST == EST_DynamicNone) {
163 if (ComputedEST == EST_BasicNoexcept)
164 ComputedEST = EST_DynamicNone;
165 return;
166 }
167
168 // Check out noexcept specs.
169 if (EST == EST_ComputedNoexcept) {
170 FunctionProtoType::NoexceptResult NR =
171 Proto->getNoexceptSpec(Self->Context);
172 assert(NR != FunctionProtoType::NR_NoNoexcept &&
173 "Must have noexcept result for EST_ComputedNoexcept.");
174 assert(NR != FunctionProtoType::NR_Dependent &&
175 "Should not generate implicit declarations for dependent cases, "
176 "and don't know how to handle them anyway.");
177
178 // noexcept(false) -> no spec on the new function
179 if (NR == FunctionProtoType::NR_Throw) {
180 ClearExceptions();
181 ComputedEST = EST_None;
182 }
183 // noexcept(true) won't change anything either.
184 return;
185 }
186
187 assert(EST == EST_Dynamic && "EST case not considered earlier.");
188 assert(ComputedEST != EST_None &&
189 "Shouldn't collect exceptions when throw-all is guaranteed.");
190 ComputedEST = EST_Dynamic;
191 // Record the exceptions in this function's exception specification.
192 for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
193 EEnd = Proto->exception_end();
194 E != EEnd; ++E)
195 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
196 Exceptions.push_back(*E);
197 }
198
CalledExpr(Expr * E)199 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
200 if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
201 return;
202
203 // FIXME:
204 //
205 // C++0x [except.spec]p14:
206 // [An] implicit exception-specification specifies the type-id T if and
207 // only if T is allowed by the exception-specification of a function directly
208 // invoked by f's implicit definition; f shall allow all exceptions if any
209 // function it directly invokes allows all exceptions, and f shall allow no
210 // exceptions if every function it directly invokes allows no exceptions.
211 //
212 // Note in particular that if an implicit exception-specification is generated
213 // for a function containing a throw-expression, that specification can still
214 // be noexcept(true).
215 //
216 // Note also that 'directly invoked' is not defined in the standard, and there
217 // is no indication that we should only consider potentially-evaluated calls.
218 //
219 // Ultimately we should implement the intent of the standard: the exception
220 // specification should be the set of exceptions which can be thrown by the
221 // implicit definition. For now, we assume that any non-nothrow expression can
222 // throw any exception.
223
224 if (Self->canThrow(E))
225 ComputedEST = EST_None;
226 }
227
228 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)229 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
230 SourceLocation EqualLoc) {
231 if (RequireCompleteType(Param->getLocation(), Param->getType(),
232 diag::err_typecheck_decl_incomplete_type)) {
233 Param->setInvalidDecl();
234 return true;
235 }
236
237 // C++ [dcl.fct.default]p5
238 // A default argument expression is implicitly converted (clause
239 // 4) to the parameter type. The default argument expression has
240 // the same semantic constraints as the initializer expression in
241 // a declaration of a variable of the parameter type, using the
242 // copy-initialization semantics (8.5).
243 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
244 Param);
245 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
246 EqualLoc);
247 InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
248 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
249 MultiExprArg(*this, &Arg, 1));
250 if (Result.isInvalid())
251 return true;
252 Arg = Result.takeAs<Expr>();
253
254 CheckImplicitConversions(Arg, EqualLoc);
255 Arg = MaybeCreateExprWithCleanups(Arg);
256
257 // Okay: add the default argument to the parameter
258 Param->setDefaultArg(Arg);
259
260 // We have already instantiated this parameter; provide each of the
261 // instantiations with the uninstantiated default argument.
262 UnparsedDefaultArgInstantiationsMap::iterator InstPos
263 = UnparsedDefaultArgInstantiations.find(Param);
264 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268 // We're done tracking this parameter's instantiations.
269 UnparsedDefaultArgInstantiations.erase(InstPos);
270 }
271
272 return false;
273 }
274
275 /// ActOnParamDefaultArgument - Check whether the default argument
276 /// provided for a function parameter is well-formed. If so, attach it
277 /// to the parameter declaration.
278 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)279 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280 Expr *DefaultArg) {
281 if (!param || !DefaultArg)
282 return;
283
284 ParmVarDecl *Param = cast<ParmVarDecl>(param);
285 UnparsedDefaultArgLocs.erase(Param);
286
287 // Default arguments are only permitted in C++
288 if (!getLangOpts().CPlusPlus) {
289 Diag(EqualLoc, diag::err_param_default_argument)
290 << DefaultArg->getSourceRange();
291 Param->setInvalidDecl();
292 return;
293 }
294
295 // Check for unexpanded parameter packs.
296 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297 Param->setInvalidDecl();
298 return;
299 }
300
301 // Check that the default argument is well-formed
302 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303 if (DefaultArgChecker.Visit(DefaultArg)) {
304 Param->setInvalidDecl();
305 return;
306 }
307
308 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309 }
310
311 /// ActOnParamUnparsedDefaultArgument - We've seen a default
312 /// argument for a function parameter, but we can't parse it yet
313 /// because we're inside a class definition. Note that this default
314 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)315 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316 SourceLocation EqualLoc,
317 SourceLocation ArgLoc) {
318 if (!param)
319 return;
320
321 ParmVarDecl *Param = cast<ParmVarDecl>(param);
322 if (Param)
323 Param->setUnparsedDefaultArg();
324
325 UnparsedDefaultArgLocs[Param] = ArgLoc;
326 }
327
328 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param)330 void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331 if (!param)
332 return;
333
334 ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336 Param->setInvalidDecl();
337
338 UnparsedDefaultArgLocs.erase(Param);
339 }
340
341 /// CheckExtraCXXDefaultArguments - Check for any extra default
342 /// arguments in the declarator, which is not a function declaration
343 /// or definition and therefore is not permitted to have default
344 /// arguments. This routine should be invoked for every declarator
345 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)346 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347 // C++ [dcl.fct.default]p3
348 // A default argument expression shall be specified only in the
349 // parameter-declaration-clause of a function declaration or in a
350 // template-parameter (14.1). It shall not be specified for a
351 // parameter pack. If it is specified in a
352 // parameter-declaration-clause, it shall not occur within a
353 // declarator or abstract-declarator of a parameter-declaration.
354 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355 DeclaratorChunk &chunk = D.getTypeObject(i);
356 if (chunk.Kind == DeclaratorChunk::Function) {
357 for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358 ParmVarDecl *Param =
359 cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360 if (Param->hasUnparsedDefaultArg()) {
361 CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363 << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364 delete Toks;
365 chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366 } else if (Param->getDefaultArg()) {
367 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368 << Param->getDefaultArg()->getSourceRange();
369 Param->setDefaultArg(0);
370 }
371 }
372 }
373 }
374 }
375
376 // MergeCXXFunctionDecl - Merge two declarations of the same C++
377 // function, once we already know that they have the same
378 // type. Subroutine of MergeFunctionDecl. Returns true if there was an
379 // error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)380 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381 Scope *S) {
382 bool Invalid = false;
383
384 // C++ [dcl.fct.default]p4:
385 // For non-template functions, default arguments can be added in
386 // later declarations of a function in the same
387 // scope. Declarations in different scopes have completely
388 // distinct sets of default arguments. That is, declarations in
389 // inner scopes do not acquire default arguments from
390 // declarations in outer scopes, and vice versa. In a given
391 // function declaration, all parameters subsequent to a
392 // parameter with a default argument shall have default
393 // arguments supplied in this or previous declarations. A
394 // default argument shall not be redefined by a later
395 // declaration (not even to the same value).
396 //
397 // C++ [dcl.fct.default]p6:
398 // Except for member functions of class templates, the default arguments
399 // in a member function definition that appears outside of the class
400 // definition are added to the set of default arguments provided by the
401 // member function declaration in the class definition.
402 for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403 ParmVarDecl *OldParam = Old->getParamDecl(p);
404 ParmVarDecl *NewParam = New->getParamDecl(p);
405
406 bool OldParamHasDfl = OldParam->hasDefaultArg();
407 bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409 NamedDecl *ND = Old;
410 if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411 // Ignore default parameters of old decl if they are not in
412 // the same scope.
413 OldParamHasDfl = false;
414
415 if (OldParamHasDfl && NewParamHasDfl) {
416
417 unsigned DiagDefaultParamID =
418 diag::err_param_default_argument_redefinition;
419
420 // MSVC accepts that default parameters be redefined for member functions
421 // of template class. The new default parameter's value is ignored.
422 Invalid = true;
423 if (getLangOpts().MicrosoftExt) {
424 CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425 if (MD && MD->getParent()->getDescribedClassTemplate()) {
426 // Merge the old default argument into the new parameter.
427 NewParam->setHasInheritedDefaultArg();
428 if (OldParam->hasUninstantiatedDefaultArg())
429 NewParam->setUninstantiatedDefaultArg(
430 OldParam->getUninstantiatedDefaultArg());
431 else
432 NewParam->setDefaultArg(OldParam->getInit());
433 DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434 Invalid = false;
435 }
436 }
437
438 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439 // hint here. Alternatively, we could walk the type-source information
440 // for NewParam to find the last source location in the type... but it
441 // isn't worth the effort right now. This is the kind of test case that
442 // is hard to get right:
443 // int f(int);
444 // void g(int (*fp)(int) = f);
445 // void g(int (*fp)(int) = &f);
446 Diag(NewParam->getLocation(), DiagDefaultParamID)
447 << NewParam->getDefaultArgRange();
448
449 // Look for the function declaration where the default argument was
450 // actually written, which may be a declaration prior to Old.
451 for (FunctionDecl *Older = Old->getPreviousDecl();
452 Older; Older = Older->getPreviousDecl()) {
453 if (!Older->getParamDecl(p)->hasDefaultArg())
454 break;
455
456 OldParam = Older->getParamDecl(p);
457 }
458
459 Diag(OldParam->getLocation(), diag::note_previous_definition)
460 << OldParam->getDefaultArgRange();
461 } else if (OldParamHasDfl) {
462 // Merge the old default argument into the new parameter.
463 // It's important to use getInit() here; getDefaultArg()
464 // strips off any top-level ExprWithCleanups.
465 NewParam->setHasInheritedDefaultArg();
466 if (OldParam->hasUninstantiatedDefaultArg())
467 NewParam->setUninstantiatedDefaultArg(
468 OldParam->getUninstantiatedDefaultArg());
469 else
470 NewParam->setDefaultArg(OldParam->getInit());
471 } else if (NewParamHasDfl) {
472 if (New->getDescribedFunctionTemplate()) {
473 // Paragraph 4, quoted above, only applies to non-template functions.
474 Diag(NewParam->getLocation(),
475 diag::err_param_default_argument_template_redecl)
476 << NewParam->getDefaultArgRange();
477 Diag(Old->getLocation(), diag::note_template_prev_declaration)
478 << false;
479 } else if (New->getTemplateSpecializationKind()
480 != TSK_ImplicitInstantiation &&
481 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482 // C++ [temp.expr.spec]p21:
483 // Default function arguments shall not be specified in a declaration
484 // or a definition for one of the following explicit specializations:
485 // - the explicit specialization of a function template;
486 // - the explicit specialization of a member function template;
487 // - the explicit specialization of a member function of a class
488 // template where the class template specialization to which the
489 // member function specialization belongs is implicitly
490 // instantiated.
491 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493 << New->getDeclName()
494 << NewParam->getDefaultArgRange();
495 } else if (New->getDeclContext()->isDependentContext()) {
496 // C++ [dcl.fct.default]p6 (DR217):
497 // Default arguments for a member function of a class template shall
498 // be specified on the initial declaration of the member function
499 // within the class template.
500 //
501 // Reading the tea leaves a bit in DR217 and its reference to DR205
502 // leads me to the conclusion that one cannot add default function
503 // arguments for an out-of-line definition of a member function of a
504 // dependent type.
505 int WhichKind = 2;
506 if (CXXRecordDecl *Record
507 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508 if (Record->getDescribedClassTemplate())
509 WhichKind = 0;
510 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511 WhichKind = 1;
512 else
513 WhichKind = 2;
514 }
515
516 Diag(NewParam->getLocation(),
517 diag::err_param_default_argument_member_template_redecl)
518 << WhichKind
519 << NewParam->getDefaultArgRange();
520 } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521 CXXSpecialMember NewSM = getSpecialMember(Ctor),
522 OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523 if (NewSM != OldSM) {
524 Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525 << NewParam->getDefaultArgRange() << NewSM;
526 Diag(Old->getLocation(), diag::note_previous_declaration_special)
527 << OldSM;
528 }
529 }
530 }
531 }
532
533 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534 // template has a constexpr specifier then all its declarations shall
535 // contain the constexpr specifier.
536 if (New->isConstexpr() != Old->isConstexpr()) {
537 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538 << New << New->isConstexpr();
539 Diag(Old->getLocation(), diag::note_previous_declaration);
540 Invalid = true;
541 }
542
543 if (CheckEquivalentExceptionSpec(Old, New))
544 Invalid = true;
545
546 return Invalid;
547 }
548
549 /// \brief Merge the exception specifications of two variable declarations.
550 ///
551 /// This is called when there's a redeclaration of a VarDecl. The function
552 /// checks if the redeclaration might have an exception specification and
553 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)554 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555 // Shortcut if exceptions are disabled.
556 if (!getLangOpts().CXXExceptions)
557 return;
558
559 assert(Context.hasSameType(New->getType(), Old->getType()) &&
560 "Should only be called if types are otherwise the same.");
561
562 QualType NewType = New->getType();
563 QualType OldType = Old->getType();
564
565 // We're only interested in pointers and references to functions, as well
566 // as pointers to member functions.
567 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568 NewType = R->getPointeeType();
569 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571 NewType = P->getPointeeType();
572 OldType = OldType->getAs<PointerType>()->getPointeeType();
573 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574 NewType = M->getPointeeType();
575 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576 }
577
578 if (!NewType->isFunctionProtoType())
579 return;
580
581 // There's lots of special cases for functions. For function pointers, system
582 // libraries are hopefully not as broken so that we don't need these
583 // workarounds.
584 if (CheckEquivalentExceptionSpec(
585 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587 New->setInvalidDecl();
588 }
589 }
590
591 /// CheckCXXDefaultArguments - Verify that the default arguments for a
592 /// function declaration are well-formed according to C++
593 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)594 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595 unsigned NumParams = FD->getNumParams();
596 unsigned p;
597
598 bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599 isa<CXXMethodDecl>(FD) &&
600 cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602 // Find first parameter with a default argument
603 for (p = 0; p < NumParams; ++p) {
604 ParmVarDecl *Param = FD->getParamDecl(p);
605 if (Param->hasDefaultArg()) {
606 // C++11 [expr.prim.lambda]p5:
607 // [...] Default arguments (8.3.6) shall not be specified in the
608 // parameter-declaration-clause of a lambda-declarator.
609 //
610 // FIXME: Core issue 974 strikes this sentence, we only provide an
611 // extension warning.
612 if (IsLambda)
613 Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614 << Param->getDefaultArgRange();
615 break;
616 }
617 }
618
619 // C++ [dcl.fct.default]p4:
620 // In a given function declaration, all parameters
621 // subsequent to a parameter with a default argument shall
622 // have default arguments supplied in this or previous
623 // declarations. A default argument shall not be redefined
624 // by a later declaration (not even to the same value).
625 unsigned LastMissingDefaultArg = 0;
626 for (; p < NumParams; ++p) {
627 ParmVarDecl *Param = FD->getParamDecl(p);
628 if (!Param->hasDefaultArg()) {
629 if (Param->isInvalidDecl())
630 /* We already complained about this parameter. */;
631 else if (Param->getIdentifier())
632 Diag(Param->getLocation(),
633 diag::err_param_default_argument_missing_name)
634 << Param->getIdentifier();
635 else
636 Diag(Param->getLocation(),
637 diag::err_param_default_argument_missing);
638
639 LastMissingDefaultArg = p;
640 }
641 }
642
643 if (LastMissingDefaultArg > 0) {
644 // Some default arguments were missing. Clear out all of the
645 // default arguments up to (and including) the last missing
646 // default argument, so that we leave the function parameters
647 // in a semantically valid state.
648 for (p = 0; p <= LastMissingDefaultArg; ++p) {
649 ParmVarDecl *Param = FD->getParamDecl(p);
650 if (Param->hasDefaultArg()) {
651 Param->setDefaultArg(0);
652 }
653 }
654 }
655 }
656
657 // CheckConstexprParameterTypes - Check whether a function's parameter types
658 // are all literal types. If so, return true. If not, produce a suitable
659 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)660 static bool CheckConstexprParameterTypes(Sema &SemaRef,
661 const FunctionDecl *FD) {
662 unsigned ArgIndex = 0;
663 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664 for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665 e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667 SourceLocation ParamLoc = PD->getLocation();
668 if (!(*i)->isDependentType() &&
669 SemaRef.RequireLiteralType(ParamLoc, *i,
670 SemaRef.PDiag(diag::err_constexpr_non_literal_param)
671 << ArgIndex+1 << PD->getSourceRange()
672 << isa<CXXConstructorDecl>(FD)))
673 return false;
674 }
675 return true;
676 }
677
678 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
679 // the requirements of a constexpr function definition or a constexpr
680 // constructor definition. If so, return true. If not, produce appropriate
681 // diagnostics and return false.
682 //
683 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)684 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
685 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
686 if (MD && MD->isInstance()) {
687 // C++11 [dcl.constexpr]p4:
688 // The definition of a constexpr constructor shall satisfy the following
689 // constraints:
690 // - the class shall not have any virtual base classes;
691 const CXXRecordDecl *RD = MD->getParent();
692 if (RD->getNumVBases()) {
693 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
694 << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
695 << RD->getNumVBases();
696 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
697 E = RD->vbases_end(); I != E; ++I)
698 Diag(I->getLocStart(),
699 diag::note_constexpr_virtual_base_here) << I->getSourceRange();
700 return false;
701 }
702 }
703
704 if (!isa<CXXConstructorDecl>(NewFD)) {
705 // C++11 [dcl.constexpr]p3:
706 // The definition of a constexpr function shall satisfy the following
707 // constraints:
708 // - it shall not be virtual;
709 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
710 if (Method && Method->isVirtual()) {
711 Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
712
713 // If it's not obvious why this function is virtual, find an overridden
714 // function which uses the 'virtual' keyword.
715 const CXXMethodDecl *WrittenVirtual = Method;
716 while (!WrittenVirtual->isVirtualAsWritten())
717 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
718 if (WrittenVirtual != Method)
719 Diag(WrittenVirtual->getLocation(),
720 diag::note_overridden_virtual_function);
721 return false;
722 }
723
724 // - its return type shall be a literal type;
725 QualType RT = NewFD->getResultType();
726 if (!RT->isDependentType() &&
727 RequireLiteralType(NewFD->getLocation(), RT,
728 PDiag(diag::err_constexpr_non_literal_return)))
729 return false;
730 }
731
732 // - each of its parameter types shall be a literal type;
733 if (!CheckConstexprParameterTypes(*this, NewFD))
734 return false;
735
736 return true;
737 }
738
739 /// Check the given declaration statement is legal within a constexpr function
740 /// body. C++0x [dcl.constexpr]p3,p4.
741 ///
742 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS)743 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
744 DeclStmt *DS) {
745 // C++0x [dcl.constexpr]p3 and p4:
746 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
747 // contain only
748 for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
749 DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
750 switch ((*DclIt)->getKind()) {
751 case Decl::StaticAssert:
752 case Decl::Using:
753 case Decl::UsingShadow:
754 case Decl::UsingDirective:
755 case Decl::UnresolvedUsingTypename:
756 // - static_assert-declarations
757 // - using-declarations,
758 // - using-directives,
759 continue;
760
761 case Decl::Typedef:
762 case Decl::TypeAlias: {
763 // - typedef declarations and alias-declarations that do not define
764 // classes or enumerations,
765 TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
766 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
767 // Don't allow variably-modified types in constexpr functions.
768 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
769 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
770 << TL.getSourceRange() << TL.getType()
771 << isa<CXXConstructorDecl>(Dcl);
772 return false;
773 }
774 continue;
775 }
776
777 case Decl::Enum:
778 case Decl::CXXRecord:
779 // As an extension, we allow the declaration (but not the definition) of
780 // classes and enumerations in all declarations, not just in typedef and
781 // alias declarations.
782 if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
783 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
784 << isa<CXXConstructorDecl>(Dcl);
785 return false;
786 }
787 continue;
788
789 case Decl::Var:
790 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
791 << isa<CXXConstructorDecl>(Dcl);
792 return false;
793
794 default:
795 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
796 << isa<CXXConstructorDecl>(Dcl);
797 return false;
798 }
799 }
800
801 return true;
802 }
803
804 /// Check that the given field is initialized within a constexpr constructor.
805 ///
806 /// \param Dcl The constexpr constructor being checked.
807 /// \param Field The field being checked. This may be a member of an anonymous
808 /// struct or union nested within the class being checked.
809 /// \param Inits All declarations, including anonymous struct/union members and
810 /// indirect members, for which any initialization was provided.
811 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)812 static void CheckConstexprCtorInitializer(Sema &SemaRef,
813 const FunctionDecl *Dcl,
814 FieldDecl *Field,
815 llvm::SmallSet<Decl*, 16> &Inits,
816 bool &Diagnosed) {
817 if (Field->isUnnamedBitfield())
818 return;
819
820 if (Field->isAnonymousStructOrUnion() &&
821 Field->getType()->getAsCXXRecordDecl()->isEmpty())
822 return;
823
824 if (!Inits.count(Field)) {
825 if (!Diagnosed) {
826 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
827 Diagnosed = true;
828 }
829 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
830 } else if (Field->isAnonymousStructOrUnion()) {
831 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
832 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
833 I != E; ++I)
834 // If an anonymous union contains an anonymous struct of which any member
835 // is initialized, all members must be initialized.
836 if (!RD->isUnion() || Inits.count(*I))
837 CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
838 }
839 }
840
841 /// Check the body for the given constexpr function declaration only contains
842 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
843 ///
844 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)845 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
846 if (isa<CXXTryStmt>(Body)) {
847 // C++11 [dcl.constexpr]p3:
848 // The definition of a constexpr function shall satisfy the following
849 // constraints: [...]
850 // - its function-body shall be = delete, = default, or a
851 // compound-statement
852 //
853 // C++11 [dcl.constexpr]p4:
854 // In the definition of a constexpr constructor, [...]
855 // - its function-body shall not be a function-try-block;
856 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857 << isa<CXXConstructorDecl>(Dcl);
858 return false;
859 }
860
861 // - its function-body shall be [...] a compound-statement that contains only
862 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864 llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865 for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866 BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867 switch ((*BodyIt)->getStmtClass()) {
868 case Stmt::NullStmtClass:
869 // - null statements,
870 continue;
871
872 case Stmt::DeclStmtClass:
873 // - static_assert-declarations
874 // - using-declarations,
875 // - using-directives,
876 // - typedef declarations and alias-declarations that do not define
877 // classes or enumerations,
878 if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879 return false;
880 continue;
881
882 case Stmt::ReturnStmtClass:
883 // - and exactly one return statement;
884 if (isa<CXXConstructorDecl>(Dcl))
885 break;
886
887 ReturnStmts.push_back((*BodyIt)->getLocStart());
888 continue;
889
890 default:
891 break;
892 }
893
894 Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895 << isa<CXXConstructorDecl>(Dcl);
896 return false;
897 }
898
899 if (const CXXConstructorDecl *Constructor
900 = dyn_cast<CXXConstructorDecl>(Dcl)) {
901 const CXXRecordDecl *RD = Constructor->getParent();
902 // DR1359:
903 // - every non-variant non-static data member and base class sub-object
904 // shall be initialized;
905 // - if the class is a non-empty union, or for each non-empty anonymous
906 // union member of a non-union class, exactly one non-static data member
907 // shall be initialized;
908 if (RD->isUnion()) {
909 if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
910 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
911 return false;
912 }
913 } else if (!Constructor->isDependentContext() &&
914 !Constructor->isDelegatingConstructor()) {
915 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
916
917 // Skip detailed checking if we have enough initializers, and we would
918 // allow at most one initializer per member.
919 bool AnyAnonStructUnionMembers = false;
920 unsigned Fields = 0;
921 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
922 E = RD->field_end(); I != E; ++I, ++Fields) {
923 if ((*I)->isAnonymousStructOrUnion()) {
924 AnyAnonStructUnionMembers = true;
925 break;
926 }
927 }
928 if (AnyAnonStructUnionMembers ||
929 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
930 // Check initialization of non-static data members. Base classes are
931 // always initialized so do not need to be checked. Dependent bases
932 // might not have initializers in the member initializer list.
933 llvm::SmallSet<Decl*, 16> Inits;
934 for (CXXConstructorDecl::init_const_iterator
935 I = Constructor->init_begin(), E = Constructor->init_end();
936 I != E; ++I) {
937 if (FieldDecl *FD = (*I)->getMember())
938 Inits.insert(FD);
939 else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
940 Inits.insert(ID->chain_begin(), ID->chain_end());
941 }
942
943 bool Diagnosed = false;
944 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
945 E = RD->field_end(); I != E; ++I)
946 CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
947 if (Diagnosed)
948 return false;
949 }
950 }
951 } else {
952 if (ReturnStmts.empty()) {
953 Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
954 return false;
955 }
956 if (ReturnStmts.size() > 1) {
957 Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
958 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
959 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
960 return false;
961 }
962 }
963
964 // C++11 [dcl.constexpr]p5:
965 // if no function argument values exist such that the function invocation
966 // substitution would produce a constant expression, the program is
967 // ill-formed; no diagnostic required.
968 // C++11 [dcl.constexpr]p3:
969 // - every constructor call and implicit conversion used in initializing the
970 // return value shall be one of those allowed in a constant expression.
971 // C++11 [dcl.constexpr]p4:
972 // - every constructor involved in initializing non-static data members and
973 // base class sub-objects shall be a constexpr constructor.
974 llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
975 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
976 Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
977 << isa<CXXConstructorDecl>(Dcl);
978 for (size_t I = 0, N = Diags.size(); I != N; ++I)
979 Diag(Diags[I].first, Diags[I].second);
980 return false;
981 }
982
983 return true;
984 }
985
986 /// isCurrentClassName - Determine whether the identifier II is the
987 /// name of the class type currently being defined. In the case of
988 /// nested classes, this will only return true if II is the name of
989 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)990 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
991 const CXXScopeSpec *SS) {
992 assert(getLangOpts().CPlusPlus && "No class names in C!");
993
994 CXXRecordDecl *CurDecl;
995 if (SS && SS->isSet() && !SS->isInvalid()) {
996 DeclContext *DC = computeDeclContext(*SS, true);
997 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
998 } else
999 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1000
1001 if (CurDecl && CurDecl->getIdentifier())
1002 return &II == CurDecl->getIdentifier();
1003 else
1004 return false;
1005 }
1006
1007 /// \brief Check the validity of a C++ base class specifier.
1008 ///
1009 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1010 /// and returns NULL otherwise.
1011 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1012 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1013 SourceRange SpecifierRange,
1014 bool Virtual, AccessSpecifier Access,
1015 TypeSourceInfo *TInfo,
1016 SourceLocation EllipsisLoc) {
1017 QualType BaseType = TInfo->getType();
1018
1019 // C++ [class.union]p1:
1020 // A union shall not have base classes.
1021 if (Class->isUnion()) {
1022 Diag(Class->getLocation(), diag::err_base_clause_on_union)
1023 << SpecifierRange;
1024 return 0;
1025 }
1026
1027 if (EllipsisLoc.isValid() &&
1028 !TInfo->getType()->containsUnexpandedParameterPack()) {
1029 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1030 << TInfo->getTypeLoc().getSourceRange();
1031 EllipsisLoc = SourceLocation();
1032 }
1033
1034 if (BaseType->isDependentType())
1035 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1036 Class->getTagKind() == TTK_Class,
1037 Access, TInfo, EllipsisLoc);
1038
1039 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1040
1041 // Base specifiers must be record types.
1042 if (!BaseType->isRecordType()) {
1043 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1044 return 0;
1045 }
1046
1047 // C++ [class.union]p1:
1048 // A union shall not be used as a base class.
1049 if (BaseType->isUnionType()) {
1050 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1051 return 0;
1052 }
1053
1054 // C++ [class.derived]p2:
1055 // The class-name in a base-specifier shall not be an incompletely
1056 // defined class.
1057 if (RequireCompleteType(BaseLoc, BaseType,
1058 PDiag(diag::err_incomplete_base_class)
1059 << SpecifierRange)) {
1060 Class->setInvalidDecl();
1061 return 0;
1062 }
1063
1064 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1065 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1066 assert(BaseDecl && "Record type has no declaration");
1067 BaseDecl = BaseDecl->getDefinition();
1068 assert(BaseDecl && "Base type is not incomplete, but has no definition");
1069 CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1070 assert(CXXBaseDecl && "Base type is not a C++ type");
1071
1072 // C++ [class]p3:
1073 // If a class is marked final and it appears as a base-type-specifier in
1074 // base-clause, the program is ill-formed.
1075 if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1076 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1077 << CXXBaseDecl->getDeclName();
1078 Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1079 << CXXBaseDecl->getDeclName();
1080 return 0;
1081 }
1082
1083 if (BaseDecl->isInvalidDecl())
1084 Class->setInvalidDecl();
1085
1086 // Create the base specifier.
1087 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1088 Class->getTagKind() == TTK_Class,
1089 Access, TInfo, EllipsisLoc);
1090 }
1091
1092 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1093 /// one entry in the base class list of a class specifier, for
1094 /// example:
1095 /// class foo : public bar, virtual private baz {
1096 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1097 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1098 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1099 bool Virtual, AccessSpecifier Access,
1100 ParsedType basetype, SourceLocation BaseLoc,
1101 SourceLocation EllipsisLoc) {
1102 if (!classdecl)
1103 return true;
1104
1105 AdjustDeclIfTemplate(classdecl);
1106 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1107 if (!Class)
1108 return true;
1109
1110 TypeSourceInfo *TInfo = 0;
1111 GetTypeFromParser(basetype, &TInfo);
1112
1113 if (EllipsisLoc.isInvalid() &&
1114 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1115 UPPC_BaseType))
1116 return true;
1117
1118 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1119 Virtual, Access, TInfo,
1120 EllipsisLoc))
1121 return BaseSpec;
1122
1123 return true;
1124 }
1125
1126 /// \brief Performs the actual work of attaching the given base class
1127 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1128 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1129 unsigned NumBases) {
1130 if (NumBases == 0)
1131 return false;
1132
1133 // Used to keep track of which base types we have already seen, so
1134 // that we can properly diagnose redundant direct base types. Note
1135 // that the key is always the unqualified canonical type of the base
1136 // class.
1137 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1138
1139 // Copy non-redundant base specifiers into permanent storage.
1140 unsigned NumGoodBases = 0;
1141 bool Invalid = false;
1142 for (unsigned idx = 0; idx < NumBases; ++idx) {
1143 QualType NewBaseType
1144 = Context.getCanonicalType(Bases[idx]->getType());
1145 NewBaseType = NewBaseType.getLocalUnqualifiedType();
1146
1147 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1148 if (KnownBase) {
1149 // C++ [class.mi]p3:
1150 // A class shall not be specified as a direct base class of a
1151 // derived class more than once.
1152 Diag(Bases[idx]->getLocStart(),
1153 diag::err_duplicate_base_class)
1154 << KnownBase->getType()
1155 << Bases[idx]->getSourceRange();
1156
1157 // Delete the duplicate base class specifier; we're going to
1158 // overwrite its pointer later.
1159 Context.Deallocate(Bases[idx]);
1160
1161 Invalid = true;
1162 } else {
1163 // Okay, add this new base class.
1164 KnownBase = Bases[idx];
1165 Bases[NumGoodBases++] = Bases[idx];
1166 if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1167 if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1168 if (RD->hasAttr<WeakAttr>())
1169 Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1170 }
1171 }
1172
1173 // Attach the remaining base class specifiers to the derived class.
1174 Class->setBases(Bases, NumGoodBases);
1175
1176 // Delete the remaining (good) base class specifiers, since their
1177 // data has been copied into the CXXRecordDecl.
1178 for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1179 Context.Deallocate(Bases[idx]);
1180
1181 return Invalid;
1182 }
1183
1184 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1185 /// class, after checking whether there are any duplicate base
1186 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1187 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1188 unsigned NumBases) {
1189 if (!ClassDecl || !Bases || !NumBases)
1190 return;
1191
1192 AdjustDeclIfTemplate(ClassDecl);
1193 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1194 (CXXBaseSpecifier**)(Bases), NumBases);
1195 }
1196
GetClassForType(QualType T)1197 static CXXRecordDecl *GetClassForType(QualType T) {
1198 if (const RecordType *RT = T->getAs<RecordType>())
1199 return cast<CXXRecordDecl>(RT->getDecl());
1200 else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1201 return ICT->getDecl();
1202 else
1203 return 0;
1204 }
1205
1206 /// \brief Determine whether the type \p Derived is a C++ class that is
1207 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base)1208 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1209 if (!getLangOpts().CPlusPlus)
1210 return false;
1211
1212 CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1213 if (!DerivedRD)
1214 return false;
1215
1216 CXXRecordDecl *BaseRD = GetClassForType(Base);
1217 if (!BaseRD)
1218 return false;
1219
1220 // FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
1221 return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1222 }
1223
1224 /// \brief Determine whether the type \p Derived is a C++ class that is
1225 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base,CXXBasePaths & Paths)1226 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1227 if (!getLangOpts().CPlusPlus)
1228 return false;
1229
1230 CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1231 if (!DerivedRD)
1232 return false;
1233
1234 CXXRecordDecl *BaseRD = GetClassForType(Base);
1235 if (!BaseRD)
1236 return false;
1237
1238 return DerivedRD->isDerivedFrom(BaseRD, Paths);
1239 }
1240
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1241 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1242 CXXCastPath &BasePathArray) {
1243 assert(BasePathArray.empty() && "Base path array must be empty!");
1244 assert(Paths.isRecordingPaths() && "Must record paths!");
1245
1246 const CXXBasePath &Path = Paths.front();
1247
1248 // We first go backward and check if we have a virtual base.
1249 // FIXME: It would be better if CXXBasePath had the base specifier for
1250 // the nearest virtual base.
1251 unsigned Start = 0;
1252 for (unsigned I = Path.size(); I != 0; --I) {
1253 if (Path[I - 1].Base->isVirtual()) {
1254 Start = I - 1;
1255 break;
1256 }
1257 }
1258
1259 // Now add all bases.
1260 for (unsigned I = Start, E = Path.size(); I != E; ++I)
1261 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1262 }
1263
1264 /// \brief Determine whether the given base path includes a virtual
1265 /// base class.
BasePathInvolvesVirtualBase(const CXXCastPath & BasePath)1266 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1267 for (CXXCastPath::const_iterator B = BasePath.begin(),
1268 BEnd = BasePath.end();
1269 B != BEnd; ++B)
1270 if ((*B)->isVirtual())
1271 return true;
1272
1273 return false;
1274 }
1275
1276 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1277 /// conversion (where Derived and Base are class types) is
1278 /// well-formed, meaning that the conversion is unambiguous (and
1279 /// that all of the base classes are accessible). Returns true
1280 /// and emits a diagnostic if the code is ill-formed, returns false
1281 /// otherwise. Loc is the location where this routine should point to
1282 /// if there is an error, and Range is the source range to highlight
1283 /// if there is an error.
1284 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1285 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1286 unsigned InaccessibleBaseID,
1287 unsigned AmbigiousBaseConvID,
1288 SourceLocation Loc, SourceRange Range,
1289 DeclarationName Name,
1290 CXXCastPath *BasePath) {
1291 // First, determine whether the path from Derived to Base is
1292 // ambiguous. This is slightly more expensive than checking whether
1293 // the Derived to Base conversion exists, because here we need to
1294 // explore multiple paths to determine if there is an ambiguity.
1295 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1296 /*DetectVirtual=*/false);
1297 bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1298 assert(DerivationOkay &&
1299 "Can only be used with a derived-to-base conversion");
1300 (void)DerivationOkay;
1301
1302 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1303 if (InaccessibleBaseID) {
1304 // Check that the base class can be accessed.
1305 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1306 InaccessibleBaseID)) {
1307 case AR_inaccessible:
1308 return true;
1309 case AR_accessible:
1310 case AR_dependent:
1311 case AR_delayed:
1312 break;
1313 }
1314 }
1315
1316 // Build a base path if necessary.
1317 if (BasePath)
1318 BuildBasePathArray(Paths, *BasePath);
1319 return false;
1320 }
1321
1322 // We know that the derived-to-base conversion is ambiguous, and
1323 // we're going to produce a diagnostic. Perform the derived-to-base
1324 // search just one more time to compute all of the possible paths so
1325 // that we can print them out. This is more expensive than any of
1326 // the previous derived-to-base checks we've done, but at this point
1327 // performance isn't as much of an issue.
1328 Paths.clear();
1329 Paths.setRecordingPaths(true);
1330 bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1331 assert(StillOkay && "Can only be used with a derived-to-base conversion");
1332 (void)StillOkay;
1333
1334 // Build up a textual representation of the ambiguous paths, e.g.,
1335 // D -> B -> A, that will be used to illustrate the ambiguous
1336 // conversions in the diagnostic. We only print one of the paths
1337 // to each base class subobject.
1338 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1339
1340 Diag(Loc, AmbigiousBaseConvID)
1341 << Derived << Base << PathDisplayStr << Range << Name;
1342 return true;
1343 }
1344
1345 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1346 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1347 SourceLocation Loc, SourceRange Range,
1348 CXXCastPath *BasePath,
1349 bool IgnoreAccess) {
1350 return CheckDerivedToBaseConversion(Derived, Base,
1351 IgnoreAccess ? 0
1352 : diag::err_upcast_to_inaccessible_base,
1353 diag::err_ambiguous_derived_to_base_conv,
1354 Loc, Range, DeclarationName(),
1355 BasePath);
1356 }
1357
1358
1359 /// @brief Builds a string representing ambiguous paths from a
1360 /// specific derived class to different subobjects of the same base
1361 /// class.
1362 ///
1363 /// This function builds a string that can be used in error messages
1364 /// to show the different paths that one can take through the
1365 /// inheritance hierarchy to go from the derived class to different
1366 /// subobjects of a base class. The result looks something like this:
1367 /// @code
1368 /// struct D -> struct B -> struct A
1369 /// struct D -> struct C -> struct A
1370 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1371 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1372 std::string PathDisplayStr;
1373 std::set<unsigned> DisplayedPaths;
1374 for (CXXBasePaths::paths_iterator Path = Paths.begin();
1375 Path != Paths.end(); ++Path) {
1376 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1377 // We haven't displayed a path to this particular base
1378 // class subobject yet.
1379 PathDisplayStr += "\n ";
1380 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1381 for (CXXBasePath::const_iterator Element = Path->begin();
1382 Element != Path->end(); ++Element)
1383 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1384 }
1385 }
1386
1387 return PathDisplayStr;
1388 }
1389
1390 //===----------------------------------------------------------------------===//
1391 // C++ class member Handling
1392 //===----------------------------------------------------------------------===//
1393
1394 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1395 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1396 SourceLocation ASLoc,
1397 SourceLocation ColonLoc,
1398 AttributeList *Attrs) {
1399 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1400 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1401 ASLoc, ColonLoc);
1402 CurContext->addHiddenDecl(ASDecl);
1403 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1404 }
1405
1406 /// CheckOverrideControl - Check C++0x override control semantics.
CheckOverrideControl(const Decl * D)1407 void Sema::CheckOverrideControl(const Decl *D) {
1408 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1409 if (!MD || !MD->isVirtual())
1410 return;
1411
1412 if (MD->isDependentContext())
1413 return;
1414
1415 // C++0x [class.virtual]p3:
1416 // If a virtual function is marked with the virt-specifier override and does
1417 // not override a member function of a base class,
1418 // the program is ill-formed.
1419 bool HasOverriddenMethods =
1420 MD->begin_overridden_methods() != MD->end_overridden_methods();
1421 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1422 Diag(MD->getLocation(),
1423 diag::err_function_marked_override_not_overriding)
1424 << MD->getDeclName();
1425 return;
1426 }
1427 }
1428
1429 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1430 /// function overrides a virtual member function marked 'final', according to
1431 /// C++0x [class.virtual]p3.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1432 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1433 const CXXMethodDecl *Old) {
1434 if (!Old->hasAttr<FinalAttr>())
1435 return false;
1436
1437 Diag(New->getLocation(), diag::err_final_function_overridden)
1438 << New->getDeclName();
1439 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1440 return true;
1441 }
1442
1443 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1444 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1445 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
1446 /// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1447 /// present but parsing it has been deferred.
1448 Decl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,bool HasDeferredInit)1449 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1450 MultiTemplateParamsArg TemplateParameterLists,
1451 Expr *BW, const VirtSpecifiers &VS,
1452 bool HasDeferredInit) {
1453 const DeclSpec &DS = D.getDeclSpec();
1454 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1455 DeclarationName Name = NameInfo.getName();
1456 SourceLocation Loc = NameInfo.getLoc();
1457
1458 // For anonymous bitfields, the location should point to the type.
1459 if (Loc.isInvalid())
1460 Loc = D.getLocStart();
1461
1462 Expr *BitWidth = static_cast<Expr*>(BW);
1463
1464 assert(isa<CXXRecordDecl>(CurContext));
1465 assert(!DS.isFriendSpecified());
1466
1467 bool isFunc = D.isDeclarationOfFunction();
1468
1469 // C++ 9.2p6: A member shall not be declared to have automatic storage
1470 // duration (auto, register) or with the extern storage-class-specifier.
1471 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1472 // data members and cannot be applied to names declared const or static,
1473 // and cannot be applied to reference members.
1474 switch (DS.getStorageClassSpec()) {
1475 case DeclSpec::SCS_unspecified:
1476 case DeclSpec::SCS_typedef:
1477 case DeclSpec::SCS_static:
1478 // FALL THROUGH.
1479 break;
1480 case DeclSpec::SCS_mutable:
1481 if (isFunc) {
1482 if (DS.getStorageClassSpecLoc().isValid())
1483 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1484 else
1485 Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1486
1487 // FIXME: It would be nicer if the keyword was ignored only for this
1488 // declarator. Otherwise we could get follow-up errors.
1489 D.getMutableDeclSpec().ClearStorageClassSpecs();
1490 }
1491 break;
1492 default:
1493 if (DS.getStorageClassSpecLoc().isValid())
1494 Diag(DS.getStorageClassSpecLoc(),
1495 diag::err_storageclass_invalid_for_member);
1496 else
1497 Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1498 D.getMutableDeclSpec().ClearStorageClassSpecs();
1499 }
1500
1501 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1502 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1503 !isFunc);
1504
1505 Decl *Member;
1506 if (isInstField) {
1507 CXXScopeSpec &SS = D.getCXXScopeSpec();
1508
1509 // Data members must have identifiers for names.
1510 if (Name.getNameKind() != DeclarationName::Identifier) {
1511 Diag(Loc, diag::err_bad_variable_name)
1512 << Name;
1513 return 0;
1514 }
1515
1516 IdentifierInfo *II = Name.getAsIdentifierInfo();
1517
1518 // Member field could not be with "template" keyword.
1519 // So TemplateParameterLists should be empty in this case.
1520 if (TemplateParameterLists.size()) {
1521 TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1522 if (TemplateParams->size()) {
1523 // There is no such thing as a member field template.
1524 Diag(D.getIdentifierLoc(), diag::err_template_member)
1525 << II
1526 << SourceRange(TemplateParams->getTemplateLoc(),
1527 TemplateParams->getRAngleLoc());
1528 } else {
1529 // There is an extraneous 'template<>' for this member.
1530 Diag(TemplateParams->getTemplateLoc(),
1531 diag::err_template_member_noparams)
1532 << II
1533 << SourceRange(TemplateParams->getTemplateLoc(),
1534 TemplateParams->getRAngleLoc());
1535 }
1536 return 0;
1537 }
1538
1539 if (SS.isSet() && !SS.isInvalid()) {
1540 // The user provided a superfluous scope specifier inside a class
1541 // definition:
1542 //
1543 // class X {
1544 // int X::member;
1545 // };
1546 if (DeclContext *DC = computeDeclContext(SS, false))
1547 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1548 else
1549 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1550 << Name << SS.getRange();
1551
1552 SS.clear();
1553 }
1554
1555 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1556 HasDeferredInit, AS);
1557 assert(Member && "HandleField never returns null");
1558 } else {
1559 assert(!HasDeferredInit);
1560
1561 Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1562 if (!Member) {
1563 return 0;
1564 }
1565
1566 // Non-instance-fields can't have a bitfield.
1567 if (BitWidth) {
1568 if (Member->isInvalidDecl()) {
1569 // don't emit another diagnostic.
1570 } else if (isa<VarDecl>(Member)) {
1571 // C++ 9.6p3: A bit-field shall not be a static member.
1572 // "static member 'A' cannot be a bit-field"
1573 Diag(Loc, diag::err_static_not_bitfield)
1574 << Name << BitWidth->getSourceRange();
1575 } else if (isa<TypedefDecl>(Member)) {
1576 // "typedef member 'x' cannot be a bit-field"
1577 Diag(Loc, diag::err_typedef_not_bitfield)
1578 << Name << BitWidth->getSourceRange();
1579 } else {
1580 // A function typedef ("typedef int f(); f a;").
