1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
18 #include "llvm/CodeGen/SelectionDAGISel.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/DebugInfo.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/LLVMContext.h"
29 #include "llvm/Module.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/GCMetadata.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Target/TargetIntrinsicInfo.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetLibraryInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Timer.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/ADT/PostOrderIterator.h"
55 #include "llvm/ADT/Statistic.h"
56 #include <algorithm>
57 using namespace llvm;
58
59 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
60 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
61 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
62 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
63 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64
65 #ifndef NDEBUG
66 static cl::opt<bool>
67 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
68 cl::desc("Enable extra verbose messages in the \"fast\" "
69 "instruction selector"));
70 // Terminators
71 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
72 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
73 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
74 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
75 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
76 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
77 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
78
79 // Standard binary operators...
80 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
81 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
82 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
83 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
84 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
85 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
86 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
87 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
88 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
89 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
90 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
91 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
92
93 // Logical operators...
94 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
95 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
96 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
97
98 // Memory instructions...
99 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
100 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
101 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
102 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
103 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
104 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
105 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
106
107 // Convert instructions...
108 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
109 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
110 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
111 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
112 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
113 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
114 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
115 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
116 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
117 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
118 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
119 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
120
121 // Other instructions...
122 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
123 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
124 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
125 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
126 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
127 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
128 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
129 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
130 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
131 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
132 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
133 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
134 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
135 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
136 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
137 #endif
138
139 static cl::opt<bool>
140 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
141 cl::desc("Enable verbose messages in the \"fast\" "
142 "instruction selector"));
143 static cl::opt<bool>
144 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
145 cl::desc("Enable abort calls when \"fast\" instruction fails"));
146
147 static cl::opt<bool>
148 UseMBPI("use-mbpi",
149 cl::desc("use Machine Branch Probability Info"),
150 cl::init(true), cl::Hidden);
151
152 #ifndef NDEBUG
153 static cl::opt<bool>
154 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
155 cl::desc("Pop up a window to show dags before the first "
156 "dag combine pass"));
157 static cl::opt<bool>
158 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
159 cl::desc("Pop up a window to show dags before legalize types"));
160 static cl::opt<bool>
161 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
162 cl::desc("Pop up a window to show dags before legalize"));
163 static cl::opt<bool>
164 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
165 cl::desc("Pop up a window to show dags before the second "
166 "dag combine pass"));
167 static cl::opt<bool>
168 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
169 cl::desc("Pop up a window to show dags before the post legalize types"
170 " dag combine pass"));
171 static cl::opt<bool>
172 ViewISelDAGs("view-isel-dags", cl::Hidden,
173 cl::desc("Pop up a window to show isel dags as they are selected"));
174 static cl::opt<bool>
175 ViewSchedDAGs("view-sched-dags", cl::Hidden,
176 cl::desc("Pop up a window to show sched dags as they are processed"));
177 static cl::opt<bool>
178 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
179 cl::desc("Pop up a window to show SUnit dags after they are processed"));
180 #else
181 static const bool ViewDAGCombine1 = false,
182 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
183 ViewDAGCombine2 = false,
184 ViewDAGCombineLT = false,
185 ViewISelDAGs = false, ViewSchedDAGs = false,
186 ViewSUnitDAGs = false;
187 #endif
188
189 //===---------------------------------------------------------------------===//
190 ///
191 /// RegisterScheduler class - Track the registration of instruction schedulers.
192 ///
193 //===---------------------------------------------------------------------===//
194 MachinePassRegistry RegisterScheduler::Registry;
195
196 //===---------------------------------------------------------------------===//
197 ///
198 /// ISHeuristic command line option for instruction schedulers.
