1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "store-buffer.h"
31 #include "store-buffer-inl.h"
32 #include "v8-counters.h"
33
34 namespace v8 {
35 namespace internal {
36
StoreBuffer(Heap * heap)37 StoreBuffer::StoreBuffer(Heap* heap)
38 : heap_(heap),
39 start_(NULL),
40 limit_(NULL),
41 old_start_(NULL),
42 old_limit_(NULL),
43 old_top_(NULL),
44 old_reserved_limit_(NULL),
45 old_buffer_is_sorted_(false),
46 old_buffer_is_filtered_(false),
47 during_gc_(false),
48 store_buffer_rebuilding_enabled_(false),
49 callback_(NULL),
50 may_move_store_buffer_entries_(true),
51 virtual_memory_(NULL),
52 hash_set_1_(NULL),
53 hash_set_2_(NULL),
54 hash_sets_are_empty_(true) {
55 }
56
57
SetUp()58 void StoreBuffer::SetUp() {
59 virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
60 uintptr_t start_as_int =
61 reinterpret_cast<uintptr_t>(virtual_memory_->address());
62 start_ =
63 reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
64 limit_ = start_ + (kStoreBufferSize / kPointerSize);
65
66 old_virtual_memory_ =
67 new VirtualMemory(kOldStoreBufferLength * kPointerSize);
68 old_top_ = old_start_ =
69 reinterpret_cast<Address*>(old_virtual_memory_->address());
70 // Don't know the alignment requirements of the OS, but it is certainly not
71 // less than 0xfff.
72 ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
73 int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
74 ASSERT(initial_length > 0);
75 ASSERT(initial_length <= kOldStoreBufferLength);
76 old_limit_ = old_start_ + initial_length;
77 old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
78
79 CHECK(old_virtual_memory_->Commit(
80 reinterpret_cast<void*>(old_start_),
81 (old_limit_ - old_start_) * kPointerSize,
82 false));
83
84 ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
85 ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
86 Address* vm_limit = reinterpret_cast<Address*>(
87 reinterpret_cast<char*>(virtual_memory_->address()) +
88 virtual_memory_->size());
89 ASSERT(start_ <= vm_limit);
90 ASSERT(limit_ <= vm_limit);
91 USE(vm_limit);
92 ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
93 ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
94 0);
95
96 CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
97 kStoreBufferSize,
98 false)); // Not executable.
99 heap_->public_set_store_buffer_top(start_);
100
101 hash_set_1_ = new uintptr_t[kHashSetLength];
102 hash_set_2_ = new uintptr_t[kHashSetLength];
103 hash_sets_are_empty_ = false;
104
105 ClearFilteringHashSets();
106 }
107
108
TearDown()109 void StoreBuffer::TearDown() {
110 delete virtual_memory_;
111 delete old_virtual_memory_;
112 delete[] hash_set_1_;
113 delete[] hash_set_2_;
114 old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
115 start_ = limit_ = NULL;
116 heap_->public_set_store_buffer_top(start_);
117 }
118
119
StoreBufferOverflow(Isolate * isolate)120 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
121 isolate->heap()->store_buffer()->Compact();
122 }
123
124
125 #if V8_TARGET_ARCH_X64
CompareAddresses(const void * void_a,const void * void_b)126 static int CompareAddresses(const void* void_a, const void* void_b) {
127 intptr_t a =
128 reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
129 intptr_t b =
130 reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
131 // Unfortunately if int is smaller than intptr_t there is no branch-free
132 // way to return a number with the same sign as the difference between the
133 // pointers.
134 if (a == b) return 0;
135 if (a < b) return -1;
136 ASSERT(a > b);
137 return 1;
138 }
139 #else
CompareAddresses(const void * void_a,const void * void_b)140 static int CompareAddresses(const void* void_a, const void* void_b) {
141 intptr_t a =
142 reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
143 intptr_t b =
144 reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
145 ASSERT(sizeof(1) == sizeof(a));
146 // Shift down to avoid wraparound.
147 return (a >> kPointerSizeLog2) - (b >> kPointerSizeLog2);
148 }
149 #endif
150
151
Uniq()152 void StoreBuffer::Uniq() {
153 // Remove adjacent duplicates and cells that do not point at new space.
