1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_HEAP_INL_H_
29 #define V8_HEAP_INL_H_
30
31 #include "heap.h"
32 #include "isolate.h"
33 #include "list-inl.h"
34 #include "objects.h"
35 #include "platform.h"
36 #include "v8-counters.h"
37 #include "store-buffer.h"
38 #include "store-buffer-inl.h"
39
40 namespace v8 {
41 namespace internal {
42
insert(HeapObject * target,int size)43 void PromotionQueue::insert(HeapObject* target, int size) {
44 if (emergency_stack_ != NULL) {
45 emergency_stack_->Add(Entry(target, size));
46 return;
47 }
48
49 if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
50 NewSpacePage* rear_page =
51 NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
52 ASSERT(!rear_page->prev_page()->is_anchor());
53 rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
54 ActivateGuardIfOnTheSamePage();
55 }
56
57 if (guard_) {
58 ASSERT(GetHeadPage() ==
59 Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
60
61 if ((rear_ - 2) < limit_) {
62 RelocateQueueHead();
63 emergency_stack_->Add(Entry(target, size));
64 return;
65 }
66 }
67
68 *(--rear_) = reinterpret_cast<intptr_t>(target);
69 *(--rear_) = size;
70 // Assert no overflow into live objects.
71 #ifdef DEBUG
72 SemiSpace::AssertValidRange(HEAP->new_space()->top(),
73 reinterpret_cast<Address>(rear_));
74 #endif
75 }
76
77
ActivateGuardIfOnTheSamePage()78 void PromotionQueue::ActivateGuardIfOnTheSamePage() {
79 guard_ = guard_ ||
80 heap_->new_space()->active_space()->current_page()->address() ==
81 GetHeadPage()->address();
82 }
83
84
AllocateStringFromUtf8(Vector<const char> str,PretenureFlag pretenure)85 MaybeObject* Heap::AllocateStringFromUtf8(Vector<const char> str,
86 PretenureFlag pretenure) {
87 // Check for ASCII first since this is the common case.
88 if (String::IsAscii(str.start(), str.length())) {
89 // If the string is ASCII, we do not need to convert the characters
90 // since UTF8 is backwards compatible with ASCII.
91 return AllocateStringFromAscii(str, pretenure);
92 }
93 // Non-ASCII and we need to decode.
94 return AllocateStringFromUtf8Slow(str, pretenure);
95 }
96
97
AllocateSymbol(Vector<const char> str,int chars,uint32_t hash_field)98 MaybeObject* Heap::AllocateSymbol(Vector<const char> str,
99 int chars,
100 uint32_t hash_field) {
101 unibrow::Utf8InputBuffer<> buffer(str.start(),
102 static_cast<unsigned>(str.length()));
103 return AllocateInternalSymbol(&buffer, chars, hash_field);
104 }
105
106
AllocateAsciiSymbol(Vector<const char> str,uint32_t hash_field)107 MaybeObject* Heap::AllocateAsciiSymbol(Vector<const char> str,
108 uint32_t hash_field) {
109 if (str.length() > SeqAsciiString::kMaxLength) {
110 return Failure::OutOfMemoryException();
111 }
112 // Compute map and object size.
113 Map* map = ascii_symbol_map();
114 int size = SeqAsciiString::SizeFor(str.length());
115
116 // Allocate string.
117 Object* result;
118 { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
119 ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
120 : old_data_space_->AllocateRaw(size);
121 if (!maybe_result->ToObject(&result)) return maybe_result;
122 }
123
124 // String maps are all immortal immovable objects.
125 reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
126 // Set length and hash fields of the allocated string.
127 String* answer = String::cast(result);
128 answer->set_length(str.length());
129 answer->set_hash_field(hash_field);
130
131 ASSERT_EQ(size, answer->Size());
132
133 // Fill in the characters.