1581 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1582 Diag(Loc, diag::err_not_integral_type_bitfield)
1583 << Name << cast<ValueDecl>(Member)->getType()
1584 << BitWidth->getSourceRange();
1585 }
1586
1587 BitWidth = 0;
1588 Member->setInvalidDecl();
1589 }
1590
1591 Member->setAccess(AS);
1592
1593 // If we have declared a member function template, set the access of the
1594 // templated declaration as well.
1595 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1596 FunTmpl->getTemplatedDecl()->setAccess(AS);
1597 }
1598
1599 if (VS.isOverrideSpecified()) {
1600 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1601 if (!MD || !MD->isVirtual()) {
1602 Diag(Member->getLocStart(),
1603 diag::override_keyword_only_allowed_on_virtual_member_functions)
1604 << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1605 } else
1606 MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1607 }
1608 if (VS.isFinalSpecified()) {
1609 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1610 if (!MD || !MD->isVirtual()) {
1611 Diag(Member->getLocStart(),
1612 diag::override_keyword_only_allowed_on_virtual_member_functions)
1613 << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1614 } else
1615 MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1616 }
1617
1618 if (VS.getLastLocation().isValid()) {
1619 // Update the end location of a method that has a virt-specifiers.
1620 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1621 MD->setRangeEnd(VS.getLastLocation());
1622 }
1623
1624 CheckOverrideControl(Member);
1625
1626 assert((Name || isInstField) && "No identifier for non-field ?");
1627
1628 if (isInstField)
1629 FieldCollector->Add(cast<FieldDecl>(Member));
1630 return Member;
1631 }
1632
1633 /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1634 /// in-class initializer for a non-static C++ class member, and after
1635 /// instantiating an in-class initializer in a class template. Such actions
1636 /// are deferred until the class is complete.
1637 void
ActOnCXXInClassMemberInitializer(Decl * D,SourceLocation EqualLoc,Expr * InitExpr)1638 Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1639 Expr *InitExpr) {
1640 FieldDecl *FD = cast<FieldDecl>(D);
1641
1642 if (!InitExpr) {
1643 FD->setInvalidDecl();
1644 FD->removeInClassInitializer();
1645 return;
1646 }
1647
1648 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1649 FD->setInvalidDecl();
1650 FD->removeInClassInitializer();
1651 return;
1652 }
1653
1654 ExprResult Init = InitExpr;
1655 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1656 if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1657 Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1658 << /*at end of ctor*/1 << InitExpr->getSourceRange();
1659 }
1660 Expr **Inits = &InitExpr;
1661 unsigned NumInits = 1;
1662 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1663 InitializationKind Kind = EqualLoc.isInvalid()
1664 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1665 : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1666 InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1667 Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1668 if (Init.isInvalid()) {
1669 FD->setInvalidDecl();
1670 return;
1671 }
1672
1673 CheckImplicitConversions(Init.get(), EqualLoc);
1674 }
1675
1676 // C++0x [class.base.init]p7:
1677 // The initialization of each base and member constitutes a
1678 // full-expression.
1679 Init = MaybeCreateExprWithCleanups(Init);
1680 if (Init.isInvalid()) {
1681 FD->setInvalidDecl();
1682 return;
1683 }
1684
1685 InitExpr = Init.release();
1686
1687 FD->setInClassInitializer(InitExpr);
1688 }
1689
1690 /// \brief Find the direct and/or virtual base specifiers that
1691 /// correspond to the given base type, for use in base initialization
1692 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)1693 static bool FindBaseInitializer(Sema &SemaRef,
1694 CXXRecordDecl *ClassDecl,
1695 QualType BaseType,
1696 const CXXBaseSpecifier *&DirectBaseSpec,
1697 const CXXBaseSpecifier *&VirtualBaseSpec) {
1698 // First, check for a direct base class.
1699 DirectBaseSpec = 0;
1700 for (CXXRecordDecl::base_class_const_iterator Base
1701 = ClassDecl->bases_begin();
1702 Base != ClassDecl->bases_end(); ++Base) {
1703 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1704 // We found a direct base of this type. That's what we're
1705 // initializing.
1706 DirectBaseSpec = &*Base;
1707 break;
1708 }
1709 }
1710
1711 // Check for a virtual base class.
1712 // FIXME: We might be able to short-circuit this if we know in advance that
1713 // there are no virtual bases.
1714 VirtualBaseSpec = 0;
1715 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1716 // We haven't found a base yet; search the class hierarchy for a
1717 // virtual base class.
1718 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1719 /*DetectVirtual=*/false);
1720 if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1721 BaseType, Paths)) {
1722 for (CXXBasePaths::paths_iterator Path = Paths.begin();
1723 Path != Paths.end(); ++Path) {
1724 if (Path->back().Base->isVirtual()) {
1725 VirtualBaseSpec = Path->back().Base;
1726 break;
1727 }
1728 }
1729 }
1730 }
1731
1732 return DirectBaseSpec || VirtualBaseSpec;
1733 }
1734
1735 /// \brief Handle a C++ member initializer using braced-init-list syntax.
1736 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)1737 Sema::ActOnMemInitializer(Decl *ConstructorD,
1738 Scope *S,
1739 CXXScopeSpec &SS,
1740 IdentifierInfo *MemberOrBase,
1741 ParsedType TemplateTypeTy,
1742 const DeclSpec &DS,
1743 SourceLocation IdLoc,
1744 Expr *InitList,
1745 SourceLocation EllipsisLoc) {
1746 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1747 DS, IdLoc, InitList,
1748 EllipsisLoc);
1749 }
1750
1751 /// \brief Handle a C++ member initializer using parentheses syntax.
1752 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,SourceLocation EllipsisLoc)1753 Sema::ActOnMemInitializer(Decl *ConstructorD,
1754 Scope *S,
1755 CXXScopeSpec &SS,
1756 IdentifierInfo *MemberOrBase,
1757 ParsedType TemplateTypeTy,
1758 const DeclSpec &DS,
1759 SourceLocation IdLoc,
1760 SourceLocation LParenLoc,
1761 Expr **Args, unsigned NumArgs,
1762 SourceLocation RParenLoc,
1763 SourceLocation EllipsisLoc) {
1764 Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1765 RParenLoc);
1766 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1767 DS, IdLoc, List, EllipsisLoc);
1768 }
1769
1770 namespace {
1771
1772 // Callback to only accept typo corrections that can be a valid C++ member
1773 // intializer: either a non-static field member or a base class.
1774 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1775 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)1776 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1777 : ClassDecl(ClassDecl) {}
1778
ValidateCandidate(const TypoCorrection & candidate)1779 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1780 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1781 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1782 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1783 else
1784 return isa<TypeDecl>(ND);
1785 }
1786 return false;
1787 }
1788
1789 private:
1790 CXXRecordDecl *ClassDecl;
1791 };
1792
1793 }
1794
1795 /// \brief Handle a C++ member initializer.
1796 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)1797 Sema::BuildMemInitializer(Decl *ConstructorD,
1798 Scope *S,
1799 CXXScopeSpec &SS,
1800 IdentifierInfo *MemberOrBase,
1801 ParsedType TemplateTypeTy,
1802 const DeclSpec &DS,
1803 SourceLocation IdLoc,
1804 Expr *Init,
1805 SourceLocation EllipsisLoc) {
1806 if (!ConstructorD)
1807 return true;
1808
1809 AdjustDeclIfTemplate(ConstructorD);
1810
1811 CXXConstructorDecl *Constructor
1812 = dyn_cast<CXXConstructorDecl>(ConstructorD);
1813 if (!Constructor) {
1814 // The user wrote a constructor initializer on a function that is
1815 // not a C++ constructor. Ignore the error for now, because we may
1816 // have more member initializers coming; we'll diagnose it just
1817 // once in ActOnMemInitializers.
1818 return true;
1819 }
1820
1821 CXXRecordDecl *ClassDecl = Constructor->getParent();
1822
1823 // C++ [class.base.init]p2:
1824 // Names in a mem-initializer-id are looked up in the scope of the
1825 // constructor's class and, if not found in that scope, are looked
1826 // up in the scope containing the constructor's definition.
1827 // [Note: if the constructor's class contains a member with the
1828 // same name as a direct or virtual base class of the class, a
1829 // mem-initializer-id naming the member or base class and composed
1830 // of a single identifier refers to the class member. A
1831 // mem-initializer-id for the hidden base class may be specified
1832 // using a qualified name. ]
1833 if (!SS.getScopeRep() && !TemplateTypeTy) {
1834 // Look for a member, first.
1835 DeclContext::lookup_result Result
1836 = ClassDecl->lookup(MemberOrBase);
1837 if (Result.first != Result.second) {
1838 ValueDecl *Member;
1839 if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1840 (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1841 if (EllipsisLoc.isValid())
1842 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1843 << MemberOrBase
1844 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1845
1846 return BuildMemberInitializer(Member, Init, IdLoc);
1847 }
1848 }
1849 }
1850 // It didn't name a member, so see if it names a class.
1851 QualType BaseType;
1852 TypeSourceInfo *TInfo = 0;
1853
1854 if (TemplateTypeTy) {
1855 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1856 } else if (DS.getTypeSpecType() == TST_decltype) {
1857 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1858 } else {
1859 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1860 LookupParsedName(R, S, &SS);
1861
1862 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1863 if (!TyD) {
1864 if (R.isAmbiguous()) return true;
1865
1866 // We don't want access-control diagnostics here.
1867 R.suppressDiagnostics();
1868
1869 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1870 bool NotUnknownSpecialization = false;
1871 DeclContext *DC = computeDeclContext(SS, false);
1872 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1873 NotUnknownSpecialization = !Record->hasAnyDependentBases();
1874
1875 if (!NotUnknownSpecialization) {
1876 // When the scope specifier can refer to a member of an unknown
1877 // specialization, we take it as a type name.
1878 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1879 SS.getWithLocInContext(Context),
1880 *MemberOrBase, IdLoc);
1881 if (BaseType.isNull())
1882 return true;
1883
1884 R.clear();
1885 R.setLookupName(MemberOrBase);
1886 }
1887 }
1888
1889 // If no results were found, try to correct typos.
1890 TypoCorrection Corr;
1891 MemInitializerValidatorCCC Validator(ClassDecl);
1892 if (R.empty() && BaseType.isNull() &&
1893 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1894 Validator, ClassDecl))) {
1895 std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1896 std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1897 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1898 // We have found a non-static data member with a similar
1899 // name to what was typed; complain and initialize that
1900 // member.
1901 Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1902 << MemberOrBase << true << CorrectedQuotedStr
1903 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1904 Diag(Member->getLocation(), diag::note_previous_decl)
1905 << CorrectedQuotedStr;
1906
1907 return BuildMemberInitializer(Member, Init, IdLoc);
1908 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1909 const CXXBaseSpecifier *DirectBaseSpec;
1910 const CXXBaseSpecifier *VirtualBaseSpec;
1911 if (FindBaseInitializer(*this, ClassDecl,
1912 Context.getTypeDeclType(Type),
1913 DirectBaseSpec, VirtualBaseSpec)) {
1914 // We have found a direct or virtual base class with a
1915 // similar name to what was typed; complain and initialize
1916 // that base class.
1917 Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1918 << MemberOrBase << false << CorrectedQuotedStr
1919 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1920
1921 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1922 : VirtualBaseSpec;
1923 Diag(BaseSpec->getLocStart(),
1924 diag::note_base_class_specified_here)
1925 << BaseSpec->getType()
1926 << BaseSpec->getSourceRange();
1927
1928 TyD = Type;
1929 }
1930 }
1931 }
1932
1933 if (!TyD && BaseType.isNull()) {
1934 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1935 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1936 return true;
1937 }
1938 }
1939
1940 if (BaseType.isNull()) {
1941 BaseType = Context.getTypeDeclType(TyD);
1942 if (SS.isSet()) {
1943 NestedNameSpecifier *Qualifier =
1944 static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1945
1946 // FIXME: preserve source range information
1947 BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1948 }
1949 }
1950 }
1951
1952 if (!TInfo)
1953 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1954
1955 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1956 }
1957
1958 /// Checks a member initializer expression for cases where reference (or
1959 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)1960 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1961 Expr *Init,
1962 SourceLocation IdLoc) {
1963 QualType MemberTy = Member->getType();
1964
1965 // We only handle pointers and references currently.
1966 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1967 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1968 return;
1969
1970 const bool IsPointer = MemberTy->isPointerType();
1971 if (IsPointer) {
1972 if (const UnaryOperator *Op
1973 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1974 // The only case we're worried about with pointers requires taking the
1975 // address.
1976 if (Op->getOpcode() != UO_AddrOf)
1977 return;
1978
1979 Init = Op->getSubExpr();
1980 } else {
1981 // We only handle address-of expression initializers for pointers.
1982 return;
1983 }
1984 }
1985
1986 if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1987 // Taking the address of a temporary will be diagnosed as a hard error.
1988 if (IsPointer)
1989 return;
1990
1991 S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1992 << Member << Init->getSourceRange();
1993 } else if (const DeclRefExpr *DRE
1994 = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1995 // We only warn when referring to a non-reference parameter declaration.
1996 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1997 if (!Parameter || Parameter->getType()->isReferenceType())
1998 return;
1999
2000 S.Diag(Init->getExprLoc(),
2001 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2002 : diag::warn_bind_ref_member_to_parameter)
2003 << Member << Parameter << Init->getSourceRange();
2004 } else {
2005 // Other initializers are fine.
2006 return;
2007 }
2008
2009 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2010 << (unsigned)IsPointer;
2011 }
2012
2013 /// Checks an initializer expression for use of uninitialized fields, such as
2014 /// containing the field that is being initialized. Returns true if there is an
2015 /// uninitialized field was used an updates the SourceLocation parameter; false
2016 /// otherwise.
InitExprContainsUninitializedFields(const Stmt * S,const ValueDecl * LhsField,SourceLocation * L)2017 static bool InitExprContainsUninitializedFields(const Stmt *S,
2018 const ValueDecl *LhsField,
2019 SourceLocation *L) {
2020 assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2021
2022 if (isa<CallExpr>(S)) {
2023 // Do not descend into function calls or constructors, as the use
2024 // of an uninitialized field may be valid. One would have to inspect
2025 // the contents of the function/ctor to determine if it is safe or not.
2026 // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2027 // may be safe, depending on what the function/ctor does.
2028 return false;
2029 }
2030 if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2031 const NamedDecl *RhsField = ME->getMemberDecl();
2032
2033 if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2034 // The member expression points to a static data member.
2035 assert(VD->isStaticDataMember() &&
2036 "Member points to non-static data member!");
2037 (void)VD;
2038 return false;
2039 }
2040
2041 if (isa<EnumConstantDecl>(RhsField)) {
2042 // The member expression points to an enum.
2043 return false;
2044 }
2045
2046 if (RhsField == LhsField) {
2047 // Initializing a field with itself. Throw a warning.
2048 // But wait; there are exceptions!
2049 // Exception #1: The field may not belong to this record.
2050 // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2051 const Expr *base = ME->getBase();
2052 if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2053 // Even though the field matches, it does not belong to this record.
2054 return false;
2055 }
2056 // None of the exceptions triggered; return true to indicate an
2057 // uninitialized field was used.
2058 *L = ME->getMemberLoc();
2059 return true;
2060 }
2061 } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2062 // sizeof/alignof doesn't reference contents, do not warn.
2063 return false;
2064 } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2065 // address-of doesn't reference contents (the pointer may be dereferenced
2066 // in the same expression but it would be rare; and weird).
2067 if (UOE->getOpcode() == UO_AddrOf)
2068 return false;
2069 }
2070 for (Stmt::const_child_range it = S->children(); it; ++it) {
2071 if (!*it) {
2072 // An expression such as 'member(arg ?: "")' may trigger this.
2073 continue;
2074 }
2075 if (InitExprContainsUninitializedFields(*it, LhsField, L))
2076 return true;
2077 }
2078 return false;
2079 }
2080
2081 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)2082 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2083 SourceLocation IdLoc) {
2084 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2085 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2086 assert((DirectMember || IndirectMember) &&
2087 "Member must be a FieldDecl or IndirectFieldDecl");
2088
2089 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2090 return true;
2091
2092 if (Member->isInvalidDecl())
2093 return true;
2094
2095 // Diagnose value-uses of fields to initialize themselves, e.g.
2096 // foo(foo)
2097 // where foo is not also a parameter to the constructor.
2098 // TODO: implement -Wuninitialized and fold this into that framework.
2099 Expr **Args;
2100 unsigned NumArgs;
2101 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2102 Args = ParenList->getExprs();
2103 NumArgs = ParenList->getNumExprs();
2104 } else {
2105 InitListExpr *InitList = cast<InitListExpr>(Init);
2106 Args = InitList->getInits();
2107 NumArgs = InitList->getNumInits();
2108 }
2109 for (unsigned i = 0; i < NumArgs; ++i) {
2110 SourceLocation L;
2111 if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2112 // FIXME: Return true in the case when other fields are used before being
2113 // uninitialized. For example, let this field be the i'th field. When
2114 // initializing the i'th field, throw a warning if any of the >= i'th
2115 // fields are used, as they are not yet initialized.
2116 // Right now we are only handling the case where the i'th field uses
2117 // itself in its initializer.
2118 Diag(L, diag::warn_field_is_uninit);
2119 }
2120 }
2121
2122 SourceRange InitRange = Init->getSourceRange();
2123
2124 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2125 // Can't check initialization for a member of dependent type or when
2126 // any of the arguments are type-dependent expressions.
2127 DiscardCleanupsInEvaluationContext();
2128 } else {
2129 bool InitList = false;
2130 if (isa<InitListExpr>(Init)) {
2131 InitList = true;
2132 Args = &Init;
2133 NumArgs = 1;
2134
2135 if (isStdInitializerList(Member->getType(), 0)) {
2136 Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2137 << /*at end of ctor*/1 << InitRange;
2138 }
2139 }
2140
2141 // Initialize the member.
2142 InitializedEntity MemberEntity =
2143 DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2144 : InitializedEntity::InitializeMember(IndirectMember, 0);
2145 InitializationKind Kind =
2146 InitList ? InitializationKind::CreateDirectList(IdLoc)
2147 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2148 InitRange.getEnd());
2149
2150 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2151 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2152 MultiExprArg(*this, Args, NumArgs),
2153 0);
2154 if (MemberInit.isInvalid())
2155 return true;
2156
2157 CheckImplicitConversions(MemberInit.get(),
2158 InitRange.getBegin());
2159
2160 // C++0x [class.base.init]p7:
2161 // The initialization of each base and member constitutes a
2162 // full-expression.
2163 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2164 if (MemberInit.isInvalid())
2165 return true;
2166
2167 // If we are in a dependent context, template instantiation will
2168 // perform this type-checking again. Just save the arguments that we
2169 // received.
2170 // FIXME: This isn't quite ideal, since our ASTs don't capture all
2171 // of the information that we have about the member
2172 // initializer. However, deconstructing the ASTs is a dicey process,
2173 // and this approach is far more likely to get the corner cases right.
2174 if (CurContext->isDependentContext()) {
2175 // The existing Init will do fine.
2176 } else {
2177 Init = MemberInit.get();
2178 CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2179 }
2180 }
2181
2182 if (DirectMember) {
2183 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2184 InitRange.getBegin(), Init,
2185 InitRange.getEnd());
2186 } else {
2187 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2188 InitRange.getBegin(), Init,
2189 InitRange.getEnd());
2190 }
2191 }
2192
2193 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)2194 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2195 CXXRecordDecl *ClassDecl) {
2196 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2197 if (!LangOpts.CPlusPlus0x)
2198 return Diag(NameLoc, diag::err_delegating_ctor)
2199 << TInfo->getTypeLoc().getLocalSourceRange();
2200 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2201
2202 bool InitList = true;
2203 Expr **Args = &Init;
2204 unsigned NumArgs = 1;
2205 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2206 InitList = false;
2207 Args = ParenList->getExprs();
2208 NumArgs = ParenList->getNumExprs();
2209 }
2210
2211 SourceRange InitRange = Init->getSourceRange();
2212 // Initialize the object.
2213 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2214 QualType(ClassDecl->getTypeForDecl(), 0));
2215 InitializationKind Kind =
2216 InitList ? InitializationKind::CreateDirectList(NameLoc)
2217 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2218 InitRange.getEnd());
2219 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2220 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2221 MultiExprArg(*this, Args,NumArgs),
2222 0);
2223 if (DelegationInit.isInvalid())
2224 return true;
2225
2226 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2227 "Delegating constructor with no target?");
2228
2229 CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2230
2231 // C++0x [class.base.init]p7:
2232 // The initialization of each base and member constitutes a
2233 // full-expression.
2234 DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2235 if (DelegationInit.isInvalid())
2236 return true;
2237
2238 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2239 DelegationInit.takeAs<Expr>(),
2240 InitRange.getEnd());
2241 }
2242
2243 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)2244 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2245 Expr *Init, CXXRecordDecl *ClassDecl,
2246 SourceLocation EllipsisLoc) {
2247 SourceLocation BaseLoc
2248 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2249
2250 if (!BaseType->isDependentType() && !BaseType->isRecordType())
2251 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2252 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2253
2254 // C++ [class.base.init]p2:
2255 // [...] Unless the mem-initializer-id names a nonstatic data
2256 // member of the constructor's class or a direct or virtual base
2257 // of that class, the mem-initializer is ill-formed. A
2258 // mem-initializer-list can initialize a base class using any
2259 // name that denotes that base class type.
2260 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2261
2262 SourceRange InitRange = Init->getSourceRange();
2263 if (EllipsisLoc.isValid()) {
2264 // This is a pack expansion.
2265 if (!BaseType->containsUnexpandedParameterPack()) {
2266 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2267 << SourceRange(BaseLoc, InitRange.getEnd());
2268
2269 EllipsisLoc = SourceLocation();
2270 }
2271 } else {
2272 // Check for any unexpanded parameter packs.
2273 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2274 return true;
2275
2276 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2277 return true;
2278 }
2279
2280 // Check for direct and virtual base classes.
2281 const CXXBaseSpecifier *DirectBaseSpec = 0;
2282 const CXXBaseSpecifier *VirtualBaseSpec = 0;
2283 if (!Dependent) {
2284 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2285 BaseType))
2286 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2287
2288 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2289 VirtualBaseSpec);
2290
2291 // C++ [base.class.init]p2:
2292 // Unless the mem-initializer-id names a nonstatic data member of the
2293 // constructor's class or a direct or virtual base of that class, the
2294 // mem-initializer is ill-formed.
2295 if (!DirectBaseSpec && !VirtualBaseSpec) {
2296 // If the class has any dependent bases, then it's possible that
2297 // one of those types will resolve to the same type as
2298 // BaseType. Therefore, just treat this as a dependent base
2299 // class initialization. FIXME: Should we try to check the
2300 // initialization anyway? It seems odd.
2301 if (ClassDecl->hasAnyDependentBases())
2302 Dependent = true;
2303 else
2304 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2305 << BaseType << Context.getTypeDeclType(ClassDecl)
2306 << BaseTInfo->getTypeLoc().getLocalSourceRange();
2307 }
2308 }
2309
2310 if (Dependent) {
2311 DiscardCleanupsInEvaluationContext();
2312
2313 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2314 /*IsVirtual=*/false,
2315 InitRange.getBegin(), Init,
2316 InitRange.getEnd(), EllipsisLoc);
2317 }
2318
2319 // C++ [base.class.init]p2:
2320 // If a mem-initializer-id is ambiguous because it designates both
2321 // a direct non-virtual base class and an inherited virtual base
2322 // class, the mem-initializer is ill-formed.
2323 if (DirectBaseSpec && VirtualBaseSpec)
2324 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2325 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2326
2327 CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2328 if (!BaseSpec)
2329 BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2330
2331 // Initialize the base.
2332 bool InitList = true;
2333 Expr **Args = &Init;
2334 unsigned NumArgs = 1;
2335 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2336 InitList = false;
2337 Args = ParenList->getExprs();
2338 NumArgs = ParenList->getNumExprs();
2339 }
2340
2341 InitializedEntity BaseEntity =
2342 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2343 InitializationKind Kind =
2344 InitList ? InitializationKind::CreateDirectList(BaseLoc)
2345 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2346 InitRange.getEnd());
2347 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2348 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2349 MultiExprArg(*this, Args, NumArgs),
2350 0);
2351 if (BaseInit.isInvalid())
2352 return true;
2353
2354 CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2355
2356 // C++0x [class.base.init]p7:
2357 // The initialization of each base and member constitutes a
2358 // full-expression.
2359 BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2360 if (BaseInit.isInvalid())
2361 return true;
2362
2363 // If we are in a dependent context, template instantiation will
2364 // perform this type-checking again. Just save the arguments that we
2365 // received in a ParenListExpr.
2366 // FIXME: This isn't quite ideal, since our ASTs don't capture all
2367 // of the information that we have about the base
2368 // initializer. However, deconstructing the ASTs is a dicey process,
2369 // and this approach is far more likely to get the corner cases right.
2370 if (CurContext->isDependentContext())
2371 BaseInit = Owned(Init);
2372
2373 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2374 BaseSpec->isVirtual(),
2375 InitRange.getBegin(),
2376 BaseInit.takeAs<Expr>(),
2377 InitRange.getEnd(), EllipsisLoc);
2378 }
2379
2380 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E)2381 static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2382 QualType ExprType = E->getType();
2383 QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2384 SourceLocation ExprLoc = E->getLocStart();
2385 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2386 TargetType, ExprLoc);
2387
2388 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2389 SourceRange(ExprLoc, ExprLoc),
2390 E->getSourceRange()).take();
2391 }
2392
2393 /// ImplicitInitializerKind - How an implicit base or member initializer should
2394 /// initialize its base or member.
2395 enum ImplicitInitializerKind {
2396 IIK_Default,
2397 IIK_Copy,
2398 IIK_Move
2399 };
2400
2401 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)2402 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2403 ImplicitInitializerKind ImplicitInitKind,
2404 CXXBaseSpecifier *BaseSpec,
2405 bool IsInheritedVirtualBase,
2406 CXXCtorInitializer *&CXXBaseInit) {
2407 InitializedEntity InitEntity
2408 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2409 IsInheritedVirtualBase);
2410
2411 ExprResult BaseInit;
2412
2413 switch (ImplicitInitKind) {
2414 case IIK_Default: {
2415 InitializationKind InitKind
2416 = InitializationKind::CreateDefault(Constructor->getLocation());
2417 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2418 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2419 MultiExprArg(SemaRef, 0, 0));
2420 break;
2421 }
2422
2423 case IIK_Move:
2424 case IIK_Copy: {
2425 bool Moving = ImplicitInitKind == IIK_Move;
2426 ParmVarDecl *Param = Constructor->getParamDecl(0);
2427 QualType ParamType = Param->getType().getNonReferenceType();
2428
2429 Expr *CopyCtorArg =
2430 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2431 SourceLocation(), Param, false,
2432 Constructor->getLocation(), ParamType,
2433 VK_LValue, 0);
2434
2435 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2436
2437 // Cast to the base class to avoid ambiguities.
2438 QualType ArgTy =
2439 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2440 ParamType.getQualifiers());
2441
2442 if (Moving) {
2443 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2444 }
2445
2446 CXXCastPath BasePath;
2447 BasePath.push_back(BaseSpec);
2448 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2449 CK_UncheckedDerivedToBase,
2450 Moving ? VK_XValue : VK_LValue,
2451 &BasePath).take();
2452
2453 InitializationKind InitKind
2454 = InitializationKind::CreateDirect(Constructor->getLocation(),
2455 SourceLocation(), SourceLocation());
2456 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2457 &CopyCtorArg, 1);
2458 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2459 MultiExprArg(&CopyCtorArg, 1));
2460 break;
2461 }
2462 }
2463
2464 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2465 if (BaseInit.isInvalid())
2466 return true;
2467
2468 CXXBaseInit =
2469 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2470 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2471 SourceLocation()),
2472 BaseSpec->isVirtual(),
2473 SourceLocation(),
2474 BaseInit.takeAs<Expr>(),
2475 SourceLocation(),
2476 SourceLocation());
2477
2478 return false;
2479 }
2480
RefersToRValueRef(Expr * MemRef)2481 static bool RefersToRValueRef(Expr *MemRef) {
2482 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2483 return Referenced->getType()->isRValueReferenceType();
2484 }
2485
2486 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)2487 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2488 ImplicitInitializerKind ImplicitInitKind,
2489 FieldDecl *Field, IndirectFieldDecl *Indirect,
2490 CXXCtorInitializer *&CXXMemberInit) {
2491 if (Field->isInvalidDecl())
2492 return true;
2493
2494 SourceLocation Loc = Constructor->getLocation();
2495
2496 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2497 bool Moving = ImplicitInitKind == IIK_Move;
2498 ParmVarDecl *Param = Constructor->getParamDecl(0);
2499 QualType ParamType = Param->getType().getNonReferenceType();
2500
2501 // Suppress copying zero-width bitfields.
2502 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2503 return false;
2504
2505 Expr *MemberExprBase =
2506 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2507 SourceLocation(), Param, false,
2508 Loc, ParamType, VK_LValue, 0);
2509
2510 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2511
2512 if (Moving) {
2513 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2514 }
2515
2516 // Build a reference to this field within the parameter.
2517 CXXScopeSpec SS;
2518 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2519 Sema::LookupMemberName);
2520 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2521 : cast<ValueDecl>(Field), AS_public);
2522 MemberLookup.resolveKind();
2523 ExprResult CtorArg
2524 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2525 ParamType, Loc,
2526 /*IsArrow=*/false,
2527 SS,
2528 /*TemplateKWLoc=*/SourceLocation(),
2529 /*FirstQualifierInScope=*/0,
2530 MemberLookup,
2531 /*TemplateArgs=*/0);
2532 if (CtorArg.isInvalid())
2533 return true;
2534
2535 // C++11 [class.copy]p15:
2536 // - if a member m has rvalue reference type T&&, it is direct-initialized
2537 // with static_cast<T&&>(x.m);
2538 if (RefersToRValueRef(CtorArg.get())) {
2539 CtorArg = CastForMoving(SemaRef, CtorArg.take());
2540 }
2541
2542 // When the field we are copying is an array, create index variables for
2543 // each dimension of the array. We use these index variables to subscript
2544 // the source array, and other clients (e.g., CodeGen) will perform the
2545 // necessary iteration with these index variables.
2546 SmallVector<VarDecl *, 4> IndexVariables;
2547 QualType BaseType = Field->getType();
2548 QualType SizeType = SemaRef.Context.getSizeType();
2549 bool InitializingArray = false;
2550 while (const ConstantArrayType *Array
2551 = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2552 InitializingArray = true;
2553 // Create the iteration variable for this array index.
2554 IdentifierInfo *IterationVarName = 0;
2555 {
2556 SmallString<8> Str;
2557 llvm::raw_svector_ostream OS(Str);
2558 OS << "__i" << IndexVariables.size();
2559 IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2560 }
2561 VarDecl *IterationVar
2562 = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2563 IterationVarName, SizeType,
2564 SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2565 SC_None, SC_None);
2566 IndexVariables.push_back(IterationVar);
2567
2568 // Create a reference to the iteration variable.
2569 ExprResult IterationVarRef
2570 = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2571 assert(!IterationVarRef.isInvalid() &&
2572 "Reference to invented variable cannot fail!");
2573 IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2574 assert(!IterationVarRef.isInvalid() &&
2575 "Conversion of invented variable cannot fail!");
2576
2577 // Subscript the array with this iteration variable.
2578 CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2579 IterationVarRef.take(),
2580 Loc);
2581 if (CtorArg.isInvalid())
2582 return true;
2583
2584 BaseType = Array->getElementType();
2585 }
2586
2587 // The array subscript expression is an lvalue, which is wrong for moving.
2588 if (Moving && InitializingArray)
2589 CtorArg = CastForMoving(SemaRef, CtorArg.take());
2590
2591 // Construct the entity that we will be initializing. For an array, this
2592 // will be first element in the array, which may require several levels
2593 // of array-subscript entities.
2594 SmallVector<InitializedEntity, 4> Entities;
2595 Entities.reserve(1 + IndexVariables.size());
2596 if (Indirect)
2597 Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2598 else
2599 Entities.push_back(InitializedEntity::InitializeMember(Field));
2600 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2601 Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2602 0,
2603 Entities.back()));
2604
2605 // Direct-initialize to use the copy constructor.
2606 InitializationKind InitKind =
2607 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2608
2609 Expr *CtorArgE = CtorArg.takeAs<Expr>();
2610 InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2611 &CtorArgE, 1);
2612
2613 ExprResult MemberInit
2614 = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2615 MultiExprArg(&CtorArgE, 1));
2616 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2617 if (MemberInit.isInvalid())
2618 return true;
2619
2620 if (Indirect) {
2621 assert(IndexVariables.size() == 0 &&
2622 "Indirect field improperly initialized");
2623 CXXMemberInit
2624 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2625 Loc, Loc,
2626 MemberInit.takeAs<Expr>(),
2627 Loc);
2628 } else
2629 CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2630 Loc, MemberInit.takeAs<Expr>(),
2631 Loc,
2632 IndexVariables.data(),
2633 IndexVariables.size());
2634 return false;
2635 }
2636
2637 assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2638
2639 QualType FieldBaseElementType =
2640 SemaRef.Context.getBaseElementType(Field->getType());
2641
2642 if (FieldBaseElementType->isRecordType()) {
2643 InitializedEntity InitEntity
2644 = Indirect? InitializedEntity::InitializeMember(Indirect)
2645 : InitializedEntity::InitializeMember(Field);
2646 InitializationKind InitKind =
2647 InitializationKind::CreateDefault(Loc);
2648
2649 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2650 ExprResult MemberInit =
2651 InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2652
2653 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2654 if (MemberInit.isInvalid())
2655 return true;
2656
2657 if (Indirect)
2658 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2659 Indirect, Loc,
2660 Loc,
2661 MemberInit.get(),
2662 Loc);
2663 else
2664 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2665 Field, Loc, Loc,
2666 MemberInit.get(),
2667 Loc);
2668 return false;
2669 }
2670
2671 if (!Field->getParent()->isUnion()) {
2672 if (FieldBaseElementType->isReferenceType()) {
2673 SemaRef.Diag(Constructor->getLocation(),
2674 diag::err_uninitialized_member_in_ctor)
2675 << (int)Constructor->isImplicit()
2676 << SemaRef.Context.getTagDeclType(Constructor->getParent())
2677 << 0 << Field->getDeclName();
2678 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2679 return true;
2680 }
2681
2682 if (FieldBaseElementType.isConstQualified()) {
2683 SemaRef.Diag(Constructor->getLocation(),
2684 diag::err_uninitialized_member_in_ctor)
2685 << (int)Constructor->isImplicit()
2686 << SemaRef.Context.getTagDeclType(Constructor->getParent())
2687 << 1 << Field->getDeclName();
2688 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2689 return true;
2690 }
2691 }
2692
2693 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2694 FieldBaseElementType->isObjCRetainableType() &&
2695 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2696 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2697 // Instant objects:
2698 // Default-initialize Objective-C pointers to NULL.
2699 CXXMemberInit
2700 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2701 Loc, Loc,
2702 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2703 Loc);
2704 return false;
2705 }
2706
2707 // Nothing to initialize.
2708 CXXMemberInit = 0;
2709 return false;
2710 }
2711
2712 namespace {
2713 struct BaseAndFieldInfo {
2714 Sema &S;
2715 CXXConstructorDecl *Ctor;
2716 bool AnyErrorsInInits;
2717 ImplicitInitializerKind IIK;
2718 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2719 SmallVector<CXXCtorInitializer*, 8> AllToInit;
2720
BaseAndFieldInfo__anon01e4a4a60311::BaseAndFieldInfo2721 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2722 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2723 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2724 if (Generated && Ctor->isCopyConstructor())
2725 IIK = IIK_Copy;
2726 else if (Generated && Ctor->isMoveConstructor())
2727 IIK = IIK_Move;
2728 else
2729 IIK = IIK_Default;
2730 }
2731
isImplicitCopyOrMove__anon01e4a4a60311::BaseAndFieldInfo2732 bool isImplicitCopyOrMove() const {
2733 switch (IIK) {
2734 case IIK_Copy:
2735 case IIK_Move:
2736 return true;
2737
2738 case IIK_Default:
2739 return false;
2740 }
2741
2742 llvm_unreachable("Invalid ImplicitInitializerKind!");
2743 }
2744 };
2745 }
2746
2747 /// \brief Determine whether the given indirect field declaration is somewhere
2748 /// within an anonymous union.
isWithinAnonymousUnion(IndirectFieldDecl * F)2749 static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2750 for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2751 CEnd = F->chain_end();
2752 C != CEnd; ++C)
2753 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2754 if (Record->isUnion())
2755 return true;
2756
2757 return false;
2758 }
2759
2760 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
2761 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)2762 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2763 if (T->isIncompleteArrayType())
2764 return true;
2765
2766 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2767 if (!ArrayT->getSize())
2768 return true;
2769
2770 T = ArrayT->getElementType();
2771 }
2772
2773 return false;
2774 }
2775
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=0)2776 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2777 FieldDecl *Field,
2778 IndirectFieldDecl *Indirect = 0) {
2779
2780 // Overwhelmingly common case: we have a direct initializer for this field.
2781 if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2782 Info.AllToInit.push_back(Init);
2783 return false;
2784 }
2785
2786 // C++0x [class.base.init]p8: if the entity is a non-static data member that
2787 // has a brace-or-equal-initializer, the entity is initialized as specified
2788 // in [dcl.init].
2789 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2790 CXXCtorInitializer *Init;
2791 if (Indirect)
2792 Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2793 SourceLocation(),
2794 SourceLocation(), 0,
2795 SourceLocation());
2796 else
2797 Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2798 SourceLocation(),
2799 SourceLocation(), 0,
2800 SourceLocation());
2801 Info.AllToInit.push_back(Init);
2802 return false;
2803 }
2804
2805 // Don't build an implicit initializer for union members if none was
2806 // explicitly specified.
2807 if (Field->getParent()->isUnion() ||
2808 (Indirect && isWithinAnonymousUnion(Indirect)))
2809 return false;
2810
2811 // Don't initialize incomplete or zero-length arrays.
2812 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2813 return false;
2814
2815 // Don't try to build an implicit initializer if there were semantic
2816 // errors in any of the initializers (and therefore we might be
2817 // missing some that the user actually wrote).
2818 if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2819 return false;
2820
2821 CXXCtorInitializer *Init = 0;
2822 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2823 Indirect, Init))
2824 return true;
2825
2826 if (Init)
2827 Info.AllToInit.push_back(Init);
2828
2829 return false;
2830 }
2831
2832 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)2833 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2834 CXXCtorInitializer *Initializer) {
2835 assert(Initializer->isDelegatingInitializer());
2836 Constructor->setNumCtorInitializers(1);
2837 CXXCtorInitializer **initializer =
2838 new (Context) CXXCtorInitializer*[1];
2839 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2840 Constructor->setCtorInitializers(initializer);
2841
2842 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2843 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2844 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2845 }
2846
2847 DelegatingCtorDecls.push_back(Constructor);
2848
2849 return false;
2850 }
2851
SetCtorInitializers(CXXConstructorDecl * Constructor,CXXCtorInitializer ** Initializers,unsigned NumInitializers,bool AnyErrors)2852 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2853 CXXCtorInitializer **Initializers,
2854 unsigned NumInitializers,
2855 bool AnyErrors) {
2856 if (Constructor->isDependentContext()) {
2857 // Just store the initializers as written, they will be checked during
2858 // instantiation.
2859 if (NumInitializers > 0) {
2860 Constructor->setNumCtorInitializers(NumInitializers);
2861 CXXCtorInitializer **baseOrMemberInitializers =
2862 new (Context) CXXCtorInitializer*[NumInitializers];
2863 memcpy(baseOrMemberInitializers, Initializers,
2864 NumInitializers * sizeof(CXXCtorInitializer*));
2865 Constructor->setCtorInitializers(baseOrMemberInitializers);
2866 }
2867
2868 return false;
2869 }
2870
2871 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2872
2873 // We need to build the initializer AST according to order of construction
2874 // and not what user specified in the Initializers list.
2875 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2876 if (!ClassDecl)
2877 return true;
2878
2879 bool HadError = false;
2880
2881 for (unsigned i = 0; i < NumInitializers; i++) {
2882 CXXCtorInitializer *Member = Initializers[i];
2883
2884 if (Member->isBaseInitializer())
2885 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2886 else
2887 Info.AllBaseFields[Member->getAnyMember()] = Member;
2888 }
2889
2890 // Keep track of the direct virtual bases.
2891 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2892 for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2893 E = ClassDecl->bases_end(); I != E; ++I) {
2894 if (I->isVirtual())
2895 DirectVBases.insert(I);
2896 }
2897
2898 // Push virtual bases before others.
2899 for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2900 E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2901
2902 if (CXXCtorInitializer *Value
2903 = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2904 Info.AllToInit.push_back(Value);
2905 } else if (!AnyErrors) {
2906 bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2907 CXXCtorInitializer *CXXBaseInit;
2908 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2909 VBase, IsInheritedVirtualBase,
2910 CXXBaseInit)) {
2911 HadError = true;
2912 continue;
2913 }
2914
2915 Info.AllToInit.push_back(CXXBaseInit);
2916 }
2917 }
2918
2919 // Non-virtual bases.
2920 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2921 E = ClassDecl->bases_end(); Base != E; ++Base) {
2922 // Virtuals are in the virtual base list and already constructed.
2923 if (Base->isVirtual())
2924 continue;
2925
2926 if (CXXCtorInitializer *Value
2927 = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2928 Info.AllToInit.push_back(Value);
2929 } else if (!AnyErrors) {
2930 CXXCtorInitializer *CXXBaseInit;
2931 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2932 Base, /*IsInheritedVirtualBase=*/false,
2933 CXXBaseInit)) {
2934 HadError = true;
2935 continue;
2936 }
2937
2938 Info.AllToInit.push_back(CXXBaseInit);
2939 }
2940 }
2941
2942 // Fields.
2943 for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2944 MemEnd = ClassDecl->decls_end();
2945 Mem != MemEnd; ++Mem) {
2946 if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2947 // C++ [class.bit]p2:
2948 // A declaration for a bit-field that omits the identifier declares an
2949 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
2950 // initialized.
2951 if (F->isUnnamedBitfield())
2952 continue;
2953
2954 // If we're not generating the implicit copy/move constructor, then we'll
2955 // handle anonymous struct/union fields based on their individual
2956 // indirect fields.
2957 if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2958 continue;
2959
2960 if (CollectFieldInitializer(*this, Info, F))
2961 HadError = true;
2962 continue;
2963 }
2964
2965 // Beyond this point, we only consider default initialization.
2966 if (Info.IIK != IIK_Default)
2967 continue;
2968
2969 if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2970 if (F->getType()->isIncompleteArrayType()) {
2971 assert(ClassDecl->hasFlexibleArrayMember() &&
2972 "Incomplete array type is not valid");
2973 continue;
2974 }
2975
2976 // Initialize each field of an anonymous struct individually.
2977 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2978 HadError = true;
2979
2980 continue;
2981 }
2982 }
2983
2984 NumInitializers = Info.AllToInit.size();
2985 if (NumInitializers > 0) {
2986 Constructor->setNumCtorInitializers(NumInitializers);
2987 CXXCtorInitializer **baseOrMemberInitializers =
2988 new (Context) CXXCtorInitializer*[NumInitializers];
2989 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2990 NumInitializers * sizeof(CXXCtorInitializer*));
2991 Constructor->setCtorInitializers(baseOrMemberInitializers);
2992
2993 // Constructors implicitly reference the base and member
2994 // destructors.
2995 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2996 Constructor->getParent());
2997 }
2998
2999 return HadError;
3000 }
3001
GetKeyForTopLevelField(FieldDecl * Field)3002 static void *GetKeyForTopLevelField(FieldDecl *Field) {
3003 // For anonymous unions, use the class declaration as the key.
3004 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3005 if (RT->getDecl()->isAnonymousStructOrUnion())
3006 return static_cast<void *>(RT->getDecl());
3007 }
3008 return static_cast<void *>(Field);
3009 }
3010
GetKeyForBase(ASTContext & Context,QualType BaseType)3011 static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3012 return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3013 }
3014
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)3015 static void *GetKeyForMember(ASTContext &Context,
3016 CXXCtorInitializer *Member) {
3017 if (!Member->isAnyMemberInitializer())
3018 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3019
3020 // For fields injected into the class via declaration of an anonymous union,
3021 // use its anonymous union class declaration as the unique key.
3022 FieldDecl *Field = Member->getAnyMember();
3023
3024 // If the field is a member of an anonymous struct or union, our key
3025 // is the anonymous record decl that's a direct child of the class.
3026 RecordDecl *RD = Field->getParent();
3027 if (RD->isAnonymousStructOrUnion()) {
3028 while (true) {
3029 RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3030 if (Parent->isAnonymousStructOrUnion())
3031 RD = Parent;
3032 else
3033 break;
3034 }
3035
3036 return static_cast<void *>(RD);
3037 }
3038
3039 return static_cast<void *>(Field);
3040 }
3041
3042 static void
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,CXXCtorInitializer ** Inits,unsigned NumInits)3043 DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3044 const CXXConstructorDecl *Constructor,
3045 CXXCtorInitializer **Inits,
3046 unsigned NumInits) {
3047 if (Constructor->getDeclContext()->isDependentContext())
3048 return;
3049
3050 // Don't check initializers order unless the warning is enabled at the
3051 // location of at least one initializer.
