• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11 
12 #include "clang/Sema/SemaInternal.h"
13 #include "clang/Sema/Lookup.h"
14 #include "clang/Sema/Scope.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "TreeTransform.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeVisitor.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/SmallBitVector.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringExtras.h"
32 using namespace clang;
33 using namespace sema;
34 
35 // Exported for use by Parser.
36 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)37 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                               unsigned N) {
39   if (!N) return SourceRange();
40   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41 }
42 
43 /// \brief Determine whether the declaration found is acceptable as the name
44 /// of a template and, if so, return that template declaration. Otherwise,
45 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)46 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                            NamedDecl *Orig,
48                                            bool AllowFunctionTemplates) {
49   NamedDecl *D = Orig->getUnderlyingDecl();
50 
51   if (isa<TemplateDecl>(D)) {
52     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53       return 0;
54 
55     return Orig;
56   }
57 
58   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59     // C++ [temp.local]p1:
60     //   Like normal (non-template) classes, class templates have an
61     //   injected-class-name (Clause 9). The injected-class-name
62     //   can be used with or without a template-argument-list. When
63     //   it is used without a template-argument-list, it is
64     //   equivalent to the injected-class-name followed by the
65     //   template-parameters of the class template enclosed in
66     //   <>. When it is used with a template-argument-list, it
67     //   refers to the specified class template specialization,
68     //   which could be the current specialization or another
69     //   specialization.
70     if (Record->isInjectedClassName()) {
71       Record = cast<CXXRecordDecl>(Record->getDeclContext());
72       if (Record->getDescribedClassTemplate())
73         return Record->getDescribedClassTemplate();
74 
75       if (ClassTemplateSpecializationDecl *Spec
76             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77         return Spec->getSpecializedTemplate();
78     }
79 
80     return 0;
81   }
82 
83   return 0;
84 }
85 
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)86 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                          bool AllowFunctionTemplates) {
88   // The set of class templates we've already seen.
89   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90   LookupResult::Filter filter = R.makeFilter();
91   while (filter.hasNext()) {
92     NamedDecl *Orig = filter.next();
93     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                                AllowFunctionTemplates);
95     if (!Repl)
96       filter.erase();
97     else if (Repl != Orig) {
98 
99       // C++ [temp.local]p3:
100       //   A lookup that finds an injected-class-name (10.2) can result in an
101       //   ambiguity in certain cases (for example, if it is found in more than
102       //   one base class). If all of the injected-class-names that are found
103       //   refer to specializations of the same class template, and if the name
104       //   is used as a template-name, the reference refers to the class
105       //   template itself and not a specialization thereof, and is not
106       //   ambiguous.
107       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108         if (!ClassTemplates.insert(ClassTmpl)) {
109           filter.erase();
110           continue;
111         }
112 
113       // FIXME: we promote access to public here as a workaround to
114       // the fact that LookupResult doesn't let us remember that we
115       // found this template through a particular injected class name,
116       // which means we end up doing nasty things to the invariants.
117       // Pretending that access is public is *much* safer.
118       filter.replace(Repl, AS_public);
119     }
120   }
121   filter.done();
122 }
123 
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)124 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                          bool AllowFunctionTemplates) {
126   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128       return true;
129 
130   return false;
131 }
132 
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)133 TemplateNameKind Sema::isTemplateName(Scope *S,
134                                       CXXScopeSpec &SS,
135                                       bool hasTemplateKeyword,
136                                       UnqualifiedId &Name,
137                                       ParsedType ObjectTypePtr,
138                                       bool EnteringContext,
139                                       TemplateTy &TemplateResult,
140                                       bool &MemberOfUnknownSpecialization) {
141   assert(getLangOpts().CPlusPlus && "No template names in C!");
142 
143   DeclarationName TName;
144   MemberOfUnknownSpecialization = false;
145 
146   switch (Name.getKind()) {
147   case UnqualifiedId::IK_Identifier:
148     TName = DeclarationName(Name.Identifier);
149     break;
150 
151   case UnqualifiedId::IK_OperatorFunctionId:
152     TName = Context.DeclarationNames.getCXXOperatorName(
153                                               Name.OperatorFunctionId.Operator);
154     break;
155 
156   case UnqualifiedId::IK_LiteralOperatorId:
157     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158     break;
159 
160   default:
161     return TNK_Non_template;
162   }
163 
164   QualType ObjectType = ObjectTypePtr.get();
165 
166   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                      MemberOfUnknownSpecialization);
169   if (R.empty()) return TNK_Non_template;
170   if (R.isAmbiguous()) {
171     // Suppress diagnostics;  we'll redo this lookup later.
172     R.suppressDiagnostics();
173 
174     // FIXME: we might have ambiguous templates, in which case we
175     // should at least parse them properly!
176     return TNK_Non_template;
177   }
178 
179   TemplateName Template;
180   TemplateNameKind TemplateKind;
181 
182   unsigned ResultCount = R.end() - R.begin();
183   if (ResultCount > 1) {
184     // We assume that we'll preserve the qualifier from a function
185     // template name in other ways.
186     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187     TemplateKind = TNK_Function_template;
188 
189     // We'll do this lookup again later.
190     R.suppressDiagnostics();
191   } else {
192     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193 
194     if (SS.isSet() && !SS.isInvalid()) {
195       NestedNameSpecifier *Qualifier
196         = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197       Template = Context.getQualifiedTemplateName(Qualifier,
198                                                   hasTemplateKeyword, TD);
199     } else {
200       Template = TemplateName(TD);
201     }
202 
203     if (isa<FunctionTemplateDecl>(TD)) {
204       TemplateKind = TNK_Function_template;
205 
206       // We'll do this lookup again later.
207       R.suppressDiagnostics();
208     } else {
209       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210              isa<TypeAliasTemplateDecl>(TD));
211       TemplateKind = TNK_Type_template;
212     }
213   }
214 
215   TemplateResult = TemplateTy::make(Template);
216   return TemplateKind;
217 }
218 
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)219 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                        SourceLocation IILoc,
221                                        Scope *S,
222                                        const CXXScopeSpec *SS,
223                                        TemplateTy &SuggestedTemplate,
224                                        TemplateNameKind &SuggestedKind) {
225   // We can't recover unless there's a dependent scope specifier preceding the
226   // template name.
227   // FIXME: Typo correction?
228   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229       computeDeclContext(*SS))
230     return false;
231 
232   // The code is missing a 'template' keyword prior to the dependent template
233   // name.
234   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235   Diag(IILoc, diag::err_template_kw_missing)
236     << Qualifier << II.getName()
237     << FixItHint::CreateInsertion(IILoc, "template ");
238   SuggestedTemplate
239     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240   SuggestedKind = TNK_Dependent_template_name;
241   return true;
242 }
243 
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)244 void Sema::LookupTemplateName(LookupResult &Found,
245                               Scope *S, CXXScopeSpec &SS,
246                               QualType ObjectType,
247                               bool EnteringContext,
248                               bool &MemberOfUnknownSpecialization) {
249   // Determine where to perform name lookup
250   MemberOfUnknownSpecialization = false;
251   DeclContext *LookupCtx = 0;
252   bool isDependent = false;
253   if (!ObjectType.isNull()) {
254     // This nested-name-specifier occurs in a member access expression, e.g.,
255     // x->B::f, and we are looking into the type of the object.
256     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257     LookupCtx = computeDeclContext(ObjectType);
258     isDependent = ObjectType->isDependentType();
259     assert((isDependent || !ObjectType->isIncompleteType()) &&
260            "Caller should have completed object type");
261 
262     // Template names cannot appear inside an Objective-C class or object type.
263     if (ObjectType->isObjCObjectOrInterfaceType()) {
264       Found.clear();
265       return;
266     }
267   } else if (SS.isSet()) {
268     // This nested-name-specifier occurs after another nested-name-specifier,
269     // so long into the context associated with the prior nested-name-specifier.
270     LookupCtx = computeDeclContext(SS, EnteringContext);
271     isDependent = isDependentScopeSpecifier(SS);
272 
273     // The declaration context must be complete.
274     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275       return;
276   }
277 
278   bool ObjectTypeSearchedInScope = false;
279   bool AllowFunctionTemplatesInLookup = true;
280   if (LookupCtx) {
281     // Perform "qualified" name lookup into the declaration context we
282     // computed, which is either the type of the base of a member access
283     // expression or the declaration context associated with a prior
284     // nested-name-specifier.
285     LookupQualifiedName(Found, LookupCtx);
286     if (!ObjectType.isNull() && Found.empty()) {
287       // C++ [basic.lookup.classref]p1:
288       //   In a class member access expression (5.2.5), if the . or -> token is
289       //   immediately followed by an identifier followed by a <, the
290       //   identifier must be looked up to determine whether the < is the
291       //   beginning of a template argument list (14.2) or a less-than operator.
292       //   The identifier is first looked up in the class of the object
293       //   expression. If the identifier is not found, it is then looked up in
294       //   the context of the entire postfix-expression and shall name a class
295       //   or function template.
296       if (S) LookupName(Found, S);
297       ObjectTypeSearchedInScope = true;
298       AllowFunctionTemplatesInLookup = false;
299     }
300   } else if (isDependent && (!S || ObjectType.isNull())) {
301     // We cannot look into a dependent object type or nested nme
302     // specifier.
303     MemberOfUnknownSpecialization = true;
304     return;
305   } else {
306     // Perform unqualified name lookup in the current scope.
307     LookupName(Found, S);
308 
309     if (!ObjectType.isNull())
310       AllowFunctionTemplatesInLookup = false;
311   }
312 
313   if (Found.empty() && !isDependent) {
314     // If we did not find any names, attempt to correct any typos.
315     DeclarationName Name = Found.getLookupName();
316     Found.clear();
317     // Simple filter callback that, for keywords, only accepts the C++ *_cast
318     CorrectionCandidateCallback FilterCCC;
319     FilterCCC.WantTypeSpecifiers = false;
320     FilterCCC.WantExpressionKeywords = false;
321     FilterCCC.WantRemainingKeywords = false;
322     FilterCCC.WantCXXNamedCasts = true;
323     if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                                Found.getLookupKind(), S, &SS,
325                                                FilterCCC, LookupCtx)) {
326       Found.setLookupName(Corrected.getCorrection());
327       if (Corrected.getCorrectionDecl())
328         Found.addDecl(Corrected.getCorrectionDecl());
329       FilterAcceptableTemplateNames(Found);
330       if (!Found.empty()) {
331         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333         if (LookupCtx)
334           Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335             << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336             << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337         else
338           Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339             << Name << CorrectedQuotedStr
340             << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341         if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342           Diag(Template->getLocation(), diag::note_previous_decl)
343             << CorrectedQuotedStr;
344       }
345     } else {
346       Found.setLookupName(Name);
347     }
348   }
349 
350   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351   if (Found.empty()) {
352     if (isDependent)
353       MemberOfUnknownSpecialization = true;
354     return;
355   }
356 
357   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
358     // C++ [basic.lookup.classref]p1:
359     //   [...] If the lookup in the class of the object expression finds a
360     //   template, the name is also looked up in the context of the entire
361     //   postfix-expression and [...]
362     //
363     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
364                             LookupOrdinaryName);
365     LookupName(FoundOuter, S);
366     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
367 
368     if (FoundOuter.empty()) {
369       //   - if the name is not found, the name found in the class of the
370       //     object expression is used, otherwise
371     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
372                FoundOuter.isAmbiguous()) {
373       //   - if the name is found in the context of the entire
374       //     postfix-expression and does not name a class template, the name
375       //     found in the class of the object expression is used, otherwise
376       FoundOuter.clear();
377     } else if (!Found.isSuppressingDiagnostics()) {
378       //   - if the name found is a class template, it must refer to the same
379       //     entity as the one found in the class of the object expression,
380       //     otherwise the program is ill-formed.
381       if (!Found.isSingleResult() ||
382           Found.getFoundDecl()->getCanonicalDecl()
383             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
384         Diag(Found.getNameLoc(),
385              diag::ext_nested_name_member_ref_lookup_ambiguous)
386           << Found.getLookupName()
387           << ObjectType;
388         Diag(Found.getRepresentativeDecl()->getLocation(),
389              diag::note_ambig_member_ref_object_type)
390           << ObjectType;
391         Diag(FoundOuter.getFoundDecl()->getLocation(),
392              diag::note_ambig_member_ref_scope);
393 
394         // Recover by taking the template that we found in the object
395         // expression's type.
396       }
397     }
398   }
399 }
400 
401 /// ActOnDependentIdExpression - Handle a dependent id-expression that
402 /// was just parsed.  This is only possible with an explicit scope
403 /// specifier naming a dependent type.
404 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)405 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
406                                  SourceLocation TemplateKWLoc,
407                                  const DeclarationNameInfo &NameInfo,
408                                  bool isAddressOfOperand,
409                            const TemplateArgumentListInfo *TemplateArgs) {
410   DeclContext *DC = getFunctionLevelDeclContext();
411 
412   if (!isAddressOfOperand &&
413       isa<CXXMethodDecl>(DC) &&
414       cast<CXXMethodDecl>(DC)->isInstance()) {
415     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
416 
417     // Since the 'this' expression is synthesized, we don't need to
418     // perform the double-lookup check.
419     NamedDecl *FirstQualifierInScope = 0;
420 
421     return Owned(CXXDependentScopeMemberExpr::Create(Context,
422                                                      /*This*/ 0, ThisType,
423                                                      /*IsArrow*/ true,
424                                                      /*Op*/ SourceLocation(),
425                                                SS.getWithLocInContext(Context),
426                                                      TemplateKWLoc,
427                                                      FirstQualifierInScope,
428                                                      NameInfo,
429                                                      TemplateArgs));
430   }
431 
432   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
433 }
434 
435 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)436 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
437                                 SourceLocation TemplateKWLoc,
438                                 const DeclarationNameInfo &NameInfo,
439                                 const TemplateArgumentListInfo *TemplateArgs) {
440   return Owned(DependentScopeDeclRefExpr::Create(Context,
441                                                SS.getWithLocInContext(Context),
442                                                  TemplateKWLoc,
443                                                  NameInfo,
444                                                  TemplateArgs));
445 }
446 
447 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
448 /// that the template parameter 'PrevDecl' is being shadowed by a new
449 /// declaration at location Loc. Returns true to indicate that this is
450 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)451 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
452   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
453 
454   // Microsoft Visual C++ permits template parameters to be shadowed.
455   if (getLangOpts().MicrosoftExt)
456     return;
457 
458   // C++ [temp.local]p4:
459   //   A template-parameter shall not be redeclared within its
460   //   scope (including nested scopes).
461   Diag(Loc, diag::err_template_param_shadow)
462     << cast<NamedDecl>(PrevDecl)->getDeclName();
463   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
464   return;
465 }
466 
467 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
468 /// the parameter D to reference the templated declaration and return a pointer
469 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)470 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
471   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
472     D = Temp->getTemplatedDecl();
473     return Temp;
474   }
475   return 0;
476 }
477 
getTemplatePackExpansion(SourceLocation EllipsisLoc) const478 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
479                                              SourceLocation EllipsisLoc) const {
480   assert(Kind == Template &&
481          "Only template template arguments can be pack expansions here");
482   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
483          "Template template argument pack expansion without packs");
484   ParsedTemplateArgument Result(*this);
485   Result.EllipsisLoc = EllipsisLoc;
486   return Result;
487 }
488 
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)489 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
490                                             const ParsedTemplateArgument &Arg) {
491 
492   switch (Arg.getKind()) {
493   case ParsedTemplateArgument::Type: {
494     TypeSourceInfo *DI;
495     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
496     if (!DI)
497       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
498     return TemplateArgumentLoc(TemplateArgument(T), DI);
499   }
500 
501   case ParsedTemplateArgument::NonType: {
502     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
503     return TemplateArgumentLoc(TemplateArgument(E), E);
504   }
505 
506   case ParsedTemplateArgument::Template: {
507     TemplateName Template = Arg.getAsTemplate().get();
508     TemplateArgument TArg;
509     if (Arg.getEllipsisLoc().isValid())
510       TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
511     else
512       TArg = Template;
513     return TemplateArgumentLoc(TArg,
514                                Arg.getScopeSpec().getWithLocInContext(
515                                                               SemaRef.Context),
516                                Arg.getLocation(),
517                                Arg.getEllipsisLoc());
518   }
519   }
520 
521   llvm_unreachable("Unhandled parsed template argument");
522 }
523 
524 /// \brief Translates template arguments as provided by the parser
525 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)526 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
527                                       TemplateArgumentListInfo &TemplateArgs) {
528  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
529    TemplateArgs.addArgument(translateTemplateArgument(*this,
530                                                       TemplateArgsIn[I]));
531 }
532 
533 /// ActOnTypeParameter - Called when a C++ template type parameter
534 /// (e.g., "typename T") has been parsed. Typename specifies whether
535 /// the keyword "typename" was used to declare the type parameter
536 /// (otherwise, "class" was used), and KeyLoc is the location of the
537 /// "class" or "typename" keyword. ParamName is the name of the
538 /// parameter (NULL indicates an unnamed template parameter) and
539 /// ParamNameLoc is the location of the parameter name (if any).
540 /// If the type parameter has a default argument, it will be added
541 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,bool Ellipsis,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)542 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
543                                SourceLocation EllipsisLoc,
544                                SourceLocation KeyLoc,
545                                IdentifierInfo *ParamName,
546                                SourceLocation ParamNameLoc,
547                                unsigned Depth, unsigned Position,
548                                SourceLocation EqualLoc,
549                                ParsedType DefaultArg) {
550   assert(S->isTemplateParamScope() &&
551          "Template type parameter not in template parameter scope!");
552   bool Invalid = false;
553 
554   if (ParamName) {
555     NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
556                                            LookupOrdinaryName,
557                                            ForRedeclaration);
558     if (PrevDecl && PrevDecl->isTemplateParameter()) {
559       DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
560       PrevDecl = 0;
561     }
562   }
563 
564   SourceLocation Loc = ParamNameLoc;
565   if (!ParamName)
566     Loc = KeyLoc;
567 
568   TemplateTypeParmDecl *Param
569     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
570                                    KeyLoc, Loc, Depth, Position, ParamName,
571                                    Typename, Ellipsis);
572   Param->setAccess(AS_public);
573   if (Invalid)
574     Param->setInvalidDecl();
575 
576   if (ParamName) {
577     // Add the template parameter into the current scope.
578     S->AddDecl(Param);
579     IdResolver.AddDecl(Param);
580   }
581 
582   // C++0x [temp.param]p9:
583   //   A default template-argument may be specified for any kind of
584   //   template-parameter that is not a template parameter pack.
585   if (DefaultArg && Ellipsis) {
586     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
587     DefaultArg = ParsedType();
588   }
589 
590   // Handle the default argument, if provided.
591   if (DefaultArg) {
592     TypeSourceInfo *DefaultTInfo;
593     GetTypeFromParser(DefaultArg, &DefaultTInfo);
594 
595     assert(DefaultTInfo && "expected source information for type");
596 
597     // Check for unexpanded parameter packs.
598     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
599                                         UPPC_DefaultArgument))
600       return Param;
601 
602     // Check the template argument itself.
603     if (CheckTemplateArgument(Param, DefaultTInfo)) {
604       Param->setInvalidDecl();
605       return Param;
606     }
607 
608     Param->setDefaultArgument(DefaultTInfo, false);
609   }
610 
611   return Param;
612 }
613 
614 /// \brief Check that the type of a non-type template parameter is
615 /// well-formed.
616 ///
617 /// \returns the (possibly-promoted) parameter type if valid;
618 /// otherwise, produces a diagnostic and returns a NULL type.
619 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)620 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
621   // We don't allow variably-modified types as the type of non-type template
622   // parameters.
623   if (T->isVariablyModifiedType()) {
624     Diag(Loc, diag::err_variably_modified_nontype_template_param)
625       << T;
626     return QualType();
627   }
628 
629   // C++ [temp.param]p4:
630   //
631   // A non-type template-parameter shall have one of the following
632   // (optionally cv-qualified) types:
633   //
634   //       -- integral or enumeration type,
635   if (T->isIntegralOrEnumerationType() ||
636       //   -- pointer to object or pointer to function,
637       T->isPointerType() ||
638       //   -- reference to object or reference to function,
639       T->isReferenceType() ||
640       //   -- pointer to member,
641       T->isMemberPointerType() ||
642       //   -- std::nullptr_t.
643       T->isNullPtrType() ||
644       // If T is a dependent type, we can't do the check now, so we
645       // assume that it is well-formed.
646       T->isDependentType()) {
647     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
648     // are ignored when determining its type.
649     return T.getUnqualifiedType();
650   }
651 
652   // C++ [temp.param]p8:
653   //
654   //   A non-type template-parameter of type "array of T" or
655   //   "function returning T" is adjusted to be of type "pointer to
656   //   T" or "pointer to function returning T", respectively.
657   else if (T->isArrayType())
658     // FIXME: Keep the type prior to promotion?
659     return Context.getArrayDecayedType(T);
660   else if (T->isFunctionType())
661     // FIXME: Keep the type prior to promotion?
662     return Context.getPointerType(T);
663 
664   Diag(Loc, diag::err_template_nontype_parm_bad_type)
665     << T;
666 
667   return QualType();
668 }
669 
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)670 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
671                                           unsigned Depth,
672                                           unsigned Position,
673                                           SourceLocation EqualLoc,
674                                           Expr *Default) {
675   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
676   QualType T = TInfo->getType();
677 
678   assert(S->isTemplateParamScope() &&
679          "Non-type template parameter not in template parameter scope!");
680   bool Invalid = false;
681 
682   IdentifierInfo *ParamName = D.getIdentifier();
683   if (ParamName) {
684     NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
685                                            LookupOrdinaryName,
686                                            ForRedeclaration);
687     if (PrevDecl && PrevDecl->isTemplateParameter()) {
688       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
689       PrevDecl = 0;
690     }
691   }
692 
693   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694   if (T.isNull()) {
695     T = Context.IntTy; // Recover with an 'int' type.
696     Invalid = true;
697   }
698 
699   bool IsParameterPack = D.hasEllipsis();
700   NonTypeTemplateParmDecl *Param
701     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
702                                       D.getLocStart(),
703                                       D.getIdentifierLoc(),
704                                       Depth, Position, ParamName, T,
705                                       IsParameterPack, TInfo);
706   Param->setAccess(AS_public);
707 
708   if (Invalid)
709     Param->setInvalidDecl();
710 
711   if (D.getIdentifier()) {
712     // Add the template parameter into the current scope.
713     S->AddDecl(Param);
714     IdResolver.AddDecl(Param);
715   }
716 
717   // C++0x [temp.param]p9:
718   //   A default template-argument may be specified for any kind of
719   //   template-parameter that is not a template parameter pack.
720   if (Default && IsParameterPack) {
721     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
722     Default = 0;
723   }
724 
725   // Check the well-formedness of the default template argument, if provided.
726   if (Default) {
727     // Check for unexpanded parameter packs.
728     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
729       return Param;
730 
731     TemplateArgument Converted;
732     ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
733     if (DefaultRes.isInvalid()) {
734       Param->setInvalidDecl();
735       return Param;
736     }
737     Default = DefaultRes.take();
738 
739     Param->setDefaultArgument(Default, false);
740   }
741 
742   return Param;
743 }
744 
745 /// ActOnTemplateTemplateParameter - Called when a C++ template template
746 /// parameter (e.g. T in template <template <typename> class T> class array)
747 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)748 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
749                                            SourceLocation TmpLoc,
750                                            TemplateParameterList *Params,
751                                            SourceLocation EllipsisLoc,
752                                            IdentifierInfo *Name,
753                                            SourceLocation NameLoc,
754                                            unsigned Depth,
755                                            unsigned Position,
756                                            SourceLocation EqualLoc,
757                                            ParsedTemplateArgument Default) {
758   assert(S->isTemplateParamScope() &&
759          "Template template parameter not in template parameter scope!");
760 
761   // Construct the parameter object.
762   bool IsParameterPack = EllipsisLoc.isValid();
763   TemplateTemplateParmDecl *Param =
764     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
765                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
766                                      Depth, Position, IsParameterPack,
767                                      Name, Params);
768   Param->setAccess(AS_public);
769 
770   // If the template template parameter has a name, then link the identifier
771   // into the scope and lookup mechanisms.
772   if (Name) {
773     S->AddDecl(Param);
774     IdResolver.AddDecl(Param);
775   }
776 
777   if (Params->size() == 0) {
778     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
779     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
780     Param->setInvalidDecl();
781   }
782 
783   // C++0x [temp.param]p9:
784   //   A default template-argument may be specified for any kind of
785   //   template-parameter that is not a template parameter pack.
786   if (IsParameterPack && !Default.isInvalid()) {
787     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
788     Default = ParsedTemplateArgument();
789   }
790 
791   if (!Default.isInvalid()) {
792     // Check only that we have a template template argument. We don't want to
793     // try to check well-formedness now, because our template template parameter
794     // might have dependent types in its template parameters, which we wouldn't
795     // be able to match now.
796     //
797     // If none of the template template parameter's template arguments mention
798     // other template parameters, we could actually perform more checking here.
799     // However, it isn't worth doing.
800     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
801     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
802       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
803         << DefaultArg.getSourceRange();
804       return Param;
805     }
806 
807     // Check for unexpanded parameter packs.
808     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
809                                         DefaultArg.getArgument().getAsTemplate(),
810                                         UPPC_DefaultArgument))
811       return Param;
812 
813     Param->setDefaultArgument(DefaultArg, false);
814   }
815 
816   return Param;
817 }
818 
819 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
820 /// contains the template parameters in Params/NumParams.
821 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)822 Sema::ActOnTemplateParameterList(unsigned Depth,
823                                  SourceLocation ExportLoc,
824                                  SourceLocation TemplateLoc,
825                                  SourceLocation LAngleLoc,
826                                  Decl **Params, unsigned NumParams,
827                                  SourceLocation RAngleLoc) {
828   if (ExportLoc.isValid())
829     Diag(ExportLoc, diag::warn_template_export_unsupported);
830 
831   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
832                                        (NamedDecl**)Params, NumParams,
833                                        RAngleLoc);
834 }
835 
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)836 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
837   if (SS.isSet())
838     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
839 }
840 
841 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)842 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
843                          SourceLocation KWLoc, CXXScopeSpec &SS,
844                          IdentifierInfo *Name, SourceLocation NameLoc,
845                          AttributeList *Attr,
846                          TemplateParameterList *TemplateParams,
847                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
848                          unsigned NumOuterTemplateParamLists,
849                          TemplateParameterList** OuterTemplateParamLists) {
850   assert(TemplateParams && TemplateParams->size() > 0 &&
851          "No template parameters");
852   assert(TUK != TUK_Reference && "Can only declare or define class templates");
853   bool Invalid = false;
854 
855   // Check that we can declare a template here.
856   if (CheckTemplateDeclScope(S, TemplateParams))
857     return true;
858 
859   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
860   assert(Kind != TTK_Enum && "can't build template of enumerated type");
861 
862   // There is no such thing as an unnamed class template.
863   if (!Name) {
864     Diag(KWLoc, diag::err_template_unnamed_class);
865     return true;
866   }
867 
868   // Find any previous declaration with this name.
869   DeclContext *SemanticContext;
870   LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
871                         ForRedeclaration);
872   if (SS.isNotEmpty() && !SS.isInvalid()) {
873     SemanticContext = computeDeclContext(SS, true);
874     if (!SemanticContext) {
875       // FIXME: Horrible, horrible hack! We can't currently represent this
876       // in the AST, and historically we have just ignored such friend
877       // class templates, so don't complain here.
878       if (TUK != TUK_Friend)
879         Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
880           << SS.getScopeRep() << SS.getRange();
881       return true;
882     }
883 
884     if (RequireCompleteDeclContext(SS, SemanticContext))
885       return true;
886 
887     // If we're adding a template to a dependent context, we may need to
888     // rebuilding some of the types used within the template parameter list,
889     // now that we know what the current instantiation is.
890     if (SemanticContext->isDependentContext()) {
891       ContextRAII SavedContext(*this, SemanticContext);
892       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
893         Invalid = true;
894     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
895       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
896 
897     LookupQualifiedName(Previous, SemanticContext);
898   } else {
899     SemanticContext = CurContext;
900     LookupName(Previous, S);
901   }
902 
903   if (Previous.isAmbiguous())
904     return true;
905 
906   NamedDecl *PrevDecl = 0;
907   if (Previous.begin() != Previous.end())
908     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
909 
910   // If there is a previous declaration with the same name, check
911   // whether this is a valid redeclaration.
912   ClassTemplateDecl *PrevClassTemplate
913     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
914 
915   // We may have found the injected-class-name of a class template,
916   // class template partial specialization, or class template specialization.
917   // In these cases, grab the template that is being defined or specialized.
918   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
919       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
920     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
921     PrevClassTemplate
922       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
923     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
924       PrevClassTemplate
925         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
926             ->getSpecializedTemplate();
927     }
928   }
929 
930   if (TUK == TUK_Friend) {
931     // C++ [namespace.memdef]p3:
932     //   [...] When looking for a prior declaration of a class or a function
933     //   declared as a friend, and when the name of the friend class or
934     //   function is neither a qualified name nor a template-id, scopes outside
935     //   the innermost enclosing namespace scope are not considered.
936     if (!SS.isSet()) {
937       DeclContext *OutermostContext = CurContext;
938       while (!OutermostContext->isFileContext())
939         OutermostContext = OutermostContext->getLookupParent();
940 
941       if (PrevDecl &&
942           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
943            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
944         SemanticContext = PrevDecl->getDeclContext();
945       } else {
946         // Declarations in outer scopes don't matter. However, the outermost
947         // context we computed is the semantic context for our new
948         // declaration.
949         PrevDecl = PrevClassTemplate = 0;
950         SemanticContext = OutermostContext;
951       }
952     }
953 
954     if (CurContext->isDependentContext()) {
955       // If this is a dependent context, we don't want to link the friend
956       // class template to the template in scope, because that would perform
957       // checking of the template parameter lists that can't be performed
958       // until the outer context is instantiated.
959       PrevDecl = PrevClassTemplate = 0;
960     }
961   } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
962     PrevDecl = PrevClassTemplate = 0;
963 
964   if (PrevClassTemplate) {
965     // Ensure that the template parameter lists are compatible.
966     if (!TemplateParameterListsAreEqual(TemplateParams,
967                                    PrevClassTemplate->getTemplateParameters(),
968                                         /*Complain=*/true,
969                                         TPL_TemplateMatch))
970       return true;
971 
972     // C++ [temp.class]p4:
973     //   In a redeclaration, partial specialization, explicit
974     //   specialization or explicit instantiation of a class template,
975     //   the class-key shall agree in kind with the original class
976     //   template declaration (7.1.5.3).