199 ///
200 //===---------------------------------------------------------------------===//
201 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
202 RegisterPassParser<RegisterScheduler> >
203 ISHeuristic("pre-RA-sched",
204 cl::init(&createDefaultScheduler),
205 cl::desc("Instruction schedulers available (before register"
206 " allocation):"));
207
208 static RegisterScheduler
209 defaultListDAGScheduler("default", "Best scheduler for the target",
210 createDefaultScheduler);
211
212 namespace llvm {
213 //===--------------------------------------------------------------------===//
214 /// createDefaultScheduler - This creates an instruction scheduler appropriate
215 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)216 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
217 CodeGenOpt::Level OptLevel) {
218 const TargetLowering &TLI = IS->getTargetLowering();
219
220 if (OptLevel == CodeGenOpt::None ||
221 TLI.getSchedulingPreference() == Sched::Source)
222 return createSourceListDAGScheduler(IS, OptLevel);
223 if (TLI.getSchedulingPreference() == Sched::RegPressure)
224 return createBURRListDAGScheduler(IS, OptLevel);
225 if (TLI.getSchedulingPreference() == Sched::Hybrid)
226 return createHybridListDAGScheduler(IS, OptLevel);
227 if (TLI.getSchedulingPreference() == Sched::VLIW)
228 return createVLIWDAGScheduler(IS, OptLevel);
229 assert(TLI.getSchedulingPreference() == Sched::ILP &&
230 "Unknown sched type!");
231 return createILPListDAGScheduler(IS, OptLevel);
232 }
233 }
234
235 // EmitInstrWithCustomInserter - This method should be implemented by targets
236 // that mark instructions with the 'usesCustomInserter' flag. These
237 // instructions are special in various ways, which require special support to
238 // insert. The specified MachineInstr is created but not inserted into any
239 // basic blocks, and this method is called to expand it into a sequence of
240 // instructions, potentially also creating new basic blocks and control flow.
241 // When new basic blocks are inserted and the edges from MBB to its successors
242 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
243 // DenseMap.
244 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const245 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
246 MachineBasicBlock *MBB) const {
247 #ifndef NDEBUG
248 dbgs() << "If a target marks an instruction with "
249 "'usesCustomInserter', it must implement "
250 "TargetLowering::EmitInstrWithCustomInserter!";
251 #endif
252 llvm_unreachable(0);
253 }
254
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const255 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
256 SDNode *Node) const {
257 assert(!MI->hasPostISelHook() &&
258 "If a target marks an instruction with 'hasPostISelHook', "
259 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
260 }
261
262 //===----------------------------------------------------------------------===//
263 // SelectionDAGISel code
264 //===----------------------------------------------------------------------===//
265
anchor()266 void SelectionDAGISel::ISelUpdater::anchor() { }
267
SelectionDAGISel(const TargetMachine & tm,CodeGenOpt::Level OL)268 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
269 CodeGenOpt::Level OL) :
270 MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
271 FuncInfo(new FunctionLoweringInfo(TLI)),
272 CurDAG(new SelectionDAG(tm, OL)),
273 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
274 GFI(),
275 OptLevel(OL),
276 DAGSize(0) {
277 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
278 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
279 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
280 initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
281 }
282
~SelectionDAGISel()283 SelectionDAGISel::~SelectionDAGISel() {
284 delete SDB;
285 delete CurDAG;
286 delete FuncInfo;
287 }
288
getAnalysisUsage(AnalysisUsage & AU) const289 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
290 AU.addRequired<AliasAnalysis>();
291 AU.addPreserved<AliasAnalysis>();
292 AU.addRequired<GCModuleInfo>();
293 AU.addPreserved<GCModuleInfo>();
294 AU.addRequired<TargetLibraryInfo>();
295 if (UseMBPI && OptLevel != CodeGenOpt::None)
296 AU.addRequired<BranchProbabilityInfo>();
297 MachineFunctionPass::getAnalysisUsage(AU);
298 }
299
300 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
301 /// may trap on it. In this case we have to split the edge so that the path
302 /// through the predecessor block that doesn't go to the phi block doesn't
303 /// execute the possibly trapping instruction.
304 ///
305 /// This is required for correctness, so it must be done at -O0.
306 ///
SplitCriticalSideEffectEdges(Function & Fn,Pass * SDISel)307 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
308 // Loop for blocks with phi nodes.
309 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
310 PHINode *PN = dyn_cast<PHINode>(BB->begin());
311 if (PN == 0) continue;
312
313 ReprocessBlock:
314 // For each block with a PHI node, check to see if any of the input values
315 // are potentially trapping constant expressions. Constant expressions are
316 // the only potentially trapping value that can occur as the argument to a
317 // PHI.