134 memcpy(answer->address() + SeqAsciiString::kHeaderSize,
135 str.start(), str.length());
136
137 return answer;
138 }
139
140
AllocateTwoByteSymbol(Vector<const uc16> str,uint32_t hash_field)141 MaybeObject* Heap::AllocateTwoByteSymbol(Vector<const uc16> str,
142 uint32_t hash_field) {
143 if (str.length() > SeqTwoByteString::kMaxLength) {
144 return Failure::OutOfMemoryException();
145 }
146 // Compute map and object size.
147 Map* map = symbol_map();
148 int size = SeqTwoByteString::SizeFor(str.length());
149
150 // Allocate string.
151 Object* result;
152 { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
153 ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
154 : old_data_space_->AllocateRaw(size);
155 if (!maybe_result->ToObject(&result)) return maybe_result;
156 }
157
158 reinterpret_cast<HeapObject*>(result)->set_map(map);
159 // Set length and hash fields of the allocated string.
160 String* answer = String::cast(result);
161 answer->set_length(str.length());
162 answer->set_hash_field(hash_field);
163
164 ASSERT_EQ(size, answer->Size());
165
166 // Fill in the characters.
167 memcpy(answer->address() + SeqTwoByteString::kHeaderSize,
168 str.start(), str.length() * kUC16Size);
169
170 return answer;
171 }
172
CopyFixedArray(FixedArray * src)173 MaybeObject* Heap::CopyFixedArray(FixedArray* src) {
174 return CopyFixedArrayWithMap(src, src->map());
175 }
176
177
CopyFixedDoubleArray(FixedDoubleArray * src)178 MaybeObject* Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
179 return CopyFixedDoubleArrayWithMap(src, src->map());
180 }
181
182
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationSpace retry_space)183 MaybeObject* Heap::AllocateRaw(int size_in_bytes,
184 AllocationSpace space,
185 AllocationSpace retry_space) {
186 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
187 ASSERT(space != NEW_SPACE ||
188 retry_space == OLD_POINTER_SPACE ||
189 retry_space == OLD_DATA_SPACE ||
190 retry_space == LO_SPACE);
191 #ifdef DEBUG
192 if (FLAG_gc_interval >= 0 &&
193 !disallow_allocation_failure_ &&
194 Heap::allocation_timeout_-- <= 0) {
195 return Failure::RetryAfterGC(space);
196 }
197 isolate_->counters()->objs_since_last_full()->Increment();
198 isolate_->counters()->objs_since_last_young()->Increment();
199 #endif
200 MaybeObject* result;
201 if (NEW_SPACE == space) {
202 result = new_space_.AllocateRaw(size_in_bytes);
203 if (always_allocate() && result->IsFailure()) {
204 space = retry_space;
205 } else {
206 return result;
207 }
208 }
209
210 if (OLD_POINTER_SPACE == space) {
211 result = old_pointer_space_->AllocateRaw(size_in_bytes);
212 } else if (OLD_DATA_SPACE == space) {
213 result = old_data_space_->AllocateRaw(size_in_bytes);
214 } else if (CODE_SPACE == space) {
215 result = code_space_->AllocateRaw(size_in_bytes);
216 } else if (LO_SPACE == space) {
217 result = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
218 } else if (CELL_SPACE == space) {
219 result = cell_space_->AllocateRaw(size_in_bytes);
220 } else {
221 ASSERT(MAP_SPACE == space);
222 result = map_space_->AllocateRaw(size_in_bytes);
223 }
224 if (result->IsFailure()) old_gen_exhausted_ = true;
225 return result;
226 }
227
228
NumberFromInt32(int32_t value,PretenureFlag pretenure)229 MaybeObject* Heap::NumberFromInt32(
230 int32_t value, PretenureFlag pretenure) {
231 if (Smi::IsValid(value)) return Smi::FromInt(value);
232 // Bypass NumberFromDouble to avoid various redundant checks.
