1 //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the template classes ExplodedNode and ExplodedGraph,
11 // which represent a path-sensitive, intra-procedural "exploded graph."
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/AST/Stmt.h"
18 #include "clang/AST/ParentMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include <vector>
23
24 using namespace clang;
25 using namespace ento;
26
27 //===----------------------------------------------------------------------===//
28 // Node auditing.
29 //===----------------------------------------------------------------------===//
30
31 // An out of line virtual method to provide a home for the class vtable.
~Auditor()32 ExplodedNode::Auditor::~Auditor() {}
33
34 #ifndef NDEBUG
35 static ExplodedNode::Auditor* NodeAuditor = 0;
36 #endif
37
SetAuditor(ExplodedNode::Auditor * A)38 void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
39 #ifndef NDEBUG
40 NodeAuditor = A;
41 #endif
42 }
43
44 //===----------------------------------------------------------------------===//
45 // Cleanup.
46 //===----------------------------------------------------------------------===//
47
48 static const unsigned CounterTop = 1000;
49
ExplodedGraph()50 ExplodedGraph::ExplodedGraph()
51 : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
52
~ExplodedGraph()53 ExplodedGraph::~ExplodedGraph() {}
54
55 //===----------------------------------------------------------------------===//
56 // Node reclamation.
57 //===----------------------------------------------------------------------===//
58
shouldCollect(const ExplodedNode * node)59 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
60 // Reclaimn all nodes that match *all* the following criteria:
61 //
62 // (1) 1 predecessor (that has one successor)
63 // (2) 1 successor (that has one predecessor)
64 // (3) The ProgramPoint is for a PostStmt.
65 // (4) There is no 'tag' for the ProgramPoint.
66 // (5) The 'store' is the same as the predecessor.
67 // (6) The 'GDM' is the same as the predecessor.
68 // (7) The LocationContext is the same as the predecessor.
69 // (8) The PostStmt is for a non-consumed Stmt or Expr.
70
71 // Conditions 1 and 2.
72 if (node->pred_size() != 1 || node->succ_size() != 1)
73 return false;
74
75 const ExplodedNode *pred = *(node->pred_begin());
76 if (pred->succ_size() != 1)
77 return false;
78
79 const ExplodedNode *succ = *(node->succ_begin());
80 if (succ->pred_size() != 1)
81 return false;
82
83 // Condition 3.
84 ProgramPoint progPoint = node->getLocation();
85 if (!isa<PostStmt>(progPoint) ||
86 (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint)))
87 return false;
88
89 // Condition 4.
90 PostStmt ps = cast<PostStmt>(progPoint);
91 if (ps.getTag())
92 return false;
93
94 if (isa<BinaryOperator>(ps.getStmt()))
95 return false;
96
97 // Conditions 5, 6, and 7.
98 ProgramStateRef state = node->getState();
99 ProgramStateRef pred_state = pred->getState();
100 if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
101 progPoint.getLocationContext() != pred->getLocationContext())
102 return false;
103
104 // Condition 8.
105 if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
106 ParentMap &PM = progPoint.getLocationContext()->getParentMap();
107 if (!PM.isConsumedExpr(Ex))
108 return false;
109 }
110
111 return true;
112 }
113
collectNode(ExplodedNode * node)114 void ExplodedGraph::collectNode(ExplodedNode *node) {
115 // Removing a node means:
116 // (a) changing the predecessors successor to the successor of this node
117 // (b) changing the successors predecessor to the predecessor of this node
118 // (c) Putting 'node' onto freeNodes.
119 assert(node->pred_size() == 1 || node->succ_size() == 1);
120 ExplodedNode *pred = *(node->pred_begin());
121 ExplodedNode *succ = *(node->succ_begin());
122 pred->replaceSuccessor(succ);
123 succ->replacePredecessor(pred);
124 FreeNodes.push_back(node);
125 Nodes.RemoveNode(node);
126 --NumNodes;
127 node->~ExplodedNode();
128 }
129
reclaimRecentlyAllocatedNodes()130 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
131 if (ChangedNodes.empty())
132 return;
133
134 // Only periodically relcaim nodes so that we can build up a set of
135 // nodes that meet the reclamation criteria. Freshly created nodes
136 // by definition have no successor, and thus cannot be reclaimed (see below).