3052 bool ShouldCheckOrder = false;
3053 for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3054 CXXCtorInitializer *Init = Inits[InitIndex];
3055 if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3056 Init->getSourceLocation())
3057 != DiagnosticsEngine::Ignored) {
3058 ShouldCheckOrder = true;
3059 break;
3060 }
3061 }
3062 if (!ShouldCheckOrder)
3063 return;
3064
3065 // Build the list of bases and members in the order that they'll
3066 // actually be initialized. The explicit initializers should be in
3067 // this same order but may be missing things.
3068 SmallVector<const void*, 32> IdealInitKeys;
3069
3070 const CXXRecordDecl *ClassDecl = Constructor->getParent();
3071
3072 // 1. Virtual bases.
3073 for (CXXRecordDecl::base_class_const_iterator VBase =
3074 ClassDecl->vbases_begin(),
3075 E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3076 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3077
3078 // 2. Non-virtual bases.
3079 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3080 E = ClassDecl->bases_end(); Base != E; ++Base) {
3081 if (Base->isVirtual())
3082 continue;
3083 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3084 }
3085
3086 // 3. Direct fields.
3087 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3088 E = ClassDecl->field_end(); Field != E; ++Field) {
3089 if (Field->isUnnamedBitfield())
3090 continue;
3091
3092 IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3093 }
3094
3095 unsigned NumIdealInits = IdealInitKeys.size();
3096 unsigned IdealIndex = 0;
3097
3098 CXXCtorInitializer *PrevInit = 0;
3099 for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3100 CXXCtorInitializer *Init = Inits[InitIndex];
3101 void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3102
3103 // Scan forward to try to find this initializer in the idealized
3104 // initializers list.
3105 for (; IdealIndex != NumIdealInits; ++IdealIndex)
3106 if (InitKey == IdealInitKeys[IdealIndex])
3107 break;
3108
3109 // If we didn't find this initializer, it must be because we
3110 // scanned past it on a previous iteration. That can only
3111 // happen if we're out of order; emit a warning.
3112 if (IdealIndex == NumIdealInits && PrevInit) {
3113 Sema::SemaDiagnosticBuilder D =
3114 SemaRef.Diag(PrevInit->getSourceLocation(),
3115 diag::warn_initializer_out_of_order);
3116
3117 if (PrevInit->isAnyMemberInitializer())
3118 D << 0 << PrevInit->getAnyMember()->getDeclName();
3119 else
3120 D << 1 << PrevInit->getTypeSourceInfo()->getType();
3121
3122 if (Init->isAnyMemberInitializer())
3123 D << 0 << Init->getAnyMember()->getDeclName();
3124 else
3125 D << 1 << Init->getTypeSourceInfo()->getType();
3126
3127 // Move back to the initializer's location in the ideal list.
3128 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3129 if (InitKey == IdealInitKeys[IdealIndex])
3130 break;
3131
3132 assert(IdealIndex != NumIdealInits &&
3133 "initializer not found in initializer list");
3134 }
3135
3136 PrevInit = Init;
3137 }
3138 }
3139
3140 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)3141 bool CheckRedundantInit(Sema &S,
3142 CXXCtorInitializer *Init,
3143 CXXCtorInitializer *&PrevInit) {
3144 if (!PrevInit) {
3145 PrevInit = Init;
3146 return false;
3147 }
3148
3149 if (FieldDecl *Field = Init->getMember())
3150 S.Diag(Init->getSourceLocation(),
3151 diag::err_multiple_mem_initialization)
3152 << Field->getDeclName()
3153 << Init->getSourceRange();
3154 else {
3155 const Type *BaseClass = Init->getBaseClass();
3156 assert(BaseClass && "neither field nor base");
3157 S.Diag(Init->getSourceLocation(),
3158 diag::err_multiple_base_initialization)
3159 << QualType(BaseClass, 0)
3160 << Init->getSourceRange();
3161 }
3162 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3163 << 0 << PrevInit->getSourceRange();
3164
3165 return true;
3166 }
3167
3168 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3169 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3170
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)3171 bool CheckRedundantUnionInit(Sema &S,
3172 CXXCtorInitializer *Init,
3173 RedundantUnionMap &Unions) {
3174 FieldDecl *Field = Init->getAnyMember();
3175 RecordDecl *Parent = Field->getParent();
3176 NamedDecl *Child = Field;
3177
3178 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3179 if (Parent->isUnion()) {
3180 UnionEntry &En = Unions[Parent];
3181 if (En.first && En.first != Child) {
3182 S.Diag(Init->getSourceLocation(),
3183 diag::err_multiple_mem_union_initialization)
3184 << Field->getDeclName()
3185 << Init->getSourceRange();
3186 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3187 << 0 << En.second->getSourceRange();
3188 return true;
3189 }
3190 if (!En.first) {
3191 En.first = Child;
3192 En.second = Init;
3193 }
3194 if (!Parent->isAnonymousStructOrUnion())
3195 return false;
3196 }
3197
3198 Child = Parent;
3199 Parent = cast<RecordDecl>(Parent->getDeclContext());
3200 }
3201
3202 return false;
3203 }
3204 }
3205
3206 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,CXXCtorInitializer ** meminits,unsigned NumMemInits,bool AnyErrors)3207 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3208 SourceLocation ColonLoc,
3209 CXXCtorInitializer **meminits,
3210 unsigned NumMemInits,
3211 bool AnyErrors) {
3212 if (!ConstructorDecl)
3213 return;
3214
3215 AdjustDeclIfTemplate(ConstructorDecl);
3216
3217 CXXConstructorDecl *Constructor
3218 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3219
3220 if (!Constructor) {
3221 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3222 return;
3223 }
3224
3225 CXXCtorInitializer **MemInits =
3226 reinterpret_cast<CXXCtorInitializer **>(meminits);
3227
3228 // Mapping for the duplicate initializers check.
3229 // For member initializers, this is keyed with a FieldDecl*.
3230 // For base initializers, this is keyed with a Type*.
3231 llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3232
3233 // Mapping for the inconsistent anonymous-union initializers check.
3234 RedundantUnionMap MemberUnions;
3235
3236 bool HadError = false;
3237 for (unsigned i = 0; i < NumMemInits; i++) {
3238 CXXCtorInitializer *Init = MemInits[i];
3239
3240 // Set the source order index.
3241 Init->setSourceOrder(i);
3242
3243 if (Init->isAnyMemberInitializer()) {
3244 FieldDecl *Field = Init->getAnyMember();
3245 if (CheckRedundantInit(*this, Init, Members[Field]) ||
3246 CheckRedundantUnionInit(*this, Init, MemberUnions))
3247 HadError = true;
3248 } else if (Init->isBaseInitializer()) {
3249 void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3250 if (CheckRedundantInit(*this, Init, Members[Key]))
3251 HadError = true;
3252 } else {
3253 assert(Init->isDelegatingInitializer());
3254 // This must be the only initializer
3255 if (i != 0 || NumMemInits > 1) {
3256 Diag(MemInits[0]->getSourceLocation(),
3257 diag::err_delegating_initializer_alone)
3258 << MemInits[0]->getSourceRange();
3259 HadError = true;
3260 // We will treat this as being the only initializer.
3261 }
3262 SetDelegatingInitializer(Constructor, MemInits[i]);
3263 // Return immediately as the initializer is set.
3264 return;
3265 }
3266 }
3267
3268 if (HadError)
3269 return;
3270
3271 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3272
3273 SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3274 }
3275
3276 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)3277 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3278 CXXRecordDecl *ClassDecl) {
3279 // Ignore dependent contexts. Also ignore unions, since their members never
3280 // have destructors implicitly called.
3281 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3282 return;
3283
3284 // FIXME: all the access-control diagnostics are positioned on the
3285 // field/base declaration. That's probably good; that said, the
3286 // user might reasonably want to know why the destructor is being
3287 // emitted, and we currently don't say.
3288
3289 // Non-static data members.
3290 for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3291 E = ClassDecl->field_end(); I != E; ++I) {
3292 FieldDecl *Field = *I;
3293 if (Field->isInvalidDecl())
3294 continue;
3295
3296 // Don't destroy incomplete or zero-length arrays.
3297 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3298 continue;
3299
3300 QualType FieldType = Context.getBaseElementType(Field->getType());
3301
3302 const RecordType* RT = FieldType->getAs<RecordType>();
3303 if (!RT)
3304 continue;
3305
3306 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3307 if (FieldClassDecl->isInvalidDecl())
3308 continue;
3309 if (FieldClassDecl->hasIrrelevantDestructor())
3310 continue;
3311 // The destructor for an implicit anonymous union member is never invoked.
3312 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3313 continue;
3314
3315 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3316 assert(Dtor && "No dtor found for FieldClassDecl!");
3317 CheckDestructorAccess(Field->getLocation(), Dtor,
3318 PDiag(diag::err_access_dtor_field)
3319 << Field->getDeclName()
3320 << FieldType);
3321
3322 MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3323 DiagnoseUseOfDecl(Dtor, Location);
3324 }
3325
3326 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3327
3328 // Bases.
3329 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3330 E = ClassDecl->bases_end(); Base != E; ++Base) {
3331 // Bases are always records in a well-formed non-dependent class.
3332 const RecordType *RT = Base->getType()->getAs<RecordType>();
3333
3334 // Remember direct virtual bases.
3335 if (Base->isVirtual())
3336 DirectVirtualBases.insert(RT);
3337
3338 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3339 // If our base class is invalid, we probably can't get its dtor anyway.
3340 if (BaseClassDecl->isInvalidDecl())
3341 continue;
3342 if (BaseClassDecl->hasIrrelevantDestructor())
3343 continue;
3344
3345 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3346 assert(Dtor && "No dtor found for BaseClassDecl!");
3347
3348 // FIXME: caret should be on the start of the class name
3349 CheckDestructorAccess(Base->getLocStart(), Dtor,
3350 PDiag(diag::err_access_dtor_base)
3351 << Base->getType()
3352 << Base->getSourceRange(),
3353 Context.getTypeDeclType(ClassDecl));
3354
3355 MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3356 DiagnoseUseOfDecl(Dtor, Location);
3357 }
3358
3359 // Virtual bases.
3360 for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3361 E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3362
3363 // Bases are always records in a well-formed non-dependent class.
3364 const RecordType *RT = VBase->getType()->castAs<RecordType>();
3365
3366 // Ignore direct virtual bases.
3367 if (DirectVirtualBases.count(RT))
3368 continue;
3369
3370 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3371 // If our base class is invalid, we probably can't get its dtor anyway.
3372 if (BaseClassDecl->isInvalidDecl())
3373 continue;
3374 if (BaseClassDecl->hasIrrelevantDestructor())
3375 continue;
3376
3377 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3378 assert(Dtor && "No dtor found for BaseClassDecl!");
3379 CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3380 PDiag(diag::err_access_dtor_vbase)
3381 << VBase->getType(),
3382 Context.getTypeDeclType(ClassDecl));
3383
3384 MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3385 DiagnoseUseOfDecl(Dtor, Location);
3386 }
3387 }
3388
ActOnDefaultCtorInitializers(Decl * CDtorDecl)3389 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3390 if (!CDtorDecl)
3391 return;
3392
3393 if (CXXConstructorDecl *Constructor
3394 = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3395 SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3396 }
3397
RequireNonAbstractType(SourceLocation Loc,QualType T,unsigned DiagID,AbstractDiagSelID SelID)3398 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3399 unsigned DiagID, AbstractDiagSelID SelID) {
3400 if (SelID == -1)
3401 return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3402 else
3403 return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3404 }
3405
RequireNonAbstractType(SourceLocation Loc,QualType T,const PartialDiagnostic & PD)3406 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3407 const PartialDiagnostic &PD) {
3408 if (!getLangOpts().CPlusPlus)
3409 return false;
3410
3411 if (const ArrayType *AT = Context.getAsArrayType(T))
3412 return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3413
3414 if (const PointerType *PT = T->getAs<PointerType>()) {
3415 // Find the innermost pointer type.
3416 while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3417 PT = T;
3418
3419 if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3420 return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3421 }
3422
3423 const RecordType *RT = T->getAs<RecordType>();
3424 if (!RT)
3425 return false;
3426
3427 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3428
3429 // We can't answer whether something is abstract until it has a
3430 // definition. If it's currently being defined, we'll walk back
3431 // over all the declarations when we have a full definition.
3432 const CXXRecordDecl *Def = RD->getDefinition();
3433 if (!Def || Def->isBeingDefined())
3434 return false;
3435
3436 if (!RD->isAbstract())
3437 return false;
3438
3439 Diag(Loc, PD) << RD->getDeclName();
3440 DiagnoseAbstractType(RD);
3441
3442 return true;
3443 }
3444
DiagnoseAbstractType(const CXXRecordDecl * RD)3445 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3446 // Check if we've already emitted the list of pure virtual functions
3447 // for this class.
3448 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3449 return;
3450
3451 CXXFinalOverriderMap FinalOverriders;
3452 RD->getFinalOverriders(FinalOverriders);
3453
3454 // Keep a set of seen pure methods so we won't diagnose the same method
3455 // more than once.
3456 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3457
3458 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3459 MEnd = FinalOverriders.end();
3460 M != MEnd;
3461 ++M) {
3462 for (OverridingMethods::iterator SO = M->second.begin(),
3463 SOEnd = M->second.end();
3464 SO != SOEnd; ++SO) {
3465 // C++ [class.abstract]p4:
3466 // A class is abstract if it contains or inherits at least one
3467 // pure virtual function for which the final overrider is pure
3468 // virtual.
3469
3470 //
3471 if (SO->second.size() != 1)
3472 continue;
3473
3474 if (!SO->second.front().Method->isPure())
3475 continue;
3476
3477 if (!SeenPureMethods.insert(SO->second.front().Method))
3478 continue;
3479
3480 Diag(SO->second.front().Method->getLocation(),
3481 diag::note_pure_virtual_function)
3482 << SO->second.front().Method->getDeclName() << RD->getDeclName();
3483 }
3484 }
3485
3486 if (!PureVirtualClassDiagSet)
3487 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3488 PureVirtualClassDiagSet->insert(RD);
3489 }
3490
3491 namespace {
3492 struct AbstractUsageInfo {
3493 Sema &S;
3494 CXXRecordDecl *Record;
3495 CanQualType AbstractType;
3496 bool Invalid;
3497
AbstractUsageInfo__anon01e4a4a60511::AbstractUsageInfo3498 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3499 : S(S), Record(Record),
3500 AbstractType(S.Context.getCanonicalType(
3501 S.Context.getTypeDeclType(Record))),
3502 Invalid(false) {}
3503
DiagnoseAbstractType__anon01e4a4a60511::AbstractUsageInfo3504 void DiagnoseAbstractType() {
3505 if (Invalid) return;
3506 S.DiagnoseAbstractType(Record);
3507 Invalid = true;
3508 }
3509
3510 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3511 };
3512
3513 struct CheckAbstractUsage {
3514 AbstractUsageInfo &Info;
3515 const NamedDecl *Ctx;
3516
CheckAbstractUsage__anon01e4a4a60511::CheckAbstractUsage3517 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3518 : Info(Info), Ctx(Ctx) {}
3519
Visit__anon01e4a4a60511::CheckAbstractUsage3520 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3521 switch (TL.getTypeLocClass()) {
3522 #define ABSTRACT_TYPELOC(CLASS, PARENT)
3523 #define TYPELOC(CLASS, PARENT) \
3524 case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3525 #include "clang/AST/TypeLocNodes.def"
3526 }
3527 }
3528
Check__anon01e4a4a60511::CheckAbstractUsage3529 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3530 Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3531 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3532 if (!TL.getArg(I))
3533 continue;
3534
3535 TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3536 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3537 }
3538 }
3539
Check__anon01e4a4a60511::CheckAbstractUsage3540 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3541 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3542 }
3543
Check__anon01e4a4a60511::CheckAbstractUsage3544 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3545 // Visit the type parameters from a permissive context.
3546 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3547 TemplateArgumentLoc TAL = TL.getArgLoc(I);
3548 if (TAL.getArgument().getKind() == TemplateArgument::Type)
3549 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3550 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3551 // TODO: other template argument types?
3552 }
3553 }
3554
3555 // Visit pointee types from a permissive context.
3556 #define CheckPolymorphic(Type) \
3557 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3558 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3559 }
3560 CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anon01e4a4a60511::CheckAbstractUsage3561 CheckPolymorphic(ReferenceTypeLoc)
3562 CheckPolymorphic(MemberPointerTypeLoc)
3563 CheckPolymorphic(BlockPointerTypeLoc)
3564 CheckPolymorphic(AtomicTypeLoc)
3565
3566 /// Handle all the types we haven't given a more specific
3567 /// implementation for above.
3568 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3569 // Every other kind of type that we haven't called out already
3570 // that has an inner type is either (1) sugar or (2) contains that
3571 // inner type in some way as a subobject.
3572 if (TypeLoc Next = TL.getNextTypeLoc())
3573 return Visit(Next, Sel);
3574
3575 // If there's no inner type and we're in a permissive context,
3576 // don't diagnose.
3577 if (Sel == Sema::AbstractNone) return;
3578
3579 // Check whether the type matches the abstract type.
3580 QualType T = TL.getType();
3581 if (T->isArrayType()) {
3582 Sel = Sema::AbstractArrayType;
3583 T = Info.S.Context.getBaseElementType(T);
3584 }
3585 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3586 if (CT != Info.AbstractType) return;
3587
3588 // It matched; do some magic.
3589 if (Sel == Sema::AbstractArrayType) {
3590 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3591 << T << TL.getSourceRange();
3592 } else {
3593 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3594 << Sel << T << TL.getSourceRange();
3595 }
3596 Info.DiagnoseAbstractType();
3597 }
3598 };
3599
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)3600 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3601 Sema::AbstractDiagSelID Sel) {
3602 CheckAbstractUsage(*this, D).Visit(TL, Sel);
3603 }
3604
3605 }
3606
3607 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)3608 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3609 CXXMethodDecl *MD) {
3610 // No need to do the check on definitions, which require that
3611 // the return/param types be complete.
3612 if (MD->doesThisDeclarationHaveABody())
3613 return;
3614
3615 // For safety's sake, just ignore it if we don't have type source
3616 // information. This should never happen for non-implicit methods,
3617 // but...
3618 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3619 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3620 }
3621
3622 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)3623 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3624 CXXRecordDecl *RD) {
3625 for (CXXRecordDecl::decl_iterator
3626 I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3627 Decl *D = *I;
3628 if (D->isImplicit()) continue;
3629
3630 // Methods and method templates.
3631 if (isa<CXXMethodDecl>(D)) {
3632 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3633 } else if (isa<FunctionTemplateDecl>(D)) {
3634 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3635 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3636
3637 // Fields and static variables.
3638 } else if (isa<FieldDecl>(D)) {
3639 FieldDecl *FD = cast<FieldDecl>(D);
3640 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3641 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3642 } else if (isa<VarDecl>(D)) {
3643 VarDecl *VD = cast<VarDecl>(D);
3644 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3645 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3646
3647 // Nested classes and class templates.
3648 } else if (isa<CXXRecordDecl>(D)) {
3649 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3650 } else if (isa<ClassTemplateDecl>(D)) {
3651 CheckAbstractClassUsage(Info,
3652 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3653 }
3654 }
3655 }
3656
3657 /// \brief Perform semantic checks on a class definition that has been
3658 /// completing, introducing implicitly-declared members, checking for
3659 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)3660 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3661 if (!Record)
3662 return;
3663
3664 if (Record->isAbstract() && !Record->isInvalidDecl()) {
3665 AbstractUsageInfo Info(*this, Record);
3666 CheckAbstractClassUsage(Info, Record);
3667 }
3668
3669 // If this is not an aggregate type and has no user-declared constructor,
3670 // complain about any non-static data members of reference or const scalar
3671 // type, since they will never get initializers.
3672 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3673 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3674 !Record->isLambda()) {
3675 bool Complained = false;
3676 for (RecordDecl::field_iterator F = Record->field_begin(),
3677 FEnd = Record->field_end();
3678 F != FEnd; ++F) {
3679 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3680 continue;
3681
3682 if (F->getType()->isReferenceType() ||
3683 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3684 if (!Complained) {
3685 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3686 << Record->getTagKind() << Record;
3687 Complained = true;
3688 }
3689
3690 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3691 << F->getType()->isReferenceType()
3692 << F->getDeclName();
3693 }
3694 }
3695 }
3696
3697 if (Record->isDynamicClass() && !Record->isDependentType())
3698 DynamicClasses.push_back(Record);
3699
3700 if (Record->getIdentifier()) {
3701 // C++ [class.mem]p13:
3702 // If T is the name of a class, then each of the following shall have a
3703 // name different from T:
3704 // - every member of every anonymous union that is a member of class T.
3705 //
3706 // C++ [class.mem]p14:
3707 // In addition, if class T has a user-declared constructor (12.1), every
3708 // non-static data member of class T shall have a name different from T.
3709 for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3710 R.first != R.second; ++R.first) {
3711 NamedDecl *D = *R.first;
3712 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3713 isa<IndirectFieldDecl>(D)) {
3714 Diag(D->getLocation(), diag::err_member_name_of_class)
3715 << D->getDeclName();
3716 break;
3717 }
3718 }
3719 }
3720
3721 // Warn if the class has virtual methods but non-virtual public destructor.
3722 if (Record->isPolymorphic() && !Record->isDependentType()) {
3723 CXXDestructorDecl *dtor = Record->getDestructor();
3724 if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3725 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3726 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3727 }
3728
3729 // See if a method overloads virtual methods in a base
3730 /// class without overriding any.
3731 if (!Record->isDependentType()) {
3732 for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3733 MEnd = Record->method_end();
3734 M != MEnd; ++M) {
3735 if (!(*M)->isStatic())
3736 DiagnoseHiddenVirtualMethods(Record, *M);
3737 }
3738 }
3739
3740 // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3741 // function that is not a constructor declares that member function to be
3742 // const. [...] The class of which that function is a member shall be
3743 // a literal type.
3744 //
3745 // If the class has virtual bases, any constexpr members will already have
3746 // been diagnosed by the checks performed on the member declaration, so
3747 // suppress this (less useful) diagnostic.
3748 if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3749 !Record->isLiteral() && !Record->getNumVBases()) {
3750 for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3751 MEnd = Record->method_end();
3752 M != MEnd; ++M) {
3753 if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3754 switch (Record->getTemplateSpecializationKind()) {
3755 case TSK_ImplicitInstantiation:
3756 case TSK_ExplicitInstantiationDeclaration:
3757 case TSK_ExplicitInstantiationDefinition:
3758 // If a template instantiates to a non-literal type, but its members
3759 // instantiate to constexpr functions, the template is technically
3760 // ill-formed, but we allow it for sanity.
3761 continue;
3762
3763 case TSK_Undeclared:
3764 case TSK_ExplicitSpecialization:
3765 RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3766 PDiag(diag::err_constexpr_method_non_literal));
3767 break;
3768 }
3769
3770 // Only produce one error per class.
3771 break;
3772 }
3773 }
3774 }
3775
3776 // Declare inherited constructors. We do this eagerly here because:
3777 // - The standard requires an eager diagnostic for conflicting inherited
3778 // constructors from different classes.
3779 // - The lazy declaration of the other implicit constructors is so as to not
3780 // waste space and performance on classes that are not meant to be
3781 // instantiated (e.g. meta-functions). This doesn't apply to classes that
3782 // have inherited constructors.
3783 DeclareInheritedConstructors(Record);
3784
3785 if (!Record->isDependentType())
3786 CheckExplicitlyDefaultedMethods(Record);
3787 }
3788
CheckExplicitlyDefaultedMethods(CXXRecordDecl * Record)3789 void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3790 for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3791 ME = Record->method_end();
3792 MI != ME; ++MI) {
3793 if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3794 switch (getSpecialMember(*MI)) {
3795 case CXXDefaultConstructor:
3796 CheckExplicitlyDefaultedDefaultConstructor(
3797 cast<CXXConstructorDecl>(*MI));
3798 break;
3799
3800 case CXXDestructor:
3801 CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3802 break;
3803
3804 case CXXCopyConstructor:
3805 CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3806 break;
3807
3808 case CXXCopyAssignment:
3809 CheckExplicitlyDefaultedCopyAssignment(*MI);
3810 break;
3811
3812 case CXXMoveConstructor:
3813 CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3814 break;
3815
3816 case CXXMoveAssignment:
3817 CheckExplicitlyDefaultedMoveAssignment(*MI);
3818 break;
3819
3820 case CXXInvalid:
3821 llvm_unreachable("non-special member explicitly defaulted!");
3822 }
3823 }
3824 }
3825
3826 }
3827
CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl * CD)3828 void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3829 assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3830
3831 // Whether this was the first-declared instance of the constructor.
3832 // This affects whether we implicitly add an exception spec (and, eventually,
3833 // constexpr). It is also ill-formed to explicitly default a constructor such
3834 // that it would be deleted. (C++0x [decl.fct.def.default])
3835 bool First = CD == CD->getCanonicalDecl();
3836
3837 bool HadError = false;
3838 if (CD->getNumParams() != 0) {
3839 Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3840 << CD->getSourceRange();
3841 HadError = true;
3842 }
3843
3844 ImplicitExceptionSpecification Spec
3845 = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3846 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3847 if (EPI.ExceptionSpecType == EST_Delayed) {
3848 // Exception specification depends on some deferred part of the class. We'll
3849 // try again when the class's definition has been fully processed.
3850 return;
3851 }
3852 const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3853 *ExceptionType = Context.getFunctionType(
3854 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3855
3856 // C++11 [dcl.fct.def.default]p2:
3857 // An explicitly-defaulted function may be declared constexpr only if it
3858 // would have been implicitly declared as constexpr,
3859 // Do not apply this rule to templates, since core issue 1358 makes such
3860 // functions always instantiate to constexpr functions.
3861 if (CD->isConstexpr() &&
3862 CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3863 if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3864 Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3865 << CXXDefaultConstructor;
3866 HadError = true;
3867 }
3868 }
3869 // and may have an explicit exception-specification only if it is compatible
3870 // with the exception-specification on the implicit declaration.
3871 if (CtorType->hasExceptionSpec()) {
3872 if (CheckEquivalentExceptionSpec(
3873 PDiag(diag::err_incorrect_defaulted_exception_spec)
3874 << CXXDefaultConstructor,
3875 PDiag(),
3876 ExceptionType, SourceLocation(),
3877 CtorType, CD->getLocation())) {
3878 HadError = true;
3879 }
3880 }
3881
3882 // If a function is explicitly defaulted on its first declaration,
3883 if (First) {
3884 // -- it is implicitly considered to be constexpr if the implicit
3885 // definition would be,
3886 CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3887
3888 // -- it is implicitly considered to have the same
3889 // exception-specification as if it had been implicitly declared
3890 //
3891 // FIXME: a compatible, but different, explicit exception specification
3892 // will be silently overridden. We should issue a warning if this happens.
3893 EPI.ExtInfo = CtorType->getExtInfo();
3894
3895 // Such a function is also trivial if the implicitly-declared function
3896 // would have been.
3897 CD->setTrivial(CD->getParent()->hasTrivialDefaultConstructor());
3898 }
3899
3900 if (HadError) {
3901 CD->setInvalidDecl();
3902 return;
3903 }
3904
3905 if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3906 if (First) {
3907 CD->setDeletedAsWritten();
3908 } else {
3909 Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3910 << CXXDefaultConstructor;
3911 CD->setInvalidDecl();
3912 }
3913 }
3914 }
3915
CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl * CD)3916 void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3917 assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3918
3919 // Whether this was the first-declared instance of the constructor.
3920 bool First = CD == CD->getCanonicalDecl();
3921
3922 bool HadError = false;
3923 if (CD->getNumParams() != 1) {
3924 Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3925 << CD->getSourceRange();
3926 HadError = true;
3927 }
3928
3929 ImplicitExceptionSpecification Spec(*this);
3930 bool Const;
3931 llvm::tie(Spec, Const) =
3932 ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3933
3934 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3935 const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3936 *ExceptionType = Context.getFunctionType(
3937 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3938
3939 // Check for parameter type matching.
3940 // This is a copy ctor so we know it's a cv-qualified reference to T.
3941 QualType ArgType = CtorType->getArgType(0);
3942 if (ArgType->getPointeeType().isVolatileQualified()) {
3943 Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3944 HadError = true;
3945 }
3946 if (ArgType->getPointeeType().isConstQualified() && !Const) {
3947 Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3948 HadError = true;
3949 }
3950
3951 // C++11 [dcl.fct.def.default]p2:
3952 // An explicitly-defaulted function may be declared constexpr only if it
3953 // would have been implicitly declared as constexpr,
3954 // Do not apply this rule to templates, since core issue 1358 makes such
3955 // functions always instantiate to constexpr functions.
3956 if (CD->isConstexpr() &&
3957 CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3958 if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3959 Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3960 << CXXCopyConstructor;
3961 HadError = true;
3962 }
3963 }
3964 // and may have an explicit exception-specification only if it is compatible
3965 // with the exception-specification on the implicit declaration.
3966 if (CtorType->hasExceptionSpec()) {
3967 if (CheckEquivalentExceptionSpec(
3968 PDiag(diag::err_incorrect_defaulted_exception_spec)
3969 << CXXCopyConstructor,
3970 PDiag(),
3971 ExceptionType, SourceLocation(),
3972 CtorType, CD->getLocation())) {
3973 HadError = true;
3974 }
3975 }
3976
3977 // If a function is explicitly defaulted on its first declaration,
3978 if (First) {
3979 // -- it is implicitly considered to be constexpr if the implicit
3980 // definition would be,
3981 CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3982
3983 // -- it is implicitly considered to have the same
3984 // exception-specification as if it had been implicitly declared, and
3985 //
3986 // FIXME: a compatible, but different, explicit exception specification
3987 // will be silently overridden. We should issue a warning if this happens.
3988 EPI.ExtInfo = CtorType->getExtInfo();
3989
3990 // -- [...] it shall have the same parameter type as if it had been
3991 // implicitly declared.
3992 CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3993
3994 // Such a function is also trivial if the implicitly-declared function
3995 // would have been.
3996 CD->setTrivial(CD->getParent()->hasTrivialCopyConstructor());
3997 }
3998
3999 if (HadError) {
4000 CD->setInvalidDecl();
4001 return;
4002 }
4003
4004 if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
4005 if (First) {
4006 CD->setDeletedAsWritten();
4007 } else {
4008 Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4009 << CXXCopyConstructor;
4010 CD->setInvalidDecl();
4011 }
4012 }
4013 }
4014
CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl * MD)4015 void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
4016 assert(MD->isExplicitlyDefaulted());
4017
4018 // Whether this was the first-declared instance of the operator
4019 bool First = MD == MD->getCanonicalDecl();
4020
4021 bool HadError = false;
4022 if (MD->getNumParams() != 1) {
4023 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4024 << MD->getSourceRange();
4025 HadError = true;
4026 }
4027
4028 QualType ReturnType =
4029 MD->getType()->getAs<FunctionType>()->getResultType();
4030 if (!ReturnType->isLValueReferenceType() ||
4031 !Context.hasSameType(
4032 Context.getCanonicalType(ReturnType->getPointeeType()),
4033 Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4034 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4035 HadError = true;
4036 }
4037
4038 ImplicitExceptionSpecification Spec(*this);
4039 bool Const;
4040 llvm::tie(Spec, Const) =
4041 ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4042
4043 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4044 const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4045 *ExceptionType = Context.getFunctionType(
4046 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4047
4048 QualType ArgType = OperType->getArgType(0);
4049 if (!ArgType->isLValueReferenceType()) {
4050 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4051 HadError = true;
4052 } else {
4053 if (ArgType->getPointeeType().isVolatileQualified()) {
4054 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4055 HadError = true;
4056 }
4057 if (ArgType->getPointeeType().isConstQualified() && !Const) {
4058 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4059 HadError = true;
4060 }
4061 }
4062
4063 if (OperType->getTypeQuals()) {
4064 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4065 HadError = true;
4066 }
4067
4068 if (OperType->hasExceptionSpec()) {
4069 if (CheckEquivalentExceptionSpec(
4070 PDiag(diag::err_incorrect_defaulted_exception_spec)
4071 << CXXCopyAssignment,
4072 PDiag(),
4073 ExceptionType, SourceLocation(),
4074 OperType, MD->getLocation())) {
4075 HadError = true;
4076 }
4077 }
4078 if (First) {
4079 // We set the declaration to have the computed exception spec here.
4080 // We duplicate the one parameter type.
4081 EPI.RefQualifier = OperType->getRefQualifier();
4082 EPI.ExtInfo = OperType->getExtInfo();
4083 MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4084
4085 // Such a function is also trivial if the implicitly-declared function
4086 // would have been.
4087 MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
4088 }
4089
4090 if (HadError) {
4091 MD->setInvalidDecl();
4092 return;
4093 }
4094
4095 if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4096 if (First) {
4097 MD->setDeletedAsWritten();
4098 } else {
4099 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4100 << CXXCopyAssignment;
4101 MD->setInvalidDecl();
4102 }
4103 }
4104 }
4105
CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl * CD)4106 void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4107 assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4108
4109 // Whether this was the first-declared instance of the constructor.
4110 bool First = CD == CD->getCanonicalDecl();
4111
4112 bool HadError = false;
4113 if (CD->getNumParams() != 1) {
4114 Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4115 << CD->getSourceRange();
4116 HadError = true;
4117 }
4118
4119 ImplicitExceptionSpecification Spec(
4120 ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4121
4122 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4123 const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4124 *ExceptionType = Context.getFunctionType(
4125 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4126
4127 // Check for parameter type matching.
4128 // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4129 QualType ArgType = CtorType->getArgType(0);
4130 if (ArgType->getPointeeType().isVolatileQualified()) {
4131 Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4132 HadError = true;
4133 }
4134 if (ArgType->getPointeeType().isConstQualified()) {
4135 Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4136 HadError = true;
4137 }
4138
4139 // C++11 [dcl.fct.def.default]p2:
4140 // An explicitly-defaulted function may be declared constexpr only if it
4141 // would have been implicitly declared as constexpr,
4142 // Do not apply this rule to templates, since core issue 1358 makes such
4143 // functions always instantiate to constexpr functions.
4144 if (CD->isConstexpr() &&
4145 CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4146 if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4147 Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4148 << CXXMoveConstructor;
4149 HadError = true;
4150 }
4151 }
4152 // and may have an explicit exception-specification only if it is compatible
4153 // with the exception-specification on the implicit declaration.
4154 if (CtorType->hasExceptionSpec()) {
4155 if (CheckEquivalentExceptionSpec(
4156 PDiag(diag::err_incorrect_defaulted_exception_spec)
4157 << CXXMoveConstructor,
4158 PDiag(),
4159 ExceptionType, SourceLocation(),
4160 CtorType, CD->getLocation())) {
4161 HadError = true;
4162 }
4163 }
4164
4165 // If a function is explicitly defaulted on its first declaration,
4166 if (First) {
4167 // -- it is implicitly considered to be constexpr if the implicit
4168 // definition would be,
4169 CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4170
4171 // -- it is implicitly considered to have the same
4172 // exception-specification as if it had been implicitly declared, and
4173 //
4174 // FIXME: a compatible, but different, explicit exception specification
4175 // will be silently overridden. We should issue a warning if this happens.
4176 EPI.ExtInfo = CtorType->getExtInfo();
4177
4178 // -- [...] it shall have the same parameter type as if it had been
4179 // implicitly declared.
4180 CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4181
4182 // Such a function is also trivial if the implicitly-declared function
4183 // would have been.
4184 CD->setTrivial(CD->getParent()->hasTrivialMoveConstructor());
4185 }
4186
4187 if (HadError) {
4188 CD->setInvalidDecl();
4189 return;
4190 }
4191
4192 if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4193 if (First) {
4194 CD->setDeletedAsWritten();
4195 } else {
4196 Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4197 << CXXMoveConstructor;
4198 CD->setInvalidDecl();
4199 }
4200 }
4201 }
4202
CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl * MD)4203 void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4204 assert(MD->isExplicitlyDefaulted());
4205
4206 // Whether this was the first-declared instance of the operator
4207 bool First = MD == MD->getCanonicalDecl();
4208
4209 bool HadError = false;
4210 if (MD->getNumParams() != 1) {
4211 Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4212 << MD->getSourceRange();
4213 HadError = true;
4214 }
4215
4216 QualType ReturnType =
4217 MD->getType()->getAs<FunctionType>()->getResultType();
4218 if (!ReturnType->isLValueReferenceType() ||
4219 !Context.hasSameType(
4220 Context.getCanonicalType(ReturnType->getPointeeType()),
4221 Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4222 Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4223 HadError = true;
4224 }
4225
4226 ImplicitExceptionSpecification Spec(
4227 ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4228
4229 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4230 const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4231 *ExceptionType = Context.getFunctionType(
4232 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4233
4234 QualType ArgType = OperType->getArgType(0);
4235 if (!ArgType->isRValueReferenceType()) {
4236 Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4237 HadError = true;
4238 } else {
4239 if (ArgType->getPointeeType().isVolatileQualified()) {
4240 Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4241 HadError = true;
4242 }
4243 if (ArgType->getPointeeType().isConstQualified()) {
4244 Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4245 HadError = true;
4246 }
4247 }
4248
4249 if (OperType->getTypeQuals()) {
4250 Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4251 HadError = true;
4252 }
4253
4254 if (OperType->hasExceptionSpec()) {
4255 if (CheckEquivalentExceptionSpec(
4256 PDiag(diag::err_incorrect_defaulted_exception_spec)
4257 << CXXMoveAssignment,
4258 PDiag(),
4259 ExceptionType, SourceLocation(),
4260 OperType, MD->getLocation())) {
4261 HadError = true;
4262 }
4263 }
4264 if (First) {
4265 // We set the declaration to have the computed exception spec here.
4266 // We duplicate the one parameter type.
4267 EPI.RefQualifier = OperType->getRefQualifier();
4268 EPI.ExtInfo = OperType->getExtInfo();
4269 MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4270
4271 // Such a function is also trivial if the implicitly-declared function
4272 // would have been.
4273 MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
4274 }
4275
4276 if (HadError) {
4277 MD->setInvalidDecl();
4278 return;
4279 }
4280
4281 if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4282 if (First) {
4283 MD->setDeletedAsWritten();
4284 } else {
4285 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4286 << CXXMoveAssignment;
4287 MD->setInvalidDecl();
4288 }
4289 }
4290 }
4291
CheckExplicitlyDefaultedDestructor(CXXDestructorDecl * DD)4292 void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4293 assert(DD->isExplicitlyDefaulted());
4294
4295 // Whether this was the first-declared instance of the destructor.
4296 bool First = DD == DD->getCanonicalDecl();
4297
4298 ImplicitExceptionSpecification Spec
4299 = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4300 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4301 const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4302 *ExceptionType = Context.getFunctionType(
4303 Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4304
4305 if (DtorType->hasExceptionSpec()) {
4306 if (CheckEquivalentExceptionSpec(
4307 PDiag(diag::err_incorrect_defaulted_exception_spec)
4308 << CXXDestructor,
4309 PDiag(),
4310 ExceptionType, SourceLocation(),
4311 DtorType, DD->getLocation())) {
4312 DD->setInvalidDecl();
4313 return;
4314 }
4315 }
4316 if (First) {
4317 // We set the declaration to have the computed exception spec here.
4318 // There are no parameters.
4319 EPI.ExtInfo = DtorType->getExtInfo();
4320 DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4321
4322 // Such a function is also trivial if the implicitly-declared function
4323 // would have been.
4324 DD->setTrivial(DD->getParent()->hasTrivialDestructor());
4325 }
4326
4327 if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4328 if (First) {
4329 DD->setDeletedAsWritten();
4330 } else {
4331 Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4332 << CXXDestructor;
4333 DD->setInvalidDecl();
4334 }
4335 }
4336 }
4337
4338 namespace {
4339 struct SpecialMemberDeletionInfo {
4340 Sema &S;
4341 CXXMethodDecl *MD;
4342 Sema::CXXSpecialMember CSM;
4343 bool Diagnose;
4344
4345 // Properties of the special member, computed for convenience.
4346 bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4347 SourceLocation Loc;
4348
4349 bool AllFieldsAreConst;
4350
SpecialMemberDeletionInfo__anon01e4a4a60611::SpecialMemberDeletionInfo4351 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4352 Sema::CXXSpecialMember CSM, bool Diagnose)
4353 : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4354 IsConstructor(false), IsAssignment(false), IsMove(false),
4355 ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4356 AllFieldsAreConst(true) {
4357 switch (CSM) {
4358 case Sema::CXXDefaultConstructor:
4359 case Sema::CXXCopyConstructor:
4360 IsConstructor = true;
4361 break;
4362 case Sema::CXXMoveConstructor:
4363 IsConstructor = true;
4364 IsMove = true;
4365 break;
4366 case Sema::CXXCopyAssignment:
4367 IsAssignment = true;
4368 break;
4369 case Sema::CXXMoveAssignment:
4370 IsAssignment = true;
4371 IsMove = true;
4372 break;
4373 case Sema::CXXDestructor:
4374 break;
4375 case Sema::CXXInvalid:
4376 llvm_unreachable("invalid special member kind");
4377 }
4378
4379 if (MD->getNumParams()) {
4380 ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4381 VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4382 }
4383 }
4384
inUnion__anon01e4a4a60611::SpecialMemberDeletionInfo4385 bool inUnion() const { return MD->getParent()->isUnion(); }
4386
4387 /// Look up the corresponding special member in the given class.
lookupIn__anon01e4a4a60611::SpecialMemberDeletionInfo4388 Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4389 unsigned TQ = MD->getTypeQualifiers();
4390 return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4391 MD->getRefQualifier() == RQ_RValue,
4392 TQ & Qualifiers::Const,
4393 TQ & Qualifiers::Volatile);
4394 }
4395
4396 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4397
4398 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4399 bool shouldDeleteForField(FieldDecl *FD);
4400 bool shouldDeleteForAllConstMembers();
4401
4402 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4403 bool shouldDeleteForSubobjectCall(Subobject Subobj,
4404 Sema::SpecialMemberOverloadResult *SMOR,
4405 bool IsDtorCallInCtor);
4406
4407 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4408 };
4409 }
4410
4411 /// Is the given special member inaccessible when used on the given
4412 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)4413 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4414 CXXMethodDecl *target) {
4415 /// If we're operating on a base class, the object type is the
4416 /// type of this special member.
4417 QualType objectTy;
4418 AccessSpecifier access = target->getAccess();;
4419 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4420 objectTy = S.Context.getTypeDeclType(MD->getParent());
4421 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4422
4423 // If we're operating on a field, the object type is the type of the field.
4424 } else {
4425 objectTy = S.Context.getTypeDeclType(target->getParent());
4426 }
4427
4428 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4429 }
4430
4431 /// Check whether we should delete a special member due to the implicit
4432 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)4433 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4434 Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4435 bool IsDtorCallInCtor) {
4436 CXXMethodDecl *Decl = SMOR->getMethod();
4437 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4438
4439 int DiagKind = -1;
4440
4441 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4442 DiagKind = !Decl ? 0 : 1;
4443 else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4444 DiagKind = 2;
4445 else if (!isAccessible(Subobj, Decl))
4446 DiagKind = 3;
4447 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4448 !Decl->isTrivial()) {
4449 // A member of a union must have a trivial corresponding special member.
4450 // As a weird special case, a destructor call from a union's constructor
4451 // must be accessible and non-deleted, but need not be trivial. Such a
4452 // destructor is never actually called, but is semantically checked as
4453 // if it were.
4454 DiagKind = 4;
4455 }
4456
4457 if (DiagKind == -1)
4458 return false;
4459
4460 if (Diagnose) {
4461 if (Field) {
4462 S.Diag(Field->getLocation(),
4463 diag::note_deleted_special_member_class_subobject)
4464 << CSM << MD->getParent() << /*IsField*/true
4465 << Field << DiagKind << IsDtorCallInCtor;
4466 } else {
4467 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4468 S.Diag(Base->getLocStart(),
4469 diag::note_deleted_special_member_class_subobject)
4470 << CSM << MD->getParent() << /*IsField*/false
4471 << Base->getType() << DiagKind << IsDtorCallInCtor;
4472 }
4473
4474 if (DiagKind == 1)
4475 S.NoteDeletedFunction(Decl);
4476 // FIXME: Explain inaccessibility if DiagKind == 3.