318 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
319 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
320 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
321 if (CE == 0 || !CE->canTrap()) continue;
322
323 // The only case we have to worry about is when the edge is critical.
324 // Since this block has a PHI Node, we assume it has multiple input
325 // edges: check to see if the pred has multiple successors.
326 BasicBlock *Pred = PN->getIncomingBlock(i);
327 if (Pred->getTerminator()->getNumSuccessors() == 1)
328 continue;
329
330 // Okay, we have to split this edge.
331 SplitCriticalEdge(Pred->getTerminator(),
332 GetSuccessorNumber(Pred, BB), SDISel, true);
333 goto ReprocessBlock;
334 }
335 }
336 }
337
runOnMachineFunction(MachineFunction & mf)338 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
339 // Do some sanity-checking on the command-line options.
340 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
341 "-fast-isel-verbose requires -fast-isel");
342 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
343 "-fast-isel-abort requires -fast-isel");
344
345 const Function &Fn = *mf.getFunction();
346 const TargetInstrInfo &TII = *TM.getInstrInfo();
347 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
348
349 MF = &mf;
350 RegInfo = &MF->getRegInfo();
351 AA = &getAnalysis<AliasAnalysis>();
352 LibInfo = &getAnalysis<TargetLibraryInfo>();
353 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
354
355 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
356
357 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
358
359 CurDAG->init(*MF);
360 FuncInfo->set(Fn, *MF);
361
362 if (UseMBPI && OptLevel != CodeGenOpt::None)
363 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
364 else
365 FuncInfo->BPI = 0;
366
367 SDB->init(GFI, *AA, LibInfo);
368
369 SelectAllBasicBlocks(Fn);
370
371 // If the first basic block in the function has live ins that need to be
372 // copied into vregs, emit the copies into the top of the block before
373 // emitting the code for the block.
374 MachineBasicBlock *EntryMBB = MF->begin();
375 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
376
377 DenseMap<unsigned, unsigned> LiveInMap;
378 if (!FuncInfo->ArgDbgValues.empty())
379 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
380 E = RegInfo->livein_end(); LI != E; ++LI)
381 if (LI->second)
382 LiveInMap.insert(std::make_pair(LI->first, LI->second));
383
384 // Insert DBG_VALUE instructions for function arguments to the entry block.
385 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
386 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
387 unsigned Reg = MI->getOperand(0).getReg();
388 if (TargetRegisterInfo::isPhysicalRegister(Reg))
389 EntryMBB->insert(EntryMBB->begin(), MI);
390 else {
391 MachineInstr *Def = RegInfo->getVRegDef(Reg);
392 MachineBasicBlock::iterator InsertPos = Def;
393 // FIXME: VR def may not be in entry block.
394 Def->getParent()->insert(llvm::next(InsertPos), MI);
395 }
396
397 // If Reg is live-in then update debug info to track its copy in a vreg.
398 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
399 if (LDI != LiveInMap.end()) {
400 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
401 MachineBasicBlock::iterator InsertPos = Def;
402 const MDNode *Variable =
403 MI->getOperand(MI->getNumOperands()-1).getMetadata();
404 unsigned Offset = MI->getOperand(1).getImm();
405 // Def is never a terminator here, so it is ok to increment InsertPos.
406 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
407 TII.get(TargetOpcode::DBG_VALUE))
408 .addReg(LDI->second, RegState::Debug)
409 .addImm(Offset).addMetadata(Variable);
410
411 // If this vreg is directly copied into an exported register then
412 // that COPY instructions also need DBG_VALUE, if it is the only
413 // user of LDI->second.
414 MachineInstr *CopyUseMI = NULL;
415 for (MachineRegisterInfo::use_iterator
416 UI = RegInfo->use_begin(LDI->second);
417 MachineInstr *UseMI = UI.skipInstruction();) {
418 if (UseMI->isDebugValue()) continue;
419 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
420 CopyUseMI = UseMI; continue;
421 }
422 // Otherwise this is another use or second copy use.
