1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Scope.h"
16 #include "clang/Sema/ScopeInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallVector.h"
32 using namespace clang;
33 using namespace sema;
34
ActOnExprStmt(FullExprArg expr)35 StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36 Expr *E = expr.get();
37 if (!E) // FIXME: FullExprArg has no error state?
38 return StmtError();
39
40 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41 // void expression for its side effects. Conversion to void allows any
42 // operand, even incomplete types.
43
44 // Same thing in for stmt first clause (when expr) and third clause.
45 return Owned(static_cast<Stmt*>(E));
46 }
47
48
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)49 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50 bool HasLeadingEmptyMacro) {
51 return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52 }
53
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)54 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55 SourceLocation EndLoc) {
56 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58 // If we have an invalid decl, just return an error.
59 if (DG.isNull()) return StmtError();
60
61 return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62 }
63
ActOnForEachDeclStmt(DeclGroupPtrTy dg)64 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67 // If we have an invalid decl, just return.
68 if (DG.isNull() || !DG.isSingleDecl()) return;
69 VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71 // suppress any potential 'unused variable' warning.
72 var->setUsed();
73
74 // foreach variables are never actually initialized in the way that
75 // the parser came up with.
76 var->setInit(0);
77
78 // In ARC, we don't need to retain the iteration variable of a fast
79 // enumeration loop. Rather than actually trying to catch that
80 // during declaration processing, we remove the consequences here.
81 if (getLangOpts().ObjCAutoRefCount) {
82 QualType type = var->getType();
83
84 // Only do this if we inferred the lifetime. Inferred lifetime
85 // will show up as a local qualifier because explicit lifetime
86 // should have shown up as an AttributedType instead.
87 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88 // Add 'const' and mark the variable as pseudo-strong.
89 var->setType(type.withConst());
90 var->setARCPseudoStrong(true);
91 }
92 }
93 }
94
95 /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96 ///
97 /// Adding a cast to void (or other expression wrappers) will prevent the
98 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)99 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100 SourceLocation Loc;
101 bool IsNotEqual, CanAssign;
102
103 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104 if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105 return false;
106
107 Loc = Op->getOperatorLoc();
108 IsNotEqual = Op->getOpcode() == BO_NE;
109 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111 if (Op->getOperator() != OO_EqualEqual &&
112 Op->getOperator() != OO_ExclaimEqual)
113 return false;
114
115 Loc = Op->getOperatorLoc();
116 IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118 } else {
119 // Not a typo-prone comparison.
120 return false;
121 }
122
123 // Suppress warnings when the operator, suspicious as it may be, comes from
124 // a macro expansion.
125 if (Loc.isMacroID())
126 return false;
127
128 S.Diag(Loc, diag::warn_unused_comparison)
129 << (unsigned)IsNotEqual << E->getSourceRange();
130
131 // If the LHS is a plausible entity to assign to, provide a fixit hint to
132 // correct common typos.
133 if (CanAssign) {
134 if (IsNotEqual)
135 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136 << FixItHint::CreateReplacement(Loc, "|=");
137 else
138 S.Diag(Loc, diag::note_equality_comparison_to_assign)
139 << FixItHint::CreateReplacement(Loc, "=");
140 }
141
142 return true;
143 }
144
DiagnoseUnusedExprResult(const Stmt * S)145 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147 return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149 const Expr *E = dyn_cast_or_null<Expr>(S);
150 if (!E)
151 return;
152
153 SourceLocation Loc;
154 SourceRange R1, R2;
155 if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
156 !E->isUnusedResultAWarning(Loc, R1, R2, Context))
157 return;
158
159 // Okay, we have an unused result. Depending on what the base expression is,
160 // we might want to make a more specific diagnostic. Check for one of these
161 // cases now.
162 unsigned DiagID = diag::warn_unused_expr;
163 if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
164 E = Temps->getSubExpr();
165 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
166 E = TempExpr->getSubExpr();
167
168 if (DiagnoseUnusedComparison(*this, E))
169 return;
170
171 E = E->IgnoreParenImpCasts();
172 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
173 if (E->getType()->isVoidType())
174 return;
175
176 // If the callee has attribute pure, const, or warn_unused_result, warn with
177 // a more specific message to make it clear what is happening.
178 if (const Decl *FD = CE->getCalleeDecl()) {
179 if (FD->getAttr<WarnUnusedResultAttr>()) {
180 Diag(Loc, diag::warn_unused_result) << R1 << R2;
181 return;
182 }
183 if (FD->getAttr<PureAttr>()) {
184 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
185 return;
186 }
187 if (FD->getAttr<ConstAttr>()) {
188 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
189 return;
190 }
191 }
192 } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
193 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
194 Diag(Loc, diag::err_arc_unused_init_message) << R1;
195 return;
196 }
197 const ObjCMethodDecl *MD = ME->getMethodDecl();
198 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
199 Diag(Loc, diag::warn_unused_result) << R1 << R2;
200 return;
201 }
202 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
203 const Expr *Source = POE->getSyntacticForm();
204 if (isa<ObjCSubscriptRefExpr>(Source))
205 DiagID = diag::warn_unused_container_subscript_expr;
206 else
207 DiagID = diag::warn_unused_property_expr;
208 } else if (const CXXFunctionalCastExpr *FC
209 = dyn_cast<CXXFunctionalCastExpr>(E)) {
210 if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
211 isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
212 return;
213 }
214 // Diagnose "(void*) blah" as a typo for "(void) blah".
215 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
216 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
217 QualType T = TI->getType();
218
219 // We really do want to use the non-canonical type here.
220 if (T == Context.VoidPtrTy) {
221 PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
222
223 Diag(Loc, diag::warn_unused_voidptr)
224 << FixItHint::CreateRemoval(TL.getStarLoc());
225 return;
226 }
227 }
228
229 DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
230 }
231
ActOnStartOfCompoundStmt()232 void Sema::ActOnStartOfCompoundStmt() {
233 PushCompoundScope();
234 }
235
ActOnFinishOfCompoundStmt()236 void Sema::ActOnFinishOfCompoundStmt() {
237 PopCompoundScope();
238 }
239
getCurCompoundScope() const240 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
241 return getCurFunction()->CompoundScopes.back();
242 }
243
244 StmtResult
ActOnCompoundStmt(SourceLocation L,SourceLocation R,MultiStmtArg elts,bool isStmtExpr)245 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
246 MultiStmtArg elts, bool isStmtExpr) {
247 unsigned NumElts = elts.size();
248 Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
249 // If we're in C89 mode, check that we don't have any decls after stmts. If
250 // so, emit an extension diagnostic.
251 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
252 // Note that __extension__ can be around a decl.
253 unsigned i = 0;
254 // Skip over all declarations.
255 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
256 /*empty*/;
257
258 // We found the end of the list or a statement. Scan for another declstmt.
259 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
260 /*empty*/;
261
262 if (i != NumElts) {
263 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
264 Diag(D->getLocation(), diag::ext_mixed_decls_code);
265 }
266 }
267 // Warn about unused expressions in statements.
268 for (unsigned i = 0; i != NumElts; ++i) {
269 // Ignore statements that are last in a statement expression.
270 if (isStmtExpr && i == NumElts - 1)
271 continue;
272
273 DiagnoseUnusedExprResult(Elts[i]);
274 }
275
276 // Check for suspicious empty body (null statement) in `for' and `while'
277 // statements. Don't do anything for template instantiations, this just adds
278 // noise.
279 if (NumElts != 0 && !CurrentInstantiationScope &&
280 getCurCompoundScope().HasEmptyLoopBodies) {
281 for (unsigned i = 0; i != NumElts - 1; ++i)
282 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
283 }
284
285 return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
286 }
287
288 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)289 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
290 SourceLocation DotDotDotLoc, Expr *RHSVal,
291 SourceLocation ColonLoc) {
292 assert((LHSVal != 0) && "missing expression in case statement");
293
294 if (getCurFunction()->SwitchStack.empty()) {
295 Diag(CaseLoc, diag::err_case_not_in_switch);
296 return StmtError();
297 }
298
299 if (!getLangOpts().CPlusPlus0x) {
300 // C99 6.8.4.2p3: The expression shall be an integer constant.
301 // However, GCC allows any evaluatable integer expression.
302 if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
303 LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
304 if (!LHSVal)
305 return StmtError();
306 }
307
308 // GCC extension: The expression shall be an integer constant.
309
310 if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
311 RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
312 // Recover from an error by just forgetting about it.
313 }
314 }
315
316 CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
317 ColonLoc);
318 getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
319 return Owned(CS);
320 }
321
322 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)323 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
324 DiagnoseUnusedExprResult(SubStmt);
325
326 CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
327 CS->setSubStmt(SubStmt);
328 }
329
330 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)331 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
332 Stmt *SubStmt, Scope *CurScope) {
333 DiagnoseUnusedExprResult(SubStmt);
334
335 if (getCurFunction()->SwitchStack.empty()) {
336 Diag(DefaultLoc, diag::err_default_not_in_switch);
337 return Owned(SubStmt);
338 }
339
340 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
341 getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
342 return Owned(DS);
343 }
344
345 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)346 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
347 SourceLocation ColonLoc, Stmt *SubStmt) {
348 // If the label was multiply defined, reject it now.
349 if (TheDecl->getStmt()) {
350 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
351 Diag(TheDecl->getLocation(), diag::note_previous_definition);
352 return Owned(SubStmt);
353 }
354
355 // Otherwise, things are good. Fill in the declaration and return it.
356 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
357 TheDecl->setStmt(LS);
358 if (!TheDecl->isGnuLocal())
359 TheDecl->setLocation(IdentLoc);
360 return Owned(LS);
361 }
362
ActOnAttributedStmt(SourceLocation AttrLoc,const AttrVec & Attrs,Stmt * SubStmt)363 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
364 const AttrVec &Attrs,
365 Stmt *SubStmt) {
366 // Fill in the declaration and return it. Variable length will require to
367 // change this to AttributedStmt::Create(Context, ....);
368 // and probably using ArrayRef
369 AttributedStmt *LS = new (Context) AttributedStmt(AttrLoc, Attrs, SubStmt);
370 return Owned(LS);
371 }
372
373 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)374 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
375 Stmt *thenStmt, SourceLocation ElseLoc,
376 Stmt *elseStmt) {
377 ExprResult CondResult(CondVal.release());
378
379 VarDecl *ConditionVar = 0;
380 if (CondVar) {
381 ConditionVar = cast<VarDecl>(CondVar);
382 CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
383 if (CondResult.isInvalid())
384 return StmtError();
385 }
386 Expr *ConditionExpr = CondResult.takeAs<Expr>();
387 if (!ConditionExpr)
388 return StmtError();
389
390 DiagnoseUnusedExprResult(thenStmt);
391
392 if (!elseStmt) {
393 DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
394 diag::warn_empty_if_body);
395 }
396
397 DiagnoseUnusedExprResult(elseStmt);
398
399 return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
400 thenStmt, ElseLoc, elseStmt));
401 }
402
403 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
404 /// the specified width and sign. If an overflow occurs, detect it and emit
405 /// the specified diagnostic.
ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt & Val,unsigned NewWidth,bool NewSign,SourceLocation Loc,unsigned DiagID)406 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
407 unsigned NewWidth, bool NewSign,
408 SourceLocation Loc,
409 unsigned DiagID) {
410 // Perform a conversion to the promoted condition type if needed.
411 if (NewWidth > Val.getBitWidth()) {
412 // If this is an extension, just do it.
413 Val = Val.extend(NewWidth);
414 Val.setIsSigned(NewSign);
415
416 // If the input was signed and negative and the output is
417 // unsigned, don't bother to warn: this is implementation-defined
418 // behavior.
419 // FIXME: Introduce a second, default-ignored warning for this case?
420 } else if (NewWidth < Val.getBitWidth()) {
421 // If this is a truncation, check for overflow.
422 llvm::APSInt ConvVal(Val);
423 ConvVal = ConvVal.trunc(NewWidth);
424 ConvVal.setIsSigned(NewSign);
425 ConvVal = ConvVal.extend(Val.getBitWidth());
426 ConvVal.setIsSigned(Val.isSigned());
427 if (ConvVal != Val)
428 Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
429
430 // Regardless of whether a diagnostic was emitted, really do the
431 // truncation.
432 Val = Val.trunc(NewWidth);
433 Val.setIsSigned(NewSign);
434 } else if (NewSign != Val.isSigned()) {
435 // Convert the sign to match the sign of the condition. This can cause
436 // overflow as well: unsigned(INTMIN)
437 // We don't diagnose this overflow, because it is implementation-defined
438 // behavior.
439 // FIXME: Introduce a second, default-ignored warning for this case?
440 llvm::APSInt OldVal(Val);
441 Val.setIsSigned(NewSign);
442 }
443 }
444
445 namespace {
446 struct CaseCompareFunctor {
operator ()__anon2d570c830111::CaseCompareFunctor447 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
448 const llvm::APSInt &RHS) {
449 return LHS.first < RHS;
450 }
operator ()__anon2d570c830111::CaseCompareFunctor451 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
452 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
453 return LHS.first < RHS.first;
454 }
operator ()__anon2d570c830111::CaseCompareFunctor455 bool operator()(const llvm::APSInt &LHS,
456 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
457 return LHS < RHS.first;
458 }
459 };
460 }
461
462 /// CmpCaseVals - Comparison predicate for sorting case values.
463 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)464 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
465 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
466 if (lhs.first < rhs.first)
467 return true;
468
469 if (lhs.first == rhs.first &&
470 lhs.second->getCaseLoc().getRawEncoding()
471 < rhs.second->getCaseLoc().getRawEncoding())
472 return true;
473 return false;
474 }
475
476 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
477 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)478 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
479 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
480 {
481 return lhs.first < rhs.first;
482 }
483
484 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
485 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)486 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
487 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
488 {
489 return lhs.first == rhs.first;
490 }
491
492 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
493 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)494 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
495 if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
496 expr = cleanups->getSubExpr();
497 while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
498 if (impcast->getCastKind() != CK_IntegralCast) break;
499 expr = impcast->getSubExpr();
500 }
501 return expr->getType();
502 }
503
504 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)505 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
506 Decl *CondVar) {
507 ExprResult CondResult;
508
509 VarDecl *ConditionVar = 0;
510 if (CondVar) {
511 ConditionVar = cast<VarDecl>(CondVar);
512 CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
513 if (CondResult.isInvalid())
514 return StmtError();
515
516 Cond = CondResult.release();
517 }
518
519 if (!Cond)
520 return StmtError();
521
522 CondResult
523 = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
524 PDiag(diag::err_typecheck_statement_requires_integer),
525 PDiag(diag::err_switch_incomplete_class_type)
526 << Cond->getSourceRange(),
527 PDiag(diag::err_switch_explicit_conversion),
528 PDiag(diag::note_switch_conversion),
529 PDiag(diag::err_switch_multiple_conversions),
530 PDiag(diag::note_switch_conversion),
531 PDiag(0),
532 /*AllowScopedEnumerations*/ true);
533 if (CondResult.isInvalid()) return StmtError();
534 Cond = CondResult.take();
535
536 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
537 CondResult = UsualUnaryConversions(Cond);
538 if (CondResult.isInvalid()) return StmtError();
539 Cond = CondResult.take();
540
541 if (!CondVar) {
542 CheckImplicitConversions(Cond, SwitchLoc);
543 CondResult = MaybeCreateExprWithCleanups(Cond);
544 if (CondResult.isInvalid())
545 return StmtError();
546 Cond = CondResult.take();
547 }
548
549 getCurFunction()->setHasBranchIntoScope();
550
551 SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
552 getCurFunction()->SwitchStack.push_back(SS);
553 return Owned(SS);
554 }
555
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)556 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
557 if (Val.getBitWidth() < BitWidth)
558 Val = Val.extend(BitWidth);
559 else if (Val.getBitWidth() > BitWidth)
560 Val = Val.trunc(BitWidth);
561 Val.setIsSigned(IsSigned);
562 }
563
564 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)565 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
566 Stmt *BodyStmt) {
567 SwitchStmt *SS = cast<SwitchStmt>(Switch);
568 assert(SS == getCurFunction()->SwitchStack.back() &&
569 "switch stack missing push/pop!");
570
571 SS->setBody(BodyStmt, SwitchLoc);
572 getCurFunction()->SwitchStack.pop_back();
573
574 Expr *CondExpr = SS->getCond();
575 if (!CondExpr) return StmtError();
576
577 QualType CondType = CondExpr->getType();
578
579 Expr *CondExprBeforePromotion = CondExpr;
580 QualType CondTypeBeforePromotion =
581 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
582
583 // C++ 6.4.2.p2:
584 // Integral promotions are performed (on the switch condition).
585 //
586 // A case value unrepresentable by the original switch condition
587 // type (before the promotion) doesn't make sense, even when it can
588 // be represented by the promoted type. Therefore we need to find
589 // the pre-promotion type of the switch condition.
590 if (!CondExpr->isTypeDependent()) {
591 // We have already converted the expression to an integral or enumeration
592 // type, when we started the switch statement. If we don't have an
593 // appropriate type now, just return an error.
594 if (!CondType->isIntegralOrEnumerationType())
595 return StmtError();
596
597 if (CondExpr->isKnownToHaveBooleanValue()) {
598 // switch(bool_expr) {...} is often a programmer error, e.g.
599 // switch(n && mask) { ... } // Doh - should be "n & mask".
600 // One can always use an if statement instead of switch(bool_expr).
601 Diag(SwitchLoc, diag::warn_bool_switch_condition)
602 << CondExpr->getSourceRange();
603 }
604 }
605
606 // Get the bitwidth of the switched-on value before promotions. We must
607 // convert the integer case values to this width before comparison.
608 bool HasDependentValue
609 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
610 unsigned CondWidth
611 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
612 bool CondIsSigned
613 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
614
615 // Accumulate all of the case values in a vector so that we can sort them
616 // and detect duplicates. This vector contains the APInt for the case after
617 // it has been converted to the condition type.
618 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
619 CaseValsTy CaseVals;
620
621 // Keep track of any GNU case ranges we see. The APSInt is the low value.
622 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
623 CaseRangesTy CaseRanges;
624
625 DefaultStmt *TheDefaultStmt = 0;
626
627 bool CaseListIsErroneous = false;
628
629 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
630 SC = SC->getNextSwitchCase()) {
631
632 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
633 if (TheDefaultStmt) {
634 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
635 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
636
637 // FIXME: Remove the default statement from the switch block so that
638 // we'll return a valid AST. This requires recursing down the AST and
639 // finding it, not something we are set up to do right now. For now,
640 // just lop the entire switch stmt out of the AST.
641 CaseListIsErroneous = true;
642 }
643 TheDefaultStmt = DS;
644
645 } else {
646 CaseStmt *CS = cast<CaseStmt>(SC);
647
648 Expr *Lo = CS->getLHS();
649
650 if (Lo->isTypeDependent() || Lo->isValueDependent()) {
651 HasDependentValue = true;
652 break;
653 }
654
655 llvm::APSInt LoVal;
656
657 if (getLangOpts().CPlusPlus0x) {
658 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
659 // constant expression of the promoted type of the switch condition.
660 ExprResult ConvLo =
661 CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
662 if (ConvLo.isInvalid()) {
663 CaseListIsErroneous = true;
664 continue;
665 }
666 Lo = ConvLo.take();
667 } else {
668 // We already verified that the expression has a i-c-e value (C99
669 // 6.8.4.2p3) - get that value now.
670 LoVal = Lo->EvaluateKnownConstInt(Context);
671
672 // If the LHS is not the same type as the condition, insert an implicit
673 // cast.
674 Lo = DefaultLvalueConversion(Lo).take();
675 Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
676 }
677
678 // Convert the value to the same width/sign as the condition had prior to
679 // integral promotions.
680 //
681 // FIXME: This causes us to reject valid code:
682 // switch ((char)c) { case 256: case 0: return 0; }
683 // Here we claim there is a duplicated condition value, but there is not.
684 ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
685 Lo->getLocStart(),
686 diag::warn_case_value_overflow);
687
688 CS->setLHS(Lo);
689
690 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
691 if (CS->getRHS()) {
692 if (CS->getRHS()->isTypeDependent() ||
693 CS->getRHS()->isValueDependent()) {
694 HasDependentValue = true;
695 break;
696 }
697 CaseRanges.push_back(std::make_pair(LoVal, CS));
698 } else
699 CaseVals.push_back(std::make_pair(LoVal, CS));
700 }
701 }
702
703 if (!HasDependentValue) {
704 // If we don't have a default statement, check whether the
705 // condition is constant.
706 llvm::APSInt ConstantCondValue;
707 bool HasConstantCond = false;
708 if (!HasDependentValue && !TheDefaultStmt) {
709 HasConstantCond
710 = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
711 Expr::SE_AllowSideEffects);
712 assert(!HasConstantCond ||
713 (ConstantCondValue.getBitWidth() == CondWidth &&
714 ConstantCondValue.isSigned() == CondIsSigned));
715 }
716 bool ShouldCheckConstantCond = HasConstantCond;
717
718 // Sort all the scalar case values so we can easily detect duplicates.
