1 /*
2 SDL - Simple DirectMedia Layer
3 Copyright (C) 1997-2006 Sam Lantinga
4
5 This library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 This library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with this library; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18
19 Sam Lantinga
20 slouken@libsdl.org
21 */
22 #include "SDL_config.h"
23
24 /*
25 * RLE encoding for software colorkey and alpha-channel acceleration
26 *
27 * Original version by Sam Lantinga
28 *
29 * Mattias Engdeg�rd (Yorick): Rewrite. New encoding format, encoder and
30 * decoder. Added per-surface alpha blitter. Added per-pixel alpha
31 * format, encoder and blitter.
32 *
33 * Many thanks to Xark and johns for hints, benchmarks and useful comments
34 * leading to this code.
35 *
36 * Welcome to Macro Mayhem.
37 */
38
39 /*
40 * The encoding translates the image data to a stream of segments of the form
41 *
42 * <skip> <run> <data>
43 *
44 * where <skip> is the number of transparent pixels to skip,
45 * <run> is the number of opaque pixels to blit,
46 * and <data> are the pixels themselves.
47 *
48 * This basic structure is used both for colorkeyed surfaces, used for simple
49 * binary transparency and for per-surface alpha blending, and for surfaces
50 * with per-pixel alpha. The details differ, however:
51 *
52 * Encoding of colorkeyed surfaces:
53 *
54 * Encoded pixels always have the same format as the target surface.
55 * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth
56 * where they are 16 bit. This makes the pixel data aligned at all times.
57 * Segments never wrap around from one scan line to the next.
58 *
59 * The end of the sequence is marked by a zero <skip>,<run> pair at the *
60 * beginning of a line.
61 *
62 * Encoding of surfaces with per-pixel alpha:
63 *
64 * The sequence begins with a struct RLEDestFormat describing the target
65 * pixel format, to provide reliable un-encoding.
66 *
67 * Each scan line is encoded twice: First all completely opaque pixels,
68 * encoded in the target format as described above, and then all
69 * partially transparent (translucent) pixels (where 1 <= alpha <= 254),
70 * in the following 32-bit format:
71 *
72 * For 32-bit targets, each pixel has the target RGB format but with
73 * the alpha value occupying the highest 8 bits. The <skip> and <run>
74 * counts are 16 bit.
75 *
76 * For 16-bit targets, each pixel has the target RGB format, but with
77 * the middle component (usually green) shifted 16 steps to the left,
78 * and the hole filled with the 5 most significant bits of the alpha value.
79 * i.e. if the target has the format rrrrrggggggbbbbb,
80 * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb.
81 * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit
82 * for the translucent lines. Two padding bytes may be inserted
83 * before each translucent line to keep them 32-bit aligned.
84 *
85 * The end of the sequence is marked by a zero <skip>,<run> pair at the
86 * beginning of an opaque line.
87 */
88
89 #include "SDL_video.h"
90 #include "SDL_sysvideo.h"
91 #include "SDL_blit.h"
92 #include "SDL_RLEaccel_c.h"
93
94 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && SDL_ASSEMBLY_ROUTINES
95 #define MMX_ASMBLIT
96 #endif
97
98 #ifdef MMX_ASMBLIT
99 #include "mmx.h"
100 #include "SDL_cpuinfo.h"
101 #endif
102
103 #ifndef MAX
104 #define MAX(a, b) ((a) > (b) ? (a) : (b))
105 #endif
106 #ifndef MIN
107 #define MIN(a, b) ((a) < (b) ? (a) : (b))
108 #endif
109
110 #define PIXEL_COPY(to, from, len, bpp) \
111 do { \
112 if(bpp == 4) { \
113 SDL_memcpy4(to, from, (size_t)(len)); \
114 } else { \
115 SDL_memcpy(to, from, (size_t)(len) * (bpp)); \
116 } \
117 } while(0)
118
119 /*
120 * Various colorkey blit methods, for opaque and per-surface alpha
121 */
122
123 #define OPAQUE_BLIT(to, from, length, bpp, alpha) \
124 PIXEL_COPY(to, from, length, bpp)
125
126 #ifdef MMX_ASMBLIT
127
128 #define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \
129 do { \
130 Uint32 *srcp = (Uint32 *)(from); \
131 Uint32 *dstp = (Uint32 *)(to); \
132 int i = 0x00FF00FF; \
133 movd_m2r(*(&i), mm3); \
134 punpckldq_r2r(mm3, mm3); \
135 i = 0xFF000000; \
136 movd_m2r(*(&i), mm7); \
137 punpckldq_r2r(mm7, mm7); \
138 i = alpha | alpha << 16; \
139 movd_m2r(*(&i), mm4); \
140 punpckldq_r2r(mm4, mm4); \
141 pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \
142 pxor_r2r(mm7, mm5); /* make clear alpha mask */ \
143 i = length; \
144 if(i & 1) { \
145 movd_m2r((*srcp), mm1); /* src -> mm1 */ \
146 punpcklbw_r2r(mm1, mm1); \
147 pand_r2r(mm3, mm1); \
148 movd_m2r((*dstp), mm2); /* dst -> mm2 */ \
149 punpcklbw_r2r(mm2, mm2); \
150 pand_r2r(mm3, mm2); \
151 psubw_r2r(mm2, mm1); \
152 pmullw_r2r(mm4, mm1); \
153 psrlw_i2r(8, mm1); \
154 paddw_r2r(mm1, mm2); \
155 pand_r2r(mm3, mm2); \
156 packuswb_r2r(mm2, mm2); \
157 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
158 movd_r2m(mm2, *dstp); \
159 ++srcp; \
160 ++dstp; \
161 i--; \
162 } \
163 for(; i > 0; --i) { \
164 movq_m2r((*srcp), mm0); \
165 movq_r2r(mm0, mm1); \
166 punpcklbw_r2r(mm0, mm0); \
167 movq_m2r((*dstp), mm2); \
168 punpckhbw_r2r(mm1, mm1); \
169 movq_r2r(mm2, mm6); \
170 pand_r2r(mm3, mm0); \
171 punpcklbw_r2r(mm2, mm2); \
172 pand_r2r(mm3, mm1); \
173 punpckhbw_r2r(mm6, mm6); \
174 pand_r2r(mm3, mm2); \
175 psubw_r2r(mm2, mm0); \
176 pmullw_r2r(mm4, mm0); \
177 pand_r2r(mm3, mm6); \
178 psubw_r2r(mm6, mm1); \
179 pmullw_r2r(mm4, mm1); \
180 psrlw_i2r(8, mm0); \
181 paddw_r2r(mm0, mm2); \
182 psrlw_i2r(8, mm1); \
183 paddw_r2r(mm1, mm6); \
184 pand_r2r(mm3, mm2); \
185 pand_r2r(mm3, mm6); \
186 packuswb_r2r(mm2, mm2); \
187 packuswb_r2r(mm6, mm6); \
188 psrlq_i2r(32, mm2); \
189 psllq_i2r(32, mm6); \
190 por_r2r(mm6, mm2); \
191 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
192 movq_r2m(mm2, *dstp); \
193 srcp += 2; \
194 dstp += 2; \
195 i--; \
196 } \
197 emms(); \
198 } while(0)
199
