1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11
12 #include "clang/Sema/SemaInternal.h"
13 #include "clang/Sema/Lookup.h"
14 #include "clang/Sema/Scope.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "TreeTransform.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeVisitor.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/SmallBitVector.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringExtras.h"
32 using namespace clang;
33 using namespace sema;
34
35 // Exported for use by Parser.
36 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)37 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38 unsigned N) {
39 if (!N) return SourceRange();
40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41 }
42
43 /// \brief Determine whether the declaration found is acceptable as the name
44 /// of a template and, if so, return that template declaration. Otherwise,
45 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)46 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47 NamedDecl *Orig,
48 bool AllowFunctionTemplates) {
49 NamedDecl *D = Orig->getUnderlyingDecl();
50
51 if (isa<TemplateDecl>(D)) {
52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53 return 0;
54
55 return Orig;
56 }
57
58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59 // C++ [temp.local]p1:
60 // Like normal (non-template) classes, class templates have an
61 // injected-class-name (Clause 9). The injected-class-name
62 // can be used with or without a template-argument-list. When
63 // it is used without a template-argument-list, it is
64 // equivalent to the injected-class-name followed by the
65 // template-parameters of the class template enclosed in
66 // <>. When it is used with a template-argument-list, it
67 // refers to the specified class template specialization,
68 // which could be the current specialization or another
69 // specialization.
70 if (Record->isInjectedClassName()) {
71 Record = cast<CXXRecordDecl>(Record->getDeclContext());
72 if (Record->getDescribedClassTemplate())
73 return Record->getDescribedClassTemplate();
74
75 if (ClassTemplateSpecializationDecl *Spec
76 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77 return Spec->getSpecializedTemplate();
78 }
79
80 return 0;
81 }
82
83 return 0;
84 }
85
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)86 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87 bool AllowFunctionTemplates) {
88 // The set of class templates we've already seen.
89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90 LookupResult::Filter filter = R.makeFilter();
91 while (filter.hasNext()) {
92 NamedDecl *Orig = filter.next();
93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94 AllowFunctionTemplates);
95 if (!Repl)
96 filter.erase();
97 else if (Repl != Orig) {
98
99 // C++ [temp.local]p3:
100 // A lookup that finds an injected-class-name (10.2) can result in an
101 // ambiguity in certain cases (for example, if it is found in more than
102 // one base class). If all of the injected-class-names that are found
103 // refer to specializations of the same class template, and if the name
104 // is used as a template-name, the reference refers to the class
105 // template itself and not a specialization thereof, and is not
106 // ambiguous.
107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108 if (!ClassTemplates.insert(ClassTmpl)) {
109 filter.erase();
110 continue;
111 }
112
113 // FIXME: we promote access to public here as a workaround to
114 // the fact that LookupResult doesn't let us remember that we
115 // found this template through a particular injected class name,
116 // which means we end up doing nasty things to the invariants.
117 // Pretending that access is public is *much* safer.
118 filter.replace(Repl, AS_public);
119 }
120 }
121 filter.done();
122 }
123
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)124 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125 bool AllowFunctionTemplates) {
126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128 return true;
129
130 return false;
131 }
132
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)133 TemplateNameKind Sema::isTemplateName(Scope *S,
134 CXXScopeSpec &SS,
135 bool hasTemplateKeyword,
136 UnqualifiedId &Name,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext,
139 TemplateTy &TemplateResult,
140 bool &MemberOfUnknownSpecialization) {
141 assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143 DeclarationName TName;
144 MemberOfUnknownSpecialization = false;
145
146 switch (Name.getKind()) {
147 case UnqualifiedId::IK_Identifier:
148 TName = DeclarationName(Name.Identifier);
149 break;
150
151 case UnqualifiedId::IK_OperatorFunctionId:
152 TName = Context.DeclarationNames.getCXXOperatorName(
153 Name.OperatorFunctionId.Operator);
154 break;
155
156 case UnqualifiedId::IK_LiteralOperatorId:
157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158 break;
159
160 default:
161 return TNK_Non_template;
162 }
163
164 QualType ObjectType = ObjectTypePtr.get();
165
166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168 MemberOfUnknownSpecialization);
169 if (R.empty()) return TNK_Non_template;
170 if (R.isAmbiguous()) {
171 // Suppress diagnostics; we'll redo this lookup later.
172 R.suppressDiagnostics();
173
174 // FIXME: we might have ambiguous templates, in which case we
175 // should at least parse them properly!
176 return TNK_Non_template;
177 }
178
179 TemplateName Template;
180 TemplateNameKind TemplateKind;
181
182 unsigned ResultCount = R.end() - R.begin();
183 if (ResultCount > 1) {
184 // We assume that we'll preserve the qualifier from a function
185 // template name in other ways.
186 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187 TemplateKind = TNK_Function_template;
188
189 // We'll do this lookup again later.
190 R.suppressDiagnostics();
191 } else {
192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194 if (SS.isSet() && !SS.isInvalid()) {
195 NestedNameSpecifier *Qualifier
196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197 Template = Context.getQualifiedTemplateName(Qualifier,
198 hasTemplateKeyword, TD);
199 } else {
200 Template = TemplateName(TD);
201 }
202
203 if (isa<FunctionTemplateDecl>(TD)) {
204 TemplateKind = TNK_Function_template;
205
206 // We'll do this lookup again later.
207 R.suppressDiagnostics();
208 } else {
209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210 isa<TypeAliasTemplateDecl>(TD));
211 TemplateKind = TNK_Type_template;
212 }
213 }
214
215 TemplateResult = TemplateTy::make(Template);
216 return TemplateKind;
217 }
218
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)219 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220 SourceLocation IILoc,
221 Scope *S,
222 const CXXScopeSpec *SS,
223 TemplateTy &SuggestedTemplate,
224 TemplateNameKind &SuggestedKind) {
225 // We can't recover unless there's a dependent scope specifier preceding the
226 // template name.
227 // FIXME: Typo correction?
228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229 computeDeclContext(*SS))
230 return false;
231
232 // The code is missing a 'template' keyword prior to the dependent template
233 // name.
234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235 Diag(IILoc, diag::err_template_kw_missing)
236 << Qualifier << II.getName()
237 << FixItHint::CreateInsertion(IILoc, "template ");
238 SuggestedTemplate
239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240 SuggestedKind = TNK_Dependent_template_name;
241 return true;
242 }
243
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)244 void Sema::LookupTemplateName(LookupResult &Found,
245 Scope *S, CXXScopeSpec &SS,
246 QualType ObjectType,
247 bool EnteringContext,
248 bool &MemberOfUnknownSpecialization) {
249 // Determine where to perform name lookup
250 MemberOfUnknownSpecialization = false;
251 DeclContext *LookupCtx = 0;
252 bool isDependent = false;
253 if (!ObjectType.isNull()) {
254 // This nested-name-specifier occurs in a member access expression, e.g.,
255 // x->B::f, and we are looking into the type of the object.
256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257 LookupCtx = computeDeclContext(ObjectType);
258 isDependent = ObjectType->isDependentType();
259 assert((isDependent || !ObjectType->isIncompleteType()) &&
260 "Caller should have completed object type");
261
262 // Template names cannot appear inside an Objective-C class or object type.
263 if (ObjectType->isObjCObjectOrInterfaceType()) {
264 Found.clear();
265 return;
266 }
267 } else if (SS.isSet()) {
268 // This nested-name-specifier occurs after another nested-name-specifier,
269 // so long into the context associated with the prior nested-name-specifier.
270 LookupCtx = computeDeclContext(SS, EnteringContext);
271 isDependent = isDependentScopeSpecifier(SS);
272
273 // The declaration context must be complete.
274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275 return;
276 }
277
278 bool ObjectTypeSearchedInScope = false;
279 bool AllowFunctionTemplatesInLookup = true;
280 if (LookupCtx) {
281 // Perform "qualified" name lookup into the declaration context we
282 // computed, which is either the type of the base of a member access
283 // expression or the declaration context associated with a prior
284 // nested-name-specifier.
285 LookupQualifiedName(Found, LookupCtx);
286 if (!ObjectType.isNull() && Found.empty()) {
287 // C++ [basic.lookup.classref]p1:
288 // In a class member access expression (5.2.5), if the . or -> token is
289 // immediately followed by an identifier followed by a <, the
290 // identifier must be looked up to determine whether the < is the
291 // beginning of a template argument list (14.2) or a less-than operator.
292 // The identifier is first looked up in the class of the object
293 // expression. If the identifier is not found, it is then looked up in
294 // the context of the entire postfix-expression and shall name a class
295 // or function template.
296 if (S) LookupName(Found, S);
297 ObjectTypeSearchedInScope = true;
298 AllowFunctionTemplatesInLookup = false;
299 }
300 } else if (isDependent && (!S || ObjectType.isNull())) {
301 // We cannot look into a dependent object type or nested nme
302 // specifier.
303 MemberOfUnknownSpecialization = true;
304 return;
305 } else {
306 // Perform unqualified name lookup in the current scope.
307 LookupName(Found, S);
308
309 if (!ObjectType.isNull())
310 AllowFunctionTemplatesInLookup = false;
311 }
312
313 if (Found.empty() && !isDependent) {
314 // If we did not find any names, attempt to correct any typos.
315 DeclarationName Name = Found.getLookupName();
316 Found.clear();
317 // Simple filter callback that, for keywords, only accepts the C++ *_cast
318 CorrectionCandidateCallback FilterCCC;
319 FilterCCC.WantTypeSpecifiers = false;
320 FilterCCC.WantExpressionKeywords = false;
321 FilterCCC.WantRemainingKeywords = false;
322 FilterCCC.WantCXXNamedCasts = true;
323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324 Found.getLookupKind(), S, &SS,
325 FilterCCC, LookupCtx)) {
326 Found.setLookupName(Corrected.getCorrection());
327 if (Corrected.getCorrectionDecl())
328 Found.addDecl(Corrected.getCorrectionDecl());
329 FilterAcceptableTemplateNames(Found);
330 if (!Found.empty()) {
331 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333 if (LookupCtx)
334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337 else
338 Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339 << Name << CorrectedQuotedStr
340 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342 Diag(Template->getLocation(), diag::note_previous_decl)
343 << CorrectedQuotedStr;
344 }
345 } else {
346 Found.setLookupName(Name);
347 }
348 }
349
350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351 if (Found.empty()) {
352 if (isDependent)
353 MemberOfUnknownSpecialization = true;
354 return;
355 }
356
357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
358 // C++ [basic.lookup.classref]p1:
359 // [...] If the lookup in the class of the object expression finds a
360 // template, the name is also looked up in the context of the entire
361 // postfix-expression and [...]
362 //
363 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
364 LookupOrdinaryName);
365 LookupName(FoundOuter, S);
366 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
367
368 if (FoundOuter.empty()) {
369 // - if the name is not found, the name found in the class of the
370 // object expression is used, otherwise
371 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
372 FoundOuter.isAmbiguous()) {
373 // - if the name is found in the context of the entire
374 // postfix-expression and does not name a class template, the name
375 // found in the class of the object expression is used, otherwise
376 FoundOuter.clear();
377 } else if (!Found.isSuppressingDiagnostics()) {
378 // - if the name found is a class template, it must refer to the same
379 // entity as the one found in the class of the object expression,
380 // otherwise the program is ill-formed.
381 if (!Found.isSingleResult() ||
382 Found.getFoundDecl()->getCanonicalDecl()
383 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
384 Diag(Found.getNameLoc(),
385 diag::ext_nested_name_member_ref_lookup_ambiguous)
386 << Found.getLookupName()
387 << ObjectType;
388 Diag(Found.getRepresentativeDecl()->getLocation(),
389 diag::note_ambig_member_ref_object_type)
390 << ObjectType;
391 Diag(FoundOuter.getFoundDecl()->getLocation(),
392 diag::note_ambig_member_ref_scope);
393
394 // Recover by taking the template that we found in the object
395 // expression's type.
396 }
397 }
398 }
399 }
400
401 /// ActOnDependentIdExpression - Handle a dependent id-expression that
402 /// was just parsed. This is only possible with an explicit scope
403 /// specifier naming a dependent type.
404 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)405 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
406 SourceLocation TemplateKWLoc,
407 const DeclarationNameInfo &NameInfo,
408 bool isAddressOfOperand,
409 const TemplateArgumentListInfo *TemplateArgs) {
410 DeclContext *DC = getFunctionLevelDeclContext();
411
412 if (!isAddressOfOperand &&
413 isa<CXXMethodDecl>(DC) &&
414 cast<CXXMethodDecl>(DC)->isInstance()) {
415 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
416
417 // Since the 'this' expression is synthesized, we don't need to
418 // perform the double-lookup check.
419 NamedDecl *FirstQualifierInScope = 0;
420
421 return Owned(CXXDependentScopeMemberExpr::Create(Context,
422 /*This*/ 0, ThisType,
423 /*IsArrow*/ true,
424 /*Op*/ SourceLocation(),
425 SS.getWithLocInContext(Context),
426 TemplateKWLoc,
427 FirstQualifierInScope,
428 NameInfo,
429 TemplateArgs));
430 }
431
432 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
433 }
434
435 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)436 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
437 SourceLocation TemplateKWLoc,
438 const DeclarationNameInfo &NameInfo,
439 const TemplateArgumentListInfo *TemplateArgs) {
440 return Owned(DependentScopeDeclRefExpr::Create(Context,
441 SS.getWithLocInContext(Context),
442 TemplateKWLoc,
443 NameInfo,
444 TemplateArgs));
445 }
446
447 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
448 /// that the template parameter 'PrevDecl' is being shadowed by a new
449 /// declaration at location Loc. Returns true to indicate that this is
450 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)451 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
452 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
453
454 // Microsoft Visual C++ permits template parameters to be shadowed.
455 if (getLangOpts().MicrosoftExt)
456 return;
457
458 // C++ [temp.local]p4:
459 // A template-parameter shall not be redeclared within its
460 // scope (including nested scopes).
461 Diag(Loc, diag::err_template_param_shadow)
462 << cast<NamedDecl>(PrevDecl)->getDeclName();
463 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
464 return;
465 }
466
467 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
468 /// the parameter D to reference the templated declaration and return a pointer
469 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)470 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
471 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
472 D = Temp->getTemplatedDecl();
473 return Temp;
474 }
475 return 0;
476 }
477
getTemplatePackExpansion(SourceLocation EllipsisLoc) const478 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
479 SourceLocation EllipsisLoc) const {
480 assert(Kind == Template &&
481 "Only template template arguments can be pack expansions here");
482 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
483 "Template template argument pack expansion without packs");
484 ParsedTemplateArgument Result(*this);
485 Result.EllipsisLoc = EllipsisLoc;
486 return Result;
487 }
488
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)489 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
490 const ParsedTemplateArgument &Arg) {
491
492 switch (Arg.getKind()) {
493 case ParsedTemplateArgument::Type: {
494 TypeSourceInfo *DI;
495 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
496 if (!DI)
497 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
498 return TemplateArgumentLoc(TemplateArgument(T), DI);
499 }
500
501 case ParsedTemplateArgument::NonType: {
502 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
503 return TemplateArgumentLoc(TemplateArgument(E), E);
504 }
505
506 case ParsedTemplateArgument::Template: {
507 TemplateName Template = Arg.getAsTemplate().get();
508 TemplateArgument TArg;
509 if (Arg.getEllipsisLoc().isValid())
510 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
511 else
512 TArg = Template;
513 return TemplateArgumentLoc(TArg,
514 Arg.getScopeSpec().getWithLocInContext(
515 SemaRef.Context),
516 Arg.getLocation(),
517 Arg.getEllipsisLoc());
518 }
519 }
520
521 llvm_unreachable("Unhandled parsed template argument");
522 }
523
524 /// \brief Translates template arguments as provided by the parser
525 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)526 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
527 TemplateArgumentListInfo &TemplateArgs) {
528 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
529 TemplateArgs.addArgument(translateTemplateArgument(*this,
530 TemplateArgsIn[I]));
531 }
532
533 /// ActOnTypeParameter - Called when a C++ template type parameter
534 /// (e.g., "typename T") has been parsed. Typename specifies whether
535 /// the keyword "typename" was used to declare the type parameter
536 /// (otherwise, "class" was used), and KeyLoc is the location of the
537 /// "class" or "typename" keyword. ParamName is the name of the
538 /// parameter (NULL indicates an unnamed template parameter) and
539 /// ParamNameLoc is the location of the parameter name (if any).
540 /// If the type parameter has a default argument, it will be added
541 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,bool Ellipsis,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)542 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
543 SourceLocation EllipsisLoc,
544 SourceLocation KeyLoc,
545 IdentifierInfo *ParamName,
546 SourceLocation ParamNameLoc,
547 unsigned Depth, unsigned Position,
548 SourceLocation EqualLoc,
549 ParsedType DefaultArg) {
550 assert(S->isTemplateParamScope() &&
551 "Template type parameter not in template parameter scope!");
552 bool Invalid = false;
553
554 if (ParamName) {
555 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
556 LookupOrdinaryName,
557 ForRedeclaration);
558 if (PrevDecl && PrevDecl->isTemplateParameter()) {
559 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
560 PrevDecl = 0;
561 }
562 }
563
564 SourceLocation Loc = ParamNameLoc;
565 if (!ParamName)
566 Loc = KeyLoc;
567
568 TemplateTypeParmDecl *Param
569 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
570 KeyLoc, Loc, Depth, Position, ParamName,
571 Typename, Ellipsis);
572 Param->setAccess(AS_public);
573 if (Invalid)
574 Param->setInvalidDecl();
575
576 if (ParamName) {
577 // Add the template parameter into the current scope.
578 S->AddDecl(Param);
579 IdResolver.AddDecl(Param);
580 }
581
582 // C++0x [temp.param]p9:
583 // A default template-argument may be specified for any kind of
584 // template-parameter that is not a template parameter pack.
585 if (DefaultArg && Ellipsis) {
586 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
587 DefaultArg = ParsedType();
588 }
589
590 // Handle the default argument, if provided.
591 if (DefaultArg) {
592 TypeSourceInfo *DefaultTInfo;
593 GetTypeFromParser(DefaultArg, &DefaultTInfo);
594
595 assert(DefaultTInfo && "expected source information for type");
596
597 // Check for unexpanded parameter packs.
598 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
599 UPPC_DefaultArgument))
600 return Param;
601
602 // Check the template argument itself.
603 if (CheckTemplateArgument(Param, DefaultTInfo)) {
604 Param->setInvalidDecl();
605 return Param;
606 }
607
608 Param->setDefaultArgument(DefaultTInfo, false);
609 }
610
611 return Param;
612 }
613
614 /// \brief Check that the type of a non-type template parameter is
615 /// well-formed.
616 ///
617 /// \returns the (possibly-promoted) parameter type if valid;
618 /// otherwise, produces a diagnostic and returns a NULL type.
619 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)620 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
621 // We don't allow variably-modified types as the type of non-type template
622 // parameters.
623 if (T->isVariablyModifiedType()) {
624 Diag(Loc, diag::err_variably_modified_nontype_template_param)
625 << T;
626 return QualType();
627 }
628
629 // C++ [temp.param]p4:
630 //
631 // A non-type template-parameter shall have one of the following
632 // (optionally cv-qualified) types:
633 //
634 // -- integral or enumeration type,
635 if (T->isIntegralOrEnumerationType() ||
636 // -- pointer to object or pointer to function,
637 T->isPointerType() ||
638 // -- reference to object or reference to function,
639 T->isReferenceType() ||
640 // -- pointer to member,
641 T->isMemberPointerType() ||
642 // -- std::nullptr_t.
643 T->isNullPtrType() ||
644 // If T is a dependent type, we can't do the check now, so we
645 // assume that it is well-formed.
646 T->isDependentType()) {
647 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
648 // are ignored when determining its type.
649 return T.getUnqualifiedType();
650 }
651
652 // C++ [temp.param]p8:
653 //
654 // A non-type template-parameter of type "array of T" or
655 // "function returning T" is adjusted to be of type "pointer to
656 // T" or "pointer to function returning T", respectively.
657 else if (T->isArrayType())
658 // FIXME: Keep the type prior to promotion?
659 return Context.getArrayDecayedType(T);
660 else if (T->isFunctionType())
661 // FIXME: Keep the type prior to promotion?
662 return Context.getPointerType(T);
663
664 Diag(Loc, diag::err_template_nontype_parm_bad_type)
665 << T;
666
667 return QualType();
668 }
669
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)670 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
671 unsigned Depth,
672 unsigned Position,
673 SourceLocation EqualLoc,
674 Expr *Default) {
675 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
676 QualType T = TInfo->getType();
677
678 assert(S->isTemplateParamScope() &&
679 "Non-type template parameter not in template parameter scope!");
680 bool Invalid = false;
681
682 IdentifierInfo *ParamName = D.getIdentifier();
683 if (ParamName) {
684 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
685 LookupOrdinaryName,
686 ForRedeclaration);
687 if (PrevDecl && PrevDecl->isTemplateParameter()) {
688 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
689 PrevDecl = 0;
690 }
691 }
692
693 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694 if (T.isNull()) {
695 T = Context.IntTy; // Recover with an 'int' type.
696 Invalid = true;
697 }
698
699 bool IsParameterPack = D.hasEllipsis();
700 NonTypeTemplateParmDecl *Param
701 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
702 D.getLocStart(),
703 D.getIdentifierLoc(),
704 Depth, Position, ParamName, T,
705 IsParameterPack, TInfo);
706 Param->setAccess(AS_public);
707
708 if (Invalid)
709 Param->setInvalidDecl();
710
711 if (D.getIdentifier()) {
712 // Add the template parameter into the current scope.
713 S->AddDecl(Param);
714 IdResolver.AddDecl(Param);
715 }
716
717 // C++0x [temp.param]p9:
718 // A default template-argument may be specified for any kind of
719 // template-parameter that is not a template parameter pack.
720 if (Default && IsParameterPack) {
721 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
722 Default = 0;
723 }
724
725 // Check the well-formedness of the default template argument, if provided.
726 if (Default) {
727 // Check for unexpanded parameter packs.
728 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
729 return Param;
730
731 TemplateArgument Converted;
732 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
733 if (DefaultRes.isInvalid()) {
734 Param->setInvalidDecl();
735 return Param;
736 }
737 Default = DefaultRes.take();
738
739 Param->setDefaultArgument(Default, false);
740 }
741
742 return Param;
743 }
744
745 /// ActOnTemplateTemplateParameter - Called when a C++ template template
746 /// parameter (e.g. T in template <template <typename> class T> class array)
747 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)748 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
749 SourceLocation TmpLoc,
750 TemplateParameterList *Params,
751 SourceLocation EllipsisLoc,
752 IdentifierInfo *Name,
753 SourceLocation NameLoc,
754 unsigned Depth,
755 unsigned Position,
756 SourceLocation EqualLoc,
757 ParsedTemplateArgument Default) {
758 assert(S->isTemplateParamScope() &&
759 "Template template parameter not in template parameter scope!");
760
761 // Construct the parameter object.
762 bool IsParameterPack = EllipsisLoc.isValid();
763 TemplateTemplateParmDecl *Param =
764 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
765 NameLoc.isInvalid()? TmpLoc : NameLoc,
766 Depth, Position, IsParameterPack,
767 Name, Params);
768 Param->setAccess(AS_public);
769
770 // If the template template parameter has a name, then link the identifier
771 // into the scope and lookup mechanisms.
772 if (Name) {
773 S->AddDecl(Param);
774 IdResolver.AddDecl(Param);
775 }
776
777 if (Params->size() == 0) {
778 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
779 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
780 Param->setInvalidDecl();
781 }
782
783 // C++0x [temp.param]p9:
784 // A default template-argument may be specified for any kind of
785 // template-parameter that is not a template parameter pack.
786 if (IsParameterPack && !Default.isInvalid()) {
787 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
788 Default = ParsedTemplateArgument();
789 }
790
791 if (!Default.isInvalid()) {
792 // Check only that we have a template template argument. We don't want to
793 // try to check well-formedness now, because our template template parameter
794 // might have dependent types in its template parameters, which we wouldn't
795 // be able to match now.
796 //
797 // If none of the template template parameter's template arguments mention
798 // other template parameters, we could actually perform more checking here.
799 // However, it isn't worth doing.
800 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
801 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
802 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
803 << DefaultArg.getSourceRange();
804 return Param;
805 }
806
807 // Check for unexpanded parameter packs.
808 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
809 DefaultArg.getArgument().getAsTemplate(),
810 UPPC_DefaultArgument))
811 return Param;
812
813 Param->setDefaultArgument(DefaultArg, false);
814 }
815
816 return Param;
817 }
818
819 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
820 /// contains the template parameters in Params/NumParams.
821 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)822 Sema::ActOnTemplateParameterList(unsigned Depth,
823 SourceLocation ExportLoc,
824 SourceLocation TemplateLoc,
825 SourceLocation LAngleLoc,
826 Decl **Params, unsigned NumParams,
827 SourceLocation RAngleLoc) {
828 if (ExportLoc.isValid())
829 Diag(ExportLoc, diag::warn_template_export_unsupported);
830
831 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
832 (NamedDecl**)Params, NumParams,
833 RAngleLoc);
834 }
835
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)836 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
837 if (SS.isSet())
838 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
839 }
840
841 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)842 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
843 SourceLocation KWLoc, CXXScopeSpec &SS,
844 IdentifierInfo *Name, SourceLocation NameLoc,
845 AttributeList *Attr,
846 TemplateParameterList *TemplateParams,
847 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
848 unsigned NumOuterTemplateParamLists,
849 TemplateParameterList** OuterTemplateParamLists) {
850 assert(TemplateParams && TemplateParams->size() > 0 &&
851 "No template parameters");
852 assert(TUK != TUK_Reference && "Can only declare or define class templates");
853 bool Invalid = false;
854
855 // Check that we can declare a template here.
856 if (CheckTemplateDeclScope(S, TemplateParams))
857 return true;
858
859 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
860 assert(Kind != TTK_Enum && "can't build template of enumerated type");
861
862 // There is no such thing as an unnamed class template.
863 if (!Name) {
864 Diag(KWLoc, diag::err_template_unnamed_class);
865 return true;
866 }
867
868 // Find any previous declaration with this name.
869 DeclContext *SemanticContext;
870 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
871 ForRedeclaration);
872 if (SS.isNotEmpty() && !SS.isInvalid()) {
873 SemanticContext = computeDeclContext(SS, true);
874 if (!SemanticContext) {
875 // FIXME: Horrible, horrible hack! We can't currently represent this
876 // in the AST, and historically we have just ignored such friend
877 // class templates, so don't complain here.
878 if (TUK != TUK_Friend)
879 Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
880 << SS.getScopeRep() << SS.getRange();
881 return true;
882 }
883
884 if (RequireCompleteDeclContext(SS, SemanticContext))
885 return true;
886
887 // If we're adding a template to a dependent context, we may need to
888 // rebuilding some of the types used within the template parameter list,
889 // now that we know what the current instantiation is.
890 if (SemanticContext->isDependentContext()) {
891 ContextRAII SavedContext(*this, SemanticContext);
892 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
893 Invalid = true;
894 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
895 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
896
897 LookupQualifiedName(Previous, SemanticContext);
898 } else {
899 SemanticContext = CurContext;
900 LookupName(Previous, S);
901 }
902
903 if (Previous.isAmbiguous())
904 return true;
905
906 NamedDecl *PrevDecl = 0;
907 if (Previous.begin() != Previous.end())
908 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
909
910 // If there is a previous declaration with the same name, check
911 // whether this is a valid redeclaration.
912 ClassTemplateDecl *PrevClassTemplate
913 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
914
915 // We may have found the injected-class-name of a class template,
916 // class template partial specialization, or class template specialization.
917 // In these cases, grab the template that is being defined or specialized.
918 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
919 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
920 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
921 PrevClassTemplate
922 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
923 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
924 PrevClassTemplate
925 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
926 ->getSpecializedTemplate();
927 }
928 }
929
930 if (TUK == TUK_Friend) {
931 // C++ [namespace.memdef]p3:
932 // [...] When looking for a prior declaration of a class or a function
933 // declared as a friend, and when the name of the friend class or
934 // function is neither a qualified name nor a template-id, scopes outside
935 // the innermost enclosing namespace scope are not considered.
936 if (!SS.isSet()) {
937 DeclContext *OutermostContext = CurContext;
938 while (!OutermostContext->isFileContext())
939 OutermostContext = OutermostContext->getLookupParent();
940
941 if (PrevDecl &&
942 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
943 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
944 SemanticContext = PrevDecl->getDeclContext();
945 } else {
946 // Declarations in outer scopes don't matter. However, the outermost
947 // context we computed is the semantic context for our new
948 // declaration.
949 PrevDecl = PrevClassTemplate = 0;
950 SemanticContext = OutermostContext;
951 }
952 }
953
954 if (CurContext->isDependentContext()) {
955 // If this is a dependent context, we don't want to link the friend
956 // class template to the template in scope, because that would perform
957 // checking of the template parameter lists that can't be performed
958 // until the outer context is instantiated.
959 PrevDecl = PrevClassTemplate = 0;
960 }
961 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
962 PrevDecl = PrevClassTemplate = 0;
963
964 if (PrevClassTemplate) {
965 // Ensure that the template parameter lists are compatible.
966 if (!TemplateParameterListsAreEqual(TemplateParams,
967 PrevClassTemplate->getTemplateParameters(),
968 /*Complain=*/true,
969 TPL_TemplateMatch))
970 return true;
971
972 // C++ [temp.class]p4:
973 // In a redeclaration, partial specialization, explicit
974 // specialization or explicit instantiation of a class template,
975 // the class-key shall agree in kind with the original class
976 // template declaration (7.1.5.3).