719 std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
720
721 if (!CaseVals.empty()) {
722 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
723 if (ShouldCheckConstantCond &&
724 CaseVals[i].first == ConstantCondValue)
725 ShouldCheckConstantCond = false;
726
727 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
728 // If we have a duplicate, report it.
729 Diag(CaseVals[i].second->getLHS()->getLocStart(),
730 diag::err_duplicate_case) << CaseVals[i].first.toString(10);
731 Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
732 diag::note_duplicate_case_prev);
733 // FIXME: We really want to remove the bogus case stmt from the
734 // substmt, but we have no way to do this right now.
735 CaseListIsErroneous = true;
736 }
737 }
738 }
739
740 // Detect duplicate case ranges, which usually don't exist at all in
741 // the first place.
742 if (!CaseRanges.empty()) {
743 // Sort all the case ranges by their low value so we can easily detect
744 // overlaps between ranges.
745 std::stable_sort(CaseRanges.begin(), CaseRanges.end());
746
747 // Scan the ranges, computing the high values and removing empty ranges.
748 std::vector<llvm::APSInt> HiVals;
749 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
750 llvm::APSInt &LoVal = CaseRanges[i].first;
751 CaseStmt *CR = CaseRanges[i].second;
752 Expr *Hi = CR->getRHS();
753 llvm::APSInt HiVal;
754
755 if (getLangOpts().CPlusPlus0x) {
756 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
757 // constant expression of the promoted type of the switch condition.
758 ExprResult ConvHi =
759 CheckConvertedConstantExpression(Hi, CondType, HiVal,
760 CCEK_CaseValue);
761 if (ConvHi.isInvalid()) {
762 CaseListIsErroneous = true;
763 continue;
764 }
765 Hi = ConvHi.take();
766 } else {
767 HiVal = Hi->EvaluateKnownConstInt(Context);
768
769 // If the RHS is not the same type as the condition, insert an
770 // implicit cast.
771 Hi = DefaultLvalueConversion(Hi).take();
772 Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
773 }
774
775 // Convert the value to the same width/sign as the condition.
776 ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
777 Hi->getLocStart(),
778 diag::warn_case_value_overflow);
779
780 CR->setRHS(Hi);
781
782 // If the low value is bigger than the high value, the case is empty.
783 if (LoVal > HiVal) {
784 Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
785 << SourceRange(CR->getLHS()->getLocStart(),
786 Hi->getLocEnd());
787 CaseRanges.erase(CaseRanges.begin()+i);
788 --i, --e;
789 continue;
790 }
791
792 if (ShouldCheckConstantCond &&
793 LoVal <= ConstantCondValue &&
794 ConstantCondValue <= HiVal)
795 ShouldCheckConstantCond = false;
796
797 HiVals.push_back(HiVal);
798 }
799
800 // Rescan the ranges, looking for overlap with singleton values and other
801 // ranges. Since the range list is sorted, we only need to compare case
802 // ranges with their neighbors.
803 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
804 llvm::APSInt &CRLo = CaseRanges[i].first;
805 llvm::APSInt &CRHi = HiVals[i];
806 CaseStmt *CR = CaseRanges[i].second;
807
808 // Check to see whether the case range overlaps with any
809 // singleton cases.
810 CaseStmt *OverlapStmt = 0;
811 llvm::APSInt OverlapVal(32);
812
813 // Find the smallest value >= the lower bound. If I is in the
814 // case range, then we have overlap.
815 CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
816 CaseVals.end(), CRLo,
817 CaseCompareFunctor());
818 if (I != CaseVals.end() && I->first < CRHi) {
819 OverlapVal = I->first; // Found overlap with scalar.
820 OverlapStmt = I->second;
821 }
822
823 // Find the smallest value bigger than the upper bound.
824 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
825 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
826 OverlapVal = (I-1)->first; // Found overlap with scalar.
827 OverlapStmt = (I-1)->second;
828 }
829
830 // Check to see if this case stmt overlaps with the subsequent
831 // case range.
832 if (i && CRLo <= HiVals[i-1]) {
833 OverlapVal = HiVals[i-1]; // Found overlap with range.
834 OverlapStmt = CaseRanges[i-1].second;
835 }
836
837 if (OverlapStmt) {
838 // If we have a duplicate, report it.
839 Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
840 << OverlapVal.toString(10);
841 Diag(OverlapStmt->getLHS()->getLocStart(),
842 diag::note_duplicate_case_prev);
843 // FIXME: We really want to remove the bogus case stmt from the
844 // substmt, but we have no way to do this right now.
845 CaseListIsErroneous = true;
846 }
847 }
848 }
849
850 // Complain if we have a constant condition and we didn't find a match.
851 if (!CaseListIsErroneous && ShouldCheckConstantCond) {
852 // TODO: it would be nice if we printed enums as enums, chars as
853 // chars, etc.
854 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
855 << ConstantCondValue.toString(10)
856 << CondExpr->getSourceRange();
857 }
858
859 // Check to see if switch is over an Enum and handles all of its
860 // values. We only issue a warning if there is not 'default:', but
861 // we still do the analysis to preserve this information in the AST
862 // (which can be used by flow-based analyes).
863 //
864 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
865
866 // If switch has default case, then ignore it.
867 if (!CaseListIsErroneous && !HasConstantCond && ET) {
868 const EnumDecl *ED = ET->getDecl();
869 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
870 EnumValsTy;
871 EnumValsTy EnumVals;
872
873 // Gather all enum values, set their type and sort them,
874 // allowing easier comparison with CaseVals.
875 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
876 EDI != ED->enumerator_end(); ++EDI) {
877 llvm::APSInt Val = EDI->getInitVal();
878 AdjustAPSInt(Val, CondWidth, CondIsSigned);
879 EnumVals.push_back(std::make_pair(Val, *EDI));
880 }
881 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
882 EnumValsTy::iterator EIend =
883 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
884
885 // See which case values aren't in enum.
886 EnumValsTy::const_iterator EI = EnumVals.begin();
887 for (CaseValsTy::const_iterator CI = CaseVals.begin();
888 CI != CaseVals.end(); CI++) {
889 while (EI != EIend && EI->first < CI->first)
890 EI++;
891 if (EI == EIend || EI->first > CI->first)
892 Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
893 << CondTypeBeforePromotion;
894 }
895 // See which of case ranges aren't in enum
896 EI = EnumVals.begin();
897 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
898 RI != CaseRanges.end() && EI != EIend; RI++) {
899 while (EI != EIend && EI->first < RI->first)
900 EI++;
901
902 if (EI == EIend || EI->first != RI->first) {
903 Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
904 << CondTypeBeforePromotion;
905 }
906
907 llvm::APSInt Hi =
908 RI->second->getRHS()->EvaluateKnownConstInt(Context);
909 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
910 while (EI != EIend && EI->first < Hi)
911 EI++;
912 if (EI == EIend || EI->first != Hi)
913 Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
914 << CondTypeBeforePromotion;
915 }
916
917 // Check which enum vals aren't in switch
918 CaseValsTy::const_iterator CI = CaseVals.begin();
919 CaseRangesTy::const_iterator RI = CaseRanges.begin();
920 bool hasCasesNotInSwitch = false;
921
922 SmallVector<DeclarationName,8> UnhandledNames;
923
924 for (EI = EnumVals.begin(); EI != EIend; EI++){
925 // Drop unneeded case values
926 llvm::APSInt CIVal;
927 while (CI != CaseVals.end() && CI->first < EI->first)
928 CI++;
929
930 if (CI != CaseVals.end() && CI->first == EI->first)
931 continue;
932
933 // Drop unneeded case ranges
934 for (; RI != CaseRanges.end(); RI++) {
935 llvm::APSInt Hi =
936 RI->second->getRHS()->EvaluateKnownConstInt(Context);
937 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
938 if (EI->first <= Hi)
939 break;
940 }
941
942 if (RI == CaseRanges.end() || EI->first < RI->first) {
943 hasCasesNotInSwitch = true;
944 UnhandledNames.push_back(EI->second->getDeclName());
945 }
946 }
947
948 if (TheDefaultStmt && UnhandledNames.empty())
949 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
950
951 // Produce a nice diagnostic if multiple values aren't handled.
952 switch (UnhandledNames.size()) {
953 case 0: break;
954 case 1:
955 Diag(CondExpr->getExprLoc(), TheDefaultStmt
956 ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
957 << UnhandledNames[0];
958 break;
959 case 2:
960 Diag(CondExpr->getExprLoc(), TheDefaultStmt
961 ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
962 << UnhandledNames[0] << UnhandledNames[1];
963 break;
964 case 3:
965 Diag(CondExpr->getExprLoc(), TheDefaultStmt
966 ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
967 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
968 break;
969 default:
970 Diag(CondExpr->getExprLoc(), TheDefaultStmt
971 ? diag::warn_def_missing_cases : diag::warn_missing_cases)
972 << (unsigned)UnhandledNames.size()
973 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
974 break;
975 }
976
977 if (!hasCasesNotInSwitch)
978 SS->setAllEnumCasesCovered();
979 }
980 }
981
982 DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
983 diag::warn_empty_switch_body);
984
985 // FIXME: If the case list was broken is some way, we don't have a good system
986 // to patch it up. Instead, just return the whole substmt as broken.
987 if (CaseListIsErroneous)
988 return StmtError();
989
990 return Owned(SS);
991 }
992
993 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)994 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
995 Decl *CondVar, Stmt *Body) {
996 ExprResult CondResult(Cond.release());
997
998 VarDecl *ConditionVar = 0;
999 if (CondVar) {
1000 ConditionVar = cast<VarDecl>(CondVar);
1001 CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1002 if (CondResult.isInvalid())
1003 return StmtError();
1004 }
1005 Expr *ConditionExpr = CondResult.take();
1006 if (!ConditionExpr)
1007 return StmtError();
1008
1009 DiagnoseUnusedExprResult(Body);
1010
1011 if (isa<NullStmt>(Body))
1012 getCurCompoundScope().setHasEmptyLoopBodies();
1013
1014 return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1015 Body, WhileLoc));
1016 }
1017
1018 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1019 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1020 SourceLocation WhileLoc, SourceLocation CondLParen,
1021 Expr *Cond, SourceLocation CondRParen) {
1022 assert(Cond && "ActOnDoStmt(): missing expression");
1023
1024 ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1025 if (CondResult.isInvalid() || CondResult.isInvalid())
1026 return StmtError();
1027 Cond = CondResult.take();
1028
1029 CheckImplicitConversions(Cond, DoLoc);
1030 CondResult = MaybeCreateExprWithCleanups(Cond);
1031 if (CondResult.isInvalid())
1032 return StmtError();
1033 Cond = CondResult.take();
1034
1035 DiagnoseUnusedExprResult(Body);
1036
1037 return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1038 }
1039
1040 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1041 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1042 Stmt *First, FullExprArg second, Decl *secondVar,
1043 FullExprArg third,
1044 SourceLocation RParenLoc, Stmt *Body) {
1045 if (!getLangOpts().CPlusPlus) {
1046 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1047 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1048 // declare identifiers for objects having storage class 'auto' or
1049 // 'register'.