233 return AllocateHeapNumber(FastI2D(value), pretenure);
234 }
235
236
NumberFromUint32(uint32_t value,PretenureFlag pretenure)237 MaybeObject* Heap::NumberFromUint32(
238 uint32_t value, PretenureFlag pretenure) {
239 if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
240 return Smi::FromInt((int32_t)value);
241 }
242 // Bypass NumberFromDouble to avoid various redundant checks.
243 return AllocateHeapNumber(FastUI2D(value), pretenure);
244 }
245
246
FinalizeExternalString(String * string)247 void Heap::FinalizeExternalString(String* string) {
248 ASSERT(string->IsExternalString());
249 v8::String::ExternalStringResourceBase** resource_addr =
250 reinterpret_cast<v8::String::ExternalStringResourceBase**>(
251 reinterpret_cast<byte*>(string) +
252 ExternalString::kResourceOffset -
253 kHeapObjectTag);
254
255 // Dispose of the C++ object if it has not already been disposed.
256 if (*resource_addr != NULL) {
257 (*resource_addr)->Dispose();
258 *resource_addr = NULL;
259 }
260 }
261
262
AllocateRawMap()263 MaybeObject* Heap::AllocateRawMap() {
264 #ifdef DEBUG
265 isolate_->counters()->objs_since_last_full()->Increment();
266 isolate_->counters()->objs_since_last_young()->Increment();
267 #endif
268 MaybeObject* result = map_space_->AllocateRaw(Map::kSize);
269 if (result->IsFailure()) old_gen_exhausted_ = true;
270 #ifdef DEBUG
271 if (!result->IsFailure()) {
272 // Maps have their own alignment.
273 CHECK((reinterpret_cast<intptr_t>(result) & kMapAlignmentMask) ==
274 static_cast<intptr_t>(kHeapObjectTag));
275 }
276 #endif
277 return result;
278 }
279
280
AllocateRawCell()281 MaybeObject* Heap::AllocateRawCell() {
282 #ifdef DEBUG
283 isolate_->counters()->objs_since_last_full()->Increment();
284 isolate_->counters()->objs_since_last_young()->Increment();
285 #endif
286 MaybeObject* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
287 if (result->IsFailure()) old_gen_exhausted_ = true;
288 return result;
289 }
290
291
InNewSpace(Object * object)292 bool Heap::InNewSpace(Object* object) {
293 bool result = new_space_.Contains(object);
294 ASSERT(!result || // Either not in new space
295 gc_state_ != NOT_IN_GC || // ... or in the middle of GC
296 InToSpace(object)); // ... or in to-space (where we allocate).
297 return result;
298 }
299
300
InNewSpace(Address addr)301 bool Heap::InNewSpace(Address addr) {
302 return new_space_.Contains(addr);
303 }
304
305
InFromSpace(Object * object)306 bool Heap::InFromSpace(Object* object) {
307 return new_space_.FromSpaceContains(object);
308 }
309
310
InToSpace(Object * object)311 bool Heap::InToSpace(Object* object) {
312 return new_space_.ToSpaceContains(object);
313 }
314
315
OldGenerationAllocationLimitReached()316 bool Heap::OldGenerationAllocationLimitReached() {
317 if (!incremental_marking()->IsStopped()) return false;
318 return OldGenerationSpaceAvailable() < 0;
319 }
320
321
ShouldBePromoted(Address old_address,int object_size)322 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
323 // An object should be promoted if:
324 // - the object has survived a scavenge operation or
325 // - to space is already 25% full.