977 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
978 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
979 TUK == TUK_Definition, KWLoc, *Name)) {
980 Diag(KWLoc, diag::err_use_with_wrong_tag)
981 << Name
982 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
983 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
984 Kind = PrevRecordDecl->getTagKind();
985 }
986
987 // Check for redefinition of this class template.
988 if (TUK == TUK_Definition) {
989 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
990 Diag(NameLoc, diag::err_redefinition) << Name;
991 Diag(Def->getLocation(), diag::note_previous_definition);
992 // FIXME: Would it make sense to try to "forget" the previous
993 // definition, as part of error recovery?
994 return true;
995 }
996 }
997 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
998 // Maybe we will complain about the shadowed template parameter.
999 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1000 // Just pretend that we didn't see the previous declaration.
1001 PrevDecl = 0;
1002 } else if (PrevDecl) {
1003 // C++ [temp]p5:
1004 // A class template shall not have the same name as any other
1005 // template, class, function, object, enumeration, enumerator,
1006 // namespace, or type in the same scope (3.3), except as specified
1007 // in (14.5.4).
1008 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1009 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1010 return true;
1011 }
1012
1013 // Check the template parameter list of this declaration, possibly
1014 // merging in the template parameter list from the previous class
1015 // template declaration.
1016 if (CheckTemplateParameterList(TemplateParams,
1017 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1018 (SS.isSet() && SemanticContext &&
1019 SemanticContext->isRecord() &&
1020 SemanticContext->isDependentContext())
1021 ? TPC_ClassTemplateMember
1022 : TPC_ClassTemplate))
1023 Invalid = true;
1024
1025 if (SS.isSet()) {
1026 // If the name of the template was qualified, we must be defining the
1027 // template out-of-line.
1028 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1029 !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1030 Diag(NameLoc, diag::err_member_def_does_not_match)
1031 << Name << SemanticContext << SS.getRange();
1032 Invalid = true;
1033 }
1034 }
1035
1036 CXXRecordDecl *NewClass =
1037 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1038 PrevClassTemplate?
1039 PrevClassTemplate->getTemplatedDecl() : 0,
1040 /*DelayTypeCreation=*/true);
1041 SetNestedNameSpecifier(NewClass, SS);
1042 if (NumOuterTemplateParamLists > 0)
1043 NewClass->setTemplateParameterListsInfo(Context,
1044 NumOuterTemplateParamLists,
1045 OuterTemplateParamLists);
1046
1047 // Add alignment attributes if necessary; these attributes are checked when
1048 // the ASTContext lays out the structure.
1049 AddAlignmentAttributesForRecord(NewClass);
1050 AddMsStructLayoutForRecord(NewClass);
1051
1052 ClassTemplateDecl *NewTemplate
1053 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1054 DeclarationName(Name), TemplateParams,
1055 NewClass, PrevClassTemplate);
1056 NewClass->setDescribedClassTemplate(NewTemplate);
1057
1058 if (ModulePrivateLoc.isValid())
1059 NewTemplate->setModulePrivate();
1060
1061 // Build the type for the class template declaration now.
1062 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1063 T = Context.getInjectedClassNameType(NewClass, T);
1064 assert(T->isDependentType() && "Class template type is not dependent?");
1065 (void)T;
1066
1067 // If we are providing an explicit specialization of a member that is a
1068 // class template, make a note of that.
1069 if (PrevClassTemplate &&
1070 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1071 PrevClassTemplate->setMemberSpecialization();
1072
1073 // Set the access specifier.
1074 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1075 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1076
1077 // Set the lexical context of these templates
1078 NewClass->setLexicalDeclContext(CurContext);
1079 NewTemplate->setLexicalDeclContext(CurContext);
1080
1081 if (TUK == TUK_Definition)
1082 NewClass->startDefinition();
1083
1084 if (Attr)
1085 ProcessDeclAttributeList(S, NewClass, Attr);
1086
1087 if (TUK != TUK_Friend)
1088 PushOnScopeChains(NewTemplate, S);
1089 else {
1090 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1091 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1092 NewClass->setAccess(PrevClassTemplate->getAccess());
1093 }
1094
1095 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1096 PrevClassTemplate != NULL);
1097
1098 // Friend templates are visible in fairly strange ways.
1099 if (!CurContext->isDependentContext()) {
1100 DeclContext *DC = SemanticContext->getRedeclContext();
1101 DC->makeDeclVisibleInContext(NewTemplate);
1102 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1103 PushOnScopeChains(NewTemplate, EnclosingScope,
1104 /* AddToContext = */ false);
1105 }
1106
1107 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1108 NewClass->getLocation(),
1109 NewTemplate,
1110 /*FIXME:*/NewClass->getLocation());
1111 Friend->setAccess(AS_public);
1112 CurContext->addDecl(Friend);
1113 }
1114
1115 if (Invalid) {
1116 NewTemplate->setInvalidDecl();
1117 NewClass->setInvalidDecl();
1118 }
1119 return NewTemplate;
1120 }
1121
1122 /// \brief Diagnose the presence of a default template argument on a
1123 /// template parameter, which is ill-formed in certain contexts.
1124 ///
1125 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1126 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1127 Sema::TemplateParamListContext TPC,
1128 SourceLocation ParamLoc,
1129 SourceRange DefArgRange) {
1130 switch (TPC) {
1131 case Sema::TPC_ClassTemplate:
1132 case Sema::TPC_TypeAliasTemplate:
1133 return false;
1134
1135 case Sema::TPC_FunctionTemplate:
1136 case Sema::TPC_FriendFunctionTemplateDefinition:
1137 // C++ [temp.param]p9:
1138 // A default template-argument shall not be specified in a
1139 // function template declaration or a function template
1140 // definition [...]
1141 // If a friend function template declaration specifies a default
1142 // template-argument, that declaration shall be a definition and shall be
1143 // the only declaration of the function template in the translation unit.
1144 // (C++98/03 doesn't have this wording; see DR226).
1145 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1146 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1147 : diag::ext_template_parameter_default_in_function_template)
1148 << DefArgRange;
1149 return false;
1150
1151 case Sema::TPC_ClassTemplateMember:
1152 // C++0x [temp.param]p9:
1153 // A default template-argument shall not be specified in the
1154 // template-parameter-lists of the definition of a member of a
1155 // class template that appears outside of the member's class.
1156 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1157 << DefArgRange;
1158 return true;
1159
1160 case Sema::TPC_FriendFunctionTemplate:
1161 // C++ [temp.param]p9:
1162 // A default template-argument shall not be specified in a
1163 // friend template declaration.
1164 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1165 << DefArgRange;
1166 return true;
1167
1168 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1169 // for friend function templates if there is only a single
1170 // declaration (and it is a definition). Strange!
1171 }
1172
1173 llvm_unreachable("Invalid TemplateParamListContext!");
1174 }
1175
1176 /// \brief Check for unexpanded parameter packs within the template parameters
1177 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1178 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1179 TemplateTemplateParmDecl *TTP) {
1180 TemplateParameterList *Params = TTP->getTemplateParameters();
1181 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1182 NamedDecl *P = Params->getParam(I);
1183 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1184 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1185 NTTP->getTypeSourceInfo(),
1186 Sema::UPPC_NonTypeTemplateParameterType))
1187 return true;
1188
1189 continue;
1190 }
1191
1192 if (TemplateTemplateParmDecl *InnerTTP
1193 = dyn_cast<TemplateTemplateParmDecl>(P))
1194 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1195 return true;
1196 }
1197
1198 return false;
1199 }
1200
1201 /// \brief Checks the validity of a template parameter list, possibly
1202 /// considering the template parameter list from a previous
1203 /// declaration.
1204 ///
1205 /// If an "old" template parameter list is provided, it must be
1206 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1207 /// template parameter list.
1208 ///
1209 /// \param NewParams Template parameter list for a new template
1210 /// declaration. This template parameter list will be updated with any
1211 /// default arguments that are carried through from the previous
1212 /// template parameter list.
1213 ///
1214 /// \param OldParams If provided, template parameter list from a
1215 /// previous declaration of the same template. Default template
1216 /// arguments will be merged from the old template parameter list to
1217 /// the new template parameter list.
1218 ///
1219 /// \param TPC Describes the context in which we are checking the given
1220 /// template parameter list.
1221 ///
1222 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1223 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1224 TemplateParameterList *OldParams,
1225 TemplateParamListContext TPC) {
1226 bool Invalid = false;
1227
1228 // C++ [temp.param]p10:
1229 // The set of default template-arguments available for use with a
1230 // template declaration or definition is obtained by merging the
1231 // default arguments from the definition (if in scope) and all
1232 // declarations in scope in the same way default function
1233 // arguments are (8.3.6).
1234 bool SawDefaultArgument = false;
1235 SourceLocation PreviousDefaultArgLoc;
1236
1237 // Dummy initialization to avoid warnings.
1238 TemplateParameterList::iterator OldParam = NewParams->end();
1239 if (OldParams)
1240 OldParam = OldParams->begin();
1241
1242 bool RemoveDefaultArguments = false;
1243 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1244 NewParamEnd = NewParams->end();
1245 NewParam != NewParamEnd; ++NewParam) {
1246 // Variables used to diagnose redundant default arguments
1247 bool RedundantDefaultArg = false;
1248 SourceLocation OldDefaultLoc;
1249 SourceLocation NewDefaultLoc;
1250
1251 // Variable used to diagnose missing default arguments
1252 bool MissingDefaultArg = false;
1253
1254 // Variable used to diagnose non-final parameter packs
1255 bool SawParameterPack = false;
1256
1257 if (TemplateTypeParmDecl *NewTypeParm
1258 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1259 // Check the presence of a default argument here.
1260 if (NewTypeParm->hasDefaultArgument() &&
1261 DiagnoseDefaultTemplateArgument(*this, TPC,
1262 NewTypeParm->getLocation(),
1263 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1264 .getSourceRange()))
1265 NewTypeParm->removeDefaultArgument();
1266
1267 // Merge default arguments for template type parameters.
1268 TemplateTypeParmDecl *OldTypeParm
1269 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1270
1271 if (NewTypeParm->isParameterPack()) {
1272 assert(!NewTypeParm->hasDefaultArgument() &&
1273 "Parameter packs can't have a default argument!");
1274 SawParameterPack = true;
1275 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1276 NewTypeParm->hasDefaultArgument()) {
1277 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1278 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1279 SawDefaultArgument = true;
1280 RedundantDefaultArg = true;
1281 PreviousDefaultArgLoc = NewDefaultLoc;
1282 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1283 // Merge the default argument from the old declaration to the
1284 // new declaration.
1285 SawDefaultArgument = true;
1286 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1287 true);
1288 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1289 } else if (NewTypeParm->hasDefaultArgument()) {
1290 SawDefaultArgument = true;
1291 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1292 } else if (SawDefaultArgument)
1293 MissingDefaultArg = true;
1294 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1295 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1296 // Check for unexpanded parameter packs.
1297 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1298 NewNonTypeParm->getTypeSourceInfo(),
1299 UPPC_NonTypeTemplateParameterType)) {
1300 Invalid = true;
1301 continue;
1302 }
1303
1304 // Check the presence of a default argument here.
1305 if (NewNonTypeParm->hasDefaultArgument() &&
1306 DiagnoseDefaultTemplateArgument(*this, TPC,
1307 NewNonTypeParm->getLocation(),
1308 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1309 NewNonTypeParm->removeDefaultArgument();
1310 }
1311
1312 // Merge default arguments for non-type template parameters
1313 NonTypeTemplateParmDecl *OldNonTypeParm
1314 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1315 if (NewNonTypeParm->isParameterPack()) {
1316 assert(!NewNonTypeParm->hasDefaultArgument() &&
1317 "Parameter packs can't have a default argument!");
1318 SawParameterPack = true;
1319 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1320 NewNonTypeParm->hasDefaultArgument()) {
1321 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1322 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1323 SawDefaultArgument = true;
1324 RedundantDefaultArg = true;
1325 PreviousDefaultArgLoc = NewDefaultLoc;
1326 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1327 // Merge the default argument from the old declaration to the
1328 // new declaration.
1329 SawDefaultArgument = true;
1330 // FIXME: We need to create a new kind of "default argument"
1331 // expression that points to a previous non-type template
1332 // parameter.
1333 NewNonTypeParm->setDefaultArgument(
1334 OldNonTypeParm->getDefaultArgument(),
1335 /*Inherited=*/ true);
1336 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1337 } else if (NewNonTypeParm->hasDefaultArgument()) {
1338 SawDefaultArgument = true;
1339 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1340 } else if (SawDefaultArgument)
1341 MissingDefaultArg = true;
1342 } else {
1343 TemplateTemplateParmDecl *NewTemplateParm
1344 = cast<TemplateTemplateParmDecl>(*NewParam);
1345
1346 // Check for unexpanded parameter packs, recursively.
1347 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1348 Invalid = true;
1349 continue;
1350 }
1351
1352 // Check the presence of a default argument here.
1353 if (NewTemplateParm->hasDefaultArgument() &&
1354 DiagnoseDefaultTemplateArgument(*this, TPC,
1355 NewTemplateParm->getLocation(),
1356 NewTemplateParm->getDefaultArgument().getSourceRange()))
1357 NewTemplateParm->removeDefaultArgument();
1358
1359 // Merge default arguments for template template parameters
1360 TemplateTemplateParmDecl *OldTemplateParm
1361 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1362 if (NewTemplateParm->isParameterPack()) {
1363 assert(!NewTemplateParm->hasDefaultArgument() &&
1364 "Parameter packs can't have a default argument!");
1365 SawParameterPack = true;
1366 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1367 NewTemplateParm->hasDefaultArgument()) {
1368 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1369 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1370 SawDefaultArgument = true;
1371 RedundantDefaultArg = true;
1372 PreviousDefaultArgLoc = NewDefaultLoc;
1373 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1374 // Merge the default argument from the old declaration to the
1375 // new declaration.
1376 SawDefaultArgument = true;
1377 // FIXME: We need to create a new kind of "default argument" expression
1378 // that points to a previous template template parameter.
1379 NewTemplateParm->setDefaultArgument(
1380 OldTemplateParm->getDefaultArgument(),
1381 /*Inherited=*/ true);
1382 PreviousDefaultArgLoc
1383 = OldTemplateParm->getDefaultArgument().getLocation();
1384 } else if (NewTemplateParm->hasDefaultArgument()) {
1385 SawDefaultArgument = true;
1386 PreviousDefaultArgLoc
1387 = NewTemplateParm->getDefaultArgument().getLocation();
1388 } else if (SawDefaultArgument)
1389 MissingDefaultArg = true;
1390 }
1391
1392 // C++0x [temp.param]p11:
1393 // If a template parameter of a primary class template or alias template
1394 // is a template parameter pack, it shall be the last template parameter.
1395 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1396 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1397 Diag((*NewParam)->getLocation(),
1398 diag::err_template_param_pack_must_be_last_template_parameter);
1399 Invalid = true;
1400 }
1401
1402 if (RedundantDefaultArg) {
1403 // C++ [temp.param]p12:
1404 // A template-parameter shall not be given default arguments
1405 // by two different declarations in the same scope.
1406 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1407 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1408 Invalid = true;
1409 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1410 // C++ [temp.param]p11:
1411 // If a template-parameter of a class template has a default
1412 // template-argument, each subsequent template-parameter shall either
1413 // have a default template-argument supplied or be a template parameter
1414 // pack.
1415 Diag((*NewParam)->getLocation(),
1416 diag::err_template_param_default_arg_missing);
1417 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1418 Invalid = true;
1419 RemoveDefaultArguments = true;
1420 }
1421
1422 // If we have an old template parameter list that we're merging
1423 // in, move on to the next parameter.
1424 if (OldParams)
1425 ++OldParam;
1426 }
1427
1428 // We were missing some default arguments at the end of the list, so remove
1429 // all of the default arguments.
1430 if (RemoveDefaultArguments) {
1431 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1432 NewParamEnd = NewParams->end();
1433 NewParam != NewParamEnd; ++NewParam) {
1434 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1435 TTP->removeDefaultArgument();
1436 else if (NonTypeTemplateParmDecl *NTTP
1437 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1438 NTTP->removeDefaultArgument();
1439 else
1440 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1441 }
1442 }
1443
1444 return Invalid;
1445 }
1446
1447 namespace {
1448
1449 /// A class which looks for a use of a certain level of template
1450 /// parameter.
1451 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1452 typedef RecursiveASTVisitor<DependencyChecker> super;
1453
1454 unsigned Depth;
1455 bool Match;
1456
DependencyChecker__anon187827f70111::DependencyChecker1457 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1458 NamedDecl *ND = Params->getParam(0);
1459 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1460 Depth = PD->getDepth();
1461 } else if (NonTypeTemplateParmDecl *PD =
1462 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1463 Depth = PD->getDepth();
1464 } else {
1465 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1466 }
1467 }
1468
Matches__anon187827f70111::DependencyChecker1469 bool Matches(unsigned ParmDepth) {
1470 if (ParmDepth >= Depth) {
1471 Match = true;
1472 return true;
1473 }
1474 return false;
1475 }
1476
VisitTemplateTypeParmType__anon187827f70111::DependencyChecker1477 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1478 return !Matches(T->getDepth());
1479 }
1480
TraverseTemplateName__anon187827f70111::DependencyChecker1481 bool TraverseTemplateName(TemplateName N) {
1482 if (TemplateTemplateParmDecl *PD =
1483 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1484 if (Matches(PD->getDepth())) return false;
1485 return super::TraverseTemplateName(N);
1486 }
1487
VisitDeclRefExpr__anon187827f70111::DependencyChecker1488 bool VisitDeclRefExpr(DeclRefExpr *E) {
1489 if (NonTypeTemplateParmDecl *PD =
1490 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1491 if (PD->getDepth() == Depth) {
1492 Match = true;
1493 return false;
1494 }
1495 }
1496 return super::VisitDeclRefExpr(E);
1497 }
1498
TraverseInjectedClassNameType__anon187827f70111::DependencyChecker1499 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1500 return TraverseType(T->getInjectedSpecializationType());
1501 }
1502 };
1503 }
1504
1505 /// Determines whether a given type depends on the given parameter
1506 /// list.
1507 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1508 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1509 DependencyChecker Checker(Params);
1510 Checker.TraverseType(T);
1511 return Checker.Match;
1512 }
1513
1514 // Find the source range corresponding to the named type in the given
1515 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1516 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1517 QualType T,
1518 const CXXScopeSpec &SS) {
1519 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1520 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1521 if (const Type *CurType = NNS->getAsType()) {
1522 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1523 return NNSLoc.getTypeLoc().getSourceRange();
1524 } else
1525 break;
1526
1527 NNSLoc = NNSLoc.getPrefix();
1528 }
1529
1530 return SourceRange();
1531 }
1532
1533 /// \brief Match the given template parameter lists to the given scope
1534 /// specifier, returning the template parameter list that applies to the
1535 /// name.
1536 ///
1537 /// \param DeclStartLoc the start of the declaration that has a scope
1538 /// specifier or a template parameter list.
1539 ///
1540 /// \param DeclLoc The location of the declaration itself.
1541 ///
1542 /// \param SS the scope specifier that will be matched to the given template
1543 /// parameter lists. This scope specifier precedes a qualified name that is
1544 /// being declared.
1545 ///
1546 /// \param ParamLists the template parameter lists, from the outermost to the
1547 /// innermost template parameter lists.
1548 ///
1549 /// \param NumParamLists the number of template parameter lists in ParamLists.
1550 ///
1551 /// \param IsFriend Whether to apply the slightly different rules for
1552 /// matching template parameters to scope specifiers in friend
1553 /// declarations.
1554 ///
1555 /// \param IsExplicitSpecialization will be set true if the entity being
1556 /// declared is an explicit specialization, false otherwise.
1557 ///
1558 /// \returns the template parameter list, if any, that corresponds to the
1559 /// name that is preceded by the scope specifier @p SS. This template
1560 /// parameter list may have template parameters (if we're declaring a
1561 /// template) or may have no template parameters (if we're declaring a
1562 /// template specialization), or may be NULL (if what we're declaring isn't
1563 /// itself a template).
1564 TemplateParameterList *
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateParameterList ** ParamLists,unsigned NumParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1565 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1566 SourceLocation DeclLoc,
1567 const CXXScopeSpec &SS,
1568 TemplateParameterList **ParamLists,
1569 unsigned NumParamLists,
1570 bool IsFriend,
1571 bool &IsExplicitSpecialization,
1572 bool &Invalid) {
1573 IsExplicitSpecialization = false;
1574 Invalid = false;
1575
1576 // The sequence of nested types to which we will match up the template
1577 // parameter lists. We first build this list by starting with the type named
1578 // by the nested-name-specifier and walking out until we run out of types.
1579 SmallVector<QualType, 4> NestedTypes;
1580 QualType T;
1581 if (SS.getScopeRep()) {
1582 if (CXXRecordDecl *Record
1583 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1584 T = Context.getTypeDeclType(Record);
1585 else
1586 T = QualType(SS.getScopeRep()->getAsType(), 0);
1587 }
1588
1589 // If we found an explicit specialization that prevents us from needing
1590 // 'template<>' headers, this will be set to the location of that
1591 // explicit specialization.
1592 SourceLocation ExplicitSpecLoc;
1593
1594 while (!T.isNull()) {
1595 NestedTypes.push_back(T);
1596
1597 // Retrieve the parent of a record type.
1598 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1599 // If this type is an explicit specialization, we're done.
1600 if (ClassTemplateSpecializationDecl *Spec
1601 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1602 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1603 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1604 ExplicitSpecLoc = Spec->getLocation();
1605 break;
1606 }
1607 } else if (Record->getTemplateSpecializationKind()
1608 == TSK_ExplicitSpecialization) {
1609 ExplicitSpecLoc = Record->getLocation();
1610 break;
1611 }
1612
1613 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1614 T = Context.getTypeDeclType(Parent);
1615 else
1616 T = QualType();
1617 continue;
1618 }
1619
1620 if (const TemplateSpecializationType *TST
1621 = T->getAs<TemplateSpecializationType>()) {
1622 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1623 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1624 T = Context.getTypeDeclType(Parent);
1625 else
1626 T = QualType();
1627 continue;
1628 }
1629 }
1630
1631 // Look one step prior in a dependent template specialization type.
1632 if (const DependentTemplateSpecializationType *DependentTST
1633 = T->getAs<DependentTemplateSpecializationType>()) {
1634 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1635 T = QualType(NNS->getAsType(), 0);
1636 else
1637 T = QualType();
1638 continue;
1639 }
1640
1641 // Look one step prior in a dependent name type.
1642 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1643 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1644 T = QualType(NNS->getAsType(), 0);
1645 else
1646 T = QualType();
1647 continue;
1648 }
1649
1650 // Retrieve the parent of an enumeration type.
1651 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1652 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1653 // check here.
1654 EnumDecl *Enum = EnumT->getDecl();
1655
1656 // Get to the parent type.
1657 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1658 T = Context.getTypeDeclType(Parent);
1659 else
1660 T = QualType();
1661 continue;
1662 }
1663
1664 T = QualType();
1665 }
1666 // Reverse the nested types list, since we want to traverse from the outermost
1667 // to the innermost while checking template-parameter-lists.
1668 std::reverse(NestedTypes.begin(), NestedTypes.end());
1669
1670 // C++0x [temp.expl.spec]p17:
1671 // A member or a member template may be nested within many
1672 // enclosing class templates. In an explicit specialization for
1673 // such a member, the member declaration shall be preceded by a
1674 // template<> for each enclosing class template that is
1675 // explicitly specialized.
1676 bool SawNonEmptyTemplateParameterList = false;
1677 unsigned ParamIdx = 0;
1678 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1679 ++TypeIdx) {
1680 T = NestedTypes[TypeIdx];
1681
1682 // Whether we expect a 'template<>' header.
1683 bool NeedEmptyTemplateHeader = false;
1684
1685 // Whether we expect a template header with parameters.
1686 bool NeedNonemptyTemplateHeader = false;
1687
1688 // For a dependent type, the set of template parameters that we
1689 // expect to see.
1690 TemplateParameterList *ExpectedTemplateParams = 0;
1691
1692 // C++0x [temp.expl.spec]p15:
1693 // A member or a member template may be nested within many enclosing
1694 // class templates. In an explicit specialization for such a member, the
1695 // member declaration shall be preceded by a template<> for each
1696 // enclosing class template that is explicitly specialized.
1697 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1698 if (ClassTemplatePartialSpecializationDecl *Partial
1699 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1700 ExpectedTemplateParams = Partial->getTemplateParameters();
1701 NeedNonemptyTemplateHeader = true;
1702 } else if (Record->isDependentType()) {
1703 if (Record->getDescribedClassTemplate()) {
1704 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1705 ->getTemplateParameters();
1706 NeedNonemptyTemplateHeader = true;
1707 }
1708 } else if (ClassTemplateSpecializationDecl *Spec
1709 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1710 // C++0x [temp.expl.spec]p4:
1711 // Members of an explicitly specialized class template are defined
1712 // in the same manner as members of normal classes, and not using
1713 // the template<> syntax.
1714 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1715 NeedEmptyTemplateHeader = true;
1716 else
1717 continue;
1718 } else if (Record->getTemplateSpecializationKind()) {
1719 if (Record->getTemplateSpecializationKind()
1720 != TSK_ExplicitSpecialization &&
1721 TypeIdx == NumTypes - 1)
1722 IsExplicitSpecialization = true;
1723
1724 continue;
1725 }
1726 } else if (const TemplateSpecializationType *TST
1727 = T->getAs<TemplateSpecializationType>()) {
1728 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1729 ExpectedTemplateParams = Template->getTemplateParameters();
1730 NeedNonemptyTemplateHeader = true;
1731 }
1732 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1733 // FIXME: We actually could/should check the template arguments here
1734 // against the corresponding template parameter list.
1735 NeedNonemptyTemplateHeader = false;
1736 }
1737
1738 // C++ [temp.expl.spec]p16:
1739 // In an explicit specialization declaration for a member of a class
1740 // template or a member template that ap- pears in namespace scope, the
1741 // member template and some of its enclosing class templates may remain
1742 // unspecialized, except that the declaration shall not explicitly
1743 // specialize a class member template if its en- closing class templates
1744 // are not explicitly specialized as well.
1745 if (ParamIdx < NumParamLists) {
1746 if (ParamLists[ParamIdx]->size() == 0) {
1747 if (SawNonEmptyTemplateParameterList) {
1748 Diag(DeclLoc, diag::err_specialize_member_of_template)
1749 << ParamLists[ParamIdx]->getSourceRange();
1750 Invalid = true;
1751 IsExplicitSpecialization = false;
1752 return 0;
1753 }
1754 } else
1755 SawNonEmptyTemplateParameterList = true;
1756 }
1757
1758 if (NeedEmptyTemplateHeader) {
1759 // If we're on the last of the types, and we need a 'template<>' header
1760 // here, then it's an explicit specialization.
1761 if (TypeIdx == NumTypes - 1)
1762 IsExplicitSpecialization = true;
1763
1764 if (ParamIdx < NumParamLists) {
1765 if (ParamLists[ParamIdx]->size() > 0) {
1766 // The header has template parameters when it shouldn't. Complain.
1767 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1768 diag::err_template_param_list_matches_nontemplate)
1769 << T
1770 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1771 ParamLists[ParamIdx]->getRAngleLoc())
1772 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1773 Invalid = true;
1774 return 0;
1775 }
1776
1777 // Consume this template header.
1778 ++ParamIdx;
1779 continue;
1780 }
1781
1782 if (!IsFriend) {
1783 // We don't have a template header, but we should.
1784 SourceLocation ExpectedTemplateLoc;
1785 if (NumParamLists > 0)
1786 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1787 else
1788 ExpectedTemplateLoc = DeclStartLoc;
1789
1790 Diag(DeclLoc, diag::err_template_spec_needs_header)
1791 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1792 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1793 }
1794
1795 continue;
1796 }
1797
1798 if (NeedNonemptyTemplateHeader) {
1799 // In friend declarations we can have template-ids which don't
1800 // depend on the corresponding template parameter lists. But
1801 // assume that empty parameter lists are supposed to match this
1802 // template-id.
1803 if (IsFriend && T->isDependentType()) {
1804 if (ParamIdx < NumParamLists &&
1805 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1806 ExpectedTemplateParams = 0;
1807 else
1808 continue;
1809 }
1810
1811 if (ParamIdx < NumParamLists) {
1812 // Check the template parameter list, if we can.
1813 if (ExpectedTemplateParams &&
1814 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1815 ExpectedTemplateParams,
1816 true, TPL_TemplateMatch))
1817 Invalid = true;
1818
1819 if (!Invalid &&
1820 CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1821 TPC_ClassTemplateMember))
1822 Invalid = true;
1823
1824 ++ParamIdx;
1825 continue;
1826 }
1827
1828 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1829 << T
1830 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1831 Invalid = true;
1832 continue;
1833 }
1834 }
1835
1836 // If there were at least as many template-ids as there were template
1837 // parameter lists, then there are no template parameter lists remaining for
1838 // the declaration itself.
1839 if (ParamIdx >= NumParamLists)
1840 return 0;
1841
1842 // If there were too many template parameter lists, complain about that now.
1843 if (ParamIdx < NumParamLists - 1) {
1844 bool HasAnyExplicitSpecHeader = false;
1845 bool AllExplicitSpecHeaders = true;
1846 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1847 if (ParamLists[I]->size() == 0)
1848 HasAnyExplicitSpecHeader = true;
1849 else
1850 AllExplicitSpecHeaders = false;
1851 }
1852
1853 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1854 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1855 : diag::err_template_spec_extra_headers)
1856 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1857 ParamLists[NumParamLists - 2]->getRAngleLoc());
1858
1859 // If there was a specialization somewhere, such that 'template<>' is
1860 // not required, and there were any 'template<>' headers, note where the
1861 // specialization occurred.