1050 for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1051 DI!=DE; ++DI) {
1052 VarDecl *VD = dyn_cast<VarDecl>(*DI);
1053 if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1054 VD = 0;
1055 if (VD == 0)
1056 Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1057 // FIXME: mark decl erroneous!
1058 }
1059 }
1060 }
1061
1062 ExprResult SecondResult(second.release());
1063 VarDecl *ConditionVar = 0;
1064 if (secondVar) {
1065 ConditionVar = cast<VarDecl>(secondVar);
1066 SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1067 if (SecondResult.isInvalid())
1068 return StmtError();
1069 }
1070
1071 Expr *Third = third.release().takeAs<Expr>();
1072
1073 DiagnoseUnusedExprResult(First);
1074 DiagnoseUnusedExprResult(Third);
1075 DiagnoseUnusedExprResult(Body);
1076
1077 if (isa<NullStmt>(Body))
1078 getCurCompoundScope().setHasEmptyLoopBodies();
1079
1080 return Owned(new (Context) ForStmt(Context, First,
1081 SecondResult.take(), ConditionVar,
1082 Third, Body, ForLoc, LParenLoc,
1083 RParenLoc));
1084 }
1085
1086 /// In an Objective C collection iteration statement:
1087 /// for (x in y)
1088 /// x can be an arbitrary l-value expression. Bind it up as a
1089 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1090 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1091 // Reduce placeholder expressions here. Note that this rejects the
1092 // use of pseudo-object l-values in this position.
1093 ExprResult result = CheckPlaceholderExpr(E);
1094 if (result.isInvalid()) return StmtError();
1095 E = result.take();
1096
1097 CheckImplicitConversions(E);
1098
1099 result = MaybeCreateExprWithCleanups(E);
1100 if (result.isInvalid()) return StmtError();
1101
1102 return Owned(static_cast<Stmt*>(result.take()));
1103 }
1104
1105 ExprResult
ActOnObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1106 Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1107 assert(collection);
1108
1109 // Bail out early if we've got a type-dependent expression.
1110 if (collection->isTypeDependent()) return Owned(collection);
1111
1112 // Perform normal l-value conversion.
1113 ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1114 if (result.isInvalid())
1115 return ExprError();
1116 collection = result.take();
1117
1118 // The operand needs to have object-pointer type.
1119 // TODO: should we do a contextual conversion?
1120 const ObjCObjectPointerType *pointerType =
1121 collection->getType()->getAs<ObjCObjectPointerType>();
1122 if (!pointerType)
1123 return Diag(forLoc, diag::err_collection_expr_type)
1124 << collection->getType() << collection->getSourceRange();
1125
1126 // Check that the operand provides
1127 // - countByEnumeratingWithState:objects:count:
1128 const ObjCObjectType *objectType = pointerType->getObjectType();
1129 ObjCInterfaceDecl *iface = objectType->getInterface();
1130
1131 // If we have a forward-declared type, we can't do this check.
1132 // Under ARC, it is an error not to have a forward-declared class.
1133 if (iface &&
1134 RequireCompleteType(forLoc, QualType(objectType, 0),
1135 getLangOpts().ObjCAutoRefCount
1136 ? PDiag(diag::err_arc_collection_forward)
1137 << collection->getSourceRange()
1138 : PDiag(0))) {
1139 // Otherwise, if we have any useful type information, check that
1140 // the type declares the appropriate method.
1141 } else if (iface || !objectType->qual_empty()) {
1142 IdentifierInfo *selectorIdents[] = {
1143 &Context.Idents.get("countByEnumeratingWithState"),
1144 &Context.Idents.get("objects"),
1145 &Context.Idents.get("count")
1146 };
1147 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1148
1149 ObjCMethodDecl *method = 0;
1150
1151 // If there's an interface, look in both the public and private APIs.
1152 if (iface) {
1153 method = iface->lookupInstanceMethod(selector);
1154 if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1155 }
1156
1157 // Also check protocol qualifiers.
1158 if (!method)
1159 method = LookupMethodInQualifiedType(selector, pointerType,
1160 /*instance*/ true);
1161
1162 // If we didn't find it anywhere, give up.
1163 if (!method) {
1164 Diag(forLoc, diag::warn_collection_expr_type)
1165 << collection->getType() << selector << collection->getSourceRange();
1166 }
1167
1168 // TODO: check for an incompatible signature?
1169 }
1170
1171 // Wrap up any cleanups in the expression.
1172 return Owned(MaybeCreateExprWithCleanups(collection));
1173 }
1174
1175 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,Expr * Second,SourceLocation RParenLoc,Stmt * Body)1176 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1177 SourceLocation LParenLoc,
1178 Stmt *First, Expr *Second,
1179 SourceLocation RParenLoc, Stmt *Body) {
1180 if (First) {
1181 QualType FirstType;
1182 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1183 if (!DS->isSingleDecl())
1184 return StmtError(Diag((*DS->decl_begin())->getLocation(),
1185 diag::err_toomany_element_decls));
1186
1187 VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1188 FirstType = D->getType();
1189 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1190 // declare identifiers for objects having storage class 'auto' or
1191 // 'register'.
1192 if (!D->hasLocalStorage())
1193 return StmtError(Diag(D->getLocation(),
1194 diag::err_non_variable_decl_in_for));
1195 } else {
1196 Expr *FirstE = cast<Expr>(First);
1197 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1198 return StmtError(Diag(First->getLocStart(),
1199 diag::err_selector_element_not_lvalue)
1200 << First->getSourceRange());
1201
1202 FirstType = static_cast<Expr*>(First)->getType();
1203 }
1204 if (!FirstType->isDependentType() &&
1205 !FirstType->isObjCObjectPointerType() &&
1206 !FirstType->isBlockPointerType())
1207 Diag(ForLoc, diag::err_selector_element_type)
1208 << FirstType << First->getSourceRange();
1209 }
1210
1211 return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1212 ForLoc, RParenLoc));
1213 }
1214
1215 namespace {
1216
1217 enum BeginEndFunction {
1218 BEF_begin,
1219 BEF_end
1220 };
1221
1222 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1223 static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1224 QualType Type, const char *Name) {
1225 DeclContext *DC = SemaRef.CurContext;
1226 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1227 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1228 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1229 TInfo, SC_Auto, SC_None);
1230 Decl->setImplicit();
1231 return Decl;
1232 }
1233
1234 /// Finish building a variable declaration for a for-range statement.
1235 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int diag)1236 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1237 SourceLocation Loc, int diag) {
1238 // Deduce the type for the iterator variable now rather than leaving it to
1239 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1240 TypeSourceInfo *InitTSI = 0;
1241 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1242 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1243 Sema::DAR_Failed)
1244 SemaRef.Diag(Loc, diag) << Init->getType();
1245 if (!InitTSI) {
1246 Decl->setInvalidDecl();
1247 return true;
1248 }
1249 Decl->setTypeSourceInfo(InitTSI);
1250 Decl->setType(InitTSI->getType());
1251
1252 // In ARC, infer lifetime.
1253 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1254 // we're doing the equivalent of fast iteration.
1255 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1256 SemaRef.inferObjCARCLifetime(Decl))
1257 Decl->setInvalidDecl();
1258
1259 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1260 /*TypeMayContainAuto=*/false);
1261 SemaRef.FinalizeDeclaration(Decl);
1262 SemaRef.CurContext->addHiddenDecl(Decl);
1263 return false;
1264 }
1265
1266 /// Produce a note indicating which begin/end function was implicitly called
1267 /// by a C++0x for-range statement. This is often not obvious from the code,
1268 /// nor from the diagnostics produced when analysing the implicit expressions
1269 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,BeginEndFunction BEF)1270 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1271 BeginEndFunction BEF) {
1272 CallExpr *CE = dyn_cast<CallExpr>(E);
1273 if (!CE)
1274 return;
1275 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1276 if (!D)
1277 return;
1278 SourceLocation Loc = D->getLocation();
1279
1280 std::string Description;
1281 bool IsTemplate = false;
1282 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1283 Description = SemaRef.getTemplateArgumentBindingsText(
1284 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1285 IsTemplate = true;
1286 }
1287
1288 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1289 << BEF << IsTemplate << Description << E->getType();
1290 }
1291
1292 /// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1293 /// given LookupResult is non-empty, it is assumed to describe a member which
1294 /// will be invoked. Otherwise, the function will be found via argument
1295 /// dependent lookup.
BuildForRangeBeginEndCall(Sema & SemaRef,Scope * S,SourceLocation Loc,VarDecl * Decl,BeginEndFunction BEF,const DeclarationNameInfo & NameInfo,LookupResult & MemberLookup,Expr * Range)1296 static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1297 SourceLocation Loc,
1298 VarDecl *Decl,
1299 BeginEndFunction BEF,
1300 const DeclarationNameInfo &NameInfo,
1301 LookupResult &MemberLookup,
1302 Expr *Range) {
1303 ExprResult CallExpr;
1304 if (!MemberLookup.empty()) {
1305 ExprResult MemberRef =
1306 SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1307 /*IsPtr=*/false, CXXScopeSpec(),
1308 /*TemplateKWLoc=*/SourceLocation(),
1309 /*FirstQualifierInScope=*/0,
1310 MemberLookup,
1311 /*TemplateArgs=*/0);
1312 if (MemberRef.isInvalid())
1313 return ExprError();
1314 CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1315 Loc, 0);
1316 if (CallExpr.isInvalid())
1317 return ExprError();
1318 } else {
1319 UnresolvedSet<0> FoundNames;
1320 // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1321 // std is an associated namespace.