200 #define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \
201 do { \
202 int i, n = 0; \
203 Uint16 *srcp = (Uint16 *)(from); \
204 Uint16 *dstp = (Uint16 *)(to); \
205 Uint32 ALPHA = 0xF800; \
206 movd_m2r(*(&ALPHA), mm1); \
207 punpcklwd_r2r(mm1, mm1); \
208 punpcklwd_r2r(mm1, mm1); \
209 ALPHA = 0x07E0; \
210 movd_m2r(*(&ALPHA), mm4); \
211 punpcklwd_r2r(mm4, mm4); \
212 punpcklwd_r2r(mm4, mm4); \
213 ALPHA = 0x001F; \
214 movd_m2r(*(&ALPHA), mm7); \
215 punpcklwd_r2r(mm7, mm7); \
216 punpcklwd_r2r(mm7, mm7); \
217 alpha &= ~(1+2+4); \
218 i = (Uint32)alpha | (Uint32)alpha << 16; \
219 movd_m2r(*(&i), mm0); \
220 punpckldq_r2r(mm0, mm0); \
221 ALPHA = alpha >> 3; \
222 i = ((int)(length) & 3); \
223 for(; i > 0; --i) { \
224 Uint32 s = *srcp++; \
225 Uint32 d = *dstp; \
226 s = (s | s << 16) & 0x07e0f81f; \
227 d = (d | d << 16) & 0x07e0f81f; \
228 d += (s - d) * ALPHA >> 5; \
229 d &= 0x07e0f81f; \
230 *dstp++ = d | d >> 16; \
231 n++; \
232 } \
233 i = (int)(length) - n; \
234 for(; i > 0; --i) { \
235 movq_m2r((*dstp), mm3); \
236 movq_m2r((*srcp), mm2); \
237 movq_r2r(mm2, mm5); \
238 pand_r2r(mm1 , mm5); \
239 psrlq_i2r(11, mm5); \
240 movq_r2r(mm3, mm6); \
241 pand_r2r(mm1 , mm6); \
242 psrlq_i2r(11, mm6); \
243 psubw_r2r(mm6, mm5); \
244 pmullw_r2r(mm0, mm5); \
245 psrlw_i2r(8, mm5); \
246 paddw_r2r(mm5, mm6); \
247 psllq_i2r(11, mm6); \
248 pand_r2r(mm1, mm6); \
249 movq_r2r(mm4, mm5); \
250 por_r2r(mm7, mm5); \
251 pand_r2r(mm5, mm3); \
252 por_r2r(mm6, mm3); \
253 movq_r2r(mm2, mm5); \
254 pand_r2r(mm4 , mm5); \
255 psrlq_i2r(5, mm5); \
256 movq_r2r(mm3, mm6); \
257 pand_r2r(mm4 , mm6); \
258 psrlq_i2r(5, mm6); \
259 psubw_r2r(mm6, mm5); \
260 pmullw_r2r(mm0, mm5); \
261 psrlw_i2r(8, mm5); \
262 paddw_r2r(mm5, mm6); \
263 psllq_i2r(5, mm6); \
264 pand_r2r(mm4, mm6); \
265 movq_r2r(mm1, mm5); \
266 por_r2r(mm7, mm5); \
267 pand_r2r(mm5, mm3); \
268 por_r2r(mm6, mm3); \
269 movq_r2r(mm2, mm5); \
270 pand_r2r(mm7 , mm5); \
271 movq_r2r(mm3, mm6); \
272 pand_r2r(mm7 , mm6); \
273 psubw_r2r(mm6, mm5); \
274 pmullw_r2r(mm0, mm5); \
275 psrlw_i2r(8, mm5); \
276 paddw_r2r(mm5, mm6); \
277 pand_r2r(mm7, mm6); \
278 movq_r2r(mm1, mm5); \
279 por_r2r(mm4, mm5); \
280 pand_r2r(mm5, mm3); \
281 por_r2r(mm6, mm3); \
282 movq_r2m(mm3, *dstp); \
283 srcp += 4; \
284 dstp += 4; \
285 i -= 3; \
286 } \
287 emms(); \
288 } while(0)
289
290 #define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \
291 do { \
292 int i, n = 0; \
293 Uint16 *srcp = (Uint16 *)(from); \
294 Uint16 *dstp = (Uint16 *)(to); \
295 Uint32 ALPHA = 0x7C00; \
296 movd_m2r(*(&ALPHA), mm1); \
297 punpcklwd_r2r(mm1, mm1); \
298 punpcklwd_r2r(mm1, mm1); \
299 ALPHA = 0x03E0; \
300 movd_m2r(*(&ALPHA), mm4); \
301 punpcklwd_r2r(mm4, mm4); \
302 punpcklwd_r2r(mm4, mm4); \
303 ALPHA = 0x001F; \
304 movd_m2r(*(&ALPHA), mm7); \
305 punpcklwd_r2r(mm7, mm7); \
306 punpcklwd_r2r(mm7, mm7); \
307 alpha &= ~(1+2+4); \
308 i = (Uint32)alpha | (Uint32)alpha << 16; \
309 movd_m2r(*(&i), mm0); \
310 punpckldq_r2r(mm0, mm0); \
311 i = ((int)(length) & 3); \
312 ALPHA = alpha >> 3; \
313 for(; i > 0; --i) { \
314 Uint32 s = *srcp++; \
315 Uint32 d = *dstp; \
316 s = (s | s << 16) & 0x03e07c1f; \
317 d = (d | d << 16) & 0x03e07c1f; \
318 d += (s - d) * ALPHA >> 5; \
319 d &= 0x03e07c1f; \
320 *dstp++ = d | d >> 16; \
321 n++; \
322 } \
323 i = (int)(length) - n; \
324 for(; i > 0; --i) { \
325 movq_m2r((*dstp), mm3); \
326 movq_m2r((*srcp), mm2); \
327 movq_r2r(mm2, mm5); \
328 pand_r2r(mm1 , mm5); \
329 psrlq_i2r(10, mm5); \
330 movq_r2r(mm3, mm6); \
331 pand_r2r(mm1 , mm6); \
332 psrlq_i2r(10, mm6); \
333 psubw_r2r(mm6, mm5); \
334 pmullw_r2r(mm0, mm5); \
335 psrlw_i2r(8, mm5); \
336 paddw_r2r(mm5, mm6); \
337 psllq_i2r(10, mm6); \
338 pand_r2r(mm1, mm6); \
339 movq_r2r(mm4, mm5); \
340 por_r2r(mm7, mm5); \
341 pand_r2r(mm5, mm3); \
342 por_r2r(mm6, mm3); \
343 movq_r2r(mm2, mm5); \
344 pand_r2r(mm4 , mm5); \
345 psrlq_i2r(5, mm5); \
346 movq_r2r(mm3, mm6); \
347 pand_r2r(mm4 , mm6); \
348 psrlq_i2r(5, mm6); \
349 psubw_r2r(mm6, mm5); \
350 pmullw_r2r(mm0, mm5); \
351 psrlw_i2r(8, mm5); \
352 paddw_r2r(mm5, mm6); \
353 psllq_i2r(5, mm6); \
354 pand_r2r(mm4, mm6); \
355 movq_r2r(mm1, mm5); \
356 por_r2r(mm7, mm5); \
357 pand_r2r(mm5, mm3); \
358 por_r2r(mm6, mm3); \
359 movq_r2r(mm2, mm5); \
360 pand_r2r(mm7 , mm5); \
361 movq_r2r(mm3, mm6); \
362 pand_r2r(mm7 , mm6); \
363 psubw_r2r(mm6, mm5); \
364 pmullw_r2r(mm0, mm5); \
365 psrlw_i2r(8, mm5); \
366 paddw_r2r(mm5, mm6); \
367 pand_r2r(mm7, mm6); \
368 movq_r2r(mm1, mm5); \
369 por_r2r(mm4, mm5); \
370 pand_r2r(mm5, mm3); \
371 por_r2r(mm6, mm3); \
372 movq_r2m(mm3, *dstp); \
373 srcp += 4; \
374 dstp += 4; \
375 i -= 3; \
376 } \
377 emms(); \
378 } while(0)
379
380 #endif
381
382 /*
383 * For 32bpp pixels on the form 0x00rrggbb:
384 * If we treat the middle component separately, we can process the two
385 * remaining in parallel. This is safe to do because of the gap to the left
386 * of each component, so the bits from the multiplication don't collide.
387 * This can be used for any RGB permutation of course.
388 */
389 #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \
390 do { \
391 int i; \
392 Uint32 *src = (Uint32 *)(from); \
393 Uint32 *dst = (Uint32 *)(to); \
394 for(i = 0; i < (int)(length); i++) { \
395 Uint32 s = *src++; \
396 Uint32 d = *dst; \
397 Uint32 s1 = s & 0xff00ff; \
398 Uint32 d1 = d & 0xff00ff; \
399 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
400 s &= 0xff00; \
401 d &= 0xff00; \
402 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
403 *dst++ = d1 | d; \
404 } \
405 } while(0)
406
407 /*
408 * For 16bpp pixels we can go a step further: put the middle component
409 * in the high 16 bits of a 32 bit word, and process all three RGB
410 * components at the same time. Since the smallest gap is here just
411 * 5 bits, we have to scale alpha down to 5 bits as well.
