1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
getTypeString(Type * T)29 static std::string getTypeString(Type *T) {
30 std::string Result;
31 raw_string_ostream Tmp(Result);
32 Tmp << *T;
33 return Tmp.str();
34 }
35
36 /// Run: module ::= toplevelentity*
Run()37 bool LLParser::Run() {
38 // Prime the lexer.
39 Lex.Lex();
40
41 return ParseTopLevelEntities() ||
42 ValidateEndOfModule();
43 }
44
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46 /// module.
ValidateEndOfModule()47 bool LLParser::ValidateEndOfModule() {
48 // Handle any instruction metadata forward references.
49 if (!ForwardRefInstMetadata.empty()) {
50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52 I != E; ++I) {
53 Instruction *Inst = I->first;
54 const std::vector<MDRef> &MDList = I->second;
55
56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57 unsigned SlotNo = MDList[i].MDSlot;
58
59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60 return Error(MDList[i].Loc, "use of undefined metadata '!" +
61 Twine(SlotNo) + "'");
62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63 }
64 }
65 ForwardRefInstMetadata.clear();
66 }
67
68
69 // If there are entries in ForwardRefBlockAddresses at this point, they are
70 // references after the function was defined. Resolve those now.
71 while (!ForwardRefBlockAddresses.empty()) {
72 // Okay, we are referencing an already-parsed function, resolve them now.
73 Function *TheFn = 0;
74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75 if (Fn.Kind == ValID::t_GlobalName)
76 TheFn = M->getFunction(Fn.StrVal);
77 else if (Fn.UIntVal < NumberedVals.size())
78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80 if (TheFn == 0)
81 return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83 // Resolve all these references.
84 if (ResolveForwardRefBlockAddresses(TheFn,
85 ForwardRefBlockAddresses.begin()->second,
86 0))
87 return true;
88
89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90 }
91
92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93 if (NumberedTypes[i].second.isValid())
94 return Error(NumberedTypes[i].second,
95 "use of undefined type '%" + Twine(i) + "'");
96
97 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99 if (I->second.second.isValid())
100 return Error(I->second.second,
101 "use of undefined type named '" + I->getKey() + "'");
102
103 if (!ForwardRefVals.empty())
104 return Error(ForwardRefVals.begin()->second.second,
105 "use of undefined value '@" + ForwardRefVals.begin()->first +
106 "'");
107
108 if (!ForwardRefValIDs.empty())
109 return Error(ForwardRefValIDs.begin()->second.second,
110 "use of undefined value '@" +
111 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113 if (!ForwardRefMDNodes.empty())
114 return Error(ForwardRefMDNodes.begin()->second.second,
115 "use of undefined metadata '!" +
116 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119 // Look for intrinsic functions and CallInst that need to be upgraded
120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123 return false;
124 }
125
ResolveForwardRefBlockAddresses(Function * TheFn,std::vector<std::pair<ValID,GlobalValue * >> & Refs,PerFunctionState * PFS)126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127 std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128 PerFunctionState *PFS) {
129 // Loop over all the references, resolving them.
130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131 BasicBlock *Res;
132 if (PFS) {
133 if (Refs[i].first.Kind == ValID::t_LocalName)
134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135 else
136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137 } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138 return Error(Refs[i].first.Loc,
139 "cannot take address of numeric label after the function is defined");
140 } else {
141 Res = dyn_cast_or_null<BasicBlock>(
142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143 }
144
145 if (Res == 0)
146 return Error(Refs[i].first.Loc,
147 "referenced value is not a basic block");
148
149 // Get the BlockAddress for this and update references to use it.
150 BlockAddress *BA = BlockAddress::get(TheFn, Res);
151 Refs[i].second->replaceAllUsesWith(BA);
152 Refs[i].second->eraseFromParent();
153 }
154 return false;
155 }
156
157
158 //===----------------------------------------------------------------------===//
159 // Top-Level Entities
160 //===----------------------------------------------------------------------===//
161
ParseTopLevelEntities()162 bool LLParser::ParseTopLevelEntities() {
163 while (1) {
164 switch (Lex.getKind()) {
165 default: return TokError("expected top-level entity");
166 case lltok::Eof: return false;
167 case lltok::kw_declare: if (ParseDeclare()) return true; break;
168 case lltok::kw_define: if (ParseDefine()) return true; break;
169 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173 case lltok::LocalVar: if (ParseNamedType()) return true; break;
174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179 // The Global variable production with no name can have many different
180 // optional leading prefixes, the production is:
181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182 // OptionalAddrSpace OptionalUnNammedAddr
183 // ('constant'|'global') ...
184 case lltok::kw_private: // OptionalLinkage
185 case lltok::kw_linker_private: // OptionalLinkage
186 case lltok::kw_linker_private_weak: // OptionalLinkage
187 case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
188 case lltok::kw_internal: // OptionalLinkage
189 case lltok::kw_weak: // OptionalLinkage
190 case lltok::kw_weak_odr: // OptionalLinkage
191 case lltok::kw_linkonce: // OptionalLinkage
192 case lltok::kw_linkonce_odr: // OptionalLinkage
193 case lltok::kw_appending: // OptionalLinkage
194 case lltok::kw_dllexport: // OptionalLinkage
195 case lltok::kw_common: // OptionalLinkage
196 case lltok::kw_dllimport: // OptionalLinkage
197 case lltok::kw_extern_weak: // OptionalLinkage
198 case lltok::kw_external: { // OptionalLinkage
199 unsigned Linkage, Visibility;
200 if (ParseOptionalLinkage(Linkage) ||
201 ParseOptionalVisibility(Visibility) ||
202 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
203 return true;
204 break;
205 }
206 case lltok::kw_default: // OptionalVisibility
207 case lltok::kw_hidden: // OptionalVisibility
208 case lltok::kw_protected: { // OptionalVisibility
209 unsigned Visibility;
210 if (ParseOptionalVisibility(Visibility) ||
211 ParseGlobal("", SMLoc(), 0, false, Visibility))
212 return true;
213 break;
214 }
215
216 case lltok::kw_thread_local: // OptionalThreadLocal
217 case lltok::kw_addrspace: // OptionalAddrSpace
218 case lltok::kw_constant: // GlobalType
219 case lltok::kw_global: // GlobalType
220 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
221 break;
222 }
223 }
224 }
225
226
227 /// toplevelentity
228 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()229 bool LLParser::ParseModuleAsm() {
230 assert(Lex.getKind() == lltok::kw_module);
231 Lex.Lex();
232
233 std::string AsmStr;
234 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
235 ParseStringConstant(AsmStr)) return true;
236
237 M->appendModuleInlineAsm(AsmStr);
238 return false;
239 }
240
241 /// toplevelentity
242 /// ::= 'target' 'triple' '=' STRINGCONSTANT
243 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()244 bool LLParser::ParseTargetDefinition() {
245 assert(Lex.getKind() == lltok::kw_target);
246 std::string Str;
247 switch (Lex.Lex()) {
248 default: return TokError("unknown target property");
249 case lltok::kw_triple:
250 Lex.Lex();
251 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
252 ParseStringConstant(Str))
253 return true;
254 M->setTargetTriple(Str);
255 return false;
256 case lltok::kw_datalayout:
257 Lex.Lex();
258 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
259 ParseStringConstant(Str))
260 return true;
261 M->setDataLayout(Str);
262 return false;
263 }
264 }
265
266 /// toplevelentity
267 /// ::= 'deplibs' '=' '[' ']'
268 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
ParseDepLibs()269 bool LLParser::ParseDepLibs() {
270 assert(Lex.getKind() == lltok::kw_deplibs);
271 Lex.Lex();
272 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
273 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
274 return true;
275
276 if (EatIfPresent(lltok::rsquare))
277 return false;
278
279 std::string Str;
280 if (ParseStringConstant(Str)) return true;
281 M->addLibrary(Str);
282
283 while (EatIfPresent(lltok::comma)) {
284 if (ParseStringConstant(Str)) return true;
285 M->addLibrary(Str);
286 }
287
288 return ParseToken(lltok::rsquare, "expected ']' at end of list");
289 }
290
291 /// ParseUnnamedType:
292 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()293 bool LLParser::ParseUnnamedType() {
294 LocTy TypeLoc = Lex.getLoc();
295 unsigned TypeID = Lex.getUIntVal();
296 Lex.Lex(); // eat LocalVarID;
297
298 if (ParseToken(lltok::equal, "expected '=' after name") ||
299 ParseToken(lltok::kw_type, "expected 'type' after '='"))
300 return true;
301
302 if (TypeID >= NumberedTypes.size())
303 NumberedTypes.resize(TypeID+1);
304
305 Type *Result = 0;
306 if (ParseStructDefinition(TypeLoc, "",
307 NumberedTypes[TypeID], Result)) return true;
308
309 if (!isa<StructType>(Result)) {
310 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
311 if (Entry.first)
312 return Error(TypeLoc, "non-struct types may not be recursive");
313 Entry.first = Result;
314 Entry.second = SMLoc();
315 }
316
317 return false;
318 }
319
320
321 /// toplevelentity
322 /// ::= LocalVar '=' 'type' type
ParseNamedType()323 bool LLParser::ParseNamedType() {
324 std::string Name = Lex.getStrVal();
325 LocTy NameLoc = Lex.getLoc();
326 Lex.Lex(); // eat LocalVar.
327
328 if (ParseToken(lltok::equal, "expected '=' after name") ||
329 ParseToken(lltok::kw_type, "expected 'type' after name"))
330 return true;
331
332 Type *Result = 0;
333 if (ParseStructDefinition(NameLoc, Name,
334 NamedTypes[Name], Result)) return true;
335
336 if (!isa<StructType>(Result)) {
337 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
338 if (Entry.first)
339 return Error(NameLoc, "non-struct types may not be recursive");
340 Entry.first = Result;
341 Entry.second = SMLoc();
342 }
343
344 return false;
345 }
346
347
348 /// toplevelentity
349 /// ::= 'declare' FunctionHeader
ParseDeclare()350 bool LLParser::ParseDeclare() {
351 assert(Lex.getKind() == lltok::kw_declare);
352 Lex.Lex();
353
354 Function *F;
355 return ParseFunctionHeader(F, false);
356 }
357
358 /// toplevelentity
359 /// ::= 'define' FunctionHeader '{' ...
ParseDefine()360 bool LLParser::ParseDefine() {
361 assert(Lex.getKind() == lltok::kw_define);
362 Lex.Lex();
363
364 Function *F;
365 return ParseFunctionHeader(F, true) ||
366 ParseFunctionBody(*F);
367 }
368
369 /// ParseGlobalType
370 /// ::= 'constant'
371 /// ::= 'global'
ParseGlobalType(bool & IsConstant)372 bool LLParser::ParseGlobalType(bool &IsConstant) {
373 if (Lex.getKind() == lltok::kw_constant)
374 IsConstant = true;
375 else if (Lex.getKind() == lltok::kw_global)
376 IsConstant = false;
377 else {
378 IsConstant = false;
379 return TokError("expected 'global' or 'constant'");
380 }
381 Lex.Lex();
382 return false;
383 }
384
385 /// ParseUnnamedGlobal:
386 /// OptionalVisibility ALIAS ...
387 /// OptionalLinkage OptionalVisibility ... -> global variable
388 /// GlobalID '=' OptionalVisibility ALIAS ...
389 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseUnnamedGlobal()390 bool LLParser::ParseUnnamedGlobal() {
391 unsigned VarID = NumberedVals.size();
392 std::string Name;
393 LocTy NameLoc = Lex.getLoc();
394
395 // Handle the GlobalID form.
396 if (Lex.getKind() == lltok::GlobalID) {
397 if (Lex.getUIntVal() != VarID)
398 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
399 Twine(VarID) + "'");
400 Lex.Lex(); // eat GlobalID;
401
402 if (ParseToken(lltok::equal, "expected '=' after name"))
403 return true;
404 }
405
406 bool HasLinkage;
407 unsigned Linkage, Visibility;
408 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
409 ParseOptionalVisibility(Visibility))
410 return true;
411
412 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
413 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
414 return ParseAlias(Name, NameLoc, Visibility);
415 }
416
417 /// ParseNamedGlobal:
418 /// GlobalVar '=' OptionalVisibility ALIAS ...
419 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseNamedGlobal()420 bool LLParser::ParseNamedGlobal() {
421 assert(Lex.getKind() == lltok::GlobalVar);
422 LocTy NameLoc = Lex.getLoc();
423 std::string Name = Lex.getStrVal();
424 Lex.Lex();
425
426 bool HasLinkage;
427 unsigned Linkage, Visibility;
428 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
429 ParseOptionalLinkage(Linkage, HasLinkage) ||
430 ParseOptionalVisibility(Visibility))
431 return true;
432
433 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
434 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
435 return ParseAlias(Name, NameLoc, Visibility);
436 }
437
438 // MDString:
439 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)440 bool LLParser::ParseMDString(MDString *&Result) {
441 std::string Str;
442 if (ParseStringConstant(Str)) return true;
443 Result = MDString::get(Context, Str);
444 return false;
445 }
446
447 // MDNode:
448 // ::= '!' MDNodeNumber
449 //
450 /// This version of ParseMDNodeID returns the slot number and null in the case
451 /// of a forward reference.
ParseMDNodeID(MDNode * & Result,unsigned & SlotNo)452 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
453 // !{ ..., !42, ... }
454 if (ParseUInt32(SlotNo)) return true;
455
456 // Check existing MDNode.
457 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
458 Result = NumberedMetadata[SlotNo];
459 else
460 Result = 0;
461 return false;
462 }
463
ParseMDNodeID(MDNode * & Result)464 bool LLParser::ParseMDNodeID(MDNode *&Result) {
465 // !{ ..., !42, ... }
466 unsigned MID = 0;
467 if (ParseMDNodeID(Result, MID)) return true;
468
469 // If not a forward reference, just return it now.
470 if (Result) return false;
471
472 // Otherwise, create MDNode forward reference.
473 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
474 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
475
476 if (NumberedMetadata.size() <= MID)
477 NumberedMetadata.resize(MID+1);
478 NumberedMetadata[MID] = FwdNode;
479 Result = FwdNode;
480 return false;
481 }
482
483 /// ParseNamedMetadata:
484 /// !foo = !{ !1, !2 }
ParseNamedMetadata()485 bool LLParser::ParseNamedMetadata() {
486 assert(Lex.getKind() == lltok::MetadataVar);
487 std::string Name = Lex.getStrVal();
488 Lex.Lex();
489
490 if (ParseToken(lltok::equal, "expected '=' here") ||
491 ParseToken(lltok::exclaim, "Expected '!' here") ||
492 ParseToken(lltok::lbrace, "Expected '{' here"))
493 return true;
494
495 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
496 if (Lex.getKind() != lltok::rbrace)
497 do {
498 if (ParseToken(lltok::exclaim, "Expected '!' here"))
499 return true;
500
501 MDNode *N = 0;
502 if (ParseMDNodeID(N)) return true;
503 NMD->addOperand(N);
504 } while (EatIfPresent(lltok::comma));
505
506 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
507 return true;
508
509 return false;
510 }
511
512 /// ParseStandaloneMetadata:
513 /// !42 = !{...}
ParseStandaloneMetadata()514 bool LLParser::ParseStandaloneMetadata() {
515 assert(Lex.getKind() == lltok::exclaim);
516 Lex.Lex();
517 unsigned MetadataID = 0;
518
519 LocTy TyLoc;
520 Type *Ty = 0;
521 SmallVector<Value *, 16> Elts;
522 if (ParseUInt32(MetadataID) ||
523 ParseToken(lltok::equal, "expected '=' here") ||
524 ParseType(Ty, TyLoc) ||
525 ParseToken(lltok::exclaim, "Expected '!' here") ||
526 ParseToken(lltok::lbrace, "Expected '{' here") ||
527 ParseMDNodeVector(Elts, NULL) ||
528 ParseToken(lltok::rbrace, "expected end of metadata node"))
529 return true;
530
531 MDNode *Init = MDNode::get(Context, Elts);
532
533 // See if this was forward referenced, if so, handle it.