154 Address previous = NULL;
155 Address* write = old_start_;
156 ASSERT(may_move_store_buffer_entries_);
157 for (Address* read = old_start_; read < old_top_; read++) {
158 Address current = *read;
159 if (current != previous) {
160 if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
161 *write++ = current;
162 }
163 }
164 previous = current;
165 }
166 old_top_ = write;
167 }
168
169
EnsureSpace(intptr_t space_needed)170 void StoreBuffer::EnsureSpace(intptr_t space_needed) {
171 while (old_limit_ - old_top_ < space_needed &&
172 old_limit_ < old_reserved_limit_) {
173 size_t grow = old_limit_ - old_start_; // Double size.
174 CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
175 grow * kPointerSize,
176 false));
177 old_limit_ += grow;
178 }
179
180 if (old_limit_ - old_top_ >= space_needed) return;
181
182 if (old_buffer_is_filtered_) return;
183 ASSERT(may_move_store_buffer_entries_);
184 Compact();
185
186 old_buffer_is_filtered_ = true;
187 bool page_has_scan_on_scavenge_flag = false;
188
189 PointerChunkIterator it(heap_);
190 MemoryChunk* chunk;
191 while ((chunk = it.next()) != NULL) {
192 if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
193 }
194
195 if (page_has_scan_on_scavenge_flag) {
196 Filter(MemoryChunk::SCAN_ON_SCAVENGE);
197 }
198
199 // If filtering out the entries from scan_on_scavenge pages got us down to
200 // less than half full, then we are satisfied with that.
201 if (old_limit_ - old_top_ > old_top_ - old_start_) return;
202
203 // Sample 1 entry in 97 and filter out the pages where we estimate that more
204 // than 1 in 8 pointers are to new space.
205 static const int kSampleFinenesses = 5;
206 static const struct Samples {
207 int prime_sample_step;
208 int threshold;
209 } samples[kSampleFinenesses] = {
210 { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
211 { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
212 { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
213 { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
214 { 1, 0}
215 };
216 for (int i = kSampleFinenesses - 1; i >= 0; i--) {
217 ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
218 // As a last resort we mark all pages as being exempt from the store buffer.
219 ASSERT(i != 0 || old_top_ == old_start_);
220 if (old_limit_ - old_top_ > old_top_ - old_start_) return;
221 }
222 UNREACHABLE();
223 }
224
225
226 // Sample the store buffer to see if some pages are taking up a lot of space
227 // in the store buffer.
ExemptPopularPages(int prime_sample_step,int threshold)228 void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
229 PointerChunkIterator it(heap_);
230 MemoryChunk* chunk;
231 while ((chunk = it.next()) != NULL) {
232 chunk->set_store_buffer_counter(0);
233 }
234 bool created_new_scan_on_scavenge_pages = false;
235 MemoryChunk* previous_chunk = NULL;
236 for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
237 Address addr = *p;
238 MemoryChunk* containing_chunk = NULL;
239 if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
240 containing_chunk = previous_chunk;
241 } else {
242 containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
243 }
244 int old_counter = containing_chunk->store_buffer_counter();
245 if (old_counter == threshold) {
246 containing_chunk->set_scan_on_scavenge(true);
247 created_new_scan_on_scavenge_pages = true;
248 }
249 containing_chunk->set_store_buffer_counter(old_counter + 1);
250 previous_chunk = containing_chunk;
251 }
252 if (created_new_scan_on_scavenge_pages) {
253 Filter(MemoryChunk::SCAN_ON_SCAVENGE);
254 }
255 old_buffer_is_filtered_ = true;
256 }
257
258
Filter(int flag)259 void StoreBuffer::Filter(int flag) {
260 Address* new_top = old_start_;
261 MemoryChunk* previous_chunk = NULL;
262 for (Address* p = old_start_; p < old_top_; p++) {
263 Address addr = *p;
264 MemoryChunk* containing_chunk = NULL;
265 if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
266 containing_chunk = previous_chunk;
267 } else {
268 containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
269 previous_chunk = containing_chunk;
270 }
271 if (!containing_chunk->IsFlagSet(flag)) {
272 *new_top++ = addr;
273 }
274 }
275 old_top_ = new_top;
276
277 // Filtering hash sets are inconsistent with the store buffer after this
278 // operation.