412 */
413 #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \
414 do { \
415 int i; \
416 Uint16 *src = (Uint16 *)(from); \
417 Uint16 *dst = (Uint16 *)(to); \
418 Uint32 ALPHA = alpha >> 3; \
419 for(i = 0; i < (int)(length); i++) { \
420 Uint32 s = *src++; \
421 Uint32 d = *dst; \
422 s = (s | s << 16) & 0x07e0f81f; \
423 d = (d | d << 16) & 0x07e0f81f; \
424 d += (s - d) * ALPHA >> 5; \
425 d &= 0x07e0f81f; \
426 *dst++ = (Uint16)(d | d >> 16); \
427 } \
428 } while(0)
429
430 #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \
431 do { \
432 int i; \
433 Uint16 *src = (Uint16 *)(from); \
434 Uint16 *dst = (Uint16 *)(to); \
435 Uint32 ALPHA = alpha >> 3; \
436 for(i = 0; i < (int)(length); i++) { \
437 Uint32 s = *src++; \
438 Uint32 d = *dst; \
439 s = (s | s << 16) & 0x03e07c1f; \
440 d = (d | d << 16) & 0x03e07c1f; \
441 d += (s - d) * ALPHA >> 5; \
442 d &= 0x03e07c1f; \
443 *dst++ = (Uint16)(d | d >> 16); \
444 } \
445 } while(0)
446
447 /*
448 * The general slow catch-all function, for remaining depths and formats
449 */
450 #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \
451 do { \
452 int i; \
453 Uint8 *src = from; \
454 Uint8 *dst = to; \
455 for(i = 0; i < (int)(length); i++) { \
456 Uint32 s, d; \
457 unsigned rs, gs, bs, rd, gd, bd; \
458 switch(bpp) { \
459 case 2: \
460 s = *(Uint16 *)src; \
461 d = *(Uint16 *)dst; \
462 break; \
463 case 3: \
464 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
465 s = (src[0] << 16) | (src[1] << 8) | src[2]; \
466 d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \
467 } else { \
468 s = (src[2] << 16) | (src[1] << 8) | src[0]; \
469 d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \
470 } \
471 break; \
472 case 4: \
473 s = *(Uint32 *)src; \
474 d = *(Uint32 *)dst; \
475 break; \
476 } \
477 RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \
478 RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \
479 rd += (rs - rd) * alpha >> 8; \
480 gd += (gs - gd) * alpha >> 8; \
481 bd += (bs - bd) * alpha >> 8; \
482 PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \
483 switch(bpp) { \
484 case 2: \
485 *(Uint16 *)dst = (Uint16)d; \
486 break; \
487 case 3: \
488 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
489 dst[0] = (Uint8)(d >> 16); \
490 dst[1] = (Uint8)(d >> 8); \
491 dst[2] = (Uint8)(d); \
492 } else { \
493 dst[0] = (Uint8)d; \
494 dst[1] = (Uint8)(d >> 8); \
495 dst[2] = (Uint8)(d >> 16); \
496 } \
497 break; \
498 case 4: \
499 *(Uint32 *)dst = d; \
500 break; \
501 } \
502 src += bpp; \
503 dst += bpp; \
504 } \
505 } while(0)
506
507 #ifdef MMX_ASMBLIT
508
509 #define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \
510 do { \
511 Uint32 *srcp = (Uint32 *)(from); \
512 Uint32 *dstp = (Uint32 *)(to); \
513 int i = 0x00fefefe; \
514 movd_m2r(*(&i), mm4); \
515 punpckldq_r2r(mm4, mm4); \
516 i = 0x00010101; \
517 movd_m2r(*(&i), mm3); \
518 punpckldq_r2r(mm3, mm3); \
519 i = (int)(length); \
520 if( i & 1 ) { \
521 Uint32 s = *srcp++; \
522 Uint32 d = *dstp; \
523 *dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
524 + (s & d & 0x00010101); \
525 i--; \
526 } \
527 for(; i > 0; --i) { \
528 movq_m2r((*dstp), mm2); /* dst -> mm2 */ \
529 movq_r2r(mm2, mm6); /* dst -> mm6 */ \
530 movq_m2r((*srcp), mm1); /* src -> mm1 */ \
531 movq_r2r(mm1, mm5); /* src -> mm5 */ \
532 pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \
533 pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \
534 paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \
535 psrld_i2r(1, mm5); \
536 pand_r2r(mm1, mm2); /* s & d -> mm2 */ \
537 pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \
538 paddd_r2r(mm5, mm2); \
539 movq_r2m(mm2, (*dstp)); \
540 dstp += 2; \
541 srcp += 2; \
542 i--; \
543 } \
544 emms(); \
545 } while(0)
546
547 #endif
548
549 /*
550 * Special case: 50% alpha (alpha=128)
551 * This is treated specially because it can be optimized very well, and
552 * since it is good for many cases of semi-translucency.
553 * The theory is to do all three components at the same time:
554 * First zero the lowest bit of each component, which gives us room to
555 * add them. Then shift right and add the sum of the lowest bits.
556 */
557 #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \
558 do { \
559 int i; \
560 Uint32 *src = (Uint32 *)(from); \
561 Uint32 *dst = (Uint32 *)(to); \
562 for(i = 0; i < (int)(length); i++) { \
563 Uint32 s = *src++; \
564 Uint32 d = *dst; \
565 *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
566 + (s & d & 0x00010101); \
567 } \
568 } while(0)
569
570 /*
571 * For 16bpp, we can actually blend two pixels in parallel, if we take
572 * care to shift before we add, not after.
573 */
574
575 /* helper: blend a single 16 bit pixel at 50% */
576 #define BLEND16_50(dst, src, mask) \
577 do { \
578 Uint32 s = *src++; \
579 Uint32 d = *dst; \
580 *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \
581 (s & d & (~mask & 0xffff))); \
582 } while(0)
583
584 /* basic 16bpp blender. mask is the pixels to keep when adding. */
585 #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \
586 do { \
587 unsigned n = (length); \
588 Uint16 *src = (Uint16 *)(from); \
589 Uint16 *dst = (Uint16 *)(to); \
590 if(((uintptr_t)src ^ (uintptr_t)dst) & 3) { \
591 /* source and destination not in phase, blit one by one */ \
592 while(n--) \
593 BLEND16_50(dst, src, mask); \
594 } else { \
595 if((uintptr_t)src & 3) { \
596 /* first odd pixel */ \
597 BLEND16_50(dst, src, mask); \
598 n--; \
599 } \
600 for(; n > 1; n -= 2) { \
601 Uint32 s = *(Uint32 *)src; \
602 Uint32 d = *(Uint32 *)dst; \
603 *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \
604 + ((d & (mask | mask << 16)) >> 1) \
605 + (s & d & (~(mask | mask << 16))); \
606 src += 2; \
607 dst += 2; \
608 } \
609 if(n) \
610 BLEND16_50(dst, src, mask); /* last odd pixel */ \
611 } \
612 } while(0)
613
614 #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \
615 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de)
616
617 #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \
618 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
619
620 #ifdef MMX_ASMBLIT
621
622 #define CHOOSE_BLIT(blitter, alpha, fmt) \
623 do { \
624 if(alpha == 255) { \
625 switch(fmt->BytesPerPixel) { \
626 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
627 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
628 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
629 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
630 } \
631 } else { \
632 switch(fmt->BytesPerPixel) { \
633 case 1: \
634 /* No 8bpp alpha blitting */ \
635 break; \
636 \
637 case 2: \
638 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
639 case 0xffff: \
640 if(fmt->Gmask == 0x07e0 \
641 || fmt->Rmask == 0x07e0 \
642 || fmt->Bmask == 0x07e0) { \
643 if(alpha == 128) \
644 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
645 else { \
646 if(SDL_HasMMX()) \
647 blitter(2, Uint8, ALPHA_BLIT16_565MMX); \
648 else \
649 blitter(2, Uint8, ALPHA_BLIT16_565); \
650 } \
651 } else \
652 goto general16; \
653 break; \
654 \
655 case 0x7fff: \
656 if(fmt->Gmask == 0x03e0 \
657 || fmt->Rmask == 0x03e0 \
658 || fmt->Bmask == 0x03e0) { \
659 if(alpha == 128) \
660 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
661 else { \
662 if(SDL_HasMMX()) \
663 blitter(2, Uint8, ALPHA_BLIT16_555MMX); \
664 else \
665 blitter(2, Uint8, ALPHA_BLIT16_555); \
666 } \
667 break; \
668 } \
669 /* fallthrough */ \
670 \
671 default: \
672 general16: \
673 blitter(2, Uint8, ALPHA_BLIT_ANY); \
674 } \
675 break; \
676 \
677 case 3: \
678 blitter(3, Uint8, ALPHA_BLIT_ANY); \
679 break; \
680 \
681 case 4: \
682 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
683 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
684 || fmt->Bmask == 0xff00)) { \
685 if(alpha == 128) \
686 { \
687 if(SDL_HasMMX()) \
688 blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\
689 else \
690 blitter(4, Uint16, ALPHA_BLIT32_888_50);\
691 } \
692 else \
693 { \
694 if(SDL_HasMMX()) \
695 blitter(4, Uint16, ALPHA_BLIT32_888MMX);\
696 else \
697 blitter(4, Uint16, ALPHA_BLIT32_888); \
698 } \
699 } else \
700 blitter(4, Uint16, ALPHA_BLIT_ANY); \
701 break; \
702 } \
703 } \
704 } while(0)
705
706 #else
707
708 #define CHOOSE_BLIT(blitter, alpha, fmt) \
709 do { \
710 if(alpha == 255) { \
711 switch(fmt->BytesPerPixel) { \
712 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
713 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
714 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
715 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
716 } \
717 } else { \
718 switch(fmt->BytesPerPixel) { \
719 case 1: \
720 /* No 8bpp alpha blitting */ \
721 break; \
722 \
723 case 2: \
724 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
725 case 0xffff: \
726 if(fmt->Gmask == 0x07e0 \
727 || fmt->Rmask == 0x07e0 \
728 || fmt->Bmask == 0x07e0) { \
729 if(alpha == 128) \
730 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
731 else { \
732 blitter(2, Uint8, ALPHA_BLIT16_565); \
733 } \
734 } else \
735 goto general16; \
736 break; \
737 \
738 case 0x7fff: \
739 if(fmt->Gmask == 0x03e0 \
740 || fmt->Rmask == 0x03e0 \
741 || fmt->Bmask == 0x03e0) { \
742 if(alpha == 128) \
743 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
744 else { \
745 blitter(2, Uint8, ALPHA_BLIT16_555); \
746 } \
747 break; \
748 } \
749 /* fallthrough */ \
750 \
751 default: \
752 general16: \
753 blitter(2, Uint8, ALPHA_BLIT_ANY); \
754 } \
755 break; \
756 \
757 case 3: \
758 blitter(3, Uint8, ALPHA_BLIT_ANY); \
759 break; \
760 \
761 case 4: \
762 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
763 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
764 || fmt->Bmask == 0xff00)) { \
765 if(alpha == 128) \
766 blitter(4, Uint16, ALPHA_BLIT32_888_50); \
767 else \
768 blitter(4, Uint16, ALPHA_BLIT32_888); \
769 } else \
770 blitter(4, Uint16, ALPHA_BLIT_ANY); \
771 break; \
772 } \
773 } \
774 } while(0)
775
776 #endif
777
778 /*
779 * This takes care of the case when the surface is clipped on the left and/or
780 * right. Top clipping has already been taken care of.