4477 }
4478
4479 return true;
4480 }
4481
4482 /// Check whether we should delete a special member function due to having a
4483 /// direct or virtual base class or static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj)4484 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4485 CXXRecordDecl *Class, Subobject Subobj) {
4486 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4487
4488 // C++11 [class.ctor]p5:
4489 // -- any direct or virtual base class, or non-static data member with no
4490 // brace-or-equal-initializer, has class type M (or array thereof) and
4491 // either M has no default constructor or overload resolution as applied
4492 // to M's default constructor results in an ambiguity or in a function
4493 // that is deleted or inaccessible
4494 // C++11 [class.copy]p11, C++11 [class.copy]p23:
4495 // -- a direct or virtual base class B that cannot be copied/moved because
4496 // overload resolution, as applied to B's corresponding special member,
4497 // results in an ambiguity or a function that is deleted or inaccessible
4498 // from the defaulted special member
4499 // C++11 [class.dtor]p5:
4500 // -- any direct or virtual base class [...] has a type with a destructor
4501 // that is deleted or inaccessible
4502 if (!(CSM == Sema::CXXDefaultConstructor &&
4503 Field && Field->hasInClassInitializer()) &&
4504 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4505 return true;
4506
4507 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4508 // -- any direct or virtual base class or non-static data member has a
4509 // type with a destructor that is deleted or inaccessible
4510 if (IsConstructor) {
4511 Sema::SpecialMemberOverloadResult *SMOR =
4512 S.LookupSpecialMember(Class, Sema::CXXDestructor,
4513 false, false, false, false, false);
4514 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4515 return true;
4516 }
4517
4518 return false;
4519 }
4520
4521 /// Check whether we should delete a special member function due to the class
4522 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)4523 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4524 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4525 return shouldDeleteForClassSubobject(BaseClass, Base);
4526 }
4527
4528 /// Check whether we should delete a special member function due to the class
4529 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)4530 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4531 QualType FieldType = S.Context.getBaseElementType(FD->getType());
4532 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4533
4534 if (CSM == Sema::CXXDefaultConstructor) {
4535 // For a default constructor, all references must be initialized in-class
4536 // and, if a union, it must have a non-const member.
4537 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4538 if (Diagnose)
4539 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4540 << MD->getParent() << FD << FieldType << /*Reference*/0;
4541 return true;
4542 }
4543 // C++11 [class.ctor]p5: any non-variant non-static data member of
4544 // const-qualified type (or array thereof) with no
4545 // brace-or-equal-initializer does not have a user-provided default
4546 // constructor.
4547 if (!inUnion() && FieldType.isConstQualified() &&
4548 !FD->hasInClassInitializer() &&
4549 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4550 if (Diagnose)
4551 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4552 << MD->getParent() << FD << FieldType << /*Const*/1;
4553 return true;
4554 }
4555
4556 if (inUnion() && !FieldType.isConstQualified())
4557 AllFieldsAreConst = false;
4558 } else if (CSM == Sema::CXXCopyConstructor) {
4559 // For a copy constructor, data members must not be of rvalue reference
4560 // type.
4561 if (FieldType->isRValueReferenceType()) {
4562 if (Diagnose)
4563 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4564 << MD->getParent() << FD << FieldType;
4565 return true;
4566 }
4567 } else if (IsAssignment) {
4568 // For an assignment operator, data members must not be of reference type.
4569 if (FieldType->isReferenceType()) {
4570 if (Diagnose)
4571 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4572 << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4573 return true;
4574 }
4575 if (!FieldRecord && FieldType.isConstQualified()) {
4576 // C++11 [class.copy]p23:
4577 // -- a non-static data member of const non-class type (or array thereof)
4578 if (Diagnose)
4579 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4580 << IsMove << MD->getParent() << FD << FieldType << /*Const*/1;
4581 return true;
4582 }
4583 }
4584
4585 if (FieldRecord) {
4586 // Some additional restrictions exist on the variant members.
4587 if (!inUnion() && FieldRecord->isUnion() &&
4588 FieldRecord->isAnonymousStructOrUnion()) {
4589 bool AllVariantFieldsAreConst = true;
4590
4591 // FIXME: Handle anonymous unions declared within anonymous unions.
4592 for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4593 UE = FieldRecord->field_end();
4594 UI != UE; ++UI) {
4595 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4596
4597 if (!UnionFieldType.isConstQualified())
4598 AllVariantFieldsAreConst = false;
4599
4600 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4601 if (UnionFieldRecord &&
4602 shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4603 return true;
4604 }
4605
4606 // At least one member in each anonymous union must be non-const
4607 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4608 FieldRecord->field_begin() != FieldRecord->field_end()) {
4609 if (Diagnose)
4610 S.Diag(FieldRecord->getLocation(),
4611 diag::note_deleted_default_ctor_all_const)
4612 << MD->getParent() << /*anonymous union*/1;
4613 return true;
4614 }
4615
4616 // Don't check the implicit member of the anonymous union type.
4617 // This is technically non-conformant, but sanity demands it.
4618 return false;
4619 }
4620
4621 if (shouldDeleteForClassSubobject(FieldRecord, FD))
4622 return true;
4623 }
4624
4625 return false;
4626 }
4627
4628 /// C++11 [class.ctor] p5:
4629 /// A defaulted default constructor for a class X is defined as deleted if
4630 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()4631 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4632 // This is a silly definition, because it gives an empty union a deleted
4633 // default constructor. Don't do that.
4634 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4635 (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4636 if (Diagnose)
4637 S.Diag(MD->getParent()->getLocation(),
4638 diag::note_deleted_default_ctor_all_const)
4639 << MD->getParent() << /*not anonymous union*/0;
4640 return true;
4641 }
4642 return false;
4643 }
4644
4645 /// Determine whether a defaulted special member function should be defined as
4646 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4647 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)4648 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4649 bool Diagnose) {
4650 assert(!MD->isInvalidDecl());
4651 CXXRecordDecl *RD = MD->getParent();
4652 assert(!RD->isDependentType() && "do deletion after instantiation");
4653 if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4654 return false;
4655
4656 // C++11 [expr.lambda.prim]p19:
4657 // The closure type associated with a lambda-expression has a
4658 // deleted (8.4.3) default constructor and a deleted copy
4659 // assignment operator.
4660 if (RD->isLambda() &&
4661 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4662 if (Diagnose)
4663 Diag(RD->getLocation(), diag::note_lambda_decl);
4664 return true;
4665 }
4666
4667 // For an anonymous struct or union, the copy and assignment special members
4668 // will never be used, so skip the check. For an anonymous union declared at
4669 // namespace scope, the constructor and destructor are used.
4670 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4671 RD->isAnonymousStructOrUnion())
4672 return false;
4673
4674 // C++11 [class.copy]p7, p18:
4675 // If the class definition declares a move constructor or move assignment
4676 // operator, an implicitly declared copy constructor or copy assignment
4677 // operator is defined as deleted.
4678 if (MD->isImplicit() &&
4679 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4680 CXXMethodDecl *UserDeclaredMove = 0;
4681
4682 // In Microsoft mode, a user-declared move only causes the deletion of the
4683 // corresponding copy operation, not both copy operations.
4684 if (RD->hasUserDeclaredMoveConstructor() &&
4685 (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4686 if (!Diagnose) return true;
4687 UserDeclaredMove = RD->getMoveConstructor();
4688 assert(UserDeclaredMove);
4689 } else if (RD->hasUserDeclaredMoveAssignment() &&
4690 (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4691 if (!Diagnose) return true;
4692 UserDeclaredMove = RD->getMoveAssignmentOperator();
4693 assert(UserDeclaredMove);
4694 }
4695
4696 if (UserDeclaredMove) {
4697 Diag(UserDeclaredMove->getLocation(),
4698 diag::note_deleted_copy_user_declared_move)
4699 << (CSM == CXXCopyAssignment) << RD
4700 << UserDeclaredMove->isMoveAssignmentOperator();
4701 return true;
4702 }
4703 }
4704
4705 // Do access control from the special member function
4706 ContextRAII MethodContext(*this, MD);
4707
4708 // C++11 [class.dtor]p5:
4709 // -- for a virtual destructor, lookup of the non-array deallocation function
4710 // results in an ambiguity or in a function that is deleted or inaccessible
4711 if (CSM == CXXDestructor && MD->isVirtual()) {
4712 FunctionDecl *OperatorDelete = 0;
4713 DeclarationName Name =
4714 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4715 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4716 OperatorDelete, false)) {
4717 if (Diagnose)
4718 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4719 return true;
4720 }
4721 }
4722
4723 SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4724
4725 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4726 BE = RD->bases_end(); BI != BE; ++BI)
4727 if (!BI->isVirtual() &&
4728 SMI.shouldDeleteForBase(BI))
4729 return true;
4730
4731 for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4732 BE = RD->vbases_end(); BI != BE; ++BI)
4733 if (SMI.shouldDeleteForBase(BI))
4734 return true;
4735
4736 for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4737 FE = RD->field_end(); FI != FE; ++FI)
4738 if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4739 SMI.shouldDeleteForField(*FI))
4740 return true;
4741
4742 if (SMI.shouldDeleteForAllConstMembers())
4743 return true;
4744
4745 return false;
4746 }
4747
4748 /// \brief Data used with FindHiddenVirtualMethod
4749 namespace {
4750 struct FindHiddenVirtualMethodData {
4751 Sema *S;
4752 CXXMethodDecl *Method;
4753 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4754 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4755 };
4756 }
4757
4758 /// \brief Member lookup function that determines whether a given C++
4759 /// method overloads virtual methods in a base class without overriding any,
4760 /// to be used with CXXRecordDecl::lookupInBases().
FindHiddenVirtualMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)4761 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4762 CXXBasePath &Path,
4763 void *UserData) {
4764 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4765
4766 FindHiddenVirtualMethodData &Data
4767 = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4768
4769 DeclarationName Name = Data.Method->getDeclName();
4770 assert(Name.getNameKind() == DeclarationName::Identifier);
4771
4772 bool foundSameNameMethod = false;
4773 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4774 for (Path.Decls = BaseRecord->lookup(Name);
4775 Path.Decls.first != Path.Decls.second;
4776 ++Path.Decls.first) {
4777 NamedDecl *D = *Path.Decls.first;
4778 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4779 MD = MD->getCanonicalDecl();
4780 foundSameNameMethod = true;
4781 // Interested only in hidden virtual methods.
4782 if (!MD->isVirtual())
4783 continue;
4784 // If the method we are checking overrides a method from its base
4785 // don't warn about the other overloaded methods.
4786 if (!Data.S->IsOverload(Data.Method, MD, false))
4787 return true;
4788 // Collect the overload only if its hidden.
4789 if (!Data.OverridenAndUsingBaseMethods.count(MD))
4790 overloadedMethods.push_back(MD);
4791 }
4792 }
4793
4794 if (foundSameNameMethod)
4795 Data.OverloadedMethods.append(overloadedMethods.begin(),
4796 overloadedMethods.end());
4797 return foundSameNameMethod;
4798 }
4799
4800 /// \brief See if a method overloads virtual methods in a base class without
4801 /// overriding any.
DiagnoseHiddenVirtualMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)4802 void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4803 if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4804 MD->getLocation()) == DiagnosticsEngine::Ignored)
4805 return;
4806 if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4807 return;
4808
4809 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4810 /*bool RecordPaths=*/false,
4811 /*bool DetectVirtual=*/false);
4812 FindHiddenVirtualMethodData Data;
4813 Data.Method = MD;
4814 Data.S = this;
4815
4816 // Keep the base methods that were overriden or introduced in the subclass
4817 // by 'using' in a set. A base method not in this set is hidden.
4818 for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4819 res.first != res.second; ++res.first) {
4820 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4821 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4822 E = MD->end_overridden_methods();
4823 I != E; ++I)
4824 Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4825 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4826 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4827 Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4828 }
4829
4830 if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4831 !Data.OverloadedMethods.empty()) {
4832 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4833 << MD << (Data.OverloadedMethods.size() > 1);
4834
4835 for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4836 CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4837 Diag(overloadedMD->getLocation(),
4838 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4839 }
4840 }
4841 }
4842
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)4843 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4844 Decl *TagDecl,
4845 SourceLocation LBrac,
4846 SourceLocation RBrac,
4847 AttributeList *AttrList) {
4848 if (!TagDecl)
4849 return;
4850
4851 AdjustDeclIfTemplate(TagDecl);
4852
4853 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4854 // strict aliasing violation!
4855 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4856 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4857
4858 CheckCompletedCXXClass(
4859 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4860 }
4861
4862 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4863 /// special functions, such as the default constructor, copy
4864 /// constructor, or destructor, to the given C++ class (C++
4865 /// [special]p1). This routine can only be executed just before the
4866 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)4867 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4868 if (!ClassDecl->hasUserDeclaredConstructor())
4869 ++ASTContext::NumImplicitDefaultConstructors;
4870
4871 if (!ClassDecl->hasUserDeclaredCopyConstructor())
4872 ++ASTContext::NumImplicitCopyConstructors;
4873
4874 if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4875 ++ASTContext::NumImplicitMoveConstructors;
4876
4877 if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4878 ++ASTContext::NumImplicitCopyAssignmentOperators;
4879
4880 // If we have a dynamic class, then the copy assignment operator may be
4881 // virtual, so we have to declare it immediately. This ensures that, e.g.,
4882 // it shows up in the right place in the vtable and that we diagnose
4883 // problems with the implicit exception specification.
4884 if (ClassDecl->isDynamicClass())
4885 DeclareImplicitCopyAssignment(ClassDecl);
4886 }
4887
4888 if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4889 ++ASTContext::NumImplicitMoveAssignmentOperators;
4890
4891 // Likewise for the move assignment operator.
4892 if (ClassDecl->isDynamicClass())
4893 DeclareImplicitMoveAssignment(ClassDecl);
4894 }
4895
4896 if (!ClassDecl->hasUserDeclaredDestructor()) {
4897 ++ASTContext::NumImplicitDestructors;
4898
4899 // If we have a dynamic class, then the destructor may be virtual, so we
4900 // have to declare the destructor immediately. This ensures that, e.g., it
4901 // shows up in the right place in the vtable and that we diagnose problems
4902 // with the implicit exception specification.
4903 if (ClassDecl->isDynamicClass())
4904 DeclareImplicitDestructor(ClassDecl);
4905 }
4906 }
4907
ActOnReenterDeclaratorTemplateScope(Scope * S,DeclaratorDecl * D)4908 void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4909 if (!D)
4910 return;
4911
4912 int NumParamList = D->getNumTemplateParameterLists();
4913 for (int i = 0; i < NumParamList; i++) {
4914 TemplateParameterList* Params = D->getTemplateParameterList(i);
4915 for (TemplateParameterList::iterator Param = Params->begin(),
4916 ParamEnd = Params->end();
4917 Param != ParamEnd; ++Param) {
4918 NamedDecl *Named = cast<NamedDecl>(*Param);
4919 if (Named->getDeclName()) {
4920 S->AddDecl(Named);
4921 IdResolver.AddDecl(Named);
4922 }
4923 }
4924 }
4925 }
4926
ActOnReenterTemplateScope(Scope * S,Decl * D)4927 void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4928 if (!D)
4929 return;
4930
4931 TemplateParameterList *Params = 0;
4932 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4933 Params = Template->getTemplateParameters();
4934 else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4935 = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4936 Params = PartialSpec->getTemplateParameters();
4937 else
4938 return;
4939
4940 for (TemplateParameterList::iterator Param = Params->begin(),
4941 ParamEnd = Params->end();
4942 Param != ParamEnd; ++Param) {
4943 NamedDecl *Named = cast<NamedDecl>(*Param);
4944 if (Named->getDeclName()) {
4945 S->AddDecl(Named);
4946 IdResolver.AddDecl(Named);
4947 }
4948 }
4949 }
4950
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)4951 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4952 if (!RecordD) return;
4953 AdjustDeclIfTemplate(RecordD);
4954 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4955 PushDeclContext(S, Record);
4956 }
4957
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)4958 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4959 if (!RecordD) return;
4960 PopDeclContext();
4961 }
4962
4963 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
4964 /// parsing a top-level (non-nested) C++ class, and we are now
4965 /// parsing those parts of the given Method declaration that could
4966 /// not be parsed earlier (C++ [class.mem]p2), such as default
4967 /// arguments. This action should enter the scope of the given
4968 /// Method declaration as if we had just parsed the qualified method
4969 /// name. However, it should not bring the parameters into scope;
4970 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)4971 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4972 }
4973
4974 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
4975 /// C++ method declaration. We're (re-)introducing the given
4976 /// function parameter into scope for use in parsing later parts of
4977 /// the method declaration. For example, we could see an
4978 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)4979 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4980 if (!ParamD)
4981 return;
4982
4983 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4984
4985 // If this parameter has an unparsed default argument, clear it out
4986 // to make way for the parsed default argument.
4987 if (Param->hasUnparsedDefaultArg())
4988 Param->setDefaultArg(0);
4989
4990 S->AddDecl(Param);
4991 if (Param->getDeclName())
4992 IdResolver.AddDecl(Param);
4993 }
4994
4995 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4996 /// processing the delayed method declaration for Method. The method
4997 /// declaration is now considered finished. There may be a separate
4998 /// ActOnStartOfFunctionDef action later (not necessarily
4999 /// immediately!) for this method, if it was also defined inside the
5000 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)5001 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5002 if (!MethodD)
5003 return;
5004
5005 AdjustDeclIfTemplate(MethodD);
5006
5007 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5008
5009 // Now that we have our default arguments, check the constructor
5010 // again. It could produce additional diagnostics or affect whether
5011 // the class has implicitly-declared destructors, among other
5012 // things.
5013 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5014 CheckConstructor(Constructor);
5015
5016 // Check the default arguments, which we may have added.
5017 if (!Method->isInvalidDecl())
5018 CheckCXXDefaultArguments(Method);
5019 }
5020
5021 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5022 /// the well-formedness of the constructor declarator @p D with type @p
5023 /// R. If there are any errors in the declarator, this routine will
5024 /// emit diagnostics and set the invalid bit to true. In any case, the type
5025 /// will be updated to reflect a well-formed type for the constructor and
5026 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)5027 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5028 StorageClass &SC) {
5029 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5030
5031 // C++ [class.ctor]p3:
5032 // A constructor shall not be virtual (10.3) or static (9.4). A
5033 // constructor can be invoked for a const, volatile or const
5034 // volatile object. A constructor shall not be declared const,
5035 // volatile, or const volatile (9.3.2).
5036 if (isVirtual) {
5037 if (!D.isInvalidType())
5038 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5039 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5040 << SourceRange(D.getIdentifierLoc());
5041 D.setInvalidType();
5042 }
5043 if (SC == SC_Static) {
5044 if (!D.isInvalidType())
5045 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5046 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5047 << SourceRange(D.getIdentifierLoc());
5048 D.setInvalidType();
5049 SC = SC_None;
5050 }
5051
5052 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5053 if (FTI.TypeQuals != 0) {
5054 if (FTI.TypeQuals & Qualifiers::Const)
5055 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5056 << "const" << SourceRange(D.getIdentifierLoc());
5057 if (FTI.TypeQuals & Qualifiers::Volatile)
5058 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5059 << "volatile" << SourceRange(D.getIdentifierLoc());
5060 if (FTI.TypeQuals & Qualifiers::Restrict)
5061 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5062 << "restrict" << SourceRange(D.getIdentifierLoc());
5063 D.setInvalidType();
5064 }
5065
5066 // C++0x [class.ctor]p4:
5067 // A constructor shall not be declared with a ref-qualifier.
5068 if (FTI.hasRefQualifier()) {
5069 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5070 << FTI.RefQualifierIsLValueRef
5071 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5072 D.setInvalidType();
5073 }
5074
5075 // Rebuild the function type "R" without any type qualifiers (in
5076 // case any of the errors above fired) and with "void" as the
5077 // return type, since constructors don't have return types.
5078 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5079 if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5080 return R;
5081
5082 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5083 EPI.TypeQuals = 0;
5084 EPI.RefQualifier = RQ_None;
5085
5086 return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5087 Proto->getNumArgs(), EPI);
5088 }
5089
5090 /// CheckConstructor - Checks a fully-formed constructor for
5091 /// well-formedness, issuing any diagnostics required. Returns true if
5092 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)5093 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5094 CXXRecordDecl *ClassDecl
5095 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5096 if (!ClassDecl)
5097 return Constructor->setInvalidDecl();
5098
5099 // C++ [class.copy]p3:
5100 // A declaration of a constructor for a class X is ill-formed if
5101 // its first parameter is of type (optionally cv-qualified) X and
5102 // either there are no other parameters or else all other
5103 // parameters have default arguments.
5104 if (!Constructor->isInvalidDecl() &&
5105 ((Constructor->getNumParams() == 1) ||
5106 (Constructor->getNumParams() > 1 &&
5107 Constructor->getParamDecl(1)->hasDefaultArg())) &&
5108 Constructor->getTemplateSpecializationKind()
5109 != TSK_ImplicitInstantiation) {
5110 QualType ParamType = Constructor->getParamDecl(0)->getType();
5111 QualType ClassTy = Context.getTagDeclType(ClassDecl);
5112 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5113 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5114 const char *ConstRef
5115 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5116 : " const &";
5117 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5118 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5119
5120 // FIXME: Rather that making the constructor invalid, we should endeavor
5121 // to fix the type.
5122 Constructor->setInvalidDecl();
5123 }
5124 }
5125 }
5126
5127 /// CheckDestructor - Checks a fully-formed destructor definition for
5128 /// well-formedness, issuing any diagnostics required. Returns true
5129 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)5130 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5131 CXXRecordDecl *RD = Destructor->getParent();
5132
5133 if (Destructor->isVirtual()) {
5134 SourceLocation Loc;
5135
5136 if (!Destructor->isImplicit())
5137 Loc = Destructor->getLocation();
5138 else
5139 Loc = RD->getLocation();
5140
5141 // If we have a virtual destructor, look up the deallocation function
5142 FunctionDecl *OperatorDelete = 0;
5143 DeclarationName Name =
5144 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5145 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5146 return true;
5147
5148 MarkFunctionReferenced(Loc, OperatorDelete);
5149
5150 Destructor->setOperatorDelete(OperatorDelete);
5151 }
5152
5153 return false;
5154 }
5155
5156 static inline bool
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo & FTI)5157 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5158 return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5159 FTI.ArgInfo[0].Param &&
5160 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5161 }
5162
5163 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5164 /// the well-formednes of the destructor declarator @p D with type @p
5165 /// R. If there are any errors in the declarator, this routine will
5166 /// emit diagnostics and set the declarator to invalid. Even if this happens,
5167 /// will be updated to reflect a well-formed type for the destructor and
5168 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)5169 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5170 StorageClass& SC) {
5171 // C++ [class.dtor]p1:
5172 // [...] A typedef-name that names a class is a class-name
5173 // (7.1.3); however, a typedef-name that names a class shall not
5174 // be used as the identifier in the declarator for a destructor
5175 // declaration.
5176 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5177 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5178 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5179 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5180 else if (const TemplateSpecializationType *TST =
5181 DeclaratorType->getAs<TemplateSpecializationType>())
5182 if (TST->isTypeAlias())
5183 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5184 << DeclaratorType << 1;
5185
5186 // C++ [class.dtor]p2:
5187 // A destructor is used to destroy objects of its class type. A
5188 // destructor takes no parameters, and no return type can be
5189 // specified for it (not even void). The address of a destructor
5190 // shall not be taken. A destructor shall not be static. A
5191 // destructor can be invoked for a const, volatile or const
5192 // volatile object. A destructor shall not be declared const,
5193 // volatile or const volatile (9.3.2).
5194 if (SC == SC_Static) {
5195 if (!D.isInvalidType())
5196 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5197 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5198 << SourceRange(D.getIdentifierLoc())
5199 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5200
5201 SC = SC_None;
5202 }
5203 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5204 // Destructors don't have return types, but the parser will
5205 // happily parse something like:
5206 //
5207 // class X {
5208 // float ~X();
5209 // };
5210 //
5211 // The return type will be eliminated later.
5212 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5213 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5214 << SourceRange(D.getIdentifierLoc());
5215 }
5216
5217 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5218 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5219 if (FTI.TypeQuals & Qualifiers::Const)
5220 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5221 << "const" << SourceRange(D.getIdentifierLoc());
5222 if (FTI.TypeQuals & Qualifiers::Volatile)
5223 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5224 << "volatile" << SourceRange(D.getIdentifierLoc());
5225 if (FTI.TypeQuals & Qualifiers::Restrict)
5226 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5227 << "restrict" << SourceRange(D.getIdentifierLoc());
5228 D.setInvalidType();
5229 }
5230
5231 // C++0x [class.dtor]p2:
5232 // A destructor shall not be declared with a ref-qualifier.
5233 if (FTI.hasRefQualifier()) {
5234 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5235 << FTI.RefQualifierIsLValueRef
5236 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5237 D.setInvalidType();
5238 }
5239
5240 // Make sure we don't have any parameters.
5241 if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5242 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5243
5244 // Delete the parameters.
5245 FTI.freeArgs();
5246 D.setInvalidType();
5247 }
5248
5249 // Make sure the destructor isn't variadic.
5250 if (FTI.isVariadic) {
5251 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5252 D.setInvalidType();
5253 }
5254
5255 // Rebuild the function type "R" without any type qualifiers or
5256 // parameters (in case any of the errors above fired) and with
5257 // "void" as the return type, since destructors don't have return
5258 // types.
5259 if (!D.isInvalidType())
5260 return R;
5261
5262 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5263 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5264 EPI.Variadic = false;
5265 EPI.TypeQuals = 0;
5266 EPI.RefQualifier = RQ_None;
5267 return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5268 }
5269
5270 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5271 /// well-formednes of the conversion function declarator @p D with
5272 /// type @p R. If there are any errors in the declarator, this routine
5273 /// will emit diagnostics and return true. Otherwise, it will return
5274 /// false. Either way, the type @p R will be updated to reflect a
5275 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)5276 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5277 StorageClass& SC) {
5278 // C++ [class.conv.fct]p1:
5279 // Neither parameter types nor return type can be specified. The
5280 // type of a conversion function (8.3.5) is "function taking no
5281 // parameter returning conversion-type-id."
5282 if (SC == SC_Static) {
5283 if (!D.isInvalidType())
5284 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5285 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5286 << SourceRange(D.getIdentifierLoc());
5287 D.setInvalidType();
5288 SC = SC_None;
5289 }
5290
5291 QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5292
5293 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5294 // Conversion functions don't have return types, but the parser will
5295 // happily parse something like:
5296 //
5297 // class X {
5298 // float operator bool();
5299 // };
5300 //
5301 // The return type will be changed later anyway.
5302 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5303 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5304 << SourceRange(D.getIdentifierLoc());
5305 D.setInvalidType();
5306 }
5307
5308 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5309
5310 // Make sure we don't have any parameters.
5311 if (Proto->getNumArgs() > 0) {
5312 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5313
5314 // Delete the parameters.
5315 D.getFunctionTypeInfo().freeArgs();
5316 D.setInvalidType();
5317 } else if (Proto->isVariadic()) {
5318 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5319 D.setInvalidType();
5320 }
5321
5322 // Diagnose "&operator bool()" and other such nonsense. This
5323 // is actually a gcc extension which we don't support.
5324 if (Proto->getResultType() != ConvType) {
5325 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5326 << Proto->getResultType();
5327 D.setInvalidType();
5328 ConvType = Proto->getResultType();
5329 }
5330
5331 // C++ [class.conv.fct]p4:
5332 // The conversion-type-id shall not represent a function type nor
5333 // an array type.
5334 if (ConvType->isArrayType()) {
5335 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5336 ConvType = Context.getPointerType(ConvType);
5337 D.setInvalidType();
5338 } else if (ConvType->isFunctionType()) {
5339 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5340 ConvType = Context.getPointerType(ConvType);
5341 D.setInvalidType();
5342 }
5343
5344 // Rebuild the function type "R" without any parameters (in case any
5345 // of the errors above fired) and with the conversion type as the
5346 // return type.
5347 if (D.isInvalidType())
5348 R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5349
5350 // C++0x explicit conversion operators.
5351 if (D.getDeclSpec().isExplicitSpecified())
5352 Diag(D.getDeclSpec().getExplicitSpecLoc(),
5353 getLangOpts().CPlusPlus0x ?
5354 diag::warn_cxx98_compat_explicit_conversion_functions :
5355 diag::ext_explicit_conversion_functions)
5356 << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5357 }
5358
5359 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5360 /// the declaration of the given C++ conversion function. This routine
5361 /// is responsible for recording the conversion function in the C++
5362 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)5363 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5364 assert(Conversion && "Expected to receive a conversion function declaration");
5365
5366 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5367
5368 // Make sure we aren't redeclaring the conversion function.
5369 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5370
5371 // C++ [class.conv.fct]p1:
5372 // [...] A conversion function is never used to convert a
5373 // (possibly cv-qualified) object to the (possibly cv-qualified)
5374 // same object type (or a reference to it), to a (possibly
5375 // cv-qualified) base class of that type (or a reference to it),
5376 // or to (possibly cv-qualified) void.
5377 // FIXME: Suppress this warning if the conversion function ends up being a
5378 // virtual function that overrides a virtual function in a base class.
5379 QualType ClassType
5380 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5381 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5382 ConvType = ConvTypeRef->getPointeeType();
5383 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5384 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5385 /* Suppress diagnostics for instantiations. */;
5386 else if (ConvType->isRecordType()) {
5387 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5388 if (ConvType == ClassType)
5389 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5390 << ClassType;
5391 else if (IsDerivedFrom(ClassType, ConvType))
5392 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5393 << ClassType << ConvType;
5394 } else if (ConvType->isVoidType()) {
5395 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5396 << ClassType << ConvType;
5397 }
5398
5399 if (FunctionTemplateDecl *ConversionTemplate
5400 = Conversion->getDescribedFunctionTemplate())
5401 return ConversionTemplate;
5402
5403 return Conversion;
5404 }
5405
5406 //===----------------------------------------------------------------------===//
5407 // Namespace Handling
5408 //===----------------------------------------------------------------------===//
5409
5410
5411
5412 /// ActOnStartNamespaceDef - This is called at the start of a namespace
5413 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList)5414 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5415 SourceLocation InlineLoc,
5416 SourceLocation NamespaceLoc,
5417 SourceLocation IdentLoc,
5418 IdentifierInfo *II,
5419 SourceLocation LBrace,
5420 AttributeList *AttrList) {
5421 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5422 // For anonymous namespace, take the location of the left brace.
5423 SourceLocation Loc = II ? IdentLoc : LBrace;
5424 bool IsInline = InlineLoc.isValid();
5425 bool IsInvalid = false;
5426 bool IsStd = false;
5427 bool AddToKnown = false;
5428 Scope *DeclRegionScope = NamespcScope->getParent();
5429
5430 NamespaceDecl *PrevNS = 0;
5431 if (II) {
5432 // C++ [namespace.def]p2:
5433 // The identifier in an original-namespace-definition shall not
5434 // have been previously defined in the declarative region in
5435 // which the original-namespace-definition appears. The
5436 // identifier in an original-namespace-definition is the name of
5437 // the namespace. Subsequently in that declarative region, it is
5438 // treated as an original-namespace-name.
5439 //
5440 // Since namespace names are unique in their scope, and we don't
5441 // look through using directives, just look for any ordinary names.
5442
5443 const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5444 Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5445 Decl::IDNS_Namespace;
5446 NamedDecl *PrevDecl = 0;
5447 for (DeclContext::lookup_result R
5448 = CurContext->getRedeclContext()->lookup(II);
5449 R.first != R.second; ++R.first) {
5450 if ((*R.first)->getIdentifierNamespace() & IDNS) {
5451 PrevDecl = *R.first;
5452 break;
5453 }
5454 }
5455
5456 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5457
5458 if (PrevNS) {
5459 // This is an extended namespace definition.
5460 if (IsInline != PrevNS->isInline()) {
5461 // inline-ness must match
5462 if (PrevNS->isInline()) {
5463 // The user probably just forgot the 'inline', so suggest that it
5464 // be added back.
5465 Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5466 << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5467 } else {
5468 Diag(Loc, diag::err_inline_namespace_mismatch)
5469 << IsInline;
5470 }
5471 Diag(PrevNS->getLocation(), diag::note_previous_definition);
5472
5473 IsInline = PrevNS->isInline();
5474 }
5475 } else if (PrevDecl) {
5476 // This is an invalid name redefinition.
5477 Diag(Loc, diag::err_redefinition_different_kind)
5478 << II;
5479 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5480 IsInvalid = true;
5481 // Continue on to push Namespc as current DeclContext and return it.
5482 } else if (II->isStr("std") &&
5483 CurContext->getRedeclContext()->isTranslationUnit()) {
5484 // This is the first "real" definition of the namespace "std", so update
5485 // our cache of the "std" namespace to point at this definition.
5486 PrevNS = getStdNamespace();
5487 IsStd = true;
5488 AddToKnown = !IsInline;
5489 } else {
5490 // We've seen this namespace for the first time.
5491 AddToKnown = !IsInline;
5492 }
5493 } else {
5494 // Anonymous namespaces.
5495
5496 // Determine whether the parent already has an anonymous namespace.
5497 DeclContext *Parent = CurContext->getRedeclContext();
5498 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5499 PrevNS = TU->getAnonymousNamespace();
5500 } else {
5501 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5502 PrevNS = ND->getAnonymousNamespace();
5503 }
5504
5505 if (PrevNS && IsInline != PrevNS->isInline()) {
5506 // inline-ness must match
5507 Diag(Loc, diag::err_inline_namespace_mismatch)
5508 << IsInline;
5509 Diag(PrevNS->getLocation(), diag::note_previous_definition);
5510
5511 // Recover by ignoring the new namespace's inline status.
5512 IsInline = PrevNS->isInline();
5513 }
5514 }
5515
5516 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5517 StartLoc, Loc, II, PrevNS);
5518 if (IsInvalid)
5519 Namespc->setInvalidDecl();
5520
5521 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5522
5523 // FIXME: Should we be merging attributes?
5524 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5525 PushNamespaceVisibilityAttr(Attr, Loc);
5526
5527 if (IsStd)
5528 StdNamespace = Namespc;
5529 if (AddToKnown)
5530 KnownNamespaces[Namespc] = false;
5531
5532 if (II) {
5533 PushOnScopeChains(Namespc, DeclRegionScope);
5534 } else {
5535 // Link the anonymous namespace into its parent.
5536 DeclContext *Parent = CurContext->getRedeclContext();
5537 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5538 TU->setAnonymousNamespace(Namespc);
5539 } else {
5540 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5541 }
5542
5543 CurContext->addDecl(Namespc);
5544
5545 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
5546 // behaves as if it were replaced by
5547 // namespace unique { /* empty body */ }
5548 // using namespace unique;
5549 // namespace unique { namespace-body }
5550 // where all occurrences of 'unique' in a translation unit are
5551 // replaced by the same identifier and this identifier differs
5552 // from all other identifiers in the entire program.
5553
5554 // We just create the namespace with an empty name and then add an
5555 // implicit using declaration, just like the standard suggests.
5556 //
5557 // CodeGen enforces the "universally unique" aspect by giving all
5558 // declarations semantically contained within an anonymous
5559 // namespace internal linkage.
5560
5561 if (!PrevNS) {
5562 UsingDirectiveDecl* UD
5563 = UsingDirectiveDecl::Create(Context, CurContext,
5564 /* 'using' */ LBrace,
5565 /* 'namespace' */ SourceLocation(),
5566 /* qualifier */ NestedNameSpecifierLoc(),
5567 /* identifier */ SourceLocation(),
5568 Namespc,
5569 /* Ancestor */ CurContext);
5570 UD->setImplicit();
5571 CurContext->addDecl(UD);
5572 }
5573 }
5574
5575 // Although we could have an invalid decl (i.e. the namespace name is a
5576 // redefinition), push it as current DeclContext and try to continue parsing.
5577 // FIXME: We should be able to push Namespc here, so that the each DeclContext
5578 // for the namespace has the declarations that showed up in that particular
5579 // namespace definition.
5580 PushDeclContext(NamespcScope, Namespc);
5581 return Namespc;
5582 }
5583
5584 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5585 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)5586 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5587 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5588 return AD->getNamespace();
5589 return dyn_cast_or_null<NamespaceDecl>(D);
5590 }
5591
5592 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
5593 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)5594 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5595 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5596 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5597 Namespc->setRBraceLoc(RBrace);
5598 PopDeclContext();
5599 if (Namespc->hasAttr<VisibilityAttr>())
5600 PopPragmaVisibility(true, RBrace);
5601 }
5602
getStdBadAlloc() const5603 CXXRecordDecl *Sema::getStdBadAlloc() const {
5604 return cast_or_null<CXXRecordDecl>(
5605 StdBadAlloc.get(Context.getExternalSource()));
5606 }
5607
getStdNamespace() const5608 NamespaceDecl *Sema::getStdNamespace() const {
5609 return cast_or_null<NamespaceDecl>(
5610 StdNamespace.get(Context.getExternalSource()));
5611 }
5612
5613 /// \brief Retrieve the special "std" namespace, which may require us to
5614 /// implicitly define the namespace.
getOrCreateStdNamespace()5615 NamespaceDecl *Sema::getOrCreateStdNamespace() {
5616 if (!StdNamespace) {
5617 // The "std" namespace has not yet been defined, so build one implicitly.
5618 StdNamespace = NamespaceDecl::Create(Context,
5619 Context.getTranslationUnitDecl(),
5620 /*Inline=*/false,
5621 SourceLocation(), SourceLocation(),
5622 &PP.getIdentifierTable().get("std"),
5623 /*PrevDecl=*/0);
5624 getStdNamespace()->setImplicit(true);
5625 }
5626
5627 return getStdNamespace();
5628 }
5629
isStdInitializerList(QualType Ty,QualType * Element)5630 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5631 assert(getLangOpts().CPlusPlus &&
5632 "Looking for std::initializer_list outside of C++.");
5633
5634 // We're looking for implicit instantiations of
5635 // template <typename E> class std::initializer_list.
5636
5637 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5638 return false;
5639
5640 ClassTemplateDecl *Template = 0;
5641 const TemplateArgument *Arguments = 0;
5642
5643 if (const RecordType *RT = Ty->getAs<RecordType>()) {
5644
5645 ClassTemplateSpecializationDecl *Specialization =
5646 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5647 if (!Specialization)
5648 return false;
5649
5650 Template = Specialization->getSpecializedTemplate();
5651 Arguments = Specialization->getTemplateArgs().data();
5652 } else if (const TemplateSpecializationType *TST =
5653 Ty->getAs<TemplateSpecializationType>()) {
5654 Template = dyn_cast_or_null<ClassTemplateDecl>(
5655 TST->getTemplateName().getAsTemplateDecl());
5656 Arguments = TST->getArgs();
5657 }
5658 if (!Template)
5659 return false;
5660
5661 if (!StdInitializerList) {
5662 // Haven't recognized std::initializer_list yet, maybe this is it.
5663 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5664 if (TemplateClass->getIdentifier() !=
5665 &PP.getIdentifierTable().get("initializer_list") ||
5666 !getStdNamespace()->InEnclosingNamespaceSetOf(
5667 TemplateClass->getDeclContext()))
5668 return false;
5669 // This is a template called std::initializer_list, but is it the right
5670 // template?
5671 TemplateParameterList *Params = Template->getTemplateParameters();
5672 if (Params->getMinRequiredArguments() != 1)
5673 return false;
5674 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5675 return false;
5676
5677 // It's the right template.
5678 StdInitializerList = Template;
5679 }
5680
5681 if (Template != StdInitializerList)
5682 return false;
5683
5684 // This is an instance of std::initializer_list. Find the argument type.
5685 if (Element)
5686 *Element = Arguments[0].getAsType();
5687 return true;
5688 }
5689
LookupStdInitializerList(Sema & S,SourceLocation Loc)5690 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5691 NamespaceDecl *Std = S.getStdNamespace();
5692 if (!Std) {
5693 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5694 return 0;
5695 }
5696
5697 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5698 Loc, Sema::LookupOrdinaryName);
5699 if (!S.LookupQualifiedName(Result, Std)) {
5700 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5701 return 0;
5702 }
5703 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5704 if (!Template) {
5705 Result.suppressDiagnostics();
5706 // We found something weird. Complain about the first thing we found.
5707 NamedDecl *Found = *Result.begin();
5708 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5709 return 0;
5710 }
5711
5712 // We found some template called std::initializer_list. Now verify that it's
5713 // correct.
5714 TemplateParameterList *Params = Template->getTemplateParameters();
5715 if (Params->getMinRequiredArguments() != 1 ||
5716 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5717 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5718 return 0;
5719 }
5720
5721 return Template;
5722 }
5723
BuildStdInitializerList(QualType Element,SourceLocation Loc)5724 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5725 if (!StdInitializerList) {
5726 StdInitializerList = LookupStdInitializerList(*this, Loc);
5727 if (!StdInitializerList)
5728 return QualType();
5729 }
5730
5731 TemplateArgumentListInfo Args(Loc, Loc);
5732 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5733 Context.getTrivialTypeSourceInfo(Element,
5734 Loc)));
5735 return Context.getCanonicalType(
5736 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5737 }
5738
isInitListConstructor(const CXXConstructorDecl * Ctor)5739 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5740 // C++ [dcl.init.list]p2:
5741 // A constructor is an initializer-list constructor if its first parameter
5742 // is of type std::initializer_list<E> or reference to possibly cv-qualified
5743 // std::initializer_list<E> for some type E, and either there are no other
5744 // parameters or else all other parameters have default arguments.
5745 if (Ctor->getNumParams() < 1 ||
5746 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5747 return false;
5748
5749 QualType ArgType = Ctor->getParamDecl(0)->getType();
5750 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5751 ArgType = RT->getPointeeType().getUnqualifiedType();
5752
5753 return isStdInitializerList(ArgType, 0);
5754 }
5755
5756 /// \brief Determine whether a using statement is in a context where it will be
5757 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)5758 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5759 switch (CurContext->getDeclKind()) {
5760 case Decl::TranslationUnit:
5761 return true;
5762 case Decl::LinkageSpec:
5763 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5764 default:
5765 return false;
5766 }
5767 }
5768
5769 namespace {
5770
5771 // Callback to only accept typo corrections that are namespaces.
5772 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5773 public:
ValidateCandidate(const TypoCorrection & candidate)5774 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5775 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5776 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5777 }
5778 return false;
5779 }
5780 };
5781
5782 }
5783
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)5784 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5785 CXXScopeSpec &SS,
5786 SourceLocation IdentLoc,
5787 IdentifierInfo *Ident) {
5788 NamespaceValidatorCCC Validator;
5789 R.clear();
5790 if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5791 R.getLookupKind(), Sc, &SS,
5792 Validator)) {
5793 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5794 std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5795 if (DeclContext *DC = S.computeDeclContext(SS, false))
5796 S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5797 << Ident << DC << CorrectedQuotedStr << SS.getRange()
5798 << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5799 else
5800 S.Diag(IdentLoc, diag::err_using_directive_suggest)
5801 << Ident << CorrectedQuotedStr
5802 << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5803
5804 S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5805 diag::note_namespace_defined_here) << CorrectedQuotedStr;
5806
5807 R.addDecl(Corrected.getCorrectionDecl());
5808 return true;
5809 }
5810 return false;
5811 }
5812
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)5813 Decl *Sema::ActOnUsingDirective(Scope *S,
5814 SourceLocation UsingLoc,
5815 SourceLocation NamespcLoc,
5816 CXXScopeSpec &SS,
5817 SourceLocation IdentLoc,
5818 IdentifierInfo *NamespcName,
5819 AttributeList *AttrList) {
5820 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5821 assert(NamespcName && "Invalid NamespcName.");
5822 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5823
5824 // This can only happen along a recovery path.
5825 while (S->getFlags() & Scope::TemplateParamScope)
5826 S = S->getParent();
5827 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5828
5829 UsingDirectiveDecl *UDir = 0;
5830 NestedNameSpecifier *Qualifier = 0;
5831 if (SS.isSet())
5832 Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5833
5834 // Lookup namespace name.
5835 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5836 LookupParsedName(R, S, &SS);
5837 if (R.isAmbiguous())
5838 return 0;
5839
5840 if (R.empty()) {
5841 R.clear();
5842 // Allow "using namespace std;" or "using namespace ::std;" even if
5843 // "std" hasn't been defined yet, for GCC compatibility.
5844 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5845 NamespcName->isStr("std")) {
5846 Diag(IdentLoc, diag::ext_using_undefined_std);
5847 R.addDecl(getOrCreateStdNamespace());
5848 R.resolveKind();
5849 }
5850 // Otherwise, attempt typo correction.
5851 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5852 }
5853
5854 if (!R.empty()) {
5855 NamedDecl *Named = R.getFoundDecl();
5856 assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5857 && "expected namespace decl");
5858 // C++ [namespace.udir]p1:
5859 // A using-directive specifies that the names in the nominated
5860 // namespace can be used in the scope in which the
5861 // using-directive appears after the using-directive. During
5862 // unqualified name lookup (3.4.1), the names appear as if they
5863 // were declared in the nearest enclosing namespace which
5864 // contains both the using-directive and the nominated
5865 // namespace. [Note: in this context, "contains" means "contains
5866 // directly or indirectly". ]
5867
5868 // Find enclosing context containing both using-directive and
5869 // nominated namespace.
5870 NamespaceDecl *NS = getNamespaceDecl(Named);
5871 DeclContext *CommonAncestor = cast<DeclContext>(NS);
5872 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5873 CommonAncestor = CommonAncestor->getParent();
5874
5875 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5876 SS.getWithLocInContext(Context),
5877 IdentLoc, Named, CommonAncestor);
5878
5879 if (IsUsingDirectiveInToplevelContext(CurContext) &&
5880 !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5881 Diag(IdentLoc, diag::warn_using_directive_in_header);
5882 }
5883
5884 PushUsingDirective(S, UDir);
5885 } else {
5886 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5887 }
5888
5889 // FIXME: We ignore attributes for now.
5890 return UDir;
5891 }
5892
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)5893 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5894 // If the scope has an associated entity and the using directive is at
5895 // namespace or translation unit scope, add the UsingDirectiveDecl into
5896 // its lookup structure so qualified name lookup can find it.