1322 UnresolvedLookupExpr *Fn =
1323 UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1324 NestedNameSpecifierLoc(), NameInfo,
1325 /*NeedsADL=*/true, /*Overloaded=*/false,
1326 FoundNames.begin(), FoundNames.end(),
1327 /*LookInStdNamespace=*/true);
1328 CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1329 0, /*AllowTypoCorrection=*/false);
1330 if (CallExpr.isInvalid()) {
1331 SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1332 << Range->getType();
1333 return ExprError();
1334 }
1335 }
1336 if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1337 diag::err_for_range_iter_deduction_failure)) {
1338 NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1339 return ExprError();
1340 }
1341 return CallExpr;
1342 }
1343
1344 }
1345
1346 /// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1347 ///
1348 /// C++0x [stmt.ranged]:
1349 /// A range-based for statement is equivalent to
1350 ///
1351 /// {
1352 /// auto && __range = range-init;
1353 /// for ( auto __begin = begin-expr,
1354 /// __end = end-expr;
1355 /// __begin != __end;
1356 /// ++__begin ) {
1357 /// for-range-declaration = *__begin;
1358 /// statement
1359 /// }
1360 /// }
1361 ///
1362 /// The body of the loop is not available yet, since it cannot be analysed until
1363 /// we have determined the type of the for-range-declaration.
1364 StmtResult
ActOnCXXForRangeStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc)1365 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1366 Stmt *First, SourceLocation ColonLoc, Expr *Range,
1367 SourceLocation RParenLoc) {
1368 if (!First || !Range)
1369 return StmtError();
1370
1371 DeclStmt *DS = dyn_cast<DeclStmt>(First);
1372 assert(DS && "first part of for range not a decl stmt");
1373
1374 if (!DS->isSingleDecl()) {
1375 Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1376 return StmtError();
1377 }
1378 if (DS->getSingleDecl()->isInvalidDecl())
1379 return StmtError();
1380
1381 if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1382 return StmtError();
1383
1384 // Build auto && __range = range-init
1385 SourceLocation RangeLoc = Range->getLocStart();
1386 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1387 Context.getAutoRRefDeductType(),
1388 "__range");
1389 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1390 diag::err_for_range_deduction_failure))
1391 return StmtError();
1392
1393 // Claim the type doesn't contain auto: we've already done the checking.
1394 DeclGroupPtrTy RangeGroup =
1395 BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1396 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1397 if (RangeDecl.isInvalid())
1398 return StmtError();
1399
1400 return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1401 /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1402 RParenLoc);
1403 }
1404
1405 /// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1406 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc)1407 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1408 Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1409 Expr *Inc, Stmt *LoopVarDecl,
1410 SourceLocation RParenLoc) {
1411 Scope *S = getCurScope();
1412
1413 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1414 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1415 QualType RangeVarType = RangeVar->getType();
1416
1417 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1418 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1419
1420 StmtResult BeginEndDecl = BeginEnd;
1421 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1422
1423 if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1424 SourceLocation RangeLoc = RangeVar->getLocation();
1425
1426 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1427
1428 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1429 VK_LValue, ColonLoc);
1430 if (BeginRangeRef.isInvalid())
1431 return StmtError();
1432
1433 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1434 VK_LValue, ColonLoc);
1435 if (EndRangeRef.isInvalid())
1436 return StmtError();
1437
1438 QualType AutoType = Context.getAutoDeductType();
1439 Expr *Range = RangeVar->getInit();
1440 if (!Range)
1441 return StmtError();
1442 QualType RangeType = Range->getType();
1443
1444 if (RequireCompleteType(RangeLoc, RangeType,
1445 PDiag(diag::err_for_range_incomplete_type)))
1446 return StmtError();
1447
1448 // Build auto __begin = begin-expr, __end = end-expr.
1449 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1450 "__begin");
1451 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1452 "__end");
1453
1454 // Build begin-expr and end-expr and attach to __begin and __end variables.
1455 ExprResult BeginExpr, EndExpr;
1456 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1457 // - if _RangeT is an array type, begin-expr and end-expr are __range and
1458 // __range + __bound, respectively, where __bound is the array bound. If
1459 // _RangeT is an array of unknown size or an array of incomplete type,
1460 // the program is ill-formed;
1461
1462 // begin-expr is __range.
1463 BeginExpr = BeginRangeRef;
1464 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1465 diag::err_for_range_iter_deduction_failure)) {
1466 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1467 return StmtError();
1468 }
1469
1470 // Find the array bound.
1471 ExprResult BoundExpr;
1472 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1473 BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1474 Context.getPointerDiffType(),
1475 RangeLoc));
1476 else if (const VariableArrayType *VAT =
1477 dyn_cast<VariableArrayType>(UnqAT))
1478 BoundExpr = VAT->getSizeExpr();
1479 else {
1480 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1481 // UnqAT is not incomplete and Range is not type-dependent.
1482 llvm_unreachable("Unexpected array type in for-range");
1483 }
1484
1485 // end-expr is __range + __bound.
1486 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1487 BoundExpr.get());
1488 if (EndExpr.isInvalid())
1489 return StmtError();
1490 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1491 diag::err_for_range_iter_deduction_failure)) {
1492 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1493 return StmtError();
1494 }
1495 } else {
1496 DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1497 ColonLoc);
1498 DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1499 ColonLoc);
1500
1501 LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1502 LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1503
1504 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1505 // - if _RangeT is a class type, the unqualified-ids begin and end are
1506 // looked up in the scope of class _RangeT as if by class member access
1507 // lookup (3.4.5), and if either (or both) finds at least one
1508 // declaration, begin-expr and end-expr are __range.begin() and
1509 // __range.end(), respectively;
1510 LookupQualifiedName(BeginMemberLookup, D);
1511 LookupQualifiedName(EndMemberLookup, D);
1512
1513 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1514 Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1515 << RangeType << BeginMemberLookup.empty();
1516 return StmtError();
1517 }
1518 } else {
1519 // - otherwise, begin-expr and end-expr are begin(__range) and
1520 // end(__range), respectively, where begin and end are looked up with
1521 // argument-dependent lookup (3.4.2). For the purposes of this name
1522 // lookup, namespace std is an associated namespace.
1523 }
1524
1525 BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1526 BEF_begin, BeginNameInfo,
1527 BeginMemberLookup,
1528 BeginRangeRef.get());
1529 if (BeginExpr.isInvalid())
1530 return StmtError();
1531
1532 EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1533 BEF_end, EndNameInfo,
1534 EndMemberLookup, EndRangeRef.get());
1535 if (EndExpr.isInvalid())
1536 return StmtError();
1537 }
1538
1539 // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1540 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1541 if (!Context.hasSameType(BeginType, EndType)) {
1542 Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1543 << BeginType << EndType;
1544 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1545 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1546 }
1547
1548 Decl *BeginEndDecls[] = { BeginVar, EndVar };
1549 // Claim the type doesn't contain auto: we've already done the checking.
1550 DeclGroupPtrTy BeginEndGroup =
1551 BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1552 BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1553
1554 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1555 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1556 VK_LValue, ColonLoc);
1557 if (BeginRef.isInvalid())
1558 return StmtError();
1559
1560 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1561 VK_LValue, ColonLoc);
1562 if (EndRef.isInvalid())
1563 return StmtError();
1564
1565 // Build and check __begin != __end expression.
1566 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1567 BeginRef.get(), EndRef.get());
1568 NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1569 NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1570 if (NotEqExpr.isInvalid()) {
1571 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1572 if (!Context.hasSameType(BeginType, EndType))
1573 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1574 return StmtError();
1575 }
1576
1577 // Build and check ++__begin expression.
1578 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1579 VK_LValue, ColonLoc);
1580 if (BeginRef.isInvalid())
1581 return StmtError();
1582
1583 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1584 IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1585 if (IncrExpr.isInvalid()) {
1586 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1587 return StmtError();
1588 }
1589
1590 // Build and check *__begin expression.
1591 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1592 VK_LValue, ColonLoc);
1593 if (BeginRef.isInvalid())
1594 return StmtError();
1595
1596 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1597 if (DerefExpr.isInvalid()) {
1598 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1599 return StmtError();
1600 }
1601
1602 // Attach *__begin as initializer for VD.
1603 if (!LoopVar->isInvalidDecl()) {
1604 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1605 /*TypeMayContainAuto=*/true);
1606 if (LoopVar->isInvalidDecl())
1607 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1608 }
1609 } else {
1610 // The range is implicitly used as a placeholder when it is dependent.
1611 RangeVar->setUsed();
1612 }
1613
1614 return Owned(new (Context) CXXForRangeStmt(RangeDS,
1615 cast_or_null<DeclStmt>(BeginEndDecl.get()),
1616 NotEqExpr.take(), IncrExpr.take(),
1617 LoopVarDS, /*Body=*/0, ForLoc,
1618 ColonLoc, RParenLoc));
1619 }
1620
1621 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1622 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1623 /// body cannot be performed until after the type of the range variable is
1624 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)1625 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1626 if (!S || !B)
1627 return StmtError();
1628
1629 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
1630 ForStmt->setBody(B);
1631
1632 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
1633 diag::warn_empty_range_based_for_body);
1634
1635 return S;
1636 }
1637
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)1638 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1639 SourceLocation LabelLoc,
1640 LabelDecl *TheDecl) {
1641 getCurFunction()->setHasBranchIntoScope();
1642 TheDecl->setUsed();
1643 return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1644 }
1645
1646 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)1647 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1648 Expr *E) {
1649 // Convert operand to void*
1650 if (!E->isTypeDependent()) {
1651 QualType ETy = E->getType();
1652 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1653 ExprResult ExprRes = Owned(E);
1654 AssignConvertType ConvTy =
1655 CheckSingleAssignmentConstraints(DestTy, ExprRes);
1656 if (ExprRes.isInvalid())
1657 return StmtError();
1658 E = ExprRes.take();
1659 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1660 return StmtError();
1661 E = MaybeCreateExprWithCleanups(E);
1662 }
1663
1664 getCurFunction()->setHasIndirectGoto();
1665
1666 return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1667 }
1668
1669 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)1670 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1671 Scope *S = CurScope->getContinueParent();
1672 if (!S) {
1673 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1674 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1675 }
1676
1677 return Owned(new (Context) ContinueStmt(ContinueLoc));
1678 }
1679
1680 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)1681 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1682 Scope *S = CurScope->getBreakParent();
1683 if (!S) {
1684 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1685 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1686 }
1687
1688 return Owned(new (Context) BreakStmt(BreakLoc));
1689 }
1690
1691 /// \brief Determine whether the given expression is a candidate for
1692 /// copy elision in either a return statement or a throw expression.
1693 ///
1694 /// \param ReturnType If we're determining the copy elision candidate for
1695 /// a return statement, this is the return type of the function. If we're
1696 /// determining the copy elision candidate for a throw expression, this will
1697 /// be a NULL type.
1698 ///
1699 /// \param E The expression being returned from the function or block, or
1700 /// being thrown.
1701 ///
1702 /// \param AllowFunctionParameter Whether we allow function parameters to
1703 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1704 /// we re-use this logic to determine whether we should try to move as part of
1705 /// a return or throw (which does allow function parameters).