326 NewSpacePage* page = NewSpacePage::FromAddress(old_address);
327 Address age_mark = new_space_.age_mark();
328 bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
329 (!page->ContainsLimit(age_mark) || old_address < age_mark);
330 return below_mark || (new_space_.Size() + object_size) >=
331 (new_space_.EffectiveCapacity() >> 2);
332 }
333
334
RecordWrite(Address address,int offset)335 void Heap::RecordWrite(Address address, int offset) {
336 if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
337 }
338
339
RecordWrites(Address address,int start,int len)340 void Heap::RecordWrites(Address address, int start, int len) {
341 if (!InNewSpace(address)) {
342 for (int i = 0; i < len; i++) {
343 store_buffer_.Mark(address + start + i * kPointerSize);
344 }
345 }
346 }
347
348
TargetSpace(HeapObject * object)349 OldSpace* Heap::TargetSpace(HeapObject* object) {
350 InstanceType type = object->map()->instance_type();
351 AllocationSpace space = TargetSpaceId(type);
352 return (space == OLD_POINTER_SPACE)
353 ? old_pointer_space_
354 : old_data_space_;
355 }
356
357
TargetSpaceId(InstanceType type)358 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
359 // Heap numbers and sequential strings are promoted to old data space, all
360 // other object types are promoted to old pointer space. We do not use
361 // object->IsHeapNumber() and object->IsSeqString() because we already
362 // know that object has the heap object tag.
363
364 // These objects are never allocated in new space.
365 ASSERT(type != MAP_TYPE);
366 ASSERT(type != CODE_TYPE);
367 ASSERT(type != ODDBALL_TYPE);
368 ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
369
370 if (type < FIRST_NONSTRING_TYPE) {
371 // There are four string representations: sequential strings, external
372 // strings, cons strings, and sliced strings.
373 // Only the latter two contain non-map-word pointers to heap objects.
374 return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
375 ? OLD_POINTER_SPACE
376 : OLD_DATA_SPACE;
377 } else {
378 return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
379 }
380 }
381
382
CopyBlock(Address dst,Address src,int byte_size)383 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
384 CopyWords(reinterpret_cast<Object**>(dst),
385 reinterpret_cast<Object**>(src),
386 byte_size / kPointerSize);
387 }
388
389
MoveBlock(Address dst,Address src,int byte_size)390 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
391 ASSERT(IsAligned(byte_size, kPointerSize));
392
393 int size_in_words = byte_size / kPointerSize;
394
395 if ((dst < src) || (dst >= (src + byte_size))) {
396 Object** src_slot = reinterpret_cast<Object**>(src);
397 Object** dst_slot = reinterpret_cast<Object**>(dst);
398 Object** end_slot = src_slot + size_in_words;
399
400 while (src_slot != end_slot) {
401 *dst_slot++ = *src_slot++;
402 }
403 } else {
404 memmove(dst, src, byte_size);
405 }
406 }
407
408
ScavengePointer(HeapObject ** p)409 void Heap::ScavengePointer(HeapObject** p) {
410 ScavengeObject(p, *p);
411 }
412
413
ScavengeObject(HeapObject ** p,HeapObject * object)414 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
415 ASSERT(HEAP->InFromSpace(object));
416
417 // We use the first word (where the map pointer usually is) of a heap
418 // object to record the forwarding pointer. A forwarding pointer can
419 // point to an old space, the code space, or the to space of the new
420 // generation.
421 MapWord first_word = object->map_word();
422
423 // If the first word is a forwarding address, the object has already been
424 // copied.
425 if (first_word.IsForwardingAddress()) {
426 HeapObject* dest = first_word.ToForwardingAddress();
427 ASSERT(HEAP->InFromSpace(*p));
428 *p = dest;
429 return;
430 }
431
432 // Call the slow part of scavenge object.
433 return ScavengeObjectSlow(p, object);
434 }
435
436
CollectGarbage(AllocationSpace space,const char * gc_reason)437 bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason) {
438 const char* collector_reason = NULL;
439 GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
440 return CollectGarbage(space, collector, gc_reason, collector_reason);
441 }
442
443
PrepareForCompare(String * str)444 MaybeObject* Heap::PrepareForCompare(String* str) {
445 // Always flatten small strings and force flattening of long strings
446 // after we have accumulated a certain amount we failed to flatten.