534 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
535 FI = ForwardRefMDNodes.find(MetadataID);
536 if (FI != ForwardRefMDNodes.end()) {
537 MDNode *Temp = FI->second.first;
538 Temp->replaceAllUsesWith(Init);
539 MDNode::deleteTemporary(Temp);
540 ForwardRefMDNodes.erase(FI);
541
542 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
543 } else {
544 if (MetadataID >= NumberedMetadata.size())
545 NumberedMetadata.resize(MetadataID+1);
546
547 if (NumberedMetadata[MetadataID] != 0)
548 return TokError("Metadata id is already used");
549 NumberedMetadata[MetadataID] = Init;
550 }
551
552 return false;
553 }
554
555 /// ParseAlias:
556 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
557 /// Aliasee
558 /// ::= TypeAndValue
559 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
560 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
561 ///
562 /// Everything through visibility has already been parsed.
563 ///
ParseAlias(const std::string & Name,LocTy NameLoc,unsigned Visibility)564 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
565 unsigned Visibility) {
566 assert(Lex.getKind() == lltok::kw_alias);
567 Lex.Lex();
568 unsigned Linkage;
569 LocTy LinkageLoc = Lex.getLoc();
570 if (ParseOptionalLinkage(Linkage))
571 return true;
572
573 if (Linkage != GlobalValue::ExternalLinkage &&
574 Linkage != GlobalValue::WeakAnyLinkage &&
575 Linkage != GlobalValue::WeakODRLinkage &&
576 Linkage != GlobalValue::InternalLinkage &&
577 Linkage != GlobalValue::PrivateLinkage &&
578 Linkage != GlobalValue::LinkerPrivateLinkage &&
579 Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
580 Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
581 return Error(LinkageLoc, "invalid linkage type for alias");
582
583 Constant *Aliasee;
584 LocTy AliaseeLoc = Lex.getLoc();
585 if (Lex.getKind() != lltok::kw_bitcast &&
586 Lex.getKind() != lltok::kw_getelementptr) {
587 if (ParseGlobalTypeAndValue(Aliasee)) return true;
588 } else {
589 // The bitcast dest type is not present, it is implied by the dest type.
590 ValID ID;
591 if (ParseValID(ID)) return true;
592 if (ID.Kind != ValID::t_Constant)
593 return Error(AliaseeLoc, "invalid aliasee");
594 Aliasee = ID.ConstantVal;
595 }
596
597 if (!Aliasee->getType()->isPointerTy())
598 return Error(AliaseeLoc, "alias must have pointer type");
599
600 // Okay, create the alias but do not insert it into the module yet.
601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602 (GlobalValue::LinkageTypes)Linkage, Name,
603 Aliasee);
604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606 // See if this value already exists in the symbol table. If so, it is either
607 // a redefinition or a definition of a forward reference.
608 if (GlobalValue *Val = M->getNamedValue(Name)) {
609 // See if this was a redefinition. If so, there is no entry in
610 // ForwardRefVals.
611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612 I = ForwardRefVals.find(Name);
613 if (I == ForwardRefVals.end())
614 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616 // Otherwise, this was a definition of forward ref. Verify that types
617 // agree.
618 if (Val->getType() != GA->getType())
619 return Error(NameLoc,
620 "forward reference and definition of alias have different types");
621
622 // If they agree, just RAUW the old value with the alias and remove the
623 // forward ref info.
624 Val->replaceAllUsesWith(GA);
625 Val->eraseFromParent();
626 ForwardRefVals.erase(I);
627 }
628
629 // Insert into the module, we know its name won't collide now.
630 M->getAliasList().push_back(GA);
631 assert(GA->getName() == Name && "Should not be a name conflict!");
632
633 return false;
634 }
635
636 /// ParseGlobal
637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641 ///
642 /// Everything through visibility has been parsed already.
643 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility)644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645 unsigned Linkage, bool HasLinkage,
646 unsigned Visibility) {
647 unsigned AddrSpace;
648 bool ThreadLocal, IsConstant, UnnamedAddr;
649 LocTy UnnamedAddrLoc;
650 LocTy TyLoc;
651
652 Type *Ty = 0;
653 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
654 ParseOptionalAddrSpace(AddrSpace) ||
655 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
656 &UnnamedAddrLoc) ||
657 ParseGlobalType(IsConstant) ||
658 ParseType(Ty, TyLoc))
659 return true;
660
661 // If the linkage is specified and is external, then no initializer is
662 // present.
663 Constant *Init = 0;
664 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
665 Linkage != GlobalValue::ExternalWeakLinkage &&
666 Linkage != GlobalValue::ExternalLinkage)) {
667 if (ParseGlobalValue(Ty, Init))
668 return true;
669 }
670
671 if (Ty->isFunctionTy() || Ty->isLabelTy())
672 return Error(TyLoc, "invalid type for global variable");
673
674 GlobalVariable *GV = 0;
675
676 // See if the global was forward referenced, if so, use the global.
677 if (!Name.empty()) {
678 if (GlobalValue *GVal = M->getNamedValue(Name)) {
679 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
680 return Error(NameLoc, "redefinition of global '@" + Name + "'");
681 GV = cast<GlobalVariable>(GVal);
682 }
683 } else {
684 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
685 I = ForwardRefValIDs.find(NumberedVals.size());
686 if (I != ForwardRefValIDs.end()) {
687 GV = cast<GlobalVariable>(I->second.first);
688 ForwardRefValIDs.erase(I);
689 }
690 }
691
692 if (GV == 0) {
693 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
694 Name, 0, false, AddrSpace);
695 } else {
696 if (GV->getType()->getElementType() != Ty)
697 return Error(TyLoc,
698 "forward reference and definition of global have different types");
699
700 // Move the forward-reference to the correct spot in the module.
701 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
702 }
703
704 if (Name.empty())
705 NumberedVals.push_back(GV);
706
707 // Set the parsed properties on the global.
708 if (Init)
709 GV->setInitializer(Init);
710 GV->setConstant(IsConstant);
711 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
712 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
713 GV->setThreadLocal(ThreadLocal);
714 GV->setUnnamedAddr(UnnamedAddr);
715
716 // Parse attributes on the global.
717 while (Lex.getKind() == lltok::comma) {
718 Lex.Lex();
719
720 if (Lex.getKind() == lltok::kw_section) {
721 Lex.Lex();
722 GV->setSection(Lex.getStrVal());
723 if (ParseToken(lltok::StringConstant, "expected global section string"))
724 return true;
725 } else if (Lex.getKind() == lltok::kw_align) {
726 unsigned Alignment;
727 if (ParseOptionalAlignment(Alignment)) return true;
728 GV->setAlignment(Alignment);
729 } else {
730 TokError("unknown global variable property!");
731 }
732 }
733
734 return false;
735 }
736
737
738 //===----------------------------------------------------------------------===//
739 // GlobalValue Reference/Resolution Routines.
740 //===----------------------------------------------------------------------===//
741
742 /// GetGlobalVal - Get a value with the specified name or ID, creating a
743 /// forward reference record if needed. This can return null if the value
744 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)745 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
746 LocTy Loc) {
747 PointerType *PTy = dyn_cast<PointerType>(Ty);
748 if (PTy == 0) {
749 Error(Loc, "global variable reference must have pointer type");
750 return 0;
751 }
752
753 // Look this name up in the normal function symbol table.
754 GlobalValue *Val =
755 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
756
757 // If this is a forward reference for the value, see if we already created a
758 // forward ref record.
759 if (Val == 0) {
760 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
761 I = ForwardRefVals.find(Name);
762 if (I != ForwardRefVals.end())
763 Val = I->second.first;
764 }
765
766 // If we have the value in the symbol table or fwd-ref table, return it.
767 if (Val) {
768 if (Val->getType() == Ty) return Val;
769 Error(Loc, "'@" + Name + "' defined with type '" +
770 getTypeString(Val->getType()) + "'");
771 return 0;
772 }
773
774 // Otherwise, create a new forward reference for this value and remember it.
775 GlobalValue *FwdVal;
776 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
777 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
778 else
779 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
780 GlobalValue::ExternalWeakLinkage, 0, Name);
781
782 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
783 return FwdVal;
784 }
785
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)786 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
787 PointerType *PTy = dyn_cast<PointerType>(Ty);
788 if (PTy == 0) {
789 Error(Loc, "global variable reference must have pointer type");
790 return 0;
791 }
792
793 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
794
795 // If this is a forward reference for the value, see if we already created a
796 // forward ref record.
797 if (Val == 0) {
798 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
799 I = ForwardRefValIDs.find(ID);
800 if (I != ForwardRefValIDs.end())
801 Val = I->second.first;
802 }
803
804 // If we have the value in the symbol table or fwd-ref table, return it.
805 if (Val) {
806 if (Val->getType() == Ty) return Val;
807 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
808 getTypeString(Val->getType()) + "'");
809 return 0;
810 }
811
812 // Otherwise, create a new forward reference for this value and remember it.
813 GlobalValue *FwdVal;
814 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
815 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
816 else
817 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
818 GlobalValue::ExternalWeakLinkage, 0, "");
819
820 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
821 return FwdVal;
822 }
823
824
825 //===----------------------------------------------------------------------===//
826 // Helper Routines.
827 //===----------------------------------------------------------------------===//
828
829 /// ParseToken - If the current token has the specified kind, eat it and return
830 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)831 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
832 if (Lex.getKind() != T)
833 return TokError(ErrMsg);
834 Lex.Lex();
835 return false;
836 }
837
838 /// ParseStringConstant
839 /// ::= StringConstant
ParseStringConstant(std::string & Result)840 bool LLParser::ParseStringConstant(std::string &Result) {
841 if (Lex.getKind() != lltok::StringConstant)
842 return TokError("expected string constant");
843 Result = Lex.getStrVal();
844 Lex.Lex();
845 return false;
846 }
847
848 /// ParseUInt32
849 /// ::= uint32
ParseUInt32(unsigned & Val)850 bool LLParser::ParseUInt32(unsigned &Val) {
851 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
852 return TokError("expected integer");
853 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
854 if (Val64 != unsigned(Val64))
855 return TokError("expected 32-bit integer (too large)");
856 Val = Val64;
857 Lex.Lex();
858 return false;
859 }
860
861
862 /// ParseOptionalAddrSpace
863 /// := /*empty*/
864 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)865 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
866 AddrSpace = 0;
867 if (!EatIfPresent(lltok::kw_addrspace))
868 return false;
869 return ParseToken(lltok::lparen, "expected '(' in address space") ||
870 ParseUInt32(AddrSpace) ||
871 ParseToken(lltok::rparen, "expected ')' in address space");
872 }
873
874 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
875 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
876 /// 2: function attr.
ParseOptionalAttrs(Attributes & Attrs,unsigned AttrKind)877 bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
878 Attrs = Attribute::None;
879 LocTy AttrLoc = Lex.getLoc();
880
881 while (1) {
882 switch (Lex.getKind()) {
883 default: // End of attributes.
884 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
885 return Error(AttrLoc, "invalid use of function-only attribute");
886
887 // As a hack, we allow "align 2" on functions as a synonym for
888 // "alignstack 2".
889 if (AttrKind == 2 &&
890 (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
891 return Error(AttrLoc, "invalid use of attribute on a function");
892
893 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
894 return Error(AttrLoc, "invalid use of parameter-only attribute");
895
896 return false;
897 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
898 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
899 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
900 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
901 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
902 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
903 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
904 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
905
906 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
907 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
908 case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break;
909 case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break;
910 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
911 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
912 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
913 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
914 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
915 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
916 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
917 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
918 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
919 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
920 case lltok::kw_naked: Attrs |= Attribute::Naked; break;
921 case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break;
922 case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break;
923
924 case lltok::kw_alignstack: {
925 unsigned Alignment;
926 if (ParseOptionalStackAlignment(Alignment))
927 return true;
928 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
929 continue;
930 }
931
932 case lltok::kw_align: {
933 unsigned Alignment;
934 if (ParseOptionalAlignment(Alignment))
935 return true;
936 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
937 continue;
938 }
939
940 }
941 Lex.Lex();
942 }
943 }
944
945 /// ParseOptionalLinkage
946 /// ::= /*empty*/
947 /// ::= 'private'
948 /// ::= 'linker_private'
949 /// ::= 'linker_private_weak'
950 /// ::= 'linker_private_weak_def_auto'
951 /// ::= 'internal'
952 /// ::= 'weak'
953 /// ::= 'weak_odr'
954 /// ::= 'linkonce'
955 /// ::= 'linkonce_odr'
956 /// ::= 'available_externally'
957 /// ::= 'appending'
958 /// ::= 'dllexport'
959 /// ::= 'common'
960 /// ::= 'dllimport'
961 /// ::= 'extern_weak'
962 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage)963 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
964 HasLinkage = false;
965 switch (Lex.getKind()) {
966 default: Res=GlobalValue::ExternalLinkage; return false;
967 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
968 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
969 case lltok::kw_linker_private_weak:
970 Res = GlobalValue::LinkerPrivateWeakLinkage;
971 break;
972 case lltok::kw_linker_private_weak_def_auto:
973 Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
974 break;
975 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
976 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
977 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
978 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
979 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
980 case lltok::kw_available_externally:
981 Res = GlobalValue::AvailableExternallyLinkage;
982 break;
983 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
984 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
985 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
986 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
987 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
988 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
989 }
990 Lex.Lex();
991 HasLinkage = true;
992 return false;
993 }
994
995 /// ParseOptionalVisibility
996 /// ::= /*empty*/
997 /// ::= 'default'
998 /// ::= 'hidden'
999 /// ::= 'protected'
1000 ///
ParseOptionalVisibility(unsigned & Res)1001 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1002 switch (Lex.getKind()) {
1003 default: Res = GlobalValue::DefaultVisibility; return false;
1004 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1005 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1006 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1007 }
1008 Lex.Lex();
1009 return false;
1010 }
1011
1012 /// ParseOptionalCallingConv
1013 /// ::= /*empty*/
1014 /// ::= 'ccc'
1015 /// ::= 'fastcc'
1016 /// ::= 'coldcc'
1017 /// ::= 'x86_stdcallcc'
1018 /// ::= 'x86_fastcallcc'
1019 /// ::= 'x86_thiscallcc'
1020 /// ::= 'arm_apcscc'
1021 /// ::= 'arm_aapcscc'
1022 /// ::= 'arm_aapcs_vfpcc'
1023 /// ::= 'msp430_intrcc'
1024 /// ::= 'ptx_kernel'
1025 /// ::= 'ptx_device'
1026 /// ::= 'cc' UINT
1027 ///
ParseOptionalCallingConv(CallingConv::ID & CC)1028 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1029 switch (Lex.getKind()) {
1030 default: CC = CallingConv::C; return false;
1031 case lltok::kw_ccc: CC = CallingConv::C; break;
1032 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1033 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1034 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1035 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1036 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1037 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1038 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1039 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1040 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1041 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1042 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1043 case lltok::kw_cc: {
1044 unsigned ArbitraryCC;
1045 Lex.Lex();
1046 if (ParseUInt32(ArbitraryCC))
1047 return true;
1048 CC = static_cast<CallingConv::ID>(ArbitraryCC);
1049 return false;
1050 }
1051 }
1052
1053 Lex.Lex();
1054 return false;
1055 }
1056
1057 /// ParseInstructionMetadata
1058 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction * Inst,PerFunctionState * PFS)1059 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1060 PerFunctionState *PFS) {
1061 do {
1062 if (Lex.getKind() != lltok::MetadataVar)
1063 return TokError("expected metadata after comma");
1064
1065 std::string Name = Lex.getStrVal();
1066 unsigned MDK = M->getMDKindID(Name);
1067 Lex.Lex();
1068
1069 MDNode *Node;
1070 SMLoc Loc = Lex.getLoc();
1071
1072 if (ParseToken(lltok::exclaim, "expected '!' here"))
1073 return true;
1074
1075 // This code is similar to that of ParseMetadataValue, however it needs to
1076 // have special-case code for a forward reference; see the comments on
1077 // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1078 // at the top level here.