781 */
RLEClipBlit(int w,Uint8 * srcbuf,SDL_Surface * dst,Uint8 * dstbuf,SDL_Rect * srcrect,unsigned alpha)782 static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
783 Uint8 *dstbuf, SDL_Rect *srcrect, unsigned alpha)
784 {
785 SDL_PixelFormat *fmt = dst->format;
786
787 #define RLECLIPBLIT(bpp, Type, do_blit) \
788 do { \
789 int linecount = srcrect->h; \
790 int ofs = 0; \
791 int left = srcrect->x; \
792 int right = left + srcrect->w; \
793 dstbuf -= left * bpp; \
794 for(;;) { \
795 int run; \
796 ofs += *(Type *)srcbuf; \
797 run = ((Type *)srcbuf)[1]; \
798 srcbuf += 2 * sizeof(Type); \
799 if(run) { \
800 /* clip to left and right borders */ \
801 if(ofs < right) { \
802 int start = 0; \
803 int len = run; \
804 int startcol; \
805 if(left - ofs > 0) { \
806 start = left - ofs; \
807 len -= start; \
808 if(len <= 0) \
809 goto nocopy ## bpp ## do_blit; \
810 } \
811 startcol = ofs + start; \
812 if(len > right - startcol) \
813 len = right - startcol; \
814 do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \
815 len, bpp, alpha); \
816 } \
817 nocopy ## bpp ## do_blit: \
818 srcbuf += run * bpp; \
819 ofs += run; \
820 } else if(!ofs) \
821 break; \
822 if(ofs == w) { \
823 ofs = 0; \
824 dstbuf += dst->pitch; \
825 if(!--linecount) \
826 break; \
827 } \
828 } \
829 } while(0)
830
831 CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt);
832
833 #undef RLECLIPBLIT
834
835 }
836
837
838 /* blit a colorkeyed RLE surface */
SDL_RLEBlit(SDL_Surface * src,SDL_Rect * srcrect,SDL_Surface * dst,SDL_Rect * dstrect)839 int SDL_RLEBlit(SDL_Surface *src, SDL_Rect *srcrect,
840 SDL_Surface *dst, SDL_Rect *dstrect)
841 {
842 Uint8 *dstbuf;
843 Uint8 *srcbuf;
844 int x, y;
845 int w = src->w;
846 unsigned alpha;
847
848 /* Lock the destination if necessary */
849 if ( SDL_MUSTLOCK(dst) ) {
850 if ( SDL_LockSurface(dst) < 0 ) {
851 return(-1);
852 }
853 }
854
855 /* Set up the source and destination pointers */
856 x = dstrect->x;
857 y = dstrect->y;
858 dstbuf = (Uint8 *)dst->pixels
859 + y * dst->pitch + x * src->format->BytesPerPixel;
860 srcbuf = (Uint8 *)src->map->sw_data->aux_data;
861
862 {
863 /* skip lines at the top if neccessary */
864 int vskip = srcrect->y;
865 int ofs = 0;
866 if(vskip) {
867
868 #define RLESKIP(bpp, Type) \
869 for(;;) { \
870 int run; \
871 ofs += *(Type *)srcbuf; \
872 run = ((Type *)srcbuf)[1]; \
873 srcbuf += sizeof(Type) * 2; \
874 if(run) { \
875 srcbuf += run * bpp; \
876 ofs += run; \
877 } else if(!ofs) \
878 goto done; \
879 if(ofs == w) { \
880 ofs = 0; \
881 if(!--vskip) \
882 break; \
883 } \
884 }
885
886 switch(src->format->BytesPerPixel) {
887 case 1: RLESKIP(1, Uint8); break;
888 case 2: RLESKIP(2, Uint8); break;
889 case 3: RLESKIP(3, Uint8); break;
890 case 4: RLESKIP(4, Uint16); break;
891 }
892
893 #undef RLESKIP
894
895 }
896 }
897
898 alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA
899 ? src->format->alpha : 255;
900 /* if left or right edge clipping needed, call clip blit */
901 if ( srcrect->x || srcrect->w != src->w ) {
902 RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha);
903 } else {
904 SDL_PixelFormat *fmt = src->format;
905
906 #define RLEBLIT(bpp, Type, do_blit) \
907 do { \
908 int linecount = srcrect->h; \
909 int ofs = 0; \
910 for(;;) { \
911 unsigned run; \
912 ofs += *(Type *)srcbuf; \
913 run = ((Type *)srcbuf)[1]; \
914 srcbuf += 2 * sizeof(Type); \
915 if(run) { \
916 do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \
917 srcbuf += run * bpp; \
918 ofs += run; \
919 } else if(!ofs) \
920 break; \
921 if(ofs == w) { \
922 ofs = 0; \
923 dstbuf += dst->pitch; \
924 if(!--linecount) \
925 break; \
926 } \
927 } \
928 } while(0)
929
930 CHOOSE_BLIT(RLEBLIT, alpha, fmt);
931
932 #undef RLEBLIT
933 }
934
935 done:
936 /* Unlock the destination if necessary */
937 if ( SDL_MUSTLOCK(dst) ) {
938 SDL_UnlockSurface(dst);
939 }
940 return(0);
941 }
942
943 #undef OPAQUE_BLIT
944
945 /*
946 * Per-pixel blitting macros for translucent pixels:
947 * These use the same techniques as the per-surface blitting macros
948 */
949
950 /*
951 * For 32bpp pixels, we have made sure the alpha is stored in the top
952 * 8 bits, so proceed as usual
953 */
954 #define BLIT_TRANSL_888(src, dst) \
955 do { \
956 Uint32 s = src; \
957 Uint32 d = dst; \
958 unsigned alpha = s >> 24; \
959 Uint32 s1 = s & 0xff00ff; \
960 Uint32 d1 = d & 0xff00ff; \
961 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
962 s &= 0xff00; \
963 d &= 0xff00; \
964 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
965 dst = d1 | d; \
966 } while(0)
967
968 /*
969 * For 16bpp pixels, we have stored the 5 most significant alpha bits in
970 * bits 5-10. As before, we can process all 3 RGB components at the same time.
