• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_HEAP_INL_H_
29 #define V8_HEAP_INL_H_
30 
31 #include "heap.h"
32 #include "isolate.h"
33 #include "list-inl.h"
34 #include "objects.h"
35 #include "platform.h"
36 #include "v8-counters.h"
37 #include "store-buffer.h"
38 #include "store-buffer-inl.h"
39 
40 namespace v8 {
41 namespace internal {
42 
insert(HeapObject * target,int size)43 void PromotionQueue::insert(HeapObject* target, int size) {
44   if (emergency_stack_ != NULL) {
45     emergency_stack_->Add(Entry(target, size));
46     return;
47   }
48 
49   if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
50     NewSpacePage* rear_page =
51         NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
52     ASSERT(!rear_page->prev_page()->is_anchor());
53     rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
54     ActivateGuardIfOnTheSamePage();
55   }
56 
57   if (guard_) {
58     ASSERT(GetHeadPage() ==
59            Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
60 
61     if ((rear_ - 2) < limit_) {
62       RelocateQueueHead();
63       emergency_stack_->Add(Entry(target, size));
64       return;
65     }
66   }
67 
68   *(--rear_) = reinterpret_cast<intptr_t>(target);
69   *(--rear_) = size;
70   // Assert no overflow into live objects.
71 #ifdef DEBUG
72   SemiSpace::AssertValidRange(HEAP->new_space()->top(),
73                               reinterpret_cast<Address>(rear_));
74 #endif
75 }
76 
77 
ActivateGuardIfOnTheSamePage()78 void PromotionQueue::ActivateGuardIfOnTheSamePage() {
79   guard_ = guard_ ||
80       heap_->new_space()->active_space()->current_page()->address() ==
81       GetHeadPage()->address();
82 }
83 
84 
AllocateStringFromUtf8(Vector<const char> str,PretenureFlag pretenure)85 MaybeObject* Heap::AllocateStringFromUtf8(Vector<const char> str,
86                                           PretenureFlag pretenure) {
87   // Check for ASCII first since this is the common case.
88   if (String::IsAscii(str.start(), str.length())) {
89     // If the string is ASCII, we do not need to convert the characters
90     // since UTF8 is backwards compatible with ASCII.
91     return AllocateStringFromAscii(str, pretenure);
92   }
93   // Non-ASCII and we need to decode.
94   return AllocateStringFromUtf8Slow(str, pretenure);
95 }
96 
97 
AllocateSymbol(Vector<const char> str,int chars,uint32_t hash_field)98 MaybeObject* Heap::AllocateSymbol(Vector<const char> str,
99                                   int chars,
100                                   uint32_t hash_field) {
101   unibrow::Utf8InputBuffer<> buffer(str.start(),
102                                     static_cast<unsigned>(str.length()));
103   return AllocateInternalSymbol(&buffer, chars, hash_field);
104 }
105 
106 
AllocateAsciiSymbol(Vector<const char> str,uint32_t hash_field)107 MaybeObject* Heap::AllocateAsciiSymbol(Vector<const char> str,
108                                        uint32_t hash_field) {
109   if (str.length() > SeqAsciiString::kMaxLength) {
110     return Failure::OutOfMemoryException();
111   }
112   // Compute map and object size.
113   Map* map = ascii_symbol_map();
114   int size = SeqAsciiString::SizeFor(str.length());
115 
116   // Allocate string.
117   Object* result;
118   { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
119                    ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
120                    : old_data_space_->AllocateRaw(size);
121     if (!maybe_result->ToObject(&result)) return maybe_result;
122   }
123 
124   // String maps are all immortal immovable objects.
125   reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
126   // Set length and hash fields of the allocated string.
127   String* answer = String::cast(result);
128   answer->set_length(str.length());
129   answer->set_hash_field(hash_field);
130 
131   ASSERT_EQ(size, answer->Size());
132 
133   // Fill in the characters.