1079 if (Lex.getKind() == lltok::lbrace) {
1080 ValID ID;
1081 if (ParseMetadataListValue(ID, PFS))
1082 return true;
1083 assert(ID.Kind == ValID::t_MDNode);
1084 Inst->setMetadata(MDK, ID.MDNodeVal);
1085 } else {
1086 unsigned NodeID = 0;
1087 if (ParseMDNodeID(Node, NodeID))
1088 return true;
1089 if (Node) {
1090 // If we got the node, add it to the instruction.
1091 Inst->setMetadata(MDK, Node);
1092 } else {
1093 MDRef R = { Loc, MDK, NodeID };
1094 // Otherwise, remember that this should be resolved later.
1095 ForwardRefInstMetadata[Inst].push_back(R);
1096 }
1097 }
1098
1099 // If this is the end of the list, we're done.
1100 } while (EatIfPresent(lltok::comma));
1101 return false;
1102 }
1103
1104 /// ParseOptionalAlignment
1105 /// ::= /* empty */
1106 /// ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1107 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1108 Alignment = 0;
1109 if (!EatIfPresent(lltok::kw_align))
1110 return false;
1111 LocTy AlignLoc = Lex.getLoc();
1112 if (ParseUInt32(Alignment)) return true;
1113 if (!isPowerOf2_32(Alignment))
1114 return Error(AlignLoc, "alignment is not a power of two");
1115 if (Alignment > Value::MaximumAlignment)
1116 return Error(AlignLoc, "huge alignments are not supported yet");
1117 return false;
1118 }
1119
1120 /// ParseOptionalCommaAlign
1121 /// ::=
1122 /// ::= ',' align 4
1123 ///
1124 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1125 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)1126 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1127 bool &AteExtraComma) {
1128 AteExtraComma = false;
1129 while (EatIfPresent(lltok::comma)) {
1130 // Metadata at the end is an early exit.
1131 if (Lex.getKind() == lltok::MetadataVar) {
1132 AteExtraComma = true;
1133 return false;
1134 }
1135
1136 if (Lex.getKind() != lltok::kw_align)
1137 return Error(Lex.getLoc(), "expected metadata or 'align'");
1138
1139 if (ParseOptionalAlignment(Alignment)) return true;
1140 }
1141
1142 return false;
1143 }
1144
1145 /// ParseScopeAndOrdering
1146 /// if isAtomic: ::= 'singlethread'? AtomicOrdering
1147 /// else: ::=
1148 ///
1149 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SynchronizationScope & Scope,AtomicOrdering & Ordering)1150 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1151 AtomicOrdering &Ordering) {
1152 if (!isAtomic)
1153 return false;
1154
1155 Scope = CrossThread;
1156 if (EatIfPresent(lltok::kw_singlethread))
1157 Scope = SingleThread;
1158 switch (Lex.getKind()) {
1159 default: return TokError("Expected ordering on atomic instruction");
1160 case lltok::kw_unordered: Ordering = Unordered; break;
1161 case lltok::kw_monotonic: Ordering = Monotonic; break;
1162 case lltok::kw_acquire: Ordering = Acquire; break;
1163 case lltok::kw_release: Ordering = Release; break;
1164 case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1165 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1166 }
1167 Lex.Lex();
1168 return false;
1169 }
1170
1171 /// ParseOptionalStackAlignment
1172 /// ::= /* empty */
1173 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)1174 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1175 Alignment = 0;
1176 if (!EatIfPresent(lltok::kw_alignstack))
1177 return false;
1178 LocTy ParenLoc = Lex.getLoc();
1179 if (!EatIfPresent(lltok::lparen))
1180 return Error(ParenLoc, "expected '('");
1181 LocTy AlignLoc = Lex.getLoc();
1182 if (ParseUInt32(Alignment)) return true;
1183 ParenLoc = Lex.getLoc();
1184 if (!EatIfPresent(lltok::rparen))
1185 return Error(ParenLoc, "expected ')'");
1186 if (!isPowerOf2_32(Alignment))
1187 return Error(AlignLoc, "stack alignment is not a power of two");
1188 return false;
1189 }
1190
1191 /// ParseIndexList - This parses the index list for an insert/extractvalue
1192 /// instruction. This sets AteExtraComma in the case where we eat an extra
1193 /// comma at the end of the line and find that it is followed by metadata.
1194 /// Clients that don't allow metadata can call the version of this function that
1195 /// only takes one argument.
1196 ///
1197 /// ParseIndexList
1198 /// ::= (',' uint32)+
1199 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)1200 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1201 bool &AteExtraComma) {
1202 AteExtraComma = false;
1203
1204 if (Lex.getKind() != lltok::comma)
1205 return TokError("expected ',' as start of index list");
1206
1207 while (EatIfPresent(lltok::comma)) {
1208 if (Lex.getKind() == lltok::MetadataVar) {
1209 AteExtraComma = true;
1210 return false;
1211 }
1212 unsigned Idx = 0;
1213 if (ParseUInt32(Idx)) return true;
1214 Indices.push_back(Idx);
1215 }
1216
1217 return false;
1218 }
1219
1220 //===----------------------------------------------------------------------===//
1221 // Type Parsing.
1222 //===----------------------------------------------------------------------===//
1223
1224 /// ParseType - Parse a type.
ParseType(Type * & Result,bool AllowVoid)1225 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1226 SMLoc TypeLoc = Lex.getLoc();
1227 switch (Lex.getKind()) {
1228 default:
1229 return TokError("expected type");
1230 case lltok::Type:
1231 // Type ::= 'float' | 'void' (etc)
1232 Result = Lex.getTyVal();
1233 Lex.Lex();
1234 break;
1235 case lltok::lbrace:
1236 // Type ::= StructType
1237 if (ParseAnonStructType(Result, false))
1238 return true;
1239 break;
1240 case lltok::lsquare:
1241 // Type ::= '[' ... ']'
1242 Lex.Lex(); // eat the lsquare.
1243 if (ParseArrayVectorType(Result, false))
1244 return true;
1245 break;
1246 case lltok::less: // Either vector or packed struct.
1247 // Type ::= '<' ... '>'
1248 Lex.Lex();
1249 if (Lex.getKind() == lltok::lbrace) {
1250 if (ParseAnonStructType(Result, true) ||
1251 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1252 return true;
1253 } else if (ParseArrayVectorType(Result, true))
1254 return true;
1255 break;
1256 case lltok::LocalVar: {
1257 // Type ::= %foo
1258 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1259
1260 // If the type hasn't been defined yet, create a forward definition and
1261 // remember where that forward def'n was seen (in case it never is defined).
1262 if (Entry.first == 0) {
1263 Entry.first = StructType::create(Context, Lex.getStrVal());
1264 Entry.second = Lex.getLoc();
1265 }
1266 Result = Entry.first;
1267 Lex.Lex();
1268 break;
1269 }
1270
1271 case lltok::LocalVarID: {
1272 // Type ::= %4
1273 if (Lex.getUIntVal() >= NumberedTypes.size())
1274 NumberedTypes.resize(Lex.getUIntVal()+1);
1275 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1276
1277 // If the type hasn't been defined yet, create a forward definition and
1278 // remember where that forward def'n was seen (in case it never is defined).
1279 if (Entry.first == 0) {
1280 Entry.first = StructType::create(Context);
1281 Entry.second = Lex.getLoc();
1282 }
1283 Result = Entry.first;
1284 Lex.Lex();
1285 break;
1286 }
1287 }
1288
1289 // Parse the type suffixes.
1290 while (1) {
1291 switch (Lex.getKind()) {
1292 // End of type.
1293 default:
1294 if (!AllowVoid && Result->isVoidTy())
1295 return Error(TypeLoc, "void type only allowed for function results");
1296 return false;
1297
1298 // Type ::= Type '*'
1299 case lltok::star:
1300 if (Result->isLabelTy())
1301 return TokError("basic block pointers are invalid");
1302 if (Result->isVoidTy())
1303 return TokError("pointers to void are invalid - use i8* instead");
1304 if (!PointerType::isValidElementType(Result))
1305 return TokError("pointer to this type is invalid");
1306 Result = PointerType::getUnqual(Result);
1307 Lex.Lex();
1308 break;
1309
1310 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1311 case lltok::kw_addrspace: {
1312 if (Result->isLabelTy())
1313 return TokError("basic block pointers are invalid");
1314 if (Result->isVoidTy())
1315 return TokError("pointers to void are invalid; use i8* instead");
1316 if (!PointerType::isValidElementType(Result))
1317 return TokError("pointer to this type is invalid");
1318 unsigned AddrSpace;
1319 if (ParseOptionalAddrSpace(AddrSpace) ||
1320 ParseToken(lltok::star, "expected '*' in address space"))
1321 return true;
1322
1323 Result = PointerType::get(Result, AddrSpace);
1324 break;
1325 }
1326
1327 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1328 case lltok::lparen:
1329 if (ParseFunctionType(Result))
1330 return true;
1331 break;
1332 }
1333 }
1334 }
1335
1336 /// ParseParameterList
1337 /// ::= '(' ')'
1338 /// ::= '(' Arg (',' Arg)* ')'
1339 /// Arg
1340 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS)1341 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1342 PerFunctionState &PFS) {
1343 if (ParseToken(lltok::lparen, "expected '(' in call"))
1344 return true;
1345
1346 while (Lex.getKind() != lltok::rparen) {
1347 // If this isn't the first argument, we need a comma.
1348 if (!ArgList.empty() &&
1349 ParseToken(lltok::comma, "expected ',' in argument list"))
1350 return true;
1351
1352 // Parse the argument.
1353 LocTy ArgLoc;
1354 Type *ArgTy = 0;
1355 Attributes ArgAttrs1;
1356 Attributes ArgAttrs2;
1357 Value *V;
1358 if (ParseType(ArgTy, ArgLoc))
1359 return true;
1360
1361 // Otherwise, handle normal operands.
1362 if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1363 return true;
1364 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1365 }
1366
1367 Lex.Lex(); // Lex the ')'.
1368 return false;
1369 }
1370
1371
1372
1373 /// ParseArgumentList - Parse the argument list for a function type or function
1374 /// prototype.
1375 /// ::= '(' ArgTypeListI ')'
1376 /// ArgTypeListI
1377 /// ::= /*empty*/
1378 /// ::= '...'
1379 /// ::= ArgTypeList ',' '...'
1380 /// ::= ArgType (',' ArgType)*
1381 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)1382 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1383 bool &isVarArg){
1384 isVarArg = false;
1385 assert(Lex.getKind() == lltok::lparen);
1386 Lex.Lex(); // eat the (.
1387
1388 if (Lex.getKind() == lltok::rparen) {
1389 // empty
1390 } else if (Lex.getKind() == lltok::dotdotdot) {
1391 isVarArg = true;
1392 Lex.Lex();
1393 } else {
1394 LocTy TypeLoc = Lex.getLoc();
1395 Type *ArgTy = 0;
1396 Attributes Attrs;
1397 std::string Name;
1398
1399 if (ParseType(ArgTy) ||
1400 ParseOptionalAttrs(Attrs, 0)) return true;
1401
1402 if (ArgTy->isVoidTy())
1403 return Error(TypeLoc, "argument can not have void type");
1404
1405 if (Lex.getKind() == lltok::LocalVar) {
1406 Name = Lex.getStrVal();
1407 Lex.Lex();
1408 }
1409
1410 if (!FunctionType::isValidArgumentType(ArgTy))
1411 return Error(TypeLoc, "invalid type for function argument");
1412
1413 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1414
1415 while (EatIfPresent(lltok::comma)) {
1416 // Handle ... at end of arg list.
1417 if (EatIfPresent(lltok::dotdotdot)) {
1418 isVarArg = true;
1419 break;
1420 }
1421
1422 // Otherwise must be an argument type.
1423 TypeLoc = Lex.getLoc();
1424 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1425
1426 if (ArgTy->isVoidTy())
1427 return Error(TypeLoc, "argument can not have void type");
1428
1429 if (Lex.getKind() == lltok::LocalVar) {
1430 Name = Lex.getStrVal();
1431 Lex.Lex();
1432 } else {
1433 Name = "";
1434 }
1435
1436 if (!ArgTy->isFirstClassType())
1437 return Error(TypeLoc, "invalid type for function argument");
1438
1439 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1440 }
1441 }
1442
1443 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1444 }
1445
1446 /// ParseFunctionType
1447 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)1448 bool LLParser::ParseFunctionType(Type *&Result) {
1449 assert(Lex.getKind() == lltok::lparen);
1450
1451 if (!FunctionType::isValidReturnType(Result))
1452 return TokError("invalid function return type");
1453
1454 SmallVector<ArgInfo, 8> ArgList;
1455 bool isVarArg;
1456 if (ParseArgumentList(ArgList, isVarArg))
1457 return true;
1458
1459 // Reject names on the arguments lists.
1460 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1461 if (!ArgList[i].Name.empty())
1462 return Error(ArgList[i].Loc, "argument name invalid in function type");
1463 if (ArgList[i].Attrs)
1464 return Error(ArgList[i].Loc,
1465 "argument attributes invalid in function type");
1466 }
1467
1468 SmallVector<Type*, 16> ArgListTy;
1469 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1470 ArgListTy.push_back(ArgList[i].Ty);
1471
1472 Result = FunctionType::get(Result, ArgListTy, isVarArg);
1473 return false;
1474 }
1475
1476 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1477 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)1478 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1479 SmallVector<Type*, 8> Elts;
1480 if (ParseStructBody(Elts)) return true;
1481
1482 Result = StructType::get(Context, Elts, Packed);
1483 return false;
1484 }
1485
1486 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)1487 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1488 std::pair<Type*, LocTy> &Entry,
1489 Type *&ResultTy) {
1490 // If the type was already defined, diagnose the redefinition.
1491 if (Entry.first && !Entry.second.isValid())
1492 return Error(TypeLoc, "redefinition of type");
1493
1494 // If we have opaque, just return without filling in the definition for the
1495 // struct. This counts as a definition as far as the .ll file goes.
1496 if (EatIfPresent(lltok::kw_opaque)) {
1497 // This type is being defined, so clear the location to indicate this.
1498 Entry.second = SMLoc();
1499
1500 // If this type number has never been uttered, create it.
1501 if (Entry.first == 0)
1502 Entry.first = StructType::create(Context, Name);
1503 ResultTy = Entry.first;
1504 return false;
1505 }
1506
1507 // If the type starts with '<', then it is either a packed struct or a vector.
1508 bool isPacked = EatIfPresent(lltok::less);
1509
1510 // If we don't have a struct, then we have a random type alias, which we
1511 // accept for compatibility with old files. These types are not allowed to be
1512 // forward referenced and not allowed to be recursive.
1513 if (Lex.getKind() != lltok::lbrace) {
1514 if (Entry.first)
1515 return Error(TypeLoc, "forward references to non-struct type");
1516
1517 ResultTy = 0;
1518 if (isPacked)
1519 return ParseArrayVectorType(ResultTy, true);
1520 return ParseType(ResultTy);
1521 }
1522
1523 // This type is being defined, so clear the location to indicate this.
1524 Entry.second = SMLoc();
1525
1526 // If this type number has never been uttered, create it.