977     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
978     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
979                                       TUK == TUK_Definition,  KWLoc, *Name)) {
980       Diag(KWLoc, diag::err_use_with_wrong_tag)
981         << Name
982         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
983       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
984       Kind = PrevRecordDecl->getTagKind();
985     }
986 
987     // Check for redefinition of this class template.
988     if (TUK == TUK_Definition) {
989       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
990         Diag(NameLoc, diag::err_redefinition) << Name;
991         Diag(Def->getLocation(), diag::note_previous_definition);
992         // FIXME: Would it make sense to try to "forget" the previous
993         // definition, as part of error recovery?
994         return true;
995       }
996     }
997   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
998     // Maybe we will complain about the shadowed template parameter.
999     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1000     // Just pretend that we didn't see the previous declaration.
1001     PrevDecl = 0;
1002   } else if (PrevDecl) {
1003     // C++ [temp]p5:
1004     //   A class template shall not have the same name as any other
1005     //   template, class, function, object, enumeration, enumerator,
1006     //   namespace, or type in the same scope (3.3), except as specified
1007     //   in (14.5.4).
1008     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1009     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1010     return true;
1011   }
1012 
1013   // Check the template parameter list of this declaration, possibly
1014   // merging in the template parameter list from the previous class
1015   // template declaration.
1016   if (CheckTemplateParameterList(TemplateParams,
1017             PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1018                                  (SS.isSet() && SemanticContext &&
1019                                   SemanticContext->isRecord() &&
1020                                   SemanticContext->isDependentContext())
1021                                    ? TPC_ClassTemplateMember
1022                                    : TPC_ClassTemplate))
1023     Invalid = true;
1024 
1025   if (SS.isSet()) {
1026     // If the name of the template was qualified, we must be defining the
1027     // template out-of-line.
1028     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1029         !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1030       Diag(NameLoc, diag::err_member_def_does_not_match)
1031         << Name << SemanticContext << SS.getRange();
1032       Invalid = true;
1033     }
1034   }
1035 
1036   CXXRecordDecl *NewClass =
1037     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1038                           PrevClassTemplate?
1039                             PrevClassTemplate->getTemplatedDecl() : 0,
1040                           /*DelayTypeCreation=*/true);
1041   SetNestedNameSpecifier(NewClass, SS);
1042   if (NumOuterTemplateParamLists > 0)
1043     NewClass->setTemplateParameterListsInfo(Context,
1044                                             NumOuterTemplateParamLists,
1045                                             OuterTemplateParamLists);
1046 
1047   // Add alignment attributes if necessary; these attributes are checked when
1048   // the ASTContext lays out the structure.
1049   AddAlignmentAttributesForRecord(NewClass);
1050   AddMsStructLayoutForRecord(NewClass);
1051 
1052   ClassTemplateDecl *NewTemplate
1053     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1054                                 DeclarationName(Name), TemplateParams,
1055                                 NewClass, PrevClassTemplate);
1056   NewClass->setDescribedClassTemplate(NewTemplate);
1057 
1058   if (ModulePrivateLoc.isValid())
1059     NewTemplate->setModulePrivate();
1060 
1061   // Build the type for the class template declaration now.
1062   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1063   T = Context.getInjectedClassNameType(NewClass, T);
1064   assert(T->isDependentType() && "Class template type is not dependent?");
1065   (void)T;
1066 
1067   // If we are providing an explicit specialization of a member that is a
1068   // class template, make a note of that.
1069   if (PrevClassTemplate &&
1070       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1071     PrevClassTemplate->setMemberSpecialization();
1072 
1073   // Set the access specifier.
1074   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1075     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1076 
1077   // Set the lexical context of these templates
1078   NewClass->setLexicalDeclContext(CurContext);
1079   NewTemplate->setLexicalDeclContext(CurContext);
1080 
1081   if (TUK == TUK_Definition)
1082     NewClass->startDefinition();
1083 
1084   if (Attr)
1085     ProcessDeclAttributeList(S, NewClass, Attr);
1086 
1087   if (TUK != TUK_Friend)
1088     PushOnScopeChains(NewTemplate, S);
1089   else {
1090     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1091       NewTemplate->setAccess(PrevClassTemplate->getAccess());
1092       NewClass->setAccess(PrevClassTemplate->getAccess());
1093     }
1094 
1095     NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1096                                        PrevClassTemplate != NULL);
1097 
1098     // Friend templates are visible in fairly strange ways.
1099     if (!CurContext->isDependentContext()) {
1100       DeclContext *DC = SemanticContext->getRedeclContext();
1101       DC->makeDeclVisibleInContext(NewTemplate);
1102       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1103         PushOnScopeChains(NewTemplate, EnclosingScope,
1104                           /* AddToContext = */ false);
1105     }
1106 
1107     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1108                                             NewClass->getLocation(),
1109                                             NewTemplate,
1110                                     /*FIXME:*/NewClass->getLocation());
1111     Friend->setAccess(AS_public);
1112     CurContext->addDecl(Friend);
1113   }
1114 
1115   if (Invalid) {
1116     NewTemplate->setInvalidDecl();
1117     NewClass->setInvalidDecl();
1118   }
1119   return NewTemplate;
1120 }
1121 
1122 /// \brief Diagnose the presence of a default template argument on a
1123 /// template parameter, which is ill-formed in certain contexts.
1124 ///
1125 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1126 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1127                                             Sema::TemplateParamListContext TPC,
1128                                             SourceLocation ParamLoc,
1129                                             SourceRange DefArgRange) {
1130   switch (TPC) {
1131   case Sema::TPC_ClassTemplate:
1132   case Sema::TPC_TypeAliasTemplate:
1133     return false;
1134 
1135   case Sema::TPC_FunctionTemplate:
1136   case Sema::TPC_FriendFunctionTemplateDefinition:
1137     // C++ [temp.param]p9:
1138     //   A default template-argument shall not be specified in a
1139     //   function template declaration or a function template
1140     //   definition [...]
1141     //   If a friend function template declaration specifies a default
1142     //   template-argument, that declaration shall be a definition and shall be
1143     //   the only declaration of the function template in the translation unit.
1144     // (C++98/03 doesn't have this wording; see DR226).
1145     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1146          diag::warn_cxx98_compat_template_parameter_default_in_function_template
1147            : diag::ext_template_parameter_default_in_function_template)
1148       << DefArgRange;
1149     return false;
1150 
1151   case Sema::TPC_ClassTemplateMember:
1152     // C++0x [temp.param]p9:
1153     //   A default template-argument shall not be specified in the
1154     //   template-parameter-lists of the definition of a member of a
1155     //   class template that appears outside of the member's class.
1156     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1157       << DefArgRange;
1158     return true;
1159 
1160   case Sema::TPC_FriendFunctionTemplate:
1161     // C++ [temp.param]p9:
1162     //   A default template-argument shall not be specified in a
1163     //   friend template declaration.
1164     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1165       << DefArgRange;
1166     return true;
1167 
1168     // FIXME: C++0x [temp.param]p9 allows default template-arguments
1169     // for friend function templates if there is only a single
1170     // declaration (and it is a definition). Strange!
1171   }
1172 
1173   llvm_unreachable("Invalid TemplateParamListContext!");
1174 }
1175 
1176 /// \brief Check for unexpanded parameter packs within the template parameters
1177 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1178 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1179                                              TemplateTemplateParmDecl *TTP) {
1180   TemplateParameterList *Params = TTP->getTemplateParameters();
1181   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1182     NamedDecl *P = Params->getParam(I);
1183     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1184       if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1185                                             NTTP->getTypeSourceInfo(),
1186                                       Sema::UPPC_NonTypeTemplateParameterType))
1187         return true;
1188 
1189       continue;
1190     }
1191 
1192     if (TemplateTemplateParmDecl *InnerTTP
1193                                         = dyn_cast<TemplateTemplateParmDecl>(P))
1194       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1195         return true;
1196   }
1197 
1198   return false;
1199 }
1200 
1201 /// \brief Checks the validity of a template parameter list, possibly
1202 /// considering the template parameter list from a previous
1203 /// declaration.
1204 ///
1205 /// If an "old" template parameter list is provided, it must be
1206 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1207 /// template parameter list.
1208 ///
1209 /// \param NewParams Template parameter list for a new template
1210 /// declaration. This template parameter list will be updated with any
1211 /// default arguments that are carried through from the previous
1212 /// template parameter list.
1213 ///
1214 /// \param OldParams If provided, template parameter list from a
1215 /// previous declaration of the same template. Default template
1216 /// arguments will be merged from the old template parameter list to
1217 /// the new template parameter list.
1218 ///
1219 /// \param TPC Describes the context in which we are checking the given
1220 /// template parameter list.
1221 ///
1222 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1223 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1224                                       TemplateParameterList *OldParams,
1225                                       TemplateParamListContext TPC) {
1226   bool Invalid = false;
1227 
1228   // C++ [temp.param]p10:
1229   //   The set of default template-arguments available for use with a
1230   //   template declaration or definition is obtained by merging the
1231   //   default arguments from the definition (if in scope) and all
1232   //   declarations in scope in the same way default function
1233   //   arguments are (8.3.6).
1234   bool SawDefaultArgument = false;
1235   SourceLocation PreviousDefaultArgLoc;
1236 
1237   // Dummy initialization to avoid warnings.
1238   TemplateParameterList::iterator OldParam = NewParams->end();
1239   if (OldParams)
1240     OldParam = OldParams->begin();
1241 
1242   bool RemoveDefaultArguments = false;
1243   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1244                                     NewParamEnd = NewParams->end();
1245        NewParam != NewParamEnd; ++NewParam) {
1246     // Variables used to diagnose redundant default arguments
1247     bool RedundantDefaultArg = false;
1248     SourceLocation OldDefaultLoc;
1249     SourceLocation NewDefaultLoc;
1250 
1251     // Variable used to diagnose missing default arguments
1252     bool MissingDefaultArg = false;
1253 
1254     // Variable used to diagnose non-final parameter packs
1255     bool SawParameterPack = false;
1256 
1257     if (TemplateTypeParmDecl *NewTypeParm
1258           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1259       // Check the presence of a default argument here.
1260       if (NewTypeParm->hasDefaultArgument() &&
1261           DiagnoseDefaultTemplateArgument(*this, TPC,
1262                                           NewTypeParm->getLocation(),
1263                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1264                                                        .getSourceRange()))
1265         NewTypeParm->removeDefaultArgument();
1266 
1267       // Merge default arguments for template type parameters.
1268       TemplateTypeParmDecl *OldTypeParm
1269           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1270 
1271       if (NewTypeParm->isParameterPack()) {
1272         assert(!NewTypeParm->hasDefaultArgument() &&
1273                "Parameter packs can't have a default argument!");
1274         SawParameterPack = true;
1275       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1276                  NewTypeParm->hasDefaultArgument()) {
1277         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1278         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1279         SawDefaultArgument = true;
1280         RedundantDefaultArg = true;
1281         PreviousDefaultArgLoc = NewDefaultLoc;
1282       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1283         // Merge the default argument from the old declaration to the
1284         // new declaration.
1285         SawDefaultArgument = true;
1286         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1287                                         true);
1288         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1289       } else if (NewTypeParm->hasDefaultArgument()) {
1290         SawDefaultArgument = true;
1291         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1292       } else if (SawDefaultArgument)
1293         MissingDefaultArg = true;
1294     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1295                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1296       // Check for unexpanded parameter packs.
1297       if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1298                                           NewNonTypeParm->getTypeSourceInfo(),
1299                                           UPPC_NonTypeTemplateParameterType)) {
1300         Invalid = true;
1301         continue;
1302       }
1303 
1304       // Check the presence of a default argument here.
1305       if (NewNonTypeParm->hasDefaultArgument() &&
1306           DiagnoseDefaultTemplateArgument(*this, TPC,
1307                                           NewNonTypeParm->getLocation(),
1308                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1309         NewNonTypeParm->removeDefaultArgument();
1310       }
1311 
1312       // Merge default arguments for non-type template parameters
1313       NonTypeTemplateParmDecl *OldNonTypeParm
1314         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1315       if (NewNonTypeParm->isParameterPack()) {
1316         assert(!NewNonTypeParm->hasDefaultArgument() &&
1317                "Parameter packs can't have a default argument!");
1318         SawParameterPack = true;
1319       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1320           NewNonTypeParm->hasDefaultArgument()) {
1321         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1322         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1323         SawDefaultArgument = true;
1324         RedundantDefaultArg = true;
1325         PreviousDefaultArgLoc = NewDefaultLoc;
1326       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1327         // Merge the default argument from the old declaration to the
1328         // new declaration.
1329         SawDefaultArgument = true;
1330         // FIXME: We need to create a new kind of "default argument"
1331         // expression that points to a previous non-type template
1332         // parameter.
1333         NewNonTypeParm->setDefaultArgument(
1334                                          OldNonTypeParm->getDefaultArgument(),
1335                                          /*Inherited=*/ true);
1336         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1337       } else if (NewNonTypeParm->hasDefaultArgument()) {
1338         SawDefaultArgument = true;
1339         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1340       } else if (SawDefaultArgument)
1341         MissingDefaultArg = true;
1342     } else {
1343       TemplateTemplateParmDecl *NewTemplateParm
1344         = cast<TemplateTemplateParmDecl>(*NewParam);
1345 
1346       // Check for unexpanded parameter packs, recursively.
1347       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1348         Invalid = true;
1349         continue;
1350       }
1351 
1352       // Check the presence of a default argument here.
1353       if (NewTemplateParm->hasDefaultArgument() &&
1354           DiagnoseDefaultTemplateArgument(*this, TPC,
1355                                           NewTemplateParm->getLocation(),
1356                      NewTemplateParm->getDefaultArgument().getSourceRange()))
1357         NewTemplateParm->removeDefaultArgument();
1358 
1359       // Merge default arguments for template template parameters
1360       TemplateTemplateParmDecl *OldTemplateParm
1361         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1362       if (NewTemplateParm->isParameterPack()) {
1363         assert(!NewTemplateParm->hasDefaultArgument() &&
1364                "Parameter packs can't have a default argument!");
1365         SawParameterPack = true;
1366       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1367           NewTemplateParm->hasDefaultArgument()) {
1368         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1369         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1370         SawDefaultArgument = true;
1371         RedundantDefaultArg = true;
1372         PreviousDefaultArgLoc = NewDefaultLoc;
1373       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1374         // Merge the default argument from the old declaration to the
1375         // new declaration.
1376         SawDefaultArgument = true;
1377         // FIXME: We need to create a new kind of "default argument" expression
1378         // that points to a previous template template parameter.
1379         NewTemplateParm->setDefaultArgument(
1380                                           OldTemplateParm->getDefaultArgument(),
1381                                           /*Inherited=*/ true);
1382         PreviousDefaultArgLoc
1383           = OldTemplateParm->getDefaultArgument().getLocation();
1384       } else if (NewTemplateParm->hasDefaultArgument()) {
1385         SawDefaultArgument = true;
1386         PreviousDefaultArgLoc
1387           = NewTemplateParm->getDefaultArgument().getLocation();
1388       } else if (SawDefaultArgument)
1389         MissingDefaultArg = true;
1390     }
1391 
1392     // C++0x [temp.param]p11:
1393     //   If a template parameter of a primary class template or alias template
1394     //   is a template parameter pack, it shall be the last template parameter.
1395     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1396         (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1397       Diag((*NewParam)->getLocation(),
1398            diag::err_template_param_pack_must_be_last_template_parameter);
1399       Invalid = true;
1400     }
1401 
1402     if (RedundantDefaultArg) {
1403       // C++ [temp.param]p12:
1404       //   A template-parameter shall not be given default arguments
1405       //   by two different declarations in the same scope.
1406       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1407       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1408       Invalid = true;
1409     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1410       // C++ [temp.param]p11:
1411       //   If a template-parameter of a class template has a default
1412       //   template-argument, each subsequent template-parameter shall either
1413       //   have a default template-argument supplied or be a template parameter
1414       //   pack.
1415       Diag((*NewParam)->getLocation(),
1416            diag::err_template_param_default_arg_missing);
1417       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1418       Invalid = true;
1419       RemoveDefaultArguments = true;
1420     }
1421 
1422     // If we have an old template parameter list that we're merging
1423     // in, move on to the next parameter.
1424     if (OldParams)
1425       ++OldParam;
1426   }
1427 
1428   // We were missing some default arguments at the end of the list, so remove
1429   // all of the default arguments.
1430   if (RemoveDefaultArguments) {
1431     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1432                                       NewParamEnd = NewParams->end();
1433          NewParam != NewParamEnd; ++NewParam) {
1434       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1435         TTP->removeDefaultArgument();
1436       else if (NonTypeTemplateParmDecl *NTTP
1437                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1438         NTTP->removeDefaultArgument();
1439       else
1440         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1441     }
1442   }
1443 
1444   return Invalid;
1445 }
1446 
1447 namespace {
1448 
1449 /// A class which looks for a use of a certain level of template
1450 /// parameter.
1451 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1452   typedef RecursiveASTVisitor<DependencyChecker> super;
1453 
1454   unsigned Depth;
1455   bool Match;
1456 
DependencyChecker__anon187827f70111::DependencyChecker1457   DependencyChecker(TemplateParameterList *Params) : Match(false) {
1458     NamedDecl *ND = Params->getParam(0);
1459     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1460       Depth = PD->getDepth();
1461     } else if (NonTypeTemplateParmDecl *PD =
1462                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1463       Depth = PD->getDepth();
1464     } else {
1465       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1466     }
1467   }
1468 
Matches__anon187827f70111::DependencyChecker1469   bool Matches(unsigned ParmDepth) {
1470     if (ParmDepth >= Depth) {
1471       Match = true;
1472       return true;
1473     }
1474     return false;
1475   }
1476 
VisitTemplateTypeParmType__anon187827f70111::DependencyChecker1477   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1478     return !Matches(T->getDepth());
1479   }
1480 
TraverseTemplateName__anon187827f70111::DependencyChecker1481   bool TraverseTemplateName(TemplateName N) {
1482     if (TemplateTemplateParmDecl *PD =
1483           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1484       if (Matches(PD->getDepth())) return false;
1485     return super::TraverseTemplateName(N);
1486   }
1487 
VisitDeclRefExpr__anon187827f70111::DependencyChecker1488   bool VisitDeclRefExpr(DeclRefExpr *E) {
1489     if (NonTypeTemplateParmDecl *PD =
1490           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1491       if (PD->getDepth() == Depth) {
1492         Match = true;
1493         return false;
1494       }
1495     }
1496     return super::VisitDeclRefExpr(E);
1497   }
1498 
TraverseInjectedClassNameType__anon187827f70111::DependencyChecker1499   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1500     return TraverseType(T->getInjectedSpecializationType());
1501   }
1502 };
1503 }
1504 
1505 /// Determines whether a given type depends on the given parameter
1506 /// list.
1507 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1508 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1509   DependencyChecker Checker(Params);
1510   Checker.TraverseType(T);
1511   return Checker.Match;
1512 }
1513 
1514 // Find the source range corresponding to the named type in the given
1515 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1516 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1517                                                        QualType T,
1518                                                        const CXXScopeSpec &SS) {
1519   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1520   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1521     if (const Type *CurType = NNS->getAsType()) {
1522       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1523         return NNSLoc.getTypeLoc().getSourceRange();
1524     } else
1525       break;
1526 
1527     NNSLoc = NNSLoc.getPrefix();
1528   }
1529 
1530   return SourceRange();
1531 }
1532 
1533 /// \brief Match the given template parameter lists to the given scope
1534 /// specifier, returning the template parameter list that applies to the
1535 /// name.
1536 ///
1537 /// \param DeclStartLoc the start of the declaration that has a scope
1538 /// specifier or a template parameter list.
1539 ///
1540 /// \param DeclLoc The location of the declaration itself.
1541 ///
1542 /// \param SS the scope specifier that will be matched to the given template
1543 /// parameter lists. This scope specifier precedes a qualified name that is
1544 /// being declared.
1545 ///
1546 /// \param ParamLists the template parameter lists, from the outermost to the
1547 /// innermost template parameter lists.
1548 ///
1549 /// \param NumParamLists the number of template parameter lists in ParamLists.
1550 ///
1551 /// \param IsFriend Whether to apply the slightly different rules for
1552 /// matching template parameters to scope specifiers in friend
1553 /// declarations.
1554 ///
1555 /// \param IsExplicitSpecialization will be set true if the entity being
1556 /// declared is an explicit specialization, false otherwise.
1557 ///
1558 /// \returns the template parameter list, if any, that corresponds to the
1559 /// name that is preceded by the scope specifier @p SS. This template
1560 /// parameter list may have template parameters (if we're declaring a
1561 /// template) or may have no template parameters (if we're declaring a
1562 /// template specialization), or may be NULL (if what we're declaring isn't
1563 /// itself a template).
1564 TemplateParameterList *
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateParameterList ** ParamLists,unsigned NumParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1565 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1566                                               SourceLocation DeclLoc,
1567                                               const CXXScopeSpec &SS,
1568                                           TemplateParameterList **ParamLists,
1569                                               unsigned NumParamLists,
1570                                               bool IsFriend,
1571                                               bool &IsExplicitSpecialization,
1572                                               bool &Invalid) {
1573   IsExplicitSpecialization = false;
1574   Invalid = false;
1575 
1576   // The sequence of nested types to which we will match up the template
1577   // parameter lists. We first build this list by starting with the type named
1578   // by the nested-name-specifier and walking out until we run out of types.
1579   SmallVector<QualType, 4> NestedTypes;
1580   QualType T;
1581   if (SS.getScopeRep()) {
1582     if (CXXRecordDecl *Record
1583               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1584       T = Context.getTypeDeclType(Record);
1585     else
1586       T = QualType(SS.getScopeRep()->getAsType(), 0);
1587   }
1588 
1589   // If we found an explicit specialization that prevents us from needing
1590   // 'template<>' headers, this will be set to the location of that
1591   // explicit specialization.
1592   SourceLocation ExplicitSpecLoc;
1593 
1594   while (!T.isNull()) {
1595     NestedTypes.push_back(T);
1596 
1597     // Retrieve the parent of a record type.
1598     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1599       // If this type is an explicit specialization, we're done.
1600       if (ClassTemplateSpecializationDecl *Spec
1601           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1602         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1603             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1604           ExplicitSpecLoc = Spec->getLocation();
1605           break;
1606         }
1607       } else if (Record->getTemplateSpecializationKind()
1608                                                 == TSK_ExplicitSpecialization) {
1609         ExplicitSpecLoc = Record->getLocation();
1610         break;
1611       }
1612 
1613       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1614         T = Context.getTypeDeclType(Parent);
1615       else
1616         T = QualType();
1617       continue;
1618     }
1619 
1620     if (const TemplateSpecializationType *TST
1621                                      = T->getAs<TemplateSpecializationType>()) {
1622       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1623         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1624           T = Context.getTypeDeclType(Parent);
1625         else
1626           T = QualType();
1627         continue;
1628       }
1629     }
1630 
1631     // Look one step prior in a dependent template specialization type.
1632     if (const DependentTemplateSpecializationType *DependentTST
1633                           = T->getAs<DependentTemplateSpecializationType>()) {
1634       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1635         T = QualType(NNS->getAsType(), 0);
1636       else
1637         T = QualType();
1638       continue;
1639     }
1640 
1641     // Look one step prior in a dependent name type.
1642     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1643       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1644         T = QualType(NNS->getAsType(), 0);
1645       else
1646         T = QualType();
1647       continue;
1648     }
1649 
1650     // Retrieve the parent of an enumeration type.
1651     if (const EnumType *EnumT = T->getAs<EnumType>()) {
1652       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1653       // check here.
1654       EnumDecl *Enum = EnumT->getDecl();
1655 
1656       // Get to the parent type.
1657       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1658         T = Context.getTypeDeclType(Parent);
1659       else
1660         T = QualType();
1661       continue;
1662     }
1663 
1664     T = QualType();
1665   }
1666   // Reverse the nested types list, since we want to traverse from the outermost
1667   // to the innermost while checking template-parameter-lists.
1668   std::reverse(NestedTypes.begin(), NestedTypes.end());
1669 
1670   // C++0x [temp.expl.spec]p17:
1671   //   A member or a member template may be nested within many
1672   //   enclosing class templates. In an explicit specialization for
1673   //   such a member, the member declaration shall be preceded by a
1674   //   template<> for each enclosing class template that is
1675   //   explicitly specialized.
1676   bool SawNonEmptyTemplateParameterList = false;
1677   unsigned ParamIdx = 0;
1678   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1679        ++TypeIdx) {
1680     T = NestedTypes[TypeIdx];
1681 
1682     // Whether we expect a 'template<>' header.
1683     bool NeedEmptyTemplateHeader = false;
1684 
1685     // Whether we expect a template header with parameters.
1686     bool NeedNonemptyTemplateHeader = false;
1687 
1688     // For a dependent type, the set of template parameters that we
1689     // expect to see.
1690     TemplateParameterList *ExpectedTemplateParams = 0;
1691 
1692     // C++0x [temp.expl.spec]p15:
1693     //   A member or a member template may be nested within many enclosing
1694     //   class templates. In an explicit specialization for such a member, the
1695     //   member declaration shall be preceded by a template<> for each
1696     //   enclosing class template that is explicitly specialized.
1697     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1698       if (ClassTemplatePartialSpecializationDecl *Partial
1699             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1700         ExpectedTemplateParams = Partial->getTemplateParameters();
1701         NeedNonemptyTemplateHeader = true;
1702       } else if (Record->isDependentType()) {
1703         if (Record->getDescribedClassTemplate()) {
1704           ExpectedTemplateParams = Record->getDescribedClassTemplate()
1705                                                       ->getTemplateParameters();
1706           NeedNonemptyTemplateHeader = true;
1707         }
1708       } else if (ClassTemplateSpecializationDecl *Spec
1709                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1710         // C++0x [temp.expl.spec]p4:
1711         //   Members of an explicitly specialized class template are defined
1712         //   in the same manner as members of normal classes, and not using
1713         //   the template<> syntax.
1714         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1715           NeedEmptyTemplateHeader = true;
1716         else
1717           continue;
1718       } else if (Record->getTemplateSpecializationKind()) {
1719         if (Record->getTemplateSpecializationKind()
1720                                                 != TSK_ExplicitSpecialization &&
1721             TypeIdx == NumTypes - 1)
1722           IsExplicitSpecialization = true;
1723 
1724         continue;
1725       }
1726     } else if (const TemplateSpecializationType *TST
1727                                      = T->getAs<TemplateSpecializationType>()) {
1728       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1729         ExpectedTemplateParams = Template->getTemplateParameters();
1730         NeedNonemptyTemplateHeader = true;
1731       }
1732     } else if (T->getAs<DependentTemplateSpecializationType>()) {
1733       // FIXME:  We actually could/should check the template arguments here
1734       // against the corresponding template parameter list.
1735       NeedNonemptyTemplateHeader = false;
1736     }
1737 
1738     // C++ [temp.expl.spec]p16:
1739     //   In an explicit specialization declaration for a member of a class
1740     //   template or a member template that ap- pears in namespace scope, the
1741     //   member template and some of its enclosing class templates may remain
1742     //   unspecialized, except that the declaration shall not explicitly
1743     //   specialize a class member template if its en- closing class templates
1744     //   are not explicitly specialized as well.
1745     if (ParamIdx < NumParamLists) {
1746       if (ParamLists[ParamIdx]->size() == 0) {
1747         if (SawNonEmptyTemplateParameterList) {
1748           Diag(DeclLoc, diag::err_specialize_member_of_template)
1749             << ParamLists[ParamIdx]->getSourceRange();
1750           Invalid = true;
1751           IsExplicitSpecialization = false;
1752           return 0;
1753         }
1754       } else
1755         SawNonEmptyTemplateParameterList = true;
1756     }
1757 
1758     if (NeedEmptyTemplateHeader) {
1759       // If we're on the last of the types, and we need a 'template<>' header
1760       // here, then it's an explicit specialization.
1761       if (TypeIdx == NumTypes - 1)
1762         IsExplicitSpecialization = true;
1763 
1764       if (ParamIdx < NumParamLists) {
1765         if (ParamLists[ParamIdx]->size() > 0) {
1766           // The header has template parameters when it shouldn't. Complain.
1767           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1768                diag::err_template_param_list_matches_nontemplate)
1769             << T
1770             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1771                            ParamLists[ParamIdx]->getRAngleLoc())
1772             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1773           Invalid = true;
1774           return 0;
1775         }
1776 
1777         // Consume this template header.
1778         ++ParamIdx;
1779         continue;
1780       }
1781 
1782       if (!IsFriend) {
1783         // We don't have a template header, but we should.
1784         SourceLocation ExpectedTemplateLoc;
1785         if (NumParamLists > 0)
1786           ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1787         else
1788           ExpectedTemplateLoc = DeclStartLoc;
1789 
1790         Diag(DeclLoc, diag::err_template_spec_needs_header)
1791           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1792           << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1793       }
1794 
1795       continue;
1796     }
1797 
1798     if (NeedNonemptyTemplateHeader) {
1799       // In friend declarations we can have template-ids which don't
1800       // depend on the corresponding template parameter lists.  But
1801       // assume that empty parameter lists are supposed to match this
1802       // template-id.
1803       if (IsFriend && T->isDependentType()) {
1804         if (ParamIdx < NumParamLists &&
1805             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1806           ExpectedTemplateParams = 0;
1807         else
1808           continue;
1809       }
1810 
1811       if (ParamIdx < NumParamLists) {
1812         // Check the template parameter list, if we can.
1813         if (ExpectedTemplateParams &&
1814             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1815                                             ExpectedTemplateParams,
1816                                             true, TPL_TemplateMatch))
1817           Invalid = true;
1818 
1819         if (!Invalid &&
1820             CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1821                                        TPC_ClassTemplateMember))
1822           Invalid = true;
1823 
1824         ++ParamIdx;
1825         continue;
1826       }
1827 
1828       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1829         << T
1830         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1831       Invalid = true;
1832       continue;
1833     }
1834   }
1835 
1836   // If there were at least as many template-ids as there were template
1837   // parameter lists, then there are no template parameter lists remaining for
1838   // the declaration itself.
1839   if (ParamIdx >= NumParamLists)
1840     return 0;
1841 
1842   // If there were too many template parameter lists, complain about that now.
1843   if (ParamIdx < NumParamLists - 1) {
1844     bool HasAnyExplicitSpecHeader = false;
1845     bool AllExplicitSpecHeaders = true;
1846     for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1847       if (ParamLists[I]->size() == 0)
1848         HasAnyExplicitSpecHeader = true;
1849       else
1850         AllExplicitSpecHeaders = false;
1851     }
1852 
1853     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1854          AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1855                                : diag::err_template_spec_extra_headers)
1856       << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1857                      ParamLists[NumParamLists - 2]->getRAngleLoc());
1858 
1859     // If there was a specialization somewhere, such that 'template<>' is
1860     // not required, and there were any 'template<>' headers, note where the
1861     // specialization occurred.