5897 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5898 if (Ctx && !Ctx->isFunctionOrMethod())
5899 Ctx->addDecl(UDir);
5900 else
5901 // Otherwise, it is at block sope. The using-directives will affect lookup
5902 // only to the end of the scope.
5903 S->PushUsingDirective(UDir);
5904 }
5905
5906
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool IsTypeName,SourceLocation TypenameLoc)5907 Decl *Sema::ActOnUsingDeclaration(Scope *S,
5908 AccessSpecifier AS,
5909 bool HasUsingKeyword,
5910 SourceLocation UsingLoc,
5911 CXXScopeSpec &SS,
5912 UnqualifiedId &Name,
5913 AttributeList *AttrList,
5914 bool IsTypeName,
5915 SourceLocation TypenameLoc) {
5916 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5917
5918 switch (Name.getKind()) {
5919 case UnqualifiedId::IK_ImplicitSelfParam:
5920 case UnqualifiedId::IK_Identifier:
5921 case UnqualifiedId::IK_OperatorFunctionId:
5922 case UnqualifiedId::IK_LiteralOperatorId:
5923 case UnqualifiedId::IK_ConversionFunctionId:
5924 break;
5925
5926 case UnqualifiedId::IK_ConstructorName:
5927 case UnqualifiedId::IK_ConstructorTemplateId:
5928 // C++0x inherited constructors.
5929 Diag(Name.getLocStart(),
5930 getLangOpts().CPlusPlus0x ?
5931 diag::warn_cxx98_compat_using_decl_constructor :
5932 diag::err_using_decl_constructor)
5933 << SS.getRange();
5934
5935 if (getLangOpts().CPlusPlus0x) break;
5936
5937 return 0;
5938
5939 case UnqualifiedId::IK_DestructorName:
5940 Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5941 << SS.getRange();
5942 return 0;
5943
5944 case UnqualifiedId::IK_TemplateId:
5945 Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5946 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5947 return 0;
5948 }
5949
5950 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5951 DeclarationName TargetName = TargetNameInfo.getName();
5952 if (!TargetName)
5953 return 0;
5954
5955 // Warn about using declarations.
5956 // TODO: store that the declaration was written without 'using' and
5957 // talk about access decls instead of using decls in the
5958 // diagnostics.
5959 if (!HasUsingKeyword) {
5960 UsingLoc = Name.getLocStart();
5961
5962 Diag(UsingLoc, diag::warn_access_decl_deprecated)
5963 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5964 }
5965
5966 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5967 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5968 return 0;
5969
5970 NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5971 TargetNameInfo, AttrList,
5972 /* IsInstantiation */ false,
5973 IsTypeName, TypenameLoc);
5974 if (UD)
5975 PushOnScopeChains(UD, S, /*AddToContext*/ false);
5976
5977 return UD;
5978 }
5979
5980 /// \brief Determine whether a using declaration considers the given
5981 /// declarations as "equivalent", e.g., if they are redeclarations of
5982 /// the same entity or are both typedefs of the same type.
5983 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2,bool & SuppressRedeclaration)5984 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5985 bool &SuppressRedeclaration) {
5986 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5987 SuppressRedeclaration = false;
5988 return true;
5989 }
5990
5991 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5992 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5993 SuppressRedeclaration = true;
5994 return Context.hasSameType(TD1->getUnderlyingType(),
5995 TD2->getUnderlyingType());
5996 }
5997
5998 return false;
5999 }
6000
6001
6002 /// Determines whether to create a using shadow decl for a particular
6003 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous)6004 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6005 const LookupResult &Previous) {
6006 // Diagnose finding a decl which is not from a base class of the
6007 // current class. We do this now because there are cases where this
6008 // function will silently decide not to build a shadow decl, which
6009 // will pre-empt further diagnostics.
6010 //
6011 // We don't need to do this in C++0x because we do the check once on
6012 // the qualifier.
6013 //
6014 // FIXME: diagnose the following if we care enough:
6015 // struct A { int foo; };
6016 // struct B : A { using A::foo; };
6017 // template <class T> struct C : A {};
6018 // template <class T> struct D : C<T> { using B::foo; } // <---
6019 // This is invalid (during instantiation) in C++03 because B::foo
6020 // resolves to the using decl in B, which is not a base class of D<T>.
6021 // We can't diagnose it immediately because C<T> is an unknown
6022 // specialization. The UsingShadowDecl in D<T> then points directly
6023 // to A::foo, which will look well-formed when we instantiate.
6024 // The right solution is to not collapse the shadow-decl chain.
6025 if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6026 DeclContext *OrigDC = Orig->getDeclContext();
6027
6028 // Handle enums and anonymous structs.
6029 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6030 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6031 while (OrigRec->isAnonymousStructOrUnion())
6032 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6033
6034 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6035 if (OrigDC == CurContext) {
6036 Diag(Using->getLocation(),
6037 diag::err_using_decl_nested_name_specifier_is_current_class)
6038 << Using->getQualifierLoc().getSourceRange();
6039 Diag(Orig->getLocation(), diag::note_using_decl_target);
6040 return true;
6041 }
6042
6043 Diag(Using->getQualifierLoc().getBeginLoc(),
6044 diag::err_using_decl_nested_name_specifier_is_not_base_class)
6045 << Using->getQualifier()
6046 << cast<CXXRecordDecl>(CurContext)
6047 << Using->getQualifierLoc().getSourceRange();
6048 Diag(Orig->getLocation(), diag::note_using_decl_target);
6049 return true;
6050 }
6051 }
6052
6053 if (Previous.empty()) return false;
6054
6055 NamedDecl *Target = Orig;
6056 if (isa<UsingShadowDecl>(Target))
6057 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6058
6059 // If the target happens to be one of the previous declarations, we
6060 // don't have a conflict.
6061 //
6062 // FIXME: but we might be increasing its access, in which case we
6063 // should redeclare it.
6064 NamedDecl *NonTag = 0, *Tag = 0;
6065 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6066 I != E; ++I) {
6067 NamedDecl *D = (*I)->getUnderlyingDecl();
6068 bool Result;
6069 if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6070 return Result;
6071
6072 (isa<TagDecl>(D) ? Tag : NonTag) = D;
6073 }
6074
6075 if (Target->isFunctionOrFunctionTemplate()) {
6076 FunctionDecl *FD;
6077 if (isa<FunctionTemplateDecl>(Target))
6078 FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6079 else
6080 FD = cast<FunctionDecl>(Target);
6081
6082 NamedDecl *OldDecl = 0;
6083 switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6084 case Ovl_Overload:
6085 return false;
6086
6087 case Ovl_NonFunction:
6088 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6089 break;
6090
6091 // We found a decl with the exact signature.
6092 case Ovl_Match:
6093 // If we're in a record, we want to hide the target, so we
6094 // return true (without a diagnostic) to tell the caller not to
6095 // build a shadow decl.
6096 if (CurContext->isRecord())
6097 return true;
6098
6099 // If we're not in a record, this is an error.
6100 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6101 break;
6102 }
6103
6104 Diag(Target->getLocation(), diag::note_using_decl_target);
6105 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6106 return true;
6107 }
6108
6109 // Target is not a function.
6110
6111 if (isa<TagDecl>(Target)) {
6112 // No conflict between a tag and a non-tag.
6113 if (!Tag) return false;
6114
6115 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6116 Diag(Target->getLocation(), diag::note_using_decl_target);
6117 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6118 return true;
6119 }
6120
6121 // No conflict between a tag and a non-tag.
6122 if (!NonTag) return false;
6123
6124 Diag(Using->getLocation(), diag::err_using_decl_conflict);
6125 Diag(Target->getLocation(), diag::note_using_decl_target);
6126 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6127 return true;
6128 }
6129
6130 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig)6131 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6132 UsingDecl *UD,
6133 NamedDecl *Orig) {
6134
6135 // If we resolved to another shadow declaration, just coalesce them.
6136 NamedDecl *Target = Orig;
6137 if (isa<UsingShadowDecl>(Target)) {
6138 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6139 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6140 }
6141
6142 UsingShadowDecl *Shadow
6143 = UsingShadowDecl::Create(Context, CurContext,
6144 UD->getLocation(), UD, Target);
6145 UD->addShadowDecl(Shadow);
6146
6147 Shadow->setAccess(UD->getAccess());
6148 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6149 Shadow->setInvalidDecl();
6150
6151 if (S)
6152 PushOnScopeChains(Shadow, S);
6153 else
6154 CurContext->addDecl(Shadow);
6155
6156
6157 return Shadow;
6158 }
6159
6160 /// Hides a using shadow declaration. This is required by the current
6161 /// using-decl implementation when a resolvable using declaration in a
6162 /// class is followed by a declaration which would hide or override
6163 /// one or more of the using decl's targets; for example:
6164 ///
6165 /// struct Base { void foo(int); };
6166 /// struct Derived : Base {
6167 /// using Base::foo;
6168 /// void foo(int);
6169 /// };
6170 ///
6171 /// The governing language is C++03 [namespace.udecl]p12:
6172 ///
6173 /// When a using-declaration brings names from a base class into a
6174 /// derived class scope, member functions in the derived class
6175 /// override and/or hide member functions with the same name and
6176 /// parameter types in a base class (rather than conflicting).
6177 ///
6178 /// There are two ways to implement this:
6179 /// (1) optimistically create shadow decls when they're not hidden
6180 /// by existing declarations, or
6181 /// (2) don't create any shadow decls (or at least don't make them
6182 /// visible) until we've fully parsed/instantiated the class.
6183 /// The problem with (1) is that we might have to retroactively remove
6184 /// a shadow decl, which requires several O(n) operations because the
6185 /// decl structures are (very reasonably) not designed for removal.
6186 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)6187 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6188 if (Shadow->getDeclName().getNameKind() ==
6189 DeclarationName::CXXConversionFunctionName)
6190 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6191
6192 // Remove it from the DeclContext...
6193 Shadow->getDeclContext()->removeDecl(Shadow);
6194
6195 // ...and the scope, if applicable...
6196 if (S) {
6197 S->RemoveDecl(Shadow);
6198 IdResolver.RemoveDecl(Shadow);
6199 }
6200
6201 // ...and the using decl.
6202 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6203
6204 // TODO: complain somehow if Shadow was used. It shouldn't
6205 // be possible for this to happen, because...?
6206 }
6207
6208 /// Builds a using declaration.
6209 ///
6210 /// \param IsInstantiation - Whether this call arises from an
6211 /// instantiation of an unresolved using declaration. We treat
6212 /// the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,AttributeList * AttrList,bool IsInstantiation,bool IsTypeName,SourceLocation TypenameLoc)6213 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6214 SourceLocation UsingLoc,
6215 CXXScopeSpec &SS,
6216 const DeclarationNameInfo &NameInfo,
6217 AttributeList *AttrList,
6218 bool IsInstantiation,
6219 bool IsTypeName,
6220 SourceLocation TypenameLoc) {
6221 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6222 SourceLocation IdentLoc = NameInfo.getLoc();
6223 assert(IdentLoc.isValid() && "Invalid TargetName location.");
6224
6225 // FIXME: We ignore attributes for now.
6226
6227 if (SS.isEmpty()) {
6228 Diag(IdentLoc, diag::err_using_requires_qualname);
6229 return 0;
6230 }
6231
6232 // Do the redeclaration lookup in the current scope.
6233 LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6234 ForRedeclaration);
6235 Previous.setHideTags(false);
6236 if (S) {
6237 LookupName(Previous, S);
6238
6239 // It is really dumb that we have to do this.
6240 LookupResult::Filter F = Previous.makeFilter();
6241 while (F.hasNext()) {
6242 NamedDecl *D = F.next();
6243 if (!isDeclInScope(D, CurContext, S))
6244 F.erase();
6245 }
6246 F.done();
6247 } else {
6248 assert(IsInstantiation && "no scope in non-instantiation");
6249 assert(CurContext->isRecord() && "scope not record in instantiation");
6250 LookupQualifiedName(Previous, CurContext);
6251 }
6252
6253 // Check for invalid redeclarations.
6254 if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6255 return 0;
6256
6257 // Check for bad qualifiers.
6258 if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6259 return 0;
6260
6261 DeclContext *LookupContext = computeDeclContext(SS);
6262 NamedDecl *D;
6263 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6264 if (!LookupContext) {
6265 if (IsTypeName) {
6266 // FIXME: not all declaration name kinds are legal here
6267 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6268 UsingLoc, TypenameLoc,
6269 QualifierLoc,
6270 IdentLoc, NameInfo.getName());
6271 } else {
6272 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6273 QualifierLoc, NameInfo);
6274 }
6275 } else {
6276 D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6277 NameInfo, IsTypeName);
6278 }
6279 D->setAccess(AS);
6280 CurContext->addDecl(D);
6281
6282 if (!LookupContext) return D;
6283 UsingDecl *UD = cast<UsingDecl>(D);
6284
6285 if (RequireCompleteDeclContext(SS, LookupContext)) {
6286 UD->setInvalidDecl();
6287 return UD;
6288 }
6289
6290 // The normal rules do not apply to inheriting constructor declarations.
6291 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6292 if (CheckInheritingConstructorUsingDecl(UD))
6293 UD->setInvalidDecl();
6294 return UD;
6295 }
6296
6297 // Otherwise, look up the target name.
6298
6299 LookupResult R(*this, NameInfo, LookupOrdinaryName);
6300
6301 // Unlike most lookups, we don't always want to hide tag
6302 // declarations: tag names are visible through the using declaration
6303 // even if hidden by ordinary names, *except* in a dependent context
6304 // where it's important for the sanity of two-phase lookup.
6305 if (!IsInstantiation)
6306 R.setHideTags(false);
6307
6308 // For the purposes of this lookup, we have a base object type
6309 // equal to that of the current context.
6310 if (CurContext->isRecord()) {
6311 R.setBaseObjectType(
6312 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6313 }
6314
6315 LookupQualifiedName(R, LookupContext);
6316
6317 if (R.empty()) {
6318 Diag(IdentLoc, diag::err_no_member)
6319 << NameInfo.getName() << LookupContext << SS.getRange();
6320 UD->setInvalidDecl();
6321 return UD;
6322 }
6323
6324 if (R.isAmbiguous()) {
6325 UD->setInvalidDecl();
6326 return UD;
6327 }
6328
6329 if (IsTypeName) {
6330 // If we asked for a typename and got a non-type decl, error out.
6331 if (!R.getAsSingle<TypeDecl>()) {
6332 Diag(IdentLoc, diag::err_using_typename_non_type);
6333 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6334 Diag((*I)->getUnderlyingDecl()->getLocation(),
6335 diag::note_using_decl_target);
6336 UD->setInvalidDecl();
6337 return UD;
6338 }
6339 } else {
6340 // If we asked for a non-typename and we got a type, error out,
6341 // but only if this is an instantiation of an unresolved using
6342 // decl. Otherwise just silently find the type name.
6343 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6344 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6345 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6346 UD->setInvalidDecl();
6347 return UD;
6348 }
6349 }
6350
6351 // C++0x N2914 [namespace.udecl]p6:
6352 // A using-declaration shall not name a namespace.
6353 if (R.getAsSingle<NamespaceDecl>()) {
6354 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6355 << SS.getRange();
6356 UD->setInvalidDecl();
6357 return UD;
6358 }
6359
6360 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6361 if (!CheckUsingShadowDecl(UD, *I, Previous))
6362 BuildUsingShadowDecl(S, UD, *I);
6363 }
6364
6365 return UD;
6366 }
6367
6368 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)6369 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6370 assert(!UD->isTypeName() && "expecting a constructor name");
6371
6372 const Type *SourceType = UD->getQualifier()->getAsType();
6373 assert(SourceType &&
6374 "Using decl naming constructor doesn't have type in scope spec.");
6375 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6376
6377 // Check whether the named type is a direct base class.
6378 CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6379 CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6380 for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6381 BaseIt != BaseE; ++BaseIt) {
6382 CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6383 if (CanonicalSourceType == BaseType)
6384 break;
6385 if (BaseIt->getType()->isDependentType())
6386 break;
6387 }
6388
6389 if (BaseIt == BaseE) {
6390 // Did not find SourceType in the bases.
6391 Diag(UD->getUsingLocation(),
6392 diag::err_using_decl_constructor_not_in_direct_base)
6393 << UD->getNameInfo().getSourceRange()
6394 << QualType(SourceType, 0) << TargetClass;
6395 return true;
6396 }
6397
6398 if (!CurContext->isDependentContext())
6399 BaseIt->setInheritConstructors();
6400
6401 return false;
6402 }
6403
6404 /// Checks that the given using declaration is not an invalid
6405 /// redeclaration. Note that this is checking only for the using decl
6406 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool isTypeName,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)6407 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6408 bool isTypeName,
6409 const CXXScopeSpec &SS,
6410 SourceLocation NameLoc,
6411 const LookupResult &Prev) {
6412 // C++03 [namespace.udecl]p8:
6413 // C++0x [namespace.udecl]p10:
6414 // A using-declaration is a declaration and can therefore be used
6415 // repeatedly where (and only where) multiple declarations are
6416 // allowed.
6417 //
6418 // That's in non-member contexts.
6419 if (!CurContext->getRedeclContext()->isRecord())
6420 return false;
6421
6422 NestedNameSpecifier *Qual
6423 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6424
6425 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6426 NamedDecl *D = *I;
6427
6428 bool DTypename;
6429 NestedNameSpecifier *DQual;
6430 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6431 DTypename = UD->isTypeName();
6432 DQual = UD->getQualifier();
6433 } else if (UnresolvedUsingValueDecl *UD
6434 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6435 DTypename = false;
6436 DQual = UD->getQualifier();
6437 } else if (UnresolvedUsingTypenameDecl *UD
6438 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6439 DTypename = true;
6440 DQual = UD->getQualifier();
6441 } else continue;
6442
6443 // using decls differ if one says 'typename' and the other doesn't.
6444 // FIXME: non-dependent using decls?
6445 if (isTypeName != DTypename) continue;
6446
6447 // using decls differ if they name different scopes (but note that
6448 // template instantiation can cause this check to trigger when it
6449 // didn't before instantiation).
6450 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6451 Context.getCanonicalNestedNameSpecifier(DQual))
6452 continue;
6453
6454 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6455 Diag(D->getLocation(), diag::note_using_decl) << 1;
6456 return true;
6457 }
6458
6459 return false;
6460 }
6461
6462
6463 /// Checks that the given nested-name qualifier used in a using decl
6464 /// in the current context is appropriately related to the current
6465 /// scope. If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,SourceLocation NameLoc)6466 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6467 const CXXScopeSpec &SS,
6468 SourceLocation NameLoc) {
6469 DeclContext *NamedContext = computeDeclContext(SS);
6470
6471 if (!CurContext->isRecord()) {
6472 // C++03 [namespace.udecl]p3:
6473 // C++0x [namespace.udecl]p8:
6474 // A using-declaration for a class member shall be a member-declaration.
6475
6476 // If we weren't able to compute a valid scope, it must be a
6477 // dependent class scope.
6478 if (!NamedContext || NamedContext->isRecord()) {
6479 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6480 << SS.getRange();
6481 return true;
6482 }
6483
6484 // Otherwise, everything is known to be fine.
6485 return false;
6486 }
6487
6488 // The current scope is a record.
6489
6490 // If the named context is dependent, we can't decide much.
6491 if (!NamedContext) {
6492 // FIXME: in C++0x, we can diagnose if we can prove that the
6493 // nested-name-specifier does not refer to a base class, which is
6494 // still possible in some cases.
6495
6496 // Otherwise we have to conservatively report that things might be
6497 // okay.
6498 return false;
6499 }
6500
6501 if (!NamedContext->isRecord()) {
6502 // Ideally this would point at the last name in the specifier,
6503 // but we don't have that level of source info.
6504 Diag(SS.getRange().getBegin(),
6505 diag::err_using_decl_nested_name_specifier_is_not_class)
6506 << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6507 return true;
6508 }
6509
6510 if (!NamedContext->isDependentContext() &&
6511 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6512 return true;
6513
6514 if (getLangOpts().CPlusPlus0x) {
6515 // C++0x [namespace.udecl]p3:
6516 // In a using-declaration used as a member-declaration, the
6517 // nested-name-specifier shall name a base class of the class
6518 // being defined.
6519
6520 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6521 cast<CXXRecordDecl>(NamedContext))) {
6522 if (CurContext == NamedContext) {
6523 Diag(NameLoc,
6524 diag::err_using_decl_nested_name_specifier_is_current_class)
6525 << SS.getRange();
6526 return true;
6527 }
6528
6529 Diag(SS.getRange().getBegin(),
6530 diag::err_using_decl_nested_name_specifier_is_not_base_class)
6531 << (NestedNameSpecifier*) SS.getScopeRep()
6532 << cast<CXXRecordDecl>(CurContext)
6533 << SS.getRange();
6534 return true;
6535 }
6536
6537 return false;
6538 }
6539
6540 // C++03 [namespace.udecl]p4:
6541 // A using-declaration used as a member-declaration shall refer
6542 // to a member of a base class of the class being defined [etc.].
6543
6544 // Salient point: SS doesn't have to name a base class as long as
6545 // lookup only finds members from base classes. Therefore we can
6546 // diagnose here only if we can prove that that can't happen,
6547 // i.e. if the class hierarchies provably don't intersect.
6548
6549 // TODO: it would be nice if "definitely valid" results were cached
6550 // in the UsingDecl and UsingShadowDecl so that these checks didn't
6551 // need to be repeated.
6552
6553 struct UserData {
6554 llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6555
6556 static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6557 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6558 Data->Bases.insert(Base);
6559 return true;
6560 }
6561
6562 bool hasDependentBases(const CXXRecordDecl *Class) {
6563 return !Class->forallBases(collect, this);
6564 }
6565
6566 /// Returns true if the base is dependent or is one of the
6567 /// accumulated base classes.
6568 static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6569 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6570 return !Data->Bases.count(Base);
6571 }
6572
6573 bool mightShareBases(const CXXRecordDecl *Class) {
6574 return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6575 }
6576 };
6577
6578 UserData Data;
6579
6580 // Returns false if we find a dependent base.
6581 if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6582 return false;
6583
6584 // Returns false if the class has a dependent base or if it or one
6585 // of its bases is present in the base set of the current context.
6586 if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6587 return false;
6588
6589 Diag(SS.getRange().getBegin(),
6590 diag::err_using_decl_nested_name_specifier_is_not_base_class)
6591 << (NestedNameSpecifier*) SS.getScopeRep()
6592 << cast<CXXRecordDecl>(CurContext)
6593 << SS.getRange();
6594
6595 return true;
6596 }
6597
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,TypeResult Type)6598 Decl *Sema::ActOnAliasDeclaration(Scope *S,
6599 AccessSpecifier AS,
6600 MultiTemplateParamsArg TemplateParamLists,
6601 SourceLocation UsingLoc,
6602 UnqualifiedId &Name,
6603 TypeResult Type) {
6604 // Skip up to the relevant declaration scope.
6605 while (S->getFlags() & Scope::TemplateParamScope)
6606 S = S->getParent();
6607 assert((S->getFlags() & Scope::DeclScope) &&
6608 "got alias-declaration outside of declaration scope");
6609
6610 if (Type.isInvalid())
6611 return 0;
6612
6613 bool Invalid = false;
6614 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6615 TypeSourceInfo *TInfo = 0;
6616 GetTypeFromParser(Type.get(), &TInfo);
6617
6618 if (DiagnoseClassNameShadow(CurContext, NameInfo))
6619 return 0;
6620
6621 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6622 UPPC_DeclarationType)) {
6623 Invalid = true;
6624 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6625 TInfo->getTypeLoc().getBeginLoc());
6626 }
6627
6628 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6629 LookupName(Previous, S);
6630
6631 // Warn about shadowing the name of a template parameter.
6632 if (Previous.isSingleResult() &&
6633 Previous.getFoundDecl()->isTemplateParameter()) {
6634 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6635 Previous.clear();
6636 }
6637
6638 assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6639 "name in alias declaration must be an identifier");
6640 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6641 Name.StartLocation,
6642 Name.Identifier, TInfo);
6643
6644 NewTD->setAccess(AS);
6645
6646 if (Invalid)
6647 NewTD->setInvalidDecl();
6648
6649 CheckTypedefForVariablyModifiedType(S, NewTD);
6650 Invalid |= NewTD->isInvalidDecl();
6651
6652 bool Redeclaration = false;
6653
6654 NamedDecl *NewND;
6655 if (TemplateParamLists.size()) {
6656 TypeAliasTemplateDecl *OldDecl = 0;
6657 TemplateParameterList *OldTemplateParams = 0;
6658
6659 if (TemplateParamLists.size() != 1) {
6660 Diag(UsingLoc, diag::err_alias_template_extra_headers)
6661 << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6662 TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6663 }
6664 TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6665
6666 // Only consider previous declarations in the same scope.
6667 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6668 /*ExplicitInstantiationOrSpecialization*/false);
6669 if (!Previous.empty()) {
6670 Redeclaration = true;
6671
6672 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6673 if (!OldDecl && !Invalid) {
6674 Diag(UsingLoc, diag::err_redefinition_different_kind)
6675 << Name.Identifier;
6676
6677 NamedDecl *OldD = Previous.getRepresentativeDecl();
6678 if (OldD->getLocation().isValid())
6679 Diag(OldD->getLocation(), diag::note_previous_definition);
6680
6681 Invalid = true;
6682 }
6683
6684 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6685 if (TemplateParameterListsAreEqual(TemplateParams,
6686 OldDecl->getTemplateParameters(),
6687 /*Complain=*/true,
6688 TPL_TemplateMatch))
6689 OldTemplateParams = OldDecl->getTemplateParameters();
6690 else
6691 Invalid = true;
6692
6693 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6694 if (!Invalid &&
6695 !Context.hasSameType(OldTD->getUnderlyingType(),
6696 NewTD->getUnderlyingType())) {
6697 // FIXME: The C++0x standard does not clearly say this is ill-formed,
6698 // but we can't reasonably accept it.
6699 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6700 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6701 if (OldTD->getLocation().isValid())
6702 Diag(OldTD->getLocation(), diag::note_previous_definition);
6703 Invalid = true;
6704 }
6705 }
6706 }
6707
6708 // Merge any previous default template arguments into our parameters,
6709 // and check the parameter list.
6710 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6711 TPC_TypeAliasTemplate))
6712 return 0;
6713
6714 TypeAliasTemplateDecl *NewDecl =
6715 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6716 Name.Identifier, TemplateParams,
6717 NewTD);
6718
6719 NewDecl->setAccess(AS);
6720
6721 if (Invalid)
6722 NewDecl->setInvalidDecl();
6723 else if (OldDecl)
6724 NewDecl->setPreviousDeclaration(OldDecl);
6725
6726 NewND = NewDecl;
6727 } else {
6728 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6729 NewND = NewTD;
6730 }
6731
6732 if (!Redeclaration)
6733 PushOnScopeChains(NewND, S);
6734
6735 return NewND;
6736 }
6737
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)6738 Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6739 SourceLocation NamespaceLoc,
6740 SourceLocation AliasLoc,
6741 IdentifierInfo *Alias,
6742 CXXScopeSpec &SS,
6743 SourceLocation IdentLoc,
6744 IdentifierInfo *Ident) {
6745
6746 // Lookup the namespace name.
6747 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6748 LookupParsedName(R, S, &SS);
6749
6750 // Check if we have a previous declaration with the same name.
6751 NamedDecl *PrevDecl
6752 = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6753 ForRedeclaration);
6754 if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6755 PrevDecl = 0;
6756
6757 if (PrevDecl) {
6758 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6759 // We already have an alias with the same name that points to the same
6760 // namespace, so don't create a new one.
6761 // FIXME: At some point, we'll want to create the (redundant)
6762 // declaration to maintain better source information.
6763 if (!R.isAmbiguous() && !R.empty() &&
6764 AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6765 return 0;
6766 }
6767
6768 unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6769 diag::err_redefinition_different_kind;
6770 Diag(AliasLoc, DiagID) << Alias;
6771 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6772 return 0;
6773 }
6774
6775 if (R.isAmbiguous())
6776 return 0;
6777
6778 if (R.empty()) {
6779 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6780 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6781 return 0;
6782 }
6783 }
6784
6785 NamespaceAliasDecl *AliasDecl =
6786 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6787 Alias, SS.getWithLocInContext(Context),
6788 IdentLoc, R.getFoundDecl());
6789
6790 PushOnScopeChains(AliasDecl, S);
6791 return AliasDecl;
6792 }
6793
6794 namespace {
6795 /// \brief Scoped object used to handle the state changes required in Sema
6796 /// to implicitly define the body of a C++ member function;
6797 class ImplicitlyDefinedFunctionScope {
6798 Sema &S;
6799 Sema::ContextRAII SavedContext;
6800
6801 public:
ImplicitlyDefinedFunctionScope(Sema & S,CXXMethodDecl * Method)6802 ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6803 : S(S), SavedContext(S, Method)
6804 {
6805 S.PushFunctionScope();
6806 S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6807 }
6808
~ImplicitlyDefinedFunctionScope()6809 ~ImplicitlyDefinedFunctionScope() {
6810 S.PopExpressionEvaluationContext();
6811 S.PopFunctionScopeInfo();
6812 }
6813 };
6814 }
6815
6816 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl * ClassDecl)6817 Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6818 // C++ [except.spec]p14:
6819 // An implicitly declared special member function (Clause 12) shall have an
6820 // exception-specification. [...]
6821 ImplicitExceptionSpecification ExceptSpec(*this);
6822 if (ClassDecl->isInvalidDecl())
6823 return ExceptSpec;
6824
6825 // Direct base-class constructors.
6826 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6827 BEnd = ClassDecl->bases_end();
6828 B != BEnd; ++B) {
6829 if (B->isVirtual()) // Handled below.
6830 continue;
6831
6832 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6833 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6834 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6835 // If this is a deleted function, add it anyway. This might be conformant
6836 // with the standard. This might not. I'm not sure. It might not matter.
6837 if (Constructor)
6838 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6839 }
6840 }
6841
6842 // Virtual base-class constructors.
6843 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6844 BEnd = ClassDecl->vbases_end();
6845 B != BEnd; ++B) {
6846 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6847 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6848 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6849 // If this is a deleted function, add it anyway. This might be conformant
6850 // with the standard. This might not. I'm not sure. It might not matter.
6851 if (Constructor)
6852 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6853 }
6854 }
6855
6856 // Field constructors.
6857 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6858 FEnd = ClassDecl->field_end();
6859 F != FEnd; ++F) {
6860 if (F->hasInClassInitializer()) {
6861 if (Expr *E = F->getInClassInitializer())
6862 ExceptSpec.CalledExpr(E);
6863 else if (!F->isInvalidDecl())
6864 ExceptSpec.SetDelayed();
6865 } else if (const RecordType *RecordTy
6866 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6867 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6868 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6869 // If this is a deleted function, add it anyway. This might be conformant
6870 // with the standard. This might not. I'm not sure. It might not matter.
6871 // In particular, the problem is that this function never gets called. It
6872 // might just be ill-formed because this function attempts to refer to
6873 // a deleted function here.
6874 if (Constructor)
6875 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6876 }
6877 }
6878
6879 return ExceptSpec;
6880 }
6881
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)6882 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6883 CXXRecordDecl *ClassDecl) {
6884 // C++ [class.ctor]p5:
6885 // A default constructor for a class X is a constructor of class X
6886 // that can be called without an argument. If there is no
6887 // user-declared constructor for class X, a default constructor is
6888 // implicitly declared. An implicitly-declared default constructor
6889 // is an inline public member of its class.
6890 assert(!ClassDecl->hasUserDeclaredConstructor() &&
6891 "Should not build implicit default constructor!");
6892
6893 ImplicitExceptionSpecification Spec =
6894 ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6895 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6896
6897 // Create the actual constructor declaration.
6898 CanQualType ClassType
6899 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6900 SourceLocation ClassLoc = ClassDecl->getLocation();
6901 DeclarationName Name
6902 = Context.DeclarationNames.getCXXConstructorName(ClassType);
6903 DeclarationNameInfo NameInfo(Name, ClassLoc);
6904 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6905 Context, ClassDecl, ClassLoc, NameInfo,
6906 Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6907 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6908 /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6909 getLangOpts().CPlusPlus0x);
6910 DefaultCon->setAccess(AS_public);
6911 DefaultCon->setDefaulted();
6912 DefaultCon->setImplicit();
6913 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6914
6915 // Note that we have declared this constructor.
6916 ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6917
6918 if (Scope *S = getScopeForContext(ClassDecl))
6919 PushOnScopeChains(DefaultCon, S, false);
6920 ClassDecl->addDecl(DefaultCon);
6921
6922 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6923 DefaultCon->setDeletedAsWritten();
6924
6925 return DefaultCon;
6926 }
6927
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)6928 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6929 CXXConstructorDecl *Constructor) {
6930 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6931 !Constructor->doesThisDeclarationHaveABody() &&
6932 !Constructor->isDeleted()) &&
6933 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6934
6935 CXXRecordDecl *ClassDecl = Constructor->getParent();
6936 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6937
6938 ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6939 DiagnosticErrorTrap Trap(Diags);
6940 if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6941 Trap.hasErrorOccurred()) {
6942 Diag(CurrentLocation, diag::note_member_synthesized_at)
6943 << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6944 Constructor->setInvalidDecl();
6945 return;
6946 }
6947
6948 SourceLocation Loc = Constructor->getLocation();
6949 Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6950
6951 Constructor->setUsed();
6952 MarkVTableUsed(CurrentLocation, ClassDecl);
6953
6954 if (ASTMutationListener *L = getASTMutationListener()) {
6955 L->CompletedImplicitDefinition(Constructor);
6956 }
6957 }
6958
6959 /// Get any existing defaulted default constructor for the given class. Do not
6960 /// implicitly define one if it does not exist.
getDefaultedDefaultConstructorUnsafe(Sema & Self,CXXRecordDecl * D)6961 static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6962 CXXRecordDecl *D) {
6963 ASTContext &Context = Self.Context;
6964 QualType ClassType = Context.getTypeDeclType(D);
6965 DeclarationName ConstructorName
6966 = Context.DeclarationNames.getCXXConstructorName(
6967 Context.getCanonicalType(ClassType.getUnqualifiedType()));
6968
6969 DeclContext::lookup_const_iterator Con, ConEnd;
6970 for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6971 Con != ConEnd; ++Con) {
6972 // A function template cannot be defaulted.
6973 if (isa<FunctionTemplateDecl>(*Con))
6974 continue;
6975
6976 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6977 if (Constructor->isDefaultConstructor())
6978 return Constructor->isDefaulted() ? Constructor : 0;
6979 }
6980 return 0;
6981 }
6982
ActOnFinishDelayedMemberInitializers(Decl * D)6983 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6984 if (!D) return;
6985 AdjustDeclIfTemplate(D);
6986
6987 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6988 CXXConstructorDecl *CtorDecl
6989 = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6990
6991 if (!CtorDecl) return;
6992
6993 // Compute the exception specification for the default constructor.
6994 const FunctionProtoType *CtorTy =
6995 CtorDecl->getType()->castAs<FunctionProtoType>();
6996 if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6997 // FIXME: Don't do this unless the exception spec is needed.
6998 ImplicitExceptionSpecification Spec =
6999 ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7000 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7001 assert(EPI.ExceptionSpecType != EST_Delayed);
7002
7003 CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7004 }
7005
7006 // If the default constructor is explicitly defaulted, checking the exception
7007 // specification is deferred until now.
7008 if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7009 !ClassDecl->isDependentType())
7010 CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7011 }
7012
DeclareInheritedConstructors(CXXRecordDecl * ClassDecl)7013 void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7014 // We start with an initial pass over the base classes to collect those that
7015 // inherit constructors from. If there are none, we can forgo all further
7016 // processing.
7017 typedef SmallVector<const RecordType *, 4> BasesVector;
7018 BasesVector BasesToInheritFrom;
7019 for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7020 BaseE = ClassDecl->bases_end();
7021 BaseIt != BaseE; ++BaseIt) {
7022 if (BaseIt->getInheritConstructors()) {
7023 QualType Base = BaseIt->getType();
7024 if (Base->isDependentType()) {
7025 // If we inherit constructors from anything that is dependent, just
7026 // abort processing altogether. We'll get another chance for the
7027 // instantiations.
7028 return;
7029 }
7030 BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7031 }
7032 }
7033 if (BasesToInheritFrom.empty())
7034 return;
7035
7036 // Now collect the constructors that we already have in the current class.
7037 // Those take precedence over inherited constructors.
7038 // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7039 // unless there is a user-declared constructor with the same signature in
7040 // the class where the using-declaration appears.
7041 llvm::SmallSet<const Type *, 8> ExistingConstructors;
7042 for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7043 CtorE = ClassDecl->ctor_end();
7044 CtorIt != CtorE; ++CtorIt) {
7045 ExistingConstructors.insert(
7046 Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7047 }
7048
7049 DeclarationName CreatedCtorName =
7050 Context.DeclarationNames.getCXXConstructorName(
7051 ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7052
7053 // Now comes the true work.
7054 // First, we keep a map from constructor types to the base that introduced
7055 // them. Needed for finding conflicting constructors. We also keep the
7056 // actually inserted declarations in there, for pretty diagnostics.
7057 typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7058 typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7059 ConstructorToSourceMap InheritedConstructors;
7060 for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7061 BaseE = BasesToInheritFrom.end();
7062 BaseIt != BaseE; ++BaseIt) {
7063 const RecordType *Base = *BaseIt;
7064 CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7065 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7066 for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7067 CtorE = BaseDecl->ctor_end();
7068 CtorIt != CtorE; ++CtorIt) {
7069 // Find the using declaration for inheriting this base's constructors.
7070 // FIXME: Don't perform name lookup just to obtain a source location!
7071 DeclarationName Name =
7072 Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7073 LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7074 LookupQualifiedName(Result, CurContext);
7075 UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7076 SourceLocation UsingLoc = UD ? UD->getLocation() :
7077 ClassDecl->getLocation();
7078
7079 // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7080 // from the class X named in the using-declaration consists of actual
7081 // constructors and notional constructors that result from the
7082 // transformation of defaulted parameters as follows:
7083 // - all non-template default constructors of X, and
7084 // - for each non-template constructor of X that has at least one
7085 // parameter with a default argument, the set of constructors that
7086 // results from omitting any ellipsis parameter specification and
7087 // successively omitting parameters with a default argument from the
7088 // end of the parameter-type-list.
7089 CXXConstructorDecl *BaseCtor = *CtorIt;
7090 bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7091 const FunctionProtoType *BaseCtorType =
7092 BaseCtor->getType()->getAs<FunctionProtoType>();
7093
7094 for (unsigned params = BaseCtor->getMinRequiredArguments(),
7095 maxParams = BaseCtor->getNumParams();
7096 params <= maxParams; ++params) {
7097 // Skip default constructors. They're never inherited.
7098 if (params == 0)
7099 continue;
7100 // Skip copy and move constructors for the same reason.
7101 if (CanBeCopyOrMove && params == 1)
7102 continue;
7103
7104 // Build up a function type for this particular constructor.
7105 // FIXME: The working paper does not consider that the exception spec
7106 // for the inheriting constructor might be larger than that of the
7107 // source. This code doesn't yet, either. When it does, this code will
7108 // need to be delayed until after exception specifications and in-class
7109 // member initializers are attached.
7110 const Type *NewCtorType;
7111 if (params == maxParams)
7112 NewCtorType = BaseCtorType;
7113 else {
7114 SmallVector<QualType, 16> Args;
7115 for (unsigned i = 0; i < params; ++i) {
7116 Args.push_back(BaseCtorType->getArgType(i));
7117 }
7118 FunctionProtoType::ExtProtoInfo ExtInfo =
7119 BaseCtorType->getExtProtoInfo();
7120 ExtInfo.Variadic = false;
7121 NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7122 Args.data(), params, ExtInfo)
7123 .getTypePtr();
7124 }
7125 const Type *CanonicalNewCtorType =
7126 Context.getCanonicalType(NewCtorType);
7127
7128 // Now that we have the type, first check if the class already has a
7129 // constructor with this signature.
7130 if (ExistingConstructors.count(CanonicalNewCtorType))
7131 continue;
7132
7133 // Then we check if we have already declared an inherited constructor
7134 // with this signature.
7135 std::pair<ConstructorToSourceMap::iterator, bool> result =
7136 InheritedConstructors.insert(std::make_pair(
7137 CanonicalNewCtorType,
7138 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7139 if (!result.second) {
7140 // Already in the map. If it came from a different class, that's an
7141 // error. Not if it's from the same.
7142 CanQualType PreviousBase = result.first->second.first;
7143 if (CanonicalBase != PreviousBase) {
7144 const CXXConstructorDecl *PrevCtor = result.first->second.second;
7145 const CXXConstructorDecl *PrevBaseCtor =
7146 PrevCtor->getInheritedConstructor();
7147 assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7148
7149 Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7150 Diag(BaseCtor->getLocation(),
7151 diag::note_using_decl_constructor_conflict_current_ctor);
7152 Diag(PrevBaseCtor->getLocation(),
7153 diag::note_using_decl_constructor_conflict_previous_ctor);
7154 Diag(PrevCtor->getLocation(),
7155 diag::note_using_decl_constructor_conflict_previous_using);
7156 }
7157 continue;
7158 }
7159
7160 // OK, we're there, now add the constructor.
7161 // C++0x [class.inhctor]p8: [...] that would be performed by a
7162 // user-written inline constructor [...]
7163 DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7164 CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7165 Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7166 /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7167 /*ImplicitlyDeclared=*/true,
7168 // FIXME: Due to a defect in the standard, we treat inherited
7169 // constructors as constexpr even if that makes them ill-formed.
7170 /*Constexpr=*/BaseCtor->isConstexpr());
7171 NewCtor->setAccess(BaseCtor->getAccess());
7172
7173 // Build up the parameter decls and add them.
7174 SmallVector<ParmVarDecl *, 16> ParamDecls;
7175 for (unsigned i = 0; i < params; ++i) {
7176 ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7177 UsingLoc, UsingLoc,
7178 /*IdentifierInfo=*/0,
7179 BaseCtorType->getArgType(i),
7180 /*TInfo=*/0, SC_None,
7181 SC_None, /*DefaultArg=*/0));
7182 }
7183 NewCtor->setParams(ParamDecls);
7184 NewCtor->setInheritedConstructor(BaseCtor);
7185
7186 ClassDecl->addDecl(NewCtor);
7187 result.first->second.second = NewCtor;
7188 }
7189 }
7190 }
7191 }
7192
7193 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXRecordDecl * ClassDecl)7194 Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7195 // C++ [except.spec]p14:
7196 // An implicitly declared special member function (Clause 12) shall have
7197 // an exception-specification.
7198 ImplicitExceptionSpecification ExceptSpec(*this);
7199 if (ClassDecl->isInvalidDecl())
7200 return ExceptSpec;
7201
7202 // Direct base-class destructors.
7203 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7204 BEnd = ClassDecl->bases_end();
7205 B != BEnd; ++B) {
7206 if (B->isVirtual()) // Handled below.
7207 continue;
7208
7209 if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7210 ExceptSpec.CalledDecl(B->getLocStart(),
7211 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7212 }
7213
7214 // Virtual base-class destructors.
7215 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7216 BEnd = ClassDecl->vbases_end();
7217 B != BEnd; ++B) {
7218 if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7219 ExceptSpec.CalledDecl(B->getLocStart(),
7220 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7221 }
7222
7223 // Field destructors.
7224 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7225 FEnd = ClassDecl->field_end();
7226 F != FEnd; ++F) {
7227 if (const RecordType *RecordTy
7228 = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7229 ExceptSpec.CalledDecl(F->getLocation(),
7230 LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7231 }
7232
7233 return ExceptSpec;
7234 }
7235
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)7236 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7237 // C++ [class.dtor]p2:
7238 // If a class has no user-declared destructor, a destructor is
7239 // declared implicitly. An implicitly-declared destructor is an
7240 // inline public member of its class.
7241
7242 ImplicitExceptionSpecification Spec =
7243 ComputeDefaultedDtorExceptionSpec(ClassDecl);
7244 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7245
7246 // Create the actual destructor declaration.
7247 QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7248
7249 CanQualType ClassType
7250 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7251 SourceLocation ClassLoc = ClassDecl->getLocation();
7252 DeclarationName Name
7253 = Context.DeclarationNames.getCXXDestructorName(ClassType);
7254 DeclarationNameInfo NameInfo(Name, ClassLoc);
7255 CXXDestructorDecl *Destructor
7256 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7257 /*isInline=*/true,
7258 /*isImplicitlyDeclared=*/true);
7259 Destructor->setAccess(AS_public);
7260 Destructor->setDefaulted();
7261 Destructor->setImplicit();
7262 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7263
7264 // Note that we have declared this destructor.
7265 ++ASTContext::NumImplicitDestructorsDeclared;
7266
7267 // Introduce this destructor into its scope.
7268 if (Scope *S = getScopeForContext(ClassDecl))
7269 PushOnScopeChains(Destructor, S, false);
7270 ClassDecl->addDecl(Destructor);
7271
7272 // This could be uniqued if it ever proves significant.
