• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Mc/McInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17 
18 #include "llvm/Support/DataTypes.h"
19 
20 namespace llvm {
21 
22 //===----------------------------------------------------------------------===//
23 // Machine Operand Flags and Description
24 //===----------------------------------------------------------------------===//
25 
26 namespace MCOI {
27   // Operand constraints
28   enum OperandConstraint {
29     TIED_TO = 0,    // Must be allocated the same register as.
30     EARLY_CLOBBER   // Operand is an early clobber register operand
31   };
32 
33   /// OperandFlags - These are flags set on operands, but should be considered
34   /// private, all access should go through the MCOperandInfo accessors.
35   /// See the accessors for a description of what these are.
36   enum OperandFlags {
37     LookupPtrRegClass = 0,
38     Predicate,
39     OptionalDef
40   };
41 
42   /// Operand Type - Operands are tagged with one of the values of this enum.
43   enum OperandType {
44     OPERAND_UNKNOWN,
45     OPERAND_IMMEDIATE,
46     OPERAND_REGISTER,
47     OPERAND_MEMORY,
48     OPERAND_PCREL
49   };
50 }
51 
52 /// MCOperandInfo - This holds information about one operand of a machine
53 /// instruction, indicating the register class for register operands, etc.
54 ///
55 class MCOperandInfo {
56 public:
57   /// RegClass - This specifies the register class enumeration of the operand
58   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
59   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
60   /// get a dynamic register class.
61   int16_t RegClass;
62 
63   /// Flags - These are flags from the MCOI::OperandFlags enum.
64   uint8_t Flags;
65 
66   /// OperandType - Information about the type of the operand.
67   uint8_t OperandType;
68 
69   /// Lower 16 bits are used to specify which constraints are set. The higher 16
70   /// bits are used to specify the value of constraints (4 bits each).
71   uint32_t Constraints;
72   /// Currently no other information.
73 
74   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
75   /// requires a callback to look up its register class.
isLookupPtrRegClass()76   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
77 
78   /// isPredicate - Set if this is one of the operands that made up of
79   /// the predicate operand that controls an isPredicable() instruction.
isPredicate()80   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
81 
82   /// isOptionalDef - Set if this operand is a optional def.
83   ///
isOptionalDef()84   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
85 };
86 
87 
88 //===----------------------------------------------------------------------===//
89 // Machine Instruction Flags and Description
90 //===----------------------------------------------------------------------===//
91 
92 /// MCInstrDesc flags - These should be considered private to the
93 /// implementation of the MCInstrDesc class.  Clients should use the predicate
94 /// methods on MCInstrDesc, not use these directly.  These all correspond to
95 /// bitfields in the MCInstrDesc::Flags field.
96 namespace MCID {
97   enum {
98     Variadic = 0,
99     HasOptionalDef,
100     Pseudo,
101     Return,
102     Call,
103     Barrier,
104     Terminator,
105     Branch,
106     IndirectBranch,
107     Compare,
108     MoveImm,
109     Bitcast,
110     DelaySlot,
111     FoldableAsLoad,
112     MayLoad,
113     MayStore,
114     Predicable,
115     NotDuplicable,
116     UnmodeledSideEffects,
117     Commutable,
118     ConvertibleTo3Addr,
119     UsesCustomInserter,
120     HasPostISelHook,
121     Rematerializable,
122     CheapAsAMove,
123     ExtraSrcRegAllocReq,
124     ExtraDefRegAllocReq
125   };
126 }
127 
128 /// MCInstrDesc - Describe properties that are true of each instruction in the
129 /// target description file.  This captures information about side effects,
130 /// register use and many other things.  There is one instance of this struct
131 /// for each target instruction class, and the MachineInstr class points to
132 /// this struct directly to describe itself.
133 class MCInstrDesc {
134 public:
135   unsigned short  Opcode;        // The opcode number
136   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
137   unsigned short  NumDefs;       // Num of args that are definitions
138   unsigned short  SchedClass;    // enum identifying instr sched class
139   unsigned short  Size;          // Number of bytes in encoding.