1862     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1863       Diag(ExplicitSpecLoc,
1864            diag::note_explicit_template_spec_does_not_need_header)
1865         << NestedTypes.back();
1866 
1867     // We have a template parameter list with no corresponding scope, which
1868     // means that the resulting template declaration can't be instantiated
1869     // properly (we'll end up with dependent nodes when we shouldn't).
1870     if (!AllExplicitSpecHeaders)
1871       Invalid = true;
1872   }
1873 
1874   // C++ [temp.expl.spec]p16:
1875   //   In an explicit specialization declaration for a member of a class
1876   //   template or a member template that ap- pears in namespace scope, the
1877   //   member template and some of its enclosing class templates may remain
1878   //   unspecialized, except that the declaration shall not explicitly
1879   //   specialize a class member template if its en- closing class templates
1880   //   are not explicitly specialized as well.
1881   if (ParamLists[NumParamLists - 1]->size() == 0 &&
1882       SawNonEmptyTemplateParameterList) {
1883     Diag(DeclLoc, diag::err_specialize_member_of_template)
1884       << ParamLists[ParamIdx]->getSourceRange();
1885     Invalid = true;
1886     IsExplicitSpecialization = false;
1887     return 0;
1888   }
1889 
1890   // Return the last template parameter list, which corresponds to the
1891   // entity being declared.
1892   return ParamLists[NumParamLists - 1];
1893 }
1894 
NoteAllFoundTemplates(TemplateName Name)1895 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1896   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1897     Diag(Template->getLocation(), diag::note_template_declared_here)
1898       << (isa<FunctionTemplateDecl>(Template)? 0
1899           : isa<ClassTemplateDecl>(Template)? 1
1900           : isa<TypeAliasTemplateDecl>(Template)? 2
1901           : 3)
1902       << Template->getDeclName();
1903     return;
1904   }
1905 
1906   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1907     for (OverloadedTemplateStorage::iterator I = OST->begin(),
1908                                           IEnd = OST->end();
1909          I != IEnd; ++I)
1910       Diag((*I)->getLocation(), diag::note_template_declared_here)
1911         << 0 << (*I)->getDeclName();
1912 
1913     return;
1914   }
1915 }
1916 
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1917 QualType Sema::CheckTemplateIdType(TemplateName Name,
1918                                    SourceLocation TemplateLoc,
1919                                    TemplateArgumentListInfo &TemplateArgs) {
1920   DependentTemplateName *DTN
1921     = Name.getUnderlying().getAsDependentTemplateName();
1922   if (DTN && DTN->isIdentifier())
1923     // When building a template-id where the template-name is dependent,
1924     // assume the template is a type template. Either our assumption is
1925     // correct, or the code is ill-formed and will be diagnosed when the
1926     // dependent name is substituted.
1927     return Context.getDependentTemplateSpecializationType(ETK_None,
1928                                                           DTN->getQualifier(),
1929                                                           DTN->getIdentifier(),
1930                                                           TemplateArgs);
1931 
1932   TemplateDecl *Template = Name.getAsTemplateDecl();
1933   if (!Template || isa<FunctionTemplateDecl>(Template)) {
1934     // We might have a substituted template template parameter pack. If so,
1935     // build a template specialization type for it.
1936     if (Name.getAsSubstTemplateTemplateParmPack())
1937       return Context.getTemplateSpecializationType(Name, TemplateArgs);
1938 
1939     Diag(TemplateLoc, diag::err_template_id_not_a_type)
1940       << Name;
1941     NoteAllFoundTemplates(Name);
1942     return QualType();
1943   }
1944 
1945   // Check that the template argument list is well-formed for this
1946   // template.
1947   SmallVector<TemplateArgument, 4> Converted;
1948   bool ExpansionIntoFixedList = false;
1949   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1950                                 false, Converted, &ExpansionIntoFixedList))
1951     return QualType();
1952 
1953   QualType CanonType;
1954 
1955   bool InstantiationDependent = false;
1956   TypeAliasTemplateDecl *AliasTemplate = 0;
1957   if (!ExpansionIntoFixedList &&
1958       (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1959     // Find the canonical type for this type alias template specialization.
1960     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1961     if (Pattern->isInvalidDecl())
1962       return QualType();
1963 
1964     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1965                                       Converted.data(), Converted.size());
1966 
1967     // Only substitute for the innermost template argument list.
1968     MultiLevelTemplateArgumentList TemplateArgLists;
1969     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1970     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1971     for (unsigned I = 0; I < Depth; ++I)
1972       TemplateArgLists.addOuterTemplateArguments(0, 0);
1973 
1974     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1975     CanonType = SubstType(Pattern->getUnderlyingType(),
1976                           TemplateArgLists, AliasTemplate->getLocation(),
1977                           AliasTemplate->getDeclName());
1978     if (CanonType.isNull())
1979       return QualType();
1980   } else if (Name.isDependent() ||
1981              TemplateSpecializationType::anyDependentTemplateArguments(
1982                TemplateArgs, InstantiationDependent)) {
1983     // This class template specialization is a dependent
1984     // type. Therefore, its canonical type is another class template
1985     // specialization type that contains all of the converted
1986     // arguments in canonical form. This ensures that, e.g., A<T> and
1987     // A<T, T> have identical types when A is declared as:
1988     //
1989     //   template<typename T, typename U = T> struct A;
1990     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1991     CanonType = Context.getTemplateSpecializationType(CanonName,
1992                                                       Converted.data(),
1993                                                       Converted.size());
1994 
1995     // FIXME: CanonType is not actually the canonical type, and unfortunately
1996     // it is a TemplateSpecializationType that we will never use again.
1997     // In the future, we need to teach getTemplateSpecializationType to only
1998     // build the canonical type and return that to us.
1999     CanonType = Context.getCanonicalType(CanonType);
2000 
2001     // This might work out to be a current instantiation, in which
2002     // case the canonical type needs to be the InjectedClassNameType.
2003     //
2004     // TODO: in theory this could be a simple hashtable lookup; most
2005     // changes to CurContext don't change the set of current
2006     // instantiations.
2007     if (isa<ClassTemplateDecl>(Template)) {
2008       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2009         // If we get out to a namespace, we're done.
2010         if (Ctx->isFileContext()) break;
2011 
2012         // If this isn't a record, keep looking.
2013         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2014         if (!Record) continue;
2015 
2016         // Look for one of the two cases with InjectedClassNameTypes
2017         // and check whether it's the same template.
2018         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2019             !Record->getDescribedClassTemplate())
2020           continue;
2021 
2022         // Fetch the injected class name type and check whether its
2023         // injected type is equal to the type we just built.
2024         QualType ICNT = Context.getTypeDeclType(Record);
2025         QualType Injected = cast<InjectedClassNameType>(ICNT)
2026           ->getInjectedSpecializationType();
2027 
2028         if (CanonType != Injected->getCanonicalTypeInternal())
2029           continue;
2030 
2031         // If so, the canonical type of this TST is the injected
2032         // class name type of the record we just found.
2033         assert(ICNT.isCanonical());
2034         CanonType = ICNT;
2035         break;
2036       }
2037     }
2038   } else if (ClassTemplateDecl *ClassTemplate
2039                = dyn_cast<ClassTemplateDecl>(Template)) {
2040     // Find the class template specialization declaration that
2041     // corresponds to these arguments.
2042     void *InsertPos = 0;
2043     ClassTemplateSpecializationDecl *Decl
2044       = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2045                                           InsertPos);
2046     if (!Decl) {
2047       // This is the first time we have referenced this class template
2048       // specialization. Create the canonical declaration and add it to
2049       // the set of specializations.
2050       Decl = ClassTemplateSpecializationDecl::Create(Context,
2051                             ClassTemplate->getTemplatedDecl()->getTagKind(),
2052                                                 ClassTemplate->getDeclContext(),
2053                             ClassTemplate->getTemplatedDecl()->getLocStart(),
2054                                                 ClassTemplate->getLocation(),
2055                                                      ClassTemplate,
2056                                                      Converted.data(),
2057                                                      Converted.size(), 0);
2058       ClassTemplate->AddSpecialization(Decl, InsertPos);
2059       Decl->setLexicalDeclContext(CurContext);
2060     }
2061 
2062     CanonType = Context.getTypeDeclType(Decl);
2063     assert(isa<RecordType>(CanonType) &&
2064            "type of non-dependent specialization is not a RecordType");
2065   }
2066 
2067   // Build the fully-sugared type for this class template
2068   // specialization, which refers back to the class template
2069   // specialization we created or found.
2070   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2071 }
2072 
2073 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2074 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2075                           TemplateTy TemplateD, SourceLocation TemplateLoc,
2076                           SourceLocation LAngleLoc,
2077                           ASTTemplateArgsPtr TemplateArgsIn,
2078                           SourceLocation RAngleLoc,
2079                           bool IsCtorOrDtorName) {
2080   if (SS.isInvalid())
2081     return true;
2082 
2083   TemplateName Template = TemplateD.getAsVal<TemplateName>();
2084 
2085   // Translate the parser's template argument list in our AST format.
2086   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2087   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2088 
2089   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2090     QualType T
2091       = Context.getDependentTemplateSpecializationType(ETK_None,
2092                                                        DTN->getQualifier(),
2093                                                        DTN->getIdentifier(),
2094                                                        TemplateArgs);
2095     // Build type-source information.
2096     TypeLocBuilder TLB;
2097     DependentTemplateSpecializationTypeLoc SpecTL
2098       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2099     SpecTL.setElaboratedKeywordLoc(SourceLocation());
2100     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2101     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2102     SpecTL.setTemplateNameLoc(TemplateLoc);
2103     SpecTL.setLAngleLoc(LAngleLoc);
2104     SpecTL.setRAngleLoc(RAngleLoc);
2105     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2106       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2107     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2108   }
2109 
2110   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2111   TemplateArgsIn.release();
2112 
2113   if (Result.isNull())
2114     return true;
2115 
2116   // Build type-source information.
2117   TypeLocBuilder TLB;
2118   TemplateSpecializationTypeLoc SpecTL
2119     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2120   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2121   SpecTL.setTemplateNameLoc(TemplateLoc);
2122   SpecTL.setLAngleLoc(LAngleLoc);
2123   SpecTL.setRAngleLoc(RAngleLoc);
2124   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2125     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2126 
2127   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2128   // constructor or destructor name (in such a case, the scope specifier
2129   // will be attached to the enclosing Decl or Expr node).
2130   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2131     // Create an elaborated-type-specifier containing the nested-name-specifier.
2132     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2133     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2134     ElabTL.setElaboratedKeywordLoc(SourceLocation());
2135     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2136   }
2137 
2138   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2139 }
2140 
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2141 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2142                                         TypeSpecifierType TagSpec,
2143                                         SourceLocation TagLoc,
2144                                         CXXScopeSpec &SS,
2145                                         SourceLocation TemplateKWLoc,
2146                                         TemplateTy TemplateD,
2147                                         SourceLocation TemplateLoc,
2148                                         SourceLocation LAngleLoc,
2149                                         ASTTemplateArgsPtr TemplateArgsIn,
2150                                         SourceLocation RAngleLoc) {
2151   TemplateName Template = TemplateD.getAsVal<TemplateName>();
2152 
2153   // Translate the parser's template argument list in our AST format.
2154   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2155   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2156 
2157   // Determine the tag kind
2158   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2159   ElaboratedTypeKeyword Keyword
2160     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2161 
2162   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2163     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2164                                                           DTN->getQualifier(),
2165                                                           DTN->getIdentifier(),
2166                                                                 TemplateArgs);
2167 
2168     // Build type-source information.
2169     TypeLocBuilder TLB;
2170     DependentTemplateSpecializationTypeLoc SpecTL
2171       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2172     SpecTL.setElaboratedKeywordLoc(TagLoc);
2173     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2174     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2175     SpecTL.setTemplateNameLoc(TemplateLoc);
2176     SpecTL.setLAngleLoc(LAngleLoc);
2177     SpecTL.setRAngleLoc(RAngleLoc);
2178     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2179       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2180     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2181   }
2182 
2183   if (TypeAliasTemplateDecl *TAT =
2184         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2185     // C++0x [dcl.type.elab]p2:
2186     //   If the identifier resolves to a typedef-name or the simple-template-id
2187     //   resolves to an alias template specialization, the
2188     //   elaborated-type-specifier is ill-formed.
2189     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2190     Diag(TAT->getLocation(), diag::note_declared_at);
2191   }
2192 
2193   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2194   if (Result.isNull())
2195     return TypeResult(true);
2196 
2197   // Check the tag kind
2198   if (const RecordType *RT = Result->getAs<RecordType>()) {
2199     RecordDecl *D = RT->getDecl();
2200 
2201     IdentifierInfo *Id = D->getIdentifier();
2202     assert(Id && "templated class must have an identifier");
2203 
2204     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2205                                       TagLoc, *Id)) {
2206       Diag(TagLoc, diag::err_use_with_wrong_tag)
2207         << Result
2208         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2209       Diag(D->getLocation(), diag::note_previous_use);
2210     }
2211   }
2212 
2213   // Provide source-location information for the template specialization.
2214   TypeLocBuilder TLB;
2215   TemplateSpecializationTypeLoc SpecTL
2216     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2217   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2218   SpecTL.setTemplateNameLoc(TemplateLoc);
2219   SpecTL.setLAngleLoc(LAngleLoc);
2220   SpecTL.setRAngleLoc(RAngleLoc);
2221   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2222     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2223 
2224   // Construct an elaborated type containing the nested-name-specifier (if any)
2225   // and tag keyword.
2226   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2227   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2228   ElabTL.setElaboratedKeywordLoc(TagLoc);
2229   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2230   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2231 }
2232 
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2233 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2234                                      SourceLocation TemplateKWLoc,
2235                                      LookupResult &R,
2236                                      bool RequiresADL,
2237                                  const TemplateArgumentListInfo *TemplateArgs) {
2238   // FIXME: Can we do any checking at this point? I guess we could check the
2239   // template arguments that we have against the template name, if the template
2240   // name refers to a single template. That's not a terribly common case,
2241   // though.
2242   // foo<int> could identify a single function unambiguously
2243   // This approach does NOT work, since f<int>(1);
2244   // gets resolved prior to resorting to overload resolution
2245   // i.e., template<class T> void f(double);
2246   //       vs template<class T, class U> void f(U);
2247 
2248   // These should be filtered out by our callers.
2249   assert(!R.empty() && "empty lookup results when building templateid");
2250   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2251 
2252   // We don't want lookup warnings at this point.
2253   R.suppressDiagnostics();
2254 
2255   UnresolvedLookupExpr *ULE
2256     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2257                                    SS.getWithLocInContext(Context),
2258                                    TemplateKWLoc,
2259                                    R.getLookupNameInfo(),
2260                                    RequiresADL, TemplateArgs,
2261                                    R.begin(), R.end());
2262 
2263   return Owned(ULE);
2264 }
2265 
2266 // We actually only call this from template instantiation.
2267 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2268 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2269                                    SourceLocation TemplateKWLoc,
2270                                    const DeclarationNameInfo &NameInfo,
2271                              const TemplateArgumentListInfo *TemplateArgs) {
2272   assert(TemplateArgs || TemplateKWLoc.isValid());
2273   DeclContext *DC;
2274   if (!(DC = computeDeclContext(SS, false)) ||
2275       DC->isDependentContext() ||
2276       RequireCompleteDeclContext(SS, DC))
2277     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2278 
2279   bool MemberOfUnknownSpecialization;
2280   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2281   LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2282                      MemberOfUnknownSpecialization);
2283 
2284   if (R.isAmbiguous())
2285     return ExprError();
2286 
2287   if (R.empty()) {
2288     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2289       << NameInfo.getName() << SS.getRange();
2290     return ExprError();
2291   }
2292 
2293   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2294     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2295       << (NestedNameSpecifier*) SS.getScopeRep()
2296       << NameInfo.getName() << SS.getRange();
2297     Diag(Temp->getLocation(), diag::note_referenced_class_template);
2298     return ExprError();
2299   }
2300 
2301   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2302 }
2303 
2304 /// \brief Form a dependent template name.
2305 ///
2306 /// This action forms a dependent template name given the template
2307 /// name and its (presumably dependent) scope specifier. For
2308 /// example, given "MetaFun::template apply", the scope specifier \p
2309 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2310 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2311 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2312                                                   CXXScopeSpec &SS,
2313                                                   SourceLocation TemplateKWLoc,
2314                                                   UnqualifiedId &Name,
2315                                                   ParsedType ObjectType,
2316                                                   bool EnteringContext,
2317                                                   TemplateTy &Result) {
2318   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2319     Diag(TemplateKWLoc,
2320          getLangOpts().CPlusPlus0x ?
2321            diag::warn_cxx98_compat_template_outside_of_template :
2322            diag::ext_template_outside_of_template)
2323       << FixItHint::CreateRemoval(TemplateKWLoc);
2324 
2325   DeclContext *LookupCtx = 0;
2326   if (SS.isSet())
2327     LookupCtx = computeDeclContext(SS, EnteringContext);
2328   if (!LookupCtx && ObjectType)
2329     LookupCtx = computeDeclContext(ObjectType.get());
2330   if (LookupCtx) {
2331     // C++0x [temp.names]p5:
2332     //   If a name prefixed by the keyword template is not the name of
2333     //   a template, the program is ill-formed. [Note: the keyword
2334     //   template may not be applied to non-template members of class
2335     //   templates. -end note ] [ Note: as is the case with the
2336     //   typename prefix, the template prefix is allowed in cases
2337     //   where it is not strictly necessary; i.e., when the
2338     //   nested-name-specifier or the expression on the left of the ->
2339     //   or . is not dependent on a template-parameter, or the use
2340     //   does not appear in the scope of a template. -end note]
2341     //
2342     // Note: C++03 was more strict here, because it banned the use of
2343     // the "template" keyword prior to a template-name that was not a
2344     // dependent name. C++ DR468 relaxed this requirement (the
2345     // "template" keyword is now permitted). We follow the C++0x
2346     // rules, even in C++03 mode with a warning, retroactively applying the DR.
2347     bool MemberOfUnknownSpecialization;
2348     TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2349                                           ObjectType, EnteringContext, Result,
2350                                           MemberOfUnknownSpecialization);
2351     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2352         isa<CXXRecordDecl>(LookupCtx) &&
2353         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2354          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2355       // This is a dependent template. Handle it below.
2356     } else if (TNK == TNK_Non_template) {
2357       Diag(Name.getLocStart(),
2358            diag::err_template_kw_refers_to_non_template)
2359         << GetNameFromUnqualifiedId(Name).getName()
2360         << Name.getSourceRange()
2361         << TemplateKWLoc;
2362       return TNK_Non_template;
2363     } else {
2364       // We found something; return it.
2365       return TNK;
2366     }
2367   }
2368 
2369   NestedNameSpecifier *Qualifier
2370     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2371 
2372   switch (Name.getKind()) {
2373   case UnqualifiedId::IK_Identifier:
2374     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2375                                                               Name.Identifier));
2376     return TNK_Dependent_template_name;
2377 
2378   case UnqualifiedId::IK_OperatorFunctionId:
2379     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2380                                              Name.OperatorFunctionId.Operator));
2381     return TNK_Dependent_template_name;
2382 
2383   case UnqualifiedId::IK_LiteralOperatorId:
2384     llvm_unreachable(
2385             "We don't support these; Parse shouldn't have allowed propagation");
2386 
2387   default:
2388     break;
2389   }
2390 
2391   Diag(Name.getLocStart(),
2392        diag::err_template_kw_refers_to_non_template)
2393     << GetNameFromUnqualifiedId(Name).getName()
2394     << Name.getSourceRange()
2395     << TemplateKWLoc;
2396   return TNK_Non_template;
2397 }
2398 
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,const TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2399 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2400                                      const TemplateArgumentLoc &AL,
2401                           SmallVectorImpl<TemplateArgument> &Converted) {
2402   const TemplateArgument &Arg = AL.getArgument();
2403 
2404   // Check template type parameter.
2405   switch(Arg.getKind()) {
2406   case TemplateArgument::Type:
2407     // C++ [temp.arg.type]p1:
2408     //   A template-argument for a template-parameter which is a
2409     //   type shall be a type-id.
2410     break;
2411   case TemplateArgument::Template: {
2412     // We have a template type parameter but the template argument
2413     // is a template without any arguments.
2414     SourceRange SR = AL.getSourceRange();
2415     TemplateName Name = Arg.getAsTemplate();
2416     Diag(SR.getBegin(), diag::err_template_missing_args)
2417       << Name << SR;
2418     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2419       Diag(Decl->getLocation(), diag::note_template_decl_here);
2420 
2421     return true;
2422   }
2423   default: {
2424     // We have a template type parameter but the template argument
2425     // is not a type.
2426     SourceRange SR = AL.getSourceRange();
2427     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2428     Diag(Param->getLocation(), diag::note_template_param_here);
2429 
2430     return true;
2431   }
2432   }
2433 
2434   if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2435     return true;
2436 
2437   // Add the converted template type argument.
2438   QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2439 
2440   // Objective-C ARC:
2441   //   If an explicitly-specified template argument type is a lifetime type
2442   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2443   if (getLangOpts().ObjCAutoRefCount &&
2444       ArgType->isObjCLifetimeType() &&
2445       !ArgType.getObjCLifetime()) {
2446     Qualifiers Qs;
2447     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2448     ArgType = Context.getQualifiedType(ArgType, Qs);
2449   }
2450 
2451   Converted.push_back(TemplateArgument(ArgType));
2452   return false;
2453 }
2454 
2455 /// \brief Substitute template arguments into the default template argument for
2456 /// the given template type parameter.
2457 ///
2458 /// \param SemaRef the semantic analysis object for which we are performing
2459 /// the substitution.
2460 ///
2461 /// \param Template the template that we are synthesizing template arguments
2462 /// for.
2463 ///
2464 /// \param TemplateLoc the location of the template name that started the
2465 /// template-id we are checking.
2466 ///
2467 /// \param RAngleLoc the location of the right angle bracket ('>') that
2468 /// terminates the template-id.
2469 ///
2470 /// \param Param the template template parameter whose default we are
2471 /// substituting into.
2472 ///
2473 /// \param Converted the list of template arguments provided for template
2474 /// parameters that precede \p Param in the template parameter list.
2475 /// \returns the substituted template argument, or NULL if an error occurred.
2476 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)2477 SubstDefaultTemplateArgument(Sema &SemaRef,
2478                              TemplateDecl *Template,
2479                              SourceLocation TemplateLoc,
2480                              SourceLocation RAngleLoc,
2481                              TemplateTypeParmDecl *Param,
2482                          SmallVectorImpl<TemplateArgument> &Converted) {
2483   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2484 
2485   // If the argument type is dependent, instantiate it now based
2486   // on the previously-computed template arguments.
2487   if (ArgType->getType()->isDependentType()) {
2488     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2489                                       Converted.data(), Converted.size());
2490 
2491     MultiLevelTemplateArgumentList AllTemplateArgs
2492       = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2493 
2494     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2495                                      Template, Converted.data(),
2496                                      Converted.size(),
2497                                      SourceRange(TemplateLoc, RAngleLoc));
2498 
2499     ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2500                                 Param->getDefaultArgumentLoc(),
2501                                 Param->getDeclName());
2502   }
2503 
2504   return ArgType;
2505 }
2506 
2507 /// \brief Substitute template arguments into the default template argument for
2508 /// the given non-type template parameter.
2509 ///
2510 /// \param SemaRef the semantic analysis object for which we are performing
2511 /// the substitution.
2512 ///
2513 /// \param Template the template that we are synthesizing template arguments
2514 /// for.
2515 ///
2516 /// \param TemplateLoc the location of the template name that started the
2517 /// template-id we are checking.
2518 ///
2519 /// \param RAngleLoc the location of the right angle bracket ('>') that
2520 /// terminates the template-id.
2521 ///
2522 /// \param Param the non-type template parameter whose default we are
2523 /// substituting into.
2524 ///
2525 /// \param Converted the list of template arguments provided for template
2526 /// parameters that precede \p Param in the template parameter list.
2527 ///
2528 /// \returns the substituted template argument, or NULL if an error occurred.
2529 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)2530 SubstDefaultTemplateArgument(Sema &SemaRef,
2531                              TemplateDecl *Template,
2532                              SourceLocation TemplateLoc,
2533                              SourceLocation RAngleLoc,
2534                              NonTypeTemplateParmDecl *Param,
2535                         SmallVectorImpl<TemplateArgument> &Converted) {
2536   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2537                                     Converted.data(), Converted.size());
2538 
2539   MultiLevelTemplateArgumentList AllTemplateArgs
2540     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2541 
2542   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2543                                    Template, Converted.data(),
2544                                    Converted.size(),
2545                                    SourceRange(TemplateLoc, RAngleLoc));
2546 
2547   return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2548 }
2549 
2550 /// \brief Substitute template arguments into the default template argument for
2551 /// the given template template parameter.
2552 ///
2553 /// \param SemaRef the semantic analysis object for which we are performing
2554 /// the substitution.
2555 ///
2556 /// \param Template the template that we are synthesizing template arguments
2557 /// for.
2558 ///
2559 /// \param TemplateLoc the location of the template name that started the
2560 /// template-id we are checking.
2561 ///
2562 /// \param RAngleLoc the location of the right angle bracket ('>') that
2563 /// terminates the template-id.
2564 ///
2565 /// \param Param the template template parameter whose default we are
2566 /// substituting into.
2567 ///
2568 /// \param Converted the list of template arguments provided for template
2569 /// parameters that precede \p Param in the template parameter list.
2570 ///
2571 /// \param QualifierLoc Will be set to the nested-name-specifier (with
2572 /// source-location information) that precedes the template name.
2573 ///
2574 /// \returns the substituted template argument, or NULL if an error occurred.
2575 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)2576 SubstDefaultTemplateArgument(Sema &SemaRef,
2577                              TemplateDecl *Template,
2578                              SourceLocation TemplateLoc,
2579                              SourceLocation RAngleLoc,
2580                              TemplateTemplateParmDecl *Param,
2581                        SmallVectorImpl<TemplateArgument> &Converted,
2582                              NestedNameSpecifierLoc &QualifierLoc) {
2583   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2584                                     Converted.data(), Converted.size());
2585 
2586   MultiLevelTemplateArgumentList AllTemplateArgs
2587     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2588 
2589   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2590                                    Template, Converted.data(),
2591                                    Converted.size(),
2592                                    SourceRange(TemplateLoc, RAngleLoc));
2593 
2594   // Substitute into the nested-name-specifier first,
2595   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2596   if (QualifierLoc) {
2597     QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2598                                                        AllTemplateArgs);
2599     if (!QualifierLoc)
2600       return TemplateName();
2601   }
2602 
2603   return SemaRef.SubstTemplateName(QualifierLoc,
2604                       Param->getDefaultArgument().getArgument().getAsTemplate(),
2605                               Param->getDefaultArgument().getTemplateNameLoc(),
2606                                    AllTemplateArgs);
2607 }
2608 
2609 /// \brief If the given template parameter has a default template
2610 /// argument, substitute into that default template argument and
2611 /// return the corresponding template argument.
2612 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted)2613 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2614                                               SourceLocation TemplateLoc,
2615                                               SourceLocation RAngleLoc,
2616                                               Decl *Param,
2617                       SmallVectorImpl<TemplateArgument> &Converted) {
2618    if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2619     if (!TypeParm->hasDefaultArgument())
2620       return TemplateArgumentLoc();
2621 
2622     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2623                                                       TemplateLoc,
2624                                                       RAngleLoc,
2625                                                       TypeParm,
2626                                                       Converted);
2627     if (DI)
2628       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2629 
2630     return TemplateArgumentLoc();
2631   }
2632 
2633   if (NonTypeTemplateParmDecl *NonTypeParm
2634         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2635     if (!NonTypeParm->hasDefaultArgument())
2636       return TemplateArgumentLoc();
2637 
2638     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2639                                                   TemplateLoc,
2640                                                   RAngleLoc,
2641                                                   NonTypeParm,
2642                                                   Converted);
2643     if (Arg.isInvalid())
2644       return TemplateArgumentLoc();
2645 
2646     Expr *ArgE = Arg.takeAs<Expr>();
2647     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2648   }
2649 
2650   TemplateTemplateParmDecl *TempTempParm
2651     = cast<TemplateTemplateParmDecl>(Param);
2652   if (!TempTempParm->hasDefaultArgument())
2653     return TemplateArgumentLoc();
2654 
2655 
2656   NestedNameSpecifierLoc QualifierLoc;
2657   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2658                                                     TemplateLoc,
2659                                                     RAngleLoc,
2660                                                     TempTempParm,
2661                                                     Converted,
2662                                                     QualifierLoc);
2663   if (TName.isNull())
2664     return TemplateArgumentLoc();
2665 
2666   return TemplateArgumentLoc(TemplateArgument(TName),
2667                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2668                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
2669 }
2670 
2671 /// \brief Check that the given template argument corresponds to the given
2672 /// template parameter.
2673 ///
2674 /// \param Param The template parameter against which the argument will be
2675 /// checked.
2676 ///
2677 /// \param Arg The template argument.
2678 ///
2679 /// \param Template The template in which the template argument resides.
2680 ///
2681 /// \param TemplateLoc The location of the template name for the template
2682 /// whose argument list we're matching.
2683 ///
2684 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
2685 /// the template argument list.
2686 ///
2687 /// \param ArgumentPackIndex The index into the argument pack where this
2688 /// argument will be placed. Only valid if the parameter is a parameter pack.
2689 ///
2690 /// \param Converted The checked, converted argument will be added to the
2691 /// end of this small vector.
2692 ///
2693 /// \param CTAK Describes how we arrived at this particular template argument:
2694 /// explicitly written, deduced, etc.
2695 ///
2696 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,const TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)2697 bool Sema::CheckTemplateArgument(NamedDecl *Param,
2698                                  const TemplateArgumentLoc &Arg,
2699                                  NamedDecl *Template,
2700                                  SourceLocation TemplateLoc,
2701                                  SourceLocation RAngleLoc,
2702                                  unsigned ArgumentPackIndex,
2703                             SmallVectorImpl<TemplateArgument> &Converted,
2704                                  CheckTemplateArgumentKind CTAK) {
2705   // Check template type parameters.
2706   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2707     return CheckTemplateTypeArgument(TTP, Arg, Converted);
2708 
2709   // Check non-type template parameters.
2710   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2711     // Do substitution on the type of the non-type template parameter
2712     // with the template arguments we've seen thus far.  But if the
2713     // template has a dependent context then we cannot substitute yet.