423 CopyUseMI = NULL; break;
424 }
425 if (CopyUseMI) {
426 MachineInstr *NewMI =
427 BuildMI(*MF, CopyUseMI->getDebugLoc(),
428 TII.get(TargetOpcode::DBG_VALUE))
429 .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
430 .addImm(Offset).addMetadata(Variable);
431 MachineBasicBlock::iterator Pos = CopyUseMI;
432 EntryMBB->insertAfter(Pos, NewMI);
433 }
434 }
435 }
436
437 // Determine if there are any calls in this machine function.
438 MachineFrameInfo *MFI = MF->getFrameInfo();
439 if (!MFI->hasCalls()) {
440 for (MachineFunction::const_iterator
441 I = MF->begin(), E = MF->end(); I != E; ++I) {
442 const MachineBasicBlock *MBB = I;
443 for (MachineBasicBlock::const_iterator
444 II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
445 const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
446
447 if ((MCID.isCall() && !MCID.isReturn()) ||
448 II->isStackAligningInlineAsm()) {
449 MFI->setHasCalls(true);
450 goto done;
451 }
452 }
453 }
454 done:;
455 }
456
457 // Determine if there is a call to setjmp in the machine function.
458 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
459
460 // Replace forward-declared registers with the registers containing
461 // the desired value.
462 MachineRegisterInfo &MRI = MF->getRegInfo();
463 for (DenseMap<unsigned, unsigned>::iterator
464 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
465 I != E; ++I) {
466 unsigned From = I->first;
467 unsigned To = I->second;
468 // If To is also scheduled to be replaced, find what its ultimate
469 // replacement is.
470 for (;;) {
471 DenseMap<unsigned, unsigned>::iterator J =
472 FuncInfo->RegFixups.find(To);
473 if (J == E) break;
474 To = J->second;
475 }
476 // Replace it.
477 MRI.replaceRegWith(From, To);
478 }
479
480 // Release function-specific state. SDB and CurDAG are already cleared
481 // at this point.
482 FuncInfo->clear();
483
484 return true;
485 }
486
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)487 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
488 BasicBlock::const_iterator End,
489 bool &HadTailCall) {
490 // Lower all of the non-terminator instructions. If a call is emitted
491 // as a tail call, cease emitting nodes for this block. Terminators
492 // are handled below.
493 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
494 SDB->visit(*I);
495
496 // Make sure the root of the DAG is up-to-date.
497 CurDAG->setRoot(SDB->getControlRoot());
498 HadTailCall = SDB->HasTailCall;
499 SDB->clear();
500
501 // Final step, emit the lowered DAG as machine code.
502 CodeGenAndEmitDAG();
503 }
504
ComputeLiveOutVRegInfo()505 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
506 SmallPtrSet<SDNode*, 128> VisitedNodes;
507 SmallVector<SDNode*, 128> Worklist;
508
509 Worklist.push_back(CurDAG->getRoot().getNode());
510
511 APInt KnownZero;
512 APInt KnownOne;
513
514 do {
515 SDNode *N = Worklist.pop_back_val();
516
517 // If we've already seen this node, ignore it.
518 if (!VisitedNodes.insert(N))
519 continue;
520
521 // Otherwise, add all chain operands to the worklist.
522 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
523 if (N->getOperand(i).getValueType() == MVT::Other)
524 Worklist.push_back(N->getOperand(i).getNode());
525
526 // If this is a CopyToReg with a vreg dest, process it.
527 if (N->getOpcode() != ISD::CopyToReg)
528 continue;
529
530 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
531 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
532 continue;
533
534 // Ignore non-scalar or non-integer values.
535 SDValue Src = N->getOperand(2);
536 EVT SrcVT = Src.getValueType();
537 if (!SrcVT.isInteger() || SrcVT.isVector())
538 continue;
539
540 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
541 CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
542 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
543 } while (!Worklist.empty());
544 }
545
CodeGenAndEmitDAG()546 void SelectionDAGISel::CodeGenAndEmitDAG() {
547 std::string GroupName;
548 if (TimePassesIsEnabled)
549 GroupName = "Instruction Selection and Scheduling";
550 std::string BlockName;
551 int BlockNumber = -1;
552 (void)BlockNumber;
553 #ifdef NDEBUG
554 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
555 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
556 ViewSUnitDAGs)
557 #endif
558 {
559 BlockNumber = FuncInfo->MBB->getNumber();
560 BlockName = MF->getFunction()->getName().str() + ":" +
561 FuncInfo->MBB->getBasicBlock()->getName().str();
562 }
563 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
564 << " '" << BlockName << "'\n"; CurDAG->dump());
565
566 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
567
568 // Run the DAG combiner in pre-legalize mode.