140   unsigned        Flags;         // Flags identifying machine instr class
141   uint64_t        TSFlags;       // Target Specific Flag values
142   const uint16_t *ImplicitUses;  // Registers implicitly read by this instr
143   const uint16_t *ImplicitDefs;  // Registers implicitly defined by this instr
144   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
145 
146   /// getOperandConstraint - Returns the value of the specific constraint if
147   /// it is set. Returns -1 if it is not set.
getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)148   int getOperandConstraint(unsigned OpNum,
149                            MCOI::OperandConstraint Constraint) const {
150     if (OpNum < NumOperands &&
151         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
152       unsigned Pos = 16 + Constraint * 4;
153       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
154     }
155     return -1;
156   }
157 
158   /// getOpcode - Return the opcode number for this descriptor.
getOpcode()159   unsigned getOpcode() const {
160     return Opcode;
161   }
162 
163   /// getNumOperands - Return the number of declared MachineOperands for this
164   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
165   /// instructions may have additional operands at the end of the list, and note
166   /// that the machine instruction may include implicit register def/uses as
167   /// well.
getNumOperands()168   unsigned getNumOperands() const {
169     return NumOperands;
170   }
171 
172   /// getNumDefs - Return the number of MachineOperands that are register
173   /// definitions.  Register definitions always occur at the start of the
174   /// machine operand list.  This is the number of "outs" in the .td file,
175   /// and does not include implicit defs.
getNumDefs()176   unsigned getNumDefs() const {
177     return NumDefs;
178   }
179 
180   /// getFlags - Return flags of this instruction.
181   ///
getFlags()182   unsigned getFlags() const { return Flags; }
183 
184   /// isVariadic - Return true if this instruction can have a variable number of
185   /// operands.  In this case, the variable operands will be after the normal
186   /// operands but before the implicit definitions and uses (if any are
187   /// present).
isVariadic()188   bool isVariadic() const {
189     return Flags & (1 << MCID::Variadic);
190   }
191 
192   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
193   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()194   bool hasOptionalDef() const {
195     return Flags & (1 << MCID::HasOptionalDef);
196   }
197 
198   /// isPseudo - Return true if this is a pseudo instruction that doesn't
199   /// correspond to a real machine instruction.
200   ///
isPseudo()201   bool isPseudo() const {
202     return Flags & (1 << MCID::Pseudo);
203   }
204 
isReturn()205   bool isReturn() const {
206     return Flags & (1 << MCID::Return);
207   }
208 
isCall()209   bool isCall() const {
210     return Flags & (1 << MCID::Call);
211   }
212 
213   /// isBarrier - Returns true if the specified instruction stops control flow
214   /// from executing the instruction immediately following it.  Examples include
215   /// unconditional branches and return instructions.
isBarrier()216   bool isBarrier() const {
217     return Flags & (1 << MCID::Barrier);
218   }
219 
220   /// isTerminator - Returns true if this instruction part of the terminator for
221   /// a basic block.  Typically this is things like return and branch
222   /// instructions.
223   ///
224   /// Various passes use this to insert code into the bottom of a basic block,
225   /// but before control flow occurs.
isTerminator()226   bool isTerminator() const {
227     return Flags & (1 << MCID::Terminator);
228   }
229 
230   /// isBranch - Returns true if this is a conditional, unconditional, or
231   /// indirect branch.  Predicates below can be used to discriminate between
232   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
233   /// get more information.
isBranch()234   bool isBranch() const {
235     return Flags & (1 << MCID::Branch);
236   }
237 
238   /// isIndirectBranch - Return true if this is an indirect branch, such as a
239   /// branch through a register.
isIndirectBranch()240   bool isIndirectBranch() const {
241     return Flags & (1 << MCID::IndirectBranch);
242   }
243 
244   /// isConditionalBranch - Return true if this is a branch which may fall
245   /// through to the next instruction or may transfer control flow to some other
246   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
247   /// information about this branch.