1527 if (Entry.first == 0)
1528 Entry.first = StructType::create(Context, Name);
1529
1530 StructType *STy = cast<StructType>(Entry.first);
1531
1532 SmallVector<Type*, 8> Body;
1533 if (ParseStructBody(Body) ||
1534 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1535 return true;
1536
1537 STy->setBody(Body, isPacked);
1538 ResultTy = STy;
1539 return false;
1540 }
1541
1542
1543 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1544 /// StructType
1545 /// ::= '{' '}'
1546 /// ::= '{' Type (',' Type)* '}'
1547 /// ::= '<' '{' '}' '>'
1548 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)1549 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1550 assert(Lex.getKind() == lltok::lbrace);
1551 Lex.Lex(); // Consume the '{'
1552
1553 // Handle the empty struct.
1554 if (EatIfPresent(lltok::rbrace))
1555 return false;
1556
1557 LocTy EltTyLoc = Lex.getLoc();
1558 Type *Ty = 0;
1559 if (ParseType(Ty)) return true;
1560 Body.push_back(Ty);
1561
1562 if (!StructType::isValidElementType(Ty))
1563 return Error(EltTyLoc, "invalid element type for struct");
1564
1565 while (EatIfPresent(lltok::comma)) {
1566 EltTyLoc = Lex.getLoc();
1567 if (ParseType(Ty)) return true;
1568
1569 if (!StructType::isValidElementType(Ty))
1570 return Error(EltTyLoc, "invalid element type for struct");
1571
1572 Body.push_back(Ty);
1573 }
1574
1575 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1576 }
1577
1578 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1579 /// token has already been consumed.
1580 /// Type
1581 /// ::= '[' APSINTVAL 'x' Types ']'
1582 /// ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)1583 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1584 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1585 Lex.getAPSIntVal().getBitWidth() > 64)
1586 return TokError("expected number in address space");
1587
1588 LocTy SizeLoc = Lex.getLoc();
1589 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1590 Lex.Lex();
1591
1592 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1593 return true;
1594
1595 LocTy TypeLoc = Lex.getLoc();
1596 Type *EltTy = 0;
1597 if (ParseType(EltTy)) return true;
1598
1599 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1600 "expected end of sequential type"))
1601 return true;
1602
1603 if (isVector) {
1604 if (Size == 0)
1605 return Error(SizeLoc, "zero element vector is illegal");
1606 if ((unsigned)Size != Size)
1607 return Error(SizeLoc, "size too large for vector");
1608 if (!VectorType::isValidElementType(EltTy))
1609 return Error(TypeLoc,
1610 "vector element type must be fp, integer or a pointer to these types");
1611 Result = VectorType::get(EltTy, unsigned(Size));
1612 } else {
1613 if (!ArrayType::isValidElementType(EltTy))
1614 return Error(TypeLoc, "invalid array element type");
1615 Result = ArrayType::get(EltTy, Size);
1616 }
1617 return false;
1618 }
1619
1620 //===----------------------------------------------------------------------===//
1621 // Function Semantic Analysis.
1622 //===----------------------------------------------------------------------===//
1623
PerFunctionState(LLParser & p,Function & f,int functionNumber)1624 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1625 int functionNumber)
1626 : P(p), F(f), FunctionNumber(functionNumber) {
1627
1628 // Insert unnamed arguments into the NumberedVals list.
1629 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1630 AI != E; ++AI)
1631 if (!AI->hasName())
1632 NumberedVals.push_back(AI);
1633 }
1634
~PerFunctionState()1635 LLParser::PerFunctionState::~PerFunctionState() {
1636 // If there were any forward referenced non-basicblock values, delete them.
1637 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1638 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1639 if (!isa<BasicBlock>(I->second.first)) {
1640 I->second.first->replaceAllUsesWith(
1641 UndefValue::get(I->second.first->getType()));
1642 delete I->second.first;
1643 I->second.first = 0;
1644 }
1645
1646 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1647 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1648 if (!isa<BasicBlock>(I->second.first)) {
1649 I->second.first->replaceAllUsesWith(
1650 UndefValue::get(I->second.first->getType()));
1651 delete I->second.first;
1652 I->second.first = 0;
1653 }
1654 }
1655
FinishFunction()1656 bool LLParser::PerFunctionState::FinishFunction() {
1657 // Check to see if someone took the address of labels in this block.
1658 if (!P.ForwardRefBlockAddresses.empty()) {
1659 ValID FunctionID;
1660 if (!F.getName().empty()) {
1661 FunctionID.Kind = ValID::t_GlobalName;
1662 FunctionID.StrVal = F.getName();
1663 } else {
1664 FunctionID.Kind = ValID::t_GlobalID;
1665 FunctionID.UIntVal = FunctionNumber;
1666 }
1667
1668 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1669 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1670 if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1671 // Resolve all these references.
1672 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1673 return true;
1674
1675 P.ForwardRefBlockAddresses.erase(FRBAI);
1676 }
1677 }
1678
1679 if (!ForwardRefVals.empty())
1680 return P.Error(ForwardRefVals.begin()->second.second,
1681 "use of undefined value '%" + ForwardRefVals.begin()->first +
1682 "'");
1683 if (!ForwardRefValIDs.empty())
1684 return P.Error(ForwardRefValIDs.begin()->second.second,
1685 "use of undefined value '%" +
1686 Twine(ForwardRefValIDs.begin()->first) + "'");
1687 return false;
1688 }
1689
1690
1691 /// GetVal - Get a value with the specified name or ID, creating a
1692 /// forward reference record if needed. This can return null if the value
1693 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc)1694 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1695 Type *Ty, LocTy Loc) {
1696 // Look this name up in the normal function symbol table.
1697 Value *Val = F.getValueSymbolTable().lookup(Name);
1698
1699 // If this is a forward reference for the value, see if we already created a
1700 // forward ref record.
1701 if (Val == 0) {
1702 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1703 I = ForwardRefVals.find(Name);
1704 if (I != ForwardRefVals.end())
1705 Val = I->second.first;
1706 }
1707
1708 // If we have the value in the symbol table or fwd-ref table, return it.
1709 if (Val) {
1710 if (Val->getType() == Ty) return Val;
1711 if (Ty->isLabelTy())
1712 P.Error(Loc, "'%" + Name + "' is not a basic block");
1713 else
1714 P.Error(Loc, "'%" + Name + "' defined with type '" +
1715 getTypeString(Val->getType()) + "'");
1716 return 0;
1717 }
1718
1719 // Don't make placeholders with invalid type.
1720 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1721 P.Error(Loc, "invalid use of a non-first-class type");
1722 return 0;
1723 }
1724
1725 // Otherwise, create a new forward reference for this value and remember it.
1726 Value *FwdVal;
1727 if (Ty->isLabelTy())
1728 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1729 else
1730 FwdVal = new Argument(Ty, Name);
1731
1732 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1733 return FwdVal;
1734 }
1735
GetVal(unsigned ID,Type * Ty,LocTy Loc)1736 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1737 LocTy Loc) {
1738 // Look this name up in the normal function symbol table.
1739 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1740
1741 // If this is a forward reference for the value, see if we already created a
1742 // forward ref record.
1743 if (Val == 0) {
1744 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1745 I = ForwardRefValIDs.find(ID);
1746 if (I != ForwardRefValIDs.end())
1747 Val = I->second.first;
1748 }
1749
1750 // If we have the value in the symbol table or fwd-ref table, return it.
1751 if (Val) {
1752 if (Val->getType() == Ty) return Val;
1753 if (Ty->isLabelTy())
1754 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1755 else
1756 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1757 getTypeString(Val->getType()) + "'");
1758 return 0;
1759 }
1760
1761 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1762 P.Error(Loc, "invalid use of a non-first-class type");
1763 return 0;
1764 }
1765
1766 // Otherwise, create a new forward reference for this value and remember it.
1767 Value *FwdVal;
1768 if (Ty->isLabelTy())
1769 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1770 else
1771 FwdVal = new Argument(Ty);
1772
1773 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1774 return FwdVal;
1775 }
1776
1777 /// SetInstName - After an instruction is parsed and inserted into its
1778 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)1779 bool LLParser::PerFunctionState::SetInstName(int NameID,
1780 const std::string &NameStr,
1781 LocTy NameLoc, Instruction *Inst) {
1782 // If this instruction has void type, it cannot have a name or ID specified.
1783 if (Inst->getType()->isVoidTy()) {
1784 if (NameID != -1 || !NameStr.empty())
1785 return P.Error(NameLoc, "instructions returning void cannot have a name");
1786 return false;
1787 }
1788
1789 // If this was a numbered instruction, verify that the instruction is the
1790 // expected value and resolve any forward references.
1791 if (NameStr.empty()) {
1792 // If neither a name nor an ID was specified, just use the next ID.
1793 if (NameID == -1)
1794 NameID = NumberedVals.size();
1795
1796 if (unsigned(NameID) != NumberedVals.size())
1797 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1798 Twine(NumberedVals.size()) + "'");
1799
1800 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1801 ForwardRefValIDs.find(NameID);
1802 if (FI != ForwardRefValIDs.end()) {
1803 if (FI->second.first->getType() != Inst->getType())
1804 return P.Error(NameLoc, "instruction forward referenced with type '" +
1805 getTypeString(FI->second.first->getType()) + "'");
1806 FI->second.first->replaceAllUsesWith(Inst);
1807 delete FI->second.first;
1808 ForwardRefValIDs.erase(FI);
1809 }
1810
1811 NumberedVals.push_back(Inst);
1812 return false;
1813 }
1814
1815 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1816 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1817 FI = ForwardRefVals.find(NameStr);
1818 if (FI != ForwardRefVals.end()) {
1819 if (FI->second.first->getType() != Inst->getType())
1820 return P.Error(NameLoc, "instruction forward referenced with type '" +
1821 getTypeString(FI->second.first->getType()) + "'");
1822 FI->second.first->replaceAllUsesWith(Inst);
1823 delete FI->second.first;
1824 ForwardRefVals.erase(FI);
1825 }
1826
1827 // Set the name on the instruction.
1828 Inst->setName(NameStr);
1829
1830 if (Inst->getName() != NameStr)
1831 return P.Error(NameLoc, "multiple definition of local value named '" +
1832 NameStr + "'");
1833 return false;
1834 }
1835
1836 /// GetBB - Get a basic block with the specified name or ID, creating a
1837 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)1838 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1839 LocTy Loc) {
1840 return cast_or_null<BasicBlock>(GetVal(Name,
1841 Type::getLabelTy(F.getContext()), Loc));
1842 }
1843
GetBB(unsigned ID,LocTy Loc)1844 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1845 return cast_or_null<BasicBlock>(GetVal(ID,
1846 Type::getLabelTy(F.getContext()), Loc));
1847 }
1848
1849 /// DefineBB - Define the specified basic block, which is either named or
1850 /// unnamed. If there is an error, this returns null otherwise it returns
1851 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)1852 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1853 LocTy Loc) {
1854 BasicBlock *BB;
1855 if (Name.empty())
1856 BB = GetBB(NumberedVals.size(), Loc);
1857 else
1858 BB = GetBB(Name, Loc);
1859 if (BB == 0) return 0; // Already diagnosed error.
1860
1861 // Move the block to the end of the function. Forward ref'd blocks are
1862 // inserted wherever they happen to be referenced.
1863 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1864
1865 // Remove the block from forward ref sets.
1866 if (Name.empty()) {
1867 ForwardRefValIDs.erase(NumberedVals.size());
1868 NumberedVals.push_back(BB);
1869 } else {
1870 // BB forward references are already in the function symbol table.
1871 ForwardRefVals.erase(Name);
1872 }
1873
1874 return BB;
1875 }
1876
1877 //===----------------------------------------------------------------------===//
1878 // Constants.
1879 //===----------------------------------------------------------------------===//
1880
1881 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1882 /// type implied. For example, if we parse "4" we don't know what integer type
1883 /// it has. The value will later be combined with its type and checked for
1884 /// sanity. PFS is used to convert function-local operands of metadata (since
1885 /// metadata operands are not just parsed here but also converted to values).
1886 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)1887 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1888 ID.Loc = Lex.getLoc();
1889 switch (Lex.getKind()) {
1890 default: return TokError("expected value token");
1891 case lltok::GlobalID: // @42
1892 ID.UIntVal = Lex.getUIntVal();
1893 ID.Kind = ValID::t_GlobalID;
1894 break;
1895 case lltok::GlobalVar: // @foo
1896 ID.StrVal = Lex.getStrVal();
1897 ID.Kind = ValID::t_GlobalName;
1898 break;
1899 case lltok::LocalVarID: // %42
1900 ID.UIntVal = Lex.getUIntVal();
1901 ID.Kind = ValID::t_LocalID;
1902 break;
1903 case lltok::LocalVar: // %foo
1904 ID.StrVal = Lex.getStrVal();
1905 ID.Kind = ValID::t_LocalName;
1906 break;
1907 case lltok::exclaim: // !42, !{...}, or !"foo"
1908 return ParseMetadataValue(ID, PFS);
1909 case lltok::APSInt:
1910 ID.APSIntVal = Lex.getAPSIntVal();
1911 ID.Kind = ValID::t_APSInt;
1912 break;
1913 case lltok::APFloat:
1914 ID.APFloatVal = Lex.getAPFloatVal();
1915 ID.Kind = ValID::t_APFloat;
1916 break;
1917 case lltok::kw_true:
1918 ID.ConstantVal = ConstantInt::getTrue(Context);
1919 ID.Kind = ValID::t_Constant;
1920 break;
1921 case lltok::kw_false:
1922 ID.ConstantVal = ConstantInt::getFalse(Context);
1923 ID.Kind = ValID::t_Constant;
1924 break;
1925 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1926 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1927 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1928
1929 case lltok::lbrace: {
1930 // ValID ::= '{' ConstVector '}'
1931 Lex.Lex();
1932 SmallVector<Constant*, 16> Elts;
1933 if (ParseGlobalValueVector(Elts) ||
1934 ParseToken(lltok::rbrace, "expected end of struct constant"))
1935 return true;
1936
1937 ID.ConstantStructElts = new Constant*[Elts.size()];
1938 ID.UIntVal = Elts.size();
1939 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1940 ID.Kind = ValID::t_ConstantStruct;
1941 return false;
1942 }
1943 case lltok::less: {
1944 // ValID ::= '<' ConstVector '>' --> Vector.
1945 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1946 Lex.Lex();
1947 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1948
1949 SmallVector<Constant*, 16> Elts;
1950 LocTy FirstEltLoc = Lex.getLoc();
1951 if (ParseGlobalValueVector(Elts) ||
1952 (isPackedStruct &&
1953 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1954 ParseToken(lltok::greater, "expected end of constant"))
1955 return true;
1956
1957 if (isPackedStruct) {
1958 ID.ConstantStructElts = new Constant*[Elts.size()];
1959 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1960 ID.UIntVal = Elts.size();
1961 ID.Kind = ValID::t_PackedConstantStruct;
1962 return false;
1963 }
1964
1965 if (Elts.empty())
1966 return Error(ID.Loc, "constant vector must not be empty");
1967
1968 if (!Elts[0]->getType()->isIntegerTy() &&
1969 !Elts[0]->getType()->isFloatingPointTy() &&
1970 !Elts[0]->getType()->isPointerTy())
1971 return Error(FirstEltLoc,
1972 "vector elements must have integer, pointer or floating point type");
1973
1974 // Verify that all the vector elements have the same type.
1975 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1976 if (Elts[i]->getType() != Elts[0]->getType())
1977 return Error(FirstEltLoc,
1978 "vector element #" + Twine(i) +
1979 " is not of type '" + getTypeString(Elts[0]->getType()));
1980
1981 ID.ConstantVal = ConstantVector::get(Elts);
1982 ID.Kind = ValID::t_Constant;
1983 return false;
1984 }
1985 case lltok::lsquare: { // Array Constant
1986 Lex.Lex();
1987 SmallVector<Constant*, 16> Elts;
1988 LocTy FirstEltLoc = Lex.getLoc();
1989 if (ParseGlobalValueVector(Elts) ||
1990 ParseToken(lltok::rsquare, "expected end of array constant"))
1991 return true;
1992
1993 // Handle empty element.