279 ClearFilteringHashSets();
280 }
281
282
SortUniq()283 void StoreBuffer::SortUniq() {
284 Compact();
285 if (old_buffer_is_sorted_) return;
286 qsort(reinterpret_cast<void*>(old_start_),
287 old_top_ - old_start_,
288 sizeof(*old_top_),
289 &CompareAddresses);
290 Uniq();
291
292 old_buffer_is_sorted_ = true;
293
294 // Filtering hash sets are inconsistent with the store buffer after this
295 // operation.
296 ClearFilteringHashSets();
297 }
298
299
PrepareForIteration()300 bool StoreBuffer::PrepareForIteration() {
301 Compact();
302 PointerChunkIterator it(heap_);
303 MemoryChunk* chunk;
304 bool page_has_scan_on_scavenge_flag = false;
305 while ((chunk = it.next()) != NULL) {
306 if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
307 }
308
309 if (page_has_scan_on_scavenge_flag) {
310 Filter(MemoryChunk::SCAN_ON_SCAVENGE);
311 }
312
313 // Filtering hash sets are inconsistent with the store buffer after
314 // iteration.
315 ClearFilteringHashSets();
316
317 return page_has_scan_on_scavenge_flag;
318 }
319
320
321 #ifdef DEBUG
Clean()322 void StoreBuffer::Clean() {
323 ClearFilteringHashSets();
324 Uniq(); // Also removes things that no longer point to new space.
325 CheckForFullBuffer();
326 }
327
328
329 static Address* in_store_buffer_1_element_cache = NULL;
330
331
CellIsInStoreBuffer(Address cell_address)332 bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
333 if (!FLAG_enable_slow_asserts) return true;
334 if (in_store_buffer_1_element_cache != NULL &&
335 *in_store_buffer_1_element_cache == cell_address) {
336 return true;
337 }
338 Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
339 for (Address* current = top - 1; current >= start_; current--) {
340 if (*current == cell_address) {
341 in_store_buffer_1_element_cache = current;
342 return true;
343 }
344 }
345 for (Address* current = old_top_ - 1; current >= old_start_; current--) {
346 if (*current == cell_address) {
347 in_store_buffer_1_element_cache = current;
348 return true;
349 }
350 }
351 return false;
352 }
353 #endif
354
355
ClearFilteringHashSets()356 void StoreBuffer::ClearFilteringHashSets() {
357 if (!hash_sets_are_empty_) {
358 memset(reinterpret_cast<void*>(hash_set_1_),
359 0,
360 sizeof(uintptr_t) * kHashSetLength);
361 memset(reinterpret_cast<void*>(hash_set_2_),
362 0,
363 sizeof(uintptr_t) * kHashSetLength);
364 hash_sets_are_empty_ = true;
365 }
366 }
367
368
GCPrologue()369 void StoreBuffer::GCPrologue() {
370 ClearFilteringHashSets();
371 during_gc_ = true;
372 }
373
374
375 #ifdef DEBUG
DummyScavengePointer(HeapObject ** p,HeapObject * o)376 static void DummyScavengePointer(HeapObject** p, HeapObject* o) {
377 // Do nothing.
378 }
379
380
VerifyPointers(PagedSpace * space,RegionCallback region_callback)381 void StoreBuffer::VerifyPointers(PagedSpace* space,
382 RegionCallback region_callback) {
383 PageIterator it(space);
384
385 while (it.has_next()) {
386 Page* page = it.next();
387 FindPointersToNewSpaceOnPage(
388 reinterpret_cast<PagedSpace*>(page->owner()),
389 page,
390 region_callback,
391 &DummyScavengePointer);
392 }
393 }
394
395
VerifyPointers(LargeObjectSpace * space)396 void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
397 LargeObjectIterator it(space);
398 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
399 if (object->IsFixedArray()) {
400 Address slot_address = object->address();
401 Address end = object->address() + object->Size();
402
403 while (slot_address < end) {
404 HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
405 // When we are not in GC the Heap::InNewSpace() predicate
406 // checks that pointers which satisfy predicate point into
407 // the active semispace.