isConditionalBranch()248   bool isConditionalBranch() const {
249     return isBranch() & !isBarrier() & !isIndirectBranch();
250   }
251 
252   /// isUnconditionalBranch - Return true if this is a branch which always
253   /// transfers control flow to some other block.  The
254   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
255   /// about this branch.
isUnconditionalBranch()256   bool isUnconditionalBranch() const {
257     return isBranch() & isBarrier() & !isIndirectBranch();
258   }
259 
260   // isPredicable - Return true if this instruction has a predicate operand that
261   // controls execution.  It may be set to 'always', or may be set to other
262   /// values.   There are various methods in TargetInstrInfo that can be used to
263   /// control and modify the predicate in this instruction.
isPredicable()264   bool isPredicable() const {
265     return Flags & (1 << MCID::Predicable);
266   }
267 
268   /// isCompare - Return true if this instruction is a comparison.
isCompare()269   bool isCompare() const {
270     return Flags & (1 << MCID::Compare);
271   }
272 
273   /// isMoveImmediate - Return true if this instruction is a move immediate
274   /// (including conditional moves) instruction.
isMoveImmediate()275   bool isMoveImmediate() const {
276     return Flags & (1 << MCID::MoveImm);
277   }
278 
279   /// isBitcast - Return true if this instruction is a bitcast instruction.
280   ///
isBitcast()281   bool isBitcast() const {
282     return Flags & (1 << MCID::Bitcast);
283   }
284 
285   /// isNotDuplicable - Return true if this instruction cannot be safely
286   /// duplicated.  For example, if the instruction has a unique labels attached
287   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()288   bool isNotDuplicable() const {
289     return Flags & (1 << MCID::NotDuplicable);
290   }
291 
292   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
293   /// which must be filled by the code generator.
hasDelaySlot()294   bool hasDelaySlot() const {
295     return Flags & (1 << MCID::DelaySlot);
296   }
297 
298   /// canFoldAsLoad - Return true for instructions that can be folded as
299   /// memory operands in other instructions. The most common use for this
300   /// is instructions that are simple loads from memory that don't modify
301   /// the loaded value in any way, but it can also be used for instructions
302   /// that can be expressed as constant-pool loads, such as V_SETALLONES
303   /// on x86, to allow them to be folded when it is beneficial.
304   /// This should only be set on instructions that return a value in their
305   /// only virtual register definition.
canFoldAsLoad()306   bool canFoldAsLoad() const {
307     return Flags & (1 << MCID::FoldableAsLoad);
308   }
309 
310   //===--------------------------------------------------------------------===//
311   // Side Effect Analysis
312   //===--------------------------------------------------------------------===//
313 
314   /// mayLoad - Return true if this instruction could possibly read memory.
315   /// Instructions with this flag set are not necessarily simple load
316   /// instructions, they may load a value and modify it, for example.
mayLoad()317   bool mayLoad() const {
318     return Flags & (1 << MCID::MayLoad);
319   }
320 
321 
322   /// mayStore - Return true if this instruction could possibly modify memory.
323   /// Instructions with this flag set are not necessarily simple store
324   /// instructions, they may store a modified value based on their operands, or
325   /// may not actually modify anything, for example.
mayStore()326   bool mayStore() const {
327     return Flags & (1 << MCID::MayStore);
328   }
329 
330   /// hasUnmodeledSideEffects - Return true if this instruction has side
331   /// effects that are not modeled by other flags.  This does not return true
332   /// for instructions whose effects are captured by:
333   ///
334   ///  1. Their operand list and implicit definition/use list.  Register use/def
335   ///     info is explicit for instructions.
336   ///  2. Memory accesses.  Use mayLoad/mayStore.
337   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
338   ///
339   /// Examples of side effects would be modifying 'invisible' machine state like
340   /// a control register, flushing a cache, modifying a register invisible to
341   /// LLVM, etc.