1862 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1863 Diag(ExplicitSpecLoc,
1864 diag::note_explicit_template_spec_does_not_need_header)
1865 << NestedTypes.back();
1866
1867 // We have a template parameter list with no corresponding scope, which
1868 // means that the resulting template declaration can't be instantiated
1869 // properly (we'll end up with dependent nodes when we shouldn't).
1870 if (!AllExplicitSpecHeaders)
1871 Invalid = true;
1872 }
1873
1874 // C++ [temp.expl.spec]p16:
1875 // In an explicit specialization declaration for a member of a class
1876 // template or a member template that ap- pears in namespace scope, the
1877 // member template and some of its enclosing class templates may remain
1878 // unspecialized, except that the declaration shall not explicitly
1879 // specialize a class member template if its en- closing class templates
1880 // are not explicitly specialized as well.
1881 if (ParamLists[NumParamLists - 1]->size() == 0 &&
1882 SawNonEmptyTemplateParameterList) {
1883 Diag(DeclLoc, diag::err_specialize_member_of_template)
1884 << ParamLists[ParamIdx]->getSourceRange();
1885 Invalid = true;
1886 IsExplicitSpecialization = false;
1887 return 0;
1888 }
1889
1890 // Return the last template parameter list, which corresponds to the
1891 // entity being declared.
1892 return ParamLists[NumParamLists - 1];
1893 }
1894
NoteAllFoundTemplates(TemplateName Name)1895 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1896 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1897 Diag(Template->getLocation(), diag::note_template_declared_here)
1898 << (isa<FunctionTemplateDecl>(Template)? 0
1899 : isa<ClassTemplateDecl>(Template)? 1
1900 : isa<TypeAliasTemplateDecl>(Template)? 2
1901 : 3)
1902 << Template->getDeclName();
1903 return;
1904 }
1905
1906 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1907 for (OverloadedTemplateStorage::iterator I = OST->begin(),
1908 IEnd = OST->end();
1909 I != IEnd; ++I)
1910 Diag((*I)->getLocation(), diag::note_template_declared_here)
1911 << 0 << (*I)->getDeclName();
1912
1913 return;
1914 }
1915 }
1916
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1917 QualType Sema::CheckTemplateIdType(TemplateName Name,
1918 SourceLocation TemplateLoc,
1919 TemplateArgumentListInfo &TemplateArgs) {
1920 DependentTemplateName *DTN
1921 = Name.getUnderlying().getAsDependentTemplateName();
1922 if (DTN && DTN->isIdentifier())
1923 // When building a template-id where the template-name is dependent,
1924 // assume the template is a type template. Either our assumption is
1925 // correct, or the code is ill-formed and will be diagnosed when the
1926 // dependent name is substituted.
1927 return Context.getDependentTemplateSpecializationType(ETK_None,
1928 DTN->getQualifier(),
1929 DTN->getIdentifier(),
1930 TemplateArgs);
1931
1932 TemplateDecl *Template = Name.getAsTemplateDecl();
1933 if (!Template || isa<FunctionTemplateDecl>(Template)) {
1934 // We might have a substituted template template parameter pack. If so,
1935 // build a template specialization type for it.
1936 if (Name.getAsSubstTemplateTemplateParmPack())
1937 return Context.getTemplateSpecializationType(Name, TemplateArgs);
1938
1939 Diag(TemplateLoc, diag::err_template_id_not_a_type)
1940 << Name;
1941 NoteAllFoundTemplates(Name);
1942 return QualType();
1943 }
1944
1945 // Check that the template argument list is well-formed for this
1946 // template.
1947 SmallVector<TemplateArgument, 4> Converted;
1948 bool ExpansionIntoFixedList = false;
1949 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1950 false, Converted, &ExpansionIntoFixedList))
1951 return QualType();
1952
1953 QualType CanonType;
1954
1955 bool InstantiationDependent = false;
1956 TypeAliasTemplateDecl *AliasTemplate = 0;
1957 if (!ExpansionIntoFixedList &&
1958 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1959 // Find the canonical type for this type alias template specialization.
1960 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1961 if (Pattern->isInvalidDecl())
1962 return QualType();
1963
1964 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1965 Converted.data(), Converted.size());
1966
1967 // Only substitute for the innermost template argument list.
1968 MultiLevelTemplateArgumentList TemplateArgLists;
1969 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1970 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1971 for (unsigned I = 0; I < Depth; ++I)
1972 TemplateArgLists.addOuterTemplateArguments(0, 0);
1973
1974 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1975 CanonType = SubstType(Pattern->getUnderlyingType(),
1976 TemplateArgLists, AliasTemplate->getLocation(),
1977 AliasTemplate->getDeclName());
1978 if (CanonType.isNull())
1979 return QualType();
1980 } else if (Name.isDependent() ||
1981 TemplateSpecializationType::anyDependentTemplateArguments(
1982 TemplateArgs, InstantiationDependent)) {
1983 // This class template specialization is a dependent
1984 // type. Therefore, its canonical type is another class template
1985 // specialization type that contains all of the converted
1986 // arguments in canonical form. This ensures that, e.g., A<T> and
1987 // A<T, T> have identical types when A is declared as:
1988 //
1989 // template<typename T, typename U = T> struct A;
1990 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1991 CanonType = Context.getTemplateSpecializationType(CanonName,
1992 Converted.data(),
1993 Converted.size());
1994
1995 // FIXME: CanonType is not actually the canonical type, and unfortunately
1996 // it is a TemplateSpecializationType that we will never use again.
1997 // In the future, we need to teach getTemplateSpecializationType to only
1998 // build the canonical type and return that to us.
1999 CanonType = Context.getCanonicalType(CanonType);
2000
2001 // This might work out to be a current instantiation, in which
2002 // case the canonical type needs to be the InjectedClassNameType.
2003 //
2004 // TODO: in theory this could be a simple hashtable lookup; most
2005 // changes to CurContext don't change the set of current
2006 // instantiations.
2007 if (isa<ClassTemplateDecl>(Template)) {
2008 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2009 // If we get out to a namespace, we're done.
2010 if (Ctx->isFileContext()) break;
2011
2012 // If this isn't a record, keep looking.
2013 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2014 if (!Record) continue;
2015
2016 // Look for one of the two cases with InjectedClassNameTypes
2017 // and check whether it's the same template.
2018 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2019 !Record->getDescribedClassTemplate())
2020 continue;
2021
2022 // Fetch the injected class name type and check whether its
2023 // injected type is equal to the type we just built.
2024 QualType ICNT = Context.getTypeDeclType(Record);
2025 QualType Injected = cast<InjectedClassNameType>(ICNT)
2026 ->getInjectedSpecializationType();
2027
2028 if (CanonType != Injected->getCanonicalTypeInternal())
2029 continue;
2030
2031 // If so, the canonical type of this TST is the injected
2032 // class name type of the record we just found.
2033 assert(ICNT.isCanonical());
2034 CanonType = ICNT;
2035 break;
2036 }
2037 }
2038 } else if (ClassTemplateDecl *ClassTemplate
2039 = dyn_cast<ClassTemplateDecl>(Template)) {
2040 // Find the class template specialization declaration that
2041 // corresponds to these arguments.
2042 void *InsertPos = 0;
2043 ClassTemplateSpecializationDecl *Decl
2044 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2045 InsertPos);
2046 if (!Decl) {
2047 // This is the first time we have referenced this class template
2048 // specialization. Create the canonical declaration and add it to
2049 // the set of specializations.
2050 Decl = ClassTemplateSpecializationDecl::Create(Context,
2051 ClassTemplate->getTemplatedDecl()->getTagKind(),
2052 ClassTemplate->getDeclContext(),
2053 ClassTemplate->getTemplatedDecl()->getLocStart(),
2054 ClassTemplate->getLocation(),
2055 ClassTemplate,
2056 Converted.data(),
2057 Converted.size(), 0);
2058 ClassTemplate->AddSpecialization(Decl, InsertPos);
2059 Decl->setLexicalDeclContext(CurContext);
2060 }
2061
2062 CanonType = Context.getTypeDeclType(Decl);
2063 assert(isa<RecordType>(CanonType) &&
2064 "type of non-dependent specialization is not a RecordType");
2065 }
2066
2067 // Build the fully-sugared type for this class template
2068 // specialization, which refers back to the class template
2069 // specialization we created or found.
2070 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2071 }
2072
2073 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2074 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2075 TemplateTy TemplateD, SourceLocation TemplateLoc,
2076 SourceLocation LAngleLoc,
2077 ASTTemplateArgsPtr TemplateArgsIn,
2078 SourceLocation RAngleLoc,
2079 bool IsCtorOrDtorName) {
2080 if (SS.isInvalid())
2081 return true;
2082
2083 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2084
2085 // Translate the parser's template argument list in our AST format.
2086 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2087 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2088
2089 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2090 QualType T
2091 = Context.getDependentTemplateSpecializationType(ETK_None,
2092 DTN->getQualifier(),
2093 DTN->getIdentifier(),
2094 TemplateArgs);
2095 // Build type-source information.
2096 TypeLocBuilder TLB;
2097 DependentTemplateSpecializationTypeLoc SpecTL
2098 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2099 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2100 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2101 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2102 SpecTL.setTemplateNameLoc(TemplateLoc);
2103 SpecTL.setLAngleLoc(LAngleLoc);
2104 SpecTL.setRAngleLoc(RAngleLoc);
2105 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2106 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2107 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2108 }
2109
2110 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2111 TemplateArgsIn.release();
2112
2113 if (Result.isNull())
2114 return true;
2115
2116 // Build type-source information.
2117 TypeLocBuilder TLB;
2118 TemplateSpecializationTypeLoc SpecTL
2119 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2120 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2121 SpecTL.setTemplateNameLoc(TemplateLoc);
2122 SpecTL.setLAngleLoc(LAngleLoc);
2123 SpecTL.setRAngleLoc(RAngleLoc);
2124 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2125 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2126
2127 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2128 // constructor or destructor name (in such a case, the scope specifier
2129 // will be attached to the enclosing Decl or Expr node).
2130 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2131 // Create an elaborated-type-specifier containing the nested-name-specifier.
2132 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2133 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2134 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2135 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2136 }
2137
2138 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2139 }
2140
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2141 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2142 TypeSpecifierType TagSpec,
2143 SourceLocation TagLoc,
2144 CXXScopeSpec &SS,
2145 SourceLocation TemplateKWLoc,
2146 TemplateTy TemplateD,
2147 SourceLocation TemplateLoc,
2148 SourceLocation LAngleLoc,
2149 ASTTemplateArgsPtr TemplateArgsIn,
2150 SourceLocation RAngleLoc) {
2151 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2152
2153 // Translate the parser's template argument list in our AST format.
2154 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2155 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2156
2157 // Determine the tag kind
2158 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2159 ElaboratedTypeKeyword Keyword
2160 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2161
2162 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2163 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2164 DTN->getQualifier(),
2165 DTN->getIdentifier(),
2166 TemplateArgs);
2167
2168 // Build type-source information.
2169 TypeLocBuilder TLB;
2170 DependentTemplateSpecializationTypeLoc SpecTL
2171 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2172 SpecTL.setElaboratedKeywordLoc(TagLoc);
2173 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2174 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2175 SpecTL.setTemplateNameLoc(TemplateLoc);
2176 SpecTL.setLAngleLoc(LAngleLoc);
2177 SpecTL.setRAngleLoc(RAngleLoc);
2178 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2179 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2180 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2181 }
2182
2183 if (TypeAliasTemplateDecl *TAT =
2184 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2185 // C++0x [dcl.type.elab]p2:
2186 // If the identifier resolves to a typedef-name or the simple-template-id
2187 // resolves to an alias template specialization, the
2188 // elaborated-type-specifier is ill-formed.
2189 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2190 Diag(TAT->getLocation(), diag::note_declared_at);
2191 }
2192
2193 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2194 if (Result.isNull())
2195 return TypeResult(true);
2196
2197 // Check the tag kind
2198 if (const RecordType *RT = Result->getAs<RecordType>()) {
2199 RecordDecl *D = RT->getDecl();
2200
2201 IdentifierInfo *Id = D->getIdentifier();
2202 assert(Id && "templated class must have an identifier");
2203
2204 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2205 TagLoc, *Id)) {
2206 Diag(TagLoc, diag::err_use_with_wrong_tag)
2207 << Result
2208 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2209 Diag(D->getLocation(), diag::note_previous_use);
2210 }
2211 }
2212
2213 // Provide source-location information for the template specialization.
2214 TypeLocBuilder TLB;
2215 TemplateSpecializationTypeLoc SpecTL
2216 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2217 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2218 SpecTL.setTemplateNameLoc(TemplateLoc);
2219 SpecTL.setLAngleLoc(LAngleLoc);
2220 SpecTL.setRAngleLoc(RAngleLoc);
2221 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2222 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2223
2224 // Construct an elaborated type containing the nested-name-specifier (if any)
2225 // and tag keyword.
2226 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2227 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2228 ElabTL.setElaboratedKeywordLoc(TagLoc);
2229 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2230 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2231 }
2232
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2233 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2234 SourceLocation TemplateKWLoc,
2235 LookupResult &R,
2236 bool RequiresADL,
2237 const TemplateArgumentListInfo *TemplateArgs) {
2238 // FIXME: Can we do any checking at this point? I guess we could check the
2239 // template arguments that we have against the template name, if the template
2240 // name refers to a single template. That's not a terribly common case,
2241 // though.
2242 // foo<int> could identify a single function unambiguously
2243 // This approach does NOT work, since f<int>(1);
2244 // gets resolved prior to resorting to overload resolution
2245 // i.e., template<class T> void f(double);
2246 // vs template<class T, class U> void f(U);
2247
2248 // These should be filtered out by our callers.
2249 assert(!R.empty() && "empty lookup results when building templateid");
2250 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2251
2252 // We don't want lookup warnings at this point.
2253 R.suppressDiagnostics();
2254
2255 UnresolvedLookupExpr *ULE
2256 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2257 SS.getWithLocInContext(Context),
2258 TemplateKWLoc,
2259 R.getLookupNameInfo(),
2260 RequiresADL, TemplateArgs,
2261 R.begin(), R.end());
2262
2263 return Owned(ULE);
2264 }
2265
2266 // We actually only call this from template instantiation.
2267 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2268 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2269 SourceLocation TemplateKWLoc,
2270 const DeclarationNameInfo &NameInfo,
2271 const TemplateArgumentListInfo *TemplateArgs) {
2272 assert(TemplateArgs || TemplateKWLoc.isValid());
2273 DeclContext *DC;
2274 if (!(DC = computeDeclContext(SS, false)) ||
2275 DC->isDependentContext() ||
2276 RequireCompleteDeclContext(SS, DC))
2277 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2278
2279 bool MemberOfUnknownSpecialization;
2280 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2281 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2282 MemberOfUnknownSpecialization);
2283
2284 if (R.isAmbiguous())
2285 return ExprError();
2286
2287 if (R.empty()) {
2288 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2289 << NameInfo.getName() << SS.getRange();
2290 return ExprError();
2291 }
2292
2293 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2294 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2295 << (NestedNameSpecifier*) SS.getScopeRep()
2296 << NameInfo.getName() << SS.getRange();
2297 Diag(Temp->getLocation(), diag::note_referenced_class_template);
2298 return ExprError();
2299 }
2300
2301 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2302 }
2303
2304 /// \brief Form a dependent template name.
2305 ///
2306 /// This action forms a dependent template name given the template
2307 /// name and its (presumably dependent) scope specifier. For
2308 /// example, given "MetaFun::template apply", the scope specifier \p
2309 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2310 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2311 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2312 CXXScopeSpec &SS,
2313 SourceLocation TemplateKWLoc,
2314 UnqualifiedId &Name,
2315 ParsedType ObjectType,
2316 bool EnteringContext,
2317 TemplateTy &Result) {
2318 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2319 Diag(TemplateKWLoc,
2320 getLangOpts().CPlusPlus0x ?
2321 diag::warn_cxx98_compat_template_outside_of_template :
2322 diag::ext_template_outside_of_template)
2323 << FixItHint::CreateRemoval(TemplateKWLoc);
2324
2325 DeclContext *LookupCtx = 0;
2326 if (SS.isSet())
2327 LookupCtx = computeDeclContext(SS, EnteringContext);
2328 if (!LookupCtx && ObjectType)
2329 LookupCtx = computeDeclContext(ObjectType.get());
2330 if (LookupCtx) {
2331 // C++0x [temp.names]p5:
2332 // If a name prefixed by the keyword template is not the name of
2333 // a template, the program is ill-formed. [Note: the keyword
2334 // template may not be applied to non-template members of class
2335 // templates. -end note ] [ Note: as is the case with the
2336 // typename prefix, the template prefix is allowed in cases
2337 // where it is not strictly necessary; i.e., when the
2338 // nested-name-specifier or the expression on the left of the ->
2339 // or . is not dependent on a template-parameter, or the use
2340 // does not appear in the scope of a template. -end note]
2341 //
2342 // Note: C++03 was more strict here, because it banned the use of
2343 // the "template" keyword prior to a template-name that was not a
2344 // dependent name. C++ DR468 relaxed this requirement (the
2345 // "template" keyword is now permitted). We follow the C++0x
2346 // rules, even in C++03 mode with a warning, retroactively applying the DR.
2347 bool MemberOfUnknownSpecialization;
2348 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2349 ObjectType, EnteringContext, Result,
2350 MemberOfUnknownSpecialization);
2351 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2352 isa<CXXRecordDecl>(LookupCtx) &&
2353 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2354 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2355 // This is a dependent template. Handle it below.
2356 } else if (TNK == TNK_Non_template) {
2357 Diag(Name.getLocStart(),
2358 diag::err_template_kw_refers_to_non_template)
2359 << GetNameFromUnqualifiedId(Name).getName()
2360 << Name.getSourceRange()
2361 << TemplateKWLoc;
2362 return TNK_Non_template;
2363 } else {
2364 // We found something; return it.
2365 return TNK;
2366 }
2367 }
2368
2369 NestedNameSpecifier *Qualifier
2370 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2371
2372 switch (Name.getKind()) {
2373 case UnqualifiedId::IK_Identifier:
2374 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2375 Name.Identifier));
2376 return TNK_Dependent_template_name;
2377
2378 case UnqualifiedId::IK_OperatorFunctionId:
2379 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2380 Name.OperatorFunctionId.Operator));
2381 return TNK_Dependent_template_name;
2382
2383 case UnqualifiedId::IK_LiteralOperatorId:
2384 llvm_unreachable(
2385 "We don't support these; Parse shouldn't have allowed propagation");
2386
2387 default:
2388 break;
2389 }
2390
2391 Diag(Name.getLocStart(),
2392 diag::err_template_kw_refers_to_non_template)
2393 << GetNameFromUnqualifiedId(Name).getName()
2394 << Name.getSourceRange()
2395 << TemplateKWLoc;
2396 return TNK_Non_template;
2397 }
2398
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,const TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2399 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2400 const TemplateArgumentLoc &AL,
2401 SmallVectorImpl<TemplateArgument> &Converted) {
2402 const TemplateArgument &Arg = AL.getArgument();
2403
2404 // Check template type parameter.
2405 switch(Arg.getKind()) {
2406 case TemplateArgument::Type:
2407 // C++ [temp.arg.type]p1:
2408 // A template-argument for a template-parameter which is a
2409 // type shall be a type-id.
2410 break;
2411 case TemplateArgument::Template: {
2412 // We have a template type parameter but the template argument
2413 // is a template without any arguments.
2414 SourceRange SR = AL.getSourceRange();
2415 TemplateName Name = Arg.getAsTemplate();
2416 Diag(SR.getBegin(), diag::err_template_missing_args)
2417 << Name << SR;
2418 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2419 Diag(Decl->getLocation(), diag::note_template_decl_here);
2420
2421 return true;
2422 }
2423 default: {
2424 // We have a template type parameter but the template argument
2425 // is not a type.
2426 SourceRange SR = AL.getSourceRange();
2427 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2428 Diag(Param->getLocation(), diag::note_template_param_here);
2429
2430 return true;
2431 }
2432 }
2433
2434 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2435 return true;
2436
2437 // Add the converted template type argument.
2438 QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2439
2440 // Objective-C ARC:
2441 // If an explicitly-specified template argument type is a lifetime type
2442 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2443 if (getLangOpts().ObjCAutoRefCount &&
2444 ArgType->isObjCLifetimeType() &&
2445 !ArgType.getObjCLifetime()) {
2446 Qualifiers Qs;
2447 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2448 ArgType = Context.getQualifiedType(ArgType, Qs);
2449 }
2450
2451 Converted.push_back(TemplateArgument(ArgType));
2452 return false;
2453 }
2454
2455 /// \brief Substitute template arguments into the default template argument for
2456 /// the given template type parameter.
2457 ///
2458 /// \param SemaRef the semantic analysis object for which we are performing
2459 /// the substitution.
2460 ///
2461 /// \param Template the template that we are synthesizing template arguments
2462 /// for.
2463 ///
2464 /// \param TemplateLoc the location of the template name that started the
2465 /// template-id we are checking.
2466 ///
2467 /// \param RAngleLoc the location of the right angle bracket ('>') that
2468 /// terminates the template-id.
2469 ///
2470 /// \param Param the template template parameter whose default we are
2471 /// substituting into.
2472 ///
2473 /// \param Converted the list of template arguments provided for template
2474 /// parameters that precede \p Param in the template parameter list.
2475 /// \returns the substituted template argument, or NULL if an error occurred.
2476 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)2477 SubstDefaultTemplateArgument(Sema &SemaRef,
2478 TemplateDecl *Template,
2479 SourceLocation TemplateLoc,
2480 SourceLocation RAngleLoc,
2481 TemplateTypeParmDecl *Param,
2482 SmallVectorImpl<TemplateArgument> &Converted) {
2483 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2484
2485 // If the argument type is dependent, instantiate it now based
2486 // on the previously-computed template arguments.
2487 if (ArgType->getType()->isDependentType()) {
2488 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2489 Converted.data(), Converted.size());
2490
2491 MultiLevelTemplateArgumentList AllTemplateArgs
2492 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2493
2494 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2495 Template, Converted.data(),
2496 Converted.size(),
2497 SourceRange(TemplateLoc, RAngleLoc));
2498
2499 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2500 Param->getDefaultArgumentLoc(),
2501 Param->getDeclName());
2502 }
2503
2504 return ArgType;
2505 }
2506
2507 /// \brief Substitute template arguments into the default template argument for
2508 /// the given non-type template parameter.
2509 ///
2510 /// \param SemaRef the semantic analysis object for which we are performing
2511 /// the substitution.
2512 ///
2513 /// \param Template the template that we are synthesizing template arguments
2514 /// for.
2515 ///
2516 /// \param TemplateLoc the location of the template name that started the
2517 /// template-id we are checking.
2518 ///
2519 /// \param RAngleLoc the location of the right angle bracket ('>') that
2520 /// terminates the template-id.
2521 ///
2522 /// \param Param the non-type template parameter whose default we are
2523 /// substituting into.
2524 ///
2525 /// \param Converted the list of template arguments provided for template
2526 /// parameters that precede \p Param in the template parameter list.
2527 ///
2528 /// \returns the substituted template argument, or NULL if an error occurred.
2529 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)2530 SubstDefaultTemplateArgument(Sema &SemaRef,
2531 TemplateDecl *Template,
2532 SourceLocation TemplateLoc,
2533 SourceLocation RAngleLoc,
2534 NonTypeTemplateParmDecl *Param,
2535 SmallVectorImpl<TemplateArgument> &Converted) {
2536 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2537 Converted.data(), Converted.size());
2538
2539 MultiLevelTemplateArgumentList AllTemplateArgs
2540 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2541
2542 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2543 Template, Converted.data(),
2544 Converted.size(),
2545 SourceRange(TemplateLoc, RAngleLoc));
2546
2547 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2548 }
2549
2550 /// \brief Substitute template arguments into the default template argument for
2551 /// the given template template parameter.
2552 ///
2553 /// \param SemaRef the semantic analysis object for which we are performing
2554 /// the substitution.
2555 ///
2556 /// \param Template the template that we are synthesizing template arguments
2557 /// for.
2558 ///
2559 /// \param TemplateLoc the location of the template name that started the
2560 /// template-id we are checking.
2561 ///
2562 /// \param RAngleLoc the location of the right angle bracket ('>') that
2563 /// terminates the template-id.
2564 ///
2565 /// \param Param the template template parameter whose default we are
2566 /// substituting into.
2567 ///
2568 /// \param Converted the list of template arguments provided for template
2569 /// parameters that precede \p Param in the template parameter list.
2570 ///
2571 /// \param QualifierLoc Will be set to the nested-name-specifier (with
2572 /// source-location information) that precedes the template name.
2573 ///
2574 /// \returns the substituted template argument, or NULL if an error occurred.
2575 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)2576 SubstDefaultTemplateArgument(Sema &SemaRef,
2577 TemplateDecl *Template,
2578 SourceLocation TemplateLoc,
2579 SourceLocation RAngleLoc,
2580 TemplateTemplateParmDecl *Param,
2581 SmallVectorImpl<TemplateArgument> &Converted,
2582 NestedNameSpecifierLoc &QualifierLoc) {
2583 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2584 Converted.data(), Converted.size());
2585
2586 MultiLevelTemplateArgumentList AllTemplateArgs
2587 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2588
2589 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2590 Template, Converted.data(),
2591 Converted.size(),
2592 SourceRange(TemplateLoc, RAngleLoc));
2593
2594 // Substitute into the nested-name-specifier first,
2595 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2596 if (QualifierLoc) {
2597 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2598 AllTemplateArgs);
2599 if (!QualifierLoc)
2600 return TemplateName();
2601 }
2602
2603 return SemaRef.SubstTemplateName(QualifierLoc,
2604 Param->getDefaultArgument().getArgument().getAsTemplate(),
2605 Param->getDefaultArgument().getTemplateNameLoc(),
2606 AllTemplateArgs);
2607 }
2608
2609 /// \brief If the given template parameter has a default template
2610 /// argument, substitute into that default template argument and
2611 /// return the corresponding template argument.
2612 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted)2613 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2614 SourceLocation TemplateLoc,
2615 SourceLocation RAngleLoc,
2616 Decl *Param,
2617 SmallVectorImpl<TemplateArgument> &Converted) {
2618 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2619 if (!TypeParm->hasDefaultArgument())
2620 return TemplateArgumentLoc();
2621
2622 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2623 TemplateLoc,
2624 RAngleLoc,
2625 TypeParm,
2626 Converted);
2627 if (DI)
2628 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2629
2630 return TemplateArgumentLoc();
2631 }
2632
2633 if (NonTypeTemplateParmDecl *NonTypeParm
2634 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2635 if (!NonTypeParm->hasDefaultArgument())
2636 return TemplateArgumentLoc();
2637
2638 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2639 TemplateLoc,
2640 RAngleLoc,
2641 NonTypeParm,
2642 Converted);
2643 if (Arg.isInvalid())
2644 return TemplateArgumentLoc();
2645
2646 Expr *ArgE = Arg.takeAs<Expr>();
2647 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2648 }
2649
2650 TemplateTemplateParmDecl *TempTempParm
2651 = cast<TemplateTemplateParmDecl>(Param);
2652 if (!TempTempParm->hasDefaultArgument())
2653 return TemplateArgumentLoc();
2654
2655
2656 NestedNameSpecifierLoc QualifierLoc;
2657 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2658 TemplateLoc,
2659 RAngleLoc,
2660 TempTempParm,
2661 Converted,
2662 QualifierLoc);
2663 if (TName.isNull())
2664 return TemplateArgumentLoc();
2665
2666 return TemplateArgumentLoc(TemplateArgument(TName),
2667 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2668 TempTempParm->getDefaultArgument().getTemplateNameLoc());
2669 }
2670
2671 /// \brief Check that the given template argument corresponds to the given
2672 /// template parameter.
2673 ///
2674 /// \param Param The template parameter against which the argument will be
2675 /// checked.
2676 ///
2677 /// \param Arg The template argument.
2678 ///
2679 /// \param Template The template in which the template argument resides.
2680 ///
2681 /// \param TemplateLoc The location of the template name for the template
2682 /// whose argument list we're matching.
2683 ///
2684 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
2685 /// the template argument list.
2686 ///
2687 /// \param ArgumentPackIndex The index into the argument pack where this
2688 /// argument will be placed. Only valid if the parameter is a parameter pack.
2689 ///
2690 /// \param Converted The checked, converted argument will be added to the
2691 /// end of this small vector.
2692 ///
2693 /// \param CTAK Describes how we arrived at this particular template argument:
2694 /// explicitly written, deduced, etc.
2695 ///
2696 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,const TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)2697 bool Sema::CheckTemplateArgument(NamedDecl *Param,
2698 const TemplateArgumentLoc &Arg,
2699 NamedDecl *Template,
2700 SourceLocation TemplateLoc,
2701 SourceLocation RAngleLoc,
2702 unsigned ArgumentPackIndex,
2703 SmallVectorImpl<TemplateArgument> &Converted,
2704 CheckTemplateArgumentKind CTAK) {
2705 // Check template type parameters.
2706 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2707 return CheckTemplateTypeArgument(TTP, Arg, Converted);
2708
2709 // Check non-type template parameters.
2710 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2711 // Do substitution on the type of the non-type template parameter
2712 // with the template arguments we've seen thus far. But if the
2713 // template has a dependent context then we cannot substitute yet.
2714 QualType NTTPType = NTTP->getType();
2715 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2716 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2717
2718 if (NTTPType->isDependentType() &&
2719 !isa<TemplateTemplateParmDecl>(Template) &&
2720 !Template->getDeclContext()->isDependentContext()) {
2721 // Do substitution on the type of the non-type template parameter.