408 heap_->InNewSpace(*slot);
409 slot_address += kPointerSize;
410 }
411 }
412 }
413 }
414 #endif
415
416
Verify()417 void StoreBuffer::Verify() {
418 #ifdef DEBUG
419 VerifyPointers(heap_->old_pointer_space(),
420 &StoreBuffer::FindPointersToNewSpaceInRegion);
421 VerifyPointers(heap_->map_space(),
422 &StoreBuffer::FindPointersToNewSpaceInMapsRegion);
423 VerifyPointers(heap_->lo_space());
424 #endif
425 }
426
427
GCEpilogue()428 void StoreBuffer::GCEpilogue() {
429 during_gc_ = false;
430 if (FLAG_verify_heap) {
431 Verify();
432 }
433 }
434
435
FindPointersToNewSpaceInRegion(Address start,Address end,ObjectSlotCallback slot_callback)436 void StoreBuffer::FindPointersToNewSpaceInRegion(
437 Address start, Address end, ObjectSlotCallback slot_callback) {
438 for (Address slot_address = start;
439 slot_address < end;
440 slot_address += kPointerSize) {
441 Object** slot = reinterpret_cast<Object**>(slot_address);
442 if (heap_->InNewSpace(*slot)) {
443 HeapObject* object = reinterpret_cast<HeapObject*>(*slot);
444 ASSERT(object->IsHeapObject());
445 slot_callback(reinterpret_cast<HeapObject**>(slot), object);
446 if (heap_->InNewSpace(*slot)) {
447 EnterDirectlyIntoStoreBuffer(slot_address);
448 }
449 }
450 }
451 }
452
453
454 // Compute start address of the first map following given addr.
MapStartAlign(Address addr)455 static inline Address MapStartAlign(Address addr) {
456 Address page = Page::FromAddress(addr)->area_start();
457 return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
458 }
459
460
461 // Compute end address of the first map preceding given addr.
MapEndAlign(Address addr)462 static inline Address MapEndAlign(Address addr) {
463 Address page = Page::FromAllocationTop(addr)->area_start();
464 return page + ((addr - page) / Map::kSize * Map::kSize);
465 }
466
467
FindPointersToNewSpaceInMaps(Address start,Address end,ObjectSlotCallback slot_callback)468 void StoreBuffer::FindPointersToNewSpaceInMaps(
469 Address start,
470 Address end,
471 ObjectSlotCallback slot_callback) {
472 ASSERT(MapStartAlign(start) == start);
473 ASSERT(MapEndAlign(end) == end);
474
475 Address map_address = start;
476 while (map_address < end) {
477 ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
478 ASSERT(Memory::Object_at(map_address)->IsMap());
479
480 Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
481 Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
482
483 FindPointersToNewSpaceInRegion(pointer_fields_start,
484 pointer_fields_end,
485 slot_callback);
486 map_address += Map::kSize;
487 }
488 }
489
490
FindPointersToNewSpaceInMapsRegion(Address start,Address end,ObjectSlotCallback slot_callback)491 void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
492 Address start,
493 Address end,
494 ObjectSlotCallback slot_callback) {
495 Address map_aligned_start = MapStartAlign(start);
496 Address map_aligned_end = MapEndAlign(end);
497
498 ASSERT(map_aligned_start == start);
499 ASSERT(map_aligned_end == end);
500
501 FindPointersToNewSpaceInMaps(map_aligned_start,
502 map_aligned_end,
503 slot_callback);
504 }
505
506
507 // This function iterates over all the pointers in a paged space in the heap,
508 // looking for pointers into new space. Within the pages there may be dead
509 // objects that have not been overwritten by free spaces or fillers because of
510 // lazy sweeping. These dead objects may not contain pointers to new space.
511 // The garbage areas that have been swept properly (these will normally be the
512 // large ones) will be marked with free space and filler map words. In
513 // addition any area that has never been used at all for object allocation must
514 // be marked with a free space or filler. Because the free space and filler
515 // maps do not move we can always recognize these even after a compaction.