2714     QualType NTTPType = NTTP->getType();
2715     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2716       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2717 
2718     if (NTTPType->isDependentType() &&
2719         !isa<TemplateTemplateParmDecl>(Template) &&
2720         !Template->getDeclContext()->isDependentContext()) {
2721       // Do substitution on the type of the non-type template parameter.
2722       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2723                                  NTTP, Converted.data(), Converted.size(),
2724                                  SourceRange(TemplateLoc, RAngleLoc));
2725 
2726       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2727                                         Converted.data(), Converted.size());
2728       NTTPType = SubstType(NTTPType,
2729                            MultiLevelTemplateArgumentList(TemplateArgs),
2730                            NTTP->getLocation(),
2731                            NTTP->getDeclName());
2732       // If that worked, check the non-type template parameter type
2733       // for validity.
2734       if (!NTTPType.isNull())
2735         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2736                                                      NTTP->getLocation());
2737       if (NTTPType.isNull())
2738         return true;
2739     }
2740 
2741     switch (Arg.getArgument().getKind()) {
2742     case TemplateArgument::Null:
2743       llvm_unreachable("Should never see a NULL template argument here");
2744 
2745     case TemplateArgument::Expression: {
2746       TemplateArgument Result;
2747       ExprResult Res =
2748         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2749                               Result, CTAK);
2750       if (Res.isInvalid())
2751         return true;
2752 
2753       Converted.push_back(Result);
2754       break;
2755     }
2756 
2757     case TemplateArgument::Declaration:
2758     case TemplateArgument::Integral:
2759       // We've already checked this template argument, so just copy
2760       // it to the list of converted arguments.
2761       Converted.push_back(Arg.getArgument());
2762       break;
2763 
2764     case TemplateArgument::Template:
2765     case TemplateArgument::TemplateExpansion:
2766       // We were given a template template argument. It may not be ill-formed;
2767       // see below.
2768       if (DependentTemplateName *DTN
2769             = Arg.getArgument().getAsTemplateOrTemplatePattern()
2770                                               .getAsDependentTemplateName()) {
2771         // We have a template argument such as \c T::template X, which we
2772         // parsed as a template template argument. However, since we now
2773         // know that we need a non-type template argument, convert this
2774         // template name into an expression.
2775 
2776         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2777                                      Arg.getTemplateNameLoc());
2778 
2779         CXXScopeSpec SS;
2780         SS.Adopt(Arg.getTemplateQualifierLoc());
2781         // FIXME: the template-template arg was a DependentTemplateName,
2782         // so it was provided with a template keyword. However, its source
2783         // location is not stored in the template argument structure.
2784         SourceLocation TemplateKWLoc;
2785         ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2786                                                 SS.getWithLocInContext(Context),
2787                                                                TemplateKWLoc,
2788                                                                NameInfo, 0));
2789 
2790         // If we parsed the template argument as a pack expansion, create a
2791         // pack expansion expression.
2792         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2793           E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2794           if (E.isInvalid())
2795             return true;
2796         }
2797 
2798         TemplateArgument Result;
2799         E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2800         if (E.isInvalid())
2801           return true;
2802 
2803         Converted.push_back(Result);
2804         break;
2805       }
2806 
2807       // We have a template argument that actually does refer to a class
2808       // template, alias template, or template template parameter, and
2809       // therefore cannot be a non-type template argument.
2810       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2811         << Arg.getSourceRange();
2812 
2813       Diag(Param->getLocation(), diag::note_template_param_here);
2814       return true;
2815 
2816     case TemplateArgument::Type: {
2817       // We have a non-type template parameter but the template
2818       // argument is a type.
2819 
2820       // C++ [temp.arg]p2:
2821       //   In a template-argument, an ambiguity between a type-id and
2822       //   an expression is resolved to a type-id, regardless of the
2823       //   form of the corresponding template-parameter.
2824       //
2825       // We warn specifically about this case, since it can be rather
2826       // confusing for users.
2827       QualType T = Arg.getArgument().getAsType();
2828       SourceRange SR = Arg.getSourceRange();
2829       if (T->isFunctionType())
2830         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2831       else
2832         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2833       Diag(Param->getLocation(), diag::note_template_param_here);
2834       return true;
2835     }
2836 
2837     case TemplateArgument::Pack:
2838       llvm_unreachable("Caller must expand template argument packs");
2839     }
2840 
2841     return false;
2842   }
2843 
2844 
2845   // Check template template parameters.
2846   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2847 
2848   // Substitute into the template parameter list of the template
2849   // template parameter, since previously-supplied template arguments
2850   // may appear within the template template parameter.
2851   {
2852     // Set up a template instantiation context.
2853     LocalInstantiationScope Scope(*this);
2854     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2855                                TempParm, Converted.data(), Converted.size(),
2856                                SourceRange(TemplateLoc, RAngleLoc));
2857 
2858     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2859                                       Converted.data(), Converted.size());
2860     TempParm = cast_or_null<TemplateTemplateParmDecl>(
2861                       SubstDecl(TempParm, CurContext,
2862                                 MultiLevelTemplateArgumentList(TemplateArgs)));
2863     if (!TempParm)
2864       return true;
2865   }
2866 
2867   switch (Arg.getArgument().getKind()) {
2868   case TemplateArgument::Null:
2869     llvm_unreachable("Should never see a NULL template argument here");
2870 
2871   case TemplateArgument::Template:
2872   case TemplateArgument::TemplateExpansion:
2873     if (CheckTemplateArgument(TempParm, Arg))
2874       return true;
2875 
2876     Converted.push_back(Arg.getArgument());
2877     break;
2878 
2879   case TemplateArgument::Expression:
2880   case TemplateArgument::Type:
2881     // We have a template template parameter but the template
2882     // argument does not refer to a template.
2883     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2884       << getLangOpts().CPlusPlus0x;
2885     return true;
2886 
2887   case TemplateArgument::Declaration:
2888     llvm_unreachable("Declaration argument with template template parameter");
2889   case TemplateArgument::Integral:
2890     llvm_unreachable("Integral argument with template template parameter");
2891 
2892   case TemplateArgument::Pack:
2893     llvm_unreachable("Caller must expand template argument packs");
2894   }
2895 
2896   return false;
2897 }
2898 
2899 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2900 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2901                                   SourceLocation TemplateLoc,
2902                                   TemplateArgumentListInfo &TemplateArgs) {
2903   TemplateParameterList *Params = Template->getTemplateParameters();
2904   unsigned NumParams = Params->size();
2905   unsigned NumArgs = TemplateArgs.size();
2906 
2907   SourceRange Range;
2908   if (NumArgs > NumParams)
2909     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2910                         TemplateArgs.getRAngleLoc());
2911   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2912     << (NumArgs > NumParams)
2913     << (isa<ClassTemplateDecl>(Template)? 0 :
2914         isa<FunctionTemplateDecl>(Template)? 1 :
2915         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2916     << Template << Range;
2917   S.Diag(Template->getLocation(), diag::note_template_decl_here)
2918     << Params->getSourceRange();
2919   return true;
2920 }
2921 
2922 /// \brief Check that the given template argument list is well-formed
2923 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted,bool * ExpansionIntoFixedList)2924 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2925                                      SourceLocation TemplateLoc,
2926                                      TemplateArgumentListInfo &TemplateArgs,
2927                                      bool PartialTemplateArgs,
2928                           SmallVectorImpl<TemplateArgument> &Converted,
2929                                      bool *ExpansionIntoFixedList) {
2930   if (ExpansionIntoFixedList)
2931     *ExpansionIntoFixedList = false;
2932 
2933   TemplateParameterList *Params = Template->getTemplateParameters();
2934   unsigned NumParams = Params->size();
2935   unsigned NumArgs = TemplateArgs.size();
2936   bool Invalid = false;
2937 
2938   SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2939 
2940   bool HasParameterPack =
2941     NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2942 
2943   // C++ [temp.arg]p1:
2944   //   [...] The type and form of each template-argument specified in
2945   //   a template-id shall match the type and form specified for the
2946   //   corresponding parameter declared by the template in its
2947   //   template-parameter-list.
2948   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2949   SmallVector<TemplateArgument, 2> ArgumentPack;
2950   TemplateParameterList::iterator Param = Params->begin(),
2951                                ParamEnd = Params->end();
2952   unsigned ArgIdx = 0;
2953   LocalInstantiationScope InstScope(*this, true);
2954   bool SawPackExpansion = false;
2955   while (Param != ParamEnd) {
2956     if (ArgIdx < NumArgs) {
2957       // If we have an expanded parameter pack, make sure we don't have too
2958       // many arguments.
2959       // FIXME: This really should fall out from the normal arity checking.
2960       if (NonTypeTemplateParmDecl *NTTP
2961                                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2962         if (NTTP->isExpandedParameterPack() &&
2963             ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2964           Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2965             << true
2966             << (isa<ClassTemplateDecl>(Template)? 0 :
2967                 isa<FunctionTemplateDecl>(Template)? 1 :
2968                 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2969             << Template;
2970           Diag(Template->getLocation(), diag::note_template_decl_here)
2971             << Params->getSourceRange();
2972           return true;
2973         }
2974       }
2975 
2976       // Check the template argument we were given.
2977       if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2978                                 TemplateLoc, RAngleLoc,
2979                                 ArgumentPack.size(), Converted))
2980         return true;
2981 
2982       if ((*Param)->isTemplateParameterPack()) {
2983         // The template parameter was a template parameter pack, so take the
2984         // deduced argument and place it on the argument pack. Note that we
2985         // stay on the same template parameter so that we can deduce more
2986         // arguments.
2987         ArgumentPack.push_back(Converted.back());
2988         Converted.pop_back();
2989       } else {
2990         // Move to the next template parameter.
2991         ++Param;
2992       }
2993 
2994       // If this template argument is a pack expansion, record that fact
2995       // and break out; we can't actually check any more.
2996       if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
2997         SawPackExpansion = true;
2998         ++ArgIdx;
2999         break;
3000       }
3001 
3002       ++ArgIdx;
3003       continue;
3004     }
3005 
3006     // If we're checking a partial template argument list, we're done.
3007     if (PartialTemplateArgs) {
3008       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3009         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3010                                                          ArgumentPack.data(),
3011                                                          ArgumentPack.size()));
3012 
3013       return Invalid;
3014     }
3015 
3016     // If we have a template parameter pack with no more corresponding
3017     // arguments, just break out now and we'll fill in the argument pack below.
3018     if ((*Param)->isTemplateParameterPack())
3019       break;
3020 
3021     // Check whether we have a default argument.
3022     TemplateArgumentLoc Arg;
3023 
3024     // Retrieve the default template argument from the template
3025     // parameter. For each kind of template parameter, we substitute the
3026     // template arguments provided thus far and any "outer" template arguments
3027     // (when the template parameter was part of a nested template) into
3028     // the default argument.
3029     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3030       if (!TTP->hasDefaultArgument())
3031         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3032                                      TemplateArgs);
3033 
3034       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3035                                                              Template,
3036                                                              TemplateLoc,
3037                                                              RAngleLoc,
3038                                                              TTP,
3039                                                              Converted);
3040       if (!ArgType)
3041         return true;
3042 
3043       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3044                                 ArgType);
3045     } else if (NonTypeTemplateParmDecl *NTTP
3046                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3047       if (!NTTP->hasDefaultArgument())
3048         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3049                                      TemplateArgs);
3050 
3051       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3052                                                               TemplateLoc,
3053                                                               RAngleLoc,
3054                                                               NTTP,
3055                                                               Converted);
3056       if (E.isInvalid())
3057         return true;
3058 
3059       Expr *Ex = E.takeAs<Expr>();
3060       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3061     } else {
3062       TemplateTemplateParmDecl *TempParm
3063         = cast<TemplateTemplateParmDecl>(*Param);
3064 
3065       if (!TempParm->hasDefaultArgument())
3066         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3067                                      TemplateArgs);
3068 
3069       NestedNameSpecifierLoc QualifierLoc;
3070       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3071                                                        TemplateLoc,
3072                                                        RAngleLoc,
3073                                                        TempParm,
3074                                                        Converted,
3075                                                        QualifierLoc);
3076       if (Name.isNull())
3077         return true;
3078 
3079       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3080                            TempParm->getDefaultArgument().getTemplateNameLoc());
3081     }
3082 
3083     // Introduce an instantiation record that describes where we are using
3084     // the default template argument.
3085     InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3086                                         Converted.data(), Converted.size(),
3087                                         SourceRange(TemplateLoc, RAngleLoc));
3088 
3089     // Check the default template argument.
3090     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3091                               RAngleLoc, 0, Converted))
3092       return true;
3093 
3094     // Core issue 150 (assumed resolution): if this is a template template
3095     // parameter, keep track of the default template arguments from the
3096     // template definition.
3097     if (isTemplateTemplateParameter)
3098       TemplateArgs.addArgument(Arg);
3099 
3100     // Move to the next template parameter and argument.
3101     ++Param;
3102     ++ArgIdx;
3103   }
3104 
3105   // If we saw a pack expansion, then directly convert the remaining arguments,
3106   // because we don't know what parameters they'll match up with.
3107   if (SawPackExpansion) {
3108     bool AddToArgumentPack
3109       = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3110     while (ArgIdx < NumArgs) {
3111       if (AddToArgumentPack)
3112         ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3113       else
3114         Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3115       ++ArgIdx;
3116     }
3117 
3118     // Push the argument pack onto the list of converted arguments.
3119     if (AddToArgumentPack) {
3120       if (ArgumentPack.empty())
3121         Converted.push_back(TemplateArgument(0, 0));
3122       else {
3123         Converted.push_back(
3124           TemplateArgument::CreatePackCopy(Context,
3125                                            ArgumentPack.data(),
3126                                            ArgumentPack.size()));
3127         ArgumentPack.clear();
3128       }
3129     } else if (ExpansionIntoFixedList) {
3130       // We have expanded a pack into a fixed list.
3131       *ExpansionIntoFixedList = true;
3132     }
3133 
3134     return Invalid;
3135   }
3136 
3137   // If we have any leftover arguments, then there were too many arguments.
3138   // Complain and fail.
3139   if (ArgIdx < NumArgs)
3140     return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3141 
3142   // If we have an expanded parameter pack, make sure we don't have too
3143   // many arguments.
3144   // FIXME: This really should fall out from the normal arity checking.
3145   if (Param != ParamEnd) {
3146     if (NonTypeTemplateParmDecl *NTTP
3147           = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3148       if (NTTP->isExpandedParameterPack() &&
3149           ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3150         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3151           << false
3152           << (isa<ClassTemplateDecl>(Template)? 0 :
3153               isa<FunctionTemplateDecl>(Template)? 1 :
3154               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3155           << Template;
3156         Diag(Template->getLocation(), diag::note_template_decl_here)
3157           << Params->getSourceRange();
3158         return true;
3159       }
3160     }
3161   }
3162 
3163   // Form argument packs for each of the parameter packs remaining.
3164   while (Param != ParamEnd) {
3165     // If we're checking a partial list of template arguments, don't fill
3166     // in arguments for non-template parameter packs.
3167     if ((*Param)->isTemplateParameterPack()) {
3168       if (!HasParameterPack)
3169         return true;
3170       if (ArgumentPack.empty())
3171         Converted.push_back(TemplateArgument(0, 0));
3172       else {
3173         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3174                                                           ArgumentPack.data(),
3175                                                          ArgumentPack.size()));
3176         ArgumentPack.clear();
3177       }
3178     } else if (!PartialTemplateArgs)
3179       return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3180 
3181     ++Param;
3182   }
3183 
3184   return Invalid;
3185 }
3186 
3187 namespace {
3188   class UnnamedLocalNoLinkageFinder
3189     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3190   {
3191     Sema &S;
3192     SourceRange SR;
3193 
3194     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3195 
3196   public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3197     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3198 
Visit(QualType T)3199     bool Visit(QualType T) {
3200       return inherited::Visit(T.getTypePtr());
3201     }
3202 
3203 #define TYPE(Class, Parent) \
3204     bool Visit##Class##Type(const Class##Type *);
3205 #define ABSTRACT_TYPE(Class, Parent) \
3206     bool Visit##Class##Type(const Class##Type *) { return false; }
3207 #define NON_CANONICAL_TYPE(Class, Parent) \
3208     bool Visit##Class##Type(const Class##Type *) { return false; }
3209 #include "clang/AST/TypeNodes.def"
3210 
3211     bool VisitTagDecl(const TagDecl *Tag);
3212     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3213   };
3214 }
3215 
VisitBuiltinType(const BuiltinType *)3216 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3217   return false;
3218 }
3219 
VisitComplexType(const ComplexType * T)3220 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3221   return Visit(T->getElementType());
3222 }
3223 
VisitPointerType(const PointerType * T)3224 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3225   return Visit(T->getPointeeType());
3226 }
3227 
VisitBlockPointerType(const BlockPointerType * T)3228 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3229                                                     const BlockPointerType* T) {
3230   return Visit(T->getPointeeType());
3231 }
3232 
VisitLValueReferenceType(const LValueReferenceType * T)3233 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3234                                                 const LValueReferenceType* T) {
3235   return Visit(T->getPointeeType());
3236 }
3237 
VisitRValueReferenceType(const RValueReferenceType * T)3238 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3239                                                 const RValueReferenceType* T) {
3240   return Visit(T->getPointeeType());
3241 }
3242 
VisitMemberPointerType(const MemberPointerType * T)3243 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3244                                                   const MemberPointerType* T) {
3245   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3246 }
3247 
VisitConstantArrayType(const ConstantArrayType * T)3248 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3249                                                   const ConstantArrayType* T) {
3250   return Visit(T->getElementType());
3251 }
3252 
VisitIncompleteArrayType(const IncompleteArrayType * T)3253 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3254                                                  const IncompleteArrayType* T) {
3255   return Visit(T->getElementType());
3256 }
3257 
VisitVariableArrayType(const VariableArrayType * T)3258 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3259                                                    const VariableArrayType* T) {
3260   return Visit(T->getElementType());
3261 }
3262 
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3263 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3264                                             const DependentSizedArrayType* T) {
3265   return Visit(T->getElementType());
3266 }
3267 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3268 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3269                                          const DependentSizedExtVectorType* T) {
3270   return Visit(T->getElementType());
3271 }
3272 
VisitVectorType(const VectorType * T)3273 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3274   return Visit(T->getElementType());
3275 }
3276 
VisitExtVectorType(const ExtVectorType * T)3277 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3278   return Visit(T->getElementType());
3279 }
3280 
VisitFunctionProtoType(const FunctionProtoType * T)3281 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3282                                                   const FunctionProtoType* T) {
3283   for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3284                                          AEnd = T->arg_type_end();
3285        A != AEnd; ++A) {
3286     if (Visit(*A))
3287       return true;
3288   }
3289 
3290   return Visit(T->getResultType());
3291 }
3292 
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3293 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3294                                                const FunctionNoProtoType* T) {
3295   return Visit(T->getResultType());
3296 }
3297 
VisitUnresolvedUsingType(const UnresolvedUsingType *)3298 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3299                                                   const UnresolvedUsingType*) {
3300   return false;
3301 }
3302 
VisitTypeOfExprType(const TypeOfExprType *)3303 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3304   return false;
3305 }
3306 
VisitTypeOfType(const TypeOfType * T)3307 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3308   return Visit(T->getUnderlyingType());
3309 }
3310 
VisitDecltypeType(const DecltypeType *)3311 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3312   return false;
3313 }
3314 
VisitUnaryTransformType(const UnaryTransformType *)3315 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3316                                                     const UnaryTransformType*) {
3317   return false;
3318 }
3319 
VisitAutoType(const AutoType * T)3320 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3321   return Visit(T->getDeducedType());
3322 }
3323 
VisitRecordType(const RecordType * T)3324 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3325   return VisitTagDecl(T->getDecl());
3326 }
3327 
VisitEnumType(const EnumType * T)3328 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3329   return VisitTagDecl(T->getDecl());
3330 }
3331 
VisitTemplateTypeParmType(const TemplateTypeParmType *)3332 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3333                                                  const TemplateTypeParmType*) {
3334   return false;
3335 }
3336 
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)3337 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3338                                         const SubstTemplateTypeParmPackType *) {
3339   return false;
3340 }
3341 
VisitTemplateSpecializationType(const TemplateSpecializationType *)3342 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3343                                             const TemplateSpecializationType*) {
3344   return false;
3345 }
3346 
VisitInjectedClassNameType(const InjectedClassNameType * T)3347 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3348                                               const InjectedClassNameType* T) {
3349   return VisitTagDecl(T->getDecl());
3350 }
3351 
VisitDependentNameType(const DependentNameType * T)3352 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3353                                                    const DependentNameType* T) {
3354   return VisitNestedNameSpecifier(T->getQualifier());
3355 }
3356 
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)3357 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3358                                  const DependentTemplateSpecializationType* T) {
3359   return VisitNestedNameSpecifier(T->getQualifier());
3360 }
3361 
VisitPackExpansionType(const PackExpansionType * T)3362 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3363                                                    const PackExpansionType* T) {
3364   return Visit(T->getPattern());
3365 }
3366 
VisitObjCObjectType(const ObjCObjectType *)3367 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3368   return false;
3369 }
3370 
VisitObjCInterfaceType(const ObjCInterfaceType *)3371 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3372                                                    const ObjCInterfaceType *) {
3373   return false;
3374 }
3375 
VisitObjCObjectPointerType(const ObjCObjectPointerType *)3376 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3377                                                 const ObjCObjectPointerType *) {
3378   return false;
3379 }
3380 
VisitAtomicType(const AtomicType * T)3381 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3382   return Visit(T->getValueType());
3383 }
3384 
VisitTagDecl(const TagDecl * Tag)3385 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3386   if (Tag->getDeclContext()->isFunctionOrMethod()) {
3387     S.Diag(SR.getBegin(),
3388            S.getLangOpts().CPlusPlus0x ?
3389              diag::warn_cxx98_compat_template_arg_local_type :
3390              diag::ext_template_arg_local_type)
3391       << S.Context.getTypeDeclType(Tag) << SR;
3392     return true;
3393   }
3394 
3395   if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3396     S.Diag(SR.getBegin(),
3397            S.getLangOpts().CPlusPlus0x ?
3398              diag::warn_cxx98_compat_template_arg_unnamed_type :
3399              diag::ext_template_arg_unnamed_type) << SR;
3400     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3401     return true;
3402   }
3403 
3404   return false;
3405 }
3406 
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)3407 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3408                                                     NestedNameSpecifier *NNS) {
3409   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3410     return true;
3411 
3412   switch (NNS->getKind()) {
3413   case NestedNameSpecifier::Identifier:
3414   case NestedNameSpecifier::Namespace:
3415   case NestedNameSpecifier::NamespaceAlias:
3416   case NestedNameSpecifier::Global:
3417     return false;
3418 
3419   case NestedNameSpecifier::TypeSpec:
3420   case NestedNameSpecifier::TypeSpecWithTemplate:
3421     return Visit(QualType(NNS->getAsType(), 0));
3422   }
3423   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3424 }
3425 
3426 
3427 /// \brief Check a template argument against its corresponding
3428 /// template type parameter.
3429 ///
3430 /// This routine implements the semantics of C++ [temp.arg.type]. It
3431 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)3432 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3433                                  TypeSourceInfo *ArgInfo) {
3434   assert(ArgInfo && "invalid TypeSourceInfo");
3435   QualType Arg = ArgInfo->getType();
3436   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3437 
3438   if (Arg->isVariablyModifiedType()) {
3439     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3440   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3441     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3442   }
3443 
3444   // C++03 [temp.arg.type]p2:
3445   //   A local type, a type with no linkage, an unnamed type or a type
3446   //   compounded from any of these types shall not be used as a
3447   //   template-argument for a template type-parameter.
3448   //
3449   // C++11 allows these, and even in C++03 we allow them as an extension with
3450   // a warning.
3451   if (LangOpts.CPlusPlus0x ?
3452      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3453                               SR.getBegin()) != DiagnosticsEngine::Ignored ||
3454       Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3455                                SR.getBegin()) != DiagnosticsEngine::Ignored :
3456       Arg->hasUnnamedOrLocalType()) {
3457     UnnamedLocalNoLinkageFinder Finder(*this, SR);
3458     (void)Finder.Visit(Context.getCanonicalType(Arg));
3459   }
3460 
3461   return false;
3462 }
3463 
3464 enum NullPointerValueKind {
3465   NPV_NotNullPointer,
3466   NPV_NullPointer,
3467   NPV_Error
3468 };
3469 
3470 /// \brief Determine whether the given template argument is a null pointer
3471 /// value of the appropriate type.
3472 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)3473 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3474                                    QualType ParamType, Expr *Arg) {
3475   if (Arg->isValueDependent() || Arg->isTypeDependent())
3476     return NPV_NotNullPointer;
3477 
3478   if (!S.getLangOpts().CPlusPlus0x)
3479     return NPV_NotNullPointer;
3480 
3481   // Determine whether we have a constant expression.
3482   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3483   if (ArgRV.isInvalid())
3484     return NPV_Error;
3485   Arg = ArgRV.take();
3486 
3487   Expr::EvalResult EvalResult;
3488   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3489   EvalResult.Diag = &Notes;
3490   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3491       EvalResult.HasSideEffects) {
3492     SourceLocation DiagLoc = Arg->getExprLoc();
3493 
3494     // If our only note is the usual "invalid subexpression" note, just point
3495     // the caret at its location rather than producing an essentially
3496     // redundant note.
3497     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3498         diag::note_invalid_subexpr_in_const_expr) {
3499       DiagLoc = Notes[0].first;
3500       Notes.clear();
3501     }
3502 
3503     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3504       << Arg->getType() << Arg->getSourceRange();
3505     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3506       S.Diag(Notes[I].first, Notes[I].second);
3507 
3508     S.Diag(Param->getLocation(), diag::note_template_param_here);
3509     return NPV_Error;
3510   }
3511 
3512   // C++11 [temp.arg.nontype]p1:
3513   //   - an address constant expression of type std::nullptr_t
3514   if (Arg->getType()->isNullPtrType())
3515     return NPV_NullPointer;
3516 
3517   //   - a constant expression that evaluates to a null pointer value (4.10); or
3518   //   - a constant expression that evaluates to a null member pointer value
3519   //     (4.11); or
3520   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3521       (EvalResult.Val.isMemberPointer() &&
3522        !EvalResult.Val.getMemberPointerDecl())) {
3523     // If our expression has an appropriate type, we've succeeded.
3524     bool ObjCLifetimeConversion;
3525     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3526         S.IsQualificationConversion(Arg->getType(), ParamType, false,
3527                                      ObjCLifetimeConversion))
3528       return NPV_NullPointer;
3529 
3530     // The types didn't match, but we know we got a null pointer; complain,
3531     // then recover as if the types were correct.
3532     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3533       << Arg->getType() << ParamType << Arg->getSourceRange();
3534     S.Diag(Param->getLocation(), diag::note_template_param_here);
3535     return NPV_NullPointer;
3536   }
3537 
3538   // If we don't have a null pointer value, but we do have a NULL pointer
3539   // constant, suggest a cast to the appropriate type.
3540   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3541     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3542     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3543       << ParamType
3544       << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3545       << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3546                                     ")");
3547     S.Diag(Param->getLocation(), diag::note_template_param_here);
3548     return NPV_NullPointer;
3549   }
3550 
3551   // FIXME: If we ever want to support general, address-constant expressions
3552   // as non-type template arguments, we should return the ExprResult here to
3553   // be interpreted by the caller.
3554   return NPV_NotNullPointer;
3555 }
3556 
3557 /// \brief Checks whether the given template argument is the address
3558 /// of an object or function according to C++ [temp.arg.nontype]p1.
3559 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)3560 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3561                                                NonTypeTemplateParmDecl *Param,
3562                                                QualType ParamType,
3563                                                Expr *ArgIn,
3564                                                TemplateArgument &Converted) {
3565   bool Invalid = false;
3566   Expr *Arg = ArgIn;
3567   QualType ArgType = Arg->getType();
3568 
3569   // If our parameter has pointer type, check for a null template value.
3570   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3571     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3572     case NPV_NullPointer:
3573       Converted = TemplateArgument((Decl *)0);
3574       return false;
3575 
3576     case NPV_Error:
3577       return true;
3578 
3579     case NPV_NotNullPointer:
3580       break;
3581     }
3582   }
3583 
3584   // See through any implicit casts we added to fix the type.
3585   Arg = Arg->IgnoreImpCasts();
3586 
3587   // C++ [temp.arg.nontype]p1:
3588   //
3589   //   A template-argument for a non-type, non-template
3590   //   template-parameter shall be one of: [...]
3591   //
3592   //     -- the address of an object or function with external
3593   //        linkage, including function templates and function
3594   //        template-ids but excluding non-static class members,
3595   //        expressed as & id-expression where the & is optional if
3596   //        the name refers to a function or array, or if the
3597   //        corresponding template-parameter is a reference; or
3598 
3599   // In C++98/03 mode, give an extension warning on any extra parentheses.
3600   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3601   bool ExtraParens = false;
3602   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3603     if (!Invalid && !ExtraParens) {
3604       S.Diag(Arg->getLocStart(),
3605              S.getLangOpts().CPlusPlus0x ?
3606                diag::warn_cxx98_compat_template_arg_extra_parens :
3607                diag::ext_template_arg_extra_parens)
3608         << Arg->getSourceRange();
3609       ExtraParens = true;
3610     }
3611 
3612     Arg = Parens->getSubExpr();
3613   }
3614 
3615   while (SubstNonTypeTemplateParmExpr *subst =
3616            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3617     Arg = subst->getReplacement()->IgnoreImpCasts();
3618 
3619   bool AddressTaken = false;
3620   SourceLocation AddrOpLoc;
3621   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3622     if (UnOp->getOpcode() == UO_AddrOf) {
3623       Arg = UnOp->getSubExpr();
3624       AddressTaken = true;
3625       AddrOpLoc = UnOp->getOperatorLoc();
3626     }
3627   }
3628 
3629   if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3630     Converted = TemplateArgument(ArgIn);
3631     return false;
3632   }
3633 
3634   while (SubstNonTypeTemplateParmExpr *subst =
3635            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3636     Arg = subst->getReplacement()->IgnoreImpCasts();
3637 
3638   // Stop checking the precise nature of the argument if it is value dependent,
3639   // it should be checked when instantiated.