1706 ///
1707 /// \returns The NRVO candidate variable, if the return statement may use the
1708 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)1709 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1710 Expr *E,
1711 bool AllowFunctionParameter) {
1712 QualType ExprType = E->getType();
1713 // - in a return statement in a function with ...
1714 // ... a class return type ...
1715 if (!ReturnType.isNull()) {
1716 if (!ReturnType->isRecordType())
1717 return 0;
1718 // ... the same cv-unqualified type as the function return type ...
1719 if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1720 return 0;
1721 }
1722
1723 // ... the expression is the name of a non-volatile automatic object
1724 // (other than a function or catch-clause parameter)) ...
1725 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1726 if (!DR)
1727 return 0;
1728 const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1729 if (!VD)
1730 return 0;
1731
1732 // ...object (other than a function or catch-clause parameter)...
1733 if (VD->getKind() != Decl::Var &&
1734 !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1735 return 0;
1736 if (VD->isExceptionVariable()) return 0;
1737
1738 // ...automatic...
1739 if (!VD->hasLocalStorage()) return 0;
1740
1741 // ...non-volatile...
1742 if (VD->getType().isVolatileQualified()) return 0;
1743 if (VD->getType()->isReferenceType()) return 0;
1744
1745 // __block variables can't be allocated in a way that permits NRVO.
1746 if (VD->hasAttr<BlocksAttr>()) return 0;
1747
1748 // Variables with higher required alignment than their type's ABI
1749 // alignment cannot use NRVO.
1750 if (VD->hasAttr<AlignedAttr>() &&
1751 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1752 return 0;
1753
1754 return VD;
1755 }
1756
1757 /// \brief Perform the initialization of a potentially-movable value, which
1758 /// is the result of return value.
1759 ///
1760 /// This routine implements C++0x [class.copy]p33, which attempts to treat
1761 /// returned lvalues as rvalues in certain cases (to prefer move construction),
1762 /// then falls back to treating them as lvalues if that failed.
1763 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)1764 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1765 const VarDecl *NRVOCandidate,
1766 QualType ResultType,
1767 Expr *Value,
1768 bool AllowNRVO) {
1769 // C++0x [class.copy]p33:
1770 // When the criteria for elision of a copy operation are met or would
1771 // be met save for the fact that the source object is a function
1772 // parameter, and the object to be copied is designated by an lvalue,
1773 // overload resolution to select the constructor for the copy is first
1774 // performed as if the object were designated by an rvalue.
1775 ExprResult Res = ExprError();
1776 if (AllowNRVO &&
1777 (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1778 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1779 Value->getType(), CK_LValueToRValue,
1780 Value, VK_XValue);
1781
1782 Expr *InitExpr = &AsRvalue;
1783 InitializationKind Kind
1784 = InitializationKind::CreateCopy(Value->getLocStart(),
1785 Value->getLocStart());
1786 InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1787
1788 // [...] If overload resolution fails, or if the type of the first
1789 // parameter of the selected constructor is not an rvalue reference
1790 // to the object's type (possibly cv-qualified), overload resolution
1791 // is performed again, considering the object as an lvalue.
1792 if (Seq) {
1793 for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1794 StepEnd = Seq.step_end();
1795 Step != StepEnd; ++Step) {
1796 if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1797 continue;
1798
1799 CXXConstructorDecl *Constructor
1800 = cast<CXXConstructorDecl>(Step->Function.Function);
1801
1802 const RValueReferenceType *RRefType
1803 = Constructor->getParamDecl(0)->getType()
1804 ->getAs<RValueReferenceType>();
1805
1806 // If we don't meet the criteria, break out now.
1807 if (!RRefType ||
1808 !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1809 Context.getTypeDeclType(Constructor->getParent())))
1810 break;
1811
1812 // Promote "AsRvalue" to the heap, since we now need this
1813 // expression node to persist.
1814 Value = ImplicitCastExpr::Create(Context, Value->getType(),
1815 CK_LValueToRValue, Value, 0,
1816 VK_XValue);
1817
1818 // Complete type-checking the initialization of the return type
1819 // using the constructor we found.
1820 Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1821 }
1822 }
1823 }
1824
1825 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1826 // above, or overload resolution failed. Either way, we need to try
1827 // (again) now with the return value expression as written.
1828 if (Res.isInvalid())
1829 Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1830
1831 return Res;
1832 }
1833
1834 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
1835 /// for capturing scopes.
1836 ///
1837 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)1838 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1839 // If this is the first return we've seen, infer the return type.
1840 // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
1841 // rules which allows multiple return statements.
1842 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
1843 if (CurCap->HasImplicitReturnType) {
1844 QualType ReturnT;
1845 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
1846 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1847 if (Result.isInvalid())
1848 return StmtError();
1849 RetValExp = Result.take();
1850
1851 if (!RetValExp->isTypeDependent())
1852 ReturnT = RetValExp->getType();
1853 else
1854 ReturnT = Context.DependentTy;
1855 } else {
1856 if (RetValExp) {
1857 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
1858 // initializer list, because it is not an expression (even
1859 // though we represent it as one). We still deduce 'void'.
1860 Diag(ReturnLoc, diag::err_lambda_return_init_list)
1861 << RetValExp->getSourceRange();
1862 }
1863
1864 ReturnT = Context.VoidTy;
1865 }
1866 // We require the return types to strictly match here.
1867 if (!CurCap->ReturnType.isNull() &&
1868 !CurCap->ReturnType->isDependentType() &&
1869 !ReturnT->isDependentType() &&
1870 !Context.hasSameType(ReturnT, CurCap->ReturnType)) {
1871 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1872 << ReturnT << CurCap->ReturnType
1873 << (getCurLambda() != 0);
1874 return StmtError();
1875 }
1876 CurCap->ReturnType = ReturnT;
1877 }
1878 QualType FnRetType = CurCap->ReturnType;
1879 assert(!FnRetType.isNull());
1880
1881 if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
1882 if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1883 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
1884 return StmtError();
1885 }
1886 } else {
1887 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
1888 if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
1889 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
1890 return StmtError();
1891 }
1892 }
1893
1894 // Otherwise, verify that this result type matches the previous one. We are
1895 // pickier with blocks than for normal functions because we don't have GCC
1896 // compatibility to worry about here.
1897 const VarDecl *NRVOCandidate = 0;
1898 if (FnRetType->isDependentType()) {
1899 // Delay processing for now. TODO: there are lots of dependent
1900 // types we can conclusively prove aren't void.
1901 } else if (FnRetType->isVoidType()) {
1902 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
1903 !(getLangOpts().CPlusPlus &&
1904 (RetValExp->isTypeDependent() ||
1905 RetValExp->getType()->isVoidType()))) {
1906 if (!getLangOpts().CPlusPlus &&
1907 RetValExp->getType()->isVoidType())
1908 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
1909 else {
1910 Diag(ReturnLoc, diag::err_return_block_has_expr);
1911 RetValExp = 0;
1912 }
1913 }
1914 } else if (!RetValExp) {
1915 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1916 } else if (!RetValExp->isTypeDependent()) {
1917 // we have a non-void block with an expression, continue checking
1918
1919 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1920 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1921 // function return.
1922
1923 // In C++ the return statement is handled via a copy initialization.
1924 // the C version of which boils down to CheckSingleAssignmentConstraints.
1925 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1926 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1927 FnRetType,
1928 NRVOCandidate != 0);
1929 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1930 FnRetType, RetValExp);
1931 if (Res.isInvalid()) {
1932 // FIXME: Cleanup temporaries here, anyway?
1933 return StmtError();
1934 }
1935 RetValExp = Res.take();
1936 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1937 }
1938
1939 if (RetValExp) {
1940 CheckImplicitConversions(RetValExp, ReturnLoc);
1941 RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1942 }
1943 ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1944 NRVOCandidate);
1945
1946 // If we need to check for the named return value optimization, save the
1947 // return statement in our scope for later processing.
1948 if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
1949 !CurContext->isDependentContext())
1950 FunctionScopes.back()->Returns.push_back(Result);
1951
1952 return Owned(Result);
1953 }
1954
1955 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)1956 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1957 // Check for unexpanded parameter packs.
1958 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1959 return StmtError();
1960
1961 if (isa<CapturingScopeInfo>(getCurFunction()))
1962 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
1963
1964 QualType FnRetType;
1965 QualType RelatedRetType;
1966 if (const FunctionDecl *FD = getCurFunctionDecl()) {
1967 FnRetType = FD->getResultType();
1968 if (FD->hasAttr<NoReturnAttr>() ||
1969 FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1970 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1971 << FD->getDeclName();
1972 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1973 FnRetType = MD->getResultType();
1974 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1975 // In the implementation of a method with a related return type, the
1976 // type used to type-check the validity of return statements within the
1977 // method body is a pointer to the type of the class being implemented.
1978 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1979 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
1980 }
1981 } else // If we don't have a function/method context, bail.
1982 return StmtError();
1983
1984 ReturnStmt *Result = 0;
1985 if (FnRetType->isVoidType()) {
1986 if (RetValExp) {
1987 if (isa<InitListExpr>(RetValExp)) {
1988 // We simply never allow init lists as the return value of void
1989 // functions. This is compatible because this was never allowed before,
1990 // so there's no legacy code to deal with.
1991 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1992 int FunctionKind = 0;
1993 if (isa<ObjCMethodDecl>(CurDecl))
1994 FunctionKind = 1;
1995 else if (isa<CXXConstructorDecl>(CurDecl))
1996 FunctionKind = 2;
1997 else if (isa<CXXDestructorDecl>(CurDecl))
1998 FunctionKind = 3;
1999
2000 Diag(ReturnLoc, diag::err_return_init_list)
2001 << CurDecl->getDeclName() << FunctionKind
2002 << RetValExp->getSourceRange();
2003
2004 // Drop the expression.
2005 RetValExp = 0;
2006 } else if (!RetValExp->isTypeDependent()) {
2007 // C99 6.8.6.4p1 (ext_ since GCC warns)
2008 unsigned D = diag::ext_return_has_expr;
2009 if (RetValExp->getType()->isVoidType())
2010 D = diag::ext_return_has_void_expr;
2011 else {
2012 ExprResult Result = Owned(RetValExp);
2013 Result = IgnoredValueConversions(Result.take());
2014 if (Result.isInvalid())
2015 return StmtError();
2016 RetValExp = Result.take();
2017 RetValExp = ImpCastExprToType(RetValExp,
2018 Context.VoidTy, CK_ToVoid).take();
2019 }
2020
2021 // return (some void expression); is legal in C++.