569 {
570 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
571 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
572 }
573
574 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
575 << " '" << BlockName << "'\n"; CurDAG->dump());
576
577 // Second step, hack on the DAG until it only uses operations and types that
578 // the target supports.
579 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
580 BlockName);
581
582 bool Changed;
583 {
584 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
585 Changed = CurDAG->LegalizeTypes();
586 }
587
588 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
589 << " '" << BlockName << "'\n"; CurDAG->dump());
590
591 if (Changed) {
592 if (ViewDAGCombineLT)
593 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
594
595 // Run the DAG combiner in post-type-legalize mode.
596 {
597 NamedRegionTimer T("DAG Combining after legalize types", GroupName,
598 TimePassesIsEnabled);
599 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
600 }
601
602 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
603 << " '" << BlockName << "'\n"; CurDAG->dump());
604 }
605
606 {
607 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
608 Changed = CurDAG->LegalizeVectors();
609 }
610
611 if (Changed) {
612 {
613 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
614 CurDAG->LegalizeTypes();
615 }
616
617 if (ViewDAGCombineLT)
618 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
619
620 // Run the DAG combiner in post-type-legalize mode.
621 {
622 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
623 TimePassesIsEnabled);
624 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
625 }
626
627 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
628 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
629 }
630
631 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
632
633 {
634 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
635 CurDAG->Legalize();
636 }
637
638 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
639 << " '" << BlockName << "'\n"; CurDAG->dump());
640
641 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
642
643 // Run the DAG combiner in post-legalize mode.
644 {
645 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
646 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
647 }
648
649 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
650 << " '" << BlockName << "'\n"; CurDAG->dump());
651
652 if (OptLevel != CodeGenOpt::None)
653 ComputeLiveOutVRegInfo();
654
655 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
656
657 // Third, instruction select all of the operations to machine code, adding the
658 // code to the MachineBasicBlock.
659 {
660 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
661 DoInstructionSelection();
662 }
663
664 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
665 << " '" << BlockName << "'\n"; CurDAG->dump());
666
667 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
668
669 // Schedule machine code.
670 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
671 {
672 NamedRegionTimer T("Instruction Scheduling", GroupName,
673 TimePassesIsEnabled);
674 Scheduler->Run(CurDAG, FuncInfo->MBB);
675 }
676
677 if (ViewSUnitDAGs) Scheduler->viewGraph();
678
679 // Emit machine code to BB. This can change 'BB' to the last block being
680 // inserted into.
681 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
682 {
683 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
684
685 // FuncInfo->InsertPt is passed by reference and set to the end of the
686 // scheduled instructions.
687 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
688 }
689
690 // If the block was split, make sure we update any references that are used to
691 // update PHI nodes later on.
692 if (FirstMBB != LastMBB)
693 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
694
695 // Free the scheduler state.
696 {
697 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
698 TimePassesIsEnabled);
699 delete Scheduler;
700 }
701
702 // Free the SelectionDAG state, now that we're finished with it.
703 CurDAG->clear();
704 }
705
DoInstructionSelection()706 void SelectionDAGISel::DoInstructionSelection() {
707 DEBUG(errs() << "===== Instruction selection begins: BB#"
708 << FuncInfo->MBB->getNumber()
709 << " '" << FuncInfo->MBB->getName() << "'\n");
710
711 PreprocessISelDAG();
712
713 // Select target instructions for the DAG.
714 {
715 // Number all nodes with a topological order and set DAGSize.
716 DAGSize = CurDAG->AssignTopologicalOrder();
717
718 // Create a dummy node (which is not added to allnodes), that adds
719 // a reference to the root node, preventing it from being deleted,
720 // and tracking any changes of the root.