134   memcpy(answer->address() + SeqAsciiString::kHeaderSize,
135          str.start(), str.length());
136 
137   return answer;
138 }
139 
140 
AllocateTwoByteSymbol(Vector<const uc16> str,uint32_t hash_field)141 MaybeObject* Heap::AllocateTwoByteSymbol(Vector<const uc16> str,
142                                          uint32_t hash_field) {
143   if (str.length() > SeqTwoByteString::kMaxLength) {
144     return Failure::OutOfMemoryException();
145   }
146   // Compute map and object size.
147   Map* map = symbol_map();
148   int size = SeqTwoByteString::SizeFor(str.length());
149 
150   // Allocate string.
151   Object* result;
152   { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
153                    ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
154                    : old_data_space_->AllocateRaw(size);
155     if (!maybe_result->ToObject(&result)) return maybe_result;
156   }
157 
158   reinterpret_cast<HeapObject*>(result)->set_map(map);
159   // Set length and hash fields of the allocated string.
160   String* answer = String::cast(result);
161   answer->set_length(str.length());
162   answer->set_hash_field(hash_field);
163 
164   ASSERT_EQ(size, answer->Size());
165 
166   // Fill in the characters.
167   memcpy(answer->address() + SeqTwoByteString::kHeaderSize,
168          str.start(), str.length() * kUC16Size);
169 
170   return answer;
171 }
172 
CopyFixedArray(FixedArray * src)173 MaybeObject* Heap::CopyFixedArray(FixedArray* src) {
174   return CopyFixedArrayWithMap(src, src->map());
175 }
176 
177 
CopyFixedDoubleArray(FixedDoubleArray * src)178 MaybeObject* Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
179   return CopyFixedDoubleArrayWithMap(src, src->map());
180 }
181 
182 
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationSpace retry_space)183 MaybeObject* Heap::AllocateRaw(int size_in_bytes,
184                                AllocationSpace space,
185                                AllocationSpace retry_space) {
186   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
187   ASSERT(space != NEW_SPACE ||
188          retry_space == OLD_POINTER_SPACE ||
189          retry_space == OLD_DATA_SPACE ||
190          retry_space == LO_SPACE);
191 #ifdef DEBUG
192   if (FLAG_gc_interval >= 0 &&
193       !disallow_allocation_failure_ &&
194       Heap::allocation_timeout_-- <= 0) {
195     return Failure::RetryAfterGC(space);
196   }
197   isolate_->counters()->objs_since_last_full()->Increment();
198   isolate_->counters()->objs_since_last_young()->Increment();
199 #endif
200   MaybeObject* result;
201   if (NEW_SPACE == space) {
202     result = new_space_.AllocateRaw(size_in_bytes);
203     if (always_allocate() && result->IsFailure()) {
204       space = retry_space;
205     } else {
206       return result;
207     }
208   }
209 
210   if (OLD_POINTER_SPACE == space) {
211     result = old_pointer_space_->AllocateRaw(size_in_bytes);
212   } else if (OLD_DATA_SPACE == space) {
213     result = old_data_space_->AllocateRaw(size_in_bytes);
214   } else if (CODE_SPACE == space) {
215     result = code_space_->AllocateRaw(size_in_bytes);
216   } else if (LO_SPACE == space) {
217     result = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
218   } else if (CELL_SPACE == space) {
219     result = cell_space_->AllocateRaw(size_in_bytes);
220   } else {
221     ASSERT(MAP_SPACE == space);
222     result = map_space_->AllocateRaw(size_in_bytes);
223   }
224   if (result->IsFailure()) old_gen_exhausted_ = true;
225   return result;
226 }
227 
228 
NumberFromInt32(int32_t value,PretenureFlag pretenure)229 MaybeObject* Heap::NumberFromInt32(
230     int32_t value, PretenureFlag pretenure) {
231   if (Smi::IsValid(value)) return Smi::FromInt(value);
232   // Bypass NumberFromDouble to avoid various redundant checks.
233   return AllocateHeapNumber(FastI2D(value), pretenure);
234 }
235 
236 
NumberFromUint32(uint32_t value,PretenureFlag pretenure)237 MaybeObject* Heap::NumberFromUint32(
238     uint32_t value, PretenureFlag pretenure) {
239   if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
240     return Smi::FromInt((int32_t)value);
241   }
242   // Bypass NumberFromDouble to avoid various redundant checks.