1994 if (Elts.empty()) {
1995 // Use undef instead of an array because it's inconvenient to determine
1996 // the element type at this point, there being no elements to examine.
1997 ID.Kind = ValID::t_EmptyArray;
1998 return false;
1999 }
2000
2001 if (!Elts[0]->getType()->isFirstClassType())
2002 return Error(FirstEltLoc, "invalid array element type: " +
2003 getTypeString(Elts[0]->getType()));
2004
2005 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2006
2007 // Verify all elements are correct type!
2008 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2009 if (Elts[i]->getType() != Elts[0]->getType())
2010 return Error(FirstEltLoc,
2011 "array element #" + Twine(i) +
2012 " is not of type '" + getTypeString(Elts[0]->getType()));
2013 }
2014
2015 ID.ConstantVal = ConstantArray::get(ATy, Elts);
2016 ID.Kind = ValID::t_Constant;
2017 return false;
2018 }
2019 case lltok::kw_c: // c "foo"
2020 Lex.Lex();
2021 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2022 false);
2023 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2024 ID.Kind = ValID::t_Constant;
2025 return false;
2026
2027 case lltok::kw_asm: {
2028 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2029 bool HasSideEffect, AlignStack;
2030 Lex.Lex();
2031 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2032 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2033 ParseStringConstant(ID.StrVal) ||
2034 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2035 ParseToken(lltok::StringConstant, "expected constraint string"))
2036 return true;
2037 ID.StrVal2 = Lex.getStrVal();
2038 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2039 ID.Kind = ValID::t_InlineAsm;
2040 return false;
2041 }
2042
2043 case lltok::kw_blockaddress: {
2044 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2045 Lex.Lex();
2046
2047 ValID Fn, Label;
2048 LocTy FnLoc, LabelLoc;
2049
2050 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2051 ParseValID(Fn) ||
2052 ParseToken(lltok::comma, "expected comma in block address expression")||
2053 ParseValID(Label) ||
2054 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2055 return true;
2056
2057 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2058 return Error(Fn.Loc, "expected function name in blockaddress");
2059 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2060 return Error(Label.Loc, "expected basic block name in blockaddress");
2061
2062 // Make a global variable as a placeholder for this reference.
2063 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2064 false, GlobalValue::InternalLinkage,
2065 0, "");
2066 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2067 ID.ConstantVal = FwdRef;
2068 ID.Kind = ValID::t_Constant;
2069 return false;
2070 }
2071
2072 case lltok::kw_trunc:
2073 case lltok::kw_zext:
2074 case lltok::kw_sext:
2075 case lltok::kw_fptrunc:
2076 case lltok::kw_fpext:
2077 case lltok::kw_bitcast:
2078 case lltok::kw_uitofp:
2079 case lltok::kw_sitofp:
2080 case lltok::kw_fptoui:
2081 case lltok::kw_fptosi:
2082 case lltok::kw_inttoptr:
2083 case lltok::kw_ptrtoint: {
2084 unsigned Opc = Lex.getUIntVal();
2085 Type *DestTy = 0;
2086 Constant *SrcVal;
2087 Lex.Lex();
2088 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2089 ParseGlobalTypeAndValue(SrcVal) ||
2090 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2091 ParseType(DestTy) ||
2092 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2093 return true;
2094 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2095 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2096 getTypeString(SrcVal->getType()) + "' to '" +
2097 getTypeString(DestTy) + "'");
2098 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2099 SrcVal, DestTy);
2100 ID.Kind = ValID::t_Constant;
2101 return false;
2102 }
2103 case lltok::kw_extractvalue: {
2104 Lex.Lex();
2105 Constant *Val;
2106 SmallVector<unsigned, 4> Indices;
2107 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2108 ParseGlobalTypeAndValue(Val) ||
2109 ParseIndexList(Indices) ||
2110 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2111 return true;
2112
2113 if (!Val->getType()->isAggregateType())
2114 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2115 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2116 return Error(ID.Loc, "invalid indices for extractvalue");
2117 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2118 ID.Kind = ValID::t_Constant;
2119 return false;
2120 }
2121 case lltok::kw_insertvalue: {
2122 Lex.Lex();
2123 Constant *Val0, *Val1;
2124 SmallVector<unsigned, 4> Indices;
2125 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2126 ParseGlobalTypeAndValue(Val0) ||
2127 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2128 ParseGlobalTypeAndValue(Val1) ||
2129 ParseIndexList(Indices) ||
2130 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2131 return true;
2132 if (!Val0->getType()->isAggregateType())
2133 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2134 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2135 return Error(ID.Loc, "invalid indices for insertvalue");
2136 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2137 ID.Kind = ValID::t_Constant;
2138 return false;
2139 }
2140 case lltok::kw_icmp:
2141 case lltok::kw_fcmp: {
2142 unsigned PredVal, Opc = Lex.getUIntVal();
2143 Constant *Val0, *Val1;
2144 Lex.Lex();
2145 if (ParseCmpPredicate(PredVal, Opc) ||
2146 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2147 ParseGlobalTypeAndValue(Val0) ||
2148 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2149 ParseGlobalTypeAndValue(Val1) ||
2150 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2151 return true;
2152
2153 if (Val0->getType() != Val1->getType())
2154 return Error(ID.Loc, "compare operands must have the same type");
2155
2156 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2157
2158 if (Opc == Instruction::FCmp) {
2159 if (!Val0->getType()->isFPOrFPVectorTy())
2160 return Error(ID.Loc, "fcmp requires floating point operands");
2161 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2162 } else {
2163 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2164 if (!Val0->getType()->isIntOrIntVectorTy() &&
2165 !Val0->getType()->getScalarType()->isPointerTy())
2166 return Error(ID.Loc, "icmp requires pointer or integer operands");
2167 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2168 }
2169 ID.Kind = ValID::t_Constant;
2170 return false;
2171 }
2172
2173 // Binary Operators.
2174 case lltok::kw_add:
2175 case lltok::kw_fadd:
2176 case lltok::kw_sub:
2177 case lltok::kw_fsub:
2178 case lltok::kw_mul:
2179 case lltok::kw_fmul:
2180 case lltok::kw_udiv:
2181 case lltok::kw_sdiv:
2182 case lltok::kw_fdiv:
2183 case lltok::kw_urem:
2184 case lltok::kw_srem:
2185 case lltok::kw_frem:
2186 case lltok::kw_shl:
2187 case lltok::kw_lshr:
2188 case lltok::kw_ashr: {
2189 bool NUW = false;
2190 bool NSW = false;
2191 bool Exact = false;
2192 unsigned Opc = Lex.getUIntVal();
2193 Constant *Val0, *Val1;
2194 Lex.Lex();
2195 LocTy ModifierLoc = Lex.getLoc();
2196 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2197 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2198 if (EatIfPresent(lltok::kw_nuw))
2199 NUW = true;
2200 if (EatIfPresent(lltok::kw_nsw)) {
2201 NSW = true;
2202 if (EatIfPresent(lltok::kw_nuw))
2203 NUW = true;
2204 }
2205 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2206 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2207 if (EatIfPresent(lltok::kw_exact))
2208 Exact = true;
2209 }
2210 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2211 ParseGlobalTypeAndValue(Val0) ||
2212 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2213 ParseGlobalTypeAndValue(Val1) ||
2214 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2215 return true;
2216 if (Val0->getType() != Val1->getType())
2217 return Error(ID.Loc, "operands of constexpr must have same type");
2218 if (!Val0->getType()->isIntOrIntVectorTy()) {
2219 if (NUW)
2220 return Error(ModifierLoc, "nuw only applies to integer operations");
2221 if (NSW)
2222 return Error(ModifierLoc, "nsw only applies to integer operations");
2223 }
2224 // Check that the type is valid for the operator.
2225 switch (Opc) {
2226 case Instruction::Add:
2227 case Instruction::Sub:
2228 case Instruction::Mul:
2229 case Instruction::UDiv:
2230 case Instruction::SDiv:
2231 case Instruction::URem:
2232 case Instruction::SRem:
2233 case Instruction::Shl:
2234 case Instruction::AShr:
2235 case Instruction::LShr:
2236 if (!Val0->getType()->isIntOrIntVectorTy())
2237 return Error(ID.Loc, "constexpr requires integer operands");
2238 break;
2239 case Instruction::FAdd:
2240 case Instruction::FSub:
2241 case Instruction::FMul:
2242 case Instruction::FDiv:
2243 case Instruction::FRem:
2244 if (!Val0->getType()->isFPOrFPVectorTy())
2245 return Error(ID.Loc, "constexpr requires fp operands");
2246 break;
2247 default: llvm_unreachable("Unknown binary operator!");
2248 }
2249 unsigned Flags = 0;
2250 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2251 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2252 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2253 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2254 ID.ConstantVal = C;
2255 ID.Kind = ValID::t_Constant;
2256 return false;
2257 }
2258
2259 // Logical Operations
2260 case lltok::kw_and:
2261 case lltok::kw_or:
2262 case lltok::kw_xor: {
2263 unsigned Opc = Lex.getUIntVal();
2264 Constant *Val0, *Val1;
2265 Lex.Lex();
2266 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2267 ParseGlobalTypeAndValue(Val0) ||
2268 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2269 ParseGlobalTypeAndValue(Val1) ||
2270 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2271 return true;
2272 if (Val0->getType() != Val1->getType())
2273 return Error(ID.Loc, "operands of constexpr must have same type");
2274 if (!Val0->getType()->isIntOrIntVectorTy())
2275 return Error(ID.Loc,
2276 "constexpr requires integer or integer vector operands");
2277 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2278 ID.Kind = ValID::t_Constant;
2279 return false;
2280 }
2281
2282 case lltok::kw_getelementptr:
2283 case lltok::kw_shufflevector:
2284 case lltok::kw_insertelement:
2285 case lltok::kw_extractelement:
2286 case lltok::kw_select: {
2287 unsigned Opc = Lex.getUIntVal();
2288 SmallVector<Constant*, 16> Elts;
2289 bool InBounds = false;
2290 Lex.Lex();
2291 if (Opc == Instruction::GetElementPtr)
2292 InBounds = EatIfPresent(lltok::kw_inbounds);
2293 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2294 ParseGlobalValueVector(Elts) ||
2295 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2296 return true;
2297
2298 if (Opc == Instruction::GetElementPtr) {
2299 if (Elts.size() == 0 ||
2300 !Elts[0]->getType()->getScalarType()->isPointerTy())
2301 return Error(ID.Loc, "getelementptr requires pointer operand");
2302
2303 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2304 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2305 return Error(ID.Loc, "invalid indices for getelementptr");
2306 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2307 InBounds);
2308 } else if (Opc == Instruction::Select) {
2309 if (Elts.size() != 3)
2310 return Error(ID.Loc, "expected three operands to select");
2311 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2312 Elts[2]))
2313 return Error(ID.Loc, Reason);
2314 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2315 } else if (Opc == Instruction::ShuffleVector) {
2316 if (Elts.size() != 3)
2317 return Error(ID.Loc, "expected three operands to shufflevector");
2318 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2319 return Error(ID.Loc, "invalid operands to shufflevector");
2320 ID.ConstantVal =
2321 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2322 } else if (Opc == Instruction::ExtractElement) {
2323 if (Elts.size() != 2)
2324 return Error(ID.Loc, "expected two operands to extractelement");
2325 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2326 return Error(ID.Loc, "invalid extractelement operands");
2327 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2328 } else {
2329 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2330 if (Elts.size() != 3)
2331 return Error(ID.Loc, "expected three operands to insertelement");
2332 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2333 return Error(ID.Loc, "invalid insertelement operands");
2334 ID.ConstantVal =
2335 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2336 }
2337
2338 ID.Kind = ValID::t_Constant;
2339 return false;
2340 }
2341 }
2342
2343 Lex.Lex();
2344 return false;
2345 }
2346
2347 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)2348 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2349 C = 0;
2350 ValID ID;
2351 Value *V = NULL;
2352 bool Parsed = ParseValID(ID) ||
2353 ConvertValIDToValue(Ty, ID, V, NULL);
2354 if (V && !(C = dyn_cast<Constant>(V)))
2355 return Error(ID.Loc, "global values must be constants");
2356 return Parsed;
2357 }
2358
ParseGlobalTypeAndValue(Constant * & V)2359 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2360 Type *Ty = 0;
2361 return ParseType(Ty) ||
2362 ParseGlobalValue(Ty, V);
2363 }
2364
2365 /// ParseGlobalValueVector
2366 /// ::= /*empty*/
2367 /// ::= TypeAndValue (',' TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)2368 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2369 // Empty list.
2370 if (Lex.getKind() == lltok::rbrace ||
2371 Lex.getKind() == lltok::rsquare ||
2372 Lex.getKind() == lltok::greater ||
2373 Lex.getKind() == lltok::rparen)
2374 return false;
2375
2376 Constant *C;
2377 if (ParseGlobalTypeAndValue(C)) return true;
2378 Elts.push_back(C);
2379
2380 while (EatIfPresent(lltok::comma)) {
2381 if (ParseGlobalTypeAndValue(C)) return true;
2382 Elts.push_back(C);
2383 }
2384
2385 return false;
2386 }
2387
ParseMetadataListValue(ValID & ID,PerFunctionState * PFS)2388 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2389 assert(Lex.getKind() == lltok::lbrace);
2390 Lex.Lex();
2391
2392 SmallVector<Value*, 16> Elts;
2393 if (ParseMDNodeVector(Elts, PFS) ||
2394 ParseToken(lltok::rbrace, "expected end of metadata node"))
2395 return true;
2396
2397 ID.MDNodeVal = MDNode::get(Context, Elts);
2398 ID.Kind = ValID::t_MDNode;
2399 return false;
2400 }
2401
2402 /// ParseMetadataValue
2403 /// ::= !42
2404 /// ::= !{...}
2405 /// ::= !"string"
ParseMetadataValue(ValID & ID,PerFunctionState * PFS)2406 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2407 assert(Lex.getKind() == lltok::exclaim);
2408 Lex.Lex();
2409
2410 // MDNode:
2411 // !{ ... }
2412 if (Lex.getKind() == lltok::lbrace)
2413 return ParseMetadataListValue(ID, PFS);
2414
2415 // Standalone metadata reference
2416 // !42
2417 if (Lex.getKind() == lltok::APSInt) {
2418 if (ParseMDNodeID(ID.MDNodeVal)) return true;
2419 ID.Kind = ValID::t_MDNode;
2420 return false;
2421 }
2422
2423 // MDString:
2424 // ::= '!' STRINGCONSTANT
2425 if (ParseMDString(ID.MDStringVal)) return true;
2426 ID.Kind = ValID::t_MDString;
2427 return false;
2428 }
2429
2430
2431 //===----------------------------------------------------------------------===//
2432 // Function Parsing.
2433 //===----------------------------------------------------------------------===//
2434
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)2435 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2436 PerFunctionState *PFS) {
2437 if (Ty->isFunctionTy())
2438 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2439
2440 switch (ID.Kind) {
2441 case ValID::t_LocalID:
2442 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2443 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2444 return (V == 0);
2445 case ValID::t_LocalName:
2446 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2447 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2448 return (V == 0);
2449 case ValID::t_InlineAsm: {
2450 PointerType *PTy = dyn_cast<PointerType>(Ty);
2451 FunctionType *FTy =
2452 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2453 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2454 return Error(ID.Loc, "invalid type for inline asm constraint string");
2455 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2456 return false;
2457 }
2458 case ValID::t_MDNode:
2459 if (!Ty->isMetadataTy())
2460 return Error(ID.Loc, "metadata value must have metadata type");
2461 V = ID.MDNodeVal;
2462 return false;
2463 case ValID::t_MDString:
2464 if (!Ty->isMetadataTy())
2465 return Error(ID.Loc, "metadata value must have metadata type");
2466 V = ID.MDStringVal;
2467 return false;
2468 case ValID::t_GlobalName:
2469 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2470 return V == 0;
2471 case ValID::t_GlobalID:
2472 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2473 return V == 0;
2474 case ValID::t_APSInt:
2475 if (!Ty->isIntegerTy())
2476 return Error(ID.Loc, "integer constant must have integer type");
2477 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2478 V = ConstantInt::get(Context, ID.APSIntVal);
2479 return false;
2480 case ValID::t_APFloat:
2481 if (!Ty->isFloatingPointTy() ||
2482 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2483 return Error(ID.Loc, "floating point constant invalid for type");
2484
2485 // The lexer has no type info, so builds all half, float, and double FP
2486 // constants as double. Fix this here. Long double does not need this.