971 */
972 #define BLIT_TRANSL_565(src, dst) \
973 do { \
974 Uint32 s = src; \
975 Uint32 d = dst; \
976 unsigned alpha = (s & 0x3e0) >> 5; \
977 s &= 0x07e0f81f; \
978 d = (d | d << 16) & 0x07e0f81f; \
979 d += (s - d) * alpha >> 5; \
980 d &= 0x07e0f81f; \
981 dst = (Uint16)(d | d >> 16); \
982 } while(0)
983
984 #define BLIT_TRANSL_555(src, dst) \
985 do { \
986 Uint32 s = src; \
987 Uint32 d = dst; \
988 unsigned alpha = (s & 0x3e0) >> 5; \
989 s &= 0x03e07c1f; \
990 d = (d | d << 16) & 0x03e07c1f; \
991 d += (s - d) * alpha >> 5; \
992 d &= 0x03e07c1f; \
993 dst = (Uint16)(d | d >> 16); \
994 } while(0)
995
996 /* used to save the destination format in the encoding. Designed to be
997 macro-compatible with SDL_PixelFormat but without the unneeded fields */
998 typedef struct {
999 Uint8 BytesPerPixel;
1000 Uint8 Rloss;
1001 Uint8 Gloss;
1002 Uint8 Bloss;
1003 Uint8 Rshift;
1004 Uint8 Gshift;
1005 Uint8 Bshift;
1006 Uint8 Ashift;
1007 Uint32 Rmask;
1008 Uint32 Gmask;
1009 Uint32 Bmask;
1010 Uint32 Amask;
1011 } RLEDestFormat;
1012
1013 /* blit a pixel-alpha RLE surface clipped at the right and/or left edges */
RLEAlphaClipBlit(int w,Uint8 * srcbuf,SDL_Surface * dst,Uint8 * dstbuf,SDL_Rect * srcrect)1014 static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
1015 Uint8 *dstbuf, SDL_Rect *srcrect)
1016 {
1017 SDL_PixelFormat *df = dst->format;
1018 /*
1019 * clipped blitter: Ptype is the destination pixel type,
1020 * Ctype the translucent count type, and do_blend the macro
1021 * to blend one pixel.
1022 */
1023 #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \
1024 do { \
1025 int linecount = srcrect->h; \
1026 int left = srcrect->x; \
1027 int right = left + srcrect->w; \
1028 dstbuf -= left * sizeof(Ptype); \
1029 do { \
1030 int ofs = 0; \
1031 /* blit opaque pixels on one line */ \
1032 do { \
1033 unsigned run; \
1034 ofs += ((Ctype *)srcbuf)[0]; \
1035 run = ((Ctype *)srcbuf)[1]; \
1036 srcbuf += 2 * sizeof(Ctype); \
1037 if(run) { \
1038 /* clip to left and right borders */ \
1039 int cofs = ofs; \
1040 int crun = run; \
1041 if(left - cofs > 0) { \
1042 crun -= left - cofs; \
1043 cofs = left; \
1044 } \
1045 if(crun > right - cofs) \
1046 crun = right - cofs; \
1047 if(crun > 0) \
1048 PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \
1049 srcbuf + (cofs - ofs) * sizeof(Ptype), \
1050 (unsigned)crun, sizeof(Ptype)); \
1051 srcbuf += run * sizeof(Ptype); \
1052 ofs += run; \
1053 } else if(!ofs) \
1054 return; \
1055 } while(ofs < w); \
1056 /* skip padding if necessary */ \
1057 if(sizeof(Ptype) == 2) \
1058 srcbuf += (uintptr_t)srcbuf & 2; \
1059 /* blit translucent pixels on the same line */ \
1060 ofs = 0; \
1061 do { \
1062 unsigned run; \
1063 ofs += ((Uint16 *)srcbuf)[0]; \
1064 run = ((Uint16 *)srcbuf)[1]; \
1065 srcbuf += 4; \
1066 if(run) { \
1067 /* clip to left and right borders */ \
1068 int cofs = ofs; \
1069 int crun = run; \
1070 if(left - cofs > 0) { \
1071 crun -= left - cofs; \
1072 cofs = left; \
1073 } \
1074 if(crun > right - cofs) \
1075 crun = right - cofs; \
1076 if(crun > 0) { \
1077 Ptype *dst = (Ptype *)dstbuf + cofs; \
1078 Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \
1079 int i; \
1080 for(i = 0; i < crun; i++) \
1081 do_blend(src[i], dst[i]); \
1082 } \
1083 srcbuf += run * 4; \
1084 ofs += run; \
1085 } \
1086 } while(ofs < w); \
1087 dstbuf += dst->pitch; \
1088 } while(--linecount); \
1089 } while(0)
1090
1091 switch(df->BytesPerPixel) {
1092 case 2:
1093 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
1094 || df->Bmask == 0x07e0)
1095 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565);
1096 else
1097 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555);
1098 break;
1099 case 4:
1100 RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888);
1101 break;
1102 }
1103 }
1104
1105 /* blit a pixel-alpha RLE surface */
SDL_RLEAlphaBlit(SDL_Surface * src,SDL_Rect * srcrect,SDL_Surface * dst,SDL_Rect * dstrect)1106 int SDL_RLEAlphaBlit(SDL_Surface *src, SDL_Rect *srcrect,
1107 SDL_Surface *dst, SDL_Rect *dstrect)
1108 {
1109 int x, y;
1110 int w = src->w;
1111 Uint8 *srcbuf, *dstbuf;
1112 SDL_PixelFormat *df = dst->format;
1113
1114 /* Lock the destination if necessary */
1115 if ( SDL_MUSTLOCK(dst) ) {
1116 if ( SDL_LockSurface(dst) < 0 ) {
1117 return -1;
1118 }
1119 }
1120
1121 x = dstrect->x;
1122 y = dstrect->y;
1123 dstbuf = (Uint8 *)dst->pixels
1124 + y * dst->pitch + x * df->BytesPerPixel;
1125 srcbuf = (Uint8 *)src->map->sw_data->aux_data + sizeof(RLEDestFormat);
1126
1127 {
1128 /* skip lines at the top if necessary */
1129 int vskip = srcrect->y;
1130 if(vskip) {
1131 int ofs;
1132 if(df->BytesPerPixel == 2) {
1133 /* the 16/32 interleaved format */
1134 do {
1135 /* skip opaque line */
1136 ofs = 0;
1137 do {
1138 int run;
1139 ofs += srcbuf[0];
1140 run = srcbuf[1];
1141 srcbuf += 2;
1142 if(run) {
1143 srcbuf += 2 * run;
1144 ofs += run;
1145 } else if(!ofs)
1146 goto done;
1147 } while(ofs < w);
1148
1149 /* skip padding */
1150 srcbuf += (uintptr_t)srcbuf & 2;
1151
1152 /* skip translucent line */
1153 ofs = 0;
1154 do {
1155 int run;
1156 ofs += ((Uint16 *)srcbuf)[0];
1157 run = ((Uint16 *)srcbuf)[1];
1158 srcbuf += 4 * (run + 1);
1159 ofs += run;
1160 } while(ofs < w);
1161 } while(--vskip);
1162 } else {
1163 /* the 32/32 interleaved format */
1164 vskip <<= 1; /* opaque and translucent have same format */
1165 do {
1166 ofs = 0;
1167 do {
1168 int run;
1169 ofs += ((Uint16 *)srcbuf)[0];
1170 run = ((Uint16 *)srcbuf)[1];
1171 srcbuf += 4;
1172 if(run) {
1173 srcbuf += 4 * run;
1174 ofs += run;
1175 } else if(!ofs)
1176 goto done;
1177 } while(ofs < w);
1178 } while(--vskip);
1179 }
1180 }
1181 }
1182
1183 /* if left or right edge clipping needed, call clip blit */
1184 if(srcrect->x || srcrect->w != src->w) {
1185 RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect);
1186 } else {
1187
1188 /*
1189 * non-clipped blitter. Ptype is the destination pixel type,
1190 * Ctype the translucent count type, and do_blend the
1191 * macro to blend one pixel.