516 // Normal objects like FixedArrays and JSObjects should not contain references
517 // to these maps. The special garbage section (see comment in spaces.h) is
518 // skipped since it can contain absolutely anything. Any objects that are
519 // allocated during iteration may or may not be visited by the iteration, but
520 // they will not be partially visited.
FindPointersToNewSpaceOnPage(PagedSpace * space,Page * page,RegionCallback region_callback,ObjectSlotCallback slot_callback)521 void StoreBuffer::FindPointersToNewSpaceOnPage(
522 PagedSpace* space,
523 Page* page,
524 RegionCallback region_callback,
525 ObjectSlotCallback slot_callback) {
526 Address visitable_start = page->area_start();
527 Address end_of_page = page->area_end();
528
529 Address visitable_end = visitable_start;
530
531 Object* free_space_map = heap_->free_space_map();
532 Object* two_pointer_filler_map = heap_->two_pointer_filler_map();
533
534 while (visitable_end < end_of_page) {
535 Object* o = *reinterpret_cast<Object**>(visitable_end);
536 // Skip fillers but not things that look like fillers in the special
537 // garbage section which can contain anything.
538 if (o == free_space_map ||
539 o == two_pointer_filler_map ||
540 (visitable_end == space->top() && visitable_end != space->limit())) {
541 if (visitable_start != visitable_end) {
542 // After calling this the special garbage section may have moved.
543 (this->*region_callback)(visitable_start,
544 visitable_end,
545 slot_callback);
546 if (visitable_end >= space->top() && visitable_end < space->limit()) {
547 visitable_end = space->limit();
548 visitable_start = visitable_end;
549 continue;
550 }
551 }
552 if (visitable_end == space->top() && visitable_end != space->limit()) {
553 visitable_start = visitable_end = space->limit();
554 } else {
555 // At this point we are either at the start of a filler or we are at
556 // the point where the space->top() used to be before the
557 // visit_pointer_region call above. Either way we can skip the
558 // object at the current spot: We don't promise to visit objects
559 // allocated during heap traversal, and if space->top() moved then it
560 // must be because an object was allocated at this point.
561 visitable_start =
562 visitable_end + HeapObject::FromAddress(visitable_end)->Size();
563 visitable_end = visitable_start;
564 }
565 } else {
566 ASSERT(o != free_space_map);
567 ASSERT(o != two_pointer_filler_map);
568 ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
569 visitable_end += kPointerSize;
570 }
571 }
572 ASSERT(visitable_end == end_of_page);
573 if (visitable_start != visitable_end) {
574 (this->*region_callback)(visitable_start,
575 visitable_end,
576 slot_callback);
577 }
578 }
579
580
IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback)581 void StoreBuffer::IteratePointersInStoreBuffer(
582 ObjectSlotCallback slot_callback) {
583 Address* limit = old_top_;
584 old_top_ = old_start_;
585 {
586 DontMoveStoreBufferEntriesScope scope(this);
587 for (Address* current = old_start_; current < limit; current++) {
588 #ifdef DEBUG
589 Address* saved_top = old_top_;
590 #endif
591 Object** slot = reinterpret_cast<Object**>(*current);
592 Object* object = *slot;
593 if (heap_->InFromSpace(object)) {
594 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
595 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
596 if (heap_->InNewSpace(*slot)) {
597 EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
598 }
599 }
600 ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
601 }
602 }
603 }
604
605
IteratePointersToNewSpace(ObjectSlotCallback slot_callback)606 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
607 // We do not sort or remove duplicated entries from the store buffer because
608 // we expect that callback will rebuild the store buffer thus removing
609 // all duplicates and pointers to old space.
610 bool some_pages_to_scan = PrepareForIteration();
611
612 // TODO(gc): we want to skip slots on evacuation candidates
613 // but we can't simply figure that out from slot address
614 // because slot can belong to a large object.