2722 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2723 NTTP, Converted.data(), Converted.size(),
2724 SourceRange(TemplateLoc, RAngleLoc));
2725
2726 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2727 Converted.data(), Converted.size());
2728 NTTPType = SubstType(NTTPType,
2729 MultiLevelTemplateArgumentList(TemplateArgs),
2730 NTTP->getLocation(),
2731 NTTP->getDeclName());
2732 // If that worked, check the non-type template parameter type
2733 // for validity.
2734 if (!NTTPType.isNull())
2735 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2736 NTTP->getLocation());
2737 if (NTTPType.isNull())
2738 return true;
2739 }
2740
2741 switch (Arg.getArgument().getKind()) {
2742 case TemplateArgument::Null:
2743 llvm_unreachable("Should never see a NULL template argument here");
2744
2745 case TemplateArgument::Expression: {
2746 TemplateArgument Result;
2747 ExprResult Res =
2748 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2749 Result, CTAK);
2750 if (Res.isInvalid())
2751 return true;
2752
2753 Converted.push_back(Result);
2754 break;
2755 }
2756
2757 case TemplateArgument::Declaration:
2758 case TemplateArgument::Integral:
2759 // We've already checked this template argument, so just copy
2760 // it to the list of converted arguments.
2761 Converted.push_back(Arg.getArgument());
2762 break;
2763
2764 case TemplateArgument::Template:
2765 case TemplateArgument::TemplateExpansion:
2766 // We were given a template template argument. It may not be ill-formed;
2767 // see below.
2768 if (DependentTemplateName *DTN
2769 = Arg.getArgument().getAsTemplateOrTemplatePattern()
2770 .getAsDependentTemplateName()) {
2771 // We have a template argument such as \c T::template X, which we
2772 // parsed as a template template argument. However, since we now
2773 // know that we need a non-type template argument, convert this
2774 // template name into an expression.
2775
2776 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2777 Arg.getTemplateNameLoc());
2778
2779 CXXScopeSpec SS;
2780 SS.Adopt(Arg.getTemplateQualifierLoc());
2781 // FIXME: the template-template arg was a DependentTemplateName,
2782 // so it was provided with a template keyword. However, its source
2783 // location is not stored in the template argument structure.
2784 SourceLocation TemplateKWLoc;
2785 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2786 SS.getWithLocInContext(Context),
2787 TemplateKWLoc,
2788 NameInfo, 0));
2789
2790 // If we parsed the template argument as a pack expansion, create a
2791 // pack expansion expression.
2792 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2793 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2794 if (E.isInvalid())
2795 return true;
2796 }
2797
2798 TemplateArgument Result;
2799 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2800 if (E.isInvalid())
2801 return true;
2802
2803 Converted.push_back(Result);
2804 break;
2805 }
2806
2807 // We have a template argument that actually does refer to a class
2808 // template, alias template, or template template parameter, and
2809 // therefore cannot be a non-type template argument.
2810 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2811 << Arg.getSourceRange();
2812
2813 Diag(Param->getLocation(), diag::note_template_param_here);
2814 return true;
2815
2816 case TemplateArgument::Type: {
2817 // We have a non-type template parameter but the template
2818 // argument is a type.
2819
2820 // C++ [temp.arg]p2:
2821 // In a template-argument, an ambiguity between a type-id and
2822 // an expression is resolved to a type-id, regardless of the
2823 // form of the corresponding template-parameter.
2824 //
2825 // We warn specifically about this case, since it can be rather
2826 // confusing for users.
2827 QualType T = Arg.getArgument().getAsType();
2828 SourceRange SR = Arg.getSourceRange();
2829 if (T->isFunctionType())
2830 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2831 else
2832 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2833 Diag(Param->getLocation(), diag::note_template_param_here);
2834 return true;
2835 }
2836
2837 case TemplateArgument::Pack:
2838 llvm_unreachable("Caller must expand template argument packs");
2839 }
2840
2841 return false;
2842 }
2843
2844
2845 // Check template template parameters.
2846 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2847
2848 // Substitute into the template parameter list of the template
2849 // template parameter, since previously-supplied template arguments
2850 // may appear within the template template parameter.
2851 {
2852 // Set up a template instantiation context.
2853 LocalInstantiationScope Scope(*this);
2854 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2855 TempParm, Converted.data(), Converted.size(),
2856 SourceRange(TemplateLoc, RAngleLoc));
2857
2858 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2859 Converted.data(), Converted.size());
2860 TempParm = cast_or_null<TemplateTemplateParmDecl>(
2861 SubstDecl(TempParm, CurContext,
2862 MultiLevelTemplateArgumentList(TemplateArgs)));
2863 if (!TempParm)
2864 return true;
2865 }
2866
2867 switch (Arg.getArgument().getKind()) {
2868 case TemplateArgument::Null:
2869 llvm_unreachable("Should never see a NULL template argument here");
2870
2871 case TemplateArgument::Template:
2872 case TemplateArgument::TemplateExpansion:
2873 if (CheckTemplateArgument(TempParm, Arg))
2874 return true;
2875
2876 Converted.push_back(Arg.getArgument());
2877 break;
2878
2879 case TemplateArgument::Expression:
2880 case TemplateArgument::Type:
2881 // We have a template template parameter but the template
2882 // argument does not refer to a template.
2883 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2884 << getLangOpts().CPlusPlus0x;
2885 return true;
2886
2887 case TemplateArgument::Declaration:
2888 llvm_unreachable("Declaration argument with template template parameter");
2889 case TemplateArgument::Integral:
2890 llvm_unreachable("Integral argument with template template parameter");
2891
2892 case TemplateArgument::Pack:
2893 llvm_unreachable("Caller must expand template argument packs");
2894 }
2895
2896 return false;
2897 }
2898
2899 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2900 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2901 SourceLocation TemplateLoc,
2902 TemplateArgumentListInfo &TemplateArgs) {
2903 TemplateParameterList *Params = Template->getTemplateParameters();
2904 unsigned NumParams = Params->size();
2905 unsigned NumArgs = TemplateArgs.size();
2906
2907 SourceRange Range;
2908 if (NumArgs > NumParams)
2909 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2910 TemplateArgs.getRAngleLoc());
2911 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2912 << (NumArgs > NumParams)
2913 << (isa<ClassTemplateDecl>(Template)? 0 :
2914 isa<FunctionTemplateDecl>(Template)? 1 :
2915 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2916 << Template << Range;
2917 S.Diag(Template->getLocation(), diag::note_template_decl_here)
2918 << Params->getSourceRange();
2919 return true;
2920 }
2921
2922 /// \brief Check that the given template argument list is well-formed
2923 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted,bool * ExpansionIntoFixedList)2924 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2925 SourceLocation TemplateLoc,
2926 TemplateArgumentListInfo &TemplateArgs,
2927 bool PartialTemplateArgs,
2928 SmallVectorImpl<TemplateArgument> &Converted,
2929 bool *ExpansionIntoFixedList) {
2930 if (ExpansionIntoFixedList)
2931 *ExpansionIntoFixedList = false;
2932
2933 TemplateParameterList *Params = Template->getTemplateParameters();
2934 unsigned NumParams = Params->size();
2935 unsigned NumArgs = TemplateArgs.size();
2936 bool Invalid = false;
2937
2938 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2939
2940 bool HasParameterPack =
2941 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2942
2943 // C++ [temp.arg]p1:
2944 // [...] The type and form of each template-argument specified in
2945 // a template-id shall match the type and form specified for the
2946 // corresponding parameter declared by the template in its
2947 // template-parameter-list.
2948 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2949 SmallVector<TemplateArgument, 2> ArgumentPack;
2950 TemplateParameterList::iterator Param = Params->begin(),
2951 ParamEnd = Params->end();
2952 unsigned ArgIdx = 0;
2953 LocalInstantiationScope InstScope(*this, true);
2954 bool SawPackExpansion = false;
2955 while (Param != ParamEnd) {
2956 if (ArgIdx < NumArgs) {
2957 // If we have an expanded parameter pack, make sure we don't have too
2958 // many arguments.
2959 // FIXME: This really should fall out from the normal arity checking.
2960 if (NonTypeTemplateParmDecl *NTTP
2961 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2962 if (NTTP->isExpandedParameterPack() &&
2963 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2964 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2965 << true
2966 << (isa<ClassTemplateDecl>(Template)? 0 :
2967 isa<FunctionTemplateDecl>(Template)? 1 :
2968 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2969 << Template;
2970 Diag(Template->getLocation(), diag::note_template_decl_here)
2971 << Params->getSourceRange();
2972 return true;
2973 }
2974 }
2975
2976 // Check the template argument we were given.
2977 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2978 TemplateLoc, RAngleLoc,
2979 ArgumentPack.size(), Converted))
2980 return true;
2981
2982 if ((*Param)->isTemplateParameterPack()) {
2983 // The template parameter was a template parameter pack, so take the
2984 // deduced argument and place it on the argument pack. Note that we
2985 // stay on the same template parameter so that we can deduce more
2986 // arguments.
2987 ArgumentPack.push_back(Converted.back());
2988 Converted.pop_back();
2989 } else {
2990 // Move to the next template parameter.
2991 ++Param;
2992 }
2993
2994 // If this template argument is a pack expansion, record that fact
2995 // and break out; we can't actually check any more.
2996 if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
2997 SawPackExpansion = true;
2998 ++ArgIdx;
2999 break;
3000 }
3001
3002 ++ArgIdx;
3003 continue;
3004 }
3005
3006 // If we're checking a partial template argument list, we're done.
3007 if (PartialTemplateArgs) {
3008 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3009 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3010 ArgumentPack.data(),
3011 ArgumentPack.size()));
3012
3013 return Invalid;
3014 }
3015
3016 // If we have a template parameter pack with no more corresponding
3017 // arguments, just break out now and we'll fill in the argument pack below.
3018 if ((*Param)->isTemplateParameterPack())
3019 break;
3020
3021 // Check whether we have a default argument.
3022 TemplateArgumentLoc Arg;
3023
3024 // Retrieve the default template argument from the template
3025 // parameter. For each kind of template parameter, we substitute the
3026 // template arguments provided thus far and any "outer" template arguments
3027 // (when the template parameter was part of a nested template) into
3028 // the default argument.
3029 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3030 if (!TTP->hasDefaultArgument())
3031 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3032 TemplateArgs);
3033
3034 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3035 Template,
3036 TemplateLoc,
3037 RAngleLoc,
3038 TTP,
3039 Converted);
3040 if (!ArgType)
3041 return true;
3042
3043 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3044 ArgType);
3045 } else if (NonTypeTemplateParmDecl *NTTP
3046 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3047 if (!NTTP->hasDefaultArgument())
3048 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3049 TemplateArgs);
3050
3051 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3052 TemplateLoc,
3053 RAngleLoc,
3054 NTTP,
3055 Converted);
3056 if (E.isInvalid())
3057 return true;
3058
3059 Expr *Ex = E.takeAs<Expr>();
3060 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3061 } else {
3062 TemplateTemplateParmDecl *TempParm
3063 = cast<TemplateTemplateParmDecl>(*Param);
3064
3065 if (!TempParm->hasDefaultArgument())
3066 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3067 TemplateArgs);
3068
3069 NestedNameSpecifierLoc QualifierLoc;
3070 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3071 TemplateLoc,
3072 RAngleLoc,
3073 TempParm,
3074 Converted,
3075 QualifierLoc);
3076 if (Name.isNull())
3077 return true;
3078
3079 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3080 TempParm->getDefaultArgument().getTemplateNameLoc());
3081 }
3082
3083 // Introduce an instantiation record that describes where we are using
3084 // the default template argument.
3085 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3086 Converted.data(), Converted.size(),
3087 SourceRange(TemplateLoc, RAngleLoc));
3088
3089 // Check the default template argument.
3090 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3091 RAngleLoc, 0, Converted))
3092 return true;
3093
3094 // Core issue 150 (assumed resolution): if this is a template template
3095 // parameter, keep track of the default template arguments from the
3096 // template definition.
3097 if (isTemplateTemplateParameter)
3098 TemplateArgs.addArgument(Arg);
3099
3100 // Move to the next template parameter and argument.
3101 ++Param;
3102 ++ArgIdx;
3103 }
3104
3105 // If we saw a pack expansion, then directly convert the remaining arguments,
3106 // because we don't know what parameters they'll match up with.
3107 if (SawPackExpansion) {
3108 bool AddToArgumentPack
3109 = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3110 while (ArgIdx < NumArgs) {
3111 if (AddToArgumentPack)
3112 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3113 else
3114 Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3115 ++ArgIdx;
3116 }
3117
3118 // Push the argument pack onto the list of converted arguments.
3119 if (AddToArgumentPack) {
3120 if (ArgumentPack.empty())
3121 Converted.push_back(TemplateArgument(0, 0));
3122 else {
3123 Converted.push_back(
3124 TemplateArgument::CreatePackCopy(Context,
3125 ArgumentPack.data(),
3126 ArgumentPack.size()));
3127 ArgumentPack.clear();
3128 }
3129 } else if (ExpansionIntoFixedList) {
3130 // We have expanded a pack into a fixed list.
3131 *ExpansionIntoFixedList = true;
3132 }
3133
3134 return Invalid;
3135 }
3136
3137 // If we have any leftover arguments, then there were too many arguments.
3138 // Complain and fail.
3139 if (ArgIdx < NumArgs)
3140 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3141
3142 // If we have an expanded parameter pack, make sure we don't have too
3143 // many arguments.
3144 // FIXME: This really should fall out from the normal arity checking.
3145 if (Param != ParamEnd) {
3146 if (NonTypeTemplateParmDecl *NTTP
3147 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3148 if (NTTP->isExpandedParameterPack() &&
3149 ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3150 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3151 << false
3152 << (isa<ClassTemplateDecl>(Template)? 0 :
3153 isa<FunctionTemplateDecl>(Template)? 1 :
3154 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3155 << Template;
3156 Diag(Template->getLocation(), diag::note_template_decl_here)
3157 << Params->getSourceRange();
3158 return true;
3159 }
3160 }
3161 }
3162
3163 // Form argument packs for each of the parameter packs remaining.
3164 while (Param != ParamEnd) {
3165 // If we're checking a partial list of template arguments, don't fill
3166 // in arguments for non-template parameter packs.
3167 if ((*Param)->isTemplateParameterPack()) {
3168 if (!HasParameterPack)
3169 return true;
3170 if (ArgumentPack.empty())
3171 Converted.push_back(TemplateArgument(0, 0));
3172 else {
3173 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3174 ArgumentPack.data(),
3175 ArgumentPack.size()));
3176 ArgumentPack.clear();
3177 }
3178 } else if (!PartialTemplateArgs)
3179 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3180
3181 ++Param;
3182 }
3183
3184 return Invalid;
3185 }
3186
3187 namespace {
3188 class UnnamedLocalNoLinkageFinder
3189 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3190 {
3191 Sema &S;
3192 SourceRange SR;
3193
3194 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3195
3196 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3197 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3198
Visit(QualType T)3199 bool Visit(QualType T) {
3200 return inherited::Visit(T.getTypePtr());
3201 }
3202
3203 #define TYPE(Class, Parent) \
3204 bool Visit##Class##Type(const Class##Type *);
3205 #define ABSTRACT_TYPE(Class, Parent) \
3206 bool Visit##Class##Type(const Class##Type *) { return false; }
3207 #define NON_CANONICAL_TYPE(Class, Parent) \
3208 bool Visit##Class##Type(const Class##Type *) { return false; }
3209 #include "clang/AST/TypeNodes.def"
3210
3211 bool VisitTagDecl(const TagDecl *Tag);
3212 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3213 };
3214 }
3215
VisitBuiltinType(const BuiltinType *)3216 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3217 return false;
3218 }
3219
VisitComplexType(const ComplexType * T)3220 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3221 return Visit(T->getElementType());
3222 }
3223
VisitPointerType(const PointerType * T)3224 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3225 return Visit(T->getPointeeType());
3226 }
3227
VisitBlockPointerType(const BlockPointerType * T)3228 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3229 const BlockPointerType* T) {
3230 return Visit(T->getPointeeType());
3231 }
3232
VisitLValueReferenceType(const LValueReferenceType * T)3233 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3234 const LValueReferenceType* T) {
3235 return Visit(T->getPointeeType());
3236 }
3237
VisitRValueReferenceType(const RValueReferenceType * T)3238 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3239 const RValueReferenceType* T) {
3240 return Visit(T->getPointeeType());
3241 }
3242
VisitMemberPointerType(const MemberPointerType * T)3243 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3244 const MemberPointerType* T) {
3245 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3246 }
3247
VisitConstantArrayType(const ConstantArrayType * T)3248 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3249 const ConstantArrayType* T) {
3250 return Visit(T->getElementType());
3251 }
3252
VisitIncompleteArrayType(const IncompleteArrayType * T)3253 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3254 const IncompleteArrayType* T) {
3255 return Visit(T->getElementType());
3256 }
3257
VisitVariableArrayType(const VariableArrayType * T)3258 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3259 const VariableArrayType* T) {
3260 return Visit(T->getElementType());
3261 }
3262
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3263 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3264 const DependentSizedArrayType* T) {
3265 return Visit(T->getElementType());
3266 }
3267
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3268 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3269 const DependentSizedExtVectorType* T) {
3270 return Visit(T->getElementType());
3271 }
3272
VisitVectorType(const VectorType * T)3273 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3274 return Visit(T->getElementType());
3275 }
3276
VisitExtVectorType(const ExtVectorType * T)3277 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3278 return Visit(T->getElementType());
3279 }
3280
VisitFunctionProtoType(const FunctionProtoType * T)3281 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3282 const FunctionProtoType* T) {
3283 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3284 AEnd = T->arg_type_end();
3285 A != AEnd; ++A) {
3286 if (Visit(*A))
3287 return true;
3288 }
3289
3290 return Visit(T->getResultType());
3291 }
3292
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3293 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3294 const FunctionNoProtoType* T) {
3295 return Visit(T->getResultType());
3296 }
3297
VisitUnresolvedUsingType(const UnresolvedUsingType *)3298 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3299 const UnresolvedUsingType*) {
3300 return false;
3301 }
3302
VisitTypeOfExprType(const TypeOfExprType *)3303 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3304 return false;
3305 }
3306
VisitTypeOfType(const TypeOfType * T)3307 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3308 return Visit(T->getUnderlyingType());
3309 }
3310
VisitDecltypeType(const DecltypeType *)3311 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3312 return false;
3313 }
3314
VisitUnaryTransformType(const UnaryTransformType *)3315 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3316 const UnaryTransformType*) {
3317 return false;
3318 }
3319
VisitAutoType(const AutoType * T)3320 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3321 return Visit(T->getDeducedType());
3322 }
3323
VisitRecordType(const RecordType * T)3324 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3325 return VisitTagDecl(T->getDecl());
3326 }
3327
VisitEnumType(const EnumType * T)3328 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3329 return VisitTagDecl(T->getDecl());
3330 }
3331
VisitTemplateTypeParmType(const TemplateTypeParmType *)3332 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3333 const TemplateTypeParmType*) {
3334 return false;
3335 }
3336
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)3337 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3338 const SubstTemplateTypeParmPackType *) {
3339 return false;
3340 }
3341
VisitTemplateSpecializationType(const TemplateSpecializationType *)3342 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3343 const TemplateSpecializationType*) {
3344 return false;
3345 }
3346
VisitInjectedClassNameType(const InjectedClassNameType * T)3347 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3348 const InjectedClassNameType* T) {
3349 return VisitTagDecl(T->getDecl());
3350 }
3351
VisitDependentNameType(const DependentNameType * T)3352 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3353 const DependentNameType* T) {
3354 return VisitNestedNameSpecifier(T->getQualifier());
3355 }
3356
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)3357 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3358 const DependentTemplateSpecializationType* T) {
3359 return VisitNestedNameSpecifier(T->getQualifier());
3360 }
3361
VisitPackExpansionType(const PackExpansionType * T)3362 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3363 const PackExpansionType* T) {
3364 return Visit(T->getPattern());
3365 }
3366
VisitObjCObjectType(const ObjCObjectType *)3367 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3368 return false;
3369 }
3370
VisitObjCInterfaceType(const ObjCInterfaceType *)3371 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3372 const ObjCInterfaceType *) {
3373 return false;
3374 }
3375
VisitObjCObjectPointerType(const ObjCObjectPointerType *)3376 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3377 const ObjCObjectPointerType *) {
3378 return false;
3379 }
3380
VisitAtomicType(const AtomicType * T)3381 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3382 return Visit(T->getValueType());
3383 }
3384
VisitTagDecl(const TagDecl * Tag)3385 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3386 if (Tag->getDeclContext()->isFunctionOrMethod()) {
3387 S.Diag(SR.getBegin(),
3388 S.getLangOpts().CPlusPlus0x ?
3389 diag::warn_cxx98_compat_template_arg_local_type :
3390 diag::ext_template_arg_local_type)
3391 << S.Context.getTypeDeclType(Tag) << SR;
3392 return true;
3393 }
3394
3395 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3396 S.Diag(SR.getBegin(),
3397 S.getLangOpts().CPlusPlus0x ?
3398 diag::warn_cxx98_compat_template_arg_unnamed_type :
3399 diag::ext_template_arg_unnamed_type) << SR;
3400 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3401 return true;
3402 }
3403
3404 return false;
3405 }
3406
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)3407 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3408 NestedNameSpecifier *NNS) {
3409 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3410 return true;
3411
3412 switch (NNS->getKind()) {
3413 case NestedNameSpecifier::Identifier:
3414 case NestedNameSpecifier::Namespace:
3415 case NestedNameSpecifier::NamespaceAlias:
3416 case NestedNameSpecifier::Global:
3417 return false;
3418
3419 case NestedNameSpecifier::TypeSpec:
3420 case NestedNameSpecifier::TypeSpecWithTemplate:
3421 return Visit(QualType(NNS->getAsType(), 0));
3422 }
3423 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3424 }
3425
3426
3427 /// \brief Check a template argument against its corresponding
3428 /// template type parameter.
3429 ///
3430 /// This routine implements the semantics of C++ [temp.arg.type]. It
3431 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)3432 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3433 TypeSourceInfo *ArgInfo) {
3434 assert(ArgInfo && "invalid TypeSourceInfo");
3435 QualType Arg = ArgInfo->getType();
3436 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3437
3438 if (Arg->isVariablyModifiedType()) {
3439 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3440 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3441 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3442 }
3443
3444 // C++03 [temp.arg.type]p2:
3445 // A local type, a type with no linkage, an unnamed type or a type
3446 // compounded from any of these types shall not be used as a
3447 // template-argument for a template type-parameter.
3448 //
3449 // C++11 allows these, and even in C++03 we allow them as an extension with
3450 // a warning.
3451 if (LangOpts.CPlusPlus0x ?
3452 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3453 SR.getBegin()) != DiagnosticsEngine::Ignored ||
3454 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3455 SR.getBegin()) != DiagnosticsEngine::Ignored :
3456 Arg->hasUnnamedOrLocalType()) {
3457 UnnamedLocalNoLinkageFinder Finder(*this, SR);
3458 (void)Finder.Visit(Context.getCanonicalType(Arg));
3459 }
3460
3461 return false;
3462 }
3463
3464 enum NullPointerValueKind {
3465 NPV_NotNullPointer,
3466 NPV_NullPointer,
3467 NPV_Error
3468 };
3469
3470 /// \brief Determine whether the given template argument is a null pointer
3471 /// value of the appropriate type.
3472 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)3473 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3474 QualType ParamType, Expr *Arg) {
3475 if (Arg->isValueDependent() || Arg->isTypeDependent())
3476 return NPV_NotNullPointer;
3477
3478 if (!S.getLangOpts().CPlusPlus0x)
3479 return NPV_NotNullPointer;
3480
3481 // Determine whether we have a constant expression.
3482 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3483 if (ArgRV.isInvalid())
3484 return NPV_Error;
3485 Arg = ArgRV.take();
3486
3487 Expr::EvalResult EvalResult;
3488 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3489 EvalResult.Diag = &Notes;
3490 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3491 EvalResult.HasSideEffects) {
3492 SourceLocation DiagLoc = Arg->getExprLoc();
3493
3494 // If our only note is the usual "invalid subexpression" note, just point
3495 // the caret at its location rather than producing an essentially
3496 // redundant note.
3497 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3498 diag::note_invalid_subexpr_in_const_expr) {
3499 DiagLoc = Notes[0].first;
3500 Notes.clear();
3501 }
3502
3503 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3504 << Arg->getType() << Arg->getSourceRange();
3505 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3506 S.Diag(Notes[I].first, Notes[I].second);
3507
3508 S.Diag(Param->getLocation(), diag::note_template_param_here);
3509 return NPV_Error;
3510 }
3511
3512 // C++11 [temp.arg.nontype]p1:
3513 // - an address constant expression of type std::nullptr_t
3514 if (Arg->getType()->isNullPtrType())
3515 return NPV_NullPointer;
3516
3517 // - a constant expression that evaluates to a null pointer value (4.10); or
3518 // - a constant expression that evaluates to a null member pointer value
3519 // (4.11); or
3520 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3521 (EvalResult.Val.isMemberPointer() &&
3522 !EvalResult.Val.getMemberPointerDecl())) {
3523 // If our expression has an appropriate type, we've succeeded.
3524 bool ObjCLifetimeConversion;
3525 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3526 S.IsQualificationConversion(Arg->getType(), ParamType, false,
3527 ObjCLifetimeConversion))
3528 return NPV_NullPointer;
3529
3530 // The types didn't match, but we know we got a null pointer; complain,
3531 // then recover as if the types were correct.
3532 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3533 << Arg->getType() << ParamType << Arg->getSourceRange();
3534 S.Diag(Param->getLocation(), diag::note_template_param_here);
3535 return NPV_NullPointer;
3536 }
3537
3538 // If we don't have a null pointer value, but we do have a NULL pointer
3539 // constant, suggest a cast to the appropriate type.
3540 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3541 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3542 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3543 << ParamType
3544 << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3545 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3546 ")");
3547 S.Diag(Param->getLocation(), diag::note_template_param_here);
3548 return NPV_NullPointer;
3549 }
3550
3551 // FIXME: If we ever want to support general, address-constant expressions
3552 // as non-type template arguments, we should return the ExprResult here to
3553 // be interpreted by the caller.
3554 return NPV_NotNullPointer;
3555 }
3556
3557 /// \brief Checks whether the given template argument is the address
3558 /// of an object or function according to C++ [temp.arg.nontype]p1.
3559 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)3560 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3561 NonTypeTemplateParmDecl *Param,
3562 QualType ParamType,
3563 Expr *ArgIn,
3564 TemplateArgument &Converted) {
3565 bool Invalid = false;
3566 Expr *Arg = ArgIn;
3567 QualType ArgType = Arg->getType();
3568
3569 // If our parameter has pointer type, check for a null template value.
3570 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3571 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3572 case NPV_NullPointer:
3573 Converted = TemplateArgument((Decl *)0);
3574 return false;
3575
3576 case NPV_Error:
3577 return true;
3578
3579 case NPV_NotNullPointer:
3580 break;
3581 }
3582 }
3583
3584 // See through any implicit casts we added to fix the type.
3585 Arg = Arg->IgnoreImpCasts();
3586
3587 // C++ [temp.arg.nontype]p1:
3588 //
3589 // A template-argument for a non-type, non-template
3590 // template-parameter shall be one of: [...]
3591 //
3592 // -- the address of an object or function with external
3593 // linkage, including function templates and function
3594 // template-ids but excluding non-static class members,
3595 // expressed as & id-expression where the & is optional if
3596 // the name refers to a function or array, or if the
3597 // corresponding template-parameter is a reference; or
3598
3599 // In C++98/03 mode, give an extension warning on any extra parentheses.
3600 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3601 bool ExtraParens = false;
3602 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3603 if (!Invalid && !ExtraParens) {
3604 S.Diag(Arg->getLocStart(),
3605 S.getLangOpts().CPlusPlus0x ?
3606 diag::warn_cxx98_compat_template_arg_extra_parens :
3607 diag::ext_template_arg_extra_parens)
3608 << Arg->getSourceRange();
3609 ExtraParens = true;
3610 }
3611
3612 Arg = Parens->getSubExpr();
3613 }
3614
3615 while (SubstNonTypeTemplateParmExpr *subst =
3616 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3617 Arg = subst->getReplacement()->IgnoreImpCasts();
3618
3619 bool AddressTaken = false;
3620 SourceLocation AddrOpLoc;
3621 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3622 if (UnOp->getOpcode() == UO_AddrOf) {
3623 Arg = UnOp->getSubExpr();
3624 AddressTaken = true;
3625 AddrOpLoc = UnOp->getOperatorLoc();
3626 }
3627 }
3628
3629 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3630 Converted = TemplateArgument(ArgIn);
3631 return false;
3632 }
3633
3634 while (SubstNonTypeTemplateParmExpr *subst =
3635 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3636 Arg = subst->getReplacement()->IgnoreImpCasts();
3637
3638 // Stop checking the precise nature of the argument if it is value dependent,
3639 // it should be checked when instantiated.
3640 if (Arg->isValueDependent()) {
3641 Converted = TemplateArgument(ArgIn);
3642 return false;
3643 }
3644
3645 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3646 if (!DRE) {
3647 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3648 << Arg->getSourceRange();
3649 S.Diag(Param->getLocation(), diag::note_template_param_here);
3650 return true;
3651 }
3652
3653 if (!isa<ValueDecl>(DRE->getDecl())) {
3654 S.Diag(Arg->getLocStart(),
3655 diag::err_template_arg_not_object_or_func_form)
3656 << Arg->getSourceRange();
3657 S.Diag(Param->getLocation(), diag::note_template_param_here);
3658 return true;
3659 }
3660
3661 NamedDecl *Entity = DRE->getDecl();
3662
3663 // Cannot refer to non-static data members
3664 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3665 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3666 << Field << Arg->getSourceRange();
3667 S.Diag(Param->getLocation(), diag::note_template_param_here);
3668 return true;
3669 }
3670
3671 // Cannot refer to non-static member functions
3672 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3673 if (!Method->isStatic()) {
3674 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3675 << Method << Arg->getSourceRange();
3676 S.Diag(Param->getLocation(), diag::note_template_param_here);
3677 return true;
3678 }
3679 }
3680
3681 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3682 VarDecl *Var = dyn_cast<VarDecl>(Entity);
3683
3684 // A non-type template argument must refer to an object or function.