447 static const int kMaxAlwaysFlattenLength = 32;
448 static const int kFlattenLongThreshold = 16*KB;
449
450 const int length = str->length();
451 MaybeObject* obj = str->TryFlatten();
452 if (length <= kMaxAlwaysFlattenLength ||
453 unflattened_strings_length_ >= kFlattenLongThreshold) {
454 return obj;
455 }
456 if (obj->IsFailure()) {
457 unflattened_strings_length_ += length;
458 }
459 return str;
460 }
461
462
AdjustAmountOfExternalAllocatedMemory(int change_in_bytes)463 int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) {
464 ASSERT(HasBeenSetUp());
465 int amount = amount_of_external_allocated_memory_ + change_in_bytes;
466 if (change_in_bytes >= 0) {
467 // Avoid overflow.
468 if (amount > amount_of_external_allocated_memory_) {
469 amount_of_external_allocated_memory_ = amount;
470 }
471 int amount_since_last_global_gc =
472 amount_of_external_allocated_memory_ -
473 amount_of_external_allocated_memory_at_last_global_gc_;
474 if (amount_since_last_global_gc > external_allocation_limit_) {
475 CollectAllGarbage(kNoGCFlags, "external memory allocation limit reached");
476 }
477 } else {
478 // Avoid underflow.
479 if (amount >= 0) {
480 amount_of_external_allocated_memory_ = amount;
481 }
482 }
483 ASSERT(amount_of_external_allocated_memory_ >= 0);
484 return amount_of_external_allocated_memory_;
485 }
486
487
SetLastScriptId(Object * last_script_id)488 void Heap::SetLastScriptId(Object* last_script_id) {
489 roots_[kLastScriptIdRootIndex] = last_script_id;
490 }
491
492
isolate()493 Isolate* Heap::isolate() {
494 return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
495 reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
496 }
497
498
499 #ifdef DEBUG
500 #define GC_GREEDY_CHECK() \
501 if (FLAG_gc_greedy) HEAP->GarbageCollectionGreedyCheck()
502 #else
503 #define GC_GREEDY_CHECK() { }
504 #endif
505
506 // Calls the FUNCTION_CALL function and retries it up to three times
507 // to guarantee that any allocations performed during the call will
508 // succeed if there's enough memory.
509
510 // Warning: Do not use the identifiers __object__, __maybe_object__ or
511 // __scope__ in a call to this macro.
512
513 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)\
514 do { \
515 GC_GREEDY_CHECK(); \
516 MaybeObject* __maybe_object__ = FUNCTION_CALL; \
517 Object* __object__ = NULL; \
518 if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
519 if (__maybe_object__->IsOutOfMemory()) { \
520 v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0", true);\
521 } \
522 if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY; \
523 ISOLATE->heap()->CollectGarbage(Failure::cast(__maybe_object__)-> \
524 allocation_space(), \
525 "allocation failure"); \
526 __maybe_object__ = FUNCTION_CALL; \
527 if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
528 if (__maybe_object__->IsOutOfMemory()) { \
529 v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1", true);\
530 } \
531 if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY; \
532 ISOLATE->counters()->gc_last_resort_from_handles()->Increment(); \
533 ISOLATE->heap()->CollectAllAvailableGarbage("last resort gc"); \
534 { \
535 AlwaysAllocateScope __scope__; \
536 __maybe_object__ = FUNCTION_CALL; \
537 } \
538 if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
539 if (__maybe_object__->IsOutOfMemory() || \
540 __maybe_object__->IsRetryAfterGC()) { \
541 /* TODO(1181417): Fix this. */ \
542 v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2", true);\
543 } \
544 RETURN_EMPTY; \
545 } while (false)
546
547
548 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
549 CALL_AND_RETRY(ISOLATE, \
550 FUNCTION_CALL, \
551 return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
552 return Handle<TYPE>())
553
554
555 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
556 CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, return, return)
557
558
559 #ifdef DEBUG
560
allow_allocation(bool new_state)561 inline bool Heap::allow_allocation(bool new_state) {
562 bool old = allocation_allowed_;
563 allocation_allowed_ = new_state;
564 return old;
565 }
566
567 #endif
568
569
AddString(String * string)570 void ExternalStringTable::AddString(String* string) {
571 ASSERT(string->IsExternalString());
572 if (heap_->InNewSpace(string)) {
573 new_space_strings_.Add(string);
574 } else {
575 old_space_strings_.Add(string);
576 }
577 }
578
579
Iterate(ObjectVisitor * v)580 void ExternalStringTable::Iterate(ObjectVisitor* v) {
581 if (!new_space_strings_.is_empty()) {
582 Object** start = &new_space_strings_[0];
583 v->VisitPointers(start, start + new_space_strings_.length());
584 }
585 if (!old_space_strings_.is_empty()) {
586 Object** start = &old_space_strings_[0];
587 v->VisitPointers(start, start + old_space_strings_.length());
588 }
589 }
590
591
592 // Verify() is inline to avoid ifdef-s around its calls in release
593 // mode.