1192 */
1193 #define RLEALPHABLIT(Ptype, Ctype, do_blend) \
1194 do { \
1195 int linecount = srcrect->h; \
1196 do { \
1197 int ofs = 0; \
1198 /* blit opaque pixels on one line */ \
1199 do { \
1200 unsigned run; \
1201 ofs += ((Ctype *)srcbuf)[0]; \
1202 run = ((Ctype *)srcbuf)[1]; \
1203 srcbuf += 2 * sizeof(Ctype); \
1204 if(run) { \
1205 PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \
1206 run, sizeof(Ptype)); \
1207 srcbuf += run * sizeof(Ptype); \
1208 ofs += run; \
1209 } else if(!ofs) \
1210 goto done; \
1211 } while(ofs < w); \
1212 /* skip padding if necessary */ \
1213 if(sizeof(Ptype) == 2) \
1214 srcbuf += (uintptr_t)srcbuf & 2; \
1215 /* blit translucent pixels on the same line */ \
1216 ofs = 0; \
1217 do { \
1218 unsigned run; \
1219 ofs += ((Uint16 *)srcbuf)[0]; \
1220 run = ((Uint16 *)srcbuf)[1]; \
1221 srcbuf += 4; \
1222 if(run) { \
1223 Ptype *dst = (Ptype *)dstbuf + ofs; \
1224 unsigned i; \
1225 for(i = 0; i < run; i++) { \
1226 Uint32 src = *(Uint32 *)srcbuf; \
1227 do_blend(src, *dst); \
1228 srcbuf += 4; \
1229 dst++; \
1230 } \
1231 ofs += run; \
1232 } \
1233 } while(ofs < w); \
1234 dstbuf += dst->pitch; \
1235 } while(--linecount); \
1236 } while(0)
1237
1238 switch(df->BytesPerPixel) {
1239 case 2:
1240 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
1241 || df->Bmask == 0x07e0)
1242 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565);
1243 else
1244 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555);
1245 break;
1246 case 4:
1247 RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888);
1248 break;
1249 }
1250 }
1251
1252 done:
1253 /* Unlock the destination if necessary */
1254 if ( SDL_MUSTLOCK(dst) ) {
1255 SDL_UnlockSurface(dst);
1256 }
1257 return 0;
1258 }
1259
1260 /*
1261 * Auxiliary functions:
1262 * The encoding functions take 32bpp rgb + a, and
1263 * return the number of bytes copied to the destination.
1264 * The decoding functions copy to 32bpp rgb + a, and
1265 * return the number of bytes copied from the source.
1266 * These are only used in the encoder and un-RLE code and are therefore not
1267 * highly optimised.
1268 */
1269
1270 /* encode 32bpp rgb + a into 16bpp rgb, losing alpha */
copy_opaque_16(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1271 static int copy_opaque_16(void *dst, Uint32 *src, int n,
1272 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1273 {
1274 int i;
1275 Uint16 *d = dst;
1276 for(i = 0; i < n; i++) {
1277 unsigned r, g, b;
1278 RGB_FROM_PIXEL(*src, sfmt, r, g, b);
1279 PIXEL_FROM_RGB(*d, dfmt, r, g, b);
1280 src++;
1281 d++;
1282 }
1283 return n * 2;
1284 }
1285
1286 /* decode opaque pixels from 16bpp to 32bpp rgb + a */
uncopy_opaque_16(Uint32 * dst,void * src,int n,RLEDestFormat * sfmt,SDL_PixelFormat * dfmt)1287 static int uncopy_opaque_16(Uint32 *dst, void *src, int n,
1288 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
1289 {
1290 int i;
1291 Uint16 *s = src;
1292 unsigned alpha = dfmt->Amask ? 255 : 0;
1293 for(i = 0; i < n; i++) {
1294 unsigned r, g, b;
1295 RGB_FROM_PIXEL(*s, sfmt, r, g, b);
1296 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha);
1297 s++;
1298 dst++;
1299 }
1300 return n * 2;
1301 }
1302
1303
1304
1305 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */
copy_transl_565(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1306 static int copy_transl_565(void *dst, Uint32 *src, int n,
1307 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1308 {
1309 int i;
1310 Uint32 *d = dst;
1311 for(i = 0; i < n; i++) {
1312 unsigned r, g, b, a;
1313 Uint16 pix;
1314 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1315 PIXEL_FROM_RGB(pix, dfmt, r, g, b);
1316 *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0);
1317 src++;
1318 d++;
1319 }
1320 return n * 4;
1321 }
1322
1323 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */
copy_transl_555(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1324 static int copy_transl_555(void *dst, Uint32 *src, int n,
1325 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1326 {
1327 int i;
1328 Uint32 *d = dst;
1329 for(i = 0; i < n; i++) {
1330 unsigned r, g, b, a;
1331 Uint16 pix;
1332 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1333 PIXEL_FROM_RGB(pix, dfmt, r, g, b);
1334 *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0);
1335 src++;
1336 d++;
1337 }
1338 return n * 4;
1339 }
1340
1341 /* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */
uncopy_transl_16(Uint32 * dst,void * src,int n,RLEDestFormat * sfmt,SDL_PixelFormat * dfmt)1342 static int uncopy_transl_16(Uint32 *dst, void *src, int n,
1343 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
1344 {
1345 int i;
1346 Uint32 *s = src;
1347 for(i = 0; i < n; i++) {
1348 unsigned r, g, b, a;
1349 Uint32 pix = *s++;
1350 a = (pix & 0x3e0) >> 2;
1351 pix = (pix & ~0x3e0) | pix >> 16;
1352 RGB_FROM_PIXEL(pix, sfmt, r, g, b);
1353 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
1354 dst++;
1355 }
1356 return n * 4;
1357 }
1358
1359 /* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
copy_32(void * dst,Uint32 * src,int n,SDL_PixelFormat * sfmt,SDL_PixelFormat * dfmt)1360 static int copy_32(void *dst, Uint32 *src, int n,
1361 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
1362 {
1363 int i;
1364 Uint32 *d = dst;
1365 for(i = 0; i < n; i++) {
1366 unsigned r, g, b, a;
1367 Uint32 pixel;
1368 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1369 PIXEL_FROM_RGB(pixel, dfmt, r, g, b);
1370 *d++ = pixel | a << 24;
1371 src++;
1372 }
1373 return n * 4;
1374 }
1375
1376 /* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
uncopy_32(Uint32 * dst,void * src,int n,RLEDestFormat * sfmt,SDL_PixelFormat * dfmt)1377 static int uncopy_32(Uint32 *dst, void *src, int n,
1378 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
1379 {
1380 int i;
1381 Uint32 *s = src;
1382 for(i = 0; i < n; i++) {
1383 unsigned r, g, b, a;
1384 Uint32 pixel = *s++;
1385 RGB_FROM_PIXEL(pixel, sfmt, r, g, b);
1386 a = pixel >> 24;
1387 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
1388 dst++;
1389 }
1390 return n * 4;
1391 }
1392
1393 #define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255)
1394
1395 #define ISTRANSL(pixel, fmt) \
1396 ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U)
1397
1398 /* convert surface to be quickly alpha-blittable onto dest, if possible */
RLEAlphaSurface(SDL_Surface * surface)1399 static int RLEAlphaSurface(SDL_Surface *surface)
1400 {
1401 SDL_Surface *dest;
1402 SDL_PixelFormat *df;
1403 int maxsize = 0;
1404 int max_opaque_run;
1405 int max_transl_run = 65535;
1406 unsigned masksum;
1407 Uint8 *rlebuf, *dst;
1408 int (*copy_opaque)(void *, Uint32 *, int,
1409 SDL_PixelFormat *, SDL_PixelFormat *);
1410 int (*copy_transl)(void *, Uint32 *, int,
1411 SDL_PixelFormat *, SDL_PixelFormat *);
1412
1413 dest = surface->map->dst;
1414 if(!dest)
1415 return -1;
1416 df = dest->format;
1417 if(surface->format->BitsPerPixel != 32)
1418 return -1; /* only 32bpp source supported */
1419
1420 /* find out whether the destination is one we support,
1421 and determine the max size of the encoded result */
1422 masksum = df->Rmask | df->Gmask | df->Bmask;