3640   if (Arg->isValueDependent()) {
3641     Converted = TemplateArgument(ArgIn);
3642     return false;
3643   }
3644 
3645   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3646   if (!DRE) {
3647     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3648     << Arg->getSourceRange();
3649     S.Diag(Param->getLocation(), diag::note_template_param_here);
3650     return true;
3651   }
3652 
3653   if (!isa<ValueDecl>(DRE->getDecl())) {
3654     S.Diag(Arg->getLocStart(),
3655            diag::err_template_arg_not_object_or_func_form)
3656       << Arg->getSourceRange();
3657     S.Diag(Param->getLocation(), diag::note_template_param_here);
3658     return true;
3659   }
3660 
3661   NamedDecl *Entity = DRE->getDecl();
3662 
3663   // Cannot refer to non-static data members
3664   if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3665     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3666       << Field << Arg->getSourceRange();
3667     S.Diag(Param->getLocation(), diag::note_template_param_here);
3668     return true;
3669   }
3670 
3671   // Cannot refer to non-static member functions
3672   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3673     if (!Method->isStatic()) {
3674       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3675         << Method << Arg->getSourceRange();
3676       S.Diag(Param->getLocation(), diag::note_template_param_here);
3677       return true;
3678     }
3679   }
3680 
3681   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3682   VarDecl *Var = dyn_cast<VarDecl>(Entity);
3683 
3684   // A non-type template argument must refer to an object or function.
3685   if (!Func && !Var) {
3686     // We found something, but we don't know specifically what it is.
3687     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3688       << Arg->getSourceRange();
3689     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3690     return true;
3691   }
3692 
3693   // Address / reference template args must have external linkage in C++98.
3694   if (Entity->getLinkage() == InternalLinkage) {
3695     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3696              diag::warn_cxx98_compat_template_arg_object_internal :
3697              diag::ext_template_arg_object_internal)
3698       << !Func << Entity << Arg->getSourceRange();
3699     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3700       << !Func;
3701   } else if (Entity->getLinkage() == NoLinkage) {
3702     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3703       << !Func << Entity << Arg->getSourceRange();
3704     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3705       << !Func;
3706     return true;
3707   }
3708 
3709   if (Func) {
3710     // If the template parameter has pointer type, the function decays.
3711     if (ParamType->isPointerType() && !AddressTaken)
3712       ArgType = S.Context.getPointerType(Func->getType());
3713     else if (AddressTaken && ParamType->isReferenceType()) {
3714       // If we originally had an address-of operator, but the
3715       // parameter has reference type, complain and (if things look
3716       // like they will work) drop the address-of operator.
3717       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3718                                             ParamType.getNonReferenceType())) {
3719         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3720           << ParamType;
3721         S.Diag(Param->getLocation(), diag::note_template_param_here);
3722         return true;
3723       }
3724 
3725       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3726         << ParamType
3727         << FixItHint::CreateRemoval(AddrOpLoc);
3728       S.Diag(Param->getLocation(), diag::note_template_param_here);
3729 
3730       ArgType = Func->getType();
3731     }
3732   } else {
3733     // A value of reference type is not an object.
3734     if (Var->getType()->isReferenceType()) {
3735       S.Diag(Arg->getLocStart(),
3736              diag::err_template_arg_reference_var)
3737         << Var->getType() << Arg->getSourceRange();
3738       S.Diag(Param->getLocation(), diag::note_template_param_here);
3739       return true;
3740     }
3741 
3742     // A template argument must have static storage duration.
3743     // FIXME: Ensure this works for thread_local as well as __thread.
3744     if (Var->isThreadSpecified()) {
3745       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3746         << Arg->getSourceRange();
3747       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3748       return true;
3749     }
3750 
3751     // If the template parameter has pointer type, we must have taken
3752     // the address of this object.
3753     if (ParamType->isReferenceType()) {
3754       if (AddressTaken) {
3755         // If we originally had an address-of operator, but the
3756         // parameter has reference type, complain and (if things look
3757         // like they will work) drop the address-of operator.
3758         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3759                                             ParamType.getNonReferenceType())) {
3760           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3761             << ParamType;
3762           S.Diag(Param->getLocation(), diag::note_template_param_here);
3763           return true;
3764         }
3765 
3766         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3767           << ParamType
3768           << FixItHint::CreateRemoval(AddrOpLoc);
3769         S.Diag(Param->getLocation(), diag::note_template_param_here);
3770 
3771         ArgType = Var->getType();
3772       }
3773     } else if (!AddressTaken && ParamType->isPointerType()) {
3774       if (Var->getType()->isArrayType()) {
3775         // Array-to-pointer decay.
3776         ArgType = S.Context.getArrayDecayedType(Var->getType());
3777       } else {
3778         // If the template parameter has pointer type but the address of
3779         // this object was not taken, complain and (possibly) recover by
3780         // taking the address of the entity.
3781         ArgType = S.Context.getPointerType(Var->getType());
3782         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3783           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3784             << ParamType;
3785           S.Diag(Param->getLocation(), diag::note_template_param_here);
3786           return true;
3787         }
3788 
3789         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3790           << ParamType
3791           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3792 
3793         S.Diag(Param->getLocation(), diag::note_template_param_here);
3794       }
3795     }
3796   }
3797 
3798   bool ObjCLifetimeConversion;
3799   if (ParamType->isPointerType() &&
3800       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3801       S.IsQualificationConversion(ArgType, ParamType, false,
3802                                   ObjCLifetimeConversion)) {
3803     // For pointer-to-object types, qualification conversions are
3804     // permitted.
3805   } else {
3806     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3807       if (!ParamRef->getPointeeType()->isFunctionType()) {
3808         // C++ [temp.arg.nontype]p5b3:
3809         //   For a non-type template-parameter of type reference to
3810         //   object, no conversions apply. The type referred to by the
3811         //   reference may be more cv-qualified than the (otherwise
3812         //   identical) type of the template- argument. The
3813         //   template-parameter is bound directly to the
3814         //   template-argument, which shall be an lvalue.
3815 
3816         // FIXME: Other qualifiers?
3817         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3818         unsigned ArgQuals = ArgType.getCVRQualifiers();
3819 
3820         if ((ParamQuals | ArgQuals) != ParamQuals) {
3821           S.Diag(Arg->getLocStart(),
3822                  diag::err_template_arg_ref_bind_ignores_quals)
3823             << ParamType << Arg->getType()
3824             << Arg->getSourceRange();
3825           S.Diag(Param->getLocation(), diag::note_template_param_here);
3826           return true;
3827         }
3828       }
3829     }
3830 
3831     // At this point, the template argument refers to an object or
3832     // function with external linkage. We now need to check whether the
3833     // argument and parameter types are compatible.
3834     if (!S.Context.hasSameUnqualifiedType(ArgType,
3835                                           ParamType.getNonReferenceType())) {
3836       // We can't perform this conversion or binding.
3837       if (ParamType->isReferenceType())
3838         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3839           << ParamType << ArgIn->getType() << Arg->getSourceRange();
3840       else
3841         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3842           << ArgIn->getType() << ParamType << Arg->getSourceRange();
3843       S.Diag(Param->getLocation(), diag::note_template_param_here);
3844       return true;
3845     }
3846   }
3847 
3848   // Create the template argument.
3849   Converted = TemplateArgument(Entity->getCanonicalDecl());
3850   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3851   return false;
3852 }
3853 
3854 /// \brief Checks whether the given template argument is a pointer to
3855 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)3856 static bool CheckTemplateArgumentPointerToMember(Sema &S,
3857                                                  NonTypeTemplateParmDecl *Param,
3858                                                  QualType ParamType,
3859                                                  Expr *&ResultArg,
3860                                                  TemplateArgument &Converted) {
3861   bool Invalid = false;
3862 
3863   // Check for a null pointer value.
3864   Expr *Arg = ResultArg;
3865   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3866   case NPV_Error:
3867     return true;
3868   case NPV_NullPointer:
3869     Converted = TemplateArgument((Decl *)0);
3870     return false;
3871   case NPV_NotNullPointer:
3872     break;
3873   }
3874 
3875   bool ObjCLifetimeConversion;
3876   if (S.IsQualificationConversion(Arg->getType(),
3877                                   ParamType.getNonReferenceType(),
3878                                   false, ObjCLifetimeConversion)) {
3879     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3880                               Arg->getValueKind()).take();
3881     ResultArg = Arg;
3882   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3883                 ParamType.getNonReferenceType())) {
3884     // We can't perform this conversion.
3885     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3886       << Arg->getType() << ParamType << Arg->getSourceRange();
3887     S.Diag(Param->getLocation(), diag::note_template_param_here);
3888     return true;
3889   }
3890 
3891   // See through any implicit casts we added to fix the type.
3892   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3893     Arg = Cast->getSubExpr();
3894 
3895   // C++ [temp.arg.nontype]p1:
3896   //
3897   //   A template-argument for a non-type, non-template
3898   //   template-parameter shall be one of: [...]
3899   //
3900   //     -- a pointer to member expressed as described in 5.3.1.
3901   DeclRefExpr *DRE = 0;
3902 
3903   // In C++98/03 mode, give an extension warning on any extra parentheses.
3904   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3905   bool ExtraParens = false;
3906   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3907     if (!Invalid && !ExtraParens) {
3908       S.Diag(Arg->getLocStart(),
3909              S.getLangOpts().CPlusPlus0x ?
3910                diag::warn_cxx98_compat_template_arg_extra_parens :
3911                diag::ext_template_arg_extra_parens)
3912         << Arg->getSourceRange();
3913       ExtraParens = true;
3914     }
3915 
3916     Arg = Parens->getSubExpr();
3917   }
3918 
3919   while (SubstNonTypeTemplateParmExpr *subst =
3920            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3921     Arg = subst->getReplacement()->IgnoreImpCasts();
3922 
3923   // A pointer-to-member constant written &Class::member.
3924   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3925     if (UnOp->getOpcode() == UO_AddrOf) {
3926       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3927       if (DRE && !DRE->getQualifier())
3928         DRE = 0;
3929     }
3930   }
3931   // A constant of pointer-to-member type.
3932   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3933     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3934       if (VD->getType()->isMemberPointerType()) {
3935         if (isa<NonTypeTemplateParmDecl>(VD) ||
3936             (isa<VarDecl>(VD) &&
3937              S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
3938           if (Arg->isTypeDependent() || Arg->isValueDependent())
3939             Converted = TemplateArgument(Arg);
3940           else
3941             Converted = TemplateArgument(VD->getCanonicalDecl());
3942           return Invalid;
3943         }
3944       }
3945     }
3946 
3947     DRE = 0;
3948   }
3949 
3950   if (!DRE)
3951     return S.Diag(Arg->getLocStart(),
3952                   diag::err_template_arg_not_pointer_to_member_form)
3953       << Arg->getSourceRange();
3954 
3955   if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3956     assert((isa<FieldDecl>(DRE->getDecl()) ||
3957             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3958            "Only non-static member pointers can make it here");
3959 
3960     // Okay: this is the address of a non-static member, and therefore
3961     // a member pointer constant.
3962     if (Arg->isTypeDependent() || Arg->isValueDependent())
3963       Converted = TemplateArgument(Arg);
3964     else
3965       Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3966     return Invalid;
3967   }
3968 
3969   // We found something else, but we don't know specifically what it is.
3970   S.Diag(Arg->getLocStart(),
3971          diag::err_template_arg_not_pointer_to_member_form)
3972     << Arg->getSourceRange();
3973   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3974   return true;
3975 }
3976 
3977 /// \brief Check a template argument against its corresponding
3978 /// non-type template parameter.
3979 ///
3980 /// This routine implements the semantics of C++ [temp.arg.nontype].
3981 /// If an error occurred, it returns ExprError(); otherwise, it
3982 /// returns the converted template argument. \p
3983 /// InstantiatedParamType is the type of the non-type template
3984 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)3985 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3986                                        QualType InstantiatedParamType, Expr *Arg,
3987                                        TemplateArgument &Converted,
3988                                        CheckTemplateArgumentKind CTAK) {
3989   SourceLocation StartLoc = Arg->getLocStart();
3990 
3991   // If either the parameter has a dependent type or the argument is
3992   // type-dependent, there's nothing we can check now.
3993   if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3994     // FIXME: Produce a cloned, canonical expression?
3995     Converted = TemplateArgument(Arg);
3996     return Owned(Arg);
3997   }
3998 
3999   // C++ [temp.arg.nontype]p5:
4000   //   The following conversions are performed on each expression used
4001   //   as a non-type template-argument. If a non-type
4002   //   template-argument cannot be converted to the type of the
4003   //   corresponding template-parameter then the program is
4004   //   ill-formed.
4005   QualType ParamType = InstantiatedParamType;
4006   if (ParamType->isIntegralOrEnumerationType()) {
4007     // C++11:
4008     //   -- for a non-type template-parameter of integral or
4009     //      enumeration type, conversions permitted in a converted
4010     //      constant expression are applied.
4011     //
4012     // C++98:
4013     //   -- for a non-type template-parameter of integral or
4014     //      enumeration type, integral promotions (4.5) and integral
4015     //      conversions (4.7) are applied.
4016 
4017     if (CTAK == CTAK_Deduced &&
4018         !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4019       // C++ [temp.deduct.type]p17:
4020       //   If, in the declaration of a function template with a non-type
4021       //   template-parameter, the non-type template-parameter is used
4022       //   in an expression in the function parameter-list and, if the
4023       //   corresponding template-argument is deduced, the
4024       //   template-argument type shall match the type of the
4025       //   template-parameter exactly, except that a template-argument
4026       //   deduced from an array bound may be of any integral type.
4027       Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4028         << Arg->getType().getUnqualifiedType()
4029         << ParamType.getUnqualifiedType();
4030       Diag(Param->getLocation(), diag::note_template_param_here);
4031       return ExprError();
4032     }
4033 
4034     if (getLangOpts().CPlusPlus0x) {
4035       // We can't check arbitrary value-dependent arguments.
4036       // FIXME: If there's no viable conversion to the template parameter type,
4037       // we should be able to diagnose that prior to instantiation.
4038       if (Arg->isValueDependent()) {
4039         Converted = TemplateArgument(Arg);
4040         return Owned(Arg);
4041       }
4042 
4043       // C++ [temp.arg.nontype]p1:
4044       //   A template-argument for a non-type, non-template template-parameter
4045       //   shall be one of:
4046       //
4047       //     -- for a non-type template-parameter of integral or enumeration
4048       //        type, a converted constant expression of the type of the
4049       //        template-parameter; or
4050       llvm::APSInt Value;
4051       ExprResult ArgResult =
4052         CheckConvertedConstantExpression(Arg, ParamType, Value,
4053                                          CCEK_TemplateArg);
4054       if (ArgResult.isInvalid())
4055         return ExprError();
4056 
4057       // Widen the argument value to sizeof(parameter type). This is almost
4058       // always a no-op, except when the parameter type is bool. In
4059       // that case, this may extend the argument from 1 bit to 8 bits.
4060       QualType IntegerType = ParamType;
4061       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4062         IntegerType = Enum->getDecl()->getIntegerType();
4063       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4064 
4065       Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
4066       return ArgResult;
4067     }
4068 
4069     ExprResult ArgResult = DefaultLvalueConversion(Arg);
4070     if (ArgResult.isInvalid())
4071       return ExprError();
4072     Arg = ArgResult.take();
4073 
4074     QualType ArgType = Arg->getType();
4075 
4076     // C++ [temp.arg.nontype]p1:
4077     //   A template-argument for a non-type, non-template
4078     //   template-parameter shall be one of:
4079     //
4080     //     -- an integral constant-expression of integral or enumeration
4081     //        type; or
4082     //     -- the name of a non-type template-parameter; or
4083     SourceLocation NonConstantLoc;
4084     llvm::APSInt Value;
4085     if (!ArgType->isIntegralOrEnumerationType()) {
4086       Diag(Arg->getLocStart(),
4087            diag::err_template_arg_not_integral_or_enumeral)
4088         << ArgType << Arg->getSourceRange();
4089       Diag(Param->getLocation(), diag::note_template_param_here);
4090       return ExprError();
4091     } else if (!Arg->isValueDependent()) {
4092       Arg = VerifyIntegerConstantExpression(Arg, &Value,
4093         PDiag(diag::err_template_arg_not_ice) << ArgType, false).take();
4094       if (!Arg)
4095         return ExprError();
4096     }
4097 
4098     // From here on out, all we care about are the unqualified forms
4099     // of the parameter and argument types.
4100     ParamType = ParamType.getUnqualifiedType();
4101     ArgType = ArgType.getUnqualifiedType();
4102 
4103     // Try to convert the argument to the parameter's type.
4104     if (Context.hasSameType(ParamType, ArgType)) {
4105       // Okay: no conversion necessary
4106     } else if (ParamType->isBooleanType()) {
4107       // This is an integral-to-boolean conversion.
4108       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4109     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4110                !ParamType->isEnumeralType()) {
4111       // This is an integral promotion or conversion.
4112       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4113     } else {
4114       // We can't perform this conversion.
4115       Diag(Arg->getLocStart(),
4116            diag::err_template_arg_not_convertible)
4117         << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4118       Diag(Param->getLocation(), diag::note_template_param_here);
4119       return ExprError();
4120     }
4121 
4122     // Add the value of this argument to the list of converted
4123     // arguments. We use the bitwidth and signedness of the template
4124     // parameter.
4125     if (Arg->isValueDependent()) {
4126       // The argument is value-dependent. Create a new
4127       // TemplateArgument with the converted expression.
4128       Converted = TemplateArgument(Arg);
4129       return Owned(Arg);
4130     }
4131 
4132     QualType IntegerType = Context.getCanonicalType(ParamType);
4133     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4134       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4135 
4136     if (ParamType->isBooleanType()) {
4137       // Value must be zero or one.
4138       Value = Value != 0;
4139       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4140       if (Value.getBitWidth() != AllowedBits)
4141         Value = Value.extOrTrunc(AllowedBits);
4142       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4143     } else {
4144       llvm::APSInt OldValue = Value;
4145 
4146       // Coerce the template argument's value to the value it will have
4147       // based on the template parameter's type.
4148       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4149       if (Value.getBitWidth() != AllowedBits)
4150         Value = Value.extOrTrunc(AllowedBits);
4151       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4152 
4153       // Complain if an unsigned parameter received a negative value.
4154       if (IntegerType->isUnsignedIntegerOrEnumerationType()
4155                && (OldValue.isSigned() && OldValue.isNegative())) {
4156         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4157           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4158           << Arg->getSourceRange();
4159         Diag(Param->getLocation(), diag::note_template_param_here);
4160       }
4161 
4162       // Complain if we overflowed the template parameter's type.
4163       unsigned RequiredBits;
4164       if (IntegerType->isUnsignedIntegerOrEnumerationType())
4165         RequiredBits = OldValue.getActiveBits();
4166       else if (OldValue.isUnsigned())
4167         RequiredBits = OldValue.getActiveBits() + 1;
4168       else
4169         RequiredBits = OldValue.getMinSignedBits();
4170       if (RequiredBits > AllowedBits) {
4171         Diag(Arg->getLocStart(),
4172              diag::warn_template_arg_too_large)
4173           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4174           << Arg->getSourceRange();
4175         Diag(Param->getLocation(), diag::note_template_param_here);
4176       }
4177     }
4178 
4179     Converted = TemplateArgument(Value,
4180                                  ParamType->isEnumeralType()
4181                                    ? Context.getCanonicalType(ParamType)
4182                                    : IntegerType);
4183     return Owned(Arg);
4184   }
4185 
4186   QualType ArgType = Arg->getType();
4187   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4188 
4189   // Handle pointer-to-function, reference-to-function, and
4190   // pointer-to-member-function all in (roughly) the same way.
4191   if (// -- For a non-type template-parameter of type pointer to
4192       //    function, only the function-to-pointer conversion (4.3) is
4193       //    applied. If the template-argument represents a set of
4194       //    overloaded functions (or a pointer to such), the matching
4195       //    function is selected from the set (13.4).
4196       (ParamType->isPointerType() &&
4197        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4198       // -- For a non-type template-parameter of type reference to
4199       //    function, no conversions apply. If the template-argument
4200       //    represents a set of overloaded functions, the matching
4201       //    function is selected from the set (13.4).
4202       (ParamType->isReferenceType() &&
4203        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4204       // -- For a non-type template-parameter of type pointer to
4205       //    member function, no conversions apply. If the
4206       //    template-argument represents a set of overloaded member
4207       //    functions, the matching member function is selected from
4208       //    the set (13.4).
4209       (ParamType->isMemberPointerType() &&
4210        ParamType->getAs<MemberPointerType>()->getPointeeType()
4211          ->isFunctionType())) {
4212 
4213     if (Arg->getType() == Context.OverloadTy) {
4214       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4215                                                                 true,
4216                                                                 FoundResult)) {
4217         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4218           return ExprError();
4219 
4220         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4221         ArgType = Arg->getType();
4222       } else
4223         return ExprError();
4224     }
4225 
4226     if (!ParamType->isMemberPointerType()) {
4227       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4228                                                          ParamType,
4229                                                          Arg, Converted))
4230         return ExprError();
4231       return Owned(Arg);
4232     }
4233 
4234     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4235                                              Converted))
4236       return ExprError();
4237     return Owned(Arg);
4238   }
4239 
4240   if (ParamType->isPointerType()) {
4241     //   -- for a non-type template-parameter of type pointer to
4242     //      object, qualification conversions (4.4) and the
4243     //      array-to-pointer conversion (4.2) are applied.
4244     // C++0x also allows a value of std::nullptr_t.
4245     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4246            "Only object pointers allowed here");
4247 
4248     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4249                                                        ParamType,
4250                                                        Arg, Converted))
4251       return ExprError();
4252     return Owned(Arg);
4253   }
4254 
4255   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4256     //   -- For a non-type template-parameter of type reference to
4257     //      object, no conversions apply. The type referred to by the
4258     //      reference may be more cv-qualified than the (otherwise
4259     //      identical) type of the template-argument. The
4260     //      template-parameter is bound directly to the
4261     //      template-argument, which must be an lvalue.
4262     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4263            "Only object references allowed here");
4264 
4265     if (Arg->getType() == Context.OverloadTy) {
4266       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4267                                                  ParamRefType->getPointeeType(),
4268                                                                 true,
4269                                                                 FoundResult)) {
4270         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4271           return ExprError();
4272 
4273         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4274         ArgType = Arg->getType();
4275       } else
4276         return ExprError();
4277     }
4278 
4279     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4280                                                        ParamType,
4281                                                        Arg, Converted))
4282       return ExprError();
4283     return Owned(Arg);
4284   }
4285 
4286   // Deal with parameters of type std::nullptr_t.
4287   if (ParamType->isNullPtrType()) {
4288     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4289       Converted = TemplateArgument(Arg);
4290       return Owned(Arg);
4291     }
4292 
4293     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4294     case NPV_NotNullPointer:
4295       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4296         << Arg->getType() << ParamType;
4297       Diag(Param->getLocation(), diag::note_template_param_here);
4298       return ExprError();
4299 
4300     case NPV_Error:
4301       return ExprError();
4302 
4303     case NPV_NullPointer:
4304       Converted = TemplateArgument((Decl *)0);
4305       return Owned(Arg);;
4306     }
4307   }
4308 
4309   //     -- For a non-type template-parameter of type pointer to data
4310   //        member, qualification conversions (4.4) are applied.
4311   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4312 
4313   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4314                                            Converted))
4315     return ExprError();
4316   return Owned(Arg);
4317 }
4318 
4319 /// \brief Check a template argument against its corresponding
4320 /// template template parameter.
4321 ///
4322 /// This routine implements the semantics of C++ [temp.arg.template].
4323 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,const TemplateArgumentLoc & Arg)4324 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4325                                  const TemplateArgumentLoc &Arg) {
4326   TemplateName Name = Arg.getArgument().getAsTemplate();
4327   TemplateDecl *Template = Name.getAsTemplateDecl();
4328   if (!Template) {
4329     // Any dependent template name is fine.
4330     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4331     return false;
4332   }
4333 
4334   // C++0x [temp.arg.template]p1:
4335   //   A template-argument for a template template-parameter shall be
4336   //   the name of a class template or an alias template, expressed as an
4337   //   id-expression. When the template-argument names a class template, only
4338   //   primary class templates are considered when matching the
4339   //   template template argument with the corresponding parameter;
4340   //   partial specializations are not considered even if their
4341   //   parameter lists match that of the template template parameter.
4342   //
4343   // Note that we also allow template template parameters here, which
4344   // will happen when we are dealing with, e.g., class template
4345   // partial specializations.
4346   if (!isa<ClassTemplateDecl>(Template) &&
4347       !isa<TemplateTemplateParmDecl>(Template) &&
4348       !isa<TypeAliasTemplateDecl>(Template)) {
4349     assert(isa<FunctionTemplateDecl>(Template) &&
4350            "Only function templates are possible here");
4351     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4352     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4353       << Template;
4354   }
4355 
4356   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4357                                          Param->getTemplateParameters(),
4358                                          true,
4359                                          TPL_TemplateTemplateArgumentMatch,
4360                                          Arg.getLocation());
4361 }
4362 
4363 /// \brief Given a non-type template argument that refers to a
4364 /// declaration and the type of its corresponding non-type template
4365 /// parameter, produce an expression that properly refers to that
4366 /// declaration.
4367 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)4368 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4369                                               QualType ParamType,
4370                                               SourceLocation Loc) {
4371   assert(Arg.getKind() == TemplateArgument::Declaration &&
4372          "Only declaration template arguments permitted here");
4373 
4374   // For a NULL non-type template argument, return nullptr casted to the
4375   // parameter's type.
4376   if (!Arg.getAsDecl()) {
4377     return ImpCastExprToType(
4378              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4379                              ParamType,
4380                              ParamType->getAs<MemberPointerType>()
4381                                ? CK_NullToMemberPointer
4382                                : CK_NullToPointer);
4383   }
4384 
4385   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4386 
4387   if (VD->getDeclContext()->isRecord() &&
4388       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4389     // If the value is a class member, we might have a pointer-to-member.
4390     // Determine whether the non-type template template parameter is of
4391     // pointer-to-member type. If so, we need to build an appropriate
4392     // expression for a pointer-to-member, since a "normal" DeclRefExpr
4393     // would refer to the member itself.
4394     if (ParamType->isMemberPointerType()) {
4395       QualType ClassType
4396         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4397       NestedNameSpecifier *Qualifier
4398         = NestedNameSpecifier::Create(Context, 0, false,
4399                                       ClassType.getTypePtr());
4400       CXXScopeSpec SS;
4401       SS.MakeTrivial(Context, Qualifier, Loc);
4402 
4403       // The actual value-ness of this is unimportant, but for
4404       // internal consistency's sake, references to instance methods
4405       // are r-values.
4406       ExprValueKind VK = VK_LValue;
4407       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4408         VK = VK_RValue;
4409 
4410       ExprResult RefExpr = BuildDeclRefExpr(VD,
4411                                             VD->getType().getNonReferenceType(),
4412                                             VK,
4413                                             Loc,
4414                                             &SS);
4415       if (RefExpr.isInvalid())
4416         return ExprError();
4417 
4418       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4419 
4420       // We might need to perform a trailing qualification conversion, since
4421       // the element type on the parameter could be more qualified than the
4422       // element type in the expression we constructed.
4423       bool ObjCLifetimeConversion;
4424       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4425                                     ParamType.getUnqualifiedType(), false,
4426                                     ObjCLifetimeConversion))
4427         RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4428 
4429       assert(!RefExpr.isInvalid() &&
4430              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4431                                  ParamType.getUnqualifiedType()));
4432       return move(RefExpr);
4433     }
4434   }
4435 
4436   QualType T = VD->getType().getNonReferenceType();
4437   if (ParamType->isPointerType()) {
4438     // When the non-type template parameter is a pointer, take the
4439     // address of the declaration.
4440     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4441     if (RefExpr.isInvalid())
4442       return ExprError();
4443 
4444     if (T->isFunctionType() || T->isArrayType()) {
4445       // Decay functions and arrays.
4446       RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4447       if (RefExpr.isInvalid())
4448         return ExprError();
4449 
4450       return move(RefExpr);
4451     }
4452 
4453     // Take the address of everything else
4454     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4455   }
4456 
4457   ExprValueKind VK = VK_RValue;
4458 
4459   // If the non-type template parameter has reference type, qualify the
4460   // resulting declaration reference with the extra qualifiers on the
4461   // type that the reference refers to.
4462   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4463     VK = VK_LValue;
4464     T = Context.getQualifiedType(T,
4465                               TargetRef->getPointeeType().getQualifiers());
4466   }
4467 
4468   return BuildDeclRefExpr(VD, T, VK, Loc);
4469 }
4470 
4471 /// \brief Construct a new expression that refers to the given
4472 /// integral template argument with the given source-location
4473 /// information.
4474 ///
4475 /// This routine takes care of the mapping from an integral template
4476 /// argument (which may have any integral type) to the appropriate
4477 /// literal value.
4478 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)4479 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4480                                                   SourceLocation Loc) {
4481   assert(Arg.getKind() == TemplateArgument::Integral &&
4482          "Operation is only valid for integral template arguments");
4483   QualType T = Arg.getIntegralType();
4484   if (T->isAnyCharacterType()) {
4485     CharacterLiteral::CharacterKind Kind;
4486     if (T->isWideCharType())
4487       Kind = CharacterLiteral::Wide;
4488     else if (T->isChar16Type())
4489       Kind = CharacterLiteral::UTF16;
4490     else if (T->isChar32Type())
4491       Kind = CharacterLiteral::UTF32;
4492     else
4493       Kind = CharacterLiteral::Ascii;
4494 
4495     return Owned(new (Context) CharacterLiteral(
4496                                             Arg.getAsIntegral()->getZExtValue(),
4497                                             Kind, T, Loc));
4498   }
4499 
4500   if (T->isBooleanType())
4501     return Owned(new (Context) CXXBoolLiteralExpr(
4502                                             Arg.getAsIntegral()->getBoolValue(),
4503                                             T, Loc));
4504 
4505   if (T->isNullPtrType())
4506     return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4507 
4508   // If this is an enum type that we're instantiating, we need to use an integer
4509   // type the same size as the enumerator.  We don't want to build an
4510   // IntegerLiteral with enum type.
4511   QualType BT;
4512   if (const EnumType *ET = T->getAs<EnumType>())
4513     BT = ET->getDecl()->getIntegerType();
4514   else
4515     BT = T;
4516 
4517   Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4518   if (T->isEnumeralType()) {
4519     // FIXME: This is a hack. We need a better way to handle substituted
4520     // non-type template parameters.
4521     E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4522                                Context.getTrivialTypeSourceInfo(T, Loc),
4523                                Loc, Loc);
4524   }
4525 
4526   return Owned(E);
4527 }
4528 
4529 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4530 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4531                                        bool Complain,
4532                                      Sema::TemplateParameterListEqualKind Kind,
4533                                        SourceLocation TemplateArgLoc) {
4534   // Check the actual kind (type, non-type, template).
