• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkGeometry_DEFINED
11 #define SkGeometry_DEFINED
12 
13 #include "SkMatrix.h"
14 
15 /** An XRay is a half-line that runs from the specific point/origin to
16     +infinity in the X direction. e.g. XRay(3,5) is the half-line
17     (3,5)....(infinity, 5)
18  */
19 typedef SkPoint SkXRay;
20 
21 /** Given a line segment from pts[0] to pts[1], and an xray, return true if
22     they intersect. Optional outgoing "ambiguous" argument indicates
23     whether the answer is ambiguous because the query occurred exactly at
24     one of the endpoints' y coordinates, indicating that another query y
25     coordinate is preferred for robustness.
26 */
27 bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2],
28                        bool* ambiguous = NULL);
29 
30 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
31     equation.
32 */
33 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
34 
35 ///////////////////////////////////////////////////////////////////////////////
36 
37 /** Set pt to the point on the src quadratic specified by t. t must be
38     0 <= t <= 1.0
39 */
40 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
41                   SkVector* tangent = NULL);
42 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt,
43                       SkVector* tangent = NULL);
44 
45 /** Given a src quadratic bezier, chop it at the specified t value,
46     where 0 < t < 1, and return the two new quadratics in dst:
47     dst[0..2] and dst[2..4]
48 */
49 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
50 
51 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
52     The new quads are returned in dst[0..2] and dst[2..4]
53 */
54 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
55 
56 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
57     for extrema, and return the number of t-values that are found that represent
58     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
59     function returns 0.
60     Returned count      tValues[]
61     0                   ignored
62     1                   0 < tValues[0] < 1
63 */
64 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
65 
66 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
67     the resulting beziers are monotonic in Y. This is called by the scan converter.
68     Depending on what is returned, dst[] is treated as follows
69     0   dst[0..2] is the original quad
70     1   dst[0..2] and dst[2..4] are the two new quads
71 */
72 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
73 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
74 
75 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
76     if the point of maximum curvature exists on the quad segment.
77     Depending on what is returned, dst[] is treated as follows
78     1   dst[0..2] is the original quad
79     2   dst[0..2] and dst[2..4] are the two new quads
80     If dst == null, it is ignored and only the count is returned.
81 */
82 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
83 
84 /** Given 3 points on a quadratic bezier, use degree elevation to
85     convert it into the cubic fitting the same curve. The new cubic
86     curve is returned in dst[0..3].
87 */
88 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
89 
90 ///////////////////////////////////////////////////////////////////////////////
91 
92 /** Convert from parametric from (pts) to polynomial coefficients
93     coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
94 */
95 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
96 
97 /** Set pt to the point on the src cubic specified by t. t must be
98     0 <= t <= 1.0
99 */
100 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
101                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
102 
103 /** Given a src cubic bezier, chop it at the specified t value,
104     where 0 < t < 1, and return the two new cubics in dst:
105     dst[0..3] and dst[3..6]
106 */
107 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
108 /** Given a src cubic bezier, chop it at the specified t values,
109     where 0 < t < 1, and return the new cubics in dst:
110     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
111 */
112 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
113                    int t_count);
114 
115 /** Given a src cubic bezier, chop it at the specified t == 1/2,
116     The new cubics are returned in dst[0..3] and dst[3..6]
117 */
118 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
119 
120 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
121     for extrema, and return the number of t-values that are found that represent
122     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
123     function returns 0.
124     Returned count      tValues[]
125     0                   ignored
126     1                   0 < tValues[0] < 1
127     2                   0 < tValues[0] < tValues[1] < 1
128 */
129 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
130                        SkScalar tValues[2]);
131 
132 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
133     the resulting beziers are monotonic in Y. This is called by the scan converter.
134     Depending on what is returned, dst[] is treated as follows
135     0   dst[0..3] is the original cubic
136     1   dst[0..3] and dst[3..6] are the two new cubics
137     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
138     If dst == null, it is ignored and only the count is returned.
139 */
140 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
141 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
142 
143 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
144     inflection points.
145 */
146 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
147 
148 /** Return 1 for no chop, 2 for having chopped the cubic at a single
149     inflection point, 3 for having chopped at 2 inflection points.
150     dst will hold the resulting 1, 2, or 3 cubics.
151 */
152 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
153 
154 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
155 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
156                               SkScalar tValues[3] = NULL);
157 
158 /** Given a monotonic cubic bezier, determine whether an xray intersects the
159     cubic.
160     By definition the cubic is open at the starting point; in other
161     words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
162     left of the curve, the line is not considered to cross the curve,
163     but if it is equal to cubic[3].fY then it is considered to
164     cross.
165     Optional outgoing "ambiguous" argument indicates whether the answer is
166     ambiguous because the query occurred exactly at one of the endpoints' y
167     coordinates, indicating that another query y coordinate is preferred
168     for robustness.
169  */
170 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
171                                  bool* ambiguous = NULL);
172 
173 /** Given an arbitrary cubic bezier, return the number of times an xray crosses
174     the cubic. Valid return values are [0..3]
175     By definition the cubic is open at the starting point; in other
176     words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
177     left of the curve, the line is not considered to cross the curve,
178     but if it is equal to cubic[3].fY then it is considered to
179     cross.
180     Optional outgoing "ambiguous" argument indicates whether the answer is
181     ambiguous because the query occurred exactly at one of the endpoints' y
182     coordinates or at a tangent point, indicating that another query y
183     coordinate is preferred for robustness.
184  */
185 int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4],
186                                bool* ambiguous = NULL);
187 
188 ///////////////////////////////////////////////////////////////////////////////
189 
190 enum SkRotationDirection {
191     kCW_SkRotationDirection,
192     kCCW_SkRotationDirection
193 };
194 
195 /** Maximum number of points needed in the quadPoints[] parameter for
196     SkBuildQuadArc()
197 */
198 #define kSkBuildQuadArcStorage  17
199 
200 /** Given 2 unit vectors and a rotation direction, fill out the specified
201     array of points with quadratic segments. Return is the number of points
202     written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
203 
204     matrix, if not null, is appled to the points before they are returned.
205 */
206 int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
207                    SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
208 
209 #endif
210