137 assert(reclaimCounter > 0);
138 if (--reclaimCounter != 0)
139 return;
140 reclaimCounter = CounterTop;
141
142 for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
143 it != et; ++it) {
144 ExplodedNode *node = *it;
145 if (shouldCollect(node))
146 collectNode(node);
147 }
148 ChangedNodes.clear();
149 }
150
151 //===----------------------------------------------------------------------===//
152 // ExplodedNode.
153 //===----------------------------------------------------------------------===//
154
getVector(void * P)155 static inline BumpVector<ExplodedNode*>& getVector(void *P) {
156 return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
157 }
158
addPredecessor(ExplodedNode * V,ExplodedGraph & G)159 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
160 assert (!V->isSink());
161 Preds.addNode(V, G);
162 V->Succs.addNode(this, G);
163 #ifndef NDEBUG
164 if (NodeAuditor) NodeAuditor->AddEdge(V, this);
165 #endif
166 }
167
replaceNode(ExplodedNode * node)168 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
169 assert(getKind() == Size1);
170 P = reinterpret_cast<uintptr_t>(node);
171 assert(getKind() == Size1);
172 }
173
addNode(ExplodedNode * N,ExplodedGraph & G)174 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
175 assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
176 assert(!getFlag());
177
178 if (getKind() == Size1) {
179 if (ExplodedNode *NOld = getNode()) {
180 BumpVectorContext &Ctx = G.getNodeAllocator();
181 BumpVector<ExplodedNode*> *V =
182 G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
183 new (V) BumpVector<ExplodedNode*>(Ctx, 4);
184
185 assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
186 V->push_back(NOld, Ctx);
187 V->push_back(N, Ctx);
188 P = reinterpret_cast<uintptr_t>(V) | SizeOther;
189 assert(getPtr() == (void*) V);
190 assert(getKind() == SizeOther);
191 }
192 else {
193 P = reinterpret_cast<uintptr_t>(N);
194 assert(getKind() == Size1);
195 }
196 }
197 else {
198 assert(getKind() == SizeOther);
199 getVector(getPtr()).push_back(N, G.getNodeAllocator());
200 }
201 }
202
size() const203 unsigned ExplodedNode::NodeGroup::size() const {
204 if (getFlag())
205 return 0;
206
207 if (getKind() == Size1)
208 return getNode() ? 1 : 0;
209 else
210 return getVector(getPtr()).size();
211 }
212
begin() const213 ExplodedNode **ExplodedNode::NodeGroup::begin() const {
214 if (getFlag())
215 return NULL;
216
217 if (getKind() == Size1)
218 return (ExplodedNode**) (getPtr() ? &P : NULL);
219 else
220 return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
221 }
222
end() const223 ExplodedNode** ExplodedNode::NodeGroup::end() const {
224 if (getFlag())
225 return NULL;
226
227 if (getKind() == Size1)
228 return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
229 else {
230 // Dereferencing end() is undefined behaviour. The vector is not empty, so
231 // we can dereference the last elem and then add 1 to the result.
232 return const_cast<ExplodedNode**>(getVector(getPtr()).end());
233 }
234 }
235
getNode(const ProgramPoint & L,ProgramStateRef State,bool IsSink,bool * IsNew)236 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
237 ProgramStateRef State,
238 bool IsSink,
239 bool* IsNew) {
240 // Profile 'State' to determine if we already have an existing node.
241 llvm::FoldingSetNodeID profile;
242 void *InsertPos = 0;
243
244 NodeTy::Profile(profile, L, State, IsSink);
245 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
246
247 if (!V) {
248 if (!FreeNodes.empty()) {
249 V = FreeNodes.back();
250 FreeNodes.pop_back();
251 }
252 else {
253 // Allocate a new node.
254 V = (NodeTy*) getAllocator().Allocate<NodeTy>();
255 }
256
257 new (V) NodeTy(L, State, IsSink);
258
259 if (reclaimNodes)
260 ChangedNodes.push_back(V);
261
262 // Insert the node into the node set and return it.