3685 if (!Func && !Var) {
3686 // We found something, but we don't know specifically what it is.
3687 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3688 << Arg->getSourceRange();
3689 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3690 return true;
3691 }
3692
3693 // Address / reference template args must have external linkage in C++98.
3694 if (Entity->getLinkage() == InternalLinkage) {
3695 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3696 diag::warn_cxx98_compat_template_arg_object_internal :
3697 diag::ext_template_arg_object_internal)
3698 << !Func << Entity << Arg->getSourceRange();
3699 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3700 << !Func;
3701 } else if (Entity->getLinkage() == NoLinkage) {
3702 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3703 << !Func << Entity << Arg->getSourceRange();
3704 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3705 << !Func;
3706 return true;
3707 }
3708
3709 if (Func) {
3710 // If the template parameter has pointer type, the function decays.
3711 if (ParamType->isPointerType() && !AddressTaken)
3712 ArgType = S.Context.getPointerType(Func->getType());
3713 else if (AddressTaken && ParamType->isReferenceType()) {
3714 // If we originally had an address-of operator, but the
3715 // parameter has reference type, complain and (if things look
3716 // like they will work) drop the address-of operator.
3717 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3718 ParamType.getNonReferenceType())) {
3719 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3720 << ParamType;
3721 S.Diag(Param->getLocation(), diag::note_template_param_here);
3722 return true;
3723 }
3724
3725 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3726 << ParamType
3727 << FixItHint::CreateRemoval(AddrOpLoc);
3728 S.Diag(Param->getLocation(), diag::note_template_param_here);
3729
3730 ArgType = Func->getType();
3731 }
3732 } else {
3733 // A value of reference type is not an object.
3734 if (Var->getType()->isReferenceType()) {
3735 S.Diag(Arg->getLocStart(),
3736 diag::err_template_arg_reference_var)
3737 << Var->getType() << Arg->getSourceRange();
3738 S.Diag(Param->getLocation(), diag::note_template_param_here);
3739 return true;
3740 }
3741
3742 // A template argument must have static storage duration.
3743 // FIXME: Ensure this works for thread_local as well as __thread.
3744 if (Var->isThreadSpecified()) {
3745 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3746 << Arg->getSourceRange();
3747 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3748 return true;
3749 }
3750
3751 // If the template parameter has pointer type, we must have taken
3752 // the address of this object.
3753 if (ParamType->isReferenceType()) {
3754 if (AddressTaken) {
3755 // If we originally had an address-of operator, but the
3756 // parameter has reference type, complain and (if things look
3757 // like they will work) drop the address-of operator.
3758 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3759 ParamType.getNonReferenceType())) {
3760 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3761 << ParamType;
3762 S.Diag(Param->getLocation(), diag::note_template_param_here);
3763 return true;
3764 }
3765
3766 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3767 << ParamType
3768 << FixItHint::CreateRemoval(AddrOpLoc);
3769 S.Diag(Param->getLocation(), diag::note_template_param_here);
3770
3771 ArgType = Var->getType();
3772 }
3773 } else if (!AddressTaken && ParamType->isPointerType()) {
3774 if (Var->getType()->isArrayType()) {
3775 // Array-to-pointer decay.
3776 ArgType = S.Context.getArrayDecayedType(Var->getType());
3777 } else {
3778 // If the template parameter has pointer type but the address of
3779 // this object was not taken, complain and (possibly) recover by
3780 // taking the address of the entity.
3781 ArgType = S.Context.getPointerType(Var->getType());
3782 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3783 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3784 << ParamType;
3785 S.Diag(Param->getLocation(), diag::note_template_param_here);
3786 return true;
3787 }
3788
3789 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3790 << ParamType
3791 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3792
3793 S.Diag(Param->getLocation(), diag::note_template_param_here);
3794 }
3795 }
3796 }
3797
3798 bool ObjCLifetimeConversion;
3799 if (ParamType->isPointerType() &&
3800 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3801 S.IsQualificationConversion(ArgType, ParamType, false,
3802 ObjCLifetimeConversion)) {
3803 // For pointer-to-object types, qualification conversions are
3804 // permitted.
3805 } else {
3806 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3807 if (!ParamRef->getPointeeType()->isFunctionType()) {
3808 // C++ [temp.arg.nontype]p5b3:
3809 // For a non-type template-parameter of type reference to
3810 // object, no conversions apply. The type referred to by the
3811 // reference may be more cv-qualified than the (otherwise
3812 // identical) type of the template- argument. The
3813 // template-parameter is bound directly to the
3814 // template-argument, which shall be an lvalue.
3815
3816 // FIXME: Other qualifiers?
3817 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3818 unsigned ArgQuals = ArgType.getCVRQualifiers();
3819
3820 if ((ParamQuals | ArgQuals) != ParamQuals) {
3821 S.Diag(Arg->getLocStart(),
3822 diag::err_template_arg_ref_bind_ignores_quals)
3823 << ParamType << Arg->getType()
3824 << Arg->getSourceRange();
3825 S.Diag(Param->getLocation(), diag::note_template_param_here);
3826 return true;
3827 }
3828 }
3829 }
3830
3831 // At this point, the template argument refers to an object or
3832 // function with external linkage. We now need to check whether the
3833 // argument and parameter types are compatible.
3834 if (!S.Context.hasSameUnqualifiedType(ArgType,
3835 ParamType.getNonReferenceType())) {
3836 // We can't perform this conversion or binding.
3837 if (ParamType->isReferenceType())
3838 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3839 << ParamType << ArgIn->getType() << Arg->getSourceRange();
3840 else
3841 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3842 << ArgIn->getType() << ParamType << Arg->getSourceRange();
3843 S.Diag(Param->getLocation(), diag::note_template_param_here);
3844 return true;
3845 }
3846 }
3847
3848 // Create the template argument.
3849 Converted = TemplateArgument(Entity->getCanonicalDecl());
3850 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3851 return false;
3852 }
3853
3854 /// \brief Checks whether the given template argument is a pointer to
3855 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)3856 static bool CheckTemplateArgumentPointerToMember(Sema &S,
3857 NonTypeTemplateParmDecl *Param,
3858 QualType ParamType,
3859 Expr *&ResultArg,
3860 TemplateArgument &Converted) {
3861 bool Invalid = false;
3862
3863 // Check for a null pointer value.
3864 Expr *Arg = ResultArg;
3865 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3866 case NPV_Error:
3867 return true;
3868 case NPV_NullPointer:
3869 Converted = TemplateArgument((Decl *)0);
3870 return false;
3871 case NPV_NotNullPointer:
3872 break;
3873 }
3874
3875 bool ObjCLifetimeConversion;
3876 if (S.IsQualificationConversion(Arg->getType(),
3877 ParamType.getNonReferenceType(),
3878 false, ObjCLifetimeConversion)) {
3879 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3880 Arg->getValueKind()).take();
3881 ResultArg = Arg;
3882 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3883 ParamType.getNonReferenceType())) {
3884 // We can't perform this conversion.
3885 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3886 << Arg->getType() << ParamType << Arg->getSourceRange();
3887 S.Diag(Param->getLocation(), diag::note_template_param_here);
3888 return true;
3889 }
3890
3891 // See through any implicit casts we added to fix the type.
3892 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3893 Arg = Cast->getSubExpr();
3894
3895 // C++ [temp.arg.nontype]p1:
3896 //
3897 // A template-argument for a non-type, non-template
3898 // template-parameter shall be one of: [...]
3899 //
3900 // -- a pointer to member expressed as described in 5.3.1.
3901 DeclRefExpr *DRE = 0;
3902
3903 // In C++98/03 mode, give an extension warning on any extra parentheses.
3904 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3905 bool ExtraParens = false;
3906 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3907 if (!Invalid && !ExtraParens) {
3908 S.Diag(Arg->getLocStart(),
3909 S.getLangOpts().CPlusPlus0x ?
3910 diag::warn_cxx98_compat_template_arg_extra_parens :
3911 diag::ext_template_arg_extra_parens)
3912 << Arg->getSourceRange();
3913 ExtraParens = true;
3914 }
3915
3916 Arg = Parens->getSubExpr();
3917 }
3918
3919 while (SubstNonTypeTemplateParmExpr *subst =
3920 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3921 Arg = subst->getReplacement()->IgnoreImpCasts();
3922
3923 // A pointer-to-member constant written &Class::member.
3924 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3925 if (UnOp->getOpcode() == UO_AddrOf) {
3926 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3927 if (DRE && !DRE->getQualifier())
3928 DRE = 0;
3929 }
3930 }
3931 // A constant of pointer-to-member type.
3932 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3933 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3934 if (VD->getType()->isMemberPointerType()) {
3935 if (isa<NonTypeTemplateParmDecl>(VD) ||
3936 (isa<VarDecl>(VD) &&
3937 S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
3938 if (Arg->isTypeDependent() || Arg->isValueDependent())
3939 Converted = TemplateArgument(Arg);
3940 else
3941 Converted = TemplateArgument(VD->getCanonicalDecl());
3942 return Invalid;
3943 }
3944 }
3945 }
3946
3947 DRE = 0;
3948 }
3949
3950 if (!DRE)
3951 return S.Diag(Arg->getLocStart(),
3952 diag::err_template_arg_not_pointer_to_member_form)
3953 << Arg->getSourceRange();
3954
3955 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3956 assert((isa<FieldDecl>(DRE->getDecl()) ||
3957 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3958 "Only non-static member pointers can make it here");
3959
3960 // Okay: this is the address of a non-static member, and therefore
3961 // a member pointer constant.
3962 if (Arg->isTypeDependent() || Arg->isValueDependent())
3963 Converted = TemplateArgument(Arg);
3964 else
3965 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3966 return Invalid;
3967 }
3968
3969 // We found something else, but we don't know specifically what it is.
3970 S.Diag(Arg->getLocStart(),
3971 diag::err_template_arg_not_pointer_to_member_form)
3972 << Arg->getSourceRange();
3973 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3974 return true;
3975 }
3976
3977 /// \brief Check a template argument against its corresponding
3978 /// non-type template parameter.
3979 ///
3980 /// This routine implements the semantics of C++ [temp.arg.nontype].
3981 /// If an error occurred, it returns ExprError(); otherwise, it
3982 /// returns the converted template argument. \p
3983 /// InstantiatedParamType is the type of the non-type template
3984 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)3985 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3986 QualType InstantiatedParamType, Expr *Arg,
3987 TemplateArgument &Converted,
3988 CheckTemplateArgumentKind CTAK) {
3989 SourceLocation StartLoc = Arg->getLocStart();
3990
3991 // If either the parameter has a dependent type or the argument is
3992 // type-dependent, there's nothing we can check now.
3993 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3994 // FIXME: Produce a cloned, canonical expression?
3995 Converted = TemplateArgument(Arg);
3996 return Owned(Arg);
3997 }
3998
3999 // C++ [temp.arg.nontype]p5:
4000 // The following conversions are performed on each expression used
4001 // as a non-type template-argument. If a non-type
4002 // template-argument cannot be converted to the type of the
4003 // corresponding template-parameter then the program is
4004 // ill-formed.
4005 QualType ParamType = InstantiatedParamType;
4006 if (ParamType->isIntegralOrEnumerationType()) {
4007 // C++11:
4008 // -- for a non-type template-parameter of integral or
4009 // enumeration type, conversions permitted in a converted
4010 // constant expression are applied.
4011 //
4012 // C++98:
4013 // -- for a non-type template-parameter of integral or
4014 // enumeration type, integral promotions (4.5) and integral
4015 // conversions (4.7) are applied.
4016
4017 if (CTAK == CTAK_Deduced &&
4018 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4019 // C++ [temp.deduct.type]p17:
4020 // If, in the declaration of a function template with a non-type
4021 // template-parameter, the non-type template-parameter is used
4022 // in an expression in the function parameter-list and, if the
4023 // corresponding template-argument is deduced, the
4024 // template-argument type shall match the type of the
4025 // template-parameter exactly, except that a template-argument
4026 // deduced from an array bound may be of any integral type.
4027 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4028 << Arg->getType().getUnqualifiedType()
4029 << ParamType.getUnqualifiedType();
4030 Diag(Param->getLocation(), diag::note_template_param_here);
4031 return ExprError();
4032 }
4033
4034 if (getLangOpts().CPlusPlus0x) {
4035 // We can't check arbitrary value-dependent arguments.
4036 // FIXME: If there's no viable conversion to the template parameter type,
4037 // we should be able to diagnose that prior to instantiation.
4038 if (Arg->isValueDependent()) {
4039 Converted = TemplateArgument(Arg);
4040 return Owned(Arg);
4041 }
4042
4043 // C++ [temp.arg.nontype]p1:
4044 // A template-argument for a non-type, non-template template-parameter
4045 // shall be one of:
4046 //
4047 // -- for a non-type template-parameter of integral or enumeration
4048 // type, a converted constant expression of the type of the
4049 // template-parameter; or
4050 llvm::APSInt Value;
4051 ExprResult ArgResult =
4052 CheckConvertedConstantExpression(Arg, ParamType, Value,
4053 CCEK_TemplateArg);
4054 if (ArgResult.isInvalid())
4055 return ExprError();
4056
4057 // Widen the argument value to sizeof(parameter type). This is almost
4058 // always a no-op, except when the parameter type is bool. In
4059 // that case, this may extend the argument from 1 bit to 8 bits.
4060 QualType IntegerType = ParamType;
4061 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4062 IntegerType = Enum->getDecl()->getIntegerType();
4063 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4064
4065 Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
4066 return ArgResult;
4067 }
4068
4069 ExprResult ArgResult = DefaultLvalueConversion(Arg);
4070 if (ArgResult.isInvalid())
4071 return ExprError();
4072 Arg = ArgResult.take();
4073
4074 QualType ArgType = Arg->getType();
4075
4076 // C++ [temp.arg.nontype]p1:
4077 // A template-argument for a non-type, non-template
4078 // template-parameter shall be one of:
4079 //
4080 // -- an integral constant-expression of integral or enumeration
4081 // type; or
4082 // -- the name of a non-type template-parameter; or
4083 SourceLocation NonConstantLoc;
4084 llvm::APSInt Value;
4085 if (!ArgType->isIntegralOrEnumerationType()) {
4086 Diag(Arg->getLocStart(),
4087 diag::err_template_arg_not_integral_or_enumeral)
4088 << ArgType << Arg->getSourceRange();
4089 Diag(Param->getLocation(), diag::note_template_param_here);
4090 return ExprError();
4091 } else if (!Arg->isValueDependent()) {
4092 Arg = VerifyIntegerConstantExpression(Arg, &Value,
4093 PDiag(diag::err_template_arg_not_ice) << ArgType, false).take();
4094 if (!Arg)
4095 return ExprError();
4096 }
4097
4098 // From here on out, all we care about are the unqualified forms
4099 // of the parameter and argument types.
4100 ParamType = ParamType.getUnqualifiedType();
4101 ArgType = ArgType.getUnqualifiedType();
4102
4103 // Try to convert the argument to the parameter's type.
4104 if (Context.hasSameType(ParamType, ArgType)) {
4105 // Okay: no conversion necessary
4106 } else if (ParamType->isBooleanType()) {
4107 // This is an integral-to-boolean conversion.
4108 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4109 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4110 !ParamType->isEnumeralType()) {
4111 // This is an integral promotion or conversion.
4112 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4113 } else {
4114 // We can't perform this conversion.
4115 Diag(Arg->getLocStart(),
4116 diag::err_template_arg_not_convertible)
4117 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4118 Diag(Param->getLocation(), diag::note_template_param_here);
4119 return ExprError();
4120 }
4121
4122 // Add the value of this argument to the list of converted
4123 // arguments. We use the bitwidth and signedness of the template
4124 // parameter.
4125 if (Arg->isValueDependent()) {
4126 // The argument is value-dependent. Create a new
4127 // TemplateArgument with the converted expression.
4128 Converted = TemplateArgument(Arg);
4129 return Owned(Arg);
4130 }
4131
4132 QualType IntegerType = Context.getCanonicalType(ParamType);
4133 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4134 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4135
4136 if (ParamType->isBooleanType()) {
4137 // Value must be zero or one.
4138 Value = Value != 0;
4139 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4140 if (Value.getBitWidth() != AllowedBits)
4141 Value = Value.extOrTrunc(AllowedBits);
4142 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4143 } else {
4144 llvm::APSInt OldValue = Value;
4145
4146 // Coerce the template argument's value to the value it will have
4147 // based on the template parameter's type.
4148 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4149 if (Value.getBitWidth() != AllowedBits)
4150 Value = Value.extOrTrunc(AllowedBits);
4151 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4152
4153 // Complain if an unsigned parameter received a negative value.
4154 if (IntegerType->isUnsignedIntegerOrEnumerationType()
4155 && (OldValue.isSigned() && OldValue.isNegative())) {
4156 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4157 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4158 << Arg->getSourceRange();
4159 Diag(Param->getLocation(), diag::note_template_param_here);
4160 }
4161
4162 // Complain if we overflowed the template parameter's type.
4163 unsigned RequiredBits;
4164 if (IntegerType->isUnsignedIntegerOrEnumerationType())
4165 RequiredBits = OldValue.getActiveBits();
4166 else if (OldValue.isUnsigned())
4167 RequiredBits = OldValue.getActiveBits() + 1;
4168 else
4169 RequiredBits = OldValue.getMinSignedBits();
4170 if (RequiredBits > AllowedBits) {
4171 Diag(Arg->getLocStart(),
4172 diag::warn_template_arg_too_large)
4173 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4174 << Arg->getSourceRange();
4175 Diag(Param->getLocation(), diag::note_template_param_here);
4176 }
4177 }
4178
4179 Converted = TemplateArgument(Value,
4180 ParamType->isEnumeralType()
4181 ? Context.getCanonicalType(ParamType)
4182 : IntegerType);
4183 return Owned(Arg);
4184 }
4185
4186 QualType ArgType = Arg->getType();
4187 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4188
4189 // Handle pointer-to-function, reference-to-function, and
4190 // pointer-to-member-function all in (roughly) the same way.
4191 if (// -- For a non-type template-parameter of type pointer to
4192 // function, only the function-to-pointer conversion (4.3) is
4193 // applied. If the template-argument represents a set of
4194 // overloaded functions (or a pointer to such), the matching
4195 // function is selected from the set (13.4).
4196 (ParamType->isPointerType() &&
4197 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4198 // -- For a non-type template-parameter of type reference to
4199 // function, no conversions apply. If the template-argument
4200 // represents a set of overloaded functions, the matching
4201 // function is selected from the set (13.4).
4202 (ParamType->isReferenceType() &&
4203 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4204 // -- For a non-type template-parameter of type pointer to
4205 // member function, no conversions apply. If the
4206 // template-argument represents a set of overloaded member
4207 // functions, the matching member function is selected from
4208 // the set (13.4).
4209 (ParamType->isMemberPointerType() &&
4210 ParamType->getAs<MemberPointerType>()->getPointeeType()
4211 ->isFunctionType())) {
4212
4213 if (Arg->getType() == Context.OverloadTy) {
4214 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4215 true,
4216 FoundResult)) {
4217 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4218 return ExprError();
4219
4220 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4221 ArgType = Arg->getType();
4222 } else
4223 return ExprError();
4224 }
4225
4226 if (!ParamType->isMemberPointerType()) {
4227 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4228 ParamType,
4229 Arg, Converted))
4230 return ExprError();
4231 return Owned(Arg);
4232 }
4233
4234 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4235 Converted))
4236 return ExprError();
4237 return Owned(Arg);
4238 }
4239
4240 if (ParamType->isPointerType()) {
4241 // -- for a non-type template-parameter of type pointer to
4242 // object, qualification conversions (4.4) and the
4243 // array-to-pointer conversion (4.2) are applied.
4244 // C++0x also allows a value of std::nullptr_t.
4245 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4246 "Only object pointers allowed here");
4247
4248 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4249 ParamType,
4250 Arg, Converted))
4251 return ExprError();
4252 return Owned(Arg);
4253 }
4254
4255 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4256 // -- For a non-type template-parameter of type reference to
4257 // object, no conversions apply. The type referred to by the
4258 // reference may be more cv-qualified than the (otherwise
4259 // identical) type of the template-argument. The
4260 // template-parameter is bound directly to the
4261 // template-argument, which must be an lvalue.
4262 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4263 "Only object references allowed here");
4264
4265 if (Arg->getType() == Context.OverloadTy) {
4266 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4267 ParamRefType->getPointeeType(),
4268 true,
4269 FoundResult)) {
4270 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4271 return ExprError();
4272
4273 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4274 ArgType = Arg->getType();
4275 } else
4276 return ExprError();
4277 }
4278
4279 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4280 ParamType,
4281 Arg, Converted))
4282 return ExprError();
4283 return Owned(Arg);
4284 }
4285
4286 // Deal with parameters of type std::nullptr_t.
4287 if (ParamType->isNullPtrType()) {
4288 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4289 Converted = TemplateArgument(Arg);
4290 return Owned(Arg);
4291 }
4292
4293 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4294 case NPV_NotNullPointer:
4295 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4296 << Arg->getType() << ParamType;
4297 Diag(Param->getLocation(), diag::note_template_param_here);
4298 return ExprError();
4299
4300 case NPV_Error:
4301 return ExprError();
4302
4303 case NPV_NullPointer:
4304 Converted = TemplateArgument((Decl *)0);
4305 return Owned(Arg);;
4306 }
4307 }
4308
4309 // -- For a non-type template-parameter of type pointer to data
4310 // member, qualification conversions (4.4) are applied.
4311 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4312
4313 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4314 Converted))
4315 return ExprError();
4316 return Owned(Arg);
4317 }
4318
4319 /// \brief Check a template argument against its corresponding
4320 /// template template parameter.
4321 ///
4322 /// This routine implements the semantics of C++ [temp.arg.template].
4323 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,const TemplateArgumentLoc & Arg)4324 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4325 const TemplateArgumentLoc &Arg) {
4326 TemplateName Name = Arg.getArgument().getAsTemplate();
4327 TemplateDecl *Template = Name.getAsTemplateDecl();
4328 if (!Template) {
4329 // Any dependent template name is fine.
4330 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4331 return false;
4332 }
4333
4334 // C++0x [temp.arg.template]p1:
4335 // A template-argument for a template template-parameter shall be
4336 // the name of a class template or an alias template, expressed as an
4337 // id-expression. When the template-argument names a class template, only
4338 // primary class templates are considered when matching the
4339 // template template argument with the corresponding parameter;
4340 // partial specializations are not considered even if their
4341 // parameter lists match that of the template template parameter.
4342 //
4343 // Note that we also allow template template parameters here, which
4344 // will happen when we are dealing with, e.g., class template
4345 // partial specializations.
4346 if (!isa<ClassTemplateDecl>(Template) &&
4347 !isa<TemplateTemplateParmDecl>(Template) &&
4348 !isa<TypeAliasTemplateDecl>(Template)) {
4349 assert(isa<FunctionTemplateDecl>(Template) &&
4350 "Only function templates are possible here");
4351 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4352 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4353 << Template;
4354 }
4355
4356 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4357 Param->getTemplateParameters(),
4358 true,
4359 TPL_TemplateTemplateArgumentMatch,
4360 Arg.getLocation());
4361 }
4362
4363 /// \brief Given a non-type template argument that refers to a
4364 /// declaration and the type of its corresponding non-type template
4365 /// parameter, produce an expression that properly refers to that
4366 /// declaration.
4367 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)4368 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4369 QualType ParamType,
4370 SourceLocation Loc) {
4371 assert(Arg.getKind() == TemplateArgument::Declaration &&
4372 "Only declaration template arguments permitted here");
4373
4374 // For a NULL non-type template argument, return nullptr casted to the
4375 // parameter's type.
4376 if (!Arg.getAsDecl()) {
4377 return ImpCastExprToType(
4378 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4379 ParamType,
4380 ParamType->getAs<MemberPointerType>()
4381 ? CK_NullToMemberPointer
4382 : CK_NullToPointer);
4383 }
4384
4385 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4386
4387 if (VD->getDeclContext()->isRecord() &&
4388 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4389 // If the value is a class member, we might have a pointer-to-member.
4390 // Determine whether the non-type template template parameter is of
4391 // pointer-to-member type. If so, we need to build an appropriate
4392 // expression for a pointer-to-member, since a "normal" DeclRefExpr
4393 // would refer to the member itself.
4394 if (ParamType->isMemberPointerType()) {
4395 QualType ClassType
4396 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4397 NestedNameSpecifier *Qualifier
4398 = NestedNameSpecifier::Create(Context, 0, false,
4399 ClassType.getTypePtr());
4400 CXXScopeSpec SS;
4401 SS.MakeTrivial(Context, Qualifier, Loc);
4402
4403 // The actual value-ness of this is unimportant, but for
4404 // internal consistency's sake, references to instance methods
4405 // are r-values.
4406 ExprValueKind VK = VK_LValue;
4407 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4408 VK = VK_RValue;
4409
4410 ExprResult RefExpr = BuildDeclRefExpr(VD,
4411 VD->getType().getNonReferenceType(),
4412 VK,
4413 Loc,
4414 &SS);
4415 if (RefExpr.isInvalid())
4416 return ExprError();
4417
4418 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4419
4420 // We might need to perform a trailing qualification conversion, since
4421 // the element type on the parameter could be more qualified than the
4422 // element type in the expression we constructed.
4423 bool ObjCLifetimeConversion;
4424 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4425 ParamType.getUnqualifiedType(), false,
4426 ObjCLifetimeConversion))
4427 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4428
4429 assert(!RefExpr.isInvalid() &&
4430 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4431 ParamType.getUnqualifiedType()));
4432 return move(RefExpr);
4433 }
4434 }
4435
4436 QualType T = VD->getType().getNonReferenceType();
4437 if (ParamType->isPointerType()) {
4438 // When the non-type template parameter is a pointer, take the
4439 // address of the declaration.
4440 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4441 if (RefExpr.isInvalid())
4442 return ExprError();
4443
4444 if (T->isFunctionType() || T->isArrayType()) {
4445 // Decay functions and arrays.
4446 RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4447 if (RefExpr.isInvalid())
4448 return ExprError();
4449
4450 return move(RefExpr);
4451 }
4452
4453 // Take the address of everything else
4454 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4455 }
4456
4457 ExprValueKind VK = VK_RValue;
4458
4459 // If the non-type template parameter has reference type, qualify the
4460 // resulting declaration reference with the extra qualifiers on the
4461 // type that the reference refers to.
4462 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4463 VK = VK_LValue;
4464 T = Context.getQualifiedType(T,
4465 TargetRef->getPointeeType().getQualifiers());
4466 }
4467
4468 return BuildDeclRefExpr(VD, T, VK, Loc);
4469 }
4470
4471 /// \brief Construct a new expression that refers to the given
4472 /// integral template argument with the given source-location
4473 /// information.
4474 ///
4475 /// This routine takes care of the mapping from an integral template
4476 /// argument (which may have any integral type) to the appropriate
4477 /// literal value.
4478 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)4479 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4480 SourceLocation Loc) {
4481 assert(Arg.getKind() == TemplateArgument::Integral &&
4482 "Operation is only valid for integral template arguments");
4483 QualType T = Arg.getIntegralType();
4484 if (T->isAnyCharacterType()) {
4485 CharacterLiteral::CharacterKind Kind;
4486 if (T->isWideCharType())
4487 Kind = CharacterLiteral::Wide;
4488 else if (T->isChar16Type())
4489 Kind = CharacterLiteral::UTF16;
4490 else if (T->isChar32Type())
4491 Kind = CharacterLiteral::UTF32;
4492 else
4493 Kind = CharacterLiteral::Ascii;
4494
4495 return Owned(new (Context) CharacterLiteral(
4496 Arg.getAsIntegral()->getZExtValue(),
4497 Kind, T, Loc));
4498 }
4499
4500 if (T->isBooleanType())
4501 return Owned(new (Context) CXXBoolLiteralExpr(
4502 Arg.getAsIntegral()->getBoolValue(),
4503 T, Loc));
4504
4505 if (T->isNullPtrType())
4506 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4507
4508 // If this is an enum type that we're instantiating, we need to use an integer
4509 // type the same size as the enumerator. We don't want to build an
4510 // IntegerLiteral with enum type.
4511 QualType BT;
4512 if (const EnumType *ET = T->getAs<EnumType>())
4513 BT = ET->getDecl()->getIntegerType();
4514 else
4515 BT = T;
4516
4517 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4518 if (T->isEnumeralType()) {
4519 // FIXME: This is a hack. We need a better way to handle substituted
4520 // non-type template parameters.
4521 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4522 Context.getTrivialTypeSourceInfo(T, Loc),
4523 Loc, Loc);
4524 }
4525
4526 return Owned(E);
4527 }
4528
4529 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4530 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4531 bool Complain,
4532 Sema::TemplateParameterListEqualKind Kind,
4533 SourceLocation TemplateArgLoc) {
4534 // Check the actual kind (type, non-type, template).
4535 if (Old->getKind() != New->getKind()) {
4536 if (Complain) {
4537 unsigned NextDiag = diag::err_template_param_different_kind;
4538 if (TemplateArgLoc.isValid()) {
4539 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4540 NextDiag = diag::note_template_param_different_kind;
4541 }
4542 S.Diag(New->getLocation(), NextDiag)
4543 << (Kind != Sema::TPL_TemplateMatch);
4544 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4545 << (Kind != Sema::TPL_TemplateMatch);
4546 }
4547
4548 return false;
4549 }
4550
4551 // Check that both are parameter packs are neither are parameter packs.