721 HandleSDNode Dummy(CurDAG->getRoot());
722 ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
723 ++ISelPosition;
724
725 // The AllNodes list is now topological-sorted. Visit the
726 // nodes by starting at the end of the list (the root of the
727 // graph) and preceding back toward the beginning (the entry
728 // node).
729 while (ISelPosition != CurDAG->allnodes_begin()) {
730 SDNode *Node = --ISelPosition;
731 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
732 // but there are currently some corner cases that it misses. Also, this
733 // makes it theoretically possible to disable the DAGCombiner.
734 if (Node->use_empty())
735 continue;
736
737 SDNode *ResNode = Select(Node);
738
739 // FIXME: This is pretty gross. 'Select' should be changed to not return
740 // anything at all and this code should be nuked with a tactical strike.
741
742 // If node should not be replaced, continue with the next one.
743 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
744 continue;
745 // Replace node.
746 if (ResNode)
747 ReplaceUses(Node, ResNode);
748
749 // If after the replacement this node is not used any more,
750 // remove this dead node.
751 if (Node->use_empty()) { // Don't delete EntryToken, etc.
752 ISelUpdater ISU(ISelPosition);
753 CurDAG->RemoveDeadNode(Node, &ISU);
754 }
755 }
756
757 CurDAG->setRoot(Dummy.getValue());
758 }
759
760 DEBUG(errs() << "===== Instruction selection ends:\n");
761
762 PostprocessISelDAG();
763 }
764
765 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
766 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()767 void SelectionDAGISel::PrepareEHLandingPad() {
768 MachineBasicBlock *MBB = FuncInfo->MBB;
769
770 // Add a label to mark the beginning of the landing pad. Deletion of the
771 // landing pad can thus be detected via the MachineModuleInfo.
772 MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
773
774 // Assign the call site to the landing pad's begin label.
775 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
776
777 const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
778 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
779 .addSym(Label);
780
781 // Mark exception register as live in.
782 unsigned Reg = TLI.getExceptionPointerRegister();
783 if (Reg) MBB->addLiveIn(Reg);
784
785 // Mark exception selector register as live in.
786 Reg = TLI.getExceptionSelectorRegister();
787 if (Reg) MBB->addLiveIn(Reg);
788 }
789
790 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
791 /// load into the specified FoldInst. Note that we could have a sequence where
792 /// multiple LLVM IR instructions are folded into the same machineinstr. For
793 /// example we could have:
794 /// A: x = load i32 *P
795 /// B: y = icmp A, 42
796 /// C: br y, ...
797 ///
798 /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and
799 /// any other folded instructions) because it is between A and C.
800 ///
801 /// If we succeed in folding the load into the operation, return true.
802 ///
TryToFoldFastISelLoad(const LoadInst * LI,const Instruction * FoldInst,FastISel * FastIS)803 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
804 const Instruction *FoldInst,
805 FastISel *FastIS) {
806 // We know that the load has a single use, but don't know what it is. If it
807 // isn't one of the folded instructions, then we can't succeed here. Handle
808 // this by scanning the single-use users of the load until we get to FoldInst.
809 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
810
811 const Instruction *TheUser = LI->use_back();
812 while (TheUser != FoldInst && // Scan up until we find FoldInst.
813 // Stay in the right block.
814 TheUser->getParent() == FoldInst->getParent() &&
815 --MaxUsers) { // Don't scan too far.
816 // If there are multiple or no uses of this instruction, then bail out.
817 if (!TheUser->hasOneUse())
818 return false;
819
820 TheUser = TheUser->use_back();
821 }
822
823 // If we didn't find the fold instruction, then we failed to collapse the
824 // sequence.
825 if (TheUser != FoldInst)
826 return false;
827
828 // Don't try to fold volatile loads. Target has to deal with alignment
829 // constraints.
830 if (LI->isVolatile()) return false;
831
832 // Figure out which vreg this is going into. If there is no assigned vreg yet
833 // then there actually was no reference to it. Perhaps the load is referenced
834 // by a dead instruction.
835 unsigned LoadReg = FastIS->getRegForValue(LI);
836 if (LoadReg == 0)
837 return false;
838
839 // Check to see what the uses of this vreg are. If it has no uses, or more
840 // than one use (at the machine instr level) then we can't fold it.