243   return AllocateHeapNumber(FastUI2D(value), pretenure);
244 }
245 
246 
FinalizeExternalString(String * string)247 void Heap::FinalizeExternalString(String* string) {
248   ASSERT(string->IsExternalString());
249   v8::String::ExternalStringResourceBase** resource_addr =
250       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
251           reinterpret_cast<byte*>(string) +
252           ExternalString::kResourceOffset -
253           kHeapObjectTag);
254 
255   // Dispose of the C++ object if it has not already been disposed.
256   if (*resource_addr != NULL) {
257     (*resource_addr)->Dispose();
258     *resource_addr = NULL;
259   }
260 }
261 
262 
AllocateRawMap()263 MaybeObject* Heap::AllocateRawMap() {
264 #ifdef DEBUG
265   isolate_->counters()->objs_since_last_full()->Increment();
266   isolate_->counters()->objs_since_last_young()->Increment();
267 #endif
268   MaybeObject* result = map_space_->AllocateRaw(Map::kSize);
269   if (result->IsFailure()) old_gen_exhausted_ = true;
270 #ifdef DEBUG
271   if (!result->IsFailure()) {
272     // Maps have their own alignment.
273     CHECK((reinterpret_cast<intptr_t>(result) & kMapAlignmentMask) ==
274           static_cast<intptr_t>(kHeapObjectTag));
275   }
276 #endif
277   return result;
278 }
279 
280 
AllocateRawCell()281 MaybeObject* Heap::AllocateRawCell() {
282 #ifdef DEBUG
283   isolate_->counters()->objs_since_last_full()->Increment();
284   isolate_->counters()->objs_since_last_young()->Increment();
285 #endif
286   MaybeObject* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
287   if (result->IsFailure()) old_gen_exhausted_ = true;
288   return result;
289 }
290 
291 
InNewSpace(Object * object)292 bool Heap::InNewSpace(Object* object) {
293   bool result = new_space_.Contains(object);
294   ASSERT(!result ||                  // Either not in new space
295          gc_state_ != NOT_IN_GC ||   // ... or in the middle of GC
296          InToSpace(object));         // ... or in to-space (where we allocate).
297   return result;
298 }
299 
300 
InNewSpace(Address addr)301 bool Heap::InNewSpace(Address addr) {
302   return new_space_.Contains(addr);
303 }
304 
305 
InFromSpace(Object * object)306 bool Heap::InFromSpace(Object* object) {
307   return new_space_.FromSpaceContains(object);
308 }
309 
310 
InToSpace(Object * object)311 bool Heap::InToSpace(Object* object) {
312   return new_space_.ToSpaceContains(object);
313 }
314 
315 
OldGenerationAllocationLimitReached()316 bool Heap::OldGenerationAllocationLimitReached() {
317   if (!incremental_marking()->IsStopped()) return false;
318   return OldGenerationSpaceAvailable() < 0;
319 }
320 
321 
ShouldBePromoted(Address old_address,int object_size)322 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
323   // An object should be promoted if:
324   // - the object has survived a scavenge operation or
325   // - to space is already 25% full.
326   NewSpacePage* page = NewSpacePage::FromAddress(old_address);
327   Address age_mark = new_space_.age_mark();
328   bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
329       (!page->ContainsLimit(age_mark) || old_address < age_mark);
330   return below_mark || (new_space_.Size() + object_size) >=
331                         (new_space_.EffectiveCapacity() >> 2);
332 }
333 
334 
RecordWrite(Address address,int offset)335 void Heap::RecordWrite(Address address, int offset) {
336   if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
337 }
338 
339 
RecordWrites(Address address,int start,int len)340 void Heap::RecordWrites(Address address, int start, int len) {
341   if (!InNewSpace(address)) {
342     for (int i = 0; i < len; i++) {
343       store_buffer_.Mark(address + start + i * kPointerSize);
344     }
345   }
346 }
347 
348 
TargetSpace(HeapObject * object)349 OldSpace* Heap::TargetSpace(HeapObject* object) {
350   InstanceType type = object->map()->instance_type();
351   AllocationSpace space = TargetSpaceId(type);
352   return (space == OLD_POINTER_SPACE)
353       ? old_pointer_space_
354       : old_data_space_;
355 }
356 
357 
TargetSpaceId(InstanceType type)358 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
359   // Heap numbers and sequential strings are promoted to old data space, all
360   // other object types are promoted to old pointer space.  We do not use
361   // object->IsHeapNumber() and object->IsSeqString() because we already
362   // know that object has the heap object tag.