4535   if (Old->getKind() != New->getKind()) {
4536     if (Complain) {
4537       unsigned NextDiag = diag::err_template_param_different_kind;
4538       if (TemplateArgLoc.isValid()) {
4539         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4540         NextDiag = diag::note_template_param_different_kind;
4541       }
4542       S.Diag(New->getLocation(), NextDiag)
4543         << (Kind != Sema::TPL_TemplateMatch);
4544       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4545         << (Kind != Sema::TPL_TemplateMatch);
4546     }
4547 
4548     return false;
4549   }
4550 
4551   // Check that both are parameter packs are neither are parameter packs.
4552   // However, if we are matching a template template argument to a
4553   // template template parameter, the template template parameter can have
4554   // a parameter pack where the template template argument does not.
4555   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4556       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4557         Old->isTemplateParameterPack())) {
4558     if (Complain) {
4559       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4560       if (TemplateArgLoc.isValid()) {
4561         S.Diag(TemplateArgLoc,
4562              diag::err_template_arg_template_params_mismatch);
4563         NextDiag = diag::note_template_parameter_pack_non_pack;
4564       }
4565 
4566       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4567                       : isa<NonTypeTemplateParmDecl>(New)? 1
4568                       : 2;
4569       S.Diag(New->getLocation(), NextDiag)
4570         << ParamKind << New->isParameterPack();
4571       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4572         << ParamKind << Old->isParameterPack();
4573     }
4574 
4575     return false;
4576   }
4577 
4578   // For non-type template parameters, check the type of the parameter.
4579   if (NonTypeTemplateParmDecl *OldNTTP
4580                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4581     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4582 
4583     // If we are matching a template template argument to a template
4584     // template parameter and one of the non-type template parameter types
4585     // is dependent, then we must wait until template instantiation time
4586     // to actually compare the arguments.
4587     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4588         (OldNTTP->getType()->isDependentType() ||
4589          NewNTTP->getType()->isDependentType()))
4590       return true;
4591 
4592     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4593       if (Complain) {
4594         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4595         if (TemplateArgLoc.isValid()) {
4596           S.Diag(TemplateArgLoc,
4597                  diag::err_template_arg_template_params_mismatch);
4598           NextDiag = diag::note_template_nontype_parm_different_type;
4599         }
4600         S.Diag(NewNTTP->getLocation(), NextDiag)
4601           << NewNTTP->getType()
4602           << (Kind != Sema::TPL_TemplateMatch);
4603         S.Diag(OldNTTP->getLocation(),
4604                diag::note_template_nontype_parm_prev_declaration)
4605           << OldNTTP->getType();
4606       }
4607 
4608       return false;
4609     }
4610 
4611     return true;
4612   }
4613 
4614   // For template template parameters, check the template parameter types.
4615   // The template parameter lists of template template
4616   // parameters must agree.
4617   if (TemplateTemplateParmDecl *OldTTP
4618                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4619     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4620     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4621                                             OldTTP->getTemplateParameters(),
4622                                             Complain,
4623                                         (Kind == Sema::TPL_TemplateMatch
4624                                            ? Sema::TPL_TemplateTemplateParmMatch
4625                                            : Kind),
4626                                             TemplateArgLoc);
4627   }
4628 
4629   return true;
4630 }
4631 
4632 /// \brief Diagnose a known arity mismatch when comparing template argument
4633 /// lists.
4634 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4635 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4636                                                 TemplateParameterList *New,
4637                                                 TemplateParameterList *Old,
4638                                       Sema::TemplateParameterListEqualKind Kind,
4639                                                 SourceLocation TemplateArgLoc) {
4640   unsigned NextDiag = diag::err_template_param_list_different_arity;
4641   if (TemplateArgLoc.isValid()) {
4642     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4643     NextDiag = diag::note_template_param_list_different_arity;
4644   }
4645   S.Diag(New->getTemplateLoc(), NextDiag)
4646     << (New->size() > Old->size())
4647     << (Kind != Sema::TPL_TemplateMatch)
4648     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4649   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4650     << (Kind != Sema::TPL_TemplateMatch)
4651     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4652 }
4653 
4654 /// \brief Determine whether the given template parameter lists are
4655 /// equivalent.
4656 ///
4657 /// \param New  The new template parameter list, typically written in the
4658 /// source code as part of a new template declaration.
4659 ///
4660 /// \param Old  The old template parameter list, typically found via
4661 /// name lookup of the template declared with this template parameter
4662 /// list.
4663 ///
4664 /// \param Complain  If true, this routine will produce a diagnostic if
4665 /// the template parameter lists are not equivalent.
4666 ///
4667 /// \param Kind describes how we are to match the template parameter lists.
4668 ///
4669 /// \param TemplateArgLoc If this source location is valid, then we
4670 /// are actually checking the template parameter list of a template
4671 /// argument (New) against the template parameter list of its
4672 /// corresponding template template parameter (Old). We produce
4673 /// slightly different diagnostics in this scenario.
4674 ///
4675 /// \returns True if the template parameter lists are equal, false
4676 /// otherwise.
4677 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4678 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4679                                      TemplateParameterList *Old,
4680                                      bool Complain,
4681                                      TemplateParameterListEqualKind Kind,
4682                                      SourceLocation TemplateArgLoc) {
4683   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4684     if (Complain)
4685       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4686                                                  TemplateArgLoc);
4687 
4688     return false;
4689   }
4690 
4691   // C++0x [temp.arg.template]p3:
4692   //   A template-argument matches a template template-parameter (call it P)
4693   //   when each of the template parameters in the template-parameter-list of
4694   //   the template-argument's corresponding class template or alias template
4695   //   (call it A) matches the corresponding template parameter in the
4696   //   template-parameter-list of P. [...]
4697   TemplateParameterList::iterator NewParm = New->begin();
4698   TemplateParameterList::iterator NewParmEnd = New->end();
4699   for (TemplateParameterList::iterator OldParm = Old->begin(),
4700                                     OldParmEnd = Old->end();
4701        OldParm != OldParmEnd; ++OldParm) {
4702     if (Kind != TPL_TemplateTemplateArgumentMatch ||
4703         !(*OldParm)->isTemplateParameterPack()) {
4704       if (NewParm == NewParmEnd) {
4705         if (Complain)
4706           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4707                                                      TemplateArgLoc);
4708 
4709         return false;
4710       }
4711 
4712       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4713                                       Kind, TemplateArgLoc))
4714         return false;
4715 
4716       ++NewParm;
4717       continue;
4718     }
4719 
4720     // C++0x [temp.arg.template]p3:
4721     //   [...] When P's template- parameter-list contains a template parameter
4722     //   pack (14.5.3), the template parameter pack will match zero or more
4723     //   template parameters or template parameter packs in the
4724     //   template-parameter-list of A with the same type and form as the
4725     //   template parameter pack in P (ignoring whether those template
4726     //   parameters are template parameter packs).
4727     for (; NewParm != NewParmEnd; ++NewParm) {
4728       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4729                                       Kind, TemplateArgLoc))
4730         return false;
4731     }
4732   }
4733 
4734   // Make sure we exhausted all of the arguments.
4735   if (NewParm != NewParmEnd) {
4736     if (Complain)
4737       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4738                                                  TemplateArgLoc);
4739 
4740     return false;
4741   }
4742 
4743   return true;
4744 }
4745 
4746 /// \brief Check whether a template can be declared within this scope.
4747 ///
4748 /// If the template declaration is valid in this scope, returns
4749 /// false. Otherwise, issues a diagnostic and returns true.
4750 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)4751 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4752   if (!S)
4753     return false;
4754 
4755   // Find the nearest enclosing declaration scope.
4756   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4757          (S->getFlags() & Scope::TemplateParamScope) != 0)
4758     S = S->getParent();
4759 
4760   // C++ [temp]p2:
4761   //   A template-declaration can appear only as a namespace scope or
4762   //   class scope declaration.
4763   DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4764   if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4765       cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4766     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4767              << TemplateParams->getSourceRange();
4768 
4769   while (Ctx && isa<LinkageSpecDecl>(Ctx))
4770     Ctx = Ctx->getParent();
4771 
4772   if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4773     return false;
4774 
4775   return Diag(TemplateParams->getTemplateLoc(),
4776               diag::err_template_outside_namespace_or_class_scope)
4777     << TemplateParams->getSourceRange();
4778 }
4779 
4780 /// \brief Determine what kind of template specialization the given declaration
4781 /// is.
getTemplateSpecializationKind(Decl * D)4782 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4783   if (!D)
4784     return TSK_Undeclared;
4785 
4786   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4787     return Record->getTemplateSpecializationKind();
4788   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4789     return Function->getTemplateSpecializationKind();
4790   if (VarDecl *Var = dyn_cast<VarDecl>(D))
4791     return Var->getTemplateSpecializationKind();
4792 
4793   return TSK_Undeclared;
4794 }
4795 
4796 /// \brief Check whether a specialization is well-formed in the current
4797 /// context.
4798 ///
4799 /// This routine determines whether a template specialization can be declared
4800 /// in the current context (C++ [temp.expl.spec]p2).
4801 ///
4802 /// \param S the semantic analysis object for which this check is being
4803 /// performed.
4804 ///
4805 /// \param Specialized the entity being specialized or instantiated, which
4806 /// may be a kind of template (class template, function template, etc.) or
4807 /// a member of a class template (member function, static data member,
4808 /// member class).
4809 ///
4810 /// \param PrevDecl the previous declaration of this entity, if any.
4811 ///
4812 /// \param Loc the location of the explicit specialization or instantiation of
4813 /// this entity.
4814 ///
4815 /// \param IsPartialSpecialization whether this is a partial specialization of
4816 /// a class template.
4817 ///
4818 /// \returns true if there was an error that we cannot recover from, false
4819 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)4820 static bool CheckTemplateSpecializationScope(Sema &S,
4821                                              NamedDecl *Specialized,
4822                                              NamedDecl *PrevDecl,
4823                                              SourceLocation Loc,
4824                                              bool IsPartialSpecialization) {
4825   // Keep these "kind" numbers in sync with the %select statements in the
4826   // various diagnostics emitted by this routine.
4827   int EntityKind = 0;
4828   if (isa<ClassTemplateDecl>(Specialized))
4829     EntityKind = IsPartialSpecialization? 1 : 0;
4830   else if (isa<FunctionTemplateDecl>(Specialized))
4831     EntityKind = 2;
4832   else if (isa<CXXMethodDecl>(Specialized))
4833     EntityKind = 3;
4834   else if (isa<VarDecl>(Specialized))
4835     EntityKind = 4;
4836   else if (isa<RecordDecl>(Specialized))
4837     EntityKind = 5;
4838   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4839     EntityKind = 6;
4840   else {
4841     S.Diag(Loc, diag::err_template_spec_unknown_kind)
4842       << S.getLangOpts().CPlusPlus0x;
4843     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4844     return true;
4845   }
4846 
4847   // C++ [temp.expl.spec]p2:
4848   //   An explicit specialization shall be declared in the namespace
4849   //   of which the template is a member, or, for member templates, in
4850   //   the namespace of which the enclosing class or enclosing class
4851   //   template is a member. An explicit specialization of a member
4852   //   function, member class or static data member of a class
4853   //   template shall be declared in the namespace of which the class
4854   //   template is a member. Such a declaration may also be a
4855   //   definition. If the declaration is not a definition, the
4856   //   specialization may be defined later in the name- space in which
4857   //   the explicit specialization was declared, or in a namespace
4858   //   that encloses the one in which the explicit specialization was
4859   //   declared.
4860   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4861     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4862       << Specialized;
4863     return true;
4864   }
4865 
4866   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4867     if (S.getLangOpts().MicrosoftExt) {
4868       // Do not warn for class scope explicit specialization during
4869       // instantiation, warning was already emitted during pattern
4870       // semantic analysis.
4871       if (!S.ActiveTemplateInstantiations.size())
4872         S.Diag(Loc, diag::ext_function_specialization_in_class)
4873           << Specialized;
4874     } else {
4875       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4876         << Specialized;
4877       return true;
4878     }
4879   }
4880 
4881   if (S.CurContext->isRecord() &&
4882       !S.CurContext->Equals(Specialized->getDeclContext())) {
4883     // Make sure that we're specializing in the right record context.
4884     // Otherwise, things can go horribly wrong.
4885     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4886       << Specialized;
4887     return true;
4888   }
4889 
4890   // C++ [temp.class.spec]p6:
4891   //   A class template partial specialization may be declared or redeclared
4892   //   in any namespace scope in which its definition may be defined (14.5.1
4893   //   and 14.5.2).
4894   bool ComplainedAboutScope = false;
4895   DeclContext *SpecializedContext
4896     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4897   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4898   if ((!PrevDecl ||
4899        getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4900        getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4901     // C++ [temp.exp.spec]p2:
4902     //   An explicit specialization shall be declared in the namespace of which
4903     //   the template is a member, or, for member templates, in the namespace
4904     //   of which the enclosing class or enclosing class template is a member.
4905     //   An explicit specialization of a member function, member class or
4906     //   static data member of a class template shall be declared in the
4907     //   namespace of which the class template is a member.
4908     //
4909     // C++0x [temp.expl.spec]p2:
4910     //   An explicit specialization shall be declared in a namespace enclosing
4911     //   the specialized template.
4912     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4913       bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4914       if (isa<TranslationUnitDecl>(SpecializedContext)) {
4915         assert(!IsCPlusPlus0xExtension &&
4916                "DC encloses TU but isn't in enclosing namespace set");
4917         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4918           << EntityKind << Specialized;
4919       } else if (isa<NamespaceDecl>(SpecializedContext)) {
4920         int Diag;
4921         if (!IsCPlusPlus0xExtension)
4922           Diag = diag::err_template_spec_decl_out_of_scope;
4923         else if (!S.getLangOpts().CPlusPlus0x)
4924           Diag = diag::ext_template_spec_decl_out_of_scope;
4925         else
4926           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4927         S.Diag(Loc, Diag)
4928           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4929       }
4930 
4931       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4932       ComplainedAboutScope =
4933         !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
4934     }
4935   }
4936 
4937   // Make sure that this redeclaration (or definition) occurs in an enclosing
4938   // namespace.
4939   // Note that HandleDeclarator() performs this check for explicit
4940   // specializations of function templates, static data members, and member
4941   // functions, so we skip the check here for those kinds of entities.
4942   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4943   // Should we refactor that check, so that it occurs later?
4944   if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4945       !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4946         isa<FunctionDecl>(Specialized))) {
4947     if (isa<TranslationUnitDecl>(SpecializedContext))
4948       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4949         << EntityKind << Specialized;
4950     else if (isa<NamespaceDecl>(SpecializedContext))
4951       S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4952         << EntityKind << Specialized
4953         << cast<NamedDecl>(SpecializedContext);
4954 
4955     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4956   }
4957 
4958   // FIXME: check for specialization-after-instantiation errors and such.
4959 
4960   return false;
4961 }
4962 
4963 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4964 /// that checks non-type template partial specialization arguments.
CheckNonTypeClassTemplatePartialSpecializationArgs(Sema & S,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs)4965 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4966                                                 NonTypeTemplateParmDecl *Param,
4967                                                   const TemplateArgument *Args,
4968                                                         unsigned NumArgs) {
4969   for (unsigned I = 0; I != NumArgs; ++I) {
4970     if (Args[I].getKind() == TemplateArgument::Pack) {
4971       if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4972                                                            Args[I].pack_begin(),
4973                                                            Args[I].pack_size()))
4974         return true;
4975 
4976       continue;
4977     }
4978 
4979     Expr *ArgExpr = Args[I].getAsExpr();
4980     if (!ArgExpr) {
4981       continue;
4982     }
4983 
4984     // We can have a pack expansion of any of the bullets below.
4985     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4986       ArgExpr = Expansion->getPattern();
4987 
4988     // Strip off any implicit casts we added as part of type checking.
4989     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4990       ArgExpr = ICE->getSubExpr();
4991 
4992     // C++ [temp.class.spec]p8:
4993     //   A non-type argument is non-specialized if it is the name of a
4994     //   non-type parameter. All other non-type arguments are
4995     //   specialized.
4996     //
4997     // Below, we check the two conditions that only apply to
4998     // specialized non-type arguments, so skip any non-specialized
4999     // arguments.
5000     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5001       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5002         continue;
5003 
5004     // C++ [temp.class.spec]p9:
5005     //   Within the argument list of a class template partial
5006     //   specialization, the following restrictions apply:
5007     //     -- A partially specialized non-type argument expression
5008     //        shall not involve a template parameter of the partial
5009     //        specialization except when the argument expression is a
5010     //        simple identifier.
5011     if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5012       S.Diag(ArgExpr->getLocStart(),
5013            diag::err_dependent_non_type_arg_in_partial_spec)
5014         << ArgExpr->getSourceRange();
5015       return true;
5016     }
5017 
5018     //     -- The type of a template parameter corresponding to a
5019     //        specialized non-type argument shall not be dependent on a
5020     //        parameter of the specialization.
5021     if (Param->getType()->isDependentType()) {
5022       S.Diag(ArgExpr->getLocStart(),
5023            diag::err_dependent_typed_non_type_arg_in_partial_spec)
5024         << Param->getType()
5025         << ArgExpr->getSourceRange();
5026       S.Diag(Param->getLocation(), diag::note_template_param_here);
5027       return true;
5028     }
5029   }
5030 
5031   return false;
5032 }
5033 
5034 /// \brief Check the non-type template arguments of a class template
5035 /// partial specialization according to C++ [temp.class.spec]p9.
5036 ///
5037 /// \param TemplateParams the template parameters of the primary class
5038 /// template.
5039 ///
5040 /// \param TemplateArg the template arguments of the class template
5041 /// partial specialization.
5042 ///
5043 /// \returns true if there was an error, false otherwise.
CheckClassTemplatePartialSpecializationArgs(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<TemplateArgument> & TemplateArgs)5044 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5045                                         TemplateParameterList *TemplateParams,
5046                        SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5047   const TemplateArgument *ArgList = TemplateArgs.data();
5048 
5049   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5050     NonTypeTemplateParmDecl *Param
5051       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5052     if (!Param)
5053       continue;
5054 
5055     if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5056                                                            &ArgList[I], 1))
5057       return true;
5058   }
5059 
5060   return false;
5061 }
5062 
5063 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)5064 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5065                                        TagUseKind TUK,
5066                                        SourceLocation KWLoc,
5067                                        SourceLocation ModulePrivateLoc,
5068                                        CXXScopeSpec &SS,
5069                                        TemplateTy TemplateD,
5070                                        SourceLocation TemplateNameLoc,
5071                                        SourceLocation LAngleLoc,
5072                                        ASTTemplateArgsPtr TemplateArgsIn,
5073                                        SourceLocation RAngleLoc,
5074                                        AttributeList *Attr,
5075                                MultiTemplateParamsArg TemplateParameterLists) {
5076   assert(TUK != TUK_Reference && "References are not specializations");
5077 
5078   // NOTE: KWLoc is the location of the tag keyword. This will instead
5079   // store the location of the outermost template keyword in the declaration.
5080   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5081     ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
5082 
5083   // Find the class template we're specializing
5084   TemplateName Name = TemplateD.getAsVal<TemplateName>();
5085   ClassTemplateDecl *ClassTemplate
5086     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5087 
5088   if (!ClassTemplate) {
5089     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5090       << (Name.getAsTemplateDecl() &&
5091           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5092     return true;
5093   }
5094 
5095   bool isExplicitSpecialization = false;
5096   bool isPartialSpecialization = false;
5097 
5098   // Check the validity of the template headers that introduce this
5099   // template.
5100   // FIXME: We probably shouldn't complain about these headers for
5101   // friend declarations.
5102   bool Invalid = false;
5103   TemplateParameterList *TemplateParams
5104     = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5105                                               TemplateNameLoc,
5106                                               SS,
5107                         (TemplateParameterList**)TemplateParameterLists.get(),
5108                                               TemplateParameterLists.size(),
5109                                               TUK == TUK_Friend,
5110                                               isExplicitSpecialization,
5111                                               Invalid);
5112   if (Invalid)
5113     return true;
5114 
5115   if (TemplateParams && TemplateParams->size() > 0) {
5116     isPartialSpecialization = true;
5117 
5118     if (TUK == TUK_Friend) {
5119       Diag(KWLoc, diag::err_partial_specialization_friend)
5120         << SourceRange(LAngleLoc, RAngleLoc);
5121       return true;
5122     }
5123 
5124     // C++ [temp.class.spec]p10:
5125     //   The template parameter list of a specialization shall not
5126     //   contain default template argument values.
5127     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5128       Decl *Param = TemplateParams->getParam(I);
5129       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5130         if (TTP->hasDefaultArgument()) {
5131           Diag(TTP->getDefaultArgumentLoc(),
5132                diag::err_default_arg_in_partial_spec);
5133           TTP->removeDefaultArgument();
5134         }
5135       } else if (NonTypeTemplateParmDecl *NTTP
5136                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5137         if (Expr *DefArg = NTTP->getDefaultArgument()) {
5138           Diag(NTTP->getDefaultArgumentLoc(),
5139                diag::err_default_arg_in_partial_spec)
5140             << DefArg->getSourceRange();
5141           NTTP->removeDefaultArgument();
5142         }
5143       } else {
5144         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5145         if (TTP->hasDefaultArgument()) {
5146           Diag(TTP->getDefaultArgument().getLocation(),
5147                diag::err_default_arg_in_partial_spec)
5148             << TTP->getDefaultArgument().getSourceRange();
5149           TTP->removeDefaultArgument();
5150         }
5151       }
5152     }
5153   } else if (TemplateParams) {
5154     if (TUK == TUK_Friend)
5155       Diag(KWLoc, diag::err_template_spec_friend)
5156         << FixItHint::CreateRemoval(
5157                                 SourceRange(TemplateParams->getTemplateLoc(),
5158                                             TemplateParams->getRAngleLoc()))
5159         << SourceRange(LAngleLoc, RAngleLoc);
5160     else
5161       isExplicitSpecialization = true;
5162   } else if (TUK != TUK_Friend) {
5163     Diag(KWLoc, diag::err_template_spec_needs_header)
5164       << FixItHint::CreateInsertion(KWLoc, "template<> ");
5165     isExplicitSpecialization = true;
5166   }
5167 
5168   // Check that the specialization uses the same tag kind as the
5169   // original template.
5170   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5171   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5172   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5173                                     Kind, TUK == TUK_Definition, KWLoc,
5174                                     *ClassTemplate->getIdentifier())) {
5175     Diag(KWLoc, diag::err_use_with_wrong_tag)
5176       << ClassTemplate
5177       << FixItHint::CreateReplacement(KWLoc,
5178                             ClassTemplate->getTemplatedDecl()->getKindName());
5179     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5180          diag::note_previous_use);
5181     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5182   }
5183 
5184   // Translate the parser's template argument list in our AST format.
5185   TemplateArgumentListInfo TemplateArgs;
5186   TemplateArgs.setLAngleLoc(LAngleLoc);
5187   TemplateArgs.setRAngleLoc(RAngleLoc);
5188   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5189 
5190   // Check for unexpanded parameter packs in any of the template arguments.
5191   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5192     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5193                                         UPPC_PartialSpecialization))
5194       return true;
5195 
5196   // Check that the template argument list is well-formed for this
5197   // template.
5198   SmallVector<TemplateArgument, 4> Converted;
5199   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5200                                 TemplateArgs, false, Converted))
5201     return true;
5202 
5203   // Find the class template (partial) specialization declaration that
5204   // corresponds to these arguments.
5205   if (isPartialSpecialization) {
5206     if (CheckClassTemplatePartialSpecializationArgs(*this,
5207                                          ClassTemplate->getTemplateParameters(),
5208                                          Converted))
5209       return true;
5210 
5211     bool InstantiationDependent;
5212     if (!Name.isDependent() &&
5213         !TemplateSpecializationType::anyDependentTemplateArguments(
5214                                              TemplateArgs.getArgumentArray(),
5215                                                          TemplateArgs.size(),
5216                                                      InstantiationDependent)) {
5217       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5218         << ClassTemplate->getDeclName();
5219       isPartialSpecialization = false;
5220     }
5221   }
5222 
5223   void *InsertPos = 0;
5224   ClassTemplateSpecializationDecl *PrevDecl = 0;
5225 
5226   if (isPartialSpecialization)
5227     // FIXME: Template parameter list matters, too
5228     PrevDecl
5229       = ClassTemplate->findPartialSpecialization(Converted.data(),
5230                                                  Converted.size(),
5231                                                  InsertPos);
5232   else
5233     PrevDecl
5234       = ClassTemplate->findSpecialization(Converted.data(),
5235                                           Converted.size(), InsertPos);
5236 
5237   ClassTemplateSpecializationDecl *Specialization = 0;
5238 
5239   // Check whether we can declare a class template specialization in
5240   // the current scope.
5241   if (TUK != TUK_Friend &&
5242       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5243                                        TemplateNameLoc,
5244                                        isPartialSpecialization))
5245     return true;
5246 
5247   // The canonical type
5248   QualType CanonType;
5249   if (PrevDecl &&
5250       (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5251                TUK == TUK_Friend)) {
5252     // Since the only prior class template specialization with these
5253     // arguments was referenced but not declared, or we're only
5254     // referencing this specialization as a friend, reuse that
5255     // declaration node as our own, updating its source location and
5256     // the list of outer template parameters to reflect our new declaration.
5257     Specialization = PrevDecl;
5258     Specialization->setLocation(TemplateNameLoc);
5259     if (TemplateParameterLists.size() > 0) {
5260       Specialization->setTemplateParameterListsInfo(Context,
5261                                               TemplateParameterLists.size(),
5262                     (TemplateParameterList**) TemplateParameterLists.release());
5263     }
5264     PrevDecl = 0;
5265     CanonType = Context.getTypeDeclType(Specialization);
5266   } else if (isPartialSpecialization) {
5267     // Build the canonical type that describes the converted template
5268     // arguments of the class template partial specialization.
5269     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5270     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5271                                                       Converted.data(),
5272                                                       Converted.size());
5273 
5274     if (Context.hasSameType(CanonType,
5275                         ClassTemplate->getInjectedClassNameSpecialization())) {
5276       // C++ [temp.class.spec]p9b3:
5277       //
5278       //   -- The argument list of the specialization shall not be identical
5279       //      to the implicit argument list of the primary template.
5280       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5281         << (TUK == TUK_Definition)
5282         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5283       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5284                                 ClassTemplate->getIdentifier(),
5285                                 TemplateNameLoc,
5286                                 Attr,
5287                                 TemplateParams,
5288                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5289                                 TemplateParameterLists.size() - 1,
5290                   (TemplateParameterList**) TemplateParameterLists.release());
5291     }
5292 
5293     // Create a new class template partial specialization declaration node.
5294     ClassTemplatePartialSpecializationDecl *PrevPartial
5295       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5296     unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5297                             : ClassTemplate->getNextPartialSpecSequenceNumber();
5298     ClassTemplatePartialSpecializationDecl *Partial
5299       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5300                                              ClassTemplate->getDeclContext(),
5301                                                        KWLoc, TemplateNameLoc,
5302                                                        TemplateParams,
5303                                                        ClassTemplate,
5304                                                        Converted.data(),
5305                                                        Converted.size(),
5306                                                        TemplateArgs,
5307                                                        CanonType,
5308                                                        PrevPartial,
5309                                                        SequenceNumber);
5310     SetNestedNameSpecifier(Partial, SS);
5311     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5312       Partial->setTemplateParameterListsInfo(Context,
5313                                              TemplateParameterLists.size() - 1,
5314                     (TemplateParameterList**) TemplateParameterLists.release());
5315     }
5316 
5317     if (!PrevPartial)
5318       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5319     Specialization = Partial;
5320 
5321     // If we are providing an explicit specialization of a member class
5322     // template specialization, make a note of that.
5323     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5324       PrevPartial->setMemberSpecialization();
5325 
5326     // Check that all of the template parameters of the class template
5327     // partial specialization are deducible from the template
5328     // arguments. If not, this class template partial specialization
5329     // will never be used.
5330     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5331     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5332                                TemplateParams->getDepth(),
5333                                DeducibleParams);
5334 
5335     if (!DeducibleParams.all()) {
5336       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5337       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5338         << (NumNonDeducible > 1)
5339         << SourceRange(TemplateNameLoc, RAngleLoc);
5340       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5341         if (!DeducibleParams[I]) {
5342           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5343           if (Param->getDeclName())
5344             Diag(Param->getLocation(),
5345                  diag::note_partial_spec_unused_parameter)
5346               << Param->getDeclName();
5347           else
5348             Diag(Param->getLocation(),
5349                  diag::note_partial_spec_unused_parameter)
5350               << "<anonymous>";
5351         }
5352       }
5353     }
5354   } else {
5355     // Create a new class template specialization declaration node for
5356     // this explicit specialization or friend declaration.
5357     Specialization
5358       = ClassTemplateSpecializationDecl::Create(Context, Kind,
5359                                              ClassTemplate->getDeclContext(),
5360                                                 KWLoc, TemplateNameLoc,
5361                                                 ClassTemplate,
5362                                                 Converted.data(),
5363                                                 Converted.size(),
5364                                                 PrevDecl);
5365     SetNestedNameSpecifier(Specialization, SS);
5366     if (TemplateParameterLists.size() > 0) {
5367       Specialization->setTemplateParameterListsInfo(Context,
5368                                               TemplateParameterLists.size(),
5369                     (TemplateParameterList**) TemplateParameterLists.release());
5370     }
5371 
5372     if (!PrevDecl)
5373       ClassTemplate->AddSpecialization(Specialization, InsertPos);
5374 
5375     CanonType = Context.getTypeDeclType(Specialization);
5376   }
5377 
5378   // C++ [temp.expl.spec]p6:
5379   //   If a template, a member template or the member of a class template is
5380   //   explicitly specialized then that specialization shall be declared
5381   //   before the first use of that specialization that would cause an implicit
5382   //   instantiation to take place, in every translation unit in which such a
5383   //   use occurs; no diagnostic is required.
5384   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5385     bool Okay = false;
5386     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5387       // Is there any previous explicit specialization declaration?
5388       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5389         Okay = true;
5390         break;
5391       }
5392     }
5393 
5394     if (!Okay) {
5395       SourceRange Range(TemplateNameLoc, RAngleLoc);
5396       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5397         << Context.getTypeDeclType(Specialization) << Range;
5398 
5399       Diag(PrevDecl->getPointOfInstantiation(),
5400            diag::note_instantiation_required_here)
5401         << (PrevDecl->getTemplateSpecializationKind()
5402                                                 != TSK_ImplicitInstantiation);
5403       return true;
5404     }
5405   }
5406 
5407   // If this is not a friend, note that this is an explicit specialization.
5408   if (TUK != TUK_Friend)
5409     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5410 
5411   // Check that this isn't a redefinition of this specialization.