841 MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
842 if (RI == RegInfo->reg_end())
843 return false;
844
845 // See if there is exactly one use of the vreg. If there are multiple uses,
846 // then the instruction got lowered to multiple machine instructions or the
847 // use of the loaded value ended up being multiple operands of the result, in
848 // either case, we can't fold this.
849 MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
850 if (PostRI != RegInfo->reg_end())
851 return false;
852
853 assert(RI.getOperand().isUse() &&
854 "The only use of the vreg must be a use, we haven't emitted the def!");
855
856 MachineInstr *User = &*RI;
857
858 // Set the insertion point properly. Folding the load can cause generation of
859 // other random instructions (like sign extends) for addressing modes, make
860 // sure they get inserted in a logical place before the new instruction.
861 FuncInfo->InsertPt = User;
862 FuncInfo->MBB = User->getParent();
863
864 // Ask the target to try folding the load.
865 return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
866 }
867
868 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
869 /// side-effect free and is either dead or folded into a generated instruction.
870 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,FunctionLoweringInfo * FuncInfo)871 static bool isFoldedOrDeadInstruction(const Instruction *I,
872 FunctionLoweringInfo *FuncInfo) {
873 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
874 !isa<TerminatorInst>(I) && // Terminators aren't folded.
875 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
876 !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded.
877 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
878 }
879
880 #ifndef NDEBUG
881 // Collect per Instruction statistics for fast-isel misses. Only those
882 // instructions that cause the bail are accounted for. It does not account for
883 // instructions higher in the block. Thus, summing the per instructions stats
884 // will not add up to what is reported by NumFastIselFailures.
collectFailStats(const Instruction * I)885 static void collectFailStats(const Instruction *I) {
886 switch (I->getOpcode()) {
887 default: assert (0 && "<Invalid operator> ");
888
889 // Terminators
890 case Instruction::Ret: NumFastIselFailRet++; return;
891 case Instruction::Br: NumFastIselFailBr++; return;
892 case Instruction::Switch: NumFastIselFailSwitch++; return;
893 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return;
894 case Instruction::Invoke: NumFastIselFailInvoke++; return;
895 case Instruction::Resume: NumFastIselFailResume++; return;
896 case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
897
898 // Standard binary operators...
899 case Instruction::Add: NumFastIselFailAdd++; return;
900 case Instruction::FAdd: NumFastIselFailFAdd++; return;
901 case Instruction::Sub: NumFastIselFailSub++; return;
902 case Instruction::FSub: NumFastIselFailFSub++; return;
903 case Instruction::Mul: NumFastIselFailMul++; return;
904 case Instruction::FMul: NumFastIselFailFMul++; return;
905 case Instruction::UDiv: NumFastIselFailUDiv++; return;
906 case Instruction::SDiv: NumFastIselFailSDiv++; return;
907 case Instruction::FDiv: NumFastIselFailFDiv++; return;
908 case Instruction::URem: NumFastIselFailURem++; return;
909 case Instruction::SRem: NumFastIselFailSRem++; return;
910 case Instruction::FRem: NumFastIselFailFRem++; return;
911
912 // Logical operators...
913 case Instruction::And: NumFastIselFailAnd++; return;
914 case Instruction::Or: NumFastIselFailOr++; return;
915 case Instruction::Xor: NumFastIselFailXor++; return;
916
917 // Memory instructions...
918 case Instruction::Alloca: NumFastIselFailAlloca++; return;
919 case Instruction::Load: NumFastIselFailLoad++; return;
920 case Instruction::Store: NumFastIselFailStore++; return;
921 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
922 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return;
923 case Instruction::Fence: NumFastIselFailFence++; return;
924 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
925
926 // Convert instructions...
927 case Instruction::Trunc: NumFastIselFailTrunc++; return;
928 case Instruction::ZExt: NumFastIselFailZExt++; return;
929 case Instruction::SExt: NumFastIselFailSExt++; return;
930 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return;
931 case Instruction::FPExt: NumFastIselFailFPExt++; return;
932 case Instruction::FPToUI: NumFastIselFailFPToUI++; return;
933 case Instruction::FPToSI: NumFastIselFailFPToSI++; return;
934 case Instruction::UIToFP: NumFastIselFailUIToFP++; return;
935 case Instruction::SIToFP: NumFastIselFailSIToFP++; return;
936 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
937 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
938 case Instruction::BitCast: NumFastIselFailBitCast++; return;
939
940 // Other instructions...