363 
364   // These objects are never allocated in new space.
365   ASSERT(type != MAP_TYPE);
366   ASSERT(type != CODE_TYPE);
367   ASSERT(type != ODDBALL_TYPE);
368   ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
369 
370   if (type < FIRST_NONSTRING_TYPE) {
371     // There are four string representations: sequential strings, external
372     // strings, cons strings, and sliced strings.
373     // Only the latter two contain non-map-word pointers to heap objects.
374     return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
375         ? OLD_POINTER_SPACE
376         : OLD_DATA_SPACE;
377   } else {
378     return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
379   }
380 }
381 
382 
CopyBlock(Address dst,Address src,int byte_size)383 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
384   CopyWords(reinterpret_cast<Object**>(dst),
385             reinterpret_cast<Object**>(src),
386             byte_size / kPointerSize);
387 }
388 
389 
MoveBlock(Address dst,Address src,int byte_size)390 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
391   ASSERT(IsAligned(byte_size, kPointerSize));
392 
393   int size_in_words = byte_size / kPointerSize;
394 
395   if ((dst < src) || (dst >= (src + byte_size))) {
396     Object** src_slot = reinterpret_cast<Object**>(src);
397     Object** dst_slot = reinterpret_cast<Object**>(dst);
398     Object** end_slot = src_slot + size_in_words;
399 
400     while (src_slot != end_slot) {
401       *dst_slot++ = *src_slot++;
402     }
403   } else {
404     memmove(dst, src, byte_size);
405   }
406 }
407 
408 
ScavengePointer(HeapObject ** p)409 void Heap::ScavengePointer(HeapObject** p) {
410   ScavengeObject(p, *p);
411 }
412 
413 
ScavengeObject(HeapObject ** p,HeapObject * object)414 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
415   ASSERT(HEAP->InFromSpace(object));
416 
417   // We use the first word (where the map pointer usually is) of a heap
418   // object to record the forwarding pointer.  A forwarding pointer can
419   // point to an old space, the code space, or the to space of the new
420   // generation.
421   MapWord first_word = object->map_word();
422 
423   // If the first word is a forwarding address, the object has already been
424   // copied.
425   if (first_word.IsForwardingAddress()) {
426     HeapObject* dest = first_word.ToForwardingAddress();
427     ASSERT(HEAP->InFromSpace(*p));
428     *p = dest;
429     return;
430   }
431 
432   // Call the slow part of scavenge object.
433   return ScavengeObjectSlow(p, object);
434 }
435 
436 
CollectGarbage(AllocationSpace space,const char * gc_reason)437 bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason) {
438   const char* collector_reason = NULL;
439   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
440   return CollectGarbage(space, collector, gc_reason, collector_reason);
441 }
442 
443 
PrepareForCompare(String * str)444 MaybeObject* Heap::PrepareForCompare(String* str) {
445   // Always flatten small strings and force flattening of long strings
446   // after we have accumulated a certain amount we failed to flatten.
447   static const int kMaxAlwaysFlattenLength = 32;
448   static const int kFlattenLongThreshold = 16*KB;
449 
450   const int length = str->length();
451   MaybeObject* obj = str->TryFlatten();
452   if (length <= kMaxAlwaysFlattenLength ||
453       unflattened_strings_length_ >= kFlattenLongThreshold) {
454     return obj;
455   }
456   if (obj->IsFailure()) {
457     unflattened_strings_length_ += length;
458   }
459   return str;
460 }
461 
462 
AdjustAmountOfExternalAllocatedMemory(int change_in_bytes)463 int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) {
464   ASSERT(HasBeenSetUp());
465   int amount = amount_of_external_allocated_memory_ + change_in_bytes;
466   if (change_in_bytes >= 0) {
467     // Avoid overflow.