2022 if (D != diag::ext_return_has_void_expr ||
2023 !getLangOpts().CPlusPlus) {
2024 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2025
2026 int FunctionKind = 0;
2027 if (isa<ObjCMethodDecl>(CurDecl))
2028 FunctionKind = 1;
2029 else if (isa<CXXConstructorDecl>(CurDecl))
2030 FunctionKind = 2;
2031 else if (isa<CXXDestructorDecl>(CurDecl))
2032 FunctionKind = 3;
2033
2034 Diag(ReturnLoc, D)
2035 << CurDecl->getDeclName() << FunctionKind
2036 << RetValExp->getSourceRange();
2037 }
2038 }
2039
2040 if (RetValExp) {
2041 CheckImplicitConversions(RetValExp, ReturnLoc);
2042 RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2043 }
2044 }
2045
2046 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2047 } else if (!RetValExp && !FnRetType->isDependentType()) {
2048 unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
2049 // C99 6.8.6.4p1 (ext_ since GCC warns)
2050 if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2051
2052 if (FunctionDecl *FD = getCurFunctionDecl())
2053 Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2054 else
2055 Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2056 Result = new (Context) ReturnStmt(ReturnLoc);
2057 } else {
2058 const VarDecl *NRVOCandidate = 0;
2059 if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2060 // we have a non-void function with an expression, continue checking
2061
2062 if (!RelatedRetType.isNull()) {
2063 // If we have a related result type, perform an extra conversion here.
2064 // FIXME: The diagnostics here don't really describe what is happening.
2065 InitializedEntity Entity =
2066 InitializedEntity::InitializeTemporary(RelatedRetType);
2067
2068 ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2069 RetValExp);
2070 if (Res.isInvalid()) {
2071 // FIXME: Cleanup temporaries here, anyway?
2072 return StmtError();
2073 }
2074 RetValExp = Res.takeAs<Expr>();
2075 }
2076
2077 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2078 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2079 // function return.
2080
2081 // In C++ the return statement is handled via a copy initialization,
2082 // the C version of which boils down to CheckSingleAssignmentConstraints.
2083 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2084 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2085 FnRetType,
2086 NRVOCandidate != 0);
2087 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2088 FnRetType, RetValExp);
2089 if (Res.isInvalid()) {
2090 // FIXME: Cleanup temporaries here, anyway?
2091 return StmtError();
2092 }
2093
2094 RetValExp = Res.takeAs<Expr>();
2095 if (RetValExp)
2096 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2097 }
2098
2099 if (RetValExp) {
2100 CheckImplicitConversions(RetValExp, ReturnLoc);
2101 RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2102 }
2103 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2104 }
2105
2106 // If we need to check for the named return value optimization, save the
2107 // return statement in our scope for later processing.
2108 if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2109 !CurContext->isDependentContext())
2110 FunctionScopes.back()->Returns.push_back(Result);
2111
2112 return Owned(Result);
2113 }
2114
2115 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2116 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
2117 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2118 /// provide a strong guidance to not use it.
2119 ///
2120 /// This method checks to see if the argument is an acceptable l-value and
2121 /// returns false if it is a case we can handle.
CheckAsmLValue(const Expr * E,Sema & S)2122 static bool CheckAsmLValue(const Expr *E, Sema &S) {
2123 // Type dependent expressions will be checked during instantiation.
2124 if (E->isTypeDependent())
2125 return false;
2126
2127 if (E->isLValue())
2128 return false; // Cool, this is an lvalue.
2129
2130 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2131 // are supposed to allow.
2132 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2133 if (E != E2 && E2->isLValue()) {
2134 if (!S.getLangOpts().HeinousExtensions)
2135 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2136 << E->getSourceRange();
2137 else
2138 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2139 << E->getSourceRange();
2140 // Accept, even if we emitted an error diagnostic.
2141 return false;
2142 }
2143
2144 // None of the above, just randomly invalid non-lvalue.
2145 return true;
2146 }
2147
2148 /// isOperandMentioned - Return true if the specified operand # is mentioned
2149 /// anywhere in the decomposed asm string.
isOperandMentioned(unsigned OpNo,ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces)2150 static bool isOperandMentioned(unsigned OpNo,
2151 ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2152 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2153 const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2154 if (!Piece.isOperand()) continue;
2155
2156 // If this is a reference to the input and if the input was the smaller
2157 // one, then we have to reject this asm.
2158 if (Piece.getOperandNo() == OpNo)
2159 return true;
2160 }
2161
2162 return false;
2163 }
2164
ActOnAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg constraints,MultiExprArg exprs,Expr * asmString,MultiExprArg clobbers,SourceLocation RParenLoc,bool MSAsm)2165 StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2166 bool IsVolatile, unsigned NumOutputs,
2167 unsigned NumInputs, IdentifierInfo **Names,
2168 MultiExprArg constraints, MultiExprArg exprs,
2169 Expr *asmString, MultiExprArg clobbers,
2170 SourceLocation RParenLoc, bool MSAsm) {
2171 unsigned NumClobbers = clobbers.size();
2172 StringLiteral **Constraints =
2173 reinterpret_cast<StringLiteral**>(constraints.get());
2174 Expr **Exprs = exprs.get();
2175 StringLiteral *AsmString = cast<StringLiteral>(asmString);
2176 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2177
2178 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2179
2180 // The parser verifies that there is a string literal here.
2181 if (!AsmString->isAscii())
2182 return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2183 << AsmString->getSourceRange());
2184
2185 for (unsigned i = 0; i != NumOutputs; i++) {
2186 StringLiteral *Literal = Constraints[i];
2187 if (!Literal->isAscii())
2188 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2189 << Literal->getSourceRange());
2190
2191 StringRef OutputName;
2192 if (Names[i])
2193 OutputName = Names[i]->getName();
2194
2195 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2196 if (!Context.getTargetInfo().validateOutputConstraint(Info))
2197 return StmtError(Diag(Literal->getLocStart(),
2198 diag::err_asm_invalid_output_constraint)
2199 << Info.getConstraintStr());
2200
2201 // Check that the output exprs are valid lvalues.
2202 Expr *OutputExpr = Exprs[i];
2203 if (CheckAsmLValue(OutputExpr, *this)) {
2204 return StmtError(Diag(OutputExpr->getLocStart(),
2205 diag::err_asm_invalid_lvalue_in_output)
2206 << OutputExpr->getSourceRange());
2207 }
2208
2209 OutputConstraintInfos.push_back(Info);
2210 }
2211
2212 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2213
2214 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2215 StringLiteral *Literal = Constraints[i];
2216 if (!Literal->isAscii())
2217 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2218 << Literal->getSourceRange());
2219
2220 StringRef InputName;
2221 if (Names[i])
2222 InputName = Names[i]->getName();
2223
2224 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2225 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2226 NumOutputs, Info)) {
2227 return StmtError(Diag(Literal->getLocStart(),
2228 diag::err_asm_invalid_input_constraint)
2229 << Info.getConstraintStr());
2230 }
2231
2232 Expr *InputExpr = Exprs[i];
2233
2234 // Only allow void types for memory constraints.
2235 if (Info.allowsMemory() && !Info.allowsRegister()) {
2236 if (CheckAsmLValue(InputExpr, *this))
2237 return StmtError(Diag(InputExpr->getLocStart(),
2238 diag::err_asm_invalid_lvalue_in_input)
2239 << Info.getConstraintStr()
2240 << InputExpr->getSourceRange());
2241 }
2242
2243 if (Info.allowsRegister()) {
2244 if (InputExpr->getType()->isVoidType()) {
2245 return StmtError(Diag(InputExpr->getLocStart(),
2246 diag::err_asm_invalid_type_in_input)
2247 << InputExpr->getType() << Info.getConstraintStr()
2248 << InputExpr->getSourceRange());
2249 }
2250 }
2251
2252 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2253 if (Result.isInvalid())
2254 return StmtError();
2255
2256 Exprs[i] = Result.take();
2257 InputConstraintInfos.push_back(Info);
2258 }
2259
2260 // Check that the clobbers are valid.
2261 for (unsigned i = 0; i != NumClobbers; i++) {
2262 StringLiteral *Literal = Clobbers[i];
2263 if (!Literal->isAscii())
2264 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2265 << Literal->getSourceRange());
2266
2267 StringRef Clobber = Literal->getString();
2268
2269 if (!Context.getTargetInfo().isValidClobber(Clobber))
2270 return StmtError(Diag(Literal->getLocStart(),
2271 diag::err_asm_unknown_register_name) << Clobber);
2272 }
2273
2274 AsmStmt *NS =
2275 new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2276 NumOutputs, NumInputs, Names, Constraints, Exprs,
2277 AsmString, NumClobbers, Clobbers, RParenLoc);
2278 // Validate the asm string, ensuring it makes sense given the operands we
2279 // have.
2280 SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2281 unsigned DiagOffs;
2282 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2283 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2284 << AsmString->getSourceRange();
2285 return StmtError();
2286 }
2287
2288 // Validate tied input operands for type mismatches.
2289 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2290 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2291
2292 // If this is a tied constraint, verify that the output and input have
2293 // either exactly the same type, or that they are int/ptr operands with the
2294 // same size (int/long, int*/long, are ok etc).
2295 if (!Info.hasTiedOperand()) continue;
2296
2297 unsigned TiedTo = Info.getTiedOperand();
2298 unsigned InputOpNo = i+NumOutputs;
2299 Expr *OutputExpr = Exprs[TiedTo];
2300 Expr *InputExpr = Exprs[InputOpNo];
2301
2302 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2303 continue;
2304
2305 QualType InTy = InputExpr->getType();
2306 QualType OutTy = OutputExpr->getType();
2307 if (Context.hasSameType(InTy, OutTy))
2308 continue; // All types can be tied to themselves.
2309
2310 // Decide if the input and output are in the same domain (integer/ptr or
2311 // floating point.
2312 enum AsmDomain {
2313 AD_Int, AD_FP, AD_Other
2314 } InputDomain, OutputDomain;
2315
2316 if (InTy->isIntegerType() || InTy->isPointerType())
2317 InputDomain = AD_Int;
2318 else if (InTy->isRealFloatingType())
2319 InputDomain = AD_FP;
2320 else
2321 InputDomain = AD_Other;
2322
2323 if (OutTy->isIntegerType() || OutTy->isPointerType())
2324 OutputDomain = AD_Int;
2325 else if (OutTy->isRealFloatingType())
2326 OutputDomain = AD_FP;
2327 else
2328 OutputDomain = AD_Other;
2329
2330 // They are ok if they are the same size and in the same domain. This
2331 // allows tying things like:
2332 // void* to int*
2333 // void* to int if they are the same size.
2334 // double to long double if they are the same size.