5412   if (TUK == TUK_Definition) {
5413     if (RecordDecl *Def = Specialization->getDefinition()) {
5414       SourceRange Range(TemplateNameLoc, RAngleLoc);
5415       Diag(TemplateNameLoc, diag::err_redefinition)
5416         << Context.getTypeDeclType(Specialization) << Range;
5417       Diag(Def->getLocation(), diag::note_previous_definition);
5418       Specialization->setInvalidDecl();
5419       return true;
5420     }
5421   }
5422 
5423   if (Attr)
5424     ProcessDeclAttributeList(S, Specialization, Attr);
5425 
5426   if (ModulePrivateLoc.isValid())
5427     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5428       << (isPartialSpecialization? 1 : 0)
5429       << FixItHint::CreateRemoval(ModulePrivateLoc);
5430 
5431   // Build the fully-sugared type for this class template
5432   // specialization as the user wrote in the specialization
5433   // itself. This means that we'll pretty-print the type retrieved
5434   // from the specialization's declaration the way that the user
5435   // actually wrote the specialization, rather than formatting the
5436   // name based on the "canonical" representation used to store the
5437   // template arguments in the specialization.
5438   TypeSourceInfo *WrittenTy
5439     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5440                                                 TemplateArgs, CanonType);
5441   if (TUK != TUK_Friend) {
5442     Specialization->setTypeAsWritten(WrittenTy);
5443     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5444   }
5445   TemplateArgsIn.release();
5446 
5447   // C++ [temp.expl.spec]p9:
5448   //   A template explicit specialization is in the scope of the
5449   //   namespace in which the template was defined.
5450   //
5451   // We actually implement this paragraph where we set the semantic
5452   // context (in the creation of the ClassTemplateSpecializationDecl),
5453   // but we also maintain the lexical context where the actual
5454   // definition occurs.
5455   Specialization->setLexicalDeclContext(CurContext);
5456 
5457   // We may be starting the definition of this specialization.
5458   if (TUK == TUK_Definition)
5459     Specialization->startDefinition();
5460 
5461   if (TUK == TUK_Friend) {
5462     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5463                                             TemplateNameLoc,
5464                                             WrittenTy,
5465                                             /*FIXME:*/KWLoc);
5466     Friend->setAccess(AS_public);
5467     CurContext->addDecl(Friend);
5468   } else {
5469     // Add the specialization into its lexical context, so that it can
5470     // be seen when iterating through the list of declarations in that
5471     // context. However, specializations are not found by name lookup.
5472     CurContext->addDecl(Specialization);
5473   }
5474   return Specialization;
5475 }
5476 
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5477 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5478                               MultiTemplateParamsArg TemplateParameterLists,
5479                                     Declarator &D) {
5480   return HandleDeclarator(S, D, move(TemplateParameterLists));
5481 }
5482 
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5483 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5484                                MultiTemplateParamsArg TemplateParameterLists,
5485                                             Declarator &D) {
5486   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5487   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5488 
5489   if (FTI.hasPrototype) {
5490     // FIXME: Diagnose arguments without names in C.
5491   }
5492 
5493   Scope *ParentScope = FnBodyScope->getParent();
5494 
5495   D.setFunctionDefinitionKind(FDK_Definition);
5496   Decl *DP = HandleDeclarator(ParentScope, D,
5497                               move(TemplateParameterLists));
5498   if (FunctionTemplateDecl *FunctionTemplate
5499         = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5500     return ActOnStartOfFunctionDef(FnBodyScope,
5501                                    FunctionTemplate->getTemplatedDecl());
5502   if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5503     return ActOnStartOfFunctionDef(FnBodyScope, Function);
5504   return 0;
5505 }
5506 
5507 /// \brief Strips various properties off an implicit instantiation
5508 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)5509 static void StripImplicitInstantiation(NamedDecl *D) {
5510   // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5511   D->dropAttrs();
5512 
5513   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5514     FD->setInlineSpecified(false);
5515   }
5516 }
5517 
5518 /// \brief Compute the diagnostic location for an explicit instantiation
5519 //  declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)5520 static SourceLocation DiagLocForExplicitInstantiation(
5521     NamedDecl* D, SourceLocation PointOfInstantiation) {
5522   // Explicit instantiations following a specialization have no effect and
5523   // hence no PointOfInstantiation. In that case, walk decl backwards
5524   // until a valid name loc is found.
5525   SourceLocation PrevDiagLoc = PointOfInstantiation;
5526   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5527        Prev = Prev->getPreviousDecl()) {
5528     PrevDiagLoc = Prev->getLocation();
5529   }
5530   assert(PrevDiagLoc.isValid() &&
5531          "Explicit instantiation without point of instantiation?");
5532   return PrevDiagLoc;
5533 }
5534 
5535 /// \brief Diagnose cases where we have an explicit template specialization
5536 /// before/after an explicit template instantiation, producing diagnostics
5537 /// for those cases where they are required and determining whether the
5538 /// new specialization/instantiation will have any effect.
5539 ///
5540 /// \param NewLoc the location of the new explicit specialization or
5541 /// instantiation.
5542 ///
5543 /// \param NewTSK the kind of the new explicit specialization or instantiation.
5544 ///
5545 /// \param PrevDecl the previous declaration of the entity.
5546 ///
5547 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5548 ///
5549 /// \param PrevPointOfInstantiation if valid, indicates where the previus
5550 /// declaration was instantiated (either implicitly or explicitly).
5551 ///
5552 /// \param HasNoEffect will be set to true to indicate that the new
5553 /// specialization or instantiation has no effect and should be ignored.
5554 ///
5555 /// \returns true if there was an error that should prevent the introduction of
5556 /// the new declaration into the AST, false otherwise.
5557 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)5558 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5559                                              TemplateSpecializationKind NewTSK,
5560                                              NamedDecl *PrevDecl,
5561                                              TemplateSpecializationKind PrevTSK,
5562                                         SourceLocation PrevPointOfInstantiation,
5563                                              bool &HasNoEffect) {
5564   HasNoEffect = false;
5565 
5566   switch (NewTSK) {
5567   case TSK_Undeclared:
5568   case TSK_ImplicitInstantiation:
5569     llvm_unreachable("Don't check implicit instantiations here");
5570 
5571   case TSK_ExplicitSpecialization:
5572     switch (PrevTSK) {
5573     case TSK_Undeclared:
5574     case TSK_ExplicitSpecialization:
5575       // Okay, we're just specializing something that is either already
5576       // explicitly specialized or has merely been mentioned without any
5577       // instantiation.
5578       return false;
5579 
5580     case TSK_ImplicitInstantiation:
5581       if (PrevPointOfInstantiation.isInvalid()) {
5582         // The declaration itself has not actually been instantiated, so it is
5583         // still okay to specialize it.
5584         StripImplicitInstantiation(PrevDecl);
5585         return false;
5586       }
5587       // Fall through
5588 
5589     case TSK_ExplicitInstantiationDeclaration:
5590     case TSK_ExplicitInstantiationDefinition:
5591       assert((PrevTSK == TSK_ImplicitInstantiation ||
5592               PrevPointOfInstantiation.isValid()) &&
5593              "Explicit instantiation without point of instantiation?");
5594 
5595       // C++ [temp.expl.spec]p6:
5596       //   If a template, a member template or the member of a class template
5597       //   is explicitly specialized then that specialization shall be declared
5598       //   before the first use of that specialization that would cause an
5599       //   implicit instantiation to take place, in every translation unit in
5600       //   which such a use occurs; no diagnostic is required.
5601       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5602         // Is there any previous explicit specialization declaration?
5603         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5604           return false;
5605       }
5606 
5607       Diag(NewLoc, diag::err_specialization_after_instantiation)
5608         << PrevDecl;
5609       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5610         << (PrevTSK != TSK_ImplicitInstantiation);
5611 
5612       return true;
5613     }
5614 
5615   case TSK_ExplicitInstantiationDeclaration:
5616     switch (PrevTSK) {
5617     case TSK_ExplicitInstantiationDeclaration:
5618       // This explicit instantiation declaration is redundant (that's okay).
5619       HasNoEffect = true;
5620       return false;
5621 
5622     case TSK_Undeclared:
5623     case TSK_ImplicitInstantiation:
5624       // We're explicitly instantiating something that may have already been
5625       // implicitly instantiated; that's fine.
5626       return false;
5627 
5628     case TSK_ExplicitSpecialization:
5629       // C++0x [temp.explicit]p4:
5630       //   For a given set of template parameters, if an explicit instantiation
5631       //   of a template appears after a declaration of an explicit
5632       //   specialization for that template, the explicit instantiation has no
5633       //   effect.
5634       HasNoEffect = true;
5635       return false;
5636 
5637     case TSK_ExplicitInstantiationDefinition:
5638       // C++0x [temp.explicit]p10:
5639       //   If an entity is the subject of both an explicit instantiation
5640       //   declaration and an explicit instantiation definition in the same
5641       //   translation unit, the definition shall follow the declaration.
5642       Diag(NewLoc,
5643            diag::err_explicit_instantiation_declaration_after_definition);
5644 
5645       // Explicit instantiations following a specialization have no effect and
5646       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5647       // until a valid name loc is found.
5648       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5649            diag::note_explicit_instantiation_definition_here);
5650       HasNoEffect = true;
5651       return false;
5652     }
5653 
5654   case TSK_ExplicitInstantiationDefinition:
5655     switch (PrevTSK) {
5656     case TSK_Undeclared:
5657     case TSK_ImplicitInstantiation:
5658       // We're explicitly instantiating something that may have already been
5659       // implicitly instantiated; that's fine.
5660       return false;
5661 
5662     case TSK_ExplicitSpecialization:
5663       // C++ DR 259, C++0x [temp.explicit]p4:
5664       //   For a given set of template parameters, if an explicit
5665       //   instantiation of a template appears after a declaration of
5666       //   an explicit specialization for that template, the explicit
5667       //   instantiation has no effect.
5668       //
5669       // In C++98/03 mode, we only give an extension warning here, because it
5670       // is not harmful to try to explicitly instantiate something that
5671       // has been explicitly specialized.
5672       Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5673            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5674            diag::ext_explicit_instantiation_after_specialization)
5675         << PrevDecl;
5676       Diag(PrevDecl->getLocation(),
5677            diag::note_previous_template_specialization);
5678       HasNoEffect = true;
5679       return false;
5680 
5681     case TSK_ExplicitInstantiationDeclaration:
5682       // We're explicity instantiating a definition for something for which we
5683       // were previously asked to suppress instantiations. That's fine.
5684 
5685       // C++0x [temp.explicit]p4:
5686       //   For a given set of template parameters, if an explicit instantiation
5687       //   of a template appears after a declaration of an explicit
5688       //   specialization for that template, the explicit instantiation has no
5689       //   effect.
5690       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5691         // Is there any previous explicit specialization declaration?
5692         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5693           HasNoEffect = true;
5694           break;
5695         }
5696       }
5697 
5698       return false;
5699 
5700     case TSK_ExplicitInstantiationDefinition:
5701       // C++0x [temp.spec]p5:
5702       //   For a given template and a given set of template-arguments,
5703       //     - an explicit instantiation definition shall appear at most once
5704       //       in a program,
5705       Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5706         << PrevDecl;
5707       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5708            diag::note_previous_explicit_instantiation);
5709       HasNoEffect = true;
5710       return false;
5711     }
5712   }
5713 
5714   llvm_unreachable("Missing specialization/instantiation case?");
5715 }
5716 
5717 /// \brief Perform semantic analysis for the given dependent function
5718 /// template specialization.  The only possible way to get a dependent
5719 /// function template specialization is with a friend declaration,
5720 /// like so:
5721 ///
5722 ///   template <class T> void foo(T);
5723 ///   template <class T> class A {
5724 ///     friend void foo<>(T);
5725 ///   };
5726 ///
5727 /// There really isn't any useful analysis we can do here, so we
5728 /// just store the information.
5729 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)5730 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5731                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
5732                                                    LookupResult &Previous) {
5733   // Remove anything from Previous that isn't a function template in
5734   // the correct context.
5735   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5736   LookupResult::Filter F = Previous.makeFilter();
5737   while (F.hasNext()) {
5738     NamedDecl *D = F.next()->getUnderlyingDecl();
5739     if (!isa<FunctionTemplateDecl>(D) ||
5740         !FDLookupContext->InEnclosingNamespaceSetOf(
5741                               D->getDeclContext()->getRedeclContext()))
5742       F.erase();
5743   }
5744   F.done();
5745 
5746   // Should this be diagnosed here?
5747   if (Previous.empty()) return true;
5748 
5749   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5750                                          ExplicitTemplateArgs);
5751   return false;
5752 }
5753 
5754 /// \brief Perform semantic analysis for the given function template
5755 /// specialization.
5756 ///
5757 /// This routine performs all of the semantic analysis required for an
5758 /// explicit function template specialization. On successful completion,
5759 /// the function declaration \p FD will become a function template
5760 /// specialization.
5761 ///
5762 /// \param FD the function declaration, which will be updated to become a
5763 /// function template specialization.
5764 ///
5765 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5766 /// if any. Note that this may be valid info even when 0 arguments are
5767 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5768 /// as it anyway contains info on the angle brackets locations.
5769 ///
5770 /// \param Previous the set of declarations that may be specialized by
5771 /// this function specialization.
5772 bool
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)5773 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5774                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
5775                                           LookupResult &Previous) {
5776   // The set of function template specializations that could match this
5777   // explicit function template specialization.
5778   UnresolvedSet<8> Candidates;
5779 
5780   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5781   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5782          I != E; ++I) {
5783     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5784     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5785       // Only consider templates found within the same semantic lookup scope as
5786       // FD.
5787       if (!FDLookupContext->InEnclosingNamespaceSetOf(
5788                                 Ovl->getDeclContext()->getRedeclContext()))
5789         continue;
5790 
5791       // C++ [temp.expl.spec]p11:
5792       //   A trailing template-argument can be left unspecified in the
5793       //   template-id naming an explicit function template specialization
5794       //   provided it can be deduced from the function argument type.
5795       // Perform template argument deduction to determine whether we may be
5796       // specializing this template.
5797       // FIXME: It is somewhat wasteful to build
5798       TemplateDeductionInfo Info(Context, FD->getLocation());
5799       FunctionDecl *Specialization = 0;
5800       if (TemplateDeductionResult TDK
5801             = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5802                                       FD->getType(),
5803                                       Specialization,
5804                                       Info)) {
5805         // FIXME: Template argument deduction failed; record why it failed, so
5806         // that we can provide nifty diagnostics.
5807         (void)TDK;
5808         continue;
5809       }
5810 
5811       // Record this candidate.
5812       Candidates.addDecl(Specialization, I.getAccess());
5813     }
5814   }
5815 
5816   // Find the most specialized function template.
5817   UnresolvedSetIterator Result
5818     = getMostSpecialized(Candidates.begin(), Candidates.end(),
5819                          TPOC_Other, 0, FD->getLocation(),
5820                   PDiag(diag::err_function_template_spec_no_match)
5821                     << FD->getDeclName(),
5822                   PDiag(diag::err_function_template_spec_ambiguous)
5823                     << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5824                   PDiag(diag::note_function_template_spec_matched));
5825   if (Result == Candidates.end())
5826     return true;
5827 
5828   // Ignore access information;  it doesn't figure into redeclaration checking.
5829   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5830 
5831   FunctionTemplateSpecializationInfo *SpecInfo
5832     = Specialization->getTemplateSpecializationInfo();
5833   assert(SpecInfo && "Function template specialization info missing?");
5834 
5835   // Note: do not overwrite location info if previous template
5836   // specialization kind was explicit.
5837   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5838   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5839     Specialization->setLocation(FD->getLocation());
5840     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5841     // function can differ from the template declaration with respect to
5842     // the constexpr specifier.
5843     Specialization->setConstexpr(FD->isConstexpr());
5844   }
5845 
5846   // FIXME: Check if the prior specialization has a point of instantiation.
5847   // If so, we have run afoul of .
5848 
5849   // If this is a friend declaration, then we're not really declaring
5850   // an explicit specialization.
5851   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5852 
5853   // Check the scope of this explicit specialization.
5854   if (!isFriend &&
5855       CheckTemplateSpecializationScope(*this,
5856                                        Specialization->getPrimaryTemplate(),
5857                                        Specialization, FD->getLocation(),
5858                                        false))
5859     return true;
5860 
5861   // C++ [temp.expl.spec]p6:
5862   //   If a template, a member template or the member of a class template is
5863   //   explicitly specialized then that specialization shall be declared
5864   //   before the first use of that specialization that would cause an implicit
5865   //   instantiation to take place, in every translation unit in which such a
5866   //   use occurs; no diagnostic is required.
5867   bool HasNoEffect = false;
5868   if (!isFriend &&
5869       CheckSpecializationInstantiationRedecl(FD->getLocation(),
5870                                              TSK_ExplicitSpecialization,
5871                                              Specialization,
5872                                    SpecInfo->getTemplateSpecializationKind(),
5873                                          SpecInfo->getPointOfInstantiation(),
5874                                              HasNoEffect))
5875     return true;
5876 
5877   // Mark the prior declaration as an explicit specialization, so that later
5878   // clients know that this is an explicit specialization.
5879   if (!isFriend) {
5880     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5881     MarkUnusedFileScopedDecl(Specialization);
5882   }
5883 
5884   // Turn the given function declaration into a function template
5885   // specialization, with the template arguments from the previous
5886   // specialization.
5887   // Take copies of (semantic and syntactic) template argument lists.
5888   const TemplateArgumentList* TemplArgs = new (Context)
5889     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5890   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5891                                         TemplArgs, /*InsertPos=*/0,
5892                                     SpecInfo->getTemplateSpecializationKind(),
5893                                         ExplicitTemplateArgs);
5894   FD->setStorageClass(Specialization->getStorageClass());
5895 
5896   // The "previous declaration" for this function template specialization is
5897   // the prior function template specialization.
5898   Previous.clear();
5899   Previous.addDecl(Specialization);
5900   return false;
5901 }
5902 
5903 /// \brief Perform semantic analysis for the given non-template member
5904 /// specialization.
5905 ///
5906 /// This routine performs all of the semantic analysis required for an
5907 /// explicit member function specialization. On successful completion,
5908 /// the function declaration \p FD will become a member function
5909 /// specialization.
5910 ///
5911 /// \param Member the member declaration, which will be updated to become a
5912 /// specialization.
5913 ///
5914 /// \param Previous the set of declarations, one of which may be specialized
5915 /// by this function specialization;  the set will be modified to contain the
5916 /// redeclared member.
5917 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)5918 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5919   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5920 
5921   // Try to find the member we are instantiating.
5922   NamedDecl *Instantiation = 0;
5923   NamedDecl *InstantiatedFrom = 0;
5924   MemberSpecializationInfo *MSInfo = 0;
5925 
5926   if (Previous.empty()) {
5927     // Nowhere to look anyway.
5928   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5929     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5930            I != E; ++I) {
5931       NamedDecl *D = (*I)->getUnderlyingDecl();
5932       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5933         if (Context.hasSameType(Function->getType(), Method->getType())) {
5934           Instantiation = Method;
5935           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5936           MSInfo = Method->getMemberSpecializationInfo();
5937           break;
5938         }
5939       }
5940     }
5941   } else if (isa<VarDecl>(Member)) {
5942     VarDecl *PrevVar;
5943     if (Previous.isSingleResult() &&
5944         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5945       if (PrevVar->isStaticDataMember()) {
5946         Instantiation = PrevVar;
5947         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5948         MSInfo = PrevVar->getMemberSpecializationInfo();
5949       }
5950   } else if (isa<RecordDecl>(Member)) {
5951     CXXRecordDecl *PrevRecord;
5952     if (Previous.isSingleResult() &&
5953         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5954       Instantiation = PrevRecord;
5955       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5956       MSInfo = PrevRecord->getMemberSpecializationInfo();
5957     }
5958   } else if (isa<EnumDecl>(Member)) {
5959     EnumDecl *PrevEnum;
5960     if (Previous.isSingleResult() &&
5961         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
5962       Instantiation = PrevEnum;
5963       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
5964       MSInfo = PrevEnum->getMemberSpecializationInfo();
5965     }
5966   }
5967 
5968   if (!Instantiation) {
5969     // There is no previous declaration that matches. Since member
5970     // specializations are always out-of-line, the caller will complain about
5971     // this mismatch later.
5972     return false;
5973   }
5974 
5975   // If this is a friend, just bail out here before we start turning
5976   // things into explicit specializations.
5977   if (Member->getFriendObjectKind() != Decl::FOK_None) {
5978     // Preserve instantiation information.
5979     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5980       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5981                                       cast<CXXMethodDecl>(InstantiatedFrom),
5982         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5983     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5984       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5985                                       cast<CXXRecordDecl>(InstantiatedFrom),
5986         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5987     }
5988 
5989     Previous.clear();
5990     Previous.addDecl(Instantiation);
5991     return false;
5992   }
5993 
5994   // Make sure that this is a specialization of a member.
5995   if (!InstantiatedFrom) {
5996     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5997       << Member;
5998     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5999     return true;
6000   }
6001 
6002   // C++ [temp.expl.spec]p6:
6003   //   If a template, a member template or the member of a class template is
6004   //   explicitly specialized then that specialization shall be declared
6005   //   before the first use of that specialization that would cause an implicit
6006   //   instantiation to take place, in every translation unit in which such a
6007   //   use occurs; no diagnostic is required.
6008   assert(MSInfo && "Member specialization info missing?");
6009 
6010   bool HasNoEffect = false;
6011   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6012                                              TSK_ExplicitSpecialization,
6013                                              Instantiation,
6014                                      MSInfo->getTemplateSpecializationKind(),
6015                                            MSInfo->getPointOfInstantiation(),
6016                                              HasNoEffect))
6017     return true;
6018 
6019   // Check the scope of this explicit specialization.
6020   if (CheckTemplateSpecializationScope(*this,
6021                                        InstantiatedFrom,
6022                                        Instantiation, Member->getLocation(),
6023                                        false))
6024     return true;
6025 
6026   // Note that this is an explicit instantiation of a member.
6027   // the original declaration to note that it is an explicit specialization
6028   // (if it was previously an implicit instantiation). This latter step
6029   // makes bookkeeping easier.
6030   if (isa<FunctionDecl>(Member)) {
6031     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6032     if (InstantiationFunction->getTemplateSpecializationKind() ==
6033           TSK_ImplicitInstantiation) {
6034       InstantiationFunction->setTemplateSpecializationKind(
6035                                                   TSK_ExplicitSpecialization);
6036       InstantiationFunction->setLocation(Member->getLocation());
6037     }
6038 
6039     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6040                                         cast<CXXMethodDecl>(InstantiatedFrom),
6041                                                   TSK_ExplicitSpecialization);
6042     MarkUnusedFileScopedDecl(InstantiationFunction);
6043   } else if (isa<VarDecl>(Member)) {
6044     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6045     if (InstantiationVar->getTemplateSpecializationKind() ==
6046           TSK_ImplicitInstantiation) {
6047       InstantiationVar->setTemplateSpecializationKind(
6048                                                   TSK_ExplicitSpecialization);
6049       InstantiationVar->setLocation(Member->getLocation());
6050     }
6051 
6052     Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6053                                                 cast<VarDecl>(InstantiatedFrom),
6054                                                 TSK_ExplicitSpecialization);
6055     MarkUnusedFileScopedDecl(InstantiationVar);
6056   } else if (isa<CXXRecordDecl>(Member)) {
6057     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6058     if (InstantiationClass->getTemplateSpecializationKind() ==
6059           TSK_ImplicitInstantiation) {
6060       InstantiationClass->setTemplateSpecializationKind(
6061                                                    TSK_ExplicitSpecialization);
6062       InstantiationClass->setLocation(Member->getLocation());
6063     }
6064 
6065     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6066                                         cast<CXXRecordDecl>(InstantiatedFrom),
6067                                                    TSK_ExplicitSpecialization);
6068   } else {
6069     assert(isa<EnumDecl>(Member) && "Only member enums remain");
6070     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6071     if (InstantiationEnum->getTemplateSpecializationKind() ==
6072           TSK_ImplicitInstantiation) {
6073       InstantiationEnum->setTemplateSpecializationKind(
6074                                                    TSK_ExplicitSpecialization);
6075       InstantiationEnum->setLocation(Member->getLocation());
6076     }
6077 
6078     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6079         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6080   }
6081 
6082   // Save the caller the trouble of having to figure out which declaration
6083   // this specialization matches.
6084   Previous.clear();
6085   Previous.addDecl(Instantiation);
6086   return false;
6087 }
6088 
6089 /// \brief Check the scope of an explicit instantiation.
6090 ///
6091 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)6092 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6093                                             SourceLocation InstLoc,
6094                                             bool WasQualifiedName) {
6095   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6096   DeclContext *CurContext = S.CurContext->getRedeclContext();
6097 
6098   if (CurContext->isRecord()) {
6099     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6100       << D;
6101     return true;
6102   }
6103 
6104   // C++11 [temp.explicit]p3:
6105   //   An explicit instantiation shall appear in an enclosing namespace of its
6106   //   template. If the name declared in the explicit instantiation is an
6107   //   unqualified name, the explicit instantiation shall appear in the
6108   //   namespace where its template is declared or, if that namespace is inline
6109   //   (7.3.1), any namespace from its enclosing namespace set.
6110   //
6111   // This is DR275, which we do not retroactively apply to C++98/03.
6112   if (WasQualifiedName) {
6113     if (CurContext->Encloses(OrigContext))
6114       return false;
6115   } else {
6116     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6117       return false;
6118   }
6119 
6120   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6121     if (WasQualifiedName)
6122       S.Diag(InstLoc,
6123              S.getLangOpts().CPlusPlus0x?
6124                diag::err_explicit_instantiation_out_of_scope :
6125                diag::warn_explicit_instantiation_out_of_scope_0x)
6126         << D << NS;
6127     else
6128       S.Diag(InstLoc,
6129              S.getLangOpts().CPlusPlus0x?
6130                diag::err_explicit_instantiation_unqualified_wrong_namespace :
6131                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6132         << D << NS;
6133   } else
6134     S.Diag(InstLoc,
6135            S.getLangOpts().CPlusPlus0x?
6136              diag::err_explicit_instantiation_must_be_global :
6137              diag::warn_explicit_instantiation_must_be_global_0x)
6138       << D;
6139   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6140   return false;
6141 }
6142 
6143 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)6144 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6145   if (!SS.isSet())
6146     return false;
6147 
6148   // C++11 [temp.explicit]p3:
6149   //   If the explicit instantiation is for a member function, a member class
6150   //   or a static data member of a class template specialization, the name of
6151   //   the class template specialization in the qualified-id for the member
6152   //   name shall be a simple-template-id.
6153   //
6154   // C++98 has the same restriction, just worded differently.
6155   for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6156        NNS; NNS = NNS->getPrefix())
6157     if (const Type *T = NNS->getAsType())
6158       if (isa<TemplateSpecializationType>(T))
6159         return true;
6160 
6161   return false;
6162 }
6163 
6164 // Explicit instantiation of a class template specialization
6165 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)6166 Sema::ActOnExplicitInstantiation(Scope *S,
6167                                  SourceLocation ExternLoc,
6168                                  SourceLocation TemplateLoc,
6169                                  unsigned TagSpec,
6170                                  SourceLocation KWLoc,
6171                                  const CXXScopeSpec &SS,
6172                                  TemplateTy TemplateD,
6173                                  SourceLocation TemplateNameLoc,
6174                                  SourceLocation LAngleLoc,
6175                                  ASTTemplateArgsPtr TemplateArgsIn,
6176                                  SourceLocation RAngleLoc,
6177                                  AttributeList *Attr) {
6178   // Find the class template we're specializing
6179   TemplateName Name = TemplateD.getAsVal<TemplateName>();
6180   ClassTemplateDecl *ClassTemplate
6181     = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6182 
6183   // Check that the specialization uses the same tag kind as the
6184   // original template.
6185   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6186   assert(Kind != TTK_Enum &&
6187          "Invalid enum tag in class template explicit instantiation!");
6188   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6189                                     Kind, /*isDefinition*/false, KWLoc,
6190                                     *ClassTemplate->getIdentifier())) {
6191     Diag(KWLoc, diag::err_use_with_wrong_tag)
6192       << ClassTemplate
6193       << FixItHint::CreateReplacement(KWLoc,
6194                             ClassTemplate->getTemplatedDecl()->getKindName());
6195     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6196          diag::note_previous_use);
6197     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6198   }
6199 
6200   // C++0x [temp.explicit]p2:
6201   //   There are two forms of explicit instantiation: an explicit instantiation
6202   //   definition and an explicit instantiation declaration. An explicit
6203   //   instantiation declaration begins with the extern keyword. [...]
6204   TemplateSpecializationKind TSK
6205     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6206                            : TSK_ExplicitInstantiationDeclaration;
6207 
6208   // Translate the parser's template argument list in our AST format.
6209   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6210   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6211 
6212   // Check that the template argument list is well-formed for this
6213   // template.
6214   SmallVector<TemplateArgument, 4> Converted;
6215   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6216                                 TemplateArgs, false, Converted))
6217     return true;
6218 
6219   // Find the class template specialization declaration that
6220   // corresponds to these arguments.
6221   void *InsertPos = 0;
6222   ClassTemplateSpecializationDecl *PrevDecl
6223     = ClassTemplate->findSpecialization(Converted.data(),
6224                                         Converted.size(), InsertPos);
6225 
6226   TemplateSpecializationKind PrevDecl_TSK
6227     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6228 
6229   // C++0x [temp.explicit]p2:
6230   //   [...] An explicit instantiation shall appear in an enclosing
6231   //   namespace of its template. [...]
6232   //
6233   // This is C++ DR 275.
6234   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6235                                       SS.isSet()))
6236     return true;
6237 
6238   ClassTemplateSpecializationDecl *Specialization = 0;
6239 
6240   bool HasNoEffect = false;
6241   if (PrevDecl) {
6242     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6243                                                PrevDecl, PrevDecl_TSK,
6244                                             PrevDecl->getPointOfInstantiation(),
6245                                                HasNoEffect))
6246       return PrevDecl;
6247 
6248     // Even though HasNoEffect == true means that this explicit instantiation
6249     // has no effect on semantics, we go on to put its syntax in the AST.
6250 
6251     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6252         PrevDecl_TSK == TSK_Undeclared) {
6253       // Since the only prior class template specialization with these
6254       // arguments was referenced but not declared, reuse that
6255       // declaration node as our own, updating the source location
6256       // for the template name to reflect our new declaration.
6257       // (Other source locations will be updated later.)
6258       Specialization = PrevDecl;
6259       Specialization->setLocation(TemplateNameLoc);
6260       PrevDecl = 0;
6261     }
6262   }
6263 
6264   if (!Specialization) {
6265     // Create a new class template specialization declaration node for
6266     // this explicit specialization.