7273 Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7274
7275 AddOverriddenMethods(ClassDecl, Destructor);
7276
7277 if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7278 Destructor->setDeletedAsWritten();
7279
7280 return Destructor;
7281 }
7282
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)7283 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7284 CXXDestructorDecl *Destructor) {
7285 assert((Destructor->isDefaulted() &&
7286 !Destructor->doesThisDeclarationHaveABody() &&
7287 !Destructor->isDeleted()) &&
7288 "DefineImplicitDestructor - call it for implicit default dtor");
7289 CXXRecordDecl *ClassDecl = Destructor->getParent();
7290 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7291
7292 if (Destructor->isInvalidDecl())
7293 return;
7294
7295 ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7296
7297 DiagnosticErrorTrap Trap(Diags);
7298 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7299 Destructor->getParent());
7300
7301 if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7302 Diag(CurrentLocation, diag::note_member_synthesized_at)
7303 << CXXDestructor << Context.getTagDeclType(ClassDecl);
7304
7305 Destructor->setInvalidDecl();
7306 return;
7307 }
7308
7309 SourceLocation Loc = Destructor->getLocation();
7310 Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7311 Destructor->setImplicitlyDefined(true);
7312 Destructor->setUsed();
7313 MarkVTableUsed(CurrentLocation, ClassDecl);
7314
7315 if (ASTMutationListener *L = getASTMutationListener()) {
7316 L->CompletedImplicitDefinition(Destructor);
7317 }
7318 }
7319
AdjustDestructorExceptionSpec(CXXRecordDecl * classDecl,CXXDestructorDecl * destructor)7320 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7321 CXXDestructorDecl *destructor) {
7322 // C++11 [class.dtor]p3:
7323 // A declaration of a destructor that does not have an exception-
7324 // specification is implicitly considered to have the same exception-
7325 // specification as an implicit declaration.
7326 const FunctionProtoType *dtorType = destructor->getType()->
7327 getAs<FunctionProtoType>();
7328 if (dtorType->hasExceptionSpec())
7329 return;
7330
7331 ImplicitExceptionSpecification exceptSpec =
7332 ComputeDefaultedDtorExceptionSpec(classDecl);
7333
7334 // Replace the destructor's type, building off the existing one. Fortunately,
7335 // the only thing of interest in the destructor type is its extended info.
7336 // The return and arguments are fixed.
7337 FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7338 epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7339 epi.NumExceptions = exceptSpec.size();
7340 epi.Exceptions = exceptSpec.data();
7341 QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7342
7343 destructor->setType(ty);
7344
7345 // FIXME: If the destructor has a body that could throw, and the newly created
7346 // spec doesn't allow exceptions, we should emit a warning, because this
7347 // change in behavior can break conforming C++03 programs at runtime.
7348 // However, we don't have a body yet, so it needs to be done somewhere else.
7349 }
7350
7351 /// \brief Builds a statement that copies/moves the given entity from \p From to
7352 /// \c To.
7353 ///
7354 /// This routine is used to copy/move the members of a class with an
7355 /// implicitly-declared copy/move assignment operator. When the entities being
7356 /// copied are arrays, this routine builds for loops to copy them.
7357 ///
7358 /// \param S The Sema object used for type-checking.
7359 ///
7360 /// \param Loc The location where the implicit copy/move is being generated.
7361 ///
7362 /// \param T The type of the expressions being copied/moved. Both expressions
7363 /// must have this type.
7364 ///
7365 /// \param To The expression we are copying/moving to.
7366 ///
7367 /// \param From The expression we are copying/moving from.
7368 ///
7369 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7370 /// Otherwise, it's a non-static member subobject.
7371 ///
7372 /// \param Copying Whether we're copying or moving.
7373 ///
7374 /// \param Depth Internal parameter recording the depth of the recursion.
7375 ///
7376 /// \returns A statement or a loop that copies the expressions.
7377 static StmtResult
BuildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)7378 BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7379 Expr *To, Expr *From,
7380 bool CopyingBaseSubobject, bool Copying,
7381 unsigned Depth = 0) {
7382 // C++0x [class.copy]p28:
7383 // Each subobject is assigned in the manner appropriate to its type:
7384 //
7385 // - if the subobject is of class type, as if by a call to operator= with
7386 // the subobject as the object expression and the corresponding
7387 // subobject of x as a single function argument (as if by explicit
7388 // qualification; that is, ignoring any possible virtual overriding
7389 // functions in more derived classes);
7390 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7391 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7392
7393 // Look for operator=.
7394 DeclarationName Name
7395 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7396 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7397 S.LookupQualifiedName(OpLookup, ClassDecl, false);
7398
7399 // Filter out any result that isn't a copy/move-assignment operator.
7400 LookupResult::Filter F = OpLookup.makeFilter();
7401 while (F.hasNext()) {
7402 NamedDecl *D = F.next();
7403 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7404 if (Method->isCopyAssignmentOperator() ||
7405 (!Copying && Method->isMoveAssignmentOperator()))
7406 continue;
7407
7408 F.erase();
7409 }
7410 F.done();
7411
7412 // Suppress the protected check (C++ [class.protected]) for each of the
7413 // assignment operators we found. This strange dance is required when
7414 // we're assigning via a base classes's copy-assignment operator. To
7415 // ensure that we're getting the right base class subobject (without
7416 // ambiguities), we need to cast "this" to that subobject type; to
7417 // ensure that we don't go through the virtual call mechanism, we need
7418 // to qualify the operator= name with the base class (see below). However,
7419 // this means that if the base class has a protected copy assignment
7420 // operator, the protected member access check will fail. So, we
7421 // rewrite "protected" access to "public" access in this case, since we
7422 // know by construction that we're calling from a derived class.
7423 if (CopyingBaseSubobject) {
7424 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7425 L != LEnd; ++L) {
7426 if (L.getAccess() == AS_protected)
7427 L.setAccess(AS_public);
7428 }
7429 }
7430
7431 // Create the nested-name-specifier that will be used to qualify the
7432 // reference to operator=; this is required to suppress the virtual
7433 // call mechanism.
7434 CXXScopeSpec SS;
7435 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7436 SS.MakeTrivial(S.Context,
7437 NestedNameSpecifier::Create(S.Context, 0, false,
7438 CanonicalT),
7439 Loc);
7440
7441 // Create the reference to operator=.
7442 ExprResult OpEqualRef
7443 = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7444 /*TemplateKWLoc=*/SourceLocation(),
7445 /*FirstQualifierInScope=*/0,
7446 OpLookup,
7447 /*TemplateArgs=*/0,
7448 /*SuppressQualifierCheck=*/true);
7449 if (OpEqualRef.isInvalid())
7450 return StmtError();
7451
7452 // Build the call to the assignment operator.
7453
7454 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7455 OpEqualRef.takeAs<Expr>(),
7456 Loc, &From, 1, Loc);
7457 if (Call.isInvalid())
7458 return StmtError();
7459
7460 return S.Owned(Call.takeAs<Stmt>());
7461 }
7462
7463 // - if the subobject is of scalar type, the built-in assignment
7464 // operator is used.
7465 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7466 if (!ArrayTy) {
7467 ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7468 if (Assignment.isInvalid())
7469 return StmtError();
7470
7471 return S.Owned(Assignment.takeAs<Stmt>());
7472 }
7473
7474 // - if the subobject is an array, each element is assigned, in the
7475 // manner appropriate to the element type;
7476
7477 // Construct a loop over the array bounds, e.g.,
7478 //
7479 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7480 //
7481 // that will copy each of the array elements.
7482 QualType SizeType = S.Context.getSizeType();
7483
7484 // Create the iteration variable.
7485 IdentifierInfo *IterationVarName = 0;
7486 {
7487 SmallString<8> Str;
7488 llvm::raw_svector_ostream OS(Str);
7489 OS << "__i" << Depth;
7490 IterationVarName = &S.Context.Idents.get(OS.str());
7491 }
7492 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7493 IterationVarName, SizeType,
7494 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7495 SC_None, SC_None);
7496
7497 // Initialize the iteration variable to zero.
7498 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7499 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7500
7501 // Create a reference to the iteration variable; we'll use this several
7502 // times throughout.
7503 Expr *IterationVarRef
7504 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7505 assert(IterationVarRef && "Reference to invented variable cannot fail!");
7506 Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7507 assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7508
7509 // Create the DeclStmt that holds the iteration variable.
7510 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7511
7512 // Create the comparison against the array bound.
7513 llvm::APInt Upper
7514 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7515 Expr *Comparison
7516 = new (S.Context) BinaryOperator(IterationVarRefRVal,
7517 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7518 BO_NE, S.Context.BoolTy,
7519 VK_RValue, OK_Ordinary, Loc);
7520
7521 // Create the pre-increment of the iteration variable.
7522 Expr *Increment
7523 = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7524 VK_LValue, OK_Ordinary, Loc);
7525
7526 // Subscript the "from" and "to" expressions with the iteration variable.
7527 From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7528 IterationVarRefRVal,
7529 Loc));
7530 To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7531 IterationVarRefRVal,
7532 Loc));
7533 if (!Copying) // Cast to rvalue
7534 From = CastForMoving(S, From);
7535
7536 // Build the copy/move for an individual element of the array.
7537 StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7538 To, From, CopyingBaseSubobject,
7539 Copying, Depth + 1);
7540 if (Copy.isInvalid())
7541 return StmtError();
7542
7543 // Construct the loop that copies all elements of this array.
7544 return S.ActOnForStmt(Loc, Loc, InitStmt,
7545 S.MakeFullExpr(Comparison),
7546 0, S.MakeFullExpr(Increment),
7547 Loc, Copy.take());
7548 }
7549
7550 std::pair<Sema::ImplicitExceptionSpecification, bool>
ComputeDefaultedCopyAssignmentExceptionSpecAndConst(CXXRecordDecl * ClassDecl)7551 Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7552 CXXRecordDecl *ClassDecl) {
7553 if (ClassDecl->isInvalidDecl())
7554 return std::make_pair(ImplicitExceptionSpecification(*this), false);
7555
7556 // C++ [class.copy]p10:
7557 // If the class definition does not explicitly declare a copy
7558 // assignment operator, one is declared implicitly.
7559 // The implicitly-defined copy assignment operator for a class X
7560 // will have the form
7561 //
7562 // X& X::operator=(const X&)
7563 //
7564 // if
7565 bool HasConstCopyAssignment = true;
7566
7567 // -- each direct base class B of X has a copy assignment operator
7568 // whose parameter is of type const B&, const volatile B& or B,
7569 // and
7570 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7571 BaseEnd = ClassDecl->bases_end();
7572 HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7573 // We'll handle this below
7574 if (LangOpts.CPlusPlus0x && Base->isVirtual())
7575 continue;
7576
7577 assert(!Base->getType()->isDependentType() &&
7578 "Cannot generate implicit members for class with dependent bases.");
7579 CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7580 LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7581 &HasConstCopyAssignment);
7582 }
7583
7584 // In C++11, the above citation has "or virtual" added
7585 if (LangOpts.CPlusPlus0x) {
7586 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7587 BaseEnd = ClassDecl->vbases_end();
7588 HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7589 assert(!Base->getType()->isDependentType() &&
7590 "Cannot generate implicit members for class with dependent bases.");
7591 CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7592 LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7593 &HasConstCopyAssignment);
7594 }
7595 }
7596
7597 // -- for all the nonstatic data members of X that are of a class
7598 // type M (or array thereof), each such class type has a copy
7599 // assignment operator whose parameter is of type const M&,
7600 // const volatile M& or M.
7601 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7602 FieldEnd = ClassDecl->field_end();
7603 HasConstCopyAssignment && Field != FieldEnd;
7604 ++Field) {
7605 QualType FieldType = Context.getBaseElementType((*Field)->getType());
7606 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7607 LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7608 &HasConstCopyAssignment);
7609 }
7610 }
7611
7612 // Otherwise, the implicitly declared copy assignment operator will
7613 // have the form
7614 //
7615 // X& X::operator=(X&)
7616
7617 // C++ [except.spec]p14:
7618 // An implicitly declared special member function (Clause 12) shall have an
7619 // exception-specification. [...]
7620
7621 // It is unspecified whether or not an implicit copy assignment operator
7622 // attempts to deduplicate calls to assignment operators of virtual bases are
7623 // made. As such, this exception specification is effectively unspecified.
7624 // Based on a similar decision made for constness in C++0x, we're erring on
7625 // the side of assuming such calls to be made regardless of whether they
7626 // actually happen.
7627 ImplicitExceptionSpecification ExceptSpec(*this);
7628 unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7629 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7630 BaseEnd = ClassDecl->bases_end();
7631 Base != BaseEnd; ++Base) {
7632 if (Base->isVirtual())
7633 continue;
7634
7635 CXXRecordDecl *BaseClassDecl
7636 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7637 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7638 ArgQuals, false, 0))
7639 ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7640 }
7641
7642 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7643 BaseEnd = ClassDecl->vbases_end();
7644 Base != BaseEnd; ++Base) {
7645 CXXRecordDecl *BaseClassDecl
7646 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7647 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7648 ArgQuals, false, 0))
7649 ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7650 }
7651
7652 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7653 FieldEnd = ClassDecl->field_end();
7654 Field != FieldEnd;
7655 ++Field) {
7656 QualType FieldType = Context.getBaseElementType((*Field)->getType());
7657 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7658 if (CXXMethodDecl *CopyAssign =
7659 LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7660 ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7661 }
7662 }
7663
7664 return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7665 }
7666
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)7667 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7668 // Note: The following rules are largely analoguous to the copy
7669 // constructor rules. Note that virtual bases are not taken into account
7670 // for determining the argument type of the operator. Note also that
7671 // operators taking an object instead of a reference are allowed.
7672
7673 ImplicitExceptionSpecification Spec(*this);
7674 bool Const;
7675 llvm::tie(Spec, Const) =
7676 ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7677
7678 QualType ArgType = Context.getTypeDeclType(ClassDecl);
7679 QualType RetType = Context.getLValueReferenceType(ArgType);
7680 if (Const)
7681 ArgType = ArgType.withConst();
7682 ArgType = Context.getLValueReferenceType(ArgType);
7683
7684 // An implicitly-declared copy assignment operator is an inline public
7685 // member of its class.
7686 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7687 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7688 SourceLocation ClassLoc = ClassDecl->getLocation();
7689 DeclarationNameInfo NameInfo(Name, ClassLoc);
7690 CXXMethodDecl *CopyAssignment
7691 = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7692 Context.getFunctionType(RetType, &ArgType, 1, EPI),
7693 /*TInfo=*/0, /*isStatic=*/false,
7694 /*StorageClassAsWritten=*/SC_None,
7695 /*isInline=*/true, /*isConstexpr=*/false,
7696 SourceLocation());
7697 CopyAssignment->setAccess(AS_public);
7698 CopyAssignment->setDefaulted();
7699 CopyAssignment->setImplicit();
7700 CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7701
7702 // Add the parameter to the operator.
7703 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7704 ClassLoc, ClassLoc, /*Id=*/0,
7705 ArgType, /*TInfo=*/0,
7706 SC_None,
7707 SC_None, 0);
7708 CopyAssignment->setParams(FromParam);
7709
7710 // Note that we have added this copy-assignment operator.
7711 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7712
7713 if (Scope *S = getScopeForContext(ClassDecl))
7714 PushOnScopeChains(CopyAssignment, S, false);
7715 ClassDecl->addDecl(CopyAssignment);
7716
7717 // C++0x [class.copy]p19:
7718 // .... If the class definition does not explicitly declare a copy
7719 // assignment operator, there is no user-declared move constructor, and
7720 // there is no user-declared move assignment operator, a copy assignment
7721 // operator is implicitly declared as defaulted.
7722 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7723 CopyAssignment->setDeletedAsWritten();
7724
7725 AddOverriddenMethods(ClassDecl, CopyAssignment);
7726 return CopyAssignment;
7727 }
7728
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)7729 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7730 CXXMethodDecl *CopyAssignOperator) {
7731 assert((CopyAssignOperator->isDefaulted() &&
7732 CopyAssignOperator->isOverloadedOperator() &&
7733 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7734 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7735 !CopyAssignOperator->isDeleted()) &&
7736 "DefineImplicitCopyAssignment called for wrong function");
7737
7738 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7739
7740 if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7741 CopyAssignOperator->setInvalidDecl();
7742 return;
7743 }
7744
7745 CopyAssignOperator->setUsed();
7746
7747 ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7748 DiagnosticErrorTrap Trap(Diags);
7749
7750 // C++0x [class.copy]p30:
7751 // The implicitly-defined or explicitly-defaulted copy assignment operator
7752 // for a non-union class X performs memberwise copy assignment of its
7753 // subobjects. The direct base classes of X are assigned first, in the
7754 // order of their declaration in the base-specifier-list, and then the
7755 // immediate non-static data members of X are assigned, in the order in
7756 // which they were declared in the class definition.
7757
7758 // The statements that form the synthesized function body.
7759 ASTOwningVector<Stmt*> Statements(*this);
7760
7761 // The parameter for the "other" object, which we are copying from.
7762 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7763 Qualifiers OtherQuals = Other->getType().getQualifiers();
7764 QualType OtherRefType = Other->getType();
7765 if (const LValueReferenceType *OtherRef
7766 = OtherRefType->getAs<LValueReferenceType>()) {
7767 OtherRefType = OtherRef->getPointeeType();
7768 OtherQuals = OtherRefType.getQualifiers();
7769 }
7770
7771 // Our location for everything implicitly-generated.
7772 SourceLocation Loc = CopyAssignOperator->getLocation();
7773
7774 // Construct a reference to the "other" object. We'll be using this
7775 // throughout the generated ASTs.
7776 Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7777 assert(OtherRef && "Reference to parameter cannot fail!");
7778
7779 // Construct the "this" pointer. We'll be using this throughout the generated
7780 // ASTs.
7781 Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7782 assert(This && "Reference to this cannot fail!");
7783
7784 // Assign base classes.
7785 bool Invalid = false;
7786 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7787 E = ClassDecl->bases_end(); Base != E; ++Base) {
7788 // Form the assignment:
7789 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7790 QualType BaseType = Base->getType().getUnqualifiedType();
7791 if (!BaseType->isRecordType()) {
7792 Invalid = true;
7793 continue;
7794 }
7795
7796 CXXCastPath BasePath;
7797 BasePath.push_back(Base);
7798
7799 // Construct the "from" expression, which is an implicit cast to the
7800 // appropriately-qualified base type.
7801 Expr *From = OtherRef;
7802 From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7803 CK_UncheckedDerivedToBase,
7804 VK_LValue, &BasePath).take();
7805
7806 // Dereference "this".
7807 ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7808
7809 // Implicitly cast "this" to the appropriately-qualified base type.
7810 To = ImpCastExprToType(To.take(),
7811 Context.getCVRQualifiedType(BaseType,
7812 CopyAssignOperator->getTypeQualifiers()),
7813 CK_UncheckedDerivedToBase,
7814 VK_LValue, &BasePath);
7815
7816 // Build the copy.
7817 StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7818 To.get(), From,
7819 /*CopyingBaseSubobject=*/true,
7820 /*Copying=*/true);
7821 if (Copy.isInvalid()) {
7822 Diag(CurrentLocation, diag::note_member_synthesized_at)
7823 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7824 CopyAssignOperator->setInvalidDecl();
7825 return;
7826 }
7827
7828 // Success! Record the copy.
7829 Statements.push_back(Copy.takeAs<Expr>());
7830 }
7831
7832 // \brief Reference to the __builtin_memcpy function.
7833 Expr *BuiltinMemCpyRef = 0;
7834 // \brief Reference to the __builtin_objc_memmove_collectable function.
7835 Expr *CollectableMemCpyRef = 0;
7836
7837 // Assign non-static members.
7838 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7839 FieldEnd = ClassDecl->field_end();
7840 Field != FieldEnd; ++Field) {
7841 if (Field->isUnnamedBitfield())
7842 continue;
7843
7844 // Check for members of reference type; we can't copy those.
7845 if (Field->getType()->isReferenceType()) {
7846 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7847 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7848 Diag(Field->getLocation(), diag::note_declared_at);
7849 Diag(CurrentLocation, diag::note_member_synthesized_at)
7850 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7851 Invalid = true;
7852 continue;
7853 }
7854
7855 // Check for members of const-qualified, non-class type.
7856 QualType BaseType = Context.getBaseElementType(Field->getType());
7857 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7858 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7859 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7860 Diag(Field->getLocation(), diag::note_declared_at);
7861 Diag(CurrentLocation, diag::note_member_synthesized_at)
7862 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7863 Invalid = true;
7864 continue;
7865 }
7866
7867 // Suppress assigning zero-width bitfields.
7868 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7869 continue;
7870
7871 QualType FieldType = Field->getType().getNonReferenceType();
7872 if (FieldType->isIncompleteArrayType()) {
7873 assert(ClassDecl->hasFlexibleArrayMember() &&
7874 "Incomplete array type is not valid");
7875 continue;
7876 }
7877
7878 // Build references to the field in the object we're copying from and to.
7879 CXXScopeSpec SS; // Intentionally empty
7880 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7881 LookupMemberName);
7882 MemberLookup.addDecl(*Field);
7883 MemberLookup.resolveKind();
7884 ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7885 Loc, /*IsArrow=*/false,
7886 SS, SourceLocation(), 0,
7887 MemberLookup, 0);
7888 ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7889 Loc, /*IsArrow=*/true,
7890 SS, SourceLocation(), 0,
7891 MemberLookup, 0);
7892 assert(!From.isInvalid() && "Implicit field reference cannot fail");
7893 assert(!To.isInvalid() && "Implicit field reference cannot fail");
7894
7895 // If the field should be copied with __builtin_memcpy rather than via
7896 // explicit assignments, do so. This optimization only applies for arrays
7897 // of scalars and arrays of class type with trivial copy-assignment
7898 // operators.
7899 if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7900 && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7901 // Compute the size of the memory buffer to be copied.
7902 QualType SizeType = Context.getSizeType();
7903 llvm::APInt Size(Context.getTypeSize(SizeType),
7904 Context.getTypeSizeInChars(BaseType).getQuantity());
7905 for (const ConstantArrayType *Array
7906 = Context.getAsConstantArrayType(FieldType);
7907 Array;
7908 Array = Context.getAsConstantArrayType(Array->getElementType())) {
7909 llvm::APInt ArraySize
7910 = Array->getSize().zextOrTrunc(Size.getBitWidth());
7911 Size *= ArraySize;
7912 }
7913
7914 // Take the address of the field references for "from" and "to".
7915 From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7916 To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7917
7918 bool NeedsCollectableMemCpy =
7919 (BaseType->isRecordType() &&
7920 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7921
7922 if (NeedsCollectableMemCpy) {
7923 if (!CollectableMemCpyRef) {
7924 // Create a reference to the __builtin_objc_memmove_collectable function.
7925 LookupResult R(*this,
7926 &Context.Idents.get("__builtin_objc_memmove_collectable"),
7927 Loc, LookupOrdinaryName);
7928 LookupName(R, TUScope, true);
7929
7930 FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7931 if (!CollectableMemCpy) {
7932 // Something went horribly wrong earlier, and we will have
7933 // complained about it.
7934 Invalid = true;
7935 continue;
7936 }
7937
7938 CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7939 CollectableMemCpy->getType(),
7940 VK_LValue, Loc, 0).take();
7941 assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7942 }
7943 }
7944 // Create a reference to the __builtin_memcpy builtin function.
7945 else if (!BuiltinMemCpyRef) {
7946 LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7947 LookupOrdinaryName);
7948 LookupName(R, TUScope, true);
7949
7950 FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7951 if (!BuiltinMemCpy) {
7952 // Something went horribly wrong earlier, and we will have complained
7953 // about it.
7954 Invalid = true;
7955 continue;
7956 }
7957
7958 BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7959 BuiltinMemCpy->getType(),
7960 VK_LValue, Loc, 0).take();
7961 assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7962 }
7963
7964 ASTOwningVector<Expr*> CallArgs(*this);
7965 CallArgs.push_back(To.takeAs<Expr>());
7966 CallArgs.push_back(From.takeAs<Expr>());
7967 CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7968 ExprResult Call = ExprError();
7969 if (NeedsCollectableMemCpy)
7970 Call = ActOnCallExpr(/*Scope=*/0,
7971 CollectableMemCpyRef,
7972 Loc, move_arg(CallArgs),
7973 Loc);
7974 else
7975 Call = ActOnCallExpr(/*Scope=*/0,
7976 BuiltinMemCpyRef,
7977 Loc, move_arg(CallArgs),
7978 Loc);
7979
7980 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7981 Statements.push_back(Call.takeAs<Expr>());
7982 continue;
7983 }
7984
7985 // Build the copy of this field.
7986 StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7987 To.get(), From.get(),
7988 /*CopyingBaseSubobject=*/false,
7989 /*Copying=*/true);
7990 if (Copy.isInvalid()) {
7991 Diag(CurrentLocation, diag::note_member_synthesized_at)
7992 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7993 CopyAssignOperator->setInvalidDecl();
7994 return;
7995 }
7996
7997 // Success! Record the copy.
7998 Statements.push_back(Copy.takeAs<Stmt>());
7999 }
8000
8001 if (!Invalid) {
8002 // Add a "return *this;"
8003 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8004
8005 StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8006 if (Return.isInvalid())
8007 Invalid = true;
8008 else {
8009 Statements.push_back(Return.takeAs<Stmt>());
8010
8011 if (Trap.hasErrorOccurred()) {
8012 Diag(CurrentLocation, diag::note_member_synthesized_at)
8013 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8014 Invalid = true;
8015 }
8016 }
8017 }
8018
8019 if (Invalid) {
8020 CopyAssignOperator->setInvalidDecl();
8021 return;
8022 }
8023
8024 StmtResult Body;
8025 {
8026 CompoundScopeRAII CompoundScope(*this);
8027 Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8028 /*isStmtExpr=*/false);
8029 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8030 }
8031 CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8032
8033 if (ASTMutationListener *L = getASTMutationListener()) {
8034 L->CompletedImplicitDefinition(CopyAssignOperator);
8035 }
8036 }
8037
8038 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl * ClassDecl)8039 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8040 ImplicitExceptionSpecification ExceptSpec(*this);
8041
8042 if (ClassDecl->isInvalidDecl())
8043 return ExceptSpec;
8044
8045 // C++0x [except.spec]p14:
8046 // An implicitly declared special member function (Clause 12) shall have an
8047 // exception-specification. [...]
8048
8049 // It is unspecified whether or not an implicit move assignment operator
8050 // attempts to deduplicate calls to assignment operators of virtual bases are
8051 // made. As such, this exception specification is effectively unspecified.
8052 // Based on a similar decision made for constness in C++0x, we're erring on
8053 // the side of assuming such calls to be made regardless of whether they
8054 // actually happen.
8055 // Note that a move constructor is not implicitly declared when there are
8056 // virtual bases, but it can still be user-declared and explicitly defaulted.
8057 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8058 BaseEnd = ClassDecl->bases_end();
8059 Base != BaseEnd; ++Base) {
8060 if (Base->isVirtual())
8061 continue;
8062
8063 CXXRecordDecl *BaseClassDecl
8064 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8065 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8066 false, 0))
8067 ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8068 }
8069
8070 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8071 BaseEnd = ClassDecl->vbases_end();
8072 Base != BaseEnd; ++Base) {
8073 CXXRecordDecl *BaseClassDecl
8074 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8075 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8076 false, 0))
8077 ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8078 }
8079
8080 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8081 FieldEnd = ClassDecl->field_end();
8082 Field != FieldEnd;
8083 ++Field) {
8084 QualType FieldType = Context.getBaseElementType((*Field)->getType());
8085 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8086 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8087 false, 0))
8088 ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8089 }
8090 }
8091
8092 return ExceptSpec;
8093 }
8094
8095 /// Determine whether the class type has any direct or indirect virtual base
8096 /// classes which have a non-trivial move assignment operator.
8097 static bool
hasVirtualBaseWithNonTrivialMoveAssignment(Sema & S,CXXRecordDecl * ClassDecl)8098 hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8099 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8100 BaseEnd = ClassDecl->vbases_end();
8101 Base != BaseEnd; ++Base) {
8102 CXXRecordDecl *BaseClass =
8103 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8104
8105 // Try to declare the move assignment. If it would be deleted, then the
8106 // class does not have a non-trivial move assignment.
8107 if (BaseClass->needsImplicitMoveAssignment())
8108 S.DeclareImplicitMoveAssignment(BaseClass);
8109
8110 // If the class has both a trivial move assignment and a non-trivial move
8111 // assignment, hasTrivialMoveAssignment() is false.
8112 if (BaseClass->hasDeclaredMoveAssignment() &&
8113 !BaseClass->hasTrivialMoveAssignment())
8114 return true;
8115 }
8116
8117 return false;
8118 }
8119
8120 /// Determine whether the given type either has a move constructor or is
8121 /// trivially copyable.
8122 static bool
hasMoveOrIsTriviallyCopyable(Sema & S,QualType Type,bool IsConstructor)8123 hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8124 Type = S.Context.getBaseElementType(Type);
8125
8126 // FIXME: Technically, non-trivially-copyable non-class types, such as
8127 // reference types, are supposed to return false here, but that appears
8128 // to be a standard defect.
8129 CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8130 if (!ClassDecl)
8131 return true;
8132
8133 if (Type.isTriviallyCopyableType(S.Context))
8134 return true;
8135
8136 if (IsConstructor) {
8137 if (ClassDecl->needsImplicitMoveConstructor())
8138 S.DeclareImplicitMoveConstructor(ClassDecl);
8139 return ClassDecl->hasDeclaredMoveConstructor();
8140 }
8141
8142 if (ClassDecl->needsImplicitMoveAssignment())
8143 S.DeclareImplicitMoveAssignment(ClassDecl);
8144 return ClassDecl->hasDeclaredMoveAssignment();
8145 }
8146
8147 /// Determine whether all non-static data members and direct or virtual bases
8148 /// of class \p ClassDecl have either a move operation, or are trivially
8149 /// copyable.
subobjectsHaveMoveOrTrivialCopy(Sema & S,CXXRecordDecl * ClassDecl,bool IsConstructor)8150 static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8151 bool IsConstructor) {
8152 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8153 BaseEnd = ClassDecl->bases_end();
8154 Base != BaseEnd; ++Base) {
8155 if (Base->isVirtual())
8156 continue;
8157
8158 if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8159 return false;
8160 }
8161
8162 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8163 BaseEnd = ClassDecl->vbases_end();
8164 Base != BaseEnd; ++Base) {
8165 if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8166 return false;
8167 }
8168
8169 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8170 FieldEnd = ClassDecl->field_end();
8171 Field != FieldEnd; ++Field) {
8172 if (!hasMoveOrIsTriviallyCopyable(S, (*Field)->getType(), IsConstructor))
8173 return false;
8174 }
8175
8176 return true;
8177 }
8178
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)8179 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8180 // C++11 [class.copy]p20:
8181 // If the definition of a class X does not explicitly declare a move
8182 // assignment operator, one will be implicitly declared as defaulted
8183 // if and only if:
8184 //
8185 // - [first 4 bullets]
8186 assert(ClassDecl->needsImplicitMoveAssignment());
8187
8188 // [Checked after we build the declaration]
8189 // - the move assignment operator would not be implicitly defined as
8190 // deleted,
8191
8192 // [DR1402]:
8193 // - X has no direct or indirect virtual base class with a non-trivial
8194 // move assignment operator, and
8195 // - each of X's non-static data members and direct or virtual base classes
8196 // has a type that either has a move assignment operator or is trivially
8197 // copyable.
8198 if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8199 !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8200 ClassDecl->setFailedImplicitMoveAssignment();
8201 return 0;
8202 }
8203
8204 // Note: The following rules are largely analoguous to the move
8205 // constructor rules.
8206
8207 ImplicitExceptionSpecification Spec(
8208 ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8209
8210 QualType ArgType = Context.getTypeDeclType(ClassDecl);
8211 QualType RetType = Context.getLValueReferenceType(ArgType);
8212 ArgType = Context.getRValueReferenceType(ArgType);
8213
8214 // An implicitly-declared move assignment operator is an inline public
8215 // member of its class.
8216 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8217 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8218 SourceLocation ClassLoc = ClassDecl->getLocation();
8219 DeclarationNameInfo NameInfo(Name, ClassLoc);
8220 CXXMethodDecl *MoveAssignment
8221 = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8222 Context.getFunctionType(RetType, &ArgType, 1, EPI),
8223 /*TInfo=*/0, /*isStatic=*/false,
8224 /*StorageClassAsWritten=*/SC_None,
8225 /*isInline=*/true,
8226 /*isConstexpr=*/false,
8227 SourceLocation());
8228 MoveAssignment->setAccess(AS_public);
8229 MoveAssignment->setDefaulted();
8230 MoveAssignment->setImplicit();
8231 MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8232
8233 // Add the parameter to the operator.
8234 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8235 ClassLoc, ClassLoc, /*Id=*/0,
8236 ArgType, /*TInfo=*/0,
8237 SC_None,
8238 SC_None, 0);
8239 MoveAssignment->setParams(FromParam);
8240
8241 // Note that we have added this copy-assignment operator.
8242 ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8243
8244 // C++0x [class.copy]p9:
8245 // If the definition of a class X does not explicitly declare a move
8246 // assignment operator, one will be implicitly declared as defaulted if and
8247 // only if:
8248 // [...]
8249 // - the move assignment operator would not be implicitly defined as
8250 // deleted.
8251 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8252 // Cache this result so that we don't try to generate this over and over
8253 // on every lookup, leaking memory and wasting time.
8254 ClassDecl->setFailedImplicitMoveAssignment();
8255 return 0;
8256 }
8257
8258 if (Scope *S = getScopeForContext(ClassDecl))
8259 PushOnScopeChains(MoveAssignment, S, false);
8260 ClassDecl->addDecl(MoveAssignment);
8261
8262 AddOverriddenMethods(ClassDecl, MoveAssignment);
8263 return MoveAssignment;
8264 }
8265
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)8266 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8267 CXXMethodDecl *MoveAssignOperator) {
8268 assert((MoveAssignOperator->isDefaulted() &&
8269 MoveAssignOperator->isOverloadedOperator() &&
8270 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8271 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8272 !MoveAssignOperator->isDeleted()) &&
8273 "DefineImplicitMoveAssignment called for wrong function");
8274
8275 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8276
8277 if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8278 MoveAssignOperator->setInvalidDecl();
8279 return;
8280 }
8281
8282 MoveAssignOperator->setUsed();
8283
8284 ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8285 DiagnosticErrorTrap Trap(Diags);
8286
8287 // C++0x [class.copy]p28:
8288 // The implicitly-defined or move assignment operator for a non-union class
8289 // X performs memberwise move assignment of its subobjects. The direct base
8290 // classes of X are assigned first, in the order of their declaration in the
8291 // base-specifier-list, and then the immediate non-static data members of X
8292 // are assigned, in the order in which they were declared in the class
8293 // definition.
8294
8295 // The statements that form the synthesized function body.
8296 ASTOwningVector<Stmt*> Statements(*this);
8297
8298 // The parameter for the "other" object, which we are move from.
8299 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8300 QualType OtherRefType = Other->getType()->
8301 getAs<RValueReferenceType>()->getPointeeType();
8302 assert(OtherRefType.getQualifiers() == 0 &&
8303 "Bad argument type of defaulted move assignment");
8304
8305 // Our location for everything implicitly-generated.
8306 SourceLocation Loc = MoveAssignOperator->getLocation();
8307
8308 // Construct a reference to the "other" object. We'll be using this
8309 // throughout the generated ASTs.
8310 Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8311 assert(OtherRef && "Reference to parameter cannot fail!");
8312 // Cast to rvalue.
8313 OtherRef = CastForMoving(*this, OtherRef);
8314
8315 // Construct the "this" pointer. We'll be using this throughout the generated
8316 // ASTs.
8317 Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8318 assert(This && "Reference to this cannot fail!");
8319
8320 // Assign base classes.
8321 bool Invalid = false;
8322 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8323 E = ClassDecl->bases_end(); Base != E; ++Base) {
8324 // Form the assignment:
8325 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8326 QualType BaseType = Base->getType().getUnqualifiedType();
8327 if (!BaseType->isRecordType()) {
8328 Invalid = true;
8329 continue;
8330 }
8331
8332 CXXCastPath BasePath;
8333 BasePath.push_back(Base);
8334
8335 // Construct the "from" expression, which is an implicit cast to the
8336 // appropriately-qualified base type.
8337 Expr *From = OtherRef;
8338 From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8339 VK_XValue, &BasePath).take();
8340
8341 // Dereference "this".
8342 ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8343
8344 // Implicitly cast "this" to the appropriately-qualified base type.
8345 To = ImpCastExprToType(To.take(),
8346 Context.getCVRQualifiedType(BaseType,
8347 MoveAssignOperator->getTypeQualifiers()),
8348 CK_UncheckedDerivedToBase,
8349 VK_LValue, &BasePath);
8350
8351 // Build the move.
8352 StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8353 To.get(), From,
8354 /*CopyingBaseSubobject=*/true,
8355 /*Copying=*/false);
8356 if (Move.isInvalid()) {
8357 Diag(CurrentLocation, diag::note_member_synthesized_at)
8358 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8359 MoveAssignOperator->setInvalidDecl();
8360 return;
8361 }
8362
8363 // Success! Record the move.
8364 Statements.push_back(Move.takeAs<Expr>());
8365 }
8366
8367 // \brief Reference to the __builtin_memcpy function.
8368 Expr *BuiltinMemCpyRef = 0;
8369 // \brief Reference to the __builtin_objc_memmove_collectable function.
8370 Expr *CollectableMemCpyRef = 0;
8371
8372 // Assign non-static members.
8373 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8374 FieldEnd = ClassDecl->field_end();
8375 Field != FieldEnd; ++Field) {
8376 if (Field->isUnnamedBitfield())
8377 continue;
8378
8379 // Check for members of reference type; we can't move those.
8380 if (Field->getType()->isReferenceType()) {
8381 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8382 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8383 Diag(Field->getLocation(), diag::note_declared_at);
8384 Diag(CurrentLocation, diag::note_member_synthesized_at)
8385 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8386 Invalid = true;
8387 continue;
8388 }
8389
8390 // Check for members of const-qualified, non-class type.
8391 QualType BaseType = Context.getBaseElementType(Field->getType());
8392 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8393 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8394 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8395 Diag(Field->getLocation(), diag::note_declared_at);
8396 Diag(CurrentLocation, diag::note_member_synthesized_at)
8397 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8398 Invalid = true;
8399 continue;
8400 }
8401
8402 // Suppress assigning zero-width bitfields.
8403 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8404 continue;
8405
8406 QualType FieldType = Field->getType().getNonReferenceType();
8407 if (FieldType->isIncompleteArrayType()) {
8408 assert(ClassDecl->hasFlexibleArrayMember() &&
8409 "Incomplete array type is not valid");
8410 continue;
8411 }
8412
8413 // Build references to the field in the object we're copying from and to.
8414 CXXScopeSpec SS; // Intentionally empty
8415 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8416 LookupMemberName);
8417 MemberLookup.addDecl(*Field);
8418 MemberLookup.resolveKind();
8419 ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8420 Loc, /*IsArrow=*/false,
8421 SS, SourceLocation(), 0,
8422 MemberLookup, 0);
8423 ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8424 Loc, /*IsArrow=*/true,
8425 SS, SourceLocation(), 0,
8426 MemberLookup, 0);
8427 assert(!From.isInvalid() && "Implicit field reference cannot fail");
8428 assert(!To.isInvalid() && "Implicit field reference cannot fail");
8429
8430 assert(!From.get()->isLValue() && // could be xvalue or prvalue
8431 "Member reference with rvalue base must be rvalue except for reference "
8432 "members, which aren't allowed for move assignment.");
8433
8434 // If the field should be copied with __builtin_memcpy rather than via
8435 // explicit assignments, do so. This optimization only applies for arrays
8436 // of scalars and arrays of class type with trivial move-assignment
8437 // operators.
8438 if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8439 && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8440 // Compute the size of the memory buffer to be copied.
8441 QualType SizeType = Context.getSizeType();
8442 llvm::APInt Size(Context.getTypeSize(SizeType),
8443 Context.getTypeSizeInChars(BaseType).getQuantity());
8444 for (const ConstantArrayType *Array
8445 = Context.getAsConstantArrayType(FieldType);
8446 Array;
8447 Array = Context.getAsConstantArrayType(Array->getElementType())) {
8448 llvm::APInt ArraySize
8449 = Array->getSize().zextOrTrunc(Size.getBitWidth());
8450 Size *= ArraySize;
8451 }
8452
8453 // Take the address of the field references for "from" and "to". We
8454 // directly construct UnaryOperators here because semantic analysis
8455 // does not permit us to take the address of an xvalue.
8456 From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8457 Context.getPointerType(From.get()->getType()),
8458 VK_RValue, OK_Ordinary, Loc);
8459 To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8460 Context.getPointerType(To.get()->getType()),
8461 VK_RValue, OK_Ordinary, Loc);
8462
8463 bool NeedsCollectableMemCpy =
8464 (BaseType->isRecordType() &&
8465 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8466
8467 if (NeedsCollectableMemCpy) {
8468 if (!CollectableMemCpyRef) {
8469 // Create a reference to the __builtin_objc_memmove_collectable function.
8470 LookupResult R(*this,
8471 &Context.Idents.get("__builtin_objc_memmove_collectable"),
8472 Loc, LookupOrdinaryName);
8473 LookupName(R, TUScope, true);
8474
8475 FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8476 if (!CollectableMemCpy) {
8477 // Something went horribly wrong earlier, and we will have
8478 // complained about it.
8479 Invalid = true;
8480 continue;
8481 }
8482
8483 CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8484 CollectableMemCpy->getType(),
8485 VK_LValue, Loc, 0).take();
8486 assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8487 }
8488 }
8489 // Create a reference to the __builtin_memcpy builtin function.
8490 else if (!BuiltinMemCpyRef) {
8491 LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8492 LookupOrdinaryName);
8493 LookupName(R, TUScope, true);
8494
8495 FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8496 if (!BuiltinMemCpy) {
8497 // Something went horribly wrong earlier, and we will have complained
8498 // about it.
8499 Invalid = true;
8500 continue;
8501 }
8502
8503 BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8504 BuiltinMemCpy->getType(),
8505 VK_LValue, Loc, 0).take();
8506 assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8507 }
8508
8509 ASTOwningVector<Expr*> CallArgs(*this);
8510 CallArgs.push_back(To.takeAs<Expr>());
8511 CallArgs.push_back(From.takeAs<Expr>());
8512 CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8513 ExprResult Call = ExprError();
8514 if (NeedsCollectableMemCpy)
8515 Call = ActOnCallExpr(/*Scope=*/0,
8516 CollectableMemCpyRef,
8517 Loc, move_arg(CallArgs),
8518 Loc);
8519 else
8520 Call = ActOnCallExpr(/*Scope=*/0,
8521 BuiltinMemCpyRef,
8522 Loc, move_arg(CallArgs),
8523 Loc);
8524
8525 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8526 Statements.push_back(Call.takeAs<Expr>());
8527 continue;
8528 }
8529
8530 // Build the move of this field.
8531 StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8532 To.get(), From.get(),
8533 /*CopyingBaseSubobject=*/false,
8534 /*Copying=*/false);
8535 if (Move.isInvalid()) {
8536 Diag(CurrentLocation, diag::note_member_synthesized_at)
8537 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8538 MoveAssignOperator->setInvalidDecl();
8539 return;
8540 }
8541
8542 // Success! Record the copy.
8543 Statements.push_back(Move.takeAs<Stmt>());
8544 }
8545
8546 if (!Invalid) {
8547 // Add a "return *this;"
8548 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8549
8550 StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8551 if (Return.isInvalid())
8552 Invalid = true;
8553 else {
8554 Statements.push_back(Return.takeAs<Stmt>());
8555
8556 if (Trap.hasErrorOccurred()) {
8557 Diag(CurrentLocation, diag::note_member_synthesized_at)
8558 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8559 Invalid = true;
8560 }
8561 }
8562 }
8563
8564 if (Invalid) {
8565 MoveAssignOperator->setInvalidDecl();
8566 return;
8567 }
8568
8569 StmtResult Body;
8570 {
8571 CompoundScopeRAII CompoundScope(*this);
8572 Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8573 /*isStmtExpr=*/false);
8574 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8575 }
8576 MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8577
8578 if (ASTMutationListener *L = getASTMutationListener()) {
8579 L->CompletedImplicitDefinition(MoveAssignOperator);
8580 }
8581 }
8582
8583 std::pair<Sema::ImplicitExceptionSpecification, bool>
ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl * ClassDecl)8584 Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8585 if (ClassDecl->isInvalidDecl())
8586 return std::make_pair(ImplicitExceptionSpecification(*this), false);
8587
8588 // C++ [class.copy]p5:
8589 // The implicitly-declared copy constructor for a class X will
8590 // have the form
8591 //
8592 // X::X(const X&)
8593 //
8594 // if
8595 // FIXME: It ought to be possible to store this on the record.
8596 bool HasConstCopyConstructor = true;
8597
8598 // -- each direct or virtual base class B of X has a copy
8599 // constructor whose first parameter is of type const B& or
8600 // const volatile B&, and
8601 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8602 BaseEnd = ClassDecl->bases_end();
8603 HasConstCopyConstructor && Base != BaseEnd;
8604 ++Base) {
8605 // Virtual bases are handled below.
8606 if (Base->isVirtual())
8607 continue;
8608
8609 CXXRecordDecl *BaseClassDecl
8610 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8611 LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8612 &HasConstCopyConstructor);
8613 }
8614
8615 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8616 BaseEnd = ClassDecl->vbases_end();
8617 HasConstCopyConstructor && Base != BaseEnd;
8618 ++Base) {
8619 CXXRecordDecl *BaseClassDecl
8620 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8621 LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8622 &HasConstCopyConstructor);
8623 }
8624
8625 // -- for all the nonstatic data members of X that are of a
8626 // class type M (or array thereof), each such class type
8627 // has a copy constructor whose first parameter is of type
8628 // const M& or const volatile M&.