4552 // However, if we are matching a template template argument to a
4553 // template template parameter, the template template parameter can have
4554 // a parameter pack where the template template argument does not.
4555 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4556 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4557 Old->isTemplateParameterPack())) {
4558 if (Complain) {
4559 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4560 if (TemplateArgLoc.isValid()) {
4561 S.Diag(TemplateArgLoc,
4562 diag::err_template_arg_template_params_mismatch);
4563 NextDiag = diag::note_template_parameter_pack_non_pack;
4564 }
4565
4566 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4567 : isa<NonTypeTemplateParmDecl>(New)? 1
4568 : 2;
4569 S.Diag(New->getLocation(), NextDiag)
4570 << ParamKind << New->isParameterPack();
4571 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4572 << ParamKind << Old->isParameterPack();
4573 }
4574
4575 return false;
4576 }
4577
4578 // For non-type template parameters, check the type of the parameter.
4579 if (NonTypeTemplateParmDecl *OldNTTP
4580 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4581 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4582
4583 // If we are matching a template template argument to a template
4584 // template parameter and one of the non-type template parameter types
4585 // is dependent, then we must wait until template instantiation time
4586 // to actually compare the arguments.
4587 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4588 (OldNTTP->getType()->isDependentType() ||
4589 NewNTTP->getType()->isDependentType()))
4590 return true;
4591
4592 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4593 if (Complain) {
4594 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4595 if (TemplateArgLoc.isValid()) {
4596 S.Diag(TemplateArgLoc,
4597 diag::err_template_arg_template_params_mismatch);
4598 NextDiag = diag::note_template_nontype_parm_different_type;
4599 }
4600 S.Diag(NewNTTP->getLocation(), NextDiag)
4601 << NewNTTP->getType()
4602 << (Kind != Sema::TPL_TemplateMatch);
4603 S.Diag(OldNTTP->getLocation(),
4604 diag::note_template_nontype_parm_prev_declaration)
4605 << OldNTTP->getType();
4606 }
4607
4608 return false;
4609 }
4610
4611 return true;
4612 }
4613
4614 // For template template parameters, check the template parameter types.
4615 // The template parameter lists of template template
4616 // parameters must agree.
4617 if (TemplateTemplateParmDecl *OldTTP
4618 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4619 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4620 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4621 OldTTP->getTemplateParameters(),
4622 Complain,
4623 (Kind == Sema::TPL_TemplateMatch
4624 ? Sema::TPL_TemplateTemplateParmMatch
4625 : Kind),
4626 TemplateArgLoc);
4627 }
4628
4629 return true;
4630 }
4631
4632 /// \brief Diagnose a known arity mismatch when comparing template argument
4633 /// lists.
4634 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4635 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4636 TemplateParameterList *New,
4637 TemplateParameterList *Old,
4638 Sema::TemplateParameterListEqualKind Kind,
4639 SourceLocation TemplateArgLoc) {
4640 unsigned NextDiag = diag::err_template_param_list_different_arity;
4641 if (TemplateArgLoc.isValid()) {
4642 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4643 NextDiag = diag::note_template_param_list_different_arity;
4644 }
4645 S.Diag(New->getTemplateLoc(), NextDiag)
4646 << (New->size() > Old->size())
4647 << (Kind != Sema::TPL_TemplateMatch)
4648 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4649 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4650 << (Kind != Sema::TPL_TemplateMatch)
4651 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4652 }
4653
4654 /// \brief Determine whether the given template parameter lists are
4655 /// equivalent.
4656 ///
4657 /// \param New The new template parameter list, typically written in the
4658 /// source code as part of a new template declaration.
4659 ///
4660 /// \param Old The old template parameter list, typically found via
4661 /// name lookup of the template declared with this template parameter
4662 /// list.
4663 ///
4664 /// \param Complain If true, this routine will produce a diagnostic if
4665 /// the template parameter lists are not equivalent.
4666 ///
4667 /// \param Kind describes how we are to match the template parameter lists.
4668 ///
4669 /// \param TemplateArgLoc If this source location is valid, then we
4670 /// are actually checking the template parameter list of a template
4671 /// argument (New) against the template parameter list of its
4672 /// corresponding template template parameter (Old). We produce
4673 /// slightly different diagnostics in this scenario.
4674 ///
4675 /// \returns True if the template parameter lists are equal, false
4676 /// otherwise.
4677 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4678 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4679 TemplateParameterList *Old,
4680 bool Complain,
4681 TemplateParameterListEqualKind Kind,
4682 SourceLocation TemplateArgLoc) {
4683 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4684 if (Complain)
4685 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4686 TemplateArgLoc);
4687
4688 return false;
4689 }
4690
4691 // C++0x [temp.arg.template]p3:
4692 // A template-argument matches a template template-parameter (call it P)
4693 // when each of the template parameters in the template-parameter-list of
4694 // the template-argument's corresponding class template or alias template
4695 // (call it A) matches the corresponding template parameter in the
4696 // template-parameter-list of P. [...]
4697 TemplateParameterList::iterator NewParm = New->begin();
4698 TemplateParameterList::iterator NewParmEnd = New->end();
4699 for (TemplateParameterList::iterator OldParm = Old->begin(),
4700 OldParmEnd = Old->end();
4701 OldParm != OldParmEnd; ++OldParm) {
4702 if (Kind != TPL_TemplateTemplateArgumentMatch ||
4703 !(*OldParm)->isTemplateParameterPack()) {
4704 if (NewParm == NewParmEnd) {
4705 if (Complain)
4706 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4707 TemplateArgLoc);
4708
4709 return false;
4710 }
4711
4712 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4713 Kind, TemplateArgLoc))
4714 return false;
4715
4716 ++NewParm;
4717 continue;
4718 }
4719
4720 // C++0x [temp.arg.template]p3:
4721 // [...] When P's template- parameter-list contains a template parameter
4722 // pack (14.5.3), the template parameter pack will match zero or more
4723 // template parameters or template parameter packs in the
4724 // template-parameter-list of A with the same type and form as the
4725 // template parameter pack in P (ignoring whether those template
4726 // parameters are template parameter packs).
4727 for (; NewParm != NewParmEnd; ++NewParm) {
4728 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4729 Kind, TemplateArgLoc))
4730 return false;
4731 }
4732 }
4733
4734 // Make sure we exhausted all of the arguments.
4735 if (NewParm != NewParmEnd) {
4736 if (Complain)
4737 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4738 TemplateArgLoc);
4739
4740 return false;
4741 }
4742
4743 return true;
4744 }
4745
4746 /// \brief Check whether a template can be declared within this scope.
4747 ///
4748 /// If the template declaration is valid in this scope, returns
4749 /// false. Otherwise, issues a diagnostic and returns true.
4750 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)4751 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4752 if (!S)
4753 return false;
4754
4755 // Find the nearest enclosing declaration scope.
4756 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4757 (S->getFlags() & Scope::TemplateParamScope) != 0)
4758 S = S->getParent();
4759
4760 // C++ [temp]p2:
4761 // A template-declaration can appear only as a namespace scope or
4762 // class scope declaration.
4763 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4764 if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4765 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4766 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4767 << TemplateParams->getSourceRange();
4768
4769 while (Ctx && isa<LinkageSpecDecl>(Ctx))
4770 Ctx = Ctx->getParent();
4771
4772 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4773 return false;
4774
4775 return Diag(TemplateParams->getTemplateLoc(),
4776 diag::err_template_outside_namespace_or_class_scope)
4777 << TemplateParams->getSourceRange();
4778 }
4779
4780 /// \brief Determine what kind of template specialization the given declaration
4781 /// is.
getTemplateSpecializationKind(Decl * D)4782 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4783 if (!D)
4784 return TSK_Undeclared;
4785
4786 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4787 return Record->getTemplateSpecializationKind();
4788 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4789 return Function->getTemplateSpecializationKind();
4790 if (VarDecl *Var = dyn_cast<VarDecl>(D))
4791 return Var->getTemplateSpecializationKind();
4792
4793 return TSK_Undeclared;
4794 }
4795
4796 /// \brief Check whether a specialization is well-formed in the current
4797 /// context.
4798 ///
4799 /// This routine determines whether a template specialization can be declared
4800 /// in the current context (C++ [temp.expl.spec]p2).
4801 ///
4802 /// \param S the semantic analysis object for which this check is being
4803 /// performed.
4804 ///
4805 /// \param Specialized the entity being specialized or instantiated, which
4806 /// may be a kind of template (class template, function template, etc.) or
4807 /// a member of a class template (member function, static data member,
4808 /// member class).
4809 ///
4810 /// \param PrevDecl the previous declaration of this entity, if any.
4811 ///
4812 /// \param Loc the location of the explicit specialization or instantiation of
4813 /// this entity.
4814 ///
4815 /// \param IsPartialSpecialization whether this is a partial specialization of
4816 /// a class template.
4817 ///
4818 /// \returns true if there was an error that we cannot recover from, false
4819 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)4820 static bool CheckTemplateSpecializationScope(Sema &S,
4821 NamedDecl *Specialized,
4822 NamedDecl *PrevDecl,
4823 SourceLocation Loc,
4824 bool IsPartialSpecialization) {
4825 // Keep these "kind" numbers in sync with the %select statements in the
4826 // various diagnostics emitted by this routine.
4827 int EntityKind = 0;
4828 if (isa<ClassTemplateDecl>(Specialized))
4829 EntityKind = IsPartialSpecialization? 1 : 0;
4830 else if (isa<FunctionTemplateDecl>(Specialized))
4831 EntityKind = 2;
4832 else if (isa<CXXMethodDecl>(Specialized))
4833 EntityKind = 3;
4834 else if (isa<VarDecl>(Specialized))
4835 EntityKind = 4;
4836 else if (isa<RecordDecl>(Specialized))
4837 EntityKind = 5;
4838 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4839 EntityKind = 6;
4840 else {
4841 S.Diag(Loc, diag::err_template_spec_unknown_kind)
4842 << S.getLangOpts().CPlusPlus0x;
4843 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4844 return true;
4845 }
4846
4847 // C++ [temp.expl.spec]p2:
4848 // An explicit specialization shall be declared in the namespace
4849 // of which the template is a member, or, for member templates, in
4850 // the namespace of which the enclosing class or enclosing class
4851 // template is a member. An explicit specialization of a member
4852 // function, member class or static data member of a class
4853 // template shall be declared in the namespace of which the class
4854 // template is a member. Such a declaration may also be a
4855 // definition. If the declaration is not a definition, the
4856 // specialization may be defined later in the name- space in which
4857 // the explicit specialization was declared, or in a namespace
4858 // that encloses the one in which the explicit specialization was
4859 // declared.
4860 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4861 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4862 << Specialized;
4863 return true;
4864 }
4865
4866 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4867 if (S.getLangOpts().MicrosoftExt) {
4868 // Do not warn for class scope explicit specialization during
4869 // instantiation, warning was already emitted during pattern
4870 // semantic analysis.
4871 if (!S.ActiveTemplateInstantiations.size())
4872 S.Diag(Loc, diag::ext_function_specialization_in_class)
4873 << Specialized;
4874 } else {
4875 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4876 << Specialized;
4877 return true;
4878 }
4879 }
4880
4881 if (S.CurContext->isRecord() &&
4882 !S.CurContext->Equals(Specialized->getDeclContext())) {
4883 // Make sure that we're specializing in the right record context.
4884 // Otherwise, things can go horribly wrong.
4885 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4886 << Specialized;
4887 return true;
4888 }
4889
4890 // C++ [temp.class.spec]p6:
4891 // A class template partial specialization may be declared or redeclared
4892 // in any namespace scope in which its definition may be defined (14.5.1
4893 // and 14.5.2).
4894 bool ComplainedAboutScope = false;
4895 DeclContext *SpecializedContext
4896 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4897 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4898 if ((!PrevDecl ||
4899 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4900 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4901 // C++ [temp.exp.spec]p2:
4902 // An explicit specialization shall be declared in the namespace of which
4903 // the template is a member, or, for member templates, in the namespace
4904 // of which the enclosing class or enclosing class template is a member.
4905 // An explicit specialization of a member function, member class or
4906 // static data member of a class template shall be declared in the
4907 // namespace of which the class template is a member.
4908 //
4909 // C++0x [temp.expl.spec]p2:
4910 // An explicit specialization shall be declared in a namespace enclosing
4911 // the specialized template.
4912 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4913 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4914 if (isa<TranslationUnitDecl>(SpecializedContext)) {
4915 assert(!IsCPlusPlus0xExtension &&
4916 "DC encloses TU but isn't in enclosing namespace set");
4917 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4918 << EntityKind << Specialized;
4919 } else if (isa<NamespaceDecl>(SpecializedContext)) {
4920 int Diag;
4921 if (!IsCPlusPlus0xExtension)
4922 Diag = diag::err_template_spec_decl_out_of_scope;
4923 else if (!S.getLangOpts().CPlusPlus0x)
4924 Diag = diag::ext_template_spec_decl_out_of_scope;
4925 else
4926 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4927 S.Diag(Loc, Diag)
4928 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4929 }
4930
4931 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4932 ComplainedAboutScope =
4933 !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
4934 }
4935 }
4936
4937 // Make sure that this redeclaration (or definition) occurs in an enclosing
4938 // namespace.
4939 // Note that HandleDeclarator() performs this check for explicit
4940 // specializations of function templates, static data members, and member
4941 // functions, so we skip the check here for those kinds of entities.
4942 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4943 // Should we refactor that check, so that it occurs later?
4944 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4945 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4946 isa<FunctionDecl>(Specialized))) {
4947 if (isa<TranslationUnitDecl>(SpecializedContext))
4948 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4949 << EntityKind << Specialized;
4950 else if (isa<NamespaceDecl>(SpecializedContext))
4951 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4952 << EntityKind << Specialized
4953 << cast<NamedDecl>(SpecializedContext);
4954
4955 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4956 }
4957
4958 // FIXME: check for specialization-after-instantiation errors and such.
4959
4960 return false;
4961 }
4962
4963 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4964 /// that checks non-type template partial specialization arguments.
CheckNonTypeClassTemplatePartialSpecializationArgs(Sema & S,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs)4965 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4966 NonTypeTemplateParmDecl *Param,
4967 const TemplateArgument *Args,
4968 unsigned NumArgs) {
4969 for (unsigned I = 0; I != NumArgs; ++I) {
4970 if (Args[I].getKind() == TemplateArgument::Pack) {
4971 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4972 Args[I].pack_begin(),
4973 Args[I].pack_size()))
4974 return true;
4975
4976 continue;
4977 }
4978
4979 Expr *ArgExpr = Args[I].getAsExpr();
4980 if (!ArgExpr) {
4981 continue;
4982 }
4983
4984 // We can have a pack expansion of any of the bullets below.
4985 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4986 ArgExpr = Expansion->getPattern();
4987
4988 // Strip off any implicit casts we added as part of type checking.
4989 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4990 ArgExpr = ICE->getSubExpr();
4991
4992 // C++ [temp.class.spec]p8:
4993 // A non-type argument is non-specialized if it is the name of a
4994 // non-type parameter. All other non-type arguments are
4995 // specialized.
4996 //
4997 // Below, we check the two conditions that only apply to
4998 // specialized non-type arguments, so skip any non-specialized
4999 // arguments.
5000 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5001 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5002 continue;
5003
5004 // C++ [temp.class.spec]p9:
5005 // Within the argument list of a class template partial
5006 // specialization, the following restrictions apply:
5007 // -- A partially specialized non-type argument expression
5008 // shall not involve a template parameter of the partial
5009 // specialization except when the argument expression is a
5010 // simple identifier.
5011 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5012 S.Diag(ArgExpr->getLocStart(),
5013 diag::err_dependent_non_type_arg_in_partial_spec)
5014 << ArgExpr->getSourceRange();
5015 return true;
5016 }
5017
5018 // -- The type of a template parameter corresponding to a
5019 // specialized non-type argument shall not be dependent on a
5020 // parameter of the specialization.
5021 if (Param->getType()->isDependentType()) {
5022 S.Diag(ArgExpr->getLocStart(),
5023 diag::err_dependent_typed_non_type_arg_in_partial_spec)
5024 << Param->getType()
5025 << ArgExpr->getSourceRange();
5026 S.Diag(Param->getLocation(), diag::note_template_param_here);
5027 return true;
5028 }
5029 }
5030
5031 return false;
5032 }
5033
5034 /// \brief Check the non-type template arguments of a class template
5035 /// partial specialization according to C++ [temp.class.spec]p9.
5036 ///
5037 /// \param TemplateParams the template parameters of the primary class
5038 /// template.
5039 ///
5040 /// \param TemplateArg the template arguments of the class template
5041 /// partial specialization.
5042 ///
5043 /// \returns true if there was an error, false otherwise.
CheckClassTemplatePartialSpecializationArgs(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<TemplateArgument> & TemplateArgs)5044 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5045 TemplateParameterList *TemplateParams,
5046 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5047 const TemplateArgument *ArgList = TemplateArgs.data();
5048
5049 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5050 NonTypeTemplateParmDecl *Param
5051 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5052 if (!Param)
5053 continue;
5054
5055 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5056 &ArgList[I], 1))
5057 return true;
5058 }
5059
5060 return false;
5061 }
5062
5063 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)5064 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5065 TagUseKind TUK,
5066 SourceLocation KWLoc,
5067 SourceLocation ModulePrivateLoc,
5068 CXXScopeSpec &SS,
5069 TemplateTy TemplateD,
5070 SourceLocation TemplateNameLoc,
5071 SourceLocation LAngleLoc,
5072 ASTTemplateArgsPtr TemplateArgsIn,
5073 SourceLocation RAngleLoc,
5074 AttributeList *Attr,
5075 MultiTemplateParamsArg TemplateParameterLists) {
5076 assert(TUK != TUK_Reference && "References are not specializations");
5077
5078 // NOTE: KWLoc is the location of the tag keyword. This will instead
5079 // store the location of the outermost template keyword in the declaration.
5080 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5081 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
5082
5083 // Find the class template we're specializing
5084 TemplateName Name = TemplateD.getAsVal<TemplateName>();
5085 ClassTemplateDecl *ClassTemplate
5086 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5087
5088 if (!ClassTemplate) {
5089 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5090 << (Name.getAsTemplateDecl() &&
5091 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5092 return true;
5093 }
5094
5095 bool isExplicitSpecialization = false;
5096 bool isPartialSpecialization = false;
5097
5098 // Check the validity of the template headers that introduce this
5099 // template.
5100 // FIXME: We probably shouldn't complain about these headers for
5101 // friend declarations.
5102 bool Invalid = false;
5103 TemplateParameterList *TemplateParams
5104 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5105 TemplateNameLoc,
5106 SS,
5107 (TemplateParameterList**)TemplateParameterLists.get(),
5108 TemplateParameterLists.size(),
5109 TUK == TUK_Friend,
5110 isExplicitSpecialization,
5111 Invalid);
5112 if (Invalid)
5113 return true;
5114
5115 if (TemplateParams && TemplateParams->size() > 0) {
5116 isPartialSpecialization = true;
5117
5118 if (TUK == TUK_Friend) {
5119 Diag(KWLoc, diag::err_partial_specialization_friend)
5120 << SourceRange(LAngleLoc, RAngleLoc);
5121 return true;
5122 }
5123
5124 // C++ [temp.class.spec]p10:
5125 // The template parameter list of a specialization shall not
5126 // contain default template argument values.
5127 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5128 Decl *Param = TemplateParams->getParam(I);
5129 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5130 if (TTP->hasDefaultArgument()) {
5131 Diag(TTP->getDefaultArgumentLoc(),
5132 diag::err_default_arg_in_partial_spec);
5133 TTP->removeDefaultArgument();
5134 }
5135 } else if (NonTypeTemplateParmDecl *NTTP
5136 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5137 if (Expr *DefArg = NTTP->getDefaultArgument()) {
5138 Diag(NTTP->getDefaultArgumentLoc(),
5139 diag::err_default_arg_in_partial_spec)
5140 << DefArg->getSourceRange();
5141 NTTP->removeDefaultArgument();
5142 }
5143 } else {
5144 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5145 if (TTP->hasDefaultArgument()) {
5146 Diag(TTP->getDefaultArgument().getLocation(),
5147 diag::err_default_arg_in_partial_spec)
5148 << TTP->getDefaultArgument().getSourceRange();
5149 TTP->removeDefaultArgument();
5150 }
5151 }
5152 }
5153 } else if (TemplateParams) {
5154 if (TUK == TUK_Friend)
5155 Diag(KWLoc, diag::err_template_spec_friend)
5156 << FixItHint::CreateRemoval(
5157 SourceRange(TemplateParams->getTemplateLoc(),
5158 TemplateParams->getRAngleLoc()))
5159 << SourceRange(LAngleLoc, RAngleLoc);
5160 else
5161 isExplicitSpecialization = true;
5162 } else if (TUK != TUK_Friend) {
5163 Diag(KWLoc, diag::err_template_spec_needs_header)
5164 << FixItHint::CreateInsertion(KWLoc, "template<> ");
5165 isExplicitSpecialization = true;
5166 }
5167
5168 // Check that the specialization uses the same tag kind as the
5169 // original template.
5170 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5171 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5172 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5173 Kind, TUK == TUK_Definition, KWLoc,
5174 *ClassTemplate->getIdentifier())) {
5175 Diag(KWLoc, diag::err_use_with_wrong_tag)
5176 << ClassTemplate
5177 << FixItHint::CreateReplacement(KWLoc,
5178 ClassTemplate->getTemplatedDecl()->getKindName());
5179 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5180 diag::note_previous_use);
5181 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5182 }
5183
5184 // Translate the parser's template argument list in our AST format.
5185 TemplateArgumentListInfo TemplateArgs;
5186 TemplateArgs.setLAngleLoc(LAngleLoc);
5187 TemplateArgs.setRAngleLoc(RAngleLoc);
5188 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5189
5190 // Check for unexpanded parameter packs in any of the template arguments.
5191 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5192 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5193 UPPC_PartialSpecialization))
5194 return true;
5195
5196 // Check that the template argument list is well-formed for this
5197 // template.
5198 SmallVector<TemplateArgument, 4> Converted;
5199 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5200 TemplateArgs, false, Converted))
5201 return true;
5202
5203 // Find the class template (partial) specialization declaration that
5204 // corresponds to these arguments.
5205 if (isPartialSpecialization) {
5206 if (CheckClassTemplatePartialSpecializationArgs(*this,
5207 ClassTemplate->getTemplateParameters(),
5208 Converted))
5209 return true;
5210
5211 bool InstantiationDependent;
5212 if (!Name.isDependent() &&
5213 !TemplateSpecializationType::anyDependentTemplateArguments(
5214 TemplateArgs.getArgumentArray(),
5215 TemplateArgs.size(),
5216 InstantiationDependent)) {
5217 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5218 << ClassTemplate->getDeclName();
5219 isPartialSpecialization = false;
5220 }
5221 }
5222
5223 void *InsertPos = 0;
5224 ClassTemplateSpecializationDecl *PrevDecl = 0;
5225
5226 if (isPartialSpecialization)
5227 // FIXME: Template parameter list matters, too
5228 PrevDecl
5229 = ClassTemplate->findPartialSpecialization(Converted.data(),
5230 Converted.size(),
5231 InsertPos);
5232 else
5233 PrevDecl
5234 = ClassTemplate->findSpecialization(Converted.data(),
5235 Converted.size(), InsertPos);
5236
5237 ClassTemplateSpecializationDecl *Specialization = 0;
5238
5239 // Check whether we can declare a class template specialization in
5240 // the current scope.
5241 if (TUK != TUK_Friend &&
5242 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5243 TemplateNameLoc,
5244 isPartialSpecialization))
5245 return true;
5246
5247 // The canonical type
5248 QualType CanonType;
5249 if (PrevDecl &&
5250 (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5251 TUK == TUK_Friend)) {
5252 // Since the only prior class template specialization with these
5253 // arguments was referenced but not declared, or we're only
5254 // referencing this specialization as a friend, reuse that
5255 // declaration node as our own, updating its source location and
5256 // the list of outer template parameters to reflect our new declaration.
5257 Specialization = PrevDecl;
5258 Specialization->setLocation(TemplateNameLoc);
5259 if (TemplateParameterLists.size() > 0) {
5260 Specialization->setTemplateParameterListsInfo(Context,
5261 TemplateParameterLists.size(),
5262 (TemplateParameterList**) TemplateParameterLists.release());
5263 }
5264 PrevDecl = 0;
5265 CanonType = Context.getTypeDeclType(Specialization);
5266 } else if (isPartialSpecialization) {
5267 // Build the canonical type that describes the converted template
5268 // arguments of the class template partial specialization.
5269 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5270 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5271 Converted.data(),
5272 Converted.size());
5273
5274 if (Context.hasSameType(CanonType,
5275 ClassTemplate->getInjectedClassNameSpecialization())) {
5276 // C++ [temp.class.spec]p9b3:
5277 //
5278 // -- The argument list of the specialization shall not be identical
5279 // to the implicit argument list of the primary template.
5280 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5281 << (TUK == TUK_Definition)
5282 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5283 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5284 ClassTemplate->getIdentifier(),
5285 TemplateNameLoc,
5286 Attr,
5287 TemplateParams,
5288 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5289 TemplateParameterLists.size() - 1,
5290 (TemplateParameterList**) TemplateParameterLists.release());
5291 }
5292
5293 // Create a new class template partial specialization declaration node.
5294 ClassTemplatePartialSpecializationDecl *PrevPartial
5295 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5296 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5297 : ClassTemplate->getNextPartialSpecSequenceNumber();
5298 ClassTemplatePartialSpecializationDecl *Partial
5299 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5300 ClassTemplate->getDeclContext(),
5301 KWLoc, TemplateNameLoc,
5302 TemplateParams,
5303 ClassTemplate,
5304 Converted.data(),
5305 Converted.size(),
5306 TemplateArgs,
5307 CanonType,
5308 PrevPartial,
5309 SequenceNumber);
5310 SetNestedNameSpecifier(Partial, SS);
5311 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5312 Partial->setTemplateParameterListsInfo(Context,
5313 TemplateParameterLists.size() - 1,
5314 (TemplateParameterList**) TemplateParameterLists.release());
5315 }
5316
5317 if (!PrevPartial)
5318 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5319 Specialization = Partial;
5320
5321 // If we are providing an explicit specialization of a member class
5322 // template specialization, make a note of that.
5323 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5324 PrevPartial->setMemberSpecialization();
5325
5326 // Check that all of the template parameters of the class template
5327 // partial specialization are deducible from the template
5328 // arguments. If not, this class template partial specialization
5329 // will never be used.
5330 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5331 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5332 TemplateParams->getDepth(),
5333 DeducibleParams);
5334
5335 if (!DeducibleParams.all()) {
5336 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5337 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5338 << (NumNonDeducible > 1)
5339 << SourceRange(TemplateNameLoc, RAngleLoc);
5340 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5341 if (!DeducibleParams[I]) {
5342 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5343 if (Param->getDeclName())
5344 Diag(Param->getLocation(),
5345 diag::note_partial_spec_unused_parameter)
5346 << Param->getDeclName();
5347 else
5348 Diag(Param->getLocation(),
5349 diag::note_partial_spec_unused_parameter)
5350 << "<anonymous>";
5351 }
5352 }
5353 }
5354 } else {
5355 // Create a new class template specialization declaration node for
5356 // this explicit specialization or friend declaration.
5357 Specialization
5358 = ClassTemplateSpecializationDecl::Create(Context, Kind,
5359 ClassTemplate->getDeclContext(),
5360 KWLoc, TemplateNameLoc,
5361 ClassTemplate,
5362 Converted.data(),
5363 Converted.size(),
5364 PrevDecl);
5365 SetNestedNameSpecifier(Specialization, SS);
5366 if (TemplateParameterLists.size() > 0) {
5367 Specialization->setTemplateParameterListsInfo(Context,
5368 TemplateParameterLists.size(),
5369 (TemplateParameterList**) TemplateParameterLists.release());
5370 }
5371
5372 if (!PrevDecl)
5373 ClassTemplate->AddSpecialization(Specialization, InsertPos);
5374
5375 CanonType = Context.getTypeDeclType(Specialization);
5376 }
5377
5378 // C++ [temp.expl.spec]p6:
5379 // If a template, a member template or the member of a class template is
5380 // explicitly specialized then that specialization shall be declared
5381 // before the first use of that specialization that would cause an implicit
5382 // instantiation to take place, in every translation unit in which such a
5383 // use occurs; no diagnostic is required.
5384 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5385 bool Okay = false;
5386 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5387 // Is there any previous explicit specialization declaration?
5388 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5389 Okay = true;
5390 break;
5391 }
5392 }
5393
5394 if (!Okay) {
5395 SourceRange Range(TemplateNameLoc, RAngleLoc);
5396 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5397 << Context.getTypeDeclType(Specialization) << Range;
5398
5399 Diag(PrevDecl->getPointOfInstantiation(),
5400 diag::note_instantiation_required_here)
5401 << (PrevDecl->getTemplateSpecializationKind()
5402 != TSK_ImplicitInstantiation);
5403 return true;
5404 }
5405 }
5406
5407 // If this is not a friend, note that this is an explicit specialization.
5408 if (TUK != TUK_Friend)
5409 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5410
5411 // Check that this isn't a redefinition of this specialization.