468     if (amount > amount_of_external_allocated_memory_) {
469       amount_of_external_allocated_memory_ = amount;
470     }
471     int amount_since_last_global_gc =
472         amount_of_external_allocated_memory_ -
473         amount_of_external_allocated_memory_at_last_global_gc_;
474     if (amount_since_last_global_gc > external_allocation_limit_) {
475       CollectAllGarbage(kNoGCFlags, "external memory allocation limit reached");
476     }
477   } else {
478     // Avoid underflow.
479     if (amount >= 0) {
480       amount_of_external_allocated_memory_ = amount;
481     }
482   }
483   ASSERT(amount_of_external_allocated_memory_ >= 0);
484   return amount_of_external_allocated_memory_;
485 }
486 
487 
SetLastScriptId(Object * last_script_id)488 void Heap::SetLastScriptId(Object* last_script_id) {
489   roots_[kLastScriptIdRootIndex] = last_script_id;
490 }
491 
492 
isolate()493 Isolate* Heap::isolate() {
494   return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
495       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
496 }
497 
498 
499 #ifdef DEBUG
500 #define GC_GREEDY_CHECK() \
501   if (FLAG_gc_greedy) HEAP->GarbageCollectionGreedyCheck()
502 #else
503 #define GC_GREEDY_CHECK() { }
504 #endif
505 
506 // Calls the FUNCTION_CALL function and retries it up to three times
507 // to guarantee that any allocations performed during the call will
508 // succeed if there's enough memory.
509 
510 // Warning: Do not use the identifiers __object__, __maybe_object__ or
511 // __scope__ in a call to this macro.
512 
513 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)\
514   do {                                                                    \
515     GC_GREEDY_CHECK();                                                    \
516     MaybeObject* __maybe_object__ = FUNCTION_CALL;                        \
517     Object* __object__ = NULL;                                            \
518     if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE;            \
519     if (__maybe_object__->IsOutOfMemory()) {                              \
520       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0", true);\
521     }                                                                     \
522     if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY;                \
523     ISOLATE->heap()->CollectGarbage(Failure::cast(__maybe_object__)->     \
524                                     allocation_space(),                   \
525                                     "allocation failure");                \
526     __maybe_object__ = FUNCTION_CALL;                                     \
527     if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE;            \
528     if (__maybe_object__->IsOutOfMemory()) {                              \
529       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1", true);\
530     }                                                                     \
531     if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY;                \
532     ISOLATE->counters()->gc_last_resort_from_handles()->Increment();      \
533     ISOLATE->heap()->CollectAllAvailableGarbage("last resort gc");        \
534     {                                                                     \
535       AlwaysAllocateScope __scope__;                                      \
536       __maybe_object__ = FUNCTION_CALL;                                   \
537     }                                                                     \
538     if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE;            \
539     if (__maybe_object__->IsOutOfMemory() ||                              \
540         __maybe_object__->IsRetryAfterGC()) {                             \
541       /* TODO(1181417): Fix this. */                                      \
542       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2", true);\
543     }                                                                     \
544     RETURN_EMPTY;                                                         \
545   } while (false)
546 
547 
548 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)       \
549   CALL_AND_RETRY(ISOLATE,                                      \
550                  FUNCTION_CALL,                                \
551                  return Handle<TYPE>(TYPE::cast(__object__), ISOLATE),  \
552                  return Handle<TYPE>())
553 
554 
555 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
556   CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, return, return)
557 
558 
559 #ifdef DEBUG
560 
allow_allocation(bool new_state)561 inline bool Heap::allow_allocation(bool new_state) {
562   bool old = allocation_allowed_;
563   allocation_allowed_ = new_state;
564   return old;
565 }
566 
567 #endif
568 
569 
AddString(String * string)570 void ExternalStringTable::AddString(String* string) {
571   ASSERT(string->IsExternalString());
572   if (heap_->InNewSpace(string)) {
573     new_space_strings_.Add(string);
574   } else {
575     old_space_strings_.Add(string);
576   }
577 }
578 
579 
Iterate(ObjectVisitor * v)580 void ExternalStringTable::Iterate(ObjectVisitor* v) {
581   if (!new_space_strings_.is_empty()) {
582     Object** start = &new_space_strings_[0];
583     v->VisitPointers(start, start + new_space_strings_.length());
584   }
585   if (!old_space_strings_.is_empty()) {
586     Object** start = &old_space_strings_[0];
587     v->VisitPointers(start, start + old_space_strings_.length());
588   }
589 }
590 
591 
592 // Verify() is inline to avoid ifdef-s around its calls in release
593 // mode.