Verify()594 void ExternalStringTable::Verify() {
595 #ifdef DEBUG
596 for (int i = 0; i < new_space_strings_.length(); ++i) {
597 ASSERT(heap_->InNewSpace(new_space_strings_[i]));
598 ASSERT(new_space_strings_[i] != HEAP->raw_unchecked_the_hole_value());
599 }
600 for (int i = 0; i < old_space_strings_.length(); ++i) {
601 ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
602 ASSERT(old_space_strings_[i] != HEAP->raw_unchecked_the_hole_value());
603 }
604 #endif
605 }
606
607
AddOldString(String * string)608 void ExternalStringTable::AddOldString(String* string) {
609 ASSERT(string->IsExternalString());
610 ASSERT(!heap_->InNewSpace(string));
611 old_space_strings_.Add(string);
612 }
613
614
ShrinkNewStrings(int position)615 void ExternalStringTable::ShrinkNewStrings(int position) {
616 new_space_strings_.Rewind(position);
617 if (FLAG_verify_heap) {
618 Verify();
619 }
620 }
621
622
ClearInstanceofCache()623 void Heap::ClearInstanceofCache() {
624 set_instanceof_cache_function(the_hole_value());
625 }
626
627
ToBoolean(bool condition)628 Object* Heap::ToBoolean(bool condition) {
629 return condition ? true_value() : false_value();
630 }
631
632
CompletelyClearInstanceofCache()633 void Heap::CompletelyClearInstanceofCache() {
634 set_instanceof_cache_map(the_hole_value());
635 set_instanceof_cache_function(the_hole_value());
636 }
637
638
Get(Type type,double input)639 MaybeObject* TranscendentalCache::Get(Type type, double input) {
640 SubCache* cache = caches_[type];
641 if (cache == NULL) {
642 caches_[type] = cache = new SubCache(type);
643 }
644 return cache->Get(input);
645 }
646
647
cache_array_address()648 Address TranscendentalCache::cache_array_address() {
649 return reinterpret_cast<Address>(caches_);
650 }
651
652
Calculate(double input)653 double TranscendentalCache::SubCache::Calculate(double input) {
654 switch (type_) {
655 case ACOS:
656 return acos(input);
657 case ASIN:
658 return asin(input);
659 case ATAN:
660 return atan(input);
661 case COS:
662 return fast_cos(input);
663 case EXP:
664 return exp(input);
665 case LOG:
666 return fast_log(input);
667 case SIN:
668 return fast_sin(input);
669 case TAN:
670 return fast_tan(input);
671 default:
672 return 0.0; // Never happens.