2487 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2488 bool Ignored;
2489 if (Ty->isHalfTy())
2490 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2491 &Ignored);
2492 else if (Ty->isFloatTy())
2493 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2494 &Ignored);
2495 }
2496 V = ConstantFP::get(Context, ID.APFloatVal);
2497
2498 if (V->getType() != Ty)
2499 return Error(ID.Loc, "floating point constant does not have type '" +
2500 getTypeString(Ty) + "'");
2501
2502 return false;
2503 case ValID::t_Null:
2504 if (!Ty->isPointerTy())
2505 return Error(ID.Loc, "null must be a pointer type");
2506 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2507 return false;
2508 case ValID::t_Undef:
2509 // FIXME: LabelTy should not be a first-class type.
2510 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2511 return Error(ID.Loc, "invalid type for undef constant");
2512 V = UndefValue::get(Ty);
2513 return false;
2514 case ValID::t_EmptyArray:
2515 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2516 return Error(ID.Loc, "invalid empty array initializer");
2517 V = UndefValue::get(Ty);
2518 return false;
2519 case ValID::t_Zero:
2520 // FIXME: LabelTy should not be a first-class type.
2521 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2522 return Error(ID.Loc, "invalid type for null constant");
2523 V = Constant::getNullValue(Ty);
2524 return false;
2525 case ValID::t_Constant:
2526 if (ID.ConstantVal->getType() != Ty)
2527 return Error(ID.Loc, "constant expression type mismatch");
2528
2529 V = ID.ConstantVal;
2530 return false;
2531 case ValID::t_ConstantStruct:
2532 case ValID::t_PackedConstantStruct:
2533 if (StructType *ST = dyn_cast<StructType>(Ty)) {
2534 if (ST->getNumElements() != ID.UIntVal)
2535 return Error(ID.Loc,
2536 "initializer with struct type has wrong # elements");
2537 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2538 return Error(ID.Loc, "packed'ness of initializer and type don't match");
2539
2540 // Verify that the elements are compatible with the structtype.
2541 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2542 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2543 return Error(ID.Loc, "element " + Twine(i) +
2544 " of struct initializer doesn't match struct element type");
2545
2546 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2547 ID.UIntVal));
2548 } else
2549 return Error(ID.Loc, "constant expression type mismatch");
2550 return false;
2551 }
2552 llvm_unreachable("Invalid ValID");
2553 }
2554
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)2555 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2556 V = 0;
2557 ValID ID;
2558 return ParseValID(ID, PFS) ||
2559 ConvertValIDToValue(Ty, ID, V, PFS);
2560 }
2561
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)2562 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2563 Type *Ty = 0;
2564 return ParseType(Ty) ||
2565 ParseValue(Ty, V, PFS);
2566 }
2567
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)2568 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2569 PerFunctionState &PFS) {
2570 Value *V;
2571 Loc = Lex.getLoc();
2572 if (ParseTypeAndValue(V, PFS)) return true;
2573 if (!isa<BasicBlock>(V))
2574 return Error(Loc, "expected a basic block");
2575 BB = cast<BasicBlock>(V);
2576 return false;
2577 }
2578
2579
2580 /// FunctionHeader
2581 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2582 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2583 /// OptionalAlign OptGC
ParseFunctionHeader(Function * & Fn,bool isDefine)2584 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2585 // Parse the linkage.
2586 LocTy LinkageLoc = Lex.getLoc();
2587 unsigned Linkage;
2588
2589 unsigned Visibility;
2590 Attributes RetAttrs;
2591 CallingConv::ID CC;
2592 Type *RetType = 0;
2593 LocTy RetTypeLoc = Lex.getLoc();
2594 if (ParseOptionalLinkage(Linkage) ||
2595 ParseOptionalVisibility(Visibility) ||
2596 ParseOptionalCallingConv(CC) ||
2597 ParseOptionalAttrs(RetAttrs, 1) ||
2598 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2599 return true;
2600
2601 // Verify that the linkage is ok.
2602 switch ((GlobalValue::LinkageTypes)Linkage) {
2603 case GlobalValue::ExternalLinkage:
2604 break; // always ok.
2605 case GlobalValue::DLLImportLinkage:
2606 case GlobalValue::ExternalWeakLinkage:
2607 if (isDefine)
2608 return Error(LinkageLoc, "invalid linkage for function definition");
2609 break;
2610 case GlobalValue::PrivateLinkage:
2611 case GlobalValue::LinkerPrivateLinkage:
2612 case GlobalValue::LinkerPrivateWeakLinkage:
2613 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2614 case GlobalValue::InternalLinkage:
2615 case GlobalValue::AvailableExternallyLinkage:
2616 case GlobalValue::LinkOnceAnyLinkage:
2617 case GlobalValue::LinkOnceODRLinkage:
2618 case GlobalValue::WeakAnyLinkage:
2619 case GlobalValue::WeakODRLinkage:
2620 case GlobalValue::DLLExportLinkage:
2621 if (!isDefine)
2622 return Error(LinkageLoc, "invalid linkage for function declaration");
2623 break;
2624 case GlobalValue::AppendingLinkage:
2625 case GlobalValue::CommonLinkage:
2626 return Error(LinkageLoc, "invalid function linkage type");
2627 }
2628
2629 if (!FunctionType::isValidReturnType(RetType))
2630 return Error(RetTypeLoc, "invalid function return type");
2631
2632 LocTy NameLoc = Lex.getLoc();
2633
2634 std::string FunctionName;
2635 if (Lex.getKind() == lltok::GlobalVar) {
2636 FunctionName = Lex.getStrVal();
2637 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2638 unsigned NameID = Lex.getUIntVal();
2639
2640 if (NameID != NumberedVals.size())
2641 return TokError("function expected to be numbered '%" +
2642 Twine(NumberedVals.size()) + "'");
2643 } else {
2644 return TokError("expected function name");
2645 }
2646
2647 Lex.Lex();
2648
2649 if (Lex.getKind() != lltok::lparen)
2650 return TokError("expected '(' in function argument list");
2651
2652 SmallVector<ArgInfo, 8> ArgList;
2653 bool isVarArg;
2654 Attributes FuncAttrs;
2655 std::string Section;
2656 unsigned Alignment;
2657 std::string GC;
2658 bool UnnamedAddr;
2659 LocTy UnnamedAddrLoc;
2660
2661 if (ParseArgumentList(ArgList, isVarArg) ||
2662 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2663 &UnnamedAddrLoc) ||
2664 ParseOptionalAttrs(FuncAttrs, 2) ||
2665 (EatIfPresent(lltok::kw_section) &&
2666 ParseStringConstant(Section)) ||
2667 ParseOptionalAlignment(Alignment) ||
2668 (EatIfPresent(lltok::kw_gc) &&
2669 ParseStringConstant(GC)))
2670 return true;
2671
2672 // If the alignment was parsed as an attribute, move to the alignment field.
2673 if (FuncAttrs & Attribute::Alignment) {
2674 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2675 FuncAttrs &= ~Attribute::Alignment;
2676 }
2677
2678 // Okay, if we got here, the function is syntactically valid. Convert types
2679 // and do semantic checks.
2680 std::vector<Type*> ParamTypeList;
2681 SmallVector<AttributeWithIndex, 8> Attrs;
2682
2683 if (RetAttrs != Attribute::None)
2684 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2685
2686 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2687 ParamTypeList.push_back(ArgList[i].Ty);
2688 if (ArgList[i].Attrs != Attribute::None)
2689 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2690 }
2691
2692 if (FuncAttrs != Attribute::None)
2693 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2694
2695 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2696
2697 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2698 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2699
2700 FunctionType *FT =
2701 FunctionType::get(RetType, ParamTypeList, isVarArg);
2702 PointerType *PFT = PointerType::getUnqual(FT);
2703
2704 Fn = 0;
2705 if (!FunctionName.empty()) {
2706 // If this was a definition of a forward reference, remove the definition
2707 // from the forward reference table and fill in the forward ref.
2708 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2709 ForwardRefVals.find(FunctionName);
2710 if (FRVI != ForwardRefVals.end()) {
2711 Fn = M->getFunction(FunctionName);
2712 if (Fn->getType() != PFT)
2713 return Error(FRVI->second.second, "invalid forward reference to "
2714 "function '" + FunctionName + "' with wrong type!");
2715
2716 ForwardRefVals.erase(FRVI);
2717 } else if ((Fn = M->getFunction(FunctionName))) {
2718 // Reject redefinitions.
2719 return Error(NameLoc, "invalid redefinition of function '" +
2720 FunctionName + "'");
2721 } else if (M->getNamedValue(FunctionName)) {
2722 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2723 }
2724
2725 } else {
2726 // If this is a definition of a forward referenced function, make sure the
2727 // types agree.
2728 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2729 = ForwardRefValIDs.find(NumberedVals.size());
2730 if (I != ForwardRefValIDs.end()) {
2731 Fn = cast<Function>(I->second.first);
2732 if (Fn->getType() != PFT)
2733 return Error(NameLoc, "type of definition and forward reference of '@" +
2734 Twine(NumberedVals.size()) + "' disagree");
2735 ForwardRefValIDs.erase(I);
2736 }
2737 }
2738
2739 if (Fn == 0)
2740 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2741 else // Move the forward-reference to the correct spot in the module.
2742 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2743
2744 if (FunctionName.empty())
2745 NumberedVals.push_back(Fn);
2746
2747 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2748 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2749 Fn->setCallingConv(CC);
2750 Fn->setAttributes(PAL);
2751 Fn->setUnnamedAddr(UnnamedAddr);
2752 Fn->setAlignment(Alignment);
2753 Fn->setSection(Section);
2754 if (!GC.empty()) Fn->setGC(GC.c_str());
2755
2756 // Add all of the arguments we parsed to the function.
2757 Function::arg_iterator ArgIt = Fn->arg_begin();
2758 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2759 // If the argument has a name, insert it into the argument symbol table.
2760 if (ArgList[i].Name.empty()) continue;
2761
2762 // Set the name, if it conflicted, it will be auto-renamed.
2763 ArgIt->setName(ArgList[i].Name);
2764
2765 if (ArgIt->getName() != ArgList[i].Name)
2766 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2767 ArgList[i].Name + "'");
2768 }
2769
2770 return false;
2771 }
2772
2773
2774 /// ParseFunctionBody
2775 /// ::= '{' BasicBlock+ '}'
2776 ///
ParseFunctionBody(Function & Fn)2777 bool LLParser::ParseFunctionBody(Function &Fn) {
2778 if (Lex.getKind() != lltok::lbrace)
2779 return TokError("expected '{' in function body");
2780 Lex.Lex(); // eat the {.
2781
2782 int FunctionNumber = -1;
2783 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2784
2785 PerFunctionState PFS(*this, Fn, FunctionNumber);
2786
2787 // We need at least one basic block.
2788 if (Lex.getKind() == lltok::rbrace)
2789 return TokError("function body requires at least one basic block");
2790
2791 while (Lex.getKind() != lltok::rbrace)
2792 if (ParseBasicBlock(PFS)) return true;
2793
2794 // Eat the }.
2795 Lex.Lex();
2796
2797 // Verify function is ok.
2798 return PFS.FinishFunction();
2799 }
2800
2801 /// ParseBasicBlock
2802 /// ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)2803 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2804 // If this basic block starts out with a name, remember it.
2805 std::string Name;
2806 LocTy NameLoc = Lex.getLoc();
2807 if (Lex.getKind() == lltok::LabelStr) {
2808 Name = Lex.getStrVal();
2809 Lex.Lex();
2810 }
2811
2812 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2813 if (BB == 0) return true;
2814
2815 std::string NameStr;
2816
2817 // Parse the instructions in this block until we get a terminator.
2818 Instruction *Inst;
2819 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2820 do {
2821 // This instruction may have three possibilities for a name: a) none
2822 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2823 LocTy NameLoc = Lex.getLoc();
2824 int NameID = -1;
2825 NameStr = "";
2826
2827 if (Lex.getKind() == lltok::LocalVarID) {
2828 NameID = Lex.getUIntVal();
2829 Lex.Lex();
2830 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2831 return true;
2832 } else if (Lex.getKind() == lltok::LocalVar) {
2833 NameStr = Lex.getStrVal();
2834 Lex.Lex();
2835 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2836 return true;
2837 }
2838
2839 switch (ParseInstruction(Inst, BB, PFS)) {
2840 default: llvm_unreachable("Unknown ParseInstruction result!");
2841 case InstError: return true;
2842 case InstNormal:
2843 BB->getInstList().push_back(Inst);
2844
2845 // With a normal result, we check to see if the instruction is followed by
2846 // a comma and metadata.
2847 if (EatIfPresent(lltok::comma))
2848 if (ParseInstructionMetadata(Inst, &PFS))
2849 return true;
2850 break;
2851 case InstExtraComma:
2852 BB->getInstList().push_back(Inst);
2853
2854 // If the instruction parser ate an extra comma at the end of it, it
2855 // *must* be followed by metadata.
2856 if (ParseInstructionMetadata(Inst, &PFS))
2857 return true;
2858 break;
2859 }
2860
2861 // Set the name on the instruction.
2862 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2863 } while (!isa<TerminatorInst>(Inst));
2864
2865 return false;
2866 }
2867
2868 //===----------------------------------------------------------------------===//
2869 // Instruction Parsing.
2870 //===----------------------------------------------------------------------===//
2871
2872 /// ParseInstruction - Parse one of the many different instructions.
2873 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)2874 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2875 PerFunctionState &PFS) {
2876 lltok::Kind Token = Lex.getKind();
2877 if (Token == lltok::Eof)
2878 return TokError("found end of file when expecting more instructions");
2879 LocTy Loc = Lex.getLoc();
2880 unsigned KeywordVal = Lex.getUIntVal();
2881 Lex.Lex(); // Eat the keyword.
2882
2883 switch (Token) {
2884 default: return Error(Loc, "expected instruction opcode");
2885 // Terminator Instructions.
2886 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2887 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2888 case lltok::kw_br: return ParseBr(Inst, PFS);
2889 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2890 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
2891 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2892 case lltok::kw_resume: return ParseResume(Inst, PFS);
2893 // Binary Operators.
2894 case lltok::kw_add:
2895 case lltok::kw_sub:
2896 case lltok::kw_mul:
2897 case lltok::kw_shl: {
2898 bool NUW = EatIfPresent(lltok::kw_nuw);
2899 bool NSW = EatIfPresent(lltok::kw_nsw);
2900 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2901
2902 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2903
2904 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2905 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2906 return false;
2907 }
2908 case lltok::kw_fadd:
2909 case lltok::kw_fsub:
2910 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2911
2912 case lltok::kw_sdiv:
2913 case lltok::kw_udiv:
2914 case lltok::kw_lshr:
2915 case lltok::kw_ashr: {
2916 bool Exact = EatIfPresent(lltok::kw_exact);
2917
2918 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2919 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2920 return false;
2921 }
2922
2923 case lltok::kw_urem:
2924 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2925 case lltok::kw_fdiv:
2926 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2927 case lltok::kw_and:
2928 case lltok::kw_or:
2929 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2930 case lltok::kw_icmp:
2931 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
2932 // Casts.