342   ///
hasUnmodeledSideEffects()343   bool hasUnmodeledSideEffects() const {
344     return Flags & (1 << MCID::UnmodeledSideEffects);
345   }
346 
347   //===--------------------------------------------------------------------===//
348   // Flags that indicate whether an instruction can be modified by a method.
349   //===--------------------------------------------------------------------===//
350 
351   /// isCommutable - Return true if this may be a 2- or 3-address
352   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
353   /// result if Y and Z are exchanged.  If this flag is set, then the
354   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
355   /// instruction.
356   ///
357   /// Note that this flag may be set on instructions that are only commutable
358   /// sometimes.  In these cases, the call to commuteInstruction will fail.
359   /// Also note that some instructions require non-trivial modification to
360   /// commute them.
isCommutable()361   bool isCommutable() const {
362     return Flags & (1 << MCID::Commutable);
363   }
364 
365   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
366   /// which can be changed into a 3-address instruction if needed.  Doing this
367   /// transformation can be profitable in the register allocator, because it
368   /// means that the instruction can use a 2-address form if possible, but
369   /// degrade into a less efficient form if the source and dest register cannot
370   /// be assigned to the same register.  For example, this allows the x86
371   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
372   /// is the same speed as the shift but has bigger code size.
373   ///
374   /// If this returns true, then the target must implement the
375   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
376   /// is allowed to fail if the transformation isn't valid for this specific
377   /// instruction (e.g. shl reg, 4 on x86).
378   ///
isConvertibleTo3Addr()379   bool isConvertibleTo3Addr() const {
380     return Flags & (1 << MCID::ConvertibleTo3Addr);
381   }
382 
383   /// usesCustomInsertionHook - Return true if this instruction requires
384   /// custom insertion support when the DAG scheduler is inserting it into a
385   /// machine basic block.  If this is true for the instruction, it basically
386   /// means that it is a pseudo instruction used at SelectionDAG time that is
387   /// expanded out into magic code by the target when MachineInstrs are formed.
388   ///
389   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
390   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()391   bool usesCustomInsertionHook() const {
392     return Flags & (1 << MCID::UsesCustomInserter);
393   }
394 
395   /// hasPostISelHook - Return true if this instruction requires *adjustment*
396   /// after instruction selection by calling a target hook. For example, this
397   /// can be used to fill in ARM 's' optional operand depending on whether
398   /// the conditional flag register is used.
hasPostISelHook()399   bool hasPostISelHook() const {
400     return Flags & (1 << MCID::HasPostISelHook);
401   }
402 
403   /// isRematerializable - Returns true if this instruction is a candidate for
404   /// remat.  This flag is deprecated, please don't use it anymore.  If this
405   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
406   /// verify the instruction is really rematable.
isRematerializable()407   bool isRematerializable() const {
408     return Flags & (1 << MCID::Rematerializable);
409   }
410 
411   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
412   /// less) than a move instruction. This is useful during certain types of
413   /// optimizations (e.g., remat during two-address conversion or machine licm)
414   /// where we would like to remat or hoist the instruction, but not if it costs
415   /// more than moving the instruction into the appropriate register. Note, we
416   /// are not marking copies from and to the same register class with this flag.
isAsCheapAsAMove()417   bool isAsCheapAsAMove() const {
418     return Flags & (1 << MCID::CheapAsAMove);
419   }
420 
421   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
422   /// have special register allocation requirements that are not captured by the
423   /// operand register classes. e.g. ARM::STRD's two source registers must be an
424   /// even / odd pair, ARM::STM registers have to be in ascending order.
425   /// Post-register allocation passes should not attempt to change allocations
426   /// for sources of instructions with this flag.
hasExtraSrcRegAllocReq()427   bool hasExtraSrcRegAllocReq() const {
428     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
429   }
430 
431   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
432   /// have special register allocation requirements that are not captured by the
433   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
434   /// even / odd pair, ARM::LDM registers have to be in ascending order.