673 }
674 }
675
676
Get(double input)677 MaybeObject* TranscendentalCache::SubCache::Get(double input) {
678 Converter c;
679 c.dbl = input;
680 int hash = Hash(c);
681 Element e = elements_[hash];
682 if (e.in[0] == c.integers[0] &&
683 e.in[1] == c.integers[1]) {
684 ASSERT(e.output != NULL);
685 isolate_->counters()->transcendental_cache_hit()->Increment();
686 return e.output;
687 }
688 double answer = Calculate(input);
689 isolate_->counters()->transcendental_cache_miss()->Increment();
690 Object* heap_number;
691 { MaybeObject* maybe_heap_number =
692 isolate_->heap()->AllocateHeapNumber(answer);
693 if (!maybe_heap_number->ToObject(&heap_number)) return maybe_heap_number;
694 }
695 elements_[hash].in[0] = c.integers[0];
696 elements_[hash].in[1] = c.integers[1];
697 elements_[hash].output = heap_number;
698 return heap_number;
699 }
700
701
AlwaysAllocateScope()702 AlwaysAllocateScope::AlwaysAllocateScope() {
703 // We shouldn't hit any nested scopes, because that requires
704 // non-handle code to call handle code. The code still works but
705 // performance will degrade, so we want to catch this situation
706 // in debug mode.
707 ASSERT(HEAP->always_allocate_scope_depth_ == 0);
708 HEAP->always_allocate_scope_depth_++;
709 }
710
711
~AlwaysAllocateScope()712 AlwaysAllocateScope::~AlwaysAllocateScope() {
713 HEAP->always_allocate_scope_depth_--;
714 ASSERT(HEAP->always_allocate_scope_depth_ == 0);
715 }
716
717
LinearAllocationScope()718 LinearAllocationScope::LinearAllocationScope() {
719 HEAP->linear_allocation_scope_depth_++;
720 }
721
722
~LinearAllocationScope()723 LinearAllocationScope::~LinearAllocationScope() {
724 HEAP->linear_allocation_scope_depth_--;
725 ASSERT(HEAP->linear_allocation_scope_depth_ >= 0);
726 }
727
728
729 #ifdef DEBUG
VisitPointers(Object ** start,Object ** end)730 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
731 for (Object** current = start; current < end; current++) {
732 if ((*current)->IsHeapObject()) {
733 HeapObject* object = HeapObject::cast(*current);
734 ASSERT(HEAP->Contains(object));
735 ASSERT(object->map()->IsMap());
736 }
737 }
738 }
739 #endif
740
741
SizeOfHeapObjects()742 double GCTracer::SizeOfHeapObjects() {
743 return (static_cast<double>(HEAP->SizeOfObjects())) / MB;
744 }
745
746
747 #ifdef DEBUG
DisallowAllocationFailure()748 DisallowAllocationFailure::DisallowAllocationFailure() {
749 old_state_ = HEAP->disallow_allocation_failure_;
750 HEAP->disallow_allocation_failure_ = true;
751 }
752
753
~DisallowAllocationFailure()754 DisallowAllocationFailure::~DisallowAllocationFailure() {
755 HEAP->disallow_allocation_failure_ = old_state_;
756 }
757 #endif
758
759
760 #ifdef DEBUG
AssertNoAllocation()761 AssertNoAllocation::AssertNoAllocation() {
762 old_state_ = HEAP->allow_allocation(false);
763 }
764
765
~AssertNoAllocation()766 AssertNoAllocation::~AssertNoAllocation() {
767 HEAP->allow_allocation(old_state_);
768 }
769
770
DisableAssertNoAllocation()771 DisableAssertNoAllocation::DisableAssertNoAllocation() {
772 old_state_ = HEAP->allow_allocation(true);
773 }
774
775
~DisableAssertNoAllocation()776 DisableAssertNoAllocation::~DisableAssertNoAllocation() {
777 HEAP->allow_allocation(old_state_);
778 }
779
780 #else
781
AssertNoAllocation()782 AssertNoAllocation::AssertNoAllocation() { }
~AssertNoAllocation()783 AssertNoAllocation::~AssertNoAllocation() { }
DisableAssertNoAllocation()784 DisableAssertNoAllocation::DisableAssertNoAllocation() { }
~DisableAssertNoAllocation()785 DisableAssertNoAllocation::~DisableAssertNoAllocation() { }
786
787 #endif
788
789
790 } } // namespace v8::internal
791
792 #endif // V8_HEAP_INL_H_
793