1423 switch(df->BytesPerPixel) {
1424 case 2:
1425 /* 16bpp: only support 565 and 555 formats */
1426 switch(masksum) {
1427 case 0xffff:
1428 if(df->Gmask == 0x07e0
1429 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) {
1430 copy_opaque = copy_opaque_16;
1431 copy_transl = copy_transl_565;
1432 } else
1433 return -1;
1434 break;
1435 case 0x7fff:
1436 if(df->Gmask == 0x03e0
1437 || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) {
1438 copy_opaque = copy_opaque_16;
1439 copy_transl = copy_transl_555;
1440 } else
1441 return -1;
1442 break;
1443 default:
1444 return -1;
1445 }
1446 max_opaque_run = 255; /* runs stored as bytes */
1447
1448 /* worst case is alternating opaque and translucent pixels,
1449 with room for alignment padding between lines */
1450 maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2;
1451 break;
1452 case 4:
1453 if(masksum != 0x00ffffff)
1454 return -1; /* requires unused high byte */
1455 copy_opaque = copy_32;
1456 copy_transl = copy_32;
1457 max_opaque_run = 255; /* runs stored as short ints */
1458
1459 /* worst case is alternating opaque and translucent pixels */
1460 maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4;
1461 break;
1462 default:
1463 return -1; /* anything else unsupported right now */
1464 }
1465
1466 maxsize += sizeof(RLEDestFormat);
1467 rlebuf = (Uint8 *)SDL_malloc(maxsize);
1468 if(!rlebuf) {
1469 SDL_OutOfMemory();
1470 return -1;
1471 }
1472 {
1473 /* save the destination format so we can undo the encoding later */
1474 RLEDestFormat *r = (RLEDestFormat *)rlebuf;
1475 r->BytesPerPixel = df->BytesPerPixel;
1476 r->Rloss = df->Rloss;
1477 r->Gloss = df->Gloss;
1478 r->Bloss = df->Bloss;
1479 r->Rshift = df->Rshift;
1480 r->Gshift = df->Gshift;
1481 r->Bshift = df->Bshift;
1482 r->Ashift = df->Ashift;
1483 r->Rmask = df->Rmask;
1484 r->Gmask = df->Gmask;
1485 r->Bmask = df->Bmask;
1486 r->Amask = df->Amask;
1487 }
1488 dst = rlebuf + sizeof(RLEDestFormat);
1489
1490 /* Do the actual encoding */
1491 {
1492 int x, y;
1493 int h = surface->h, w = surface->w;
1494 SDL_PixelFormat *sf = surface->format;
1495 Uint32 *src = (Uint32 *)surface->pixels;
1496 Uint8 *lastline = dst; /* end of last non-blank line */
1497
1498 /* opaque counts are 8 or 16 bits, depending on target depth */
1499 #define ADD_OPAQUE_COUNTS(n, m) \
1500 if(df->BytesPerPixel == 4) { \
1501 ((Uint16 *)dst)[0] = n; \
1502 ((Uint16 *)dst)[1] = m; \
1503 dst += 4; \
1504 } else { \
1505 dst[0] = n; \
1506 dst[1] = m; \
1507 dst += 2; \
1508 }
1509
1510 /* translucent counts are always 16 bit */
1511 #define ADD_TRANSL_COUNTS(n, m) \
1512 (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4)
1513
1514 for(y = 0; y < h; y++) {
1515 int runstart, skipstart;
1516 int blankline = 0;
1517 /* First encode all opaque pixels of a scan line */
1518 x = 0;
1519 do {
1520 int run, skip, len;
1521 skipstart = x;
1522 while(x < w && !ISOPAQUE(src[x], sf))
1523 x++;
1524 runstart = x;
1525 while(x < w && ISOPAQUE(src[x], sf))
1526 x++;
1527 skip = runstart - skipstart;
1528 if(skip == w)
1529 blankline = 1;
1530 run = x - runstart;
1531 while(skip > max_opaque_run) {
1532 ADD_OPAQUE_COUNTS(max_opaque_run, 0);
1533 skip -= max_opaque_run;
1534 }
1535 len = MIN(run, max_opaque_run);
1536 ADD_OPAQUE_COUNTS(skip, len);
1537 dst += copy_opaque(dst, src + runstart, len, sf, df);
1538 runstart += len;
1539 run -= len;
1540 while(run) {
1541 len = MIN(run, max_opaque_run);
1542 ADD_OPAQUE_COUNTS(0, len);
1543 dst += copy_opaque(dst, src + runstart, len, sf, df);
1544 runstart += len;
1545 run -= len;
1546 }
1547 } while(x < w);
1548
1549 /* Make sure the next output address is 32-bit aligned */
1550 dst += (uintptr_t)dst & 2;
1551
1552 /* Next, encode all translucent pixels of the same scan line */
1553 x = 0;
1554 do {
1555 int run, skip, len;
1556 skipstart = x;
1557 while(x < w && !ISTRANSL(src[x], sf))
1558 x++;
1559 runstart = x;
1560 while(x < w && ISTRANSL(src[x], sf))
1561 x++;
1562 skip = runstart - skipstart;
1563 blankline &= (skip == w);
1564 run = x - runstart;
1565 while(skip > max_transl_run) {
1566 ADD_TRANSL_COUNTS(max_transl_run, 0);
1567 skip -= max_transl_run;
1568 }
1569 len = MIN(run, max_transl_run);
1570 ADD_TRANSL_COUNTS(skip, len);
1571 dst += copy_transl(dst, src + runstart, len, sf, df);
1572 runstart += len;
1573 run -= len;
1574 while(run) {
1575 len = MIN(run, max_transl_run);
1576 ADD_TRANSL_COUNTS(0, len);
1577 dst += copy_transl(dst, src + runstart, len, sf, df);
1578 runstart += len;
1579 run -= len;
1580 }
1581 if(!blankline)
1582 lastline = dst;
1583 } while(x < w);
1584
1585 src += surface->pitch >> 2;
1586 }
1587 dst = lastline; /* back up past trailing blank lines */
1588 ADD_OPAQUE_COUNTS(0, 0);
1589 }
1590
1591 #undef ADD_OPAQUE_COUNTS
1592 #undef ADD_TRANSL_COUNTS
1593
1594 /* Now that we have it encoded, release the original pixels */
1595 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1596 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1597 SDL_free( surface->pixels );
1598 surface->pixels = NULL;
1599 }
1600
1601 /* realloc the buffer to release unused memory */
1602 {
1603 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
1604 if(!p)
1605 p = rlebuf;
1606 surface->map->sw_data->aux_data = p;
1607 }
1608
1609 return 0;
1610 }
1611
getpix_8(Uint8 * srcbuf)1612 static Uint32 getpix_8(Uint8 *srcbuf)
1613 {
1614 return *srcbuf;
1615 }
1616
getpix_16(Uint8 * srcbuf)1617 static Uint32 getpix_16(Uint8 *srcbuf)
1618 {
1619 return *(Uint16 *)srcbuf;
1620 }
1621
getpix_24(Uint8 * srcbuf)1622 static Uint32 getpix_24(Uint8 *srcbuf)
1623 {
1624 #if SDL_BYTEORDER == SDL_LIL_ENDIAN
1625 return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16);
1626 #else
1627 return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2];
1628 #endif
1629 }
1630
getpix_32(Uint8 * srcbuf)1631 static Uint32 getpix_32(Uint8 *srcbuf)
1632 {
1633 return *(Uint32 *)srcbuf;
1634 }
1635
1636 typedef Uint32 (*getpix_func)(Uint8 *);
1637
1638 static getpix_func getpixes[4] = {
1639 getpix_8, getpix_16, getpix_24, getpix_32
1640 };
1641
RLEColorkeySurface(SDL_Surface * surface)1642 static int RLEColorkeySurface(SDL_Surface *surface)
1643 {
1644 Uint8 *rlebuf, *dst;
1645 int maxn;
1646 int y;
1647 Uint8 *srcbuf, *curbuf, *lastline;
1648 int maxsize = 0;
1649 int skip, run;
1650 int bpp = surface->format->BytesPerPixel;
1651 getpix_func getpix;
1652 Uint32 ckey, rgbmask;
1653 int w, h;
1654
1655 /* calculate the worst case size for the compressed surface */
1656 switch(bpp) {
1657 case 1:
1658 /* worst case is alternating opaque and transparent pixels,
1659 starting with an opaque pixel */
1660 maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2;
1661 break;
1662 case 2:
1663 case 3:
1664 /* worst case is solid runs, at most 255 pixels wide */
1665 maxsize = surface->h * (2 * (surface->w / 255 + 1)
1666 + surface->w * bpp) + 2;
1667 break;
1668 case 4:
1669 /* worst case is solid runs, at most 65535 pixels wide */
1670 maxsize = surface->h * (4 * (surface->w / 65535 + 1)
1671 + surface->w * 4) + 4;
1672 break;
1673 }
1674
1675 rlebuf = (Uint8 *)SDL_malloc(maxsize);
1676 if ( rlebuf == NULL ) {