6267     Specialization
6268       = ClassTemplateSpecializationDecl::Create(Context, Kind,
6269                                              ClassTemplate->getDeclContext(),
6270                                                 KWLoc, TemplateNameLoc,
6271                                                 ClassTemplate,
6272                                                 Converted.data(),
6273                                                 Converted.size(),
6274                                                 PrevDecl);
6275     SetNestedNameSpecifier(Specialization, SS);
6276 
6277     if (!HasNoEffect && !PrevDecl) {
6278       // Insert the new specialization.
6279       ClassTemplate->AddSpecialization(Specialization, InsertPos);
6280     }
6281   }
6282 
6283   // Build the fully-sugared type for this explicit instantiation as
6284   // the user wrote in the explicit instantiation itself. This means
6285   // that we'll pretty-print the type retrieved from the
6286   // specialization's declaration the way that the user actually wrote
6287   // the explicit instantiation, rather than formatting the name based
6288   // on the "canonical" representation used to store the template
6289   // arguments in the specialization.
6290   TypeSourceInfo *WrittenTy
6291     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6292                                                 TemplateArgs,
6293                                   Context.getTypeDeclType(Specialization));
6294   Specialization->setTypeAsWritten(WrittenTy);
6295   TemplateArgsIn.release();
6296 
6297   // Set source locations for keywords.
6298   Specialization->setExternLoc(ExternLoc);
6299   Specialization->setTemplateKeywordLoc(TemplateLoc);
6300 
6301   if (Attr)
6302     ProcessDeclAttributeList(S, Specialization, Attr);
6303 
6304   // Add the explicit instantiation into its lexical context. However,
6305   // since explicit instantiations are never found by name lookup, we
6306   // just put it into the declaration context directly.
6307   Specialization->setLexicalDeclContext(CurContext);
6308   CurContext->addDecl(Specialization);
6309 
6310   // Syntax is now OK, so return if it has no other effect on semantics.
6311   if (HasNoEffect) {
6312     // Set the template specialization kind.
6313     Specialization->setTemplateSpecializationKind(TSK);
6314     return Specialization;
6315   }
6316 
6317   // C++ [temp.explicit]p3:
6318   //   A definition of a class template or class member template
6319   //   shall be in scope at the point of the explicit instantiation of
6320   //   the class template or class member template.
6321   //
6322   // This check comes when we actually try to perform the
6323   // instantiation.
6324   ClassTemplateSpecializationDecl *Def
6325     = cast_or_null<ClassTemplateSpecializationDecl>(
6326                                               Specialization->getDefinition());
6327   if (!Def)
6328     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6329   else if (TSK == TSK_ExplicitInstantiationDefinition) {
6330     MarkVTableUsed(TemplateNameLoc, Specialization, true);
6331     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6332   }
6333 
6334   // Instantiate the members of this class template specialization.
6335   Def = cast_or_null<ClassTemplateSpecializationDecl>(
6336                                        Specialization->getDefinition());
6337   if (Def) {
6338     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6339 
6340     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6341     // TSK_ExplicitInstantiationDefinition
6342     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6343         TSK == TSK_ExplicitInstantiationDefinition)
6344       Def->setTemplateSpecializationKind(TSK);
6345 
6346     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6347   }
6348 
6349   // Set the template specialization kind.
6350   Specialization->setTemplateSpecializationKind(TSK);
6351   return Specialization;
6352 }
6353 
6354 // Explicit instantiation of a member class of a class template.
6355 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)6356 Sema::ActOnExplicitInstantiation(Scope *S,
6357                                  SourceLocation ExternLoc,
6358                                  SourceLocation TemplateLoc,
6359                                  unsigned TagSpec,
6360                                  SourceLocation KWLoc,
6361                                  CXXScopeSpec &SS,
6362                                  IdentifierInfo *Name,
6363                                  SourceLocation NameLoc,
6364                                  AttributeList *Attr) {
6365 
6366   bool Owned = false;
6367   bool IsDependent = false;
6368   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6369                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
6370                         /*ModulePrivateLoc=*/SourceLocation(),
6371                         MultiTemplateParamsArg(*this, 0, 0),
6372                         Owned, IsDependent, SourceLocation(), false,
6373                         TypeResult());
6374   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6375 
6376   if (!TagD)
6377     return true;
6378 
6379   TagDecl *Tag = cast<TagDecl>(TagD);
6380   assert(!Tag->isEnum() && "shouldn't see enumerations here");
6381 
6382   if (Tag->isInvalidDecl())
6383     return true;
6384 
6385   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6386   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6387   if (!Pattern) {
6388     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6389       << Context.getTypeDeclType(Record);
6390     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6391     return true;
6392   }
6393 
6394   // C++0x [temp.explicit]p2:
6395   //   If the explicit instantiation is for a class or member class, the
6396   //   elaborated-type-specifier in the declaration shall include a
6397   //   simple-template-id.
6398   //
6399   // C++98 has the same restriction, just worded differently.
6400   if (!ScopeSpecifierHasTemplateId(SS))
6401     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6402       << Record << SS.getRange();
6403 
6404   // C++0x [temp.explicit]p2:
6405   //   There are two forms of explicit instantiation: an explicit instantiation
6406   //   definition and an explicit instantiation declaration. An explicit
6407   //   instantiation declaration begins with the extern keyword. [...]
6408   TemplateSpecializationKind TSK
6409     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6410                            : TSK_ExplicitInstantiationDeclaration;
6411 
6412   // C++0x [temp.explicit]p2:
6413   //   [...] An explicit instantiation shall appear in an enclosing
6414   //   namespace of its template. [...]
6415   //
6416   // This is C++ DR 275.
6417   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6418 
6419   // Verify that it is okay to explicitly instantiate here.
6420   CXXRecordDecl *PrevDecl
6421     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6422   if (!PrevDecl && Record->getDefinition())
6423     PrevDecl = Record;
6424   if (PrevDecl) {
6425     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6426     bool HasNoEffect = false;
6427     assert(MSInfo && "No member specialization information?");
6428     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6429                                                PrevDecl,
6430                                         MSInfo->getTemplateSpecializationKind(),
6431                                              MSInfo->getPointOfInstantiation(),
6432                                                HasNoEffect))
6433       return true;
6434     if (HasNoEffect)
6435       return TagD;
6436   }
6437 
6438   CXXRecordDecl *RecordDef
6439     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6440   if (!RecordDef) {
6441     // C++ [temp.explicit]p3:
6442     //   A definition of a member class of a class template shall be in scope
6443     //   at the point of an explicit instantiation of the member class.
6444     CXXRecordDecl *Def
6445       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6446     if (!Def) {
6447       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6448         << 0 << Record->getDeclName() << Record->getDeclContext();
6449       Diag(Pattern->getLocation(), diag::note_forward_declaration)
6450         << Pattern;
6451       return true;
6452     } else {
6453       if (InstantiateClass(NameLoc, Record, Def,
6454                            getTemplateInstantiationArgs(Record),
6455                            TSK))
6456         return true;
6457 
6458       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6459       if (!RecordDef)
6460         return true;
6461     }
6462   }
6463 
6464   // Instantiate all of the members of the class.
6465   InstantiateClassMembers(NameLoc, RecordDef,
6466                           getTemplateInstantiationArgs(Record), TSK);
6467 
6468   if (TSK == TSK_ExplicitInstantiationDefinition)
6469     MarkVTableUsed(NameLoc, RecordDef, true);
6470 
6471   // FIXME: We don't have any representation for explicit instantiations of
6472   // member classes. Such a representation is not needed for compilation, but it
6473   // should be available for clients that want to see all of the declarations in
6474   // the source code.
6475   return TagD;
6476 }
6477 
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)6478 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6479                                             SourceLocation ExternLoc,
6480                                             SourceLocation TemplateLoc,
6481                                             Declarator &D) {
6482   // Explicit instantiations always require a name.
6483   // TODO: check if/when DNInfo should replace Name.
6484   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6485   DeclarationName Name = NameInfo.getName();
6486   if (!Name) {
6487     if (!D.isInvalidType())
6488       Diag(D.getDeclSpec().getLocStart(),
6489            diag::err_explicit_instantiation_requires_name)
6490         << D.getDeclSpec().getSourceRange()
6491         << D.getSourceRange();
6492 
6493     return true;
6494   }
6495 
6496   // The scope passed in may not be a decl scope.  Zip up the scope tree until
6497   // we find one that is.
6498   while ((S->getFlags() & Scope::DeclScope) == 0 ||
6499          (S->getFlags() & Scope::TemplateParamScope) != 0)
6500     S = S->getParent();
6501 
6502   // Determine the type of the declaration.
6503   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6504   QualType R = T->getType();
6505   if (R.isNull())
6506     return true;
6507 
6508   // C++ [dcl.stc]p1:
6509   //   A storage-class-specifier shall not be specified in [...] an explicit
6510   //   instantiation (14.7.2) directive.
6511   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6512     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6513       << Name;
6514     return true;
6515   } else if (D.getDeclSpec().getStorageClassSpec()
6516                                                 != DeclSpec::SCS_unspecified) {
6517     // Complain about then remove the storage class specifier.
6518     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6519       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6520 
6521     D.getMutableDeclSpec().ClearStorageClassSpecs();
6522   }
6523 
6524   // C++0x [temp.explicit]p1:
6525   //   [...] An explicit instantiation of a function template shall not use the
6526   //   inline or constexpr specifiers.
6527   // Presumably, this also applies to member functions of class templates as
6528   // well.
6529   if (D.getDeclSpec().isInlineSpecified())
6530     Diag(D.getDeclSpec().getInlineSpecLoc(),
6531          getLangOpts().CPlusPlus0x ?
6532            diag::err_explicit_instantiation_inline :
6533            diag::warn_explicit_instantiation_inline_0x)
6534       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6535   if (D.getDeclSpec().isConstexprSpecified())
6536     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6537     // not already specified.
6538     Diag(D.getDeclSpec().getConstexprSpecLoc(),
6539          diag::err_explicit_instantiation_constexpr);
6540 
6541   // C++0x [temp.explicit]p2:
6542   //   There are two forms of explicit instantiation: an explicit instantiation
6543   //   definition and an explicit instantiation declaration. An explicit
6544   //   instantiation declaration begins with the extern keyword. [...]
6545   TemplateSpecializationKind TSK
6546     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6547                            : TSK_ExplicitInstantiationDeclaration;
6548 
6549   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6550   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6551 
6552   if (!R->isFunctionType()) {
6553     // C++ [temp.explicit]p1:
6554     //   A [...] static data member of a class template can be explicitly
6555     //   instantiated from the member definition associated with its class
6556     //   template.
6557     if (Previous.isAmbiguous())
6558       return true;
6559 
6560     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6561     if (!Prev || !Prev->isStaticDataMember()) {
6562       // We expect to see a data data member here.
6563       Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6564         << Name;
6565       for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6566            P != PEnd; ++P)
6567         Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6568       return true;
6569     }
6570 
6571     if (!Prev->getInstantiatedFromStaticDataMember()) {
6572       // FIXME: Check for explicit specialization?
6573       Diag(D.getIdentifierLoc(),
6574            diag::err_explicit_instantiation_data_member_not_instantiated)
6575         << Prev;
6576       Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6577       // FIXME: Can we provide a note showing where this was declared?
6578       return true;
6579     }
6580 
6581     // C++0x [temp.explicit]p2:
6582     //   If the explicit instantiation is for a member function, a member class
6583     //   or a static data member of a class template specialization, the name of
6584     //   the class template specialization in the qualified-id for the member
6585     //   name shall be a simple-template-id.
6586     //
6587     // C++98 has the same restriction, just worded differently.
6588     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6589       Diag(D.getIdentifierLoc(),
6590            diag::ext_explicit_instantiation_without_qualified_id)
6591         << Prev << D.getCXXScopeSpec().getRange();
6592 
6593     // Check the scope of this explicit instantiation.
6594     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6595 
6596     // Verify that it is okay to explicitly instantiate here.
6597     MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6598     assert(MSInfo && "Missing static data member specialization info?");
6599     bool HasNoEffect = false;
6600     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6601                                         MSInfo->getTemplateSpecializationKind(),
6602                                               MSInfo->getPointOfInstantiation(),
6603                                                HasNoEffect))
6604       return true;
6605     if (HasNoEffect)
6606       return (Decl*) 0;
6607 
6608     // Instantiate static data member.
6609     Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6610     if (TSK == TSK_ExplicitInstantiationDefinition)
6611       InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6612 
6613     // FIXME: Create an ExplicitInstantiation node?
6614     return (Decl*) 0;
6615   }
6616 
6617   // If the declarator is a template-id, translate the parser's template
6618   // argument list into our AST format.
6619   bool HasExplicitTemplateArgs = false;
6620   TemplateArgumentListInfo TemplateArgs;
6621   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6622     TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6623     TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6624     TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6625     ASTTemplateArgsPtr TemplateArgsPtr(*this,
6626                                        TemplateId->getTemplateArgs(),
6627                                        TemplateId->NumArgs);
6628     translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6629     HasExplicitTemplateArgs = true;
6630     TemplateArgsPtr.release();
6631   }
6632 
6633   // C++ [temp.explicit]p1:
6634   //   A [...] function [...] can be explicitly instantiated from its template.
6635   //   A member function [...] of a class template can be explicitly
6636   //  instantiated from the member definition associated with its class
6637   //  template.
6638   UnresolvedSet<8> Matches;
6639   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6640        P != PEnd; ++P) {
6641     NamedDecl *Prev = *P;
6642     if (!HasExplicitTemplateArgs) {
6643       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6644         if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6645           Matches.clear();
6646 
6647           Matches.addDecl(Method, P.getAccess());
6648           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6649             break;
6650         }
6651       }
6652     }
6653 
6654     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6655     if (!FunTmpl)
6656       continue;
6657 
6658     TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6659     FunctionDecl *Specialization = 0;
6660     if (TemplateDeductionResult TDK
6661           = DeduceTemplateArguments(FunTmpl,
6662                                (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6663                                     R, Specialization, Info)) {
6664       // FIXME: Keep track of almost-matches?
6665       (void)TDK;
6666       continue;
6667     }
6668 
6669     Matches.addDecl(Specialization, P.getAccess());
6670   }
6671 
6672   // Find the most specialized function template specialization.
6673   UnresolvedSetIterator Result
6674     = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6675                          D.getIdentifierLoc(),
6676                      PDiag(diag::err_explicit_instantiation_not_known) << Name,
6677                      PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6678                          PDiag(diag::note_explicit_instantiation_candidate));
6679 
6680   if (Result == Matches.end())
6681     return true;
6682 
6683   // Ignore access control bits, we don't need them for redeclaration checking.
6684   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6685 
6686   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6687     Diag(D.getIdentifierLoc(),
6688          diag::err_explicit_instantiation_member_function_not_instantiated)
6689       << Specialization
6690       << (Specialization->getTemplateSpecializationKind() ==
6691           TSK_ExplicitSpecialization);
6692     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6693     return true;
6694   }
6695 
6696   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6697   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6698     PrevDecl = Specialization;
6699 
6700   if (PrevDecl) {
6701     bool HasNoEffect = false;
6702     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6703                                                PrevDecl,
6704                                      PrevDecl->getTemplateSpecializationKind(),
6705                                           PrevDecl->getPointOfInstantiation(),
6706                                                HasNoEffect))
6707       return true;
6708 
6709     // FIXME: We may still want to build some representation of this
6710     // explicit specialization.
6711     if (HasNoEffect)
6712       return (Decl*) 0;
6713   }
6714 
6715   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6716   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6717   if (Attr)
6718     ProcessDeclAttributeList(S, Specialization, Attr);
6719 
6720   if (TSK == TSK_ExplicitInstantiationDefinition)
6721     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6722 
6723   // C++0x [temp.explicit]p2:
6724   //   If the explicit instantiation is for a member function, a member class
6725   //   or a static data member of a class template specialization, the name of
6726   //   the class template specialization in the qualified-id for the member
6727   //   name shall be a simple-template-id.
6728   //
6729   // C++98 has the same restriction, just worded differently.
6730   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6731   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6732       D.getCXXScopeSpec().isSet() &&
6733       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6734     Diag(D.getIdentifierLoc(),
6735          diag::ext_explicit_instantiation_without_qualified_id)
6736     << Specialization << D.getCXXScopeSpec().getRange();
6737 
6738   CheckExplicitInstantiationScope(*this,
6739                    FunTmpl? (NamedDecl *)FunTmpl
6740                           : Specialization->getInstantiatedFromMemberFunction(),
6741                                   D.getIdentifierLoc(),
6742                                   D.getCXXScopeSpec().isSet());
6743 
6744   // FIXME: Create some kind of ExplicitInstantiationDecl here.
6745   return (Decl*) 0;
6746 }
6747 
6748 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)6749 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6750                         const CXXScopeSpec &SS, IdentifierInfo *Name,
6751                         SourceLocation TagLoc, SourceLocation NameLoc) {
6752   // This has to hold, because SS is expected to be defined.
6753   assert(Name && "Expected a name in a dependent tag");
6754 
6755   NestedNameSpecifier *NNS
6756     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6757   if (!NNS)
6758     return true;
6759 
6760   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6761 
6762   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6763     Diag(NameLoc, diag::err_dependent_tag_decl)
6764       << (TUK == TUK_Definition) << Kind << SS.getRange();
6765     return true;
6766   }
6767 
6768   // Create the resulting type.
6769   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6770   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6771 
6772   // Create type-source location information for this type.
6773   TypeLocBuilder TLB;
6774   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6775   TL.setElaboratedKeywordLoc(TagLoc);
6776   TL.setQualifierLoc(SS.getWithLocInContext(Context));
6777   TL.setNameLoc(NameLoc);
6778   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6779 }
6780 
6781 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)6782 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6783                         const CXXScopeSpec &SS, const IdentifierInfo &II,
6784                         SourceLocation IdLoc) {
6785   if (SS.isInvalid())
6786     return true;
6787 
6788   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6789     Diag(TypenameLoc,
6790          getLangOpts().CPlusPlus0x ?
6791            diag::warn_cxx98_compat_typename_outside_of_template :
6792            diag::ext_typename_outside_of_template)
6793       << FixItHint::CreateRemoval(TypenameLoc);
6794 
6795   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6796   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6797                                  TypenameLoc, QualifierLoc, II, IdLoc);
6798   if (T.isNull())
6799     return true;
6800 
6801   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6802   if (isa<DependentNameType>(T)) {
6803     DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6804     TL.setElaboratedKeywordLoc(TypenameLoc);
6805     TL.setQualifierLoc(QualifierLoc);
6806     TL.setNameLoc(IdLoc);
6807   } else {
6808     ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6809     TL.setElaboratedKeywordLoc(TypenameLoc);
6810     TL.setQualifierLoc(QualifierLoc);
6811     cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6812   }
6813 
6814   return CreateParsedType(T, TSI);
6815 }
6816 
6817 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)6818 Sema::ActOnTypenameType(Scope *S,
6819                         SourceLocation TypenameLoc,
6820                         const CXXScopeSpec &SS,
6821                         SourceLocation TemplateKWLoc,
6822                         TemplateTy TemplateIn,
6823                         SourceLocation TemplateNameLoc,
6824                         SourceLocation LAngleLoc,
6825                         ASTTemplateArgsPtr TemplateArgsIn,
6826                         SourceLocation RAngleLoc) {
6827   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6828     Diag(TypenameLoc,
6829          getLangOpts().CPlusPlus0x ?
6830            diag::warn_cxx98_compat_typename_outside_of_template :
6831            diag::ext_typename_outside_of_template)
6832       << FixItHint::CreateRemoval(TypenameLoc);
6833 
6834   // Translate the parser's template argument list in our AST format.
6835   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6836   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6837 
6838   TemplateName Template = TemplateIn.get();
6839   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6840     // Construct a dependent template specialization type.
6841     assert(DTN && "dependent template has non-dependent name?");
6842     assert(DTN->getQualifier()
6843            == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6844     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6845                                                           DTN->getQualifier(),
6846                                                           DTN->getIdentifier(),
6847                                                                 TemplateArgs);
6848 
6849     // Create source-location information for this type.
6850     TypeLocBuilder Builder;
6851     DependentTemplateSpecializationTypeLoc SpecTL
6852     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6853     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6854     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6855     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6856     SpecTL.setTemplateNameLoc(TemplateNameLoc);
6857     SpecTL.setLAngleLoc(LAngleLoc);
6858     SpecTL.setRAngleLoc(RAngleLoc);
6859     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6860       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6861     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6862   }
6863 
6864   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6865   if (T.isNull())
6866     return true;
6867 
6868   // Provide source-location information for the template specialization type.
6869   TypeLocBuilder Builder;
6870   TemplateSpecializationTypeLoc SpecTL
6871     = Builder.push<TemplateSpecializationTypeLoc>(T);
6872   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6873   SpecTL.setTemplateNameLoc(TemplateNameLoc);
6874   SpecTL.setLAngleLoc(LAngleLoc);
6875   SpecTL.setRAngleLoc(RAngleLoc);
6876   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6877     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6878 
6879   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6880   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6881   TL.setElaboratedKeywordLoc(TypenameLoc);
6882   TL.setQualifierLoc(SS.getWithLocInContext(Context));
6883 
6884   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6885   return CreateParsedType(T, TSI);
6886 }
6887 
6888 
6889 /// \brief Build the type that describes a C++ typename specifier,
6890 /// e.g., "typename T::type".
6891 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)6892 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6893                         SourceLocation KeywordLoc,
6894                         NestedNameSpecifierLoc QualifierLoc,
6895                         const IdentifierInfo &II,
6896                         SourceLocation IILoc) {
6897   CXXScopeSpec SS;
6898   SS.Adopt(QualifierLoc);
6899 
6900   DeclContext *Ctx = computeDeclContext(SS);
6901   if (!Ctx) {
6902     // If the nested-name-specifier is dependent and couldn't be
6903     // resolved to a type, build a typename type.
6904     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6905     return Context.getDependentNameType(Keyword,
6906                                         QualifierLoc.getNestedNameSpecifier(),
6907                                         &II);
6908   }
6909 
6910   // If the nested-name-specifier refers to the current instantiation,
6911   // the "typename" keyword itself is superfluous. In C++03, the
6912   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6913   // allows such extraneous "typename" keywords, and we retroactively
6914   // apply this DR to C++03 code with only a warning. In any case we continue.
6915 
6916   if (RequireCompleteDeclContext(SS, Ctx))
6917     return QualType();
6918 
6919   DeclarationName Name(&II);
6920   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6921   LookupQualifiedName(Result, Ctx);
6922   unsigned DiagID = 0;
6923   Decl *Referenced = 0;
6924   switch (Result.getResultKind()) {
6925   case LookupResult::NotFound:
6926     DiagID = diag::err_typename_nested_not_found;
6927     break;
6928 
6929   case LookupResult::FoundUnresolvedValue: {
6930     // We found a using declaration that is a value. Most likely, the using
6931     // declaration itself is meant to have the 'typename' keyword.
6932     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6933                           IILoc);
6934     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6935       << Name << Ctx << FullRange;
6936     if (UnresolvedUsingValueDecl *Using
6937           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6938       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6939       Diag(Loc, diag::note_using_value_decl_missing_typename)
6940         << FixItHint::CreateInsertion(Loc, "typename ");
6941     }
6942   }
6943   // Fall through to create a dependent typename type, from which we can recover
6944   // better.
6945 
6946   case LookupResult::NotFoundInCurrentInstantiation:
6947     // Okay, it's a member of an unknown instantiation.
6948     return Context.getDependentNameType(Keyword,
6949                                         QualifierLoc.getNestedNameSpecifier(),
6950                                         &II);
6951 
6952   case LookupResult::Found:
6953     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6954       // We found a type. Build an ElaboratedType, since the
6955       // typename-specifier was just sugar.
6956       return Context.getElaboratedType(ETK_Typename,
6957                                        QualifierLoc.getNestedNameSpecifier(),
6958                                        Context.getTypeDeclType(Type));
6959     }
6960 
6961     DiagID = diag::err_typename_nested_not_type;
6962     Referenced = Result.getFoundDecl();
6963     break;
6964 
6965   case LookupResult::FoundOverloaded:
6966     DiagID = diag::err_typename_nested_not_type;
6967     Referenced = *Result.begin();
6968     break;
6969 
6970   case LookupResult::Ambiguous:
6971     return QualType();
6972   }
6973 
6974   // If we get here, it's because name lookup did not find a
6975   // type. Emit an appropriate diagnostic and return an error.
6976   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6977                         IILoc);
6978   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6979   if (Referenced)
6980     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6981       << Name;
6982   return QualType();
6983 }
6984 
6985 namespace {
6986   // See Sema::RebuildTypeInCurrentInstantiation
6987   class CurrentInstantiationRebuilder
6988     : public TreeTransform<CurrentInstantiationRebuilder> {
6989     SourceLocation Loc;
6990     DeclarationName Entity;
6991 
6992   public:
6993     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6994 
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)6995     CurrentInstantiationRebuilder(Sema &SemaRef,
6996                                   SourceLocation Loc,
6997                                   DeclarationName Entity)
6998     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6999       Loc(Loc), Entity(Entity) { }
7000 
7001     /// \brief Determine whether the given type \p T has already been
7002     /// transformed.
7003     ///
7004     /// For the purposes of type reconstruction, a type has already been
7005     /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)7006     bool AlreadyTransformed(QualType T) {
7007       return T.isNull() || !T->isDependentType();
7008     }
7009 
7010     /// \brief Returns the location of the entity whose type is being
7011     /// rebuilt.
getBaseLocation()7012     SourceLocation getBaseLocation() { return Loc; }
7013 
7014     /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()7015     DeclarationName getBaseEntity() { return Entity; }
7016 
7017     /// \brief Sets the "base" location and entity when that
7018     /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)7019     void setBase(SourceLocation Loc, DeclarationName Entity) {
7020       this->Loc = Loc;
7021       this->Entity = Entity;
7022     }
7023 
TransformLambdaExpr(LambdaExpr * E)7024     ExprResult TransformLambdaExpr(LambdaExpr *E) {
7025       // Lambdas never need to be transformed.
7026       return E;
7027     }
7028   };
7029 }
7030 
7031 /// \brief Rebuilds a type within the context of the current instantiation.
7032 ///
7033 /// The type \p T is part of the type of an out-of-line member definition of
7034 /// a class template (or class template partial specialization) that was parsed
7035 /// and constructed before we entered the scope of the class template (or
7036 /// partial specialization thereof). This routine will rebuild that type now
7037 /// that we have entered the declarator's scope, which may produce different
7038 /// canonical types, e.g.,
7039 ///
7040 /// \code
7041 /// template<typename T>
7042 /// struct X {
7043 ///   typedef T* pointer;
7044 ///   pointer data();
7045 /// };
7046 ///
7047 /// template<typename T>
7048 /// typename X<T>::pointer X<T>::data() { ... }
7049 /// \endcode
7050 ///
7051 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7052 /// since we do not know that we can look into X<T> when we parsed the type.
7053 /// This function will rebuild the type, performing the lookup of "pointer"
7054 /// in X<T> and returning an ElaboratedType whose canonical type is the same
7055 /// as the canonical type of T*, allowing the return types of the out-of-line
7056 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)7057 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7058                                                         SourceLocation Loc,
7059                                                         DeclarationName Name) {
7060   if (!T || !T->getType()->isDependentType())
7061     return T;
7062 
7063   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7064   return Rebuilder.TransformType(T);
7065 }
7066 
RebuildExprInCurrentInstantiation(Expr * E)7067 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7068   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7069                                           DeclarationName());
7070   return Rebuilder.TransformExpr(E);
7071 }
7072 
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)7073 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7074   if (SS.isInvalid())
7075     return true;
7076 
7077   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7078   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7079                                           DeclarationName());
7080   NestedNameSpecifierLoc Rebuilt
7081     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7082   if (!Rebuilt)
7083     return true;
7084 
7085   SS.Adopt(Rebuilt);
7086   return false;
7087 }
7088 
7089 /// \brief Rebuild the template parameters now that we know we're in a current
7090 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)7091 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7092                                                TemplateParameterList *Params) {
7093   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7094     Decl *Param = Params->getParam(I);
7095 
7096     // There is nothing to rebuild in a type parameter.
7097     if (isa<TemplateTypeParmDecl>(Param))
7098       continue;
7099 
7100     // Rebuild the template parameter list of a template template parameter.
7101     if (TemplateTemplateParmDecl *TTP
7102         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7103       if (RebuildTemplateParamsInCurrentInstantiation(
7104             TTP->getTemplateParameters()))
7105         return true;
7106 
7107       continue;
7108     }
7109 
7110     // Rebuild the type of a non-type template parameter.
7111     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7112     TypeSourceInfo *NewTSI
7113       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7114                                           NTTP->getLocation(),
7115                                           NTTP->getDeclName());
7116     if (!NewTSI)
7117       return true;
7118 
7119     if (NewTSI != NTTP->getTypeSourceInfo()) {
7120       NTTP->setTypeSourceInfo(NewTSI);
7121       NTTP->setType(NewTSI->getType());
7122     }
7123   }
7124 
7125   return false;
7126 }
7127 
7128 /// \brief Produces a formatted string that describes the binding of
7129 /// template parameters to template arguments.
7130 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)7131 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7132                                       const TemplateArgumentList &Args) {
7133   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7134 }
7135 
7136 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)7137 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7138                                       const TemplateArgument *Args,
7139                                       unsigned NumArgs) {
7140   SmallString<128> Str;
7141   llvm::raw_svector_ostream Out(Str);
7142 
7143   if (!Params || Params->size() == 0 || NumArgs == 0)
7144     return std::string();
7145 
7146   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7147     if (I >= NumArgs)
7148       break;
7149 
7150     if (I == 0)
7151       Out << "[with ";
7152     else
7153       Out << ", ";
7154 
7155     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7156       Out << Id->getName();
7157     } else {
7158       Out << '$' << I;
7159     }
7160 
7161     Out << " = ";
7162     Args[I].print(getPrintingPolicy(), Out);
7163   }
7164 
7165   Out << ']';
7166   return Out.str();
7167 }
7168 
MarkAsLateParsedTemplate(FunctionDecl * FD,bool Flag)7169 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7170   if (!FD)
7171     return;
7172   FD->setLateTemplateParsed(Flag);
7173 }
7174 
IsInsideALocalClassWithinATemplateFunction()7175 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7176   DeclContext *DC = CurContext;
7177 
7178   while (DC) {
7179     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7180       const FunctionDecl *FD = RD->isLocalClass();
7181       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7182     } else if (DC->isTranslationUnit() || DC->isNamespace())
7183       return false;
7184 
7185     DC = DC->getParent();
7186   }
7187   return false;
7188 }
7189