615 IteratePointersInStoreBuffer(slot_callback);
616
617 // We are done scanning all the pointers that were in the store buffer, but
618 // there may be some pages marked scan_on_scavenge that have pointers to new
619 // space that are not in the store buffer. We must scan them now. As we
620 // scan, the surviving pointers to new space will be added to the store
621 // buffer. If there are still a lot of pointers to new space then we will
622 // keep the scan_on_scavenge flag on the page and discard the pointers that
623 // were added to the store buffer. If there are not many pointers to new
624 // space left on the page we will keep the pointers in the store buffer and
625 // remove the flag from the page.
626 if (some_pages_to_scan) {
627 if (callback_ != NULL) {
628 (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
629 }
630 PointerChunkIterator it(heap_);
631 MemoryChunk* chunk;
632 while ((chunk = it.next()) != NULL) {
633 if (chunk->scan_on_scavenge()) {
634 chunk->set_scan_on_scavenge(false);
635 if (callback_ != NULL) {
636 (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
637 }
638 if (chunk->owner() == heap_->lo_space()) {
639 LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
640 HeapObject* array = large_page->GetObject();
641 ASSERT(array->IsFixedArray());
642 Address start = array->address();
643 Address end = start + array->Size();
644 FindPointersToNewSpaceInRegion(start, end, slot_callback);
645 } else {
646 Page* page = reinterpret_cast<Page*>(chunk);
647 PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
648 FindPointersToNewSpaceOnPage(
649 owner,
650 page,
651 (owner == heap_->map_space() ?
652 &StoreBuffer::FindPointersToNewSpaceInMapsRegion :
653 &StoreBuffer::FindPointersToNewSpaceInRegion),
654 slot_callback);
655 }
656 }
657 }
658 if (callback_ != NULL) {
659 (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
660 }
661 }
662 }
663
664
Compact()665 void StoreBuffer::Compact() {
666 Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
667
668 if (top == start_) return;
669
670 // There's no check of the limit in the loop below so we check here for
671 // the worst case (compaction doesn't eliminate any pointers).
672 ASSERT(top <= limit_);
673 heap_->public_set_store_buffer_top(start_);
674 EnsureSpace(top - start_);
675 ASSERT(may_move_store_buffer_entries_);
676 // Goes through the addresses in the store buffer attempting to remove
677 // duplicates. In the interest of speed this is a lossy operation. Some
678 // duplicates will remain. We have two hash sets with different hash
679 // functions to reduce the number of unnecessary clashes.
680 hash_sets_are_empty_ = false; // Hash sets are in use.
681 for (Address* current = start_; current < top; current++) {
682 ASSERT(!heap_->cell_space()->Contains(*current));
683 ASSERT(!heap_->code_space()->Contains(*current));
684 ASSERT(!heap_->old_data_space()->Contains(*current));
685 uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
686 // Shift out the last bits including any tags.
687 int_addr >>= kPointerSizeLog2;
688 int hash1 =
689 ((int_addr ^ (int_addr >> kHashSetLengthLog2)) & (kHashSetLength - 1));
690 if (hash_set_1_[hash1] == int_addr) continue;
691 uintptr_t hash2 = (int_addr - (int_addr >> kHashSetLengthLog2));
692 hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
693 hash2 &= (kHashSetLength - 1);
694 if (hash_set_2_[hash2] == int_addr) continue;
695 if (hash_set_1_[hash1] == 0) {
696 hash_set_1_[hash1] = int_addr;
697 } else if (hash_set_2_[hash2] == 0) {
698 hash_set_2_[hash2] = int_addr;
699 } else {
700 // Rather than slowing down we just throw away some entries. This will
701 // cause some duplicates to remain undetected.
702 hash_set_1_[hash1] = int_addr;
703 hash_set_2_[hash2] = 0;
704 }
705 old_buffer_is_sorted_ = false;
706 old_buffer_is_filtered_ = false;
707 *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
708 ASSERT(old_top_ <= old_limit_);
709 }
710 heap_->isolate()->counters()->store_buffer_compactions()->Increment();
711 CheckForFullBuffer();
712 }
713
714
CheckForFullBuffer()715 void StoreBuffer::CheckForFullBuffer() {
716 EnsureSpace(kStoreBufferSize * 2);
717 }
718
719 } } // namespace v8::internal
720