263 Nodes.InsertNode(V, InsertPos);
264 ++NumNodes;
265
266 if (IsNew) *IsNew = true;
267 }
268 else
269 if (IsNew) *IsNew = false;
270
271 return V;
272 }
273
274 std::pair<ExplodedGraph*, InterExplodedGraphMap*>
Trim(const NodeTy * const * NBeg,const NodeTy * const * NEnd,llvm::DenseMap<const void *,const void * > * InverseMap) const275 ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
276 llvm::DenseMap<const void*, const void*> *InverseMap) const {
277
278 if (NBeg == NEnd)
279 return std::make_pair((ExplodedGraph*) 0,
280 (InterExplodedGraphMap*) 0);
281
282 assert (NBeg < NEnd);
283
284 OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
285
286 ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
287
288 return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
289 }
290
291 ExplodedGraph*
TrimInternal(const ExplodedNode * const * BeginSources,const ExplodedNode * const * EndSources,InterExplodedGraphMap * M,llvm::DenseMap<const void *,const void * > * InverseMap) const292 ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
293 const ExplodedNode* const* EndSources,
294 InterExplodedGraphMap* M,
295 llvm::DenseMap<const void*, const void*> *InverseMap) const {
296
297 typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
298 Pass1Ty Pass1;
299
300 typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
301 Pass2Ty& Pass2 = M->M;
302
303 SmallVector<const ExplodedNode*, 10> WL1, WL2;
304
305 // ===- Pass 1 (reverse DFS) -===
306 for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
307 assert(*I);
308 WL1.push_back(*I);
309 }
310
311 // Process the first worklist until it is empty. Because it is a std::list
312 // it acts like a FIFO queue.
313 while (!WL1.empty()) {
314 const ExplodedNode *N = WL1.back();
315 WL1.pop_back();
316
317 // Have we already visited this node? If so, continue to the next one.
318 if (Pass1.count(N))
319 continue;
320
321 // Otherwise, mark this node as visited.
322 Pass1.insert(N);
323
324 // If this is a root enqueue it to the second worklist.
325 if (N->Preds.empty()) {
326 WL2.push_back(N);
327 continue;
328 }
329
330 // Visit our predecessors and enqueue them.
331 for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
332 WL1.push_back(*I);
333 }
334
335 // We didn't hit a root? Return with a null pointer for the new graph.
336 if (WL2.empty())
337 return 0;
338
339 // Create an empty graph.
340 ExplodedGraph* G = MakeEmptyGraph();
341
342 // ===- Pass 2 (forward DFS to construct the new graph) -===
343 while (!WL2.empty()) {
344 const ExplodedNode *N = WL2.back();
345 WL2.pop_back();
346
347 // Skip this node if we have already processed it.
348 if (Pass2.find(N) != Pass2.end())
349 continue;
350
351 // Create the corresponding node in the new graph and record the mapping
352 // from the old node to the new node.
353 ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
354 Pass2[N] = NewN;
355
356 // Also record the reverse mapping from the new node to the old node.
357 if (InverseMap) (*InverseMap)[NewN] = N;
358
359 // If this node is a root, designate it as such in the graph.
360 if (N->Preds.empty())
361 G->addRoot(NewN);
362
363 // In the case that some of the intended predecessors of NewN have already
364 // been created, we should hook them up as predecessors.
365
366 // Walk through the predecessors of 'N' and hook up their corresponding
367 // nodes in the new graph (if any) to the freshly created node.
368 for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
369 Pass2Ty::iterator PI = Pass2.find(*I);
370 if (PI == Pass2.end())
371 continue;
372
373 NewN->addPredecessor(PI->second, *G);
374 }
375
376 // In the case that some of the intended successors of NewN have already
377 // been created, we should hook them up as successors. Otherwise, enqueue
378 // the new nodes from the original graph that should have nodes created
379 // in the new graph.
380 for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
381 Pass2Ty::iterator PI = Pass2.find(*I);
382 if (PI != Pass2.end()) {
383 PI->second->addPredecessor(NewN, *G);
384 continue;
385 }
386
387 // Enqueue nodes to the worklist that were marked during pass 1.
388 if (Pass1.count(*I))
389 WL2.push_back(*I);
390 }
391 }
392
393 return G;
394 }
395
anchor()396 void InterExplodedGraphMap::anchor() { }
397
398 ExplodedNode*
getMappedNode(const ExplodedNode * N) const399 InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
400 llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
401 M.find(N);
402
403 return I == M.end() ? 0 : I->second;
404 }
405
406