2933 case lltok::kw_trunc:
2934 case lltok::kw_zext:
2935 case lltok::kw_sext:
2936 case lltok::kw_fptrunc:
2937 case lltok::kw_fpext:
2938 case lltok::kw_bitcast:
2939 case lltok::kw_uitofp:
2940 case lltok::kw_sitofp:
2941 case lltok::kw_fptoui:
2942 case lltok::kw_fptosi:
2943 case lltok::kw_inttoptr:
2944 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2945 // Other.
2946 case lltok::kw_select: return ParseSelect(Inst, PFS);
2947 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2948 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2949 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2950 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2951 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2952 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
2953 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2954 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2955 // Memory.
2956 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
2957 case lltok::kw_load: return ParseLoad(Inst, PFS);
2958 case lltok::kw_store: return ParseStore(Inst, PFS);
2959 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
2960 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
2961 case lltok::kw_fence: return ParseFence(Inst, PFS);
2962 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2963 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2964 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2965 }
2966 }
2967
2968 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)2969 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2970 if (Opc == Instruction::FCmp) {
2971 switch (Lex.getKind()) {
2972 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2973 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2974 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2975 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2976 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2977 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2978 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2979 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2980 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2981 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2982 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2983 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2984 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2985 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2986 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2987 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2988 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2989 }
2990 } else {
2991 switch (Lex.getKind()) {
2992 default: TokError("expected icmp predicate (e.g. 'eq')");
2993 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2994 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2995 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2996 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2997 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2998 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2999 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3000 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3001 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3002 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3003 }
3004 }
3005 Lex.Lex();
3006 return false;
3007 }
3008
3009 //===----------------------------------------------------------------------===//
3010 // Terminator Instructions.
3011 //===----------------------------------------------------------------------===//
3012
3013 /// ParseRet - Parse a return instruction.
3014 /// ::= 'ret' void (',' !dbg, !1)*
3015 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)3016 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3017 PerFunctionState &PFS) {
3018 SMLoc TypeLoc = Lex.getLoc();
3019 Type *Ty = 0;
3020 if (ParseType(Ty, true /*void allowed*/)) return true;
3021
3022 Type *ResType = PFS.getFunction().getReturnType();
3023
3024 if (Ty->isVoidTy()) {
3025 if (!ResType->isVoidTy())
3026 return Error(TypeLoc, "value doesn't match function result type '" +
3027 getTypeString(ResType) + "'");
3028
3029 Inst = ReturnInst::Create(Context);
3030 return false;
3031 }
3032
3033 Value *RV;
3034 if (ParseValue(Ty, RV, PFS)) return true;
3035
3036 if (ResType != RV->getType())
3037 return Error(TypeLoc, "value doesn't match function result type '" +
3038 getTypeString(ResType) + "'");
3039
3040 Inst = ReturnInst::Create(Context, RV);
3041 return false;
3042 }
3043
3044
3045 /// ParseBr
3046 /// ::= 'br' TypeAndValue
3047 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)3048 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3049 LocTy Loc, Loc2;
3050 Value *Op0;
3051 BasicBlock *Op1, *Op2;
3052 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3053
3054 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3055 Inst = BranchInst::Create(BB);
3056 return false;
3057 }
3058
3059 if (Op0->getType() != Type::getInt1Ty(Context))
3060 return Error(Loc, "branch condition must have 'i1' type");
3061
3062 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3063 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3064 ParseToken(lltok::comma, "expected ',' after true destination") ||
3065 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3066 return true;
3067
3068 Inst = BranchInst::Create(Op1, Op2, Op0);
3069 return false;
3070 }
3071
3072 /// ParseSwitch
3073 /// Instruction
3074 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3075 /// JumpTable
3076 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)3077 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3078 LocTy CondLoc, BBLoc;
3079 Value *Cond;
3080 BasicBlock *DefaultBB;
3081 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3082 ParseToken(lltok::comma, "expected ',' after switch condition") ||
3083 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3084 ParseToken(lltok::lsquare, "expected '[' with switch table"))
3085 return true;
3086
3087 if (!Cond->getType()->isIntegerTy())
3088 return Error(CondLoc, "switch condition must have integer type");
3089
3090 // Parse the jump table pairs.
3091 SmallPtrSet<Value*, 32> SeenCases;
3092 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3093 while (Lex.getKind() != lltok::rsquare) {
3094 Value *Constant;
3095 BasicBlock *DestBB;
3096
3097 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3098 ParseToken(lltok::comma, "expected ',' after case value") ||
3099 ParseTypeAndBasicBlock(DestBB, PFS))
3100 return true;
3101
3102 if (!SeenCases.insert(Constant))
3103 return Error(CondLoc, "duplicate case value in switch");
3104 if (!isa<ConstantInt>(Constant))
3105 return Error(CondLoc, "case value is not a constant integer");
3106
3107 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3108 }
3109
3110 Lex.Lex(); // Eat the ']'.
3111
3112 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3113 for (unsigned i = 0, e = Table.size(); i != e; ++i)
3114 SI->addCase(Table[i].first, Table[i].second);
3115 Inst = SI;
3116 return false;
3117 }
3118
3119 /// ParseIndirectBr
3120 /// Instruction
3121 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)3122 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3123 LocTy AddrLoc;
3124 Value *Address;
3125 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3126 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3127 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3128 return true;
3129
3130 if (!Address->getType()->isPointerTy())
3131 return Error(AddrLoc, "indirectbr address must have pointer type");
3132
3133 // Parse the destination list.
3134 SmallVector<BasicBlock*, 16> DestList;
3135
3136 if (Lex.getKind() != lltok::rsquare) {
3137 BasicBlock *DestBB;
3138 if (ParseTypeAndBasicBlock(DestBB, PFS))
3139 return true;
3140 DestList.push_back(DestBB);
3141
3142 while (EatIfPresent(lltok::comma)) {
3143 if (ParseTypeAndBasicBlock(DestBB, PFS))
3144 return true;
3145 DestList.push_back(DestBB);
3146 }
3147 }
3148
3149 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3150 return true;
3151
3152 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3153 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3154 IBI->addDestination(DestList[i]);
3155 Inst = IBI;
3156 return false;
3157 }
3158
3159
3160 /// ParseInvoke
3161 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3162 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)3163 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3164 LocTy CallLoc = Lex.getLoc();
3165 Attributes RetAttrs, FnAttrs;
3166 CallingConv::ID CC;
3167 Type *RetType = 0;
3168 LocTy RetTypeLoc;
3169 ValID CalleeID;
3170 SmallVector<ParamInfo, 16> ArgList;
3171
3172 BasicBlock *NormalBB, *UnwindBB;
3173 if (ParseOptionalCallingConv(CC) ||
3174 ParseOptionalAttrs(RetAttrs, 1) ||
3175 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3176 ParseValID(CalleeID) ||
3177 ParseParameterList(ArgList, PFS) ||
3178 ParseOptionalAttrs(FnAttrs, 2) ||
3179 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3180 ParseTypeAndBasicBlock(NormalBB, PFS) ||
3181 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3182 ParseTypeAndBasicBlock(UnwindBB, PFS))
3183 return true;
3184
3185 // If RetType is a non-function pointer type, then this is the short syntax
3186 // for the call, which means that RetType is just the return type. Infer the
3187 // rest of the function argument types from the arguments that are present.
3188 PointerType *PFTy = 0;
3189 FunctionType *Ty = 0;
3190 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3191 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3192 // Pull out the types of all of the arguments...
3193 std::vector<Type*> ParamTypes;
3194 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3195 ParamTypes.push_back(ArgList[i].V->getType());
3196
3197 if (!FunctionType::isValidReturnType(RetType))
3198 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3199
3200 Ty = FunctionType::get(RetType, ParamTypes, false);
3201 PFTy = PointerType::getUnqual(Ty);
3202 }
3203
3204 // Look up the callee.
3205 Value *Callee;
3206 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3207
3208 // Set up the Attributes for the function.
3209 SmallVector<AttributeWithIndex, 8> Attrs;
3210 if (RetAttrs != Attribute::None)
3211 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3212
3213 SmallVector<Value*, 8> Args;
3214
3215 // Loop through FunctionType's arguments and ensure they are specified
3216 // correctly. Also, gather any parameter attributes.
3217 FunctionType::param_iterator I = Ty->param_begin();
3218 FunctionType::param_iterator E = Ty->param_end();
3219 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3220 Type *ExpectedTy = 0;
3221 if (I != E) {
3222 ExpectedTy = *I++;
3223 } else if (!Ty->isVarArg()) {
3224 return Error(ArgList[i].Loc, "too many arguments specified");
3225 }
3226
3227 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3228 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3229 getTypeString(ExpectedTy) + "'");
3230 Args.push_back(ArgList[i].V);
3231 if (ArgList[i].Attrs != Attribute::None)
3232 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3233 }
3234
3235 if (I != E)
3236 return Error(CallLoc, "not enough parameters specified for call");
3237
3238 if (FnAttrs != Attribute::None)
3239 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3240
3241 // Finish off the Attributes and check them
3242 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3243
3244 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3245 II->setCallingConv(CC);
3246 II->setAttributes(PAL);
3247 Inst = II;
3248 return false;
3249 }
3250
3251 /// ParseResume
3252 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)3253 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3254 Value *Exn; LocTy ExnLoc;
3255 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3256 return true;
3257
3258 ResumeInst *RI = ResumeInst::Create(Exn);
3259 Inst = RI;
3260 return false;
3261 }
3262
3263 //===----------------------------------------------------------------------===//
3264 // Binary Operators.
3265 //===----------------------------------------------------------------------===//
3266
3267 /// ParseArithmetic
3268 /// ::= ArithmeticOps TypeAndValue ',' Value
3269 ///
3270 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3271 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)3272 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3273 unsigned Opc, unsigned OperandType) {
3274 LocTy Loc; Value *LHS, *RHS;
3275 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3276 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3277 ParseValue(LHS->getType(), RHS, PFS))
3278 return true;
3279
3280 bool Valid;
3281 switch (OperandType) {
3282 default: llvm_unreachable("Unknown operand type!");
3283 case 0: // int or FP.
3284 Valid = LHS->getType()->isIntOrIntVectorTy() ||
3285 LHS->getType()->isFPOrFPVectorTy();
3286 break;
3287 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3288 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3289 }
3290
3291 if (!Valid)
3292 return Error(Loc, "invalid operand type for instruction");
3293
3294 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3295 return false;
3296 }
3297
3298 /// ParseLogical
3299 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3300 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3301 unsigned Opc) {
3302 LocTy Loc; Value *LHS, *RHS;
3303 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3304 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3305 ParseValue(LHS->getType(), RHS, PFS))
3306 return true;
3307
3308 if (!LHS->getType()->isIntOrIntVectorTy())
3309 return Error(Loc,"instruction requires integer or integer vector operands");
3310
3311 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3312 return false;
3313 }
3314
3315
3316 /// ParseCompare
3317 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3318 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3319 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3320 unsigned Opc) {
3321 // Parse the integer/fp comparison predicate.
3322 LocTy Loc;
3323 unsigned Pred;
3324 Value *LHS, *RHS;
3325 if (ParseCmpPredicate(Pred, Opc) ||
3326 ParseTypeAndValue(LHS, Loc, PFS) ||
3327 ParseToken(lltok::comma, "expected ',' after compare value") ||
3328 ParseValue(LHS->getType(), RHS, PFS))
3329 return true;
3330
3331 if (Opc == Instruction::FCmp) {
3332 if (!LHS->getType()->isFPOrFPVectorTy())
3333 return Error(Loc, "fcmp requires floating point operands");
3334 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3335 } else {
3336 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3337 if (!LHS->getType()->isIntOrIntVectorTy() &&
3338 !LHS->getType()->getScalarType()->isPointerTy())
3339 return Error(Loc, "icmp requires integer operands");
3340 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3341 }
3342 return false;
3343 }
3344
3345 //===----------------------------------------------------------------------===//
3346 // Other Instructions.
3347 //===----------------------------------------------------------------------===//
3348
3349
3350 /// ParseCast
3351 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3352 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3353 unsigned Opc) {
3354 LocTy Loc;
3355 Value *Op;
3356 Type *DestTy = 0;
3357 if (ParseTypeAndValue(Op, Loc, PFS) ||
3358 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3359 ParseType(DestTy))
3360 return true;
3361
3362 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3363 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3364 return Error(Loc, "invalid cast opcode for cast from '" +
3365 getTypeString(Op->getType()) + "' to '" +
3366 getTypeString(DestTy) + "'");
3367 }
3368 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3369 return false;
3370 }
3371
3372 /// ParseSelect
3373 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)3374 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3375 LocTy Loc;
3376 Value *Op0, *Op1, *Op2;
3377 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3378 ParseToken(lltok::comma, "expected ',' after select condition") ||
3379 ParseTypeAndValue(Op1, PFS) ||
3380 ParseToken(lltok::comma, "expected ',' after select value") ||
3381 ParseTypeAndValue(Op2, PFS))
3382 return true;
3383
3384 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3385 return Error(Loc, Reason);
3386
3387 Inst = SelectInst::Create(Op0, Op1, Op2);
3388 return false;
3389 }
3390
3391 /// ParseVA_Arg
3392 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)3393 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3394 Value *Op;
3395 Type *EltTy = 0;
3396 LocTy TypeLoc;
3397 if (ParseTypeAndValue(Op, PFS) ||
3398 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3399 ParseType(EltTy, TypeLoc))
3400 return true;
3401
3402 if (!EltTy->isFirstClassType())
3403 return Error(TypeLoc, "va_arg requires operand with first class type");
3404
3405 Inst = new VAArgInst(Op, EltTy);
3406 return false;
3407 }
3408
3409 /// ParseExtractElement
3410 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)3411 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3412 LocTy Loc;
3413 Value *Op0, *Op1;
3414 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3415 ParseToken(lltok::comma, "expected ',' after extract value") ||
3416 ParseTypeAndValue(Op1, PFS))
3417 return true;
3418
3419 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3420 return Error(Loc, "invalid extractelement operands");
3421
3422 Inst = ExtractElementInst::Create(Op0, Op1);
3423 return false;
3424 }
3425
3426 /// ParseInsertElement
3427 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)3428 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3429 LocTy Loc;
3430 Value *Op0, *Op1, *Op2;
3431 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3432 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3433 ParseTypeAndValue(Op1, PFS) ||
3434 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3435 ParseTypeAndValue(Op2, PFS))
3436 return true;
3437
3438 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3439 return Error(Loc, "invalid insertelement operands");
3440
3441 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3442 return false;
3443 }
3444
3445 /// ParseShuffleVector
3446 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)3447 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3448 LocTy Loc;
3449 Value *Op0, *Op1, *Op2;
3450 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3451 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3452 ParseTypeAndValue(Op1, PFS) ||
3453 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3454 ParseTypeAndValue(Op2, PFS))
3455 return true;
3456
3457 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3458 return Error(Loc, "invalid shufflevector operands");
3459
3460 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3461 return false;
3462 }
3463
3464 /// ParsePHI
3465 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)3466 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3467 Type *Ty = 0; LocTy TypeLoc;
3468 Value *Op0, *Op1;
3469
3470 if (ParseType(Ty, TypeLoc) ||
3471 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3472 ParseValue(Ty, Op0, PFS) ||
3473 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3474 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3475 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3476 return true;
3477
3478 bool AteExtraComma = false;
3479 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3480 while (1) {
3481 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3482
3483 if (!EatIfPresent(lltok::comma))
3484 break;
3485
3486 if (Lex.getKind() == lltok::MetadataVar) {
3487 AteExtraComma = true;
3488 break;
3489 }
3490
3491 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3492 ParseValue(Ty, Op0, PFS) ||
3493 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3494 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3495 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3496 return true;
3497 }
3498
3499 if (!Ty->isFirstClassType())
3500 return Error(TypeLoc, "phi node must have first class type");
3501
3502 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3503 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3504 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3505 Inst = PN;
3506 return AteExtraComma ? InstExtraComma : InstNormal;
3507 }
3508
3509 /// ParseLandingPad
3510 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3511 /// Clause
3512 /// ::= 'catch' TypeAndValue
3513 /// ::= 'filter'
3514 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)3515 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3516 Type *Ty = 0; LocTy TyLoc;
3517 Value *PersFn; LocTy PersFnLoc;
3518
3519 if (ParseType(Ty, TyLoc) ||
3520 ParseToken(lltok::kw_personality, "expected 'personality'") ||
3521 ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3522 return true;
3523
3524 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3525 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3526
3527 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3528 LandingPadInst::ClauseType CT;
3529 if (EatIfPresent(lltok::kw_catch))
3530 CT = LandingPadInst::Catch;
3531 else if (EatIfPresent(lltok::kw_filter))
3532 CT = LandingPadInst::Filter;
3533 else
3534 return TokError("expected 'catch' or 'filter' clause type");
3535
3536 Value *V; LocTy VLoc;
3537 if (ParseTypeAndValue(V, VLoc, PFS)) {
3538 delete LP;
3539 return true;
3540 }
3541
3542 // A 'catch' type expects a non-array constant. A filter clause expects an
3543 // array constant.