Verify()594 void ExternalStringTable::Verify() {
595 #ifdef DEBUG
596   for (int i = 0; i < new_space_strings_.length(); ++i) {
597     ASSERT(heap_->InNewSpace(new_space_strings_[i]));
598     ASSERT(new_space_strings_[i] != HEAP->raw_unchecked_the_hole_value());
599   }
600   for (int i = 0; i < old_space_strings_.length(); ++i) {
601     ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
602     ASSERT(old_space_strings_[i] != HEAP->raw_unchecked_the_hole_value());
603   }
604 #endif
605 }
606 
607 
AddOldString(String * string)608 void ExternalStringTable::AddOldString(String* string) {
609   ASSERT(string->IsExternalString());
610   ASSERT(!heap_->InNewSpace(string));
611   old_space_strings_.Add(string);
612 }
613 
614 
ShrinkNewStrings(int position)615 void ExternalStringTable::ShrinkNewStrings(int position) {
616   new_space_strings_.Rewind(position);
617   if (FLAG_verify_heap) {
618     Verify();
619   }
620 }
621 
622 
ClearInstanceofCache()623 void Heap::ClearInstanceofCache() {
624   set_instanceof_cache_function(the_hole_value());
625 }
626 
627 
ToBoolean(bool condition)628 Object* Heap::ToBoolean(bool condition) {
629   return condition ? true_value() : false_value();
630 }
631 
632 
CompletelyClearInstanceofCache()633 void Heap::CompletelyClearInstanceofCache() {
634   set_instanceof_cache_map(the_hole_value());
635   set_instanceof_cache_function(the_hole_value());
636 }
637 
638 
Get(Type type,double input)639 MaybeObject* TranscendentalCache::Get(Type type, double input) {
640   SubCache* cache = caches_[type];
641   if (cache == NULL) {
642     caches_[type] = cache = new SubCache(type);
643   }
644   return cache->Get(input);
645 }
646 
647 
cache_array_address()648 Address TranscendentalCache::cache_array_address() {
649   return reinterpret_cast<Address>(caches_);
650 }
651 
652 
Calculate(double input)653 double TranscendentalCache::SubCache::Calculate(double input) {
654   switch (type_) {
655     case ACOS:
656       return acos(input);
657     case ASIN:
658       return asin(input);
659     case ATAN:
660       return atan(input);
661     case COS:
662       return fast_cos(input);
663     case EXP:
664       return exp(input);
665     case LOG:
666       return fast_log(input);
667     case SIN:
668       return fast_sin(input);
669     case TAN:
670       return fast_tan(input);
671     default:
672       return 0.0;  // Never happens.