8629 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8630 FieldEnd = ClassDecl->field_end();
8631 HasConstCopyConstructor && Field != FieldEnd;
8632 ++Field) {
8633 QualType FieldType = Context.getBaseElementType((*Field)->getType());
8634 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8635 LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8636 &HasConstCopyConstructor);
8637 }
8638 }
8639 // Otherwise, the implicitly declared copy constructor will have
8640 // the form
8641 //
8642 // X::X(X&)
8643
8644 // C++ [except.spec]p14:
8645 // An implicitly declared special member function (Clause 12) shall have an
8646 // exception-specification. [...]
8647 ImplicitExceptionSpecification ExceptSpec(*this);
8648 unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8649 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8650 BaseEnd = ClassDecl->bases_end();
8651 Base != BaseEnd;
8652 ++Base) {
8653 // Virtual bases are handled below.
8654 if (Base->isVirtual())
8655 continue;
8656
8657 CXXRecordDecl *BaseClassDecl
8658 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8659 if (CXXConstructorDecl *CopyConstructor =
8660 LookupCopyingConstructor(BaseClassDecl, Quals))
8661 ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8662 }
8663 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8664 BaseEnd = ClassDecl->vbases_end();
8665 Base != BaseEnd;
8666 ++Base) {
8667 CXXRecordDecl *BaseClassDecl
8668 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8669 if (CXXConstructorDecl *CopyConstructor =
8670 LookupCopyingConstructor(BaseClassDecl, Quals))
8671 ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8672 }
8673 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8674 FieldEnd = ClassDecl->field_end();
8675 Field != FieldEnd;
8676 ++Field) {
8677 QualType FieldType = Context.getBaseElementType((*Field)->getType());
8678 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8679 if (CXXConstructorDecl *CopyConstructor =
8680 LookupCopyingConstructor(FieldClassDecl, Quals))
8681 ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8682 }
8683 }
8684
8685 return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8686 }
8687
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)8688 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8689 CXXRecordDecl *ClassDecl) {
8690 // C++ [class.copy]p4:
8691 // If the class definition does not explicitly declare a copy
8692 // constructor, one is declared implicitly.
8693
8694 ImplicitExceptionSpecification Spec(*this);
8695 bool Const;
8696 llvm::tie(Spec, Const) =
8697 ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8698
8699 QualType ClassType = Context.getTypeDeclType(ClassDecl);
8700 QualType ArgType = ClassType;
8701 if (Const)
8702 ArgType = ArgType.withConst();
8703 ArgType = Context.getLValueReferenceType(ArgType);
8704
8705 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8706
8707 DeclarationName Name
8708 = Context.DeclarationNames.getCXXConstructorName(
8709 Context.getCanonicalType(ClassType));
8710 SourceLocation ClassLoc = ClassDecl->getLocation();
8711 DeclarationNameInfo NameInfo(Name, ClassLoc);
8712
8713 // An implicitly-declared copy constructor is an inline public
8714 // member of its class.
8715 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8716 Context, ClassDecl, ClassLoc, NameInfo,
8717 Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8718 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8719 /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8720 getLangOpts().CPlusPlus0x);
8721 CopyConstructor->setAccess(AS_public);
8722 CopyConstructor->setDefaulted();
8723 CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8724
8725 // Note that we have declared this constructor.
8726 ++ASTContext::NumImplicitCopyConstructorsDeclared;
8727
8728 // Add the parameter to the constructor.
8729 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8730 ClassLoc, ClassLoc,
8731 /*IdentifierInfo=*/0,
8732 ArgType, /*TInfo=*/0,
8733 SC_None,
8734 SC_None, 0);
8735 CopyConstructor->setParams(FromParam);
8736
8737 if (Scope *S = getScopeForContext(ClassDecl))
8738 PushOnScopeChains(CopyConstructor, S, false);
8739 ClassDecl->addDecl(CopyConstructor);
8740
8741 // C++11 [class.copy]p8:
8742 // ... If the class definition does not explicitly declare a copy
8743 // constructor, there is no user-declared move constructor, and there is no
8744 // user-declared move assignment operator, a copy constructor is implicitly
8745 // declared as defaulted.
8746 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8747 CopyConstructor->setDeletedAsWritten();
8748
8749 return CopyConstructor;
8750 }
8751
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)8752 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8753 CXXConstructorDecl *CopyConstructor) {
8754 assert((CopyConstructor->isDefaulted() &&
8755 CopyConstructor->isCopyConstructor() &&
8756 !CopyConstructor->doesThisDeclarationHaveABody() &&
8757 !CopyConstructor->isDeleted()) &&
8758 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8759
8760 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8761 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8762
8763 ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8764 DiagnosticErrorTrap Trap(Diags);
8765
8766 if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8767 Trap.hasErrorOccurred()) {
8768 Diag(CurrentLocation, diag::note_member_synthesized_at)
8769 << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8770 CopyConstructor->setInvalidDecl();
8771 } else {
8772 Sema::CompoundScopeRAII CompoundScope(*this);
8773 CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8774 CopyConstructor->getLocation(),
8775 MultiStmtArg(*this, 0, 0),
8776 /*isStmtExpr=*/false)
8777 .takeAs<Stmt>());
8778 CopyConstructor->setImplicitlyDefined(true);
8779 }
8780
8781 CopyConstructor->setUsed();
8782 if (ASTMutationListener *L = getASTMutationListener()) {
8783 L->CompletedImplicitDefinition(CopyConstructor);
8784 }
8785 }
8786
8787 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl * ClassDecl)8788 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8789 // C++ [except.spec]p14:
8790 // An implicitly declared special member function (Clause 12) shall have an
8791 // exception-specification. [...]
8792 ImplicitExceptionSpecification ExceptSpec(*this);
8793 if (ClassDecl->isInvalidDecl())
8794 return ExceptSpec;
8795
8796 // Direct base-class constructors.
8797 for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8798 BEnd = ClassDecl->bases_end();
8799 B != BEnd; ++B) {
8800 if (B->isVirtual()) // Handled below.
8801 continue;
8802
8803 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8804 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8805 CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8806 // If this is a deleted function, add it anyway. This might be conformant
8807 // with the standard. This might not. I'm not sure. It might not matter.
8808 if (Constructor)
8809 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8810 }
8811 }
8812
8813 // Virtual base-class constructors.
8814 for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8815 BEnd = ClassDecl->vbases_end();
8816 B != BEnd; ++B) {
8817 if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8818 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8819 CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8820 // If this is a deleted function, add it anyway. This might be conformant
8821 // with the standard. This might not. I'm not sure. It might not matter.
8822 if (Constructor)
8823 ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8824 }
8825 }
8826
8827 // Field constructors.
8828 for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8829 FEnd = ClassDecl->field_end();
8830 F != FEnd; ++F) {
8831 if (const RecordType *RecordTy
8832 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8833 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8834 CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8835 // If this is a deleted function, add it anyway. This might be conformant
8836 // with the standard. This might not. I'm not sure. It might not matter.
8837 // In particular, the problem is that this function never gets called. It
8838 // might just be ill-formed because this function attempts to refer to
8839 // a deleted function here.
8840 if (Constructor)
8841 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8842 }
8843 }
8844
8845 return ExceptSpec;
8846 }
8847
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)8848 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8849 CXXRecordDecl *ClassDecl) {
8850 // C++11 [class.copy]p9:
8851 // If the definition of a class X does not explicitly declare a move
8852 // constructor, one will be implicitly declared as defaulted if and only if:
8853 //
8854 // - [first 4 bullets]
8855 assert(ClassDecl->needsImplicitMoveConstructor());
8856
8857 // [Checked after we build the declaration]
8858 // - the move assignment operator would not be implicitly defined as
8859 // deleted,
8860
8861 // [DR1402]:
8862 // - each of X's non-static data members and direct or virtual base classes
8863 // has a type that either has a move constructor or is trivially copyable.
8864 if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8865 ClassDecl->setFailedImplicitMoveConstructor();
8866 return 0;
8867 }
8868
8869 ImplicitExceptionSpecification Spec(
8870 ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8871
8872 QualType ClassType = Context.getTypeDeclType(ClassDecl);
8873 QualType ArgType = Context.getRValueReferenceType(ClassType);
8874
8875 FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8876
8877 DeclarationName Name
8878 = Context.DeclarationNames.getCXXConstructorName(
8879 Context.getCanonicalType(ClassType));
8880 SourceLocation ClassLoc = ClassDecl->getLocation();
8881 DeclarationNameInfo NameInfo(Name, ClassLoc);
8882
8883 // C++0x [class.copy]p11:
8884 // An implicitly-declared copy/move constructor is an inline public
8885 // member of its class.
8886 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8887 Context, ClassDecl, ClassLoc, NameInfo,
8888 Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8889 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8890 /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8891 getLangOpts().CPlusPlus0x);
8892 MoveConstructor->setAccess(AS_public);
8893 MoveConstructor->setDefaulted();
8894 MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8895
8896 // Add the parameter to the constructor.
8897 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8898 ClassLoc, ClassLoc,
8899 /*IdentifierInfo=*/0,
8900 ArgType, /*TInfo=*/0,
8901 SC_None,
8902 SC_None, 0);
8903 MoveConstructor->setParams(FromParam);
8904
8905 // C++0x [class.copy]p9:
8906 // If the definition of a class X does not explicitly declare a move
8907 // constructor, one will be implicitly declared as defaulted if and only if:
8908 // [...]
8909 // - the move constructor would not be implicitly defined as deleted.
8910 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8911 // Cache this result so that we don't try to generate this over and over
8912 // on every lookup, leaking memory and wasting time.
8913 ClassDecl->setFailedImplicitMoveConstructor();
8914 return 0;
8915 }
8916
8917 // Note that we have declared this constructor.
8918 ++ASTContext::NumImplicitMoveConstructorsDeclared;
8919
8920 if (Scope *S = getScopeForContext(ClassDecl))
8921 PushOnScopeChains(MoveConstructor, S, false);
8922 ClassDecl->addDecl(MoveConstructor);
8923
8924 return MoveConstructor;
8925 }
8926
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)8927 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8928 CXXConstructorDecl *MoveConstructor) {
8929 assert((MoveConstructor->isDefaulted() &&
8930 MoveConstructor->isMoveConstructor() &&
8931 !MoveConstructor->doesThisDeclarationHaveABody() &&
8932 !MoveConstructor->isDeleted()) &&
8933 "DefineImplicitMoveConstructor - call it for implicit move ctor");
8934
8935 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8936 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8937
8938 ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8939 DiagnosticErrorTrap Trap(Diags);
8940
8941 if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8942 Trap.hasErrorOccurred()) {
8943 Diag(CurrentLocation, diag::note_member_synthesized_at)
8944 << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8945 MoveConstructor->setInvalidDecl();
8946 } else {
8947 Sema::CompoundScopeRAII CompoundScope(*this);
8948 MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8949 MoveConstructor->getLocation(),
8950 MultiStmtArg(*this, 0, 0),
8951 /*isStmtExpr=*/false)
8952 .takeAs<Stmt>());
8953 MoveConstructor->setImplicitlyDefined(true);
8954 }
8955
8956 MoveConstructor->setUsed();
8957
8958 if (ASTMutationListener *L = getASTMutationListener()) {
8959 L->CompletedImplicitDefinition(MoveConstructor);
8960 }
8961 }
8962
isImplicitlyDeleted(FunctionDecl * FD)8963 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8964 return FD->isDeleted() &&
8965 (FD->isDefaulted() || FD->isImplicit()) &&
8966 isa<CXXMethodDecl>(FD);
8967 }
8968
8969 /// \brief Mark the call operator of the given lambda closure type as "used".
markLambdaCallOperatorUsed(Sema & S,CXXRecordDecl * Lambda)8970 static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8971 CXXMethodDecl *CallOperator
8972 = cast<CXXMethodDecl>(
8973 *Lambda->lookup(
8974 S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8975 CallOperator->setReferenced();
8976 CallOperator->setUsed();
8977 }
8978
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)8979 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8980 SourceLocation CurrentLocation,
8981 CXXConversionDecl *Conv)
8982 {
8983 CXXRecordDecl *Lambda = Conv->getParent();
8984
8985 // Make sure that the lambda call operator is marked used.
8986 markLambdaCallOperatorUsed(*this, Lambda);
8987
8988 Conv->setUsed();
8989
8990 ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8991 DiagnosticErrorTrap Trap(Diags);
8992
8993 // Return the address of the __invoke function.
8994 DeclarationName InvokeName = &Context.Idents.get("__invoke");
8995 CXXMethodDecl *Invoke
8996 = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8997 Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8998 VK_LValue, Conv->getLocation()).take();
8999 assert(FunctionRef && "Can't refer to __invoke function?");
9000 Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9001 Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9002 Conv->getLocation(),
9003 Conv->getLocation()));
9004
9005 // Fill in the __invoke function with a dummy implementation. IR generation
9006 // will fill in the actual details.
9007 Invoke->setUsed();
9008 Invoke->setReferenced();
9009 Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
9010 Conv->getLocation()));
9011
9012 if (ASTMutationListener *L = getASTMutationListener()) {
9013 L->CompletedImplicitDefinition(Conv);
9014 L->CompletedImplicitDefinition(Invoke);
9015 }
9016 }
9017
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)9018 void Sema::DefineImplicitLambdaToBlockPointerConversion(
9019 SourceLocation CurrentLocation,
9020 CXXConversionDecl *Conv)
9021 {
9022 Conv->setUsed();
9023
9024 ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9025 DiagnosticErrorTrap Trap(Diags);
9026
9027 // Copy-initialize the lambda object as needed to capture it.
9028 Expr *This = ActOnCXXThis(CurrentLocation).take();
9029 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9030
9031 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9032 Conv->getLocation(),
9033 Conv, DerefThis);
9034
9035 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9036 // behavior. Note that only the general conversion function does this
9037 // (since it's unusable otherwise); in the case where we inline the
9038 // block literal, it has block literal lifetime semantics.
9039 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9040 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9041 CK_CopyAndAutoreleaseBlockObject,
9042 BuildBlock.get(), 0, VK_RValue);
9043
9044 if (BuildBlock.isInvalid()) {
9045 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9046 Conv->setInvalidDecl();
9047 return;
9048 }
9049
9050 // Create the return statement that returns the block from the conversion
9051 // function.
9052 StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9053 if (Return.isInvalid()) {
9054 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9055 Conv->setInvalidDecl();
9056 return;
9057 }
9058
9059 // Set the body of the conversion function.
9060 Stmt *ReturnS = Return.take();
9061 Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9062 Conv->getLocation(),
9063 Conv->getLocation()));
9064
9065 // We're done; notify the mutation listener, if any.
9066 if (ASTMutationListener *L = getASTMutationListener()) {
9067 L->CompletedImplicitDefinition(Conv);
9068 }
9069 }
9070
9071 /// \brief Determine whether the given list arguments contains exactly one
9072 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)9073 static bool hasOneRealArgument(MultiExprArg Args) {
9074 switch (Args.size()) {
9075 case 0:
9076 return false;
9077
9078 default:
9079 if (!Args.get()[1]->isDefaultArgument())
9080 return false;
9081
9082 // fall through
9083 case 1:
9084 return !Args.get()[0]->isDefaultArgument();
9085 }
9086
9087 return false;
9088 }
9089
9090 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)9091 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9092 CXXConstructorDecl *Constructor,
9093 MultiExprArg ExprArgs,
9094 bool HadMultipleCandidates,
9095 bool RequiresZeroInit,
9096 unsigned ConstructKind,
9097 SourceRange ParenRange) {
9098 bool Elidable = false;
9099
9100 // C++0x [class.copy]p34:
9101 // When certain criteria are met, an implementation is allowed to
9102 // omit the copy/move construction of a class object, even if the
9103 // copy/move constructor and/or destructor for the object have
9104 // side effects. [...]
9105 // - when a temporary class object that has not been bound to a
9106 // reference (12.2) would be copied/moved to a class object
9107 // with the same cv-unqualified type, the copy/move operation
9108 // can be omitted by constructing the temporary object
9109 // directly into the target of the omitted copy/move
9110 if (ConstructKind == CXXConstructExpr::CK_Complete &&
9111 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9112 Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9113 Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9114 }
9115
9116 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9117 Elidable, move(ExprArgs), HadMultipleCandidates,
9118 RequiresZeroInit, ConstructKind, ParenRange);
9119 }
9120
9121 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
9122 /// including handling of its default argument expressions.
9123 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)9124 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9125 CXXConstructorDecl *Constructor, bool Elidable,
9126 MultiExprArg ExprArgs,
9127 bool HadMultipleCandidates,
9128 bool RequiresZeroInit,
9129 unsigned ConstructKind,
9130 SourceRange ParenRange) {
9131 unsigned NumExprs = ExprArgs.size();
9132 Expr **Exprs = (Expr **)ExprArgs.release();
9133
9134 for (specific_attr_iterator<NonNullAttr>
9135 i = Constructor->specific_attr_begin<NonNullAttr>(),
9136 e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9137 const NonNullAttr *NonNull = *i;
9138 CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9139 }
9140
9141 MarkFunctionReferenced(ConstructLoc, Constructor);
9142 return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9143 Constructor, Elidable, Exprs, NumExprs,
9144 HadMultipleCandidates, /*FIXME*/false,
9145 RequiresZeroInit,
9146 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9147 ParenRange));
9148 }
9149
InitializeVarWithConstructor(VarDecl * VD,CXXConstructorDecl * Constructor,MultiExprArg Exprs,bool HadMultipleCandidates)9150 bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9151 CXXConstructorDecl *Constructor,
9152 MultiExprArg Exprs,
9153 bool HadMultipleCandidates) {
9154 // FIXME: Provide the correct paren SourceRange when available.
9155 ExprResult TempResult =
9156 BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9157 move(Exprs), HadMultipleCandidates, false,
9158 CXXConstructExpr::CK_Complete, SourceRange());
9159 if (TempResult.isInvalid())
9160 return true;
9161
9162 Expr *Temp = TempResult.takeAs<Expr>();
9163 CheckImplicitConversions(Temp, VD->getLocation());
9164 MarkFunctionReferenced(VD->getLocation(), Constructor);
9165 Temp = MaybeCreateExprWithCleanups(Temp);
9166 VD->setInit(Temp);
9167
9168 return false;
9169 }
9170
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)9171 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9172 if (VD->isInvalidDecl()) return;
9173
9174 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9175 if (ClassDecl->isInvalidDecl()) return;
9176 if (ClassDecl->hasIrrelevantDestructor()) return;
9177 if (ClassDecl->isDependentContext()) return;
9178
9179 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9180 MarkFunctionReferenced(VD->getLocation(), Destructor);
9181 CheckDestructorAccess(VD->getLocation(), Destructor,
9182 PDiag(diag::err_access_dtor_var)
9183 << VD->getDeclName()
9184 << VD->getType());
9185 DiagnoseUseOfDecl(Destructor, VD->getLocation());
9186
9187 if (!VD->hasGlobalStorage()) return;
9188
9189 // Emit warning for non-trivial dtor in global scope (a real global,
9190 // class-static, function-static).
9191 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9192
9193 // TODO: this should be re-enabled for static locals by !CXAAtExit
9194 if (!VD->isStaticLocal())
9195 Diag(VD->getLocation(), diag::warn_global_destructor);
9196 }
9197
9198 /// \brief Given a constructor and the set of arguments provided for the
9199 /// constructor, convert the arguments and add any required default arguments
9200 /// to form a proper call to this constructor.
9201 ///
9202 /// \returns true if an error occurred, false otherwise.
9203 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,ASTOwningVector<Expr * > & ConvertedArgs,bool AllowExplicit)9204 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9205 MultiExprArg ArgsPtr,
9206 SourceLocation Loc,
9207 ASTOwningVector<Expr*> &ConvertedArgs,
9208 bool AllowExplicit) {
9209 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9210 unsigned NumArgs = ArgsPtr.size();
9211 Expr **Args = (Expr **)ArgsPtr.get();
9212
9213 const FunctionProtoType *Proto
9214 = Constructor->getType()->getAs<FunctionProtoType>();
9215 assert(Proto && "Constructor without a prototype?");
9216 unsigned NumArgsInProto = Proto->getNumArgs();
9217
9218 // If too few arguments are available, we'll fill in the rest with defaults.
9219 if (NumArgs < NumArgsInProto)
9220 ConvertedArgs.reserve(NumArgsInProto);
9221 else
9222 ConvertedArgs.reserve(NumArgs);
9223
9224 VariadicCallType CallType =
9225 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9226 SmallVector<Expr *, 8> AllArgs;
9227 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9228 Proto, 0, Args, NumArgs, AllArgs,
9229 CallType, AllowExplicit);
9230 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9231
9232 DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9233
9234 // FIXME: Missing call to CheckFunctionCall or equivalent
9235
9236 return Invalid;
9237 }
9238
9239 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)9240 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9241 const FunctionDecl *FnDecl) {
9242 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9243 if (isa<NamespaceDecl>(DC)) {
9244 return SemaRef.Diag(FnDecl->getLocation(),
9245 diag::err_operator_new_delete_declared_in_namespace)
9246 << FnDecl->getDeclName();
9247 }
9248
9249 if (isa<TranslationUnitDecl>(DC) &&
9250 FnDecl->getStorageClass() == SC_Static) {
9251 return SemaRef.Diag(FnDecl->getLocation(),
9252 diag::err_operator_new_delete_declared_static)
9253 << FnDecl->getDeclName();
9254 }
9255
9256 return false;
9257 }
9258
9259 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)9260 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9261 CanQualType ExpectedResultType,
9262 CanQualType ExpectedFirstParamType,
9263 unsigned DependentParamTypeDiag,
9264 unsigned InvalidParamTypeDiag) {
9265 QualType ResultType =
9266 FnDecl->getType()->getAs<FunctionType>()->getResultType();
9267
9268 // Check that the result type is not dependent.
9269 if (ResultType->isDependentType())
9270 return SemaRef.Diag(FnDecl->getLocation(),
9271 diag::err_operator_new_delete_dependent_result_type)
9272 << FnDecl->getDeclName() << ExpectedResultType;
9273
9274 // Check that the result type is what we expect.
9275 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9276 return SemaRef.Diag(FnDecl->getLocation(),
9277 diag::err_operator_new_delete_invalid_result_type)
9278 << FnDecl->getDeclName() << ExpectedResultType;
9279
9280 // A function template must have at least 2 parameters.
9281 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9282 return SemaRef.Diag(FnDecl->getLocation(),
9283 diag::err_operator_new_delete_template_too_few_parameters)
9284 << FnDecl->getDeclName();
9285
9286 // The function decl must have at least 1 parameter.
9287 if (FnDecl->getNumParams() == 0)
9288 return SemaRef.Diag(FnDecl->getLocation(),
9289 diag::err_operator_new_delete_too_few_parameters)
9290 << FnDecl->getDeclName();
9291
9292 // Check the the first parameter type is not dependent.
9293 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9294 if (FirstParamType->isDependentType())
9295 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9296 << FnDecl->getDeclName() << ExpectedFirstParamType;
9297
9298 // Check that the first parameter type is what we expect.
9299 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9300 ExpectedFirstParamType)
9301 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9302 << FnDecl->getDeclName() << ExpectedFirstParamType;
9303
9304 return false;
9305 }
9306
9307 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)9308 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9309 // C++ [basic.stc.dynamic.allocation]p1:
9310 // A program is ill-formed if an allocation function is declared in a
9311 // namespace scope other than global scope or declared static in global
9312 // scope.
9313 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9314 return true;
9315
9316 CanQualType SizeTy =
9317 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9318
9319 // C++ [basic.stc.dynamic.allocation]p1:
9320 // The return type shall be void*. The first parameter shall have type
9321 // std::size_t.
9322 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9323 SizeTy,
9324 diag::err_operator_new_dependent_param_type,
9325 diag::err_operator_new_param_type))
9326 return true;
9327
9328 // C++ [basic.stc.dynamic.allocation]p1:
9329 // The first parameter shall not have an associated default argument.
9330 if (FnDecl->getParamDecl(0)->hasDefaultArg())
9331 return SemaRef.Diag(FnDecl->getLocation(),
9332 diag::err_operator_new_default_arg)
9333 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9334
9335 return false;
9336 }
9337
9338 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)9339 CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9340 // C++ [basic.stc.dynamic.deallocation]p1:
9341 // A program is ill-formed if deallocation functions are declared in a
9342 // namespace scope other than global scope or declared static in global
9343 // scope.
9344 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9345 return true;
9346
9347 // C++ [basic.stc.dynamic.deallocation]p2:
9348 // Each deallocation function shall return void and its first parameter
9349 // shall be void*.
9350 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9351 SemaRef.Context.VoidPtrTy,
9352 diag::err_operator_delete_dependent_param_type,
9353 diag::err_operator_delete_param_type))
9354 return true;
9355
9356 return false;
9357 }
9358
9359 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
9360 /// of this overloaded operator is well-formed. If so, returns false;
9361 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)9362 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9363 assert(FnDecl && FnDecl->isOverloadedOperator() &&
9364 "Expected an overloaded operator declaration");
9365
9366 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9367
9368 // C++ [over.oper]p5:
9369 // The allocation and deallocation functions, operator new,
9370 // operator new[], operator delete and operator delete[], are
9371 // described completely in 3.7.3. The attributes and restrictions
9372 // found in the rest of this subclause do not apply to them unless
9373 // explicitly stated in 3.7.3.
9374 if (Op == OO_Delete || Op == OO_Array_Delete)
9375 return CheckOperatorDeleteDeclaration(*this, FnDecl);
9376
9377 if (Op == OO_New || Op == OO_Array_New)
9378 return CheckOperatorNewDeclaration(*this, FnDecl);
9379
9380 // C++ [over.oper]p6:
9381 // An operator function shall either be a non-static member
9382 // function or be a non-member function and have at least one
9383 // parameter whose type is a class, a reference to a class, an
9384 // enumeration, or a reference to an enumeration.
9385 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9386 if (MethodDecl->isStatic())
9387 return Diag(FnDecl->getLocation(),
9388 diag::err_operator_overload_static) << FnDecl->getDeclName();
9389 } else {
9390 bool ClassOrEnumParam = false;
9391 for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9392 ParamEnd = FnDecl->param_end();
9393 Param != ParamEnd; ++Param) {
9394 QualType ParamType = (*Param)->getType().getNonReferenceType();
9395 if (ParamType->isDependentType() || ParamType->isRecordType() ||
9396 ParamType->isEnumeralType()) {
9397 ClassOrEnumParam = true;
9398 break;
9399 }
9400 }
9401
9402 if (!ClassOrEnumParam)
9403 return Diag(FnDecl->getLocation(),
9404 diag::err_operator_overload_needs_class_or_enum)
9405 << FnDecl->getDeclName();
9406 }
9407
9408 // C++ [over.oper]p8:
9409 // An operator function cannot have default arguments (8.3.6),
9410 // except where explicitly stated below.
9411 //
9412 // Only the function-call operator allows default arguments
9413 // (C++ [over.call]p1).
9414 if (Op != OO_Call) {
9415 for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9416 Param != FnDecl->param_end(); ++Param) {
9417 if ((*Param)->hasDefaultArg())
9418 return Diag((*Param)->getLocation(),
9419 diag::err_operator_overload_default_arg)
9420 << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9421 }
9422 }
9423
9424 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9425 { false, false, false }
9426 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9427 , { Unary, Binary, MemberOnly }
9428 #include "clang/Basic/OperatorKinds.def"
9429 };
9430
9431 bool CanBeUnaryOperator = OperatorUses[Op][0];
9432 bool CanBeBinaryOperator = OperatorUses[Op][1];
9433 bool MustBeMemberOperator = OperatorUses[Op][2];
9434
9435 // C++ [over.oper]p8:
9436 // [...] Operator functions cannot have more or fewer parameters
9437 // than the number required for the corresponding operator, as
9438 // described in the rest of this subclause.
9439 unsigned NumParams = FnDecl->getNumParams()
9440 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9441 if (Op != OO_Call &&
9442 ((NumParams == 1 && !CanBeUnaryOperator) ||
9443 (NumParams == 2 && !CanBeBinaryOperator) ||
9444 (NumParams < 1) || (NumParams > 2))) {
9445 // We have the wrong number of parameters.
9446 unsigned ErrorKind;
9447 if (CanBeUnaryOperator && CanBeBinaryOperator) {
9448 ErrorKind = 2; // 2 -> unary or binary.
9449 } else if (CanBeUnaryOperator) {
9450 ErrorKind = 0; // 0 -> unary
9451 } else {
9452 assert(CanBeBinaryOperator &&
9453 "All non-call overloaded operators are unary or binary!");
9454 ErrorKind = 1; // 1 -> binary
9455 }
9456
9457 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9458 << FnDecl->getDeclName() << NumParams << ErrorKind;
9459 }
9460
9461 // Overloaded operators other than operator() cannot be variadic.
9462 if (Op != OO_Call &&
9463 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9464 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9465 << FnDecl->getDeclName();
9466 }
9467
9468 // Some operators must be non-static member functions.
9469 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9470 return Diag(FnDecl->getLocation(),
9471 diag::err_operator_overload_must_be_member)
9472 << FnDecl->getDeclName();
9473 }
9474
9475 // C++ [over.inc]p1:
9476 // The user-defined function called operator++ implements the
9477 // prefix and postfix ++ operator. If this function is a member
9478 // function with no parameters, or a non-member function with one
9479 // parameter of class or enumeration type, it defines the prefix
9480 // increment operator ++ for objects of that type. If the function
9481 // is a member function with one parameter (which shall be of type
9482 // int) or a non-member function with two parameters (the second
9483 // of which shall be of type int), it defines the postfix
9484 // increment operator ++ for objects of that type.
9485 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9486 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9487 bool ParamIsInt = false;
9488 if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9489 ParamIsInt = BT->getKind() == BuiltinType::Int;
9490
9491 if (!ParamIsInt)
9492 return Diag(LastParam->getLocation(),
9493 diag::err_operator_overload_post_incdec_must_be_int)
9494 << LastParam->getType() << (Op == OO_MinusMinus);
9495 }
9496
9497 return false;
9498 }
9499
9500 /// CheckLiteralOperatorDeclaration - Check whether the declaration
9501 /// of this literal operator function is well-formed. If so, returns
9502 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)9503 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9504 if (isa<CXXMethodDecl>(FnDecl)) {
9505 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9506 << FnDecl->getDeclName();
9507 return true;
9508 }
9509
9510 if (FnDecl->isExternC()) {
9511 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9512 return true;
9513 }
9514
9515 bool Valid = false;
9516
9517 // This might be the definition of a literal operator template.
9518 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9519 // This might be a specialization of a literal operator template.
9520 if (!TpDecl)
9521 TpDecl = FnDecl->getPrimaryTemplate();
9522
9523 // template <char...> type operator "" name() is the only valid template
9524 // signature, and the only valid signature with no parameters.
9525 if (TpDecl) {
9526 if (FnDecl->param_size() == 0) {
9527 // Must have only one template parameter
9528 TemplateParameterList *Params = TpDecl->getTemplateParameters();
9529 if (Params->size() == 1) {
9530 NonTypeTemplateParmDecl *PmDecl =
9531 cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9532
9533 // The template parameter must be a char parameter pack.
9534 if (PmDecl && PmDecl->isTemplateParameterPack() &&
9535 Context.hasSameType(PmDecl->getType(), Context.CharTy))
9536 Valid = true;
9537 }
9538 }
9539 } else if (FnDecl->param_size()) {
9540 // Check the first parameter
9541 FunctionDecl::param_iterator Param = FnDecl->param_begin();
9542
9543 QualType T = (*Param)->getType().getUnqualifiedType();
9544
9545 // unsigned long long int, long double, and any character type are allowed
9546 // as the only parameters.
9547 if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9548 Context.hasSameType(T, Context.LongDoubleTy) ||
9549 Context.hasSameType(T, Context.CharTy) ||
9550 Context.hasSameType(T, Context.WCharTy) ||
9551 Context.hasSameType(T, Context.Char16Ty) ||
9552 Context.hasSameType(T, Context.Char32Ty)) {
9553 if (++Param == FnDecl->param_end())
9554 Valid = true;
9555 goto FinishedParams;
9556 }
9557
9558 // Otherwise it must be a pointer to const; let's strip those qualifiers.
9559 const PointerType *PT = T->getAs<PointerType>();
9560 if (!PT)
9561 goto FinishedParams;
9562 T = PT->getPointeeType();
9563 if (!T.isConstQualified() || T.isVolatileQualified())
9564 goto FinishedParams;
9565 T = T.getUnqualifiedType();
9566
9567 // Move on to the second parameter;
9568 ++Param;
9569
9570 // If there is no second parameter, the first must be a const char *
9571 if (Param == FnDecl->param_end()) {
9572 if (Context.hasSameType(T, Context.CharTy))
9573 Valid = true;
9574 goto FinishedParams;
9575 }
9576
9577 // const char *, const wchar_t*, const char16_t*, and const char32_t*
9578 // are allowed as the first parameter to a two-parameter function
9579 if (!(Context.hasSameType(T, Context.CharTy) ||
9580 Context.hasSameType(T, Context.WCharTy) ||
9581 Context.hasSameType(T, Context.Char16Ty) ||
9582 Context.hasSameType(T, Context.Char32Ty)))
9583 goto FinishedParams;
9584
9585 // The second and final parameter must be an std::size_t
9586 T = (*Param)->getType().getUnqualifiedType();
9587 if (Context.hasSameType(T, Context.getSizeType()) &&
9588 ++Param == FnDecl->param_end())
9589 Valid = true;
9590 }
9591
9592 // FIXME: This diagnostic is absolutely terrible.
9593 FinishedParams:
9594 if (!Valid) {
9595 Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9596 << FnDecl->getDeclName();
9597 return true;
9598 }
9599
9600 // A parameter-declaration-clause containing a default argument is not
9601 // equivalent to any of the permitted forms.
9602 for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9603 ParamEnd = FnDecl->param_end();
9604 Param != ParamEnd; ++Param) {
9605 if ((*Param)->hasDefaultArg()) {
9606 Diag((*Param)->getDefaultArgRange().getBegin(),
9607 diag::err_literal_operator_default_argument)
9608 << (*Param)->getDefaultArgRange();
9609 break;
9610 }
9611 }
9612
9613 StringRef LiteralName
9614 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9615 if (LiteralName[0] != '_') {
9616 // C++11 [usrlit.suffix]p1:
9617 // Literal suffix identifiers that do not start with an underscore
9618 // are reserved for future standardization.
9619 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9620 }
9621
9622 return false;
9623 }
9624
9625 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9626 /// linkage specification, including the language and (if present)
9627 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9628 /// the location of the language string literal, which is provided
9629 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9630 /// the '{' brace. Otherwise, this linkage specification does not
9631 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,SourceLocation LangLoc,StringRef Lang,SourceLocation LBraceLoc)9632 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9633 SourceLocation LangLoc,
9634 StringRef Lang,
9635 SourceLocation LBraceLoc) {
9636 LinkageSpecDecl::LanguageIDs Language;
9637 if (Lang == "\"C\"")
9638 Language = LinkageSpecDecl::lang_c;
9639 else if (Lang == "\"C++\"")
9640 Language = LinkageSpecDecl::lang_cxx;
9641 else {
9642 Diag(LangLoc, diag::err_bad_language);
9643 return 0;
9644 }
9645
9646 // FIXME: Add all the various semantics of linkage specifications
9647
9648 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9649 ExternLoc, LangLoc, Language);
9650 CurContext->addDecl(D);
9651 PushDeclContext(S, D);
9652 return D;
9653 }
9654
9655 /// ActOnFinishLinkageSpecification - Complete the definition of
9656 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
9657 /// valid, it's the position of the closing '}' brace in a linkage
9658 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)9659 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9660 Decl *LinkageSpec,
9661 SourceLocation RBraceLoc) {
9662 if (LinkageSpec) {
9663 if (RBraceLoc.isValid()) {
9664 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9665 LSDecl->setRBraceLoc(RBraceLoc);
9666 }
9667 PopDeclContext();
9668 }
9669 return LinkageSpec;
9670 }
9671
9672 /// \brief Perform semantic analysis for the variable declaration that
9673 /// occurs within a C++ catch clause, returning the newly-created
9674 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)9675 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9676 TypeSourceInfo *TInfo,
9677 SourceLocation StartLoc,
9678 SourceLocation Loc,
9679 IdentifierInfo *Name) {
9680 bool Invalid = false;
9681 QualType ExDeclType = TInfo->getType();
9682
9683 // Arrays and functions decay.
9684 if (ExDeclType->isArrayType())
9685 ExDeclType = Context.getArrayDecayedType(ExDeclType);
9686 else if (ExDeclType->isFunctionType())
9687 ExDeclType = Context.getPointerType(ExDeclType);
9688
9689 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9690 // The exception-declaration shall not denote a pointer or reference to an
9691 // incomplete type, other than [cv] void*.
9692 // N2844 forbids rvalue references.
9693 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9694 Diag(Loc, diag::err_catch_rvalue_ref);
9695 Invalid = true;
9696 }
9697
9698 QualType BaseType = ExDeclType;
9699 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9700 unsigned DK = diag::err_catch_incomplete;
9701 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9702 BaseType = Ptr->getPointeeType();
9703 Mode = 1;
9704 DK = diag::err_catch_incomplete_ptr;
9705 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9706 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9707 BaseType = Ref->getPointeeType();
9708 Mode = 2;
9709 DK = diag::err_catch_incomplete_ref;
9710 }
9711 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9712 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9713 Invalid = true;
9714
9715 if (!Invalid && !ExDeclType->isDependentType() &&
9716 RequireNonAbstractType(Loc, ExDeclType,
9717 diag::err_abstract_type_in_decl,
9718 AbstractVariableType))
9719 Invalid = true;
9720
9721 // Only the non-fragile NeXT runtime currently supports C++ catches
9722 // of ObjC types, and no runtime supports catching ObjC types by value.
9723 if (!Invalid && getLangOpts().ObjC1) {
9724 QualType T = ExDeclType;
9725 if (const ReferenceType *RT = T->getAs<ReferenceType>())
9726 T = RT->getPointeeType();
9727
9728 if (T->isObjCObjectType()) {
9729 Diag(Loc, diag::err_objc_object_catch);
9730 Invalid = true;
9731 } else if (T->isObjCObjectPointerType()) {
9732 if (!getLangOpts().ObjCNonFragileABI)
9733 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9734 }
9735 }
9736
9737 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9738 ExDeclType, TInfo, SC_None, SC_None);
9739 ExDecl->setExceptionVariable(true);
9740
9741 // In ARC, infer 'retaining' for variables of retainable type.
9742 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9743 Invalid = true;
9744
9745 if (!Invalid && !ExDeclType->isDependentType()) {
9746 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9747 // C++ [except.handle]p16:
9748 // The object declared in an exception-declaration or, if the
9749 // exception-declaration does not specify a name, a temporary (12.2) is
9750 // copy-initialized (8.5) from the exception object. [...]
9751 // The object is destroyed when the handler exits, after the destruction
9752 // of any automatic objects initialized within the handler.
9753 //
9754 // We just pretend to initialize the object with itself, then make sure
9755 // it can be destroyed later.
9756 QualType initType = ExDeclType;
9757
9758 InitializedEntity entity =
9759 InitializedEntity::InitializeVariable(ExDecl);
9760 InitializationKind initKind =
9761 InitializationKind::CreateCopy(Loc, SourceLocation());
9762
9763 Expr *opaqueValue =
9764 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9765 InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9766 ExprResult result = sequence.Perform(*this, entity, initKind,
9767 MultiExprArg(&opaqueValue, 1));
9768 if (result.isInvalid())
9769 Invalid = true;
9770 else {
9771 // If the constructor used was non-trivial, set this as the
9772 // "initializer".
9773 CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9774 if (!construct->getConstructor()->isTrivial()) {
9775 Expr *init = MaybeCreateExprWithCleanups(construct);
9776 ExDecl->setInit(init);
9777 }
9778
9779 // And make sure it's destructable.
9780 FinalizeVarWithDestructor(ExDecl, recordType);
9781 }
9782 }
9783 }
9784
9785 if (Invalid)
9786 ExDecl->setInvalidDecl();
9787
9788 return ExDecl;
9789 }
9790
9791 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9792 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)9793 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9794 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9795 bool Invalid = D.isInvalidType();
9796
9797 // Check for unexpanded parameter packs.
9798 if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9799 UPPC_ExceptionType)) {
9800 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9801 D.getIdentifierLoc());
9802 Invalid = true;
9803 }
9804
9805 IdentifierInfo *II = D.getIdentifier();
9806 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9807 LookupOrdinaryName,
9808 ForRedeclaration)) {
9809 // The scope should be freshly made just for us. There is just no way
9810 // it contains any previous declaration.
9811 assert(!S->isDeclScope(PrevDecl));
9812 if (PrevDecl->isTemplateParameter()) {
9813 // Maybe we will complain about the shadowed template parameter.
9814 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9815 PrevDecl = 0;
9816 }
9817 }
9818
9819 if (D.getCXXScopeSpec().isSet() && !Invalid) {
9820 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9821 << D.getCXXScopeSpec().getRange();
9822 Invalid = true;
9823 }
9824
9825 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9826 D.getLocStart(),
9827 D.getIdentifierLoc(),
9828 D.getIdentifier());
9829 if (Invalid)
9830 ExDecl->setInvalidDecl();
9831
9832 // Add the exception declaration into this scope.
9833 if (II)
9834 PushOnScopeChains(ExDecl, S);
9835 else
9836 CurContext->addDecl(ExDecl);
9837
9838 ProcessDeclAttributes(S, ExDecl, D);
9839 return ExDecl;
9840 }
9841
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr_,SourceLocation RParenLoc)9842 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9843 Expr *AssertExpr,
9844 Expr *AssertMessageExpr_,
9845 SourceLocation RParenLoc) {
9846 StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9847
9848 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9849 // In a static_assert-declaration, the constant-expression shall be a
9850 // constant expression that can be contextually converted to bool.
9851 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9852 if (Converted.isInvalid())
9853 return 0;
9854
9855 llvm::APSInt Cond;
9856 if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9857 PDiag(diag::err_static_assert_expression_is_not_constant),
9858 /*AllowFold=*/false).isInvalid())
9859 return 0;
9860
9861 if (!Cond) {
9862 llvm::SmallString<256> MsgBuffer;
9863 llvm::raw_svector_ostream Msg(MsgBuffer);
9864 AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9865 Diag(StaticAssertLoc, diag::err_static_assert_failed)
9866 << Msg.str() << AssertExpr->getSourceRange();
9867 }
9868 }
9869
9870 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9871 return 0;
9872
9873 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9874 AssertExpr, AssertMessage, RParenLoc);
9875
9876 CurContext->addDecl(Decl);
9877 return Decl;
9878 }
9879
9880 /// \brief Perform semantic analysis of the given friend type declaration.
9881 ///
9882 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation Loc,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)9883 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9884 SourceLocation FriendLoc,
9885 TypeSourceInfo *TSInfo) {
9886 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9887
9888 QualType T = TSInfo->getType();
9889 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9890
9891 // C++03 [class.friend]p2:
9892 // An elaborated-type-specifier shall be used in a friend declaration
9893 // for a class.*
9894 //
9895 // * The class-key of the elaborated-type-specifier is required.
9896 if (!ActiveTemplateInstantiations.empty()) {
9897 // Do not complain about the form of friend template types during
9898 // template instantiation; we will already have complained when the
9899 // template was declared.
9900 } else if (!T->isElaboratedTypeSpecifier()) {
9901 // If we evaluated the type to a record type, suggest putting
9902 // a tag in front.
9903 if (const RecordType *RT = T->getAs<RecordType>()) {
9904 RecordDecl *RD = RT->getDecl();
9905
9906 std::string InsertionText = std::string(" ") + RD->getKindName();
9907
9908 Diag(TypeRange.getBegin(),
9909 getLangOpts().CPlusPlus0x ?
9910 diag::warn_cxx98_compat_unelaborated_friend_type :
9911 diag::ext_unelaborated_friend_type)
9912 << (unsigned) RD->getTagKind()
9913 << T
9914 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9915 InsertionText);
9916 } else {
9917 Diag(FriendLoc,
9918 getLangOpts().CPlusPlus0x ?
9919 diag::warn_cxx98_compat_nonclass_type_friend :
9920 diag::ext_nonclass_type_friend)
9921 << T
9922 << SourceRange(FriendLoc, TypeRange.getEnd());
9923 }
9924 } else if (T->getAs<EnumType>()) {
9925 Diag(FriendLoc,
9926 getLangOpts().CPlusPlus0x ?
9927 diag::warn_cxx98_compat_enum_friend :
9928 diag::ext_enum_friend)
9929 << T
9930 << SourceRange(FriendLoc, TypeRange.getEnd());
9931 }
9932
9933 // C++0x [class.friend]p3:
9934 // If the type specifier in a friend declaration designates a (possibly
9935 // cv-qualified) class type, that class is declared as a friend; otherwise,
9936 // the friend declaration is ignored.
9937
9938 // FIXME: C++0x has some syntactic restrictions on friend type declarations
9939 // in [class.friend]p3 that we do not implement.