5412 if (TUK == TUK_Definition) {
5413 if (RecordDecl *Def = Specialization->getDefinition()) {
5414 SourceRange Range(TemplateNameLoc, RAngleLoc);
5415 Diag(TemplateNameLoc, diag::err_redefinition)
5416 << Context.getTypeDeclType(Specialization) << Range;
5417 Diag(Def->getLocation(), diag::note_previous_definition);
5418 Specialization->setInvalidDecl();
5419 return true;
5420 }
5421 }
5422
5423 if (Attr)
5424 ProcessDeclAttributeList(S, Specialization, Attr);
5425
5426 if (ModulePrivateLoc.isValid())
5427 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5428 << (isPartialSpecialization? 1 : 0)
5429 << FixItHint::CreateRemoval(ModulePrivateLoc);
5430
5431 // Build the fully-sugared type for this class template
5432 // specialization as the user wrote in the specialization
5433 // itself. This means that we'll pretty-print the type retrieved
5434 // from the specialization's declaration the way that the user
5435 // actually wrote the specialization, rather than formatting the
5436 // name based on the "canonical" representation used to store the
5437 // template arguments in the specialization.
5438 TypeSourceInfo *WrittenTy
5439 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5440 TemplateArgs, CanonType);
5441 if (TUK != TUK_Friend) {
5442 Specialization->setTypeAsWritten(WrittenTy);
5443 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5444 }
5445 TemplateArgsIn.release();
5446
5447 // C++ [temp.expl.spec]p9:
5448 // A template explicit specialization is in the scope of the
5449 // namespace in which the template was defined.
5450 //
5451 // We actually implement this paragraph where we set the semantic
5452 // context (in the creation of the ClassTemplateSpecializationDecl),
5453 // but we also maintain the lexical context where the actual
5454 // definition occurs.
5455 Specialization->setLexicalDeclContext(CurContext);
5456
5457 // We may be starting the definition of this specialization.
5458 if (TUK == TUK_Definition)
5459 Specialization->startDefinition();
5460
5461 if (TUK == TUK_Friend) {
5462 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5463 TemplateNameLoc,
5464 WrittenTy,
5465 /*FIXME:*/KWLoc);
5466 Friend->setAccess(AS_public);
5467 CurContext->addDecl(Friend);
5468 } else {
5469 // Add the specialization into its lexical context, so that it can
5470 // be seen when iterating through the list of declarations in that
5471 // context. However, specializations are not found by name lookup.
5472 CurContext->addDecl(Specialization);
5473 }
5474 return Specialization;
5475 }
5476
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5477 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5478 MultiTemplateParamsArg TemplateParameterLists,
5479 Declarator &D) {
5480 return HandleDeclarator(S, D, move(TemplateParameterLists));
5481 }
5482
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5483 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5484 MultiTemplateParamsArg TemplateParameterLists,
5485 Declarator &D) {
5486 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5487 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5488
5489 if (FTI.hasPrototype) {
5490 // FIXME: Diagnose arguments without names in C.
5491 }
5492
5493 Scope *ParentScope = FnBodyScope->getParent();
5494
5495 D.setFunctionDefinitionKind(FDK_Definition);
5496 Decl *DP = HandleDeclarator(ParentScope, D,
5497 move(TemplateParameterLists));
5498 if (FunctionTemplateDecl *FunctionTemplate
5499 = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5500 return ActOnStartOfFunctionDef(FnBodyScope,
5501 FunctionTemplate->getTemplatedDecl());
5502 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5503 return ActOnStartOfFunctionDef(FnBodyScope, Function);
5504 return 0;
5505 }
5506
5507 /// \brief Strips various properties off an implicit instantiation
5508 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)5509 static void StripImplicitInstantiation(NamedDecl *D) {
5510 // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5511 D->dropAttrs();
5512
5513 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5514 FD->setInlineSpecified(false);
5515 }
5516 }
5517
5518 /// \brief Compute the diagnostic location for an explicit instantiation
5519 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)5520 static SourceLocation DiagLocForExplicitInstantiation(
5521 NamedDecl* D, SourceLocation PointOfInstantiation) {
5522 // Explicit instantiations following a specialization have no effect and
5523 // hence no PointOfInstantiation. In that case, walk decl backwards
5524 // until a valid name loc is found.
5525 SourceLocation PrevDiagLoc = PointOfInstantiation;
5526 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5527 Prev = Prev->getPreviousDecl()) {
5528 PrevDiagLoc = Prev->getLocation();
5529 }
5530 assert(PrevDiagLoc.isValid() &&
5531 "Explicit instantiation without point of instantiation?");
5532 return PrevDiagLoc;
5533 }
5534
5535 /// \brief Diagnose cases where we have an explicit template specialization
5536 /// before/after an explicit template instantiation, producing diagnostics
5537 /// for those cases where they are required and determining whether the
5538 /// new specialization/instantiation will have any effect.
5539 ///
5540 /// \param NewLoc the location of the new explicit specialization or
5541 /// instantiation.
5542 ///
5543 /// \param NewTSK the kind of the new explicit specialization or instantiation.
5544 ///
5545 /// \param PrevDecl the previous declaration of the entity.
5546 ///
5547 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5548 ///
5549 /// \param PrevPointOfInstantiation if valid, indicates where the previus
5550 /// declaration was instantiated (either implicitly or explicitly).
5551 ///
5552 /// \param HasNoEffect will be set to true to indicate that the new
5553 /// specialization or instantiation has no effect and should be ignored.
5554 ///
5555 /// \returns true if there was an error that should prevent the introduction of
5556 /// the new declaration into the AST, false otherwise.
5557 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)5558 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5559 TemplateSpecializationKind NewTSK,
5560 NamedDecl *PrevDecl,
5561 TemplateSpecializationKind PrevTSK,
5562 SourceLocation PrevPointOfInstantiation,
5563 bool &HasNoEffect) {
5564 HasNoEffect = false;
5565
5566 switch (NewTSK) {
5567 case TSK_Undeclared:
5568 case TSK_ImplicitInstantiation:
5569 llvm_unreachable("Don't check implicit instantiations here");
5570
5571 case TSK_ExplicitSpecialization:
5572 switch (PrevTSK) {
5573 case TSK_Undeclared:
5574 case TSK_ExplicitSpecialization:
5575 // Okay, we're just specializing something that is either already
5576 // explicitly specialized or has merely been mentioned without any
5577 // instantiation.
5578 return false;
5579
5580 case TSK_ImplicitInstantiation:
5581 if (PrevPointOfInstantiation.isInvalid()) {
5582 // The declaration itself has not actually been instantiated, so it is
5583 // still okay to specialize it.
5584 StripImplicitInstantiation(PrevDecl);
5585 return false;
5586 }
5587 // Fall through
5588
5589 case TSK_ExplicitInstantiationDeclaration:
5590 case TSK_ExplicitInstantiationDefinition:
5591 assert((PrevTSK == TSK_ImplicitInstantiation ||
5592 PrevPointOfInstantiation.isValid()) &&
5593 "Explicit instantiation without point of instantiation?");
5594
5595 // C++ [temp.expl.spec]p6:
5596 // If a template, a member template or the member of a class template
5597 // is explicitly specialized then that specialization shall be declared
5598 // before the first use of that specialization that would cause an
5599 // implicit instantiation to take place, in every translation unit in
5600 // which such a use occurs; no diagnostic is required.
5601 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5602 // Is there any previous explicit specialization declaration?
5603 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5604 return false;
5605 }
5606
5607 Diag(NewLoc, diag::err_specialization_after_instantiation)
5608 << PrevDecl;
5609 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5610 << (PrevTSK != TSK_ImplicitInstantiation);
5611
5612 return true;
5613 }
5614
5615 case TSK_ExplicitInstantiationDeclaration:
5616 switch (PrevTSK) {
5617 case TSK_ExplicitInstantiationDeclaration:
5618 // This explicit instantiation declaration is redundant (that's okay).
5619 HasNoEffect = true;
5620 return false;
5621
5622 case TSK_Undeclared:
5623 case TSK_ImplicitInstantiation:
5624 // We're explicitly instantiating something that may have already been
5625 // implicitly instantiated; that's fine.
5626 return false;
5627
5628 case TSK_ExplicitSpecialization:
5629 // C++0x [temp.explicit]p4:
5630 // For a given set of template parameters, if an explicit instantiation
5631 // of a template appears after a declaration of an explicit
5632 // specialization for that template, the explicit instantiation has no
5633 // effect.
5634 HasNoEffect = true;
5635 return false;
5636
5637 case TSK_ExplicitInstantiationDefinition:
5638 // C++0x [temp.explicit]p10:
5639 // If an entity is the subject of both an explicit instantiation
5640 // declaration and an explicit instantiation definition in the same
5641 // translation unit, the definition shall follow the declaration.
5642 Diag(NewLoc,
5643 diag::err_explicit_instantiation_declaration_after_definition);
5644
5645 // Explicit instantiations following a specialization have no effect and
5646 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5647 // until a valid name loc is found.
5648 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5649 diag::note_explicit_instantiation_definition_here);
5650 HasNoEffect = true;
5651 return false;
5652 }
5653
5654 case TSK_ExplicitInstantiationDefinition:
5655 switch (PrevTSK) {
5656 case TSK_Undeclared:
5657 case TSK_ImplicitInstantiation:
5658 // We're explicitly instantiating something that may have already been
5659 // implicitly instantiated; that's fine.
5660 return false;
5661
5662 case TSK_ExplicitSpecialization:
5663 // C++ DR 259, C++0x [temp.explicit]p4:
5664 // For a given set of template parameters, if an explicit
5665 // instantiation of a template appears after a declaration of
5666 // an explicit specialization for that template, the explicit
5667 // instantiation has no effect.
5668 //
5669 // In C++98/03 mode, we only give an extension warning here, because it
5670 // is not harmful to try to explicitly instantiate something that
5671 // has been explicitly specialized.
5672 Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5673 diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5674 diag::ext_explicit_instantiation_after_specialization)
5675 << PrevDecl;
5676 Diag(PrevDecl->getLocation(),
5677 diag::note_previous_template_specialization);
5678 HasNoEffect = true;
5679 return false;
5680
5681 case TSK_ExplicitInstantiationDeclaration:
5682 // We're explicity instantiating a definition for something for which we
5683 // were previously asked to suppress instantiations. That's fine.
5684
5685 // C++0x [temp.explicit]p4:
5686 // For a given set of template parameters, if an explicit instantiation
5687 // of a template appears after a declaration of an explicit
5688 // specialization for that template, the explicit instantiation has no
5689 // effect.
5690 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5691 // Is there any previous explicit specialization declaration?
5692 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5693 HasNoEffect = true;
5694 break;
5695 }
5696 }
5697
5698 return false;
5699
5700 case TSK_ExplicitInstantiationDefinition:
5701 // C++0x [temp.spec]p5:
5702 // For a given template and a given set of template-arguments,
5703 // - an explicit instantiation definition shall appear at most once
5704 // in a program,
5705 Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5706 << PrevDecl;
5707 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5708 diag::note_previous_explicit_instantiation);
5709 HasNoEffect = true;
5710 return false;
5711 }
5712 }
5713
5714 llvm_unreachable("Missing specialization/instantiation case?");
5715 }
5716
5717 /// \brief Perform semantic analysis for the given dependent function
5718 /// template specialization. The only possible way to get a dependent
5719 /// function template specialization is with a friend declaration,
5720 /// like so:
5721 ///
5722 /// template <class T> void foo(T);
5723 /// template <class T> class A {
5724 /// friend void foo<>(T);
5725 /// };
5726 ///
5727 /// There really isn't any useful analysis we can do here, so we
5728 /// just store the information.
5729 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)5730 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5731 const TemplateArgumentListInfo &ExplicitTemplateArgs,
5732 LookupResult &Previous) {
5733 // Remove anything from Previous that isn't a function template in
5734 // the correct context.
5735 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5736 LookupResult::Filter F = Previous.makeFilter();
5737 while (F.hasNext()) {
5738 NamedDecl *D = F.next()->getUnderlyingDecl();
5739 if (!isa<FunctionTemplateDecl>(D) ||
5740 !FDLookupContext->InEnclosingNamespaceSetOf(
5741 D->getDeclContext()->getRedeclContext()))
5742 F.erase();
5743 }
5744 F.done();
5745
5746 // Should this be diagnosed here?
5747 if (Previous.empty()) return true;
5748
5749 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5750 ExplicitTemplateArgs);
5751 return false;
5752 }
5753
5754 /// \brief Perform semantic analysis for the given function template
5755 /// specialization.
5756 ///
5757 /// This routine performs all of the semantic analysis required for an
5758 /// explicit function template specialization. On successful completion,
5759 /// the function declaration \p FD will become a function template
5760 /// specialization.
5761 ///
5762 /// \param FD the function declaration, which will be updated to become a
5763 /// function template specialization.
5764 ///
5765 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5766 /// if any. Note that this may be valid info even when 0 arguments are
5767 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5768 /// as it anyway contains info on the angle brackets locations.
5769 ///
5770 /// \param Previous the set of declarations that may be specialized by
5771 /// this function specialization.
5772 bool
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)5773 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5774 TemplateArgumentListInfo *ExplicitTemplateArgs,
5775 LookupResult &Previous) {
5776 // The set of function template specializations that could match this
5777 // explicit function template specialization.
5778 UnresolvedSet<8> Candidates;
5779
5780 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5781 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5782 I != E; ++I) {
5783 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5784 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5785 // Only consider templates found within the same semantic lookup scope as
5786 // FD.
5787 if (!FDLookupContext->InEnclosingNamespaceSetOf(
5788 Ovl->getDeclContext()->getRedeclContext()))
5789 continue;
5790
5791 // C++ [temp.expl.spec]p11:
5792 // A trailing template-argument can be left unspecified in the
5793 // template-id naming an explicit function template specialization
5794 // provided it can be deduced from the function argument type.
5795 // Perform template argument deduction to determine whether we may be
5796 // specializing this template.
5797 // FIXME: It is somewhat wasteful to build
5798 TemplateDeductionInfo Info(Context, FD->getLocation());
5799 FunctionDecl *Specialization = 0;
5800 if (TemplateDeductionResult TDK
5801 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5802 FD->getType(),
5803 Specialization,
5804 Info)) {
5805 // FIXME: Template argument deduction failed; record why it failed, so
5806 // that we can provide nifty diagnostics.
5807 (void)TDK;
5808 continue;
5809 }
5810
5811 // Record this candidate.
5812 Candidates.addDecl(Specialization, I.getAccess());
5813 }
5814 }
5815
5816 // Find the most specialized function template.
5817 UnresolvedSetIterator Result
5818 = getMostSpecialized(Candidates.begin(), Candidates.end(),
5819 TPOC_Other, 0, FD->getLocation(),
5820 PDiag(diag::err_function_template_spec_no_match)
5821 << FD->getDeclName(),
5822 PDiag(diag::err_function_template_spec_ambiguous)
5823 << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5824 PDiag(diag::note_function_template_spec_matched));
5825 if (Result == Candidates.end())
5826 return true;
5827
5828 // Ignore access information; it doesn't figure into redeclaration checking.
5829 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5830
5831 FunctionTemplateSpecializationInfo *SpecInfo
5832 = Specialization->getTemplateSpecializationInfo();
5833 assert(SpecInfo && "Function template specialization info missing?");
5834
5835 // Note: do not overwrite location info if previous template
5836 // specialization kind was explicit.
5837 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5838 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5839 Specialization->setLocation(FD->getLocation());
5840 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5841 // function can differ from the template declaration with respect to
5842 // the constexpr specifier.
5843 Specialization->setConstexpr(FD->isConstexpr());
5844 }
5845
5846 // FIXME: Check if the prior specialization has a point of instantiation.
5847 // If so, we have run afoul of .
5848
5849 // If this is a friend declaration, then we're not really declaring
5850 // an explicit specialization.
5851 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5852
5853 // Check the scope of this explicit specialization.
5854 if (!isFriend &&
5855 CheckTemplateSpecializationScope(*this,
5856 Specialization->getPrimaryTemplate(),
5857 Specialization, FD->getLocation(),
5858 false))
5859 return true;
5860
5861 // C++ [temp.expl.spec]p6:
5862 // If a template, a member template or the member of a class template is
5863 // explicitly specialized then that specialization shall be declared
5864 // before the first use of that specialization that would cause an implicit
5865 // instantiation to take place, in every translation unit in which such a
5866 // use occurs; no diagnostic is required.
5867 bool HasNoEffect = false;
5868 if (!isFriend &&
5869 CheckSpecializationInstantiationRedecl(FD->getLocation(),
5870 TSK_ExplicitSpecialization,
5871 Specialization,
5872 SpecInfo->getTemplateSpecializationKind(),
5873 SpecInfo->getPointOfInstantiation(),
5874 HasNoEffect))
5875 return true;
5876
5877 // Mark the prior declaration as an explicit specialization, so that later
5878 // clients know that this is an explicit specialization.
5879 if (!isFriend) {
5880 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5881 MarkUnusedFileScopedDecl(Specialization);
5882 }
5883
5884 // Turn the given function declaration into a function template
5885 // specialization, with the template arguments from the previous
5886 // specialization.
5887 // Take copies of (semantic and syntactic) template argument lists.
5888 const TemplateArgumentList* TemplArgs = new (Context)
5889 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5890 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5891 TemplArgs, /*InsertPos=*/0,
5892 SpecInfo->getTemplateSpecializationKind(),
5893 ExplicitTemplateArgs);
5894 FD->setStorageClass(Specialization->getStorageClass());
5895
5896 // The "previous declaration" for this function template specialization is
5897 // the prior function template specialization.
5898 Previous.clear();
5899 Previous.addDecl(Specialization);
5900 return false;
5901 }
5902
5903 /// \brief Perform semantic analysis for the given non-template member
5904 /// specialization.
5905 ///
5906 /// This routine performs all of the semantic analysis required for an
5907 /// explicit member function specialization. On successful completion,
5908 /// the function declaration \p FD will become a member function
5909 /// specialization.
5910 ///
5911 /// \param Member the member declaration, which will be updated to become a
5912 /// specialization.
5913 ///
5914 /// \param Previous the set of declarations, one of which may be specialized
5915 /// by this function specialization; the set will be modified to contain the
5916 /// redeclared member.
5917 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)5918 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5919 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5920
5921 // Try to find the member we are instantiating.
5922 NamedDecl *Instantiation = 0;
5923 NamedDecl *InstantiatedFrom = 0;
5924 MemberSpecializationInfo *MSInfo = 0;
5925
5926 if (Previous.empty()) {
5927 // Nowhere to look anyway.
5928 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5929 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5930 I != E; ++I) {
5931 NamedDecl *D = (*I)->getUnderlyingDecl();
5932 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5933 if (Context.hasSameType(Function->getType(), Method->getType())) {
5934 Instantiation = Method;
5935 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5936 MSInfo = Method->getMemberSpecializationInfo();
5937 break;
5938 }
5939 }
5940 }
5941 } else if (isa<VarDecl>(Member)) {
5942 VarDecl *PrevVar;
5943 if (Previous.isSingleResult() &&
5944 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5945 if (PrevVar->isStaticDataMember()) {
5946 Instantiation = PrevVar;
5947 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5948 MSInfo = PrevVar->getMemberSpecializationInfo();
5949 }
5950 } else if (isa<RecordDecl>(Member)) {
5951 CXXRecordDecl *PrevRecord;
5952 if (Previous.isSingleResult() &&
5953 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5954 Instantiation = PrevRecord;
5955 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5956 MSInfo = PrevRecord->getMemberSpecializationInfo();
5957 }
5958 } else if (isa<EnumDecl>(Member)) {
5959 EnumDecl *PrevEnum;
5960 if (Previous.isSingleResult() &&
5961 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
5962 Instantiation = PrevEnum;
5963 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
5964 MSInfo = PrevEnum->getMemberSpecializationInfo();
5965 }
5966 }
5967
5968 if (!Instantiation) {
5969 // There is no previous declaration that matches. Since member
5970 // specializations are always out-of-line, the caller will complain about
5971 // this mismatch later.
5972 return false;
5973 }
5974
5975 // If this is a friend, just bail out here before we start turning
5976 // things into explicit specializations.
5977 if (Member->getFriendObjectKind() != Decl::FOK_None) {
5978 // Preserve instantiation information.
5979 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5980 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5981 cast<CXXMethodDecl>(InstantiatedFrom),
5982 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5983 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5984 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5985 cast<CXXRecordDecl>(InstantiatedFrom),
5986 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5987 }
5988
5989 Previous.clear();
5990 Previous.addDecl(Instantiation);
5991 return false;
5992 }
5993
5994 // Make sure that this is a specialization of a member.
5995 if (!InstantiatedFrom) {
5996 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5997 << Member;
5998 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5999 return true;
6000 }
6001
6002 // C++ [temp.expl.spec]p6:
6003 // If a template, a member template or the member of a class template is
6004 // explicitly specialized then that specialization shall be declared
6005 // before the first use of that specialization that would cause an implicit
6006 // instantiation to take place, in every translation unit in which such a
6007 // use occurs; no diagnostic is required.
6008 assert(MSInfo && "Member specialization info missing?");
6009
6010 bool HasNoEffect = false;
6011 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6012 TSK_ExplicitSpecialization,
6013 Instantiation,
6014 MSInfo->getTemplateSpecializationKind(),
6015 MSInfo->getPointOfInstantiation(),
6016 HasNoEffect))
6017 return true;
6018
6019 // Check the scope of this explicit specialization.
6020 if (CheckTemplateSpecializationScope(*this,
6021 InstantiatedFrom,
6022 Instantiation, Member->getLocation(),
6023 false))
6024 return true;
6025
6026 // Note that this is an explicit instantiation of a member.
6027 // the original declaration to note that it is an explicit specialization
6028 // (if it was previously an implicit instantiation). This latter step
6029 // makes bookkeeping easier.
6030 if (isa<FunctionDecl>(Member)) {
6031 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6032 if (InstantiationFunction->getTemplateSpecializationKind() ==
6033 TSK_ImplicitInstantiation) {
6034 InstantiationFunction->setTemplateSpecializationKind(
6035 TSK_ExplicitSpecialization);
6036 InstantiationFunction->setLocation(Member->getLocation());
6037 }
6038
6039 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6040 cast<CXXMethodDecl>(InstantiatedFrom),
6041 TSK_ExplicitSpecialization);
6042 MarkUnusedFileScopedDecl(InstantiationFunction);
6043 } else if (isa<VarDecl>(Member)) {
6044 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6045 if (InstantiationVar->getTemplateSpecializationKind() ==
6046 TSK_ImplicitInstantiation) {
6047 InstantiationVar->setTemplateSpecializationKind(
6048 TSK_ExplicitSpecialization);
6049 InstantiationVar->setLocation(Member->getLocation());
6050 }
6051
6052 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6053 cast<VarDecl>(InstantiatedFrom),
6054 TSK_ExplicitSpecialization);
6055 MarkUnusedFileScopedDecl(InstantiationVar);
6056 } else if (isa<CXXRecordDecl>(Member)) {
6057 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6058 if (InstantiationClass->getTemplateSpecializationKind() ==
6059 TSK_ImplicitInstantiation) {
6060 InstantiationClass->setTemplateSpecializationKind(
6061 TSK_ExplicitSpecialization);
6062 InstantiationClass->setLocation(Member->getLocation());
6063 }
6064
6065 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6066 cast<CXXRecordDecl>(InstantiatedFrom),
6067 TSK_ExplicitSpecialization);
6068 } else {
6069 assert(isa<EnumDecl>(Member) && "Only member enums remain");
6070 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6071 if (InstantiationEnum->getTemplateSpecializationKind() ==
6072 TSK_ImplicitInstantiation) {
6073 InstantiationEnum->setTemplateSpecializationKind(
6074 TSK_ExplicitSpecialization);
6075 InstantiationEnum->setLocation(Member->getLocation());
6076 }
6077
6078 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6079 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6080 }
6081
6082 // Save the caller the trouble of having to figure out which declaration
6083 // this specialization matches.
6084 Previous.clear();
6085 Previous.addDecl(Instantiation);
6086 return false;
6087 }
6088
6089 /// \brief Check the scope of an explicit instantiation.
6090 ///
6091 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)6092 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6093 SourceLocation InstLoc,
6094 bool WasQualifiedName) {
6095 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6096 DeclContext *CurContext = S.CurContext->getRedeclContext();
6097
6098 if (CurContext->isRecord()) {
6099 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6100 << D;
6101 return true;
6102 }
6103
6104 // C++11 [temp.explicit]p3:
6105 // An explicit instantiation shall appear in an enclosing namespace of its
6106 // template. If the name declared in the explicit instantiation is an
6107 // unqualified name, the explicit instantiation shall appear in the
6108 // namespace where its template is declared or, if that namespace is inline
6109 // (7.3.1), any namespace from its enclosing namespace set.
6110 //
6111 // This is DR275, which we do not retroactively apply to C++98/03.
6112 if (WasQualifiedName) {
6113 if (CurContext->Encloses(OrigContext))
6114 return false;
6115 } else {
6116 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6117 return false;
6118 }
6119
6120 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6121 if (WasQualifiedName)
6122 S.Diag(InstLoc,
6123 S.getLangOpts().CPlusPlus0x?
6124 diag::err_explicit_instantiation_out_of_scope :
6125 diag::warn_explicit_instantiation_out_of_scope_0x)
6126 << D << NS;
6127 else
6128 S.Diag(InstLoc,
6129 S.getLangOpts().CPlusPlus0x?
6130 diag::err_explicit_instantiation_unqualified_wrong_namespace :
6131 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6132 << D << NS;
6133 } else
6134 S.Diag(InstLoc,
6135 S.getLangOpts().CPlusPlus0x?
6136 diag::err_explicit_instantiation_must_be_global :
6137 diag::warn_explicit_instantiation_must_be_global_0x)
6138 << D;
6139 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6140 return false;
6141 }
6142
6143 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)6144 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6145 if (!SS.isSet())
6146 return false;
6147
6148 // C++11 [temp.explicit]p3:
6149 // If the explicit instantiation is for a member function, a member class
6150 // or a static data member of a class template specialization, the name of
6151 // the class template specialization in the qualified-id for the member
6152 // name shall be a simple-template-id.
6153 //
6154 // C++98 has the same restriction, just worded differently.
6155 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6156 NNS; NNS = NNS->getPrefix())
6157 if (const Type *T = NNS->getAsType())
6158 if (isa<TemplateSpecializationType>(T))
6159 return true;
6160
6161 return false;
6162 }
6163
6164 // Explicit instantiation of a class template specialization
6165 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)6166 Sema::ActOnExplicitInstantiation(Scope *S,
6167 SourceLocation ExternLoc,
6168 SourceLocation TemplateLoc,
6169 unsigned TagSpec,
6170 SourceLocation KWLoc,
6171 const CXXScopeSpec &SS,
6172 TemplateTy TemplateD,
6173 SourceLocation TemplateNameLoc,
6174 SourceLocation LAngleLoc,
6175 ASTTemplateArgsPtr TemplateArgsIn,
6176 SourceLocation RAngleLoc,
6177 AttributeList *Attr) {
6178 // Find the class template we're specializing
6179 TemplateName Name = TemplateD.getAsVal<TemplateName>();
6180 ClassTemplateDecl *ClassTemplate
6181 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6182
6183 // Check that the specialization uses the same tag kind as the
6184 // original template.
6185 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6186 assert(Kind != TTK_Enum &&
6187 "Invalid enum tag in class template explicit instantiation!");
6188 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6189 Kind, /*isDefinition*/false, KWLoc,
6190 *ClassTemplate->getIdentifier())) {
6191 Diag(KWLoc, diag::err_use_with_wrong_tag)
6192 << ClassTemplate
6193 << FixItHint::CreateReplacement(KWLoc,
6194 ClassTemplate->getTemplatedDecl()->getKindName());
6195 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6196 diag::note_previous_use);
6197 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6198 }
6199
6200 // C++0x [temp.explicit]p2:
6201 // There are two forms of explicit instantiation: an explicit instantiation
6202 // definition and an explicit instantiation declaration. An explicit
6203 // instantiation declaration begins with the extern keyword. [...]
6204 TemplateSpecializationKind TSK
6205 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6206 : TSK_ExplicitInstantiationDeclaration;
6207
6208 // Translate the parser's template argument list in our AST format.
6209 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6210 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6211
6212 // Check that the template argument list is well-formed for this
6213 // template.
6214 SmallVector<TemplateArgument, 4> Converted;
6215 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6216 TemplateArgs, false, Converted))
6217 return true;
6218
6219 // Find the class template specialization declaration that
6220 // corresponds to these arguments.
6221 void *InsertPos = 0;
6222 ClassTemplateSpecializationDecl *PrevDecl
6223 = ClassTemplate->findSpecialization(Converted.data(),
6224 Converted.size(), InsertPos);
6225
6226 TemplateSpecializationKind PrevDecl_TSK
6227 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6228
6229 // C++0x [temp.explicit]p2:
6230 // [...] An explicit instantiation shall appear in an enclosing
6231 // namespace of its template. [...]
6232 //
6233 // This is C++ DR 275.
6234 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6235 SS.isSet()))
6236 return true;
6237
6238 ClassTemplateSpecializationDecl *Specialization = 0;
6239
6240 bool HasNoEffect = false;
6241 if (PrevDecl) {
6242 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6243 PrevDecl, PrevDecl_TSK,
6244 PrevDecl->getPointOfInstantiation(),
6245 HasNoEffect))
6246 return PrevDecl;
6247
6248 // Even though HasNoEffect == true means that this explicit instantiation
6249 // has no effect on semantics, we go on to put its syntax in the AST.
6250
6251 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6252 PrevDecl_TSK == TSK_Undeclared) {
6253 // Since the only prior class template specialization with these
6254 // arguments was referenced but not declared, reuse that
6255 // declaration node as our own, updating the source location
6256 // for the template name to reflect our new declaration.
6257 // (Other source locations will be updated later.)