673   }
674 }
675 
676 
Get(double input)677 MaybeObject* TranscendentalCache::SubCache::Get(double input) {
678   Converter c;
679   c.dbl = input;
680   int hash = Hash(c);
681   Element e = elements_[hash];
682   if (e.in[0] == c.integers[0] &&
683       e.in[1] == c.integers[1]) {
684     ASSERT(e.output != NULL);
685     isolate_->counters()->transcendental_cache_hit()->Increment();
686     return e.output;
687   }
688   double answer = Calculate(input);
689   isolate_->counters()->transcendental_cache_miss()->Increment();
690   Object* heap_number;
691   { MaybeObject* maybe_heap_number =
692         isolate_->heap()->AllocateHeapNumber(answer);
693     if (!maybe_heap_number->ToObject(&heap_number)) return maybe_heap_number;
694   }
695   elements_[hash].in[0] = c.integers[0];
696   elements_[hash].in[1] = c.integers[1];
697   elements_[hash].output = heap_number;
698   return heap_number;
699 }
700 
701 
AlwaysAllocateScope()702 AlwaysAllocateScope::AlwaysAllocateScope() {
703   // We shouldn't hit any nested scopes, because that requires
704   // non-handle code to call handle code. The code still works but
705   // performance will degrade, so we want to catch this situation
706   // in debug mode.
707   ASSERT(HEAP->always_allocate_scope_depth_ == 0);
708   HEAP->always_allocate_scope_depth_++;
709 }
710 
711 
~AlwaysAllocateScope()712 AlwaysAllocateScope::~AlwaysAllocateScope() {
713   HEAP->always_allocate_scope_depth_--;
714   ASSERT(HEAP->always_allocate_scope_depth_ == 0);
715 }
716 
717 
LinearAllocationScope()718 LinearAllocationScope::LinearAllocationScope() {
719   HEAP->linear_allocation_scope_depth_++;
720 }
721 
722 
~LinearAllocationScope()723 LinearAllocationScope::~LinearAllocationScope() {
724   HEAP->linear_allocation_scope_depth_--;
725   ASSERT(HEAP->linear_allocation_scope_depth_ >= 0);
726 }
727 
728 
729 #ifdef DEBUG
VisitPointers(Object ** start,Object ** end)730 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
731   for (Object** current = start; current < end; current++) {
732     if ((*current)->IsHeapObject()) {
733       HeapObject* object = HeapObject::cast(*current);
734       ASSERT(HEAP->Contains(object));
735       ASSERT(object->map()->IsMap());
736     }
737   }
738 }
739 #endif
740 
741 
SizeOfHeapObjects()742 double GCTracer::SizeOfHeapObjects() {
743   return (static_cast<double>(HEAP->SizeOfObjects())) / MB;
744 }
745 
746 
747 #ifdef DEBUG
DisallowAllocationFailure()748 DisallowAllocationFailure::DisallowAllocationFailure() {
749   old_state_ = HEAP->disallow_allocation_failure_;
750   HEAP->disallow_allocation_failure_ = true;
751 }
752 
753 
~DisallowAllocationFailure()754 DisallowAllocationFailure::~DisallowAllocationFailure() {
755   HEAP->disallow_allocation_failure_ = old_state_;
756 }
757 #endif
758 
759 
760 #ifdef DEBUG
AssertNoAllocation()761 AssertNoAllocation::AssertNoAllocation() {
762   old_state_ = HEAP->allow_allocation(false);
763 }
764 
765 
~AssertNoAllocation()766 AssertNoAllocation::~AssertNoAllocation() {
767   HEAP->allow_allocation(old_state_);
768 }
769 
770 
DisableAssertNoAllocation()771 DisableAssertNoAllocation::DisableAssertNoAllocation() {
772   old_state_ = HEAP->allow_allocation(true);
773 }
774 
775 
~DisableAssertNoAllocation()776 DisableAssertNoAllocation::~DisableAssertNoAllocation() {
777   HEAP->allow_allocation(old_state_);
778 }
779 
780 #else
781 
AssertNoAllocation()782 AssertNoAllocation::AssertNoAllocation() { }
~AssertNoAllocation()783 AssertNoAllocation::~AssertNoAllocation() { }
DisableAssertNoAllocation()784 DisableAssertNoAllocation::DisableAssertNoAllocation() { }
~DisableAssertNoAllocation()785 DisableAssertNoAllocation::~DisableAssertNoAllocation() { }
786 
787 #endif
788 
789 
790 } }  // namespace v8::internal
791 
792 #endif  // V8_HEAP_INL_H_
793