9940
9941 return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9942 }
9943
9944 /// Handle a friend tag declaration where the scope specifier was
9945 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)9946 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9947 unsigned TagSpec, SourceLocation TagLoc,
9948 CXXScopeSpec &SS,
9949 IdentifierInfo *Name, SourceLocation NameLoc,
9950 AttributeList *Attr,
9951 MultiTemplateParamsArg TempParamLists) {
9952 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9953
9954 bool isExplicitSpecialization = false;
9955 bool Invalid = false;
9956
9957 if (TemplateParameterList *TemplateParams
9958 = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9959 TempParamLists.get(),
9960 TempParamLists.size(),
9961 /*friend*/ true,
9962 isExplicitSpecialization,
9963 Invalid)) {
9964 if (TemplateParams->size() > 0) {
9965 // This is a declaration of a class template.
9966 if (Invalid)
9967 return 0;
9968
9969 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9970 SS, Name, NameLoc, Attr,
9971 TemplateParams, AS_public,
9972 /*ModulePrivateLoc=*/SourceLocation(),
9973 TempParamLists.size() - 1,
9974 (TemplateParameterList**) TempParamLists.release()).take();
9975 } else {
9976 // The "template<>" header is extraneous.
9977 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9978 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9979 isExplicitSpecialization = true;
9980 }
9981 }
9982
9983 if (Invalid) return 0;
9984
9985 bool isAllExplicitSpecializations = true;
9986 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9987 if (TempParamLists.get()[I]->size()) {
9988 isAllExplicitSpecializations = false;
9989 break;
9990 }
9991 }
9992
9993 // FIXME: don't ignore attributes.
9994
9995 // If it's explicit specializations all the way down, just forget
9996 // about the template header and build an appropriate non-templated
9997 // friend. TODO: for source fidelity, remember the headers.
9998 if (isAllExplicitSpecializations) {
9999 if (SS.isEmpty()) {
10000 bool Owned = false;
10001 bool IsDependent = false;
10002 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10003 Attr, AS_public,
10004 /*ModulePrivateLoc=*/SourceLocation(),
10005 MultiTemplateParamsArg(), Owned, IsDependent,
10006 /*ScopedEnumKWLoc=*/SourceLocation(),
10007 /*ScopedEnumUsesClassTag=*/false,
10008 /*UnderlyingType=*/TypeResult());
10009 }
10010
10011 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10012 ElaboratedTypeKeyword Keyword
10013 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10014 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10015 *Name, NameLoc);
10016 if (T.isNull())
10017 return 0;
10018
10019 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10020 if (isa<DependentNameType>(T)) {
10021 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10022 TL.setElaboratedKeywordLoc(TagLoc);
10023 TL.setQualifierLoc(QualifierLoc);
10024 TL.setNameLoc(NameLoc);
10025 } else {
10026 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10027 TL.setElaboratedKeywordLoc(TagLoc);
10028 TL.setQualifierLoc(QualifierLoc);
10029 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10030 }
10031
10032 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10033 TSI, FriendLoc);
10034 Friend->setAccess(AS_public);
10035 CurContext->addDecl(Friend);
10036 return Friend;
10037 }
10038
10039 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10040
10041
10042
10043 // Handle the case of a templated-scope friend class. e.g.
10044 // template <class T> class A<T>::B;
10045 // FIXME: we don't support these right now.
10046 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10047 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10048 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10049 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10050 TL.setElaboratedKeywordLoc(TagLoc);
10051 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10052 TL.setNameLoc(NameLoc);
10053
10054 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10055 TSI, FriendLoc);
10056 Friend->setAccess(AS_public);
10057 Friend->setUnsupportedFriend(true);
10058 CurContext->addDecl(Friend);
10059 return Friend;
10060 }
10061
10062
10063 /// Handle a friend type declaration. This works in tandem with
10064 /// ActOnTag.
10065 ///
10066 /// Notes on friend class templates:
10067 ///
10068 /// We generally treat friend class declarations as if they were
10069 /// declaring a class. So, for example, the elaborated type specifier
10070 /// in a friend declaration is required to obey the restrictions of a
10071 /// class-head (i.e. no typedefs in the scope chain), template
10072 /// parameters are required to match up with simple template-ids, &c.
10073 /// However, unlike when declaring a template specialization, it's
10074 /// okay to refer to a template specialization without an empty
10075 /// template parameter declaration, e.g.
10076 /// friend class A<T>::B<unsigned>;
10077 /// We permit this as a special case; if there are any template
10078 /// parameters present at all, require proper matching, i.e.
10079 /// template <> template <class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)10080 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10081 MultiTemplateParamsArg TempParams) {
10082 SourceLocation Loc = DS.getLocStart();
10083
10084 assert(DS.isFriendSpecified());
10085 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10086
10087 // Try to convert the decl specifier to a type. This works for
10088 // friend templates because ActOnTag never produces a ClassTemplateDecl
10089 // for a TUK_Friend.
10090 Declarator TheDeclarator(DS, Declarator::MemberContext);
10091 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10092 QualType T = TSI->getType();
10093 if (TheDeclarator.isInvalidType())
10094 return 0;
10095
10096 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10097 return 0;
10098
10099 // This is definitely an error in C++98. It's probably meant to
10100 // be forbidden in C++0x, too, but the specification is just
10101 // poorly written.
10102 //
10103 // The problem is with declarations like the following:
10104 // template <T> friend A<T>::foo;
10105 // where deciding whether a class C is a friend or not now hinges
10106 // on whether there exists an instantiation of A that causes
10107 // 'foo' to equal C. There are restrictions on class-heads
10108 // (which we declare (by fiat) elaborated friend declarations to
10109 // be) that makes this tractable.
10110 //
10111 // FIXME: handle "template <> friend class A<T>;", which
10112 // is possibly well-formed? Who even knows?
10113 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10114 Diag(Loc, diag::err_tagless_friend_type_template)
10115 << DS.getSourceRange();
10116 return 0;
10117 }
10118
10119 // C++98 [class.friend]p1: A friend of a class is a function
10120 // or class that is not a member of the class . . .
10121 // This is fixed in DR77, which just barely didn't make the C++03
10122 // deadline. It's also a very silly restriction that seriously
10123 // affects inner classes and which nobody else seems to implement;
10124 // thus we never diagnose it, not even in -pedantic.
10125 //
10126 // But note that we could warn about it: it's always useless to
10127 // friend one of your own members (it's not, however, worthless to
10128 // friend a member of an arbitrary specialization of your template).
10129
10130 Decl *D;
10131 if (unsigned NumTempParamLists = TempParams.size())
10132 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10133 NumTempParamLists,
10134 TempParams.release(),
10135 TSI,
10136 DS.getFriendSpecLoc());
10137 else
10138 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10139
10140 if (!D)
10141 return 0;
10142
10143 D->setAccess(AS_public);
10144 CurContext->addDecl(D);
10145
10146 return D;
10147 }
10148
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)10149 Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10150 MultiTemplateParamsArg TemplateParams) {
10151 const DeclSpec &DS = D.getDeclSpec();
10152
10153 assert(DS.isFriendSpecified());
10154 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10155
10156 SourceLocation Loc = D.getIdentifierLoc();
10157 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10158
10159 // C++ [class.friend]p1
10160 // A friend of a class is a function or class....
10161 // Note that this sees through typedefs, which is intended.
10162 // It *doesn't* see through dependent types, which is correct
10163 // according to [temp.arg.type]p3:
10164 // If a declaration acquires a function type through a
10165 // type dependent on a template-parameter and this causes
10166 // a declaration that does not use the syntactic form of a
10167 // function declarator to have a function type, the program
10168 // is ill-formed.
10169 if (!TInfo->getType()->isFunctionType()) {
10170 Diag(Loc, diag::err_unexpected_friend);
10171
10172 // It might be worthwhile to try to recover by creating an
10173 // appropriate declaration.
10174 return 0;
10175 }
10176
10177 // C++ [namespace.memdef]p3
10178 // - If a friend declaration in a non-local class first declares a
10179 // class or function, the friend class or function is a member
10180 // of the innermost enclosing namespace.
10181 // - The name of the friend is not found by simple name lookup
10182 // until a matching declaration is provided in that namespace
10183 // scope (either before or after the class declaration granting
10184 // friendship).
10185 // - If a friend function is called, its name may be found by the
10186 // name lookup that considers functions from namespaces and
10187 // classes associated with the types of the function arguments.
10188 // - When looking for a prior declaration of a class or a function
10189 // declared as a friend, scopes outside the innermost enclosing
10190 // namespace scope are not considered.
10191
10192 CXXScopeSpec &SS = D.getCXXScopeSpec();
10193 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10194 DeclarationName Name = NameInfo.getName();
10195 assert(Name);
10196
10197 // Check for unexpanded parameter packs.
10198 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10199 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10200 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10201 return 0;
10202
10203 // The context we found the declaration in, or in which we should
10204 // create the declaration.
10205 DeclContext *DC;
10206 Scope *DCScope = S;
10207 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10208 ForRedeclaration);
10209
10210 // FIXME: there are different rules in local classes
10211
10212 // There are four cases here.
10213 // - There's no scope specifier, in which case we just go to the
10214 // appropriate scope and look for a function or function template
10215 // there as appropriate.
10216 // Recover from invalid scope qualifiers as if they just weren't there.
10217 if (SS.isInvalid() || !SS.isSet()) {
10218 // C++0x [namespace.memdef]p3:
10219 // If the name in a friend declaration is neither qualified nor
10220 // a template-id and the declaration is a function or an
10221 // elaborated-type-specifier, the lookup to determine whether
10222 // the entity has been previously declared shall not consider
10223 // any scopes outside the innermost enclosing namespace.
10224 // C++0x [class.friend]p11:
10225 // If a friend declaration appears in a local class and the name
10226 // specified is an unqualified name, a prior declaration is
10227 // looked up without considering scopes that are outside the
10228 // innermost enclosing non-class scope. For a friend function
10229 // declaration, if there is no prior declaration, the program is
10230 // ill-formed.
10231 bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10232 bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10233
10234 // Find the appropriate context according to the above.
10235 DC = CurContext;
10236 while (true) {
10237 // Skip class contexts. If someone can cite chapter and verse
10238 // for this behavior, that would be nice --- it's what GCC and
10239 // EDG do, and it seems like a reasonable intent, but the spec
10240 // really only says that checks for unqualified existing
10241 // declarations should stop at the nearest enclosing namespace,
10242 // not that they should only consider the nearest enclosing
10243 // namespace.
10244 while (DC->isRecord() || DC->isTransparentContext())
10245 DC = DC->getParent();
10246
10247 LookupQualifiedName(Previous, DC);
10248
10249 // TODO: decide what we think about using declarations.
10250 if (isLocal || !Previous.empty())
10251 break;
10252
10253 if (isTemplateId) {
10254 if (isa<TranslationUnitDecl>(DC)) break;
10255 } else {
10256 if (DC->isFileContext()) break;
10257 }
10258 DC = DC->getParent();
10259 }
10260
10261 // C++ [class.friend]p1: A friend of a class is a function or
10262 // class that is not a member of the class . . .
10263 // C++11 changes this for both friend types and functions.
10264 // Most C++ 98 compilers do seem to give an error here, so
10265 // we do, too.
10266 if (!Previous.empty() && DC->Equals(CurContext))
10267 Diag(DS.getFriendSpecLoc(),
10268 getLangOpts().CPlusPlus0x ?
10269 diag::warn_cxx98_compat_friend_is_member :
10270 diag::err_friend_is_member);
10271
10272 DCScope = getScopeForDeclContext(S, DC);
10273
10274 // C++ [class.friend]p6:
10275 // A function can be defined in a friend declaration of a class if and
10276 // only if the class is a non-local class (9.8), the function name is
10277 // unqualified, and the function has namespace scope.
10278 if (isLocal && D.isFunctionDefinition()) {
10279 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10280 }
10281
10282 // - There's a non-dependent scope specifier, in which case we
10283 // compute it and do a previous lookup there for a function
10284 // or function template.
10285 } else if (!SS.getScopeRep()->isDependent()) {
10286 DC = computeDeclContext(SS);
10287 if (!DC) return 0;
10288
10289 if (RequireCompleteDeclContext(SS, DC)) return 0;
10290
10291 LookupQualifiedName(Previous, DC);
10292
10293 // Ignore things found implicitly in the wrong scope.
10294 // TODO: better diagnostics for this case. Suggesting the right
10295 // qualified scope would be nice...
10296 LookupResult::Filter F = Previous.makeFilter();
10297 while (F.hasNext()) {
10298 NamedDecl *D = F.next();
10299 if (!DC->InEnclosingNamespaceSetOf(
10300 D->getDeclContext()->getRedeclContext()))
10301 F.erase();
10302 }
10303 F.done();
10304
10305 if (Previous.empty()) {
10306 D.setInvalidType();
10307 Diag(Loc, diag::err_qualified_friend_not_found)
10308 << Name << TInfo->getType();
10309 return 0;
10310 }
10311
10312 // C++ [class.friend]p1: A friend of a class is a function or
10313 // class that is not a member of the class . . .
10314 if (DC->Equals(CurContext))
10315 Diag(DS.getFriendSpecLoc(),
10316 getLangOpts().CPlusPlus0x ?
10317 diag::warn_cxx98_compat_friend_is_member :
10318 diag::err_friend_is_member);
10319
10320 if (D.isFunctionDefinition()) {
10321 // C++ [class.friend]p6:
10322 // A function can be defined in a friend declaration of a class if and
10323 // only if the class is a non-local class (9.8), the function name is
10324 // unqualified, and the function has namespace scope.
10325 SemaDiagnosticBuilder DB
10326 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10327
10328 DB << SS.getScopeRep();
10329 if (DC->isFileContext())
10330 DB << FixItHint::CreateRemoval(SS.getRange());
10331 SS.clear();
10332 }
10333
10334 // - There's a scope specifier that does not match any template
10335 // parameter lists, in which case we use some arbitrary context,
10336 // create a method or method template, and wait for instantiation.
10337 // - There's a scope specifier that does match some template
10338 // parameter lists, which we don't handle right now.
10339 } else {
10340 if (D.isFunctionDefinition()) {
10341 // C++ [class.friend]p6:
10342 // A function can be defined in a friend declaration of a class if and
10343 // only if the class is a non-local class (9.8), the function name is
10344 // unqualified, and the function has namespace scope.
10345 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10346 << SS.getScopeRep();
10347 }
10348
10349 DC = CurContext;
10350 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10351 }
10352
10353 if (!DC->isRecord()) {
10354 // This implies that it has to be an operator or function.
10355 if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10356 D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10357 D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10358 Diag(Loc, diag::err_introducing_special_friend) <<
10359 (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10360 D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10361 return 0;
10362 }
10363 }
10364
10365 // FIXME: This is an egregious hack to cope with cases where the scope stack
10366 // does not contain the declaration context, i.e., in an out-of-line
10367 // definition of a class.
10368 Scope FakeDCScope(S, Scope::DeclScope, Diags);
10369 if (!DCScope) {
10370 FakeDCScope.setEntity(DC);
10371 DCScope = &FakeDCScope;
10372 }
10373
10374 bool AddToScope = true;
10375 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10376 move(TemplateParams), AddToScope);
10377 if (!ND) return 0;
10378
10379 assert(ND->getDeclContext() == DC);
10380 assert(ND->getLexicalDeclContext() == CurContext);
10381
10382 // Add the function declaration to the appropriate lookup tables,
10383 // adjusting the redeclarations list as necessary. We don't
10384 // want to do this yet if the friending class is dependent.
10385 //
10386 // Also update the scope-based lookup if the target context's
10387 // lookup context is in lexical scope.
10388 if (!CurContext->isDependentContext()) {
10389 DC = DC->getRedeclContext();
10390 DC->makeDeclVisibleInContext(ND);
10391 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10392 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10393 }
10394
10395 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10396 D.getIdentifierLoc(), ND,
10397 DS.getFriendSpecLoc());
10398 FrD->setAccess(AS_public);
10399 CurContext->addDecl(FrD);
10400
10401 if (ND->isInvalidDecl())
10402 FrD->setInvalidDecl();
10403 else {
10404 FunctionDecl *FD;
10405 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10406 FD = FTD->getTemplatedDecl();
10407 else
10408 FD = cast<FunctionDecl>(ND);
10409
10410 // Mark templated-scope function declarations as unsupported.
10411 if (FD->getNumTemplateParameterLists())
10412 FrD->setUnsupportedFriend(true);
10413 }
10414
10415 return ND;
10416 }
10417
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)10418 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10419 AdjustDeclIfTemplate(Dcl);
10420
10421 FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10422 if (!Fn) {
10423 Diag(DelLoc, diag::err_deleted_non_function);
10424 return;
10425 }
10426 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10427 Diag(DelLoc, diag::err_deleted_decl_not_first);
10428 Diag(Prev->getLocation(), diag::note_previous_declaration);
10429 // If the declaration wasn't the first, we delete the function anyway for
10430 // recovery.
10431 }
10432 Fn->setDeletedAsWritten();
10433
10434 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10435 if (!MD)
10436 return;
10437
10438 // A deleted special member function is trivial if the corresponding
10439 // implicitly-declared function would have been.
10440 switch (getSpecialMember(MD)) {
10441 case CXXInvalid:
10442 break;
10443 case CXXDefaultConstructor:
10444 MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10445 break;
10446 case CXXCopyConstructor:
10447 MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10448 break;
10449 case CXXMoveConstructor:
10450 MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10451 break;
10452 case CXXCopyAssignment:
10453 MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10454 break;
10455 case CXXMoveAssignment:
10456 MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10457 break;
10458 case CXXDestructor:
10459 MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10460 break;
10461 }
10462 }
10463
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)10464 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10465 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10466
10467 if (MD) {
10468 if (MD->getParent()->isDependentType()) {
10469 MD->setDefaulted();
10470 MD->setExplicitlyDefaulted();
10471 return;
10472 }
10473
10474 CXXSpecialMember Member = getSpecialMember(MD);
10475 if (Member == CXXInvalid) {
10476 Diag(DefaultLoc, diag::err_default_special_members);
10477 return;
10478 }
10479
10480 MD->setDefaulted();
10481 MD->setExplicitlyDefaulted();
10482
10483 // If this definition appears within the record, do the checking when
10484 // the record is complete.
10485 const FunctionDecl *Primary = MD;
10486 if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10487 // Find the uninstantiated declaration that actually had the '= default'
10488 // on it.
10489 MD->getTemplateInstantiationPattern()->isDefined(Primary);
10490
10491 if (Primary == Primary->getCanonicalDecl())
10492 return;
10493
10494 switch (Member) {
10495 case CXXDefaultConstructor: {
10496 CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10497 CheckExplicitlyDefaultedDefaultConstructor(CD);
10498 if (!CD->isInvalidDecl())
10499 DefineImplicitDefaultConstructor(DefaultLoc, CD);
10500 break;
10501 }
10502
10503 case CXXCopyConstructor: {
10504 CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10505 CheckExplicitlyDefaultedCopyConstructor(CD);
10506 if (!CD->isInvalidDecl())
10507 DefineImplicitCopyConstructor(DefaultLoc, CD);
10508 break;
10509 }
10510
10511 case CXXCopyAssignment: {
10512 CheckExplicitlyDefaultedCopyAssignment(MD);
10513 if (!MD->isInvalidDecl())
10514 DefineImplicitCopyAssignment(DefaultLoc, MD);
10515 break;
10516 }
10517
10518 case CXXDestructor: {
10519 CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10520 CheckExplicitlyDefaultedDestructor(DD);
10521 if (!DD->isInvalidDecl())
10522 DefineImplicitDestructor(DefaultLoc, DD);
10523 break;
10524 }
10525
10526 case CXXMoveConstructor: {
10527 CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10528 CheckExplicitlyDefaultedMoveConstructor(CD);
10529 if (!CD->isInvalidDecl())
10530 DefineImplicitMoveConstructor(DefaultLoc, CD);
10531 break;
10532 }
10533
10534 case CXXMoveAssignment: {
10535 CheckExplicitlyDefaultedMoveAssignment(MD);
10536 if (!MD->isInvalidDecl())
10537 DefineImplicitMoveAssignment(DefaultLoc, MD);
10538 break;
10539 }
10540
10541 case CXXInvalid:
10542 llvm_unreachable("Invalid special member.");
10543 }
10544 } else {
10545 Diag(DefaultLoc, diag::err_default_special_members);
10546 }
10547 }
10548
SearchForReturnInStmt(Sema & Self,Stmt * S)10549 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10550 for (Stmt::child_range CI = S->children(); CI; ++CI) {
10551 Stmt *SubStmt = *CI;
10552 if (!SubStmt)
10553 continue;
10554 if (isa<ReturnStmt>(SubStmt))
10555 Self.Diag(SubStmt->getLocStart(),
10556 diag::err_return_in_constructor_handler);
10557 if (!isa<Expr>(SubStmt))
10558 SearchForReturnInStmt(Self, SubStmt);
10559 }
10560 }
10561
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)10562 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10563 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10564 CXXCatchStmt *Handler = TryBlock->getHandler(I);
10565 SearchForReturnInStmt(*this, Handler);
10566 }
10567 }
10568
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)10569 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10570 const CXXMethodDecl *Old) {
10571 QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10572 QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10573
10574 if (Context.hasSameType(NewTy, OldTy) ||
10575 NewTy->isDependentType() || OldTy->isDependentType())
10576 return false;
10577
10578 // Check if the return types are covariant
10579 QualType NewClassTy, OldClassTy;
10580
10581 /// Both types must be pointers or references to classes.
10582 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10583 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10584 NewClassTy = NewPT->getPointeeType();
10585 OldClassTy = OldPT->getPointeeType();
10586 }
10587 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10588 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10589 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10590 NewClassTy = NewRT->getPointeeType();
10591 OldClassTy = OldRT->getPointeeType();
10592 }
10593 }
10594 }
10595
10596 // The return types aren't either both pointers or references to a class type.
10597 if (NewClassTy.isNull()) {
10598 Diag(New->getLocation(),
10599 diag::err_different_return_type_for_overriding_virtual_function)
10600 << New->getDeclName() << NewTy << OldTy;
10601 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10602
10603 return true;
10604 }
10605
10606 // C++ [class.virtual]p6:
10607 // If the return type of D::f differs from the return type of B::f, the
10608 // class type in the return type of D::f shall be complete at the point of
10609 // declaration of D::f or shall be the class type D.
10610 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10611 if (!RT->isBeingDefined() &&
10612 RequireCompleteType(New->getLocation(), NewClassTy,
10613 PDiag(diag::err_covariant_return_incomplete)
10614 << New->getDeclName()))
10615 return true;
10616 }
10617
10618 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10619 // Check if the new class derives from the old class.
10620 if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10621 Diag(New->getLocation(),
10622 diag::err_covariant_return_not_derived)
10623 << New->getDeclName() << NewTy << OldTy;
10624 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10625 return true;
10626 }
10627
10628 // Check if we the conversion from derived to base is valid.
10629 if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10630 diag::err_covariant_return_inaccessible_base,
10631 diag::err_covariant_return_ambiguous_derived_to_base_conv,
10632 // FIXME: Should this point to the return type?
10633 New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10634 // FIXME: this note won't trigger for delayed access control
10635 // diagnostics, and it's impossible to get an undelayed error
10636 // here from access control during the original parse because
10637 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10638 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10639 return true;
10640 }
10641 }
10642
10643 // The qualifiers of the return types must be the same.
10644 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10645 Diag(New->getLocation(),
10646 diag::err_covariant_return_type_different_qualifications)
10647 << New->getDeclName() << NewTy << OldTy;
10648 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10649 return true;
10650 };
10651
10652
10653 // The new class type must have the same or less qualifiers as the old type.
10654 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10655 Diag(New->getLocation(),
10656 diag::err_covariant_return_type_class_type_more_qualified)
10657 << New->getDeclName() << NewTy << OldTy;
10658 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10659 return true;
10660 };
10661
10662 return false;
10663 }
10664
10665 /// \brief Mark the given method pure.
10666 ///
10667 /// \param Method the method to be marked pure.
10668 ///
10669 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)10670 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10671 SourceLocation EndLoc = InitRange.getEnd();
10672 if (EndLoc.isValid())
10673 Method->setRangeEnd(EndLoc);
10674
10675 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10676 Method->setPure();
10677 return false;
10678 }
10679
10680 if (!Method->isInvalidDecl())
10681 Diag(Method->getLocation(), diag::err_non_virtual_pure)
10682 << Method->getDeclName() << InitRange;
10683 return true;
10684 }
10685
10686 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(Decl * D)10687 static bool isStaticDataMember(Decl *D) {
10688 VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10689 if (!Var)
10690 return false;
10691
10692 return Var->isStaticDataMember();
10693 }
10694 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10695 /// an initializer for the out-of-line declaration 'Dcl'. The scope
10696 /// is a fresh scope pushed for just this purpose.
10697 ///
10698 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10699 /// static data member of class X, names should be looked up in the scope of
10700 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)10701 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10702 // If there is no declaration, there was an error parsing it.
10703 if (D == 0 || D->isInvalidDecl()) return;
10704
10705 // We should only get called for declarations with scope specifiers, like:
10706 // int foo::bar;
10707 assert(D->isOutOfLine());
10708 EnterDeclaratorContext(S, D->getDeclContext());
10709
10710 // If we are parsing the initializer for a static data member, push a
10711 // new expression evaluation context that is associated with this static
10712 // data member.
10713 if (isStaticDataMember(D))
10714 PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10715 }
10716
10717 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10718 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)10719 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10720 // If there is no declaration, there was an error parsing it.
10721 if (D == 0 || D->isInvalidDecl()) return;
10722
10723 if (isStaticDataMember(D))
10724 PopExpressionEvaluationContext();
10725
10726 assert(D->isOutOfLine());
10727 ExitDeclaratorContext(S);
10728 }
10729
10730 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10731 /// C++ if/switch/while/for statement.
10732 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)10733 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10734 // C++ 6.4p2:
10735 // The declarator shall not specify a function or an array.
10736 // The type-specifier-seq shall not contain typedef and shall not declare a
10737 // new class or enumeration.
10738 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10739 "Parser allowed 'typedef' as storage class of condition decl.");
10740
10741 Decl *Dcl = ActOnDeclarator(S, D);
10742 if (!Dcl)
10743 return true;
10744
10745 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10746 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10747 << D.getSourceRange();
10748 return true;
10749 }
10750
10751 return Dcl;
10752 }
10753
LoadExternalVTableUses()10754 void Sema::LoadExternalVTableUses() {
10755 if (!ExternalSource)
10756 return;
10757
10758 SmallVector<ExternalVTableUse, 4> VTables;
10759 ExternalSource->ReadUsedVTables(VTables);
10760 SmallVector<VTableUse, 4> NewUses;
10761 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10762 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10763 = VTablesUsed.find(VTables[I].Record);
10764 // Even if a definition wasn't required before, it may be required now.
10765 if (Pos != VTablesUsed.end()) {
10766 if (!Pos->second && VTables[I].DefinitionRequired)
10767 Pos->second = true;
10768 continue;
10769 }
10770
10771 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10772 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10773 }
10774
10775 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10776 }
10777
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)10778 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10779 bool DefinitionRequired) {
10780 // Ignore any vtable uses in unevaluated operands or for classes that do
10781 // not have a vtable.
10782 if (!Class->isDynamicClass() || Class->isDependentContext() ||
10783 CurContext->isDependentContext() ||
10784 ExprEvalContexts.back().Context == Unevaluated)
10785 return;
10786
10787 // Try to insert this class into the map.
10788 LoadExternalVTableUses();
10789 Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10790 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10791 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10792 if (!Pos.second) {
10793 // If we already had an entry, check to see if we are promoting this vtable
10794 // to required a definition. If so, we need to reappend to the VTableUses
10795 // list, since we may have already processed the first entry.
10796 if (DefinitionRequired && !Pos.first->second) {
10797 Pos.first->second = true;
10798 } else {
10799 // Otherwise, we can early exit.
10800 return;
10801 }
10802 }
10803
10804 // Local classes need to have their virtual members marked
10805 // immediately. For all other classes, we mark their virtual members
10806 // at the end of the translation unit.
10807 if (Class->isLocalClass())
10808 MarkVirtualMembersReferenced(Loc, Class);
10809 else
10810 VTableUses.push_back(std::make_pair(Class, Loc));
10811 }
10812
DefineUsedVTables()10813 bool Sema::DefineUsedVTables() {
10814 LoadExternalVTableUses();
10815 if (VTableUses.empty())
10816 return false;
10817
10818 // Note: The VTableUses vector could grow as a result of marking
10819 // the members of a class as "used", so we check the size each
10820 // time through the loop and prefer indices (with are stable) to
10821 // iterators (which are not).
10822 bool DefinedAnything = false;
10823 for (unsigned I = 0; I != VTableUses.size(); ++I) {
10824 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10825 if (!Class)
10826 continue;
10827
10828 SourceLocation Loc = VTableUses[I].second;
10829
10830 // If this class has a key function, but that key function is
10831 // defined in another translation unit, we don't need to emit the
10832 // vtable even though we're using it.
10833 const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10834 if (KeyFunction && !KeyFunction->hasBody()) {
10835 switch (KeyFunction->getTemplateSpecializationKind()) {
10836 case TSK_Undeclared:
10837 case TSK_ExplicitSpecialization:
10838 case TSK_ExplicitInstantiationDeclaration:
10839 // The key function is in another translation unit.
10840 continue;
10841
10842 case TSK_ExplicitInstantiationDefinition:
10843 case TSK_ImplicitInstantiation:
10844 // We will be instantiating the key function.
10845 break;
10846 }
10847 } else if (!KeyFunction) {
10848 // If we have a class with no key function that is the subject
10849 // of an explicit instantiation declaration, suppress the
10850 // vtable; it will live with the explicit instantiation
10851 // definition.
10852 bool IsExplicitInstantiationDeclaration
10853 = Class->getTemplateSpecializationKind()
10854 == TSK_ExplicitInstantiationDeclaration;
10855 for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10856 REnd = Class->redecls_end();
10857 R != REnd; ++R) {
10858 TemplateSpecializationKind TSK
10859 = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10860 if (TSK == TSK_ExplicitInstantiationDeclaration)
10861 IsExplicitInstantiationDeclaration = true;
10862 else if (TSK == TSK_ExplicitInstantiationDefinition) {
10863 IsExplicitInstantiationDeclaration = false;
10864 break;
10865 }
10866 }
10867
10868 if (IsExplicitInstantiationDeclaration)
10869 continue;
10870 }
10871
10872 // Mark all of the virtual members of this class as referenced, so
10873 // that we can build a vtable. Then, tell the AST consumer that a
10874 // vtable for this class is required.
10875 DefinedAnything = true;
10876 MarkVirtualMembersReferenced(Loc, Class);
10877 CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10878 Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10879
10880 // Optionally warn if we're emitting a weak vtable.
10881 if (Class->getLinkage() == ExternalLinkage &&
10882 Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10883 const FunctionDecl *KeyFunctionDef = 0;
10884 if (!KeyFunction ||
10885 (KeyFunction->hasBody(KeyFunctionDef) &&
10886 KeyFunctionDef->isInlined()))
10887 Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10888 TSK_ExplicitInstantiationDefinition
10889 ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10890 << Class;
10891 }
10892 }
10893 VTableUses.clear();
10894
10895 return DefinedAnything;
10896 }
10897
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)10898 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10899 const CXXRecordDecl *RD) {
10900 for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10901 e = RD->method_end(); i != e; ++i) {
10902 CXXMethodDecl *MD = *i;
10903
10904 // C++ [basic.def.odr]p2:
10905 // [...] A virtual member function is used if it is not pure. [...]
10906 if (MD->isVirtual() && !MD->isPure())
10907 MarkFunctionReferenced(Loc, MD);
10908 }
10909
10910 // Only classes that have virtual bases need a VTT.
10911 if (RD->getNumVBases() == 0)
10912 return;
10913
10914 for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10915 e = RD->bases_end(); i != e; ++i) {
10916 const CXXRecordDecl *Base =
10917 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10918 if (Base->getNumVBases() == 0)
10919 continue;
10920 MarkVirtualMembersReferenced(Loc, Base);
10921 }
10922 }
10923
10924 /// SetIvarInitializers - This routine builds initialization ASTs for the
10925 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)10926 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10927 if (!getLangOpts().CPlusPlus)
10928 return;
10929 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10930 SmallVector<ObjCIvarDecl*, 8> ivars;
10931 CollectIvarsToConstructOrDestruct(OID, ivars);
10932 if (ivars.empty())
10933 return;
10934 SmallVector<CXXCtorInitializer*, 32> AllToInit;
10935 for (unsigned i = 0; i < ivars.size(); i++) {
10936 FieldDecl *Field = ivars[i];
10937 if (Field->isInvalidDecl())
10938 continue;
10939
10940 CXXCtorInitializer *Member;
10941 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10942 InitializationKind InitKind =
10943 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10944
10945 InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10946 ExprResult MemberInit =
10947 InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10948 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10949 // Note, MemberInit could actually come back empty if no initialization
10950 // is required (e.g., because it would call a trivial default constructor)
10951 if (!MemberInit.get() || MemberInit.isInvalid())
10952 continue;
10953
10954 Member =
10955 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10956 SourceLocation(),
10957 MemberInit.takeAs<Expr>(),
10958 SourceLocation());
10959 AllToInit.push_back(Member);
10960
10961 // Be sure that the destructor is accessible and is marked as referenced.
10962 if (const RecordType *RecordTy
10963 = Context.getBaseElementType(Field->getType())
10964 ->getAs<RecordType>()) {
10965 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10966 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10967 MarkFunctionReferenced(Field->getLocation(), Destructor);
10968 CheckDestructorAccess(Field->getLocation(), Destructor,
10969 PDiag(diag::err_access_dtor_ivar)
10970 << Context.getBaseElementType(Field->getType()));
10971 }
10972 }
10973 }
10974 ObjCImplementation->setIvarInitializers(Context,
10975 AllToInit.data(), AllToInit.size());
10976 }
10977 }
10978
10979 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)10980 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10981 llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10982 llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10983 llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10984 Sema &S) {
10985 llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10986 CE = Current.end();
10987 if (Ctor->isInvalidDecl())
10988 return;
10989
10990 const FunctionDecl *FNTarget = 0;
10991 CXXConstructorDecl *Target;
10992
10993 // We ignore the result here since if we don't have a body, Target will be
10994 // null below.
10995 (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10996 Target
10997 = const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10998
10999 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11000 // Avoid dereferencing a null pointer here.
11001 *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11002
11003 if (!Current.insert(Canonical))
11004 return;
11005
11006 // We know that beyond here, we aren't chaining into a cycle.
11007 if (!Target || !Target->isDelegatingConstructor() ||
11008 Target->isInvalidDecl() || Valid.count(TCanonical)) {
11009 for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11010 Valid.insert(*CI);
11011 Current.clear();
11012 // We've hit a cycle.
11013 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11014 Current.count(TCanonical)) {
11015 // If we haven't diagnosed this cycle yet, do so now.
11016 if (!Invalid.count(TCanonical)) {
11017 S.Diag((*Ctor->init_begin())->getSourceLocation(),
11018 diag::warn_delegating_ctor_cycle)
11019 << Ctor;
11020
11021 // Don't add a note for a function delegating directo to itself.
11022 if (TCanonical != Canonical)
11023 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11024
11025 CXXConstructorDecl *C = Target;
11026 while (C->getCanonicalDecl() != Canonical) {
11027 (void)C->getTargetConstructor()->hasBody(FNTarget);
11028 assert(FNTarget && "Ctor cycle through bodiless function");
11029
11030 C
11031 = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11032 S.Diag(C->getLocation(), diag::note_which_delegates_to);
11033 }
11034 }
11035
11036 for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11037 Invalid.insert(*CI);
11038 Current.clear();
11039 } else {
11040 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11041 }
11042 }
11043
11044
CheckDelegatingCtorCycles()11045 void Sema::CheckDelegatingCtorCycles() {
11046 llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11047
11048 llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11049 CE = Current.end();
11050
11051 for (DelegatingCtorDeclsType::iterator
11052 I = DelegatingCtorDecls.begin(ExternalSource),
11053 E = DelegatingCtorDecls.end();
11054 I != E; ++I) {
11055 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11056 }
11057
11058 for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11059 (*CI)->setInvalidDecl();
11060 }
11061
11062 namespace {
11063 /// \brief AST visitor that finds references to the 'this' expression.
11064 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11065 Sema &S;
11066
11067 public:
FindCXXThisExpr(Sema & S)11068 explicit FindCXXThisExpr(Sema &S) : S(S) { }
11069
VisitCXXThisExpr(CXXThisExpr * E)11070 bool VisitCXXThisExpr(CXXThisExpr *E) {
11071 S.Diag(E->getLocation(), diag::err_this_static_member_func)
11072 << E->isImplicit();
11073 return false;
11074 }
11075 };
11076 }
11077
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)11078 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11079 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11080 if (!TSInfo)
11081 return false;
11082
11083 TypeLoc TL = TSInfo->getTypeLoc();
11084 FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11085 if (!ProtoTL)
11086 return false;
11087
11088 // C++11 [expr.prim.general]p3:
11089 // [The expression this] shall not appear before the optional
11090 // cv-qualifier-seq and it shall not appear within the declaration of a
11091 // static member function (although its type and value category are defined
11092 // within a static member function as they are within a non-static member
11093 // function). [ Note: this is because declaration matching does not occur
11094 // until the complete declarator is known. — end note ]
11095 const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11096 FindCXXThisExpr Finder(*this);
11097
11098 // If the return type came after the cv-qualifier-seq, check it now.
11099 if (Proto->hasTrailingReturn() &&
11100 !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11101 return true;
11102
11103 // Check the exception specification.
11104 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11105 return true;
11106
11107 return checkThisInStaticMemberFunctionAttributes(Method);
11108 }
11109
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)11110 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11111 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11112 if (!TSInfo)
11113 return false;
11114
11115 TypeLoc TL = TSInfo->getTypeLoc();
11116 FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11117 if (!ProtoTL)
11118 return false;
11119
11120 const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11121 FindCXXThisExpr Finder(*this);
11122
11123 switch (Proto->getExceptionSpecType()) {
11124 case EST_Uninstantiated:
11125 case EST_BasicNoexcept:
11126 case EST_Delayed:
11127 case EST_DynamicNone:
11128 case EST_MSAny:
11129 case EST_None:
11130 break;
11131
11132 case EST_ComputedNoexcept:
11133 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11134 return true;
11135
11136 case EST_Dynamic:
11137 for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11138 EEnd = Proto->exception_end();
11139 E != EEnd; ++E) {
11140 if (!Finder.TraverseType(*E))
11141 return true;
11142 }
11143 break;
11144 }
11145
11146 return false;
11147 }
11148
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)11149 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11150 FindCXXThisExpr Finder(*this);
11151
11152 // Check attributes.
11153 for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11154 A != AEnd; ++A) {
11155 // FIXME: This should be emitted by tblgen.
11156 Expr *Arg = 0;
11157 ArrayRef<Expr *> Args;
11158 if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11159 Arg = G->getArg();
11160 else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11161 Arg = G->getArg();
11162 else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11163 Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11164 else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11165 Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11166 else if (ExclusiveLockFunctionAttr *ELF
11167 = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11168 Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11169 else if (SharedLockFunctionAttr *SLF
11170 = dyn_cast<SharedLockFunctionAttr>(*A))
11171 Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11172 else if (ExclusiveTrylockFunctionAttr *ETLF
11173 = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11174 Arg = ETLF->getSuccessValue();
11175 Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11176 } else if (SharedTrylockFunctionAttr *STLF
11177 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11178 Arg = STLF->getSuccessValue();
11179 Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11180 } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11181 Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11182 else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11183 Arg = LR->getArg();
11184 else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11185 Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11186 else if (ExclusiveLocksRequiredAttr *ELR
11187 = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11188 Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11189 else if (SharedLocksRequiredAttr *SLR
11190 = dyn_cast<SharedLocksRequiredAttr>(*A))
11191 Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11192
11193 if (Arg && !Finder.TraverseStmt(Arg))
11194 return true;
11195
11196 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11197 if (!Finder.TraverseStmt(Args[I]))
11198 return true;
11199 }
11200 }
11201
11202 return false;
11203 }
11204
11205 void
checkExceptionSpecification(ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,llvm::SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExtProtoInfo & EPI)11206 Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11207 ArrayRef<ParsedType> DynamicExceptions,
11208 ArrayRef<SourceRange> DynamicExceptionRanges,
11209 Expr *NoexceptExpr,
11210 llvm::SmallVectorImpl<QualType> &Exceptions,
11211 FunctionProtoType::ExtProtoInfo &EPI) {
11212 Exceptions.clear();
11213 EPI.ExceptionSpecType = EST;
11214 if (EST == EST_Dynamic) {
11215 Exceptions.reserve(DynamicExceptions.size());
11216 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11217 // FIXME: Preserve type source info.
11218 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11219
11220 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11221 collectUnexpandedParameterPacks(ET, Unexpanded);
11222 if (!Unexpanded.empty()) {
11223 DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11224 UPPC_ExceptionType,
11225 Unexpanded);
11226 continue;
11227 }
11228
11229 // Check that the type is valid for an exception spec, and
11230 // drop it if not.
11231 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11232 Exceptions.push_back(ET);
11233 }
11234 EPI.NumExceptions = Exceptions.size();
11235 EPI.Exceptions = Exceptions.data();
11236 return;
11237 }
11238
11239 if (EST == EST_ComputedNoexcept) {
11240 // If an error occurred, there's no expression here.
11241 if (NoexceptExpr) {
11242 assert((NoexceptExpr->isTypeDependent() ||
11243 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11244 Context.BoolTy) &&
11245 "Parser should have made sure that the expression is boolean");
11246 if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11247 EPI.ExceptionSpecType = EST_BasicNoexcept;
11248 return;
11249 }
11250
11251 if (!NoexceptExpr->isValueDependent())
11252 NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11253 PDiag(diag::err_noexcept_needs_constant_expression),
11254 /*AllowFold*/ false).take();
11255 EPI.NoexceptExpr = NoexceptExpr;
11256 }
11257 return;
11258 }
11259 }
11260
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)11261 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
11262 ExceptionSpecificationType EST,
11263 SourceRange SpecificationRange,
11264 ArrayRef<ParsedType> DynamicExceptions,
11265 ArrayRef<SourceRange> DynamicExceptionRanges,
11266 Expr *NoexceptExpr) {
11267 if (!MethodD)
11268 return;
11269
11270 // Dig out the method we're referring to.
11271 CXXMethodDecl *Method = 0;
11272 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
11273 Method = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
11274 else
11275 Method = dyn_cast<CXXMethodDecl>(MethodD);
11276
11277 if (!Method)
11278 return;
11279
11280 // Dig out the prototype. This should never fail.
11281 const FunctionProtoType *Proto
11282 = dyn_cast<FunctionProtoType>(Method->getType());
11283 if (!Proto)
11284 return;
11285
11286 // Check the exception specification.
11287 llvm::SmallVector<QualType, 4> Exceptions;
11288 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
11289 checkExceptionSpecification(EST, DynamicExceptions, DynamicExceptionRanges,
11290 NoexceptExpr, Exceptions, EPI);
11291
11292 // Rebuild the function type.
11293 QualType T = Context.getFunctionType(Proto->getResultType(),
11294 Proto->arg_type_begin(),
11295 Proto->getNumArgs(),
11296 EPI);
11297 if (TypeSourceInfo *TSInfo = Method->getTypeSourceInfo()) {
11298 // FIXME: When we get proper type location information for exceptions,
11299 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
11300 // up the TypeSourceInfo;
11301 assert(TypeLoc::getFullDataSizeForType(T)
11302 == TypeLoc::getFullDataSizeForType(Method->getType()) &&
11303 "TypeLoc size mismatch with delayed exception specification");
11304 TSInfo->overrideType(T);
11305 }
11306
11307 Method->setType(T);
11308
11309 if (Method->isStatic())
11310 checkThisInStaticMemberFunctionExceptionSpec(Method);
11311
11312 if (Method->isVirtual()) {
11313 // Check overrides, which we previously had to delay.
11314 for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
11315 OEnd = Method->end_overridden_methods();
11316 O != OEnd; ++O)
11317 CheckOverridingFunctionExceptionSpec(Method, *O);
11318 }
11319 }
11320
11321 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
IdentifyCUDATarget(const FunctionDecl * D)11322 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11323 // Implicitly declared functions (e.g. copy constructors) are
11324 // __host__ __device__
11325 if (D->isImplicit())
11326 return CFT_HostDevice;
11327
11328 if (D->hasAttr<CUDAGlobalAttr>())
11329 return CFT_Global;
11330
11331 if (D->hasAttr<CUDADeviceAttr>()) {
11332 if (D->hasAttr<CUDAHostAttr>())
11333 return CFT_HostDevice;
11334 else
11335 return CFT_Device;
11336 }
11337
11338 return CFT_Host;
11339 }
11340
CheckCUDATarget(CUDAFunctionTarget CallerTarget,CUDAFunctionTarget CalleeTarget)11341 bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11342 CUDAFunctionTarget CalleeTarget) {
11343 // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11344 // Callable from the device only."
11345 if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11346 return true;
11347
11348 // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11349 // Callable from the host only."
11350 // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11351 // Callable from the host only."
11352 if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11353 (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11354 return true;
11355
11356 if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11357 return true;
11358
11359 return false;
11360 }
11361