435   /// Post-register allocation passes should not attempt to change allocations
436   /// for definitions of instructions with this flag.
hasExtraDefRegAllocReq()437   bool hasExtraDefRegAllocReq() const {
438     return Flags & (1 << MCID::ExtraDefRegAllocReq);
439   }
440 
441 
442   /// getImplicitUses - Return a list of registers that are potentially
443   /// read by any instance of this machine instruction.  For example, on X86,
444   /// the "adc" instruction adds two register operands and adds the carry bit in
445   /// from the flags register.  In this case, the instruction is marked as
446   /// implicitly reading the flags.  Likewise, the variable shift instruction on
447   /// X86 is marked as implicitly reading the 'CL' register, which it always
448   /// does.
449   ///
450   /// This method returns null if the instruction has no implicit uses.
getImplicitUses()451   const uint16_t *getImplicitUses() const {
452     return ImplicitUses;
453   }
454 
455   /// getNumImplicitUses - Return the number of implicit uses this instruction
456   /// has.
getNumImplicitUses()457   unsigned getNumImplicitUses() const {
458     if (ImplicitUses == 0) return 0;
459     unsigned i = 0;
460     for (; ImplicitUses[i]; ++i) /*empty*/;
461     return i;
462   }
463 
464   /// getImplicitDefs - Return a list of registers that are potentially
465   /// written by any instance of this machine instruction.  For example, on X86,
466   /// many instructions implicitly set the flags register.  In this case, they
467   /// are marked as setting the FLAGS.  Likewise, many instructions always
468   /// deposit their result in a physical register.  For example, the X86 divide
469   /// instruction always deposits the quotient and remainder in the EAX/EDX
470   /// registers.  For that instruction, this will return a list containing the
471   /// EAX/EDX/EFLAGS registers.
472   ///
473   /// This method returns null if the instruction has no implicit defs.
getImplicitDefs()474   const uint16_t *getImplicitDefs() const {
475     return ImplicitDefs;
476   }
477 
478   /// getNumImplicitDefs - Return the number of implicit defs this instruction
479   /// has.
getNumImplicitDefs()480   unsigned getNumImplicitDefs() const {
481     if (ImplicitDefs == 0) return 0;
482     unsigned i = 0;
483     for (; ImplicitDefs[i]; ++i) /*empty*/;
484     return i;
485   }
486 
487   /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
488   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)489   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
490     if (const uint16_t *ImpUses = ImplicitUses)
491       for (; *ImpUses; ++ImpUses)
492         if (*ImpUses == Reg) return true;
493     return false;
494   }
495 
496   /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
497   /// defines the specified physical register.
hasImplicitDefOfPhysReg(unsigned Reg)498   bool hasImplicitDefOfPhysReg(unsigned Reg) const {
499     if (const uint16_t *ImpDefs = ImplicitDefs)
500       for (; *ImpDefs; ++ImpDefs)
501         if (*ImpDefs == Reg) return true;
502     return false;
503   }
504 
505   /// getSchedClass - Return the scheduling class for this instruction.  The
506   /// scheduling class is an index into the InstrItineraryData table.  This
507   /// returns zero if there is no known scheduling information for the
508   /// instruction.
509   ///
getSchedClass()510   unsigned getSchedClass() const {
511     return SchedClass;
512   }
513 
514   /// getSize - Return the number of bytes in the encoding of this instruction,
515   /// or zero if the encoding size cannot be known from the opcode.
getSize()516   unsigned getSize() const {
517     return Size;
518   }
519 
520   /// findFirstPredOperandIdx() - Find the index of the first operand in the
521   /// operand list that is used to represent the predicate. It returns -1 if
522   /// none is found.
findFirstPredOperandIdx()523   int findFirstPredOperandIdx() const {
524     if (isPredicable()) {
525       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
526         if (OpInfo[i].isPredicate())
527           return i;
528     }
529     return -1;
530   }
531 };
532 
533 } // end namespace llvm
534 
535 #endif
536