1677 SDL_OutOfMemory();
1678 return(-1);
1679 }
1680
1681 /* Set up the conversion */
1682 srcbuf = (Uint8 *)surface->pixels;
1683 curbuf = srcbuf;
1684 maxn = bpp == 4 ? 65535 : 255;
1685 skip = run = 0;
1686 dst = rlebuf;
1687 rgbmask = ~surface->format->Amask;
1688 ckey = surface->format->colorkey & rgbmask;
1689 lastline = dst;
1690 getpix = getpixes[bpp - 1];
1691 w = surface->w;
1692 h = surface->h;
1693
1694 #define ADD_COUNTS(n, m) \
1695 if(bpp == 4) { \
1696 ((Uint16 *)dst)[0] = n; \
1697 ((Uint16 *)dst)[1] = m; \
1698 dst += 4; \
1699 } else { \
1700 dst[0] = n; \
1701 dst[1] = m; \
1702 dst += 2; \
1703 }
1704
1705 for(y = 0; y < h; y++) {
1706 int x = 0;
1707 int blankline = 0;
1708 do {
1709 int run, skip, len;
1710 int runstart;
1711 int skipstart = x;
1712
1713 /* find run of transparent, then opaque pixels */
1714 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey)
1715 x++;
1716 runstart = x;
1717 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey)
1718 x++;
1719 skip = runstart - skipstart;
1720 if(skip == w)
1721 blankline = 1;
1722 run = x - runstart;
1723
1724 /* encode segment */
1725 while(skip > maxn) {
1726 ADD_COUNTS(maxn, 0);
1727 skip -= maxn;
1728 }
1729 len = MIN(run, maxn);
1730 ADD_COUNTS(skip, len);
1731 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1732 dst += len * bpp;
1733 run -= len;
1734 runstart += len;
1735 while(run) {
1736 len = MIN(run, maxn);
1737 ADD_COUNTS(0, len);
1738 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1739 dst += len * bpp;
1740 runstart += len;
1741 run -= len;
1742 }
1743 if(!blankline)
1744 lastline = dst;
1745 } while(x < w);
1746
1747 srcbuf += surface->pitch;
1748 }
1749 dst = lastline; /* back up bast trailing blank lines */
1750 ADD_COUNTS(0, 0);
1751
1752 #undef ADD_COUNTS
1753
1754 /* Now that we have it encoded, release the original pixels */
1755 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1756 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1757 SDL_free( surface->pixels );
1758 surface->pixels = NULL;
1759 }
1760
1761 /* realloc the buffer to release unused memory */
1762 {
1763 /* If realloc returns NULL, the original block is left intact */
1764 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
1765 if(!p)
1766 p = rlebuf;
1767 surface->map->sw_data->aux_data = p;
1768 }
1769
1770 return(0);
1771 }
1772
SDL_RLESurface(SDL_Surface * surface)1773 int SDL_RLESurface(SDL_Surface *surface)
1774 {
1775 int retcode;
1776
1777 /* Clear any previous RLE conversion */
1778 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
1779 SDL_UnRLESurface(surface, 1);
1780 }
1781
1782 /* We don't support RLE encoding of bitmaps */
1783 if ( surface->format->BitsPerPixel < 8 ) {
1784 return(-1);
1785 }
1786
1787 /* Lock the surface if it's in hardware */
1788 if ( SDL_MUSTLOCK(surface) ) {
1789 if ( SDL_LockSurface(surface) < 0 ) {
1790 return(-1);
1791 }
1792 }
1793
1794 /* Encode */
1795 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1796 retcode = RLEColorkeySurface(surface);
1797 } else {
1798 if((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA
1799 && surface->format->Amask != 0)
1800 retcode = RLEAlphaSurface(surface);
1801 else
1802 retcode = -1; /* no RLE for per-surface alpha sans ckey */
1803 }
1804
1805 /* Unlock the surface if it's in hardware */
1806 if ( SDL_MUSTLOCK(surface) ) {
1807 SDL_UnlockSurface(surface);
1808 }
1809
1810 if(retcode < 0)
1811 return -1;
1812
1813 /* The surface is now accelerated */
1814 surface->flags |= SDL_RLEACCEL;
1815
1816 return(0);
1817 }
1818
1819 /*
1820 * Un-RLE a surface with pixel alpha
1821 * This may not give back exactly the image before RLE-encoding; all
1822 * completely transparent pixels will be lost, and colour and alpha depth
1823 * may have been reduced (when encoding for 16bpp targets).
1824 */
UnRLEAlpha(SDL_Surface * surface)1825 static SDL_bool UnRLEAlpha(SDL_Surface *surface)
1826 {
1827 Uint8 *srcbuf;
1828 Uint32 *dst;
1829 SDL_PixelFormat *sf = surface->format;
1830 RLEDestFormat *df = surface->map->sw_data->aux_data;
1831 int (*uncopy_opaque)(Uint32 *, void *, int,
1832 RLEDestFormat *, SDL_PixelFormat *);
1833 int (*uncopy_transl)(Uint32 *, void *, int,
1834 RLEDestFormat *, SDL_PixelFormat *);
1835 int w = surface->w;
1836 int bpp = df->BytesPerPixel;
1837
1838 if(bpp == 2) {
1839 uncopy_opaque = uncopy_opaque_16;
1840 uncopy_transl = uncopy_transl_16;
1841 } else {
1842 uncopy_opaque = uncopy_transl = uncopy_32;
1843 }
1844
1845 surface->pixels = SDL_malloc(surface->h * surface->pitch);
1846 if ( !surface->pixels ) {
1847 return(SDL_FALSE);
1848 }
1849 /* fill background with transparent pixels */
1850 SDL_memset(surface->pixels, 0, surface->h * surface->pitch);
1851
1852 dst = surface->pixels;
1853 srcbuf = (Uint8 *)(df + 1);
1854 for(;;) {
1855 /* copy opaque pixels */
1856 int ofs = 0;
1857 do {
1858 unsigned run;
1859 if(bpp == 2) {
1860 ofs += srcbuf[0];
1861 run = srcbuf[1];
1862 srcbuf += 2;
1863 } else {
1864 ofs += ((Uint16 *)srcbuf)[0];
1865 run = ((Uint16 *)srcbuf)[1];
1866 srcbuf += 4;
1867 }
1868 if(run) {
1869 srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf);
1870 ofs += run;
1871 } else if(!ofs)
1872 return(SDL_TRUE);
1873 } while(ofs < w);
1874
1875 /* skip padding if needed */
1876 if(bpp == 2)
1877 srcbuf += (uintptr_t)srcbuf & 2;
1878
1879 /* copy translucent pixels */
1880 ofs = 0;
1881 do {
1882 unsigned run;
1883 ofs += ((Uint16 *)srcbuf)[0];
1884 run = ((Uint16 *)srcbuf)[1];
1885 srcbuf += 4;
1886 if(run) {
1887 srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf);
1888 ofs += run;
1889 }
1890 } while(ofs < w);
1891 dst += surface->pitch >> 2;
1892 }
1893 /* Make the compiler happy */
1894 return(SDL_TRUE);
1895 }
1896
SDL_UnRLESurface(SDL_Surface * surface,int recode)1897 void SDL_UnRLESurface(SDL_Surface *surface, int recode)
1898 {
1899 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
1900 surface->flags &= ~SDL_RLEACCEL;
1901
1902 if(recode && (surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1903 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1904 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1905 SDL_Rect full;
1906 unsigned alpha_flag;
1907
1908 /* re-create the original surface */
1909 surface->pixels = SDL_malloc(surface->h * surface->pitch);
1910 if ( !surface->pixels ) {
1911 /* Oh crap... */
1912 surface->flags |= SDL_RLEACCEL;
1913 return;
1914 }
1915
1916 /* fill it with the background colour */
1917 SDL_FillRect(surface, NULL, surface->format->colorkey);
1918
1919 /* now render the encoded surface */
1920 full.x = full.y = 0;
1921 full.w = surface->w;
1922 full.h = surface->h;
1923 alpha_flag = surface->flags & SDL_SRCALPHA;
1924 surface->flags &= ~SDL_SRCALPHA; /* opaque blit */
1925 SDL_RLEBlit(surface, &full, surface, &full);
1926 surface->flags |= alpha_flag;
1927 } else {
1928 if ( !UnRLEAlpha(surface) ) {
1929 /* Oh crap... */
1930 surface->flags |= SDL_RLEACCEL;
1931 return;
1932 }
1933 }
1934 }
1935
1936 if ( surface->map && surface->map->sw_data->aux_data ) {
1937 SDL_free(surface->map->sw_data->aux_data);
1938 surface->map->sw_data->aux_data = NULL;
1939 }
1940 }
1941 }
1942
1943
1944