6258 Specialization = PrevDecl;
6259 Specialization->setLocation(TemplateNameLoc);
6260 PrevDecl = 0;
6261 }
6262 }
6263
6264 if (!Specialization) {
6265 // Create a new class template specialization declaration node for
6266 // this explicit specialization.
6267 Specialization
6268 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6269 ClassTemplate->getDeclContext(),
6270 KWLoc, TemplateNameLoc,
6271 ClassTemplate,
6272 Converted.data(),
6273 Converted.size(),
6274 PrevDecl);
6275 SetNestedNameSpecifier(Specialization, SS);
6276
6277 if (!HasNoEffect && !PrevDecl) {
6278 // Insert the new specialization.
6279 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6280 }
6281 }
6282
6283 // Build the fully-sugared type for this explicit instantiation as
6284 // the user wrote in the explicit instantiation itself. This means
6285 // that we'll pretty-print the type retrieved from the
6286 // specialization's declaration the way that the user actually wrote
6287 // the explicit instantiation, rather than formatting the name based
6288 // on the "canonical" representation used to store the template
6289 // arguments in the specialization.
6290 TypeSourceInfo *WrittenTy
6291 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6292 TemplateArgs,
6293 Context.getTypeDeclType(Specialization));
6294 Specialization->setTypeAsWritten(WrittenTy);
6295 TemplateArgsIn.release();
6296
6297 // Set source locations for keywords.
6298 Specialization->setExternLoc(ExternLoc);
6299 Specialization->setTemplateKeywordLoc(TemplateLoc);
6300
6301 if (Attr)
6302 ProcessDeclAttributeList(S, Specialization, Attr);
6303
6304 // Add the explicit instantiation into its lexical context. However,
6305 // since explicit instantiations are never found by name lookup, we
6306 // just put it into the declaration context directly.
6307 Specialization->setLexicalDeclContext(CurContext);
6308 CurContext->addDecl(Specialization);
6309
6310 // Syntax is now OK, so return if it has no other effect on semantics.
6311 if (HasNoEffect) {
6312 // Set the template specialization kind.
6313 Specialization->setTemplateSpecializationKind(TSK);
6314 return Specialization;
6315 }
6316
6317 // C++ [temp.explicit]p3:
6318 // A definition of a class template or class member template
6319 // shall be in scope at the point of the explicit instantiation of
6320 // the class template or class member template.
6321 //
6322 // This check comes when we actually try to perform the
6323 // instantiation.
6324 ClassTemplateSpecializationDecl *Def
6325 = cast_or_null<ClassTemplateSpecializationDecl>(
6326 Specialization->getDefinition());
6327 if (!Def)
6328 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6329 else if (TSK == TSK_ExplicitInstantiationDefinition) {
6330 MarkVTableUsed(TemplateNameLoc, Specialization, true);
6331 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6332 }
6333
6334 // Instantiate the members of this class template specialization.
6335 Def = cast_or_null<ClassTemplateSpecializationDecl>(
6336 Specialization->getDefinition());
6337 if (Def) {
6338 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6339
6340 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6341 // TSK_ExplicitInstantiationDefinition
6342 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6343 TSK == TSK_ExplicitInstantiationDefinition)
6344 Def->setTemplateSpecializationKind(TSK);
6345
6346 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6347 }
6348
6349 // Set the template specialization kind.
6350 Specialization->setTemplateSpecializationKind(TSK);
6351 return Specialization;
6352 }
6353
6354 // Explicit instantiation of a member class of a class template.
6355 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)6356 Sema::ActOnExplicitInstantiation(Scope *S,
6357 SourceLocation ExternLoc,
6358 SourceLocation TemplateLoc,
6359 unsigned TagSpec,
6360 SourceLocation KWLoc,
6361 CXXScopeSpec &SS,
6362 IdentifierInfo *Name,
6363 SourceLocation NameLoc,
6364 AttributeList *Attr) {
6365
6366 bool Owned = false;
6367 bool IsDependent = false;
6368 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6369 KWLoc, SS, Name, NameLoc, Attr, AS_none,
6370 /*ModulePrivateLoc=*/SourceLocation(),
6371 MultiTemplateParamsArg(*this, 0, 0),
6372 Owned, IsDependent, SourceLocation(), false,
6373 TypeResult());
6374 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6375
6376 if (!TagD)
6377 return true;
6378
6379 TagDecl *Tag = cast<TagDecl>(TagD);
6380 assert(!Tag->isEnum() && "shouldn't see enumerations here");
6381
6382 if (Tag->isInvalidDecl())
6383 return true;
6384
6385 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6386 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6387 if (!Pattern) {
6388 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6389 << Context.getTypeDeclType(Record);
6390 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6391 return true;
6392 }
6393
6394 // C++0x [temp.explicit]p2:
6395 // If the explicit instantiation is for a class or member class, the
6396 // elaborated-type-specifier in the declaration shall include a
6397 // simple-template-id.
6398 //
6399 // C++98 has the same restriction, just worded differently.
6400 if (!ScopeSpecifierHasTemplateId(SS))
6401 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6402 << Record << SS.getRange();
6403
6404 // C++0x [temp.explicit]p2:
6405 // There are two forms of explicit instantiation: an explicit instantiation
6406 // definition and an explicit instantiation declaration. An explicit
6407 // instantiation declaration begins with the extern keyword. [...]
6408 TemplateSpecializationKind TSK
6409 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6410 : TSK_ExplicitInstantiationDeclaration;
6411
6412 // C++0x [temp.explicit]p2:
6413 // [...] An explicit instantiation shall appear in an enclosing
6414 // namespace of its template. [...]
6415 //
6416 // This is C++ DR 275.
6417 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6418
6419 // Verify that it is okay to explicitly instantiate here.
6420 CXXRecordDecl *PrevDecl
6421 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6422 if (!PrevDecl && Record->getDefinition())
6423 PrevDecl = Record;
6424 if (PrevDecl) {
6425 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6426 bool HasNoEffect = false;
6427 assert(MSInfo && "No member specialization information?");
6428 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6429 PrevDecl,
6430 MSInfo->getTemplateSpecializationKind(),
6431 MSInfo->getPointOfInstantiation(),
6432 HasNoEffect))
6433 return true;
6434 if (HasNoEffect)
6435 return TagD;
6436 }
6437
6438 CXXRecordDecl *RecordDef
6439 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6440 if (!RecordDef) {
6441 // C++ [temp.explicit]p3:
6442 // A definition of a member class of a class template shall be in scope
6443 // at the point of an explicit instantiation of the member class.
6444 CXXRecordDecl *Def
6445 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6446 if (!Def) {
6447 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6448 << 0 << Record->getDeclName() << Record->getDeclContext();
6449 Diag(Pattern->getLocation(), diag::note_forward_declaration)
6450 << Pattern;
6451 return true;
6452 } else {
6453 if (InstantiateClass(NameLoc, Record, Def,
6454 getTemplateInstantiationArgs(Record),
6455 TSK))
6456 return true;
6457
6458 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6459 if (!RecordDef)
6460 return true;
6461 }
6462 }
6463
6464 // Instantiate all of the members of the class.
6465 InstantiateClassMembers(NameLoc, RecordDef,
6466 getTemplateInstantiationArgs(Record), TSK);
6467
6468 if (TSK == TSK_ExplicitInstantiationDefinition)
6469 MarkVTableUsed(NameLoc, RecordDef, true);
6470
6471 // FIXME: We don't have any representation for explicit instantiations of
6472 // member classes. Such a representation is not needed for compilation, but it
6473 // should be available for clients that want to see all of the declarations in
6474 // the source code.
6475 return TagD;
6476 }
6477
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)6478 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6479 SourceLocation ExternLoc,
6480 SourceLocation TemplateLoc,
6481 Declarator &D) {
6482 // Explicit instantiations always require a name.
6483 // TODO: check if/when DNInfo should replace Name.
6484 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6485 DeclarationName Name = NameInfo.getName();
6486 if (!Name) {
6487 if (!D.isInvalidType())
6488 Diag(D.getDeclSpec().getLocStart(),
6489 diag::err_explicit_instantiation_requires_name)
6490 << D.getDeclSpec().getSourceRange()
6491 << D.getSourceRange();
6492
6493 return true;
6494 }
6495
6496 // The scope passed in may not be a decl scope. Zip up the scope tree until
6497 // we find one that is.
6498 while ((S->getFlags() & Scope::DeclScope) == 0 ||
6499 (S->getFlags() & Scope::TemplateParamScope) != 0)
6500 S = S->getParent();
6501
6502 // Determine the type of the declaration.
6503 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6504 QualType R = T->getType();
6505 if (R.isNull())
6506 return true;
6507
6508 // C++ [dcl.stc]p1:
6509 // A storage-class-specifier shall not be specified in [...] an explicit
6510 // instantiation (14.7.2) directive.
6511 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6512 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6513 << Name;
6514 return true;
6515 } else if (D.getDeclSpec().getStorageClassSpec()
6516 != DeclSpec::SCS_unspecified) {
6517 // Complain about then remove the storage class specifier.
6518 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6519 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6520
6521 D.getMutableDeclSpec().ClearStorageClassSpecs();
6522 }
6523
6524 // C++0x [temp.explicit]p1:
6525 // [...] An explicit instantiation of a function template shall not use the
6526 // inline or constexpr specifiers.
6527 // Presumably, this also applies to member functions of class templates as
6528 // well.
6529 if (D.getDeclSpec().isInlineSpecified())
6530 Diag(D.getDeclSpec().getInlineSpecLoc(),
6531 getLangOpts().CPlusPlus0x ?
6532 diag::err_explicit_instantiation_inline :
6533 diag::warn_explicit_instantiation_inline_0x)
6534 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6535 if (D.getDeclSpec().isConstexprSpecified())
6536 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6537 // not already specified.
6538 Diag(D.getDeclSpec().getConstexprSpecLoc(),
6539 diag::err_explicit_instantiation_constexpr);
6540
6541 // C++0x [temp.explicit]p2:
6542 // There are two forms of explicit instantiation: an explicit instantiation
6543 // definition and an explicit instantiation declaration. An explicit
6544 // instantiation declaration begins with the extern keyword. [...]
6545 TemplateSpecializationKind TSK
6546 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6547 : TSK_ExplicitInstantiationDeclaration;
6548
6549 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6550 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6551
6552 if (!R->isFunctionType()) {
6553 // C++ [temp.explicit]p1:
6554 // A [...] static data member of a class template can be explicitly
6555 // instantiated from the member definition associated with its class
6556 // template.
6557 if (Previous.isAmbiguous())
6558 return true;
6559
6560 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6561 if (!Prev || !Prev->isStaticDataMember()) {
6562 // We expect to see a data data member here.
6563 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6564 << Name;
6565 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6566 P != PEnd; ++P)
6567 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6568 return true;
6569 }
6570
6571 if (!Prev->getInstantiatedFromStaticDataMember()) {
6572 // FIXME: Check for explicit specialization?
6573 Diag(D.getIdentifierLoc(),
6574 diag::err_explicit_instantiation_data_member_not_instantiated)
6575 << Prev;
6576 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6577 // FIXME: Can we provide a note showing where this was declared?
6578 return true;
6579 }
6580
6581 // C++0x [temp.explicit]p2:
6582 // If the explicit instantiation is for a member function, a member class
6583 // or a static data member of a class template specialization, the name of
6584 // the class template specialization in the qualified-id for the member
6585 // name shall be a simple-template-id.
6586 //
6587 // C++98 has the same restriction, just worded differently.
6588 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6589 Diag(D.getIdentifierLoc(),
6590 diag::ext_explicit_instantiation_without_qualified_id)
6591 << Prev << D.getCXXScopeSpec().getRange();
6592
6593 // Check the scope of this explicit instantiation.
6594 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6595
6596 // Verify that it is okay to explicitly instantiate here.
6597 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6598 assert(MSInfo && "Missing static data member specialization info?");
6599 bool HasNoEffect = false;
6600 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6601 MSInfo->getTemplateSpecializationKind(),
6602 MSInfo->getPointOfInstantiation(),
6603 HasNoEffect))
6604 return true;
6605 if (HasNoEffect)
6606 return (Decl*) 0;
6607
6608 // Instantiate static data member.
6609 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6610 if (TSK == TSK_ExplicitInstantiationDefinition)
6611 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6612
6613 // FIXME: Create an ExplicitInstantiation node?
6614 return (Decl*) 0;
6615 }
6616
6617 // If the declarator is a template-id, translate the parser's template
6618 // argument list into our AST format.
6619 bool HasExplicitTemplateArgs = false;
6620 TemplateArgumentListInfo TemplateArgs;
6621 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6622 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6623 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6624 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6625 ASTTemplateArgsPtr TemplateArgsPtr(*this,
6626 TemplateId->getTemplateArgs(),
6627 TemplateId->NumArgs);
6628 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6629 HasExplicitTemplateArgs = true;
6630 TemplateArgsPtr.release();
6631 }
6632
6633 // C++ [temp.explicit]p1:
6634 // A [...] function [...] can be explicitly instantiated from its template.
6635 // A member function [...] of a class template can be explicitly
6636 // instantiated from the member definition associated with its class
6637 // template.
6638 UnresolvedSet<8> Matches;
6639 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6640 P != PEnd; ++P) {
6641 NamedDecl *Prev = *P;
6642 if (!HasExplicitTemplateArgs) {
6643 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6644 if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6645 Matches.clear();
6646
6647 Matches.addDecl(Method, P.getAccess());
6648 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6649 break;
6650 }
6651 }
6652 }
6653
6654 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6655 if (!FunTmpl)
6656 continue;
6657
6658 TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6659 FunctionDecl *Specialization = 0;
6660 if (TemplateDeductionResult TDK
6661 = DeduceTemplateArguments(FunTmpl,
6662 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6663 R, Specialization, Info)) {
6664 // FIXME: Keep track of almost-matches?
6665 (void)TDK;
6666 continue;
6667 }
6668
6669 Matches.addDecl(Specialization, P.getAccess());
6670 }
6671
6672 // Find the most specialized function template specialization.
6673 UnresolvedSetIterator Result
6674 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6675 D.getIdentifierLoc(),
6676 PDiag(diag::err_explicit_instantiation_not_known) << Name,
6677 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6678 PDiag(diag::note_explicit_instantiation_candidate));
6679
6680 if (Result == Matches.end())
6681 return true;
6682
6683 // Ignore access control bits, we don't need them for redeclaration checking.
6684 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6685
6686 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6687 Diag(D.getIdentifierLoc(),
6688 diag::err_explicit_instantiation_member_function_not_instantiated)
6689 << Specialization
6690 << (Specialization->getTemplateSpecializationKind() ==
6691 TSK_ExplicitSpecialization);
6692 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6693 return true;
6694 }
6695
6696 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6697 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6698 PrevDecl = Specialization;
6699
6700 if (PrevDecl) {
6701 bool HasNoEffect = false;
6702 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6703 PrevDecl,
6704 PrevDecl->getTemplateSpecializationKind(),
6705 PrevDecl->getPointOfInstantiation(),
6706 HasNoEffect))
6707 return true;
6708
6709 // FIXME: We may still want to build some representation of this
6710 // explicit specialization.
6711 if (HasNoEffect)
6712 return (Decl*) 0;
6713 }
6714
6715 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6716 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6717 if (Attr)
6718 ProcessDeclAttributeList(S, Specialization, Attr);
6719
6720 if (TSK == TSK_ExplicitInstantiationDefinition)
6721 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6722
6723 // C++0x [temp.explicit]p2:
6724 // If the explicit instantiation is for a member function, a member class
6725 // or a static data member of a class template specialization, the name of
6726 // the class template specialization in the qualified-id for the member
6727 // name shall be a simple-template-id.
6728 //
6729 // C++98 has the same restriction, just worded differently.
6730 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6731 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6732 D.getCXXScopeSpec().isSet() &&
6733 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6734 Diag(D.getIdentifierLoc(),
6735 diag::ext_explicit_instantiation_without_qualified_id)
6736 << Specialization << D.getCXXScopeSpec().getRange();
6737
6738 CheckExplicitInstantiationScope(*this,
6739 FunTmpl? (NamedDecl *)FunTmpl
6740 : Specialization->getInstantiatedFromMemberFunction(),
6741 D.getIdentifierLoc(),
6742 D.getCXXScopeSpec().isSet());
6743
6744 // FIXME: Create some kind of ExplicitInstantiationDecl here.
6745 return (Decl*) 0;
6746 }
6747
6748 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)6749 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6750 const CXXScopeSpec &SS, IdentifierInfo *Name,
6751 SourceLocation TagLoc, SourceLocation NameLoc) {
6752 // This has to hold, because SS is expected to be defined.
6753 assert(Name && "Expected a name in a dependent tag");
6754
6755 NestedNameSpecifier *NNS
6756 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6757 if (!NNS)
6758 return true;
6759
6760 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6761
6762 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6763 Diag(NameLoc, diag::err_dependent_tag_decl)
6764 << (TUK == TUK_Definition) << Kind << SS.getRange();
6765 return true;
6766 }
6767
6768 // Create the resulting type.
6769 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6770 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6771
6772 // Create type-source location information for this type.
6773 TypeLocBuilder TLB;
6774 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6775 TL.setElaboratedKeywordLoc(TagLoc);
6776 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6777 TL.setNameLoc(NameLoc);
6778 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6779 }
6780
6781 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)6782 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6783 const CXXScopeSpec &SS, const IdentifierInfo &II,
6784 SourceLocation IdLoc) {
6785 if (SS.isInvalid())
6786 return true;
6787
6788 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6789 Diag(TypenameLoc,
6790 getLangOpts().CPlusPlus0x ?
6791 diag::warn_cxx98_compat_typename_outside_of_template :
6792 diag::ext_typename_outside_of_template)
6793 << FixItHint::CreateRemoval(TypenameLoc);
6794
6795 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6796 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6797 TypenameLoc, QualifierLoc, II, IdLoc);
6798 if (T.isNull())
6799 return true;
6800
6801 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6802 if (isa<DependentNameType>(T)) {
6803 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6804 TL.setElaboratedKeywordLoc(TypenameLoc);
6805 TL.setQualifierLoc(QualifierLoc);
6806 TL.setNameLoc(IdLoc);
6807 } else {
6808 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6809 TL.setElaboratedKeywordLoc(TypenameLoc);
6810 TL.setQualifierLoc(QualifierLoc);
6811 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6812 }
6813
6814 return CreateParsedType(T, TSI);
6815 }
6816
6817 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)6818 Sema::ActOnTypenameType(Scope *S,
6819 SourceLocation TypenameLoc,
6820 const CXXScopeSpec &SS,
6821 SourceLocation TemplateKWLoc,
6822 TemplateTy TemplateIn,
6823 SourceLocation TemplateNameLoc,
6824 SourceLocation LAngleLoc,
6825 ASTTemplateArgsPtr TemplateArgsIn,
6826 SourceLocation RAngleLoc) {
6827 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6828 Diag(TypenameLoc,
6829 getLangOpts().CPlusPlus0x ?
6830 diag::warn_cxx98_compat_typename_outside_of_template :
6831 diag::ext_typename_outside_of_template)
6832 << FixItHint::CreateRemoval(TypenameLoc);
6833
6834 // Translate the parser's template argument list in our AST format.
6835 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6836 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6837
6838 TemplateName Template = TemplateIn.get();
6839 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6840 // Construct a dependent template specialization type.
6841 assert(DTN && "dependent template has non-dependent name?");
6842 assert(DTN->getQualifier()
6843 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6844 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6845 DTN->getQualifier(),
6846 DTN->getIdentifier(),
6847 TemplateArgs);
6848
6849 // Create source-location information for this type.
6850 TypeLocBuilder Builder;
6851 DependentTemplateSpecializationTypeLoc SpecTL
6852 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6853 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6854 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6855 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6856 SpecTL.setTemplateNameLoc(TemplateNameLoc);
6857 SpecTL.setLAngleLoc(LAngleLoc);
6858 SpecTL.setRAngleLoc(RAngleLoc);
6859 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6860 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6861 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6862 }
6863
6864 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6865 if (T.isNull())
6866 return true;
6867
6868 // Provide source-location information for the template specialization type.
6869 TypeLocBuilder Builder;
6870 TemplateSpecializationTypeLoc SpecTL
6871 = Builder.push<TemplateSpecializationTypeLoc>(T);
6872 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6873 SpecTL.setTemplateNameLoc(TemplateNameLoc);
6874 SpecTL.setLAngleLoc(LAngleLoc);
6875 SpecTL.setRAngleLoc(RAngleLoc);
6876 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6877 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6878
6879 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6880 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6881 TL.setElaboratedKeywordLoc(TypenameLoc);
6882 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6883
6884 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6885 return CreateParsedType(T, TSI);
6886 }
6887
6888
6889 /// \brief Build the type that describes a C++ typename specifier,
6890 /// e.g., "typename T::type".
6891 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)6892 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6893 SourceLocation KeywordLoc,
6894 NestedNameSpecifierLoc QualifierLoc,
6895 const IdentifierInfo &II,
6896 SourceLocation IILoc) {
6897 CXXScopeSpec SS;
6898 SS.Adopt(QualifierLoc);
6899
6900 DeclContext *Ctx = computeDeclContext(SS);
6901 if (!Ctx) {
6902 // If the nested-name-specifier is dependent and couldn't be
6903 // resolved to a type, build a typename type.
6904 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6905 return Context.getDependentNameType(Keyword,
6906 QualifierLoc.getNestedNameSpecifier(),
6907 &II);
6908 }
6909
6910 // If the nested-name-specifier refers to the current instantiation,
6911 // the "typename" keyword itself is superfluous. In C++03, the
6912 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6913 // allows such extraneous "typename" keywords, and we retroactively
6914 // apply this DR to C++03 code with only a warning. In any case we continue.
6915
6916 if (RequireCompleteDeclContext(SS, Ctx))
6917 return QualType();
6918
6919 DeclarationName Name(&II);
6920 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6921 LookupQualifiedName(Result, Ctx);
6922 unsigned DiagID = 0;
6923 Decl *Referenced = 0;
6924 switch (Result.getResultKind()) {
6925 case LookupResult::NotFound:
6926 DiagID = diag::err_typename_nested_not_found;
6927 break;
6928
6929 case LookupResult::FoundUnresolvedValue: {
6930 // We found a using declaration that is a value. Most likely, the using
6931 // declaration itself is meant to have the 'typename' keyword.
6932 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6933 IILoc);
6934 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6935 << Name << Ctx << FullRange;
6936 if (UnresolvedUsingValueDecl *Using
6937 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6938 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6939 Diag(Loc, diag::note_using_value_decl_missing_typename)
6940 << FixItHint::CreateInsertion(Loc, "typename ");
6941 }
6942 }
6943 // Fall through to create a dependent typename type, from which we can recover
6944 // better.
6945
6946 case LookupResult::NotFoundInCurrentInstantiation:
6947 // Okay, it's a member of an unknown instantiation.
6948 return Context.getDependentNameType(Keyword,
6949 QualifierLoc.getNestedNameSpecifier(),
6950 &II);
6951
6952 case LookupResult::Found:
6953 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6954 // We found a type. Build an ElaboratedType, since the
6955 // typename-specifier was just sugar.
6956 return Context.getElaboratedType(ETK_Typename,
6957 QualifierLoc.getNestedNameSpecifier(),
6958 Context.getTypeDeclType(Type));
6959 }
6960
6961 DiagID = diag::err_typename_nested_not_type;
6962 Referenced = Result.getFoundDecl();
6963 break;
6964
6965 case LookupResult::FoundOverloaded:
6966 DiagID = diag::err_typename_nested_not_type;
6967 Referenced = *Result.begin();
6968 break;
6969
6970 case LookupResult::Ambiguous:
6971 return QualType();
6972 }
6973
6974 // If we get here, it's because name lookup did not find a
6975 // type. Emit an appropriate diagnostic and return an error.
6976 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6977 IILoc);
6978 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6979 if (Referenced)
6980 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6981 << Name;
6982 return QualType();
6983 }
6984
6985 namespace {
6986 // See Sema::RebuildTypeInCurrentInstantiation
6987 class CurrentInstantiationRebuilder
6988 : public TreeTransform<CurrentInstantiationRebuilder> {
6989 SourceLocation Loc;
6990 DeclarationName Entity;
6991
6992 public:
6993 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6994
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)6995 CurrentInstantiationRebuilder(Sema &SemaRef,
6996 SourceLocation Loc,
6997 DeclarationName Entity)
6998 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6999 Loc(Loc), Entity(Entity) { }
7000
7001 /// \brief Determine whether the given type \p T has already been
7002 /// transformed.
7003 ///
7004 /// For the purposes of type reconstruction, a type has already been
7005 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)7006 bool AlreadyTransformed(QualType T) {
7007 return T.isNull() || !T->isDependentType();
7008 }
7009
7010 /// \brief Returns the location of the entity whose type is being
7011 /// rebuilt.
getBaseLocation()7012 SourceLocation getBaseLocation() { return Loc; }
7013
7014 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()7015 DeclarationName getBaseEntity() { return Entity; }
7016
7017 /// \brief Sets the "base" location and entity when that
7018 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)7019 void setBase(SourceLocation Loc, DeclarationName Entity) {
7020 this->Loc = Loc;
7021 this->Entity = Entity;
7022 }
7023
TransformLambdaExpr(LambdaExpr * E)7024 ExprResult TransformLambdaExpr(LambdaExpr *E) {
7025 // Lambdas never need to be transformed.
7026 return E;
7027 }
7028 };
7029 }
7030
7031 /// \brief Rebuilds a type within the context of the current instantiation.
7032 ///
7033 /// The type \p T is part of the type of an out-of-line member definition of
7034 /// a class template (or class template partial specialization) that was parsed
7035 /// and constructed before we entered the scope of the class template (or
7036 /// partial specialization thereof). This routine will rebuild that type now
7037 /// that we have entered the declarator's scope, which may produce different
7038 /// canonical types, e.g.,
7039 ///
7040 /// \code
7041 /// template<typename T>
7042 /// struct X {
7043 /// typedef T* pointer;
7044 /// pointer data();
7045 /// };
7046 ///
7047 /// template<typename T>
7048 /// typename X<T>::pointer X<T>::data() { ... }
7049 /// \endcode
7050 ///
7051 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7052 /// since we do not know that we can look into X<T> when we parsed the type.
7053 /// This function will rebuild the type, performing the lookup of "pointer"
7054 /// in X<T> and returning an ElaboratedType whose canonical type is the same
7055 /// as the canonical type of T*, allowing the return types of the out-of-line
7056 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)7057 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7058 SourceLocation Loc,
7059 DeclarationName Name) {
7060 if (!T || !T->getType()->isDependentType())
7061 return T;
7062
7063 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7064 return Rebuilder.TransformType(T);
7065 }
7066
RebuildExprInCurrentInstantiation(Expr * E)7067 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7068 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7069 DeclarationName());
7070 return Rebuilder.TransformExpr(E);
7071 }
7072
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)7073 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7074 if (SS.isInvalid())
7075 return true;
7076
7077 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7078 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7079 DeclarationName());
7080 NestedNameSpecifierLoc Rebuilt
7081 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7082 if (!Rebuilt)
7083 return true;
7084
7085 SS.Adopt(Rebuilt);
7086 return false;
7087 }
7088
7089 /// \brief Rebuild the template parameters now that we know we're in a current
7090 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)7091 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7092 TemplateParameterList *Params) {
7093 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7094 Decl *Param = Params->getParam(I);
7095
7096 // There is nothing to rebuild in a type parameter.
7097 if (isa<TemplateTypeParmDecl>(Param))
7098 continue;
7099
7100 // Rebuild the template parameter list of a template template parameter.
7101 if (TemplateTemplateParmDecl *TTP
7102 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7103 if (RebuildTemplateParamsInCurrentInstantiation(
7104 TTP->getTemplateParameters()))
7105 return true;
7106
7107 continue;
7108 }
7109
7110 // Rebuild the type of a non-type template parameter.
7111 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7112 TypeSourceInfo *NewTSI
7113 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7114 NTTP->getLocation(),
7115 NTTP->getDeclName());
7116 if (!NewTSI)
7117 return true;
7118
7119 if (NewTSI != NTTP->getTypeSourceInfo()) {
7120 NTTP->setTypeSourceInfo(NewTSI);
7121 NTTP->setType(NewTSI->getType());
7122 }
7123 }
7124
7125 return false;
7126 }
7127
7128 /// \brief Produces a formatted string that describes the binding of
7129 /// template parameters to template arguments.
7130 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)7131 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7132 const TemplateArgumentList &Args) {
7133 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7134 }
7135
7136 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)7137 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7138 const TemplateArgument *Args,
7139 unsigned NumArgs) {
7140 SmallString<128> Str;
7141 llvm::raw_svector_ostream Out(Str);
7142
7143 if (!Params || Params->size() == 0 || NumArgs == 0)
7144 return std::string();
7145
7146 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7147 if (I >= NumArgs)
7148 break;
7149
7150 if (I == 0)
7151 Out << "[with ";
7152 else
7153 Out << ", ";
7154
7155 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7156 Out << Id->getName();
7157 } else {
7158 Out << '$' << I;
7159 }
7160
7161 Out << " = ";
7162 Args[I].print(getPrintingPolicy(), Out);
7163 }
7164
7165 Out << ']';
7166 return Out.str();
7167 }
7168
MarkAsLateParsedTemplate(FunctionDecl * FD,bool Flag)7169 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7170 if (!FD)
7171 return;
7172 FD->setLateTemplateParsed(Flag);
7173 }
7174
IsInsideALocalClassWithinATemplateFunction()7175 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7176 DeclContext *DC = CurContext;
7177
7178 while (DC) {
7179 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7180 const FunctionDecl *FD = RD->isLocalClass();
7181 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7182 } else if (DC->isTranslationUnit() || DC->isNamespace())
7183 return false;
7184
7185 DC = DC->getParent();
7186 }
7187 return false;
7188 }
7189