2335 //
2336 uint64_t OutSize = Context.getTypeSize(OutTy);
2337 uint64_t InSize = Context.getTypeSize(InTy);
2338 if (OutSize == InSize && InputDomain == OutputDomain &&
2339 InputDomain != AD_Other)
2340 continue;
2341
2342 // If the smaller input/output operand is not mentioned in the asm string,
2343 // then we can promote the smaller one to a larger input and the asm string
2344 // won't notice.
2345 bool SmallerValueMentioned = false;
2346
2347 // If this is a reference to the input and if the input was the smaller
2348 // one, then we have to reject this asm.
2349 if (isOperandMentioned(InputOpNo, Pieces)) {
2350 // This is a use in the asm string of the smaller operand. Since we
2351 // codegen this by promoting to a wider value, the asm will get printed
2352 // "wrong".
2353 SmallerValueMentioned |= InSize < OutSize;
2354 }
2355 if (isOperandMentioned(TiedTo, Pieces)) {
2356 // If this is a reference to the output, and if the output is the larger
2357 // value, then it's ok because we'll promote the input to the larger type.
2358 SmallerValueMentioned |= OutSize < InSize;
2359 }
2360
2361 // If the smaller value wasn't mentioned in the asm string, and if the
2362 // output was a register, just extend the shorter one to the size of the
2363 // larger one.
2364 if (!SmallerValueMentioned && InputDomain != AD_Other &&
2365 OutputConstraintInfos[TiedTo].allowsRegister())
2366 continue;
2367
2368 // Either both of the operands were mentioned or the smaller one was
2369 // mentioned. One more special case that we'll allow: if the tied input is
2370 // integer, unmentioned, and is a constant, then we'll allow truncating it
2371 // down to the size of the destination.
2372 if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2373 !isOperandMentioned(InputOpNo, Pieces) &&
2374 InputExpr->isEvaluatable(Context)) {
2375 CastKind castKind =
2376 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2377 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2378 Exprs[InputOpNo] = InputExpr;
2379 NS->setInputExpr(i, InputExpr);
2380 continue;
2381 }
2382
2383 Diag(InputExpr->getLocStart(),
2384 diag::err_asm_tying_incompatible_types)
2385 << InTy << OutTy << OutputExpr->getSourceRange()
2386 << InputExpr->getSourceRange();
2387 return StmtError();
2388 }
2389
2390 return Owned(NS);
2391 }
2392
2393 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)2394 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2395 SourceLocation RParen, Decl *Parm,
2396 Stmt *Body) {
2397 VarDecl *Var = cast_or_null<VarDecl>(Parm);
2398 if (Var && Var->isInvalidDecl())
2399 return StmtError();
2400
2401 return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2402 }
2403
2404 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)2405 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2406 return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2407 }
2408
2409 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)2410 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2411 MultiStmtArg CatchStmts, Stmt *Finally) {
2412 if (!getLangOpts().ObjCExceptions)
2413 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2414
2415 getCurFunction()->setHasBranchProtectedScope();
2416 unsigned NumCatchStmts = CatchStmts.size();
2417 return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2418 CatchStmts.release(),
2419 NumCatchStmts,
2420 Finally));
2421 }
2422
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)2423 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2424 Expr *Throw) {
2425 if (Throw) {
2426 Throw = MaybeCreateExprWithCleanups(Throw);
2427 ExprResult Result = DefaultLvalueConversion(Throw);
2428 if (Result.isInvalid())
2429 return StmtError();
2430
2431 Throw = Result.take();
2432 QualType ThrowType = Throw->getType();
2433 // Make sure the expression type is an ObjC pointer or "void *".
2434 if (!ThrowType->isDependentType() &&
2435 !ThrowType->isObjCObjectPointerType()) {
2436 const PointerType *PT = ThrowType->getAs<PointerType>();
2437 if (!PT || !PT->getPointeeType()->isVoidType())
2438 return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2439 << Throw->getType() << Throw->getSourceRange());
2440 }
2441 }
2442
2443 return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2444 }
2445
2446 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)2447 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2448 Scope *CurScope) {
2449 if (!getLangOpts().ObjCExceptions)
2450 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2451
2452 if (!Throw) {
2453 // @throw without an expression designates a rethrow (which much occur
2454 // in the context of an @catch clause).
2455 Scope *AtCatchParent = CurScope;
2456 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2457 AtCatchParent = AtCatchParent->getParent();
2458 if (!AtCatchParent)
2459 return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2460 }
2461
2462 return BuildObjCAtThrowStmt(AtLoc, Throw);
2463 }
2464
2465 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)2466 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2467 ExprResult result = DefaultLvalueConversion(operand);
2468 if (result.isInvalid())
2469 return ExprError();
2470 operand = result.take();
2471
2472 // Make sure the expression type is an ObjC pointer or "void *".
2473 QualType type = operand->getType();
2474 if (!type->isDependentType() &&
2475 !type->isObjCObjectPointerType()) {
2476 const PointerType *pointerType = type->getAs<PointerType>();
2477 if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2478 return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2479 << type << operand->getSourceRange();
2480 }
2481
2482 // The operand to @synchronized is a full-expression.
2483 return MaybeCreateExprWithCleanups(operand);
2484 }
2485
2486 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)2487 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2488 Stmt *SyncBody) {
2489 // We can't jump into or indirect-jump out of a @synchronized block.
2490 getCurFunction()->setHasBranchProtectedScope();
2491 return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2492 }
2493
2494 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2495 /// and creates a proper catch handler from them.
2496 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)2497 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2498 Stmt *HandlerBlock) {
2499 // There's nothing to test that ActOnExceptionDecl didn't already test.
2500 return Owned(new (Context) CXXCatchStmt(CatchLoc,
2501 cast_or_null<VarDecl>(ExDecl),
2502 HandlerBlock));
2503 }
2504
2505 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2506 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2507 getCurFunction()->setHasBranchProtectedScope();
2508 return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2509 }
2510
2511 namespace {
2512
2513 class TypeWithHandler {
2514 QualType t;
2515 CXXCatchStmt *stmt;
2516 public:
TypeWithHandler(const QualType & type,CXXCatchStmt * statement)2517 TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2518 : t(type), stmt(statement) {}
2519
2520 // An arbitrary order is fine as long as it places identical
2521 // types next to each other.
operator <(const TypeWithHandler & y) const2522 bool operator<(const TypeWithHandler &y) const {
2523 if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2524 return true;
2525 if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2526 return false;
2527 else
2528 return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2529 }
2530
operator ==(const TypeWithHandler & other) const2531 bool operator==(const TypeWithHandler& other) const {
2532 return t == other.t;
2533 }
2534
getCatchStmt() const2535 CXXCatchStmt *getCatchStmt() const { return stmt; }
getTypeSpecStartLoc() const2536 SourceLocation getTypeSpecStartLoc() const {
2537 return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2538 }
2539 };
2540
2541 }
2542
2543 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2544 /// handlers and creates a try statement from them.
2545 StmtResult
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg RawHandlers)2546 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2547 MultiStmtArg RawHandlers) {
2548 // Don't report an error if 'try' is used in system headers.
2549 if (!getLangOpts().CXXExceptions &&
2550 !getSourceManager().isInSystemHeader(TryLoc))
2551 Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2552
2553 unsigned NumHandlers = RawHandlers.size();
2554 assert(NumHandlers > 0 &&
2555 "The parser shouldn't call this if there are no handlers.");
2556 Stmt **Handlers = RawHandlers.get();
2557
2558 SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2559
2560 for (unsigned i = 0; i < NumHandlers; ++i) {
2561 CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2562 if (!Handler->getExceptionDecl()) {
2563 if (i < NumHandlers - 1)
2564 return StmtError(Diag(Handler->getLocStart(),
2565 diag::err_early_catch_all));
2566
2567 continue;
2568 }
2569
2570 const QualType CaughtType = Handler->getCaughtType();
2571 const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2572 TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2573 }
2574
2575 // Detect handlers for the same type as an earlier one.
2576 if (NumHandlers > 1) {
2577 llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2578
2579 TypeWithHandler prev = TypesWithHandlers[0];
2580 for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2581 TypeWithHandler curr = TypesWithHandlers[i];
2582
2583 if (curr == prev) {
2584 Diag(curr.getTypeSpecStartLoc(),
2585 diag::warn_exception_caught_by_earlier_handler)
2586 << curr.getCatchStmt()->getCaughtType().getAsString();
2587 Diag(prev.getTypeSpecStartLoc(),
2588 diag::note_previous_exception_handler)
2589 << prev.getCatchStmt()->getCaughtType().getAsString();
2590 }
2591
2592 prev = curr;
2593 }
2594 }
2595
2596 getCurFunction()->setHasBranchProtectedScope();
2597
2598 // FIXME: We should detect handlers that cannot catch anything because an
2599 // earlier handler catches a superclass. Need to find a method that is not
2600 // quadratic for this.
2601 // Neither of these are explicitly forbidden, but every compiler detects them
2602 // and warns.
2603
2604 return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2605 Handlers, NumHandlers));
2606 }
2607
2608 StmtResult
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)2609 Sema::ActOnSEHTryBlock(bool IsCXXTry,
2610 SourceLocation TryLoc,
2611 Stmt *TryBlock,
2612 Stmt *Handler) {
2613 assert(TryBlock && Handler);
2614
2615 getCurFunction()->setHasBranchProtectedScope();
2616
2617 return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2618 }
2619
2620 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)2621 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2622 Expr *FilterExpr,
2623 Stmt *Block) {
2624 assert(FilterExpr && Block);
2625
2626 if(!FilterExpr->getType()->isIntegerType()) {
2627 return StmtError(Diag(FilterExpr->getExprLoc(),
2628 diag::err_filter_expression_integral)
2629 << FilterExpr->getType());
2630 }
2631
2632 return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2633 }
2634
2635 StmtResult
ActOnSEHFinallyBlock(SourceLocation Loc,Stmt * Block)2636 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2637 Stmt *Block) {
2638 assert(Block);
2639 return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2640 }
2641
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)2642 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2643 bool IsIfExists,
2644 NestedNameSpecifierLoc QualifierLoc,
2645 DeclarationNameInfo NameInfo,
2646 Stmt *Nested)
2647 {
2648 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2649 QualifierLoc, NameInfo,
2650 cast<CompoundStmt>(Nested));
2651 }
2652
2653
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)2654 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2655 bool IsIfExists,
2656 CXXScopeSpec &SS,
2657 UnqualifiedId &Name,
2658 Stmt *Nested) {
2659 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2660 SS.getWithLocInContext(Context),
2661 GetNameFromUnqualifiedId(Name),
2662 Nested);
2663 }
2664