3544 if (CT == LandingPadInst::Catch) {
3545 if (isa<ArrayType>(V->getType()))
3546 Error(VLoc, "'catch' clause has an invalid type");
3547 } else {
3548 if (!isa<ArrayType>(V->getType()))
3549 Error(VLoc, "'filter' clause has an invalid type");
3550 }
3551
3552 LP->addClause(V);
3553 }
3554
3555 Inst = LP;
3556 return false;
3557 }
3558
3559 /// ParseCall
3560 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3561 /// ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,bool isTail)3562 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3563 bool isTail) {
3564 Attributes RetAttrs, FnAttrs;
3565 CallingConv::ID CC;
3566 Type *RetType = 0;
3567 LocTy RetTypeLoc;
3568 ValID CalleeID;
3569 SmallVector<ParamInfo, 16> ArgList;
3570 LocTy CallLoc = Lex.getLoc();
3571
3572 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3573 ParseOptionalCallingConv(CC) ||
3574 ParseOptionalAttrs(RetAttrs, 1) ||
3575 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3576 ParseValID(CalleeID) ||
3577 ParseParameterList(ArgList, PFS) ||
3578 ParseOptionalAttrs(FnAttrs, 2))
3579 return true;
3580
3581 // If RetType is a non-function pointer type, then this is the short syntax
3582 // for the call, which means that RetType is just the return type. Infer the
3583 // rest of the function argument types from the arguments that are present.
3584 PointerType *PFTy = 0;
3585 FunctionType *Ty = 0;
3586 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3587 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3588 // Pull out the types of all of the arguments...
3589 std::vector<Type*> ParamTypes;
3590 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3591 ParamTypes.push_back(ArgList[i].V->getType());
3592
3593 if (!FunctionType::isValidReturnType(RetType))
3594 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3595
3596 Ty = FunctionType::get(RetType, ParamTypes, false);
3597 PFTy = PointerType::getUnqual(Ty);
3598 }
3599
3600 // Look up the callee.
3601 Value *Callee;
3602 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3603
3604 // Set up the Attributes for the function.
3605 SmallVector<AttributeWithIndex, 8> Attrs;
3606 if (RetAttrs != Attribute::None)
3607 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3608
3609 SmallVector<Value*, 8> Args;
3610
3611 // Loop through FunctionType's arguments and ensure they are specified
3612 // correctly. Also, gather any parameter attributes.
3613 FunctionType::param_iterator I = Ty->param_begin();
3614 FunctionType::param_iterator E = Ty->param_end();
3615 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3616 Type *ExpectedTy = 0;
3617 if (I != E) {
3618 ExpectedTy = *I++;
3619 } else if (!Ty->isVarArg()) {
3620 return Error(ArgList[i].Loc, "too many arguments specified");
3621 }
3622
3623 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3624 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3625 getTypeString(ExpectedTy) + "'");
3626 Args.push_back(ArgList[i].V);
3627 if (ArgList[i].Attrs != Attribute::None)
3628 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3629 }
3630
3631 if (I != E)
3632 return Error(CallLoc, "not enough parameters specified for call");
3633
3634 if (FnAttrs != Attribute::None)
3635 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3636
3637 // Finish off the Attributes and check them
3638 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3639
3640 CallInst *CI = CallInst::Create(Callee, Args);
3641 CI->setTailCall(isTail);
3642 CI->setCallingConv(CC);
3643 CI->setAttributes(PAL);
3644 Inst = CI;
3645 return false;
3646 }
3647
3648 //===----------------------------------------------------------------------===//
3649 // Memory Instructions.
3650 //===----------------------------------------------------------------------===//
3651
3652 /// ParseAlloc
3653 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)3654 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3655 Value *Size = 0;
3656 LocTy SizeLoc;
3657 unsigned Alignment = 0;
3658 Type *Ty = 0;
3659 if (ParseType(Ty)) return true;
3660
3661 bool AteExtraComma = false;
3662 if (EatIfPresent(lltok::comma)) {
3663 if (Lex.getKind() == lltok::kw_align) {
3664 if (ParseOptionalAlignment(Alignment)) return true;
3665 } else if (Lex.getKind() == lltok::MetadataVar) {
3666 AteExtraComma = true;
3667 } else {
3668 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3669 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3670 return true;
3671 }
3672 }
3673
3674 if (Size && !Size->getType()->isIntegerTy())
3675 return Error(SizeLoc, "element count must have integer type");
3676
3677 Inst = new AllocaInst(Ty, Size, Alignment);
3678 return AteExtraComma ? InstExtraComma : InstNormal;
3679 }
3680
3681 /// ParseLoad
3682 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3683 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
3684 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)3685 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3686 Value *Val; LocTy Loc;
3687 unsigned Alignment = 0;
3688 bool AteExtraComma = false;
3689 bool isAtomic = false;
3690 AtomicOrdering Ordering = NotAtomic;
3691 SynchronizationScope Scope = CrossThread;
3692
3693 if (Lex.getKind() == lltok::kw_atomic) {
3694 isAtomic = true;
3695 Lex.Lex();
3696 }
3697
3698 bool isVolatile = false;
3699 if (Lex.getKind() == lltok::kw_volatile) {
3700 isVolatile = true;
3701 Lex.Lex();
3702 }
3703
3704 if (ParseTypeAndValue(Val, Loc, PFS) ||
3705 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3706 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3707 return true;
3708
3709 if (!Val->getType()->isPointerTy() ||
3710 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3711 return Error(Loc, "load operand must be a pointer to a first class type");
3712 if (isAtomic && !Alignment)
3713 return Error(Loc, "atomic load must have explicit non-zero alignment");
3714 if (Ordering == Release || Ordering == AcquireRelease)
3715 return Error(Loc, "atomic load cannot use Release ordering");
3716
3717 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3718 return AteExtraComma ? InstExtraComma : InstNormal;
3719 }
3720
3721 /// ParseStore
3722
3723 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3724 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3725 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)3726 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3727 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3728 unsigned Alignment = 0;
3729 bool AteExtraComma = false;
3730 bool isAtomic = false;
3731 AtomicOrdering Ordering = NotAtomic;
3732 SynchronizationScope Scope = CrossThread;
3733
3734 if (Lex.getKind() == lltok::kw_atomic) {
3735 isAtomic = true;
3736 Lex.Lex();
3737 }
3738
3739 bool isVolatile = false;
3740 if (Lex.getKind() == lltok::kw_volatile) {
3741 isVolatile = true;
3742 Lex.Lex();
3743 }
3744
3745 if (ParseTypeAndValue(Val, Loc, PFS) ||
3746 ParseToken(lltok::comma, "expected ',' after store operand") ||
3747 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3748 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3749 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3750 return true;
3751
3752 if (!Ptr->getType()->isPointerTy())
3753 return Error(PtrLoc, "store operand must be a pointer");
3754 if (!Val->getType()->isFirstClassType())
3755 return Error(Loc, "store operand must be a first class value");
3756 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3757 return Error(Loc, "stored value and pointer type do not match");
3758 if (isAtomic && !Alignment)
3759 return Error(Loc, "atomic store must have explicit non-zero alignment");
3760 if (Ordering == Acquire || Ordering == AcquireRelease)
3761 return Error(Loc, "atomic store cannot use Acquire ordering");
3762
3763 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3764 return AteExtraComma ? InstExtraComma : InstNormal;
3765 }
3766
3767 /// ParseCmpXchg
3768 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3769 /// 'singlethread'? AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)3770 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3771 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3772 bool AteExtraComma = false;
3773 AtomicOrdering Ordering = NotAtomic;
3774 SynchronizationScope Scope = CrossThread;
3775 bool isVolatile = false;
3776
3777 if (EatIfPresent(lltok::kw_volatile))
3778 isVolatile = true;
3779
3780 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3781 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3782 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3783 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3784 ParseTypeAndValue(New, NewLoc, PFS) ||
3785 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3786 return true;
3787
3788 if (Ordering == Unordered)
3789 return TokError("cmpxchg cannot be unordered");
3790 if (!Ptr->getType()->isPointerTy())
3791 return Error(PtrLoc, "cmpxchg operand must be a pointer");
3792 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3793 return Error(CmpLoc, "compare value and pointer type do not match");
3794 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3795 return Error(NewLoc, "new value and pointer type do not match");
3796 if (!New->getType()->isIntegerTy())
3797 return Error(NewLoc, "cmpxchg operand must be an integer");
3798 unsigned Size = New->getType()->getPrimitiveSizeInBits();
3799 if (Size < 8 || (Size & (Size - 1)))
3800 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3801 " integer");
3802
3803 AtomicCmpXchgInst *CXI =
3804 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3805 CXI->setVolatile(isVolatile);
3806 Inst = CXI;
3807 return AteExtraComma ? InstExtraComma : InstNormal;
3808 }
3809
3810 /// ParseAtomicRMW
3811 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3812 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)3813 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3814 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3815 bool AteExtraComma = false;
3816 AtomicOrdering Ordering = NotAtomic;
3817 SynchronizationScope Scope = CrossThread;
3818 bool isVolatile = false;
3819 AtomicRMWInst::BinOp Operation;
3820
3821 if (EatIfPresent(lltok::kw_volatile))
3822 isVolatile = true;
3823
3824 switch (Lex.getKind()) {
3825 default: return TokError("expected binary operation in atomicrmw");
3826 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3827 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3828 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3829 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3830 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3831 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3832 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3833 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3834 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3835 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3836 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3837 }
3838 Lex.Lex(); // Eat the operation.
3839
3840 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3841 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3842 ParseTypeAndValue(Val, ValLoc, PFS) ||
3843 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3844 return true;
3845
3846 if (Ordering == Unordered)
3847 return TokError("atomicrmw cannot be unordered");
3848 if (!Ptr->getType()->isPointerTy())
3849 return Error(PtrLoc, "atomicrmw operand must be a pointer");
3850 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3851 return Error(ValLoc, "atomicrmw value and pointer type do not match");
3852 if (!Val->getType()->isIntegerTy())
3853 return Error(ValLoc, "atomicrmw operand must be an integer");
3854 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3855 if (Size < 8 || (Size & (Size - 1)))
3856 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3857 " integer");
3858
3859 AtomicRMWInst *RMWI =
3860 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3861 RMWI->setVolatile(isVolatile);
3862 Inst = RMWI;
3863 return AteExtraComma ? InstExtraComma : InstNormal;
3864 }
3865
3866 /// ParseFence
3867 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)3868 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3869 AtomicOrdering Ordering = NotAtomic;
3870 SynchronizationScope Scope = CrossThread;
3871 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3872 return true;
3873
3874 if (Ordering == Unordered)
3875 return TokError("fence cannot be unordered");
3876 if (Ordering == Monotonic)
3877 return TokError("fence cannot be monotonic");
3878
3879 Inst = new FenceInst(Context, Ordering, Scope);
3880 return InstNormal;
3881 }
3882
3883 /// ParseGetElementPtr
3884 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)3885 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3886 Value *Ptr = 0;
3887 Value *Val = 0;
3888 LocTy Loc, EltLoc;
3889
3890 bool InBounds = EatIfPresent(lltok::kw_inbounds);
3891
3892 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3893
3894 if (!Ptr->getType()->getScalarType()->isPointerTy())
3895 return Error(Loc, "base of getelementptr must be a pointer");
3896
3897 SmallVector<Value*, 16> Indices;
3898 bool AteExtraComma = false;
3899 while (EatIfPresent(lltok::comma)) {
3900 if (Lex.getKind() == lltok::MetadataVar) {
3901 AteExtraComma = true;
3902 break;
3903 }
3904 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3905 if (!Val->getType()->getScalarType()->isIntegerTy())
3906 return Error(EltLoc, "getelementptr index must be an integer");
3907 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
3908 return Error(EltLoc, "getelementptr index type missmatch");
3909 if (Val->getType()->isVectorTy()) {
3910 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
3911 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
3912 if (ValNumEl != PtrNumEl)
3913 return Error(EltLoc,
3914 "getelementptr vector index has a wrong number of elements");
3915 }
3916 Indices.push_back(Val);
3917 }
3918
3919 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
3920 return Error(EltLoc, "vector getelementptrs must have a single index");
3921
3922 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3923 return Error(Loc, "invalid getelementptr indices");
3924 Inst = GetElementPtrInst::Create(Ptr, Indices);
3925 if (InBounds)
3926 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3927 return AteExtraComma ? InstExtraComma : InstNormal;
3928 }
3929
3930 /// ParseExtractValue
3931 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)3932 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3933 Value *Val; LocTy Loc;
3934 SmallVector<unsigned, 4> Indices;
3935 bool AteExtraComma;
3936 if (ParseTypeAndValue(Val, Loc, PFS) ||
3937 ParseIndexList(Indices, AteExtraComma))
3938 return true;
3939
3940 if (!Val->getType()->isAggregateType())
3941 return Error(Loc, "extractvalue operand must be aggregate type");
3942
3943 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3944 return Error(Loc, "invalid indices for extractvalue");
3945 Inst = ExtractValueInst::Create(Val, Indices);
3946 return AteExtraComma ? InstExtraComma : InstNormal;
3947 }
3948
3949 /// ParseInsertValue
3950 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)3951 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3952 Value *Val0, *Val1; LocTy Loc0, Loc1;
3953 SmallVector<unsigned, 4> Indices;
3954 bool AteExtraComma;
3955 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3956 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3957 ParseTypeAndValue(Val1, Loc1, PFS) ||
3958 ParseIndexList(Indices, AteExtraComma))
3959 return true;
3960
3961 if (!Val0->getType()->isAggregateType())
3962 return Error(Loc0, "insertvalue operand must be aggregate type");
3963
3964 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
3965 return Error(Loc0, "invalid indices for insertvalue");
3966 Inst = InsertValueInst::Create(Val0, Val1, Indices);
3967 return AteExtraComma ? InstExtraComma : InstNormal;
3968 }
3969
3970 //===----------------------------------------------------------------------===//
3971 // Embedded metadata.
3972 //===----------------------------------------------------------------------===//
3973
3974 /// ParseMDNodeVector
3975 /// ::= Element (',' Element)*
3976 /// Element
3977 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Value * > & Elts,PerFunctionState * PFS)3978 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3979 PerFunctionState *PFS) {
3980 // Check for an empty list.
3981 if (Lex.getKind() == lltok::rbrace)
3982 return false;
3983
3984 do {
3985 // Null is a special case since it is typeless.
3986 if (EatIfPresent(lltok::kw_null)) {
3987 Elts.push_back(0);
3988 continue;
3989 }
3990
3991 Value *V = 0;
3992 if (ParseTypeAndValue(V, PFS)) return true;
3993 Elts.push_back(V);
3994 } while (EatIfPresent(lltok::comma));
3995
3996 return false;
3997 }
3998