941 case Instruction::ICmp: NumFastIselFailICmp++; return;
942 case Instruction::FCmp: NumFastIselFailFCmp++; return;
943 case Instruction::PHI: NumFastIselFailPHI++; return;
944 case Instruction::Select: NumFastIselFailSelect++; return;
945 case Instruction::Call: NumFastIselFailCall++; return;
946 case Instruction::Shl: NumFastIselFailShl++; return;
947 case Instruction::LShr: NumFastIselFailLShr++; return;
948 case Instruction::AShr: NumFastIselFailAShr++; return;
949 case Instruction::VAArg: NumFastIselFailVAArg++; return;
950 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
951 case Instruction::InsertElement: NumFastIselFailInsertElement++; return;
952 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return;
953 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return;
954 case Instruction::InsertValue: NumFastIselFailInsertValue++; return;
955 case Instruction::LandingPad: NumFastIselFailLandingPad++; return;
956 }
957 }
958 #endif
959
SelectAllBasicBlocks(const Function & Fn)960 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
961 // Initialize the Fast-ISel state, if needed.
962 FastISel *FastIS = 0;
963 if (TM.Options.EnableFastISel)
964 FastIS = TLI.createFastISel(*FuncInfo);
965
966 // Iterate over all basic blocks in the function.
967 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
968 for (ReversePostOrderTraversal<const Function*>::rpo_iterator
969 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
970 const BasicBlock *LLVMBB = *I;
971
972 if (OptLevel != CodeGenOpt::None) {
973 bool AllPredsVisited = true;
974 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
975 PI != PE; ++PI) {
976 if (!FuncInfo->VisitedBBs.count(*PI)) {
977 AllPredsVisited = false;
978 break;
979 }
980 }
981
982 if (AllPredsVisited) {
983 for (BasicBlock::const_iterator I = LLVMBB->begin();
984 isa<PHINode>(I); ++I)
985 FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
986 } else {
987 for (BasicBlock::const_iterator I = LLVMBB->begin();
988 isa<PHINode>(I); ++I)
989 FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
990 }
991
992 FuncInfo->VisitedBBs.insert(LLVMBB);
993 }
994
995 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
996 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
997
998 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
999 BasicBlock::const_iterator const End = LLVMBB->end();
1000 BasicBlock::const_iterator BI = End;
1001
1002 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1003
1004 // Setup an EH landing-pad block.
1005 if (FuncInfo->MBB->isLandingPad())
1006 PrepareEHLandingPad();
1007
1008 // Lower any arguments needed in this block if this is the entry block.
1009 if (LLVMBB == &Fn.getEntryBlock())
1010 LowerArguments(LLVMBB);
1011
1012 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1013 if (FastIS) {
1014 FastIS->startNewBlock();
1015
1016 // Emit code for any incoming arguments. This must happen before
1017 // beginning FastISel on the entry block.
1018 if (LLVMBB == &Fn.getEntryBlock()) {
1019 CurDAG->setRoot(SDB->getControlRoot());
1020 SDB->clear();
1021 CodeGenAndEmitDAG();
1022
1023 // If we inserted any instructions at the beginning, make a note of
1024 // where they are, so we can be sure to emit subsequent instructions
1025 // after them.
1026 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1027 FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1028 else
1029 FastIS->setLastLocalValue(0);
1030 }
1031
1032 unsigned NumFastIselRemaining = std::distance(Begin, End);
1033 // Do FastISel on as many instructions as possible.
1034 for (; BI != Begin; --BI) {
1035 const Instruction *Inst = llvm::prior(BI);
1036
1037 // If we no longer require this instruction, skip it.
1038 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1039 --NumFastIselRemaining;
1040 continue;
1041 }
1042
1043 // Bottom-up: reset the insert pos at the top, after any local-value
1044 // instructions.
1045 FastIS->recomputeInsertPt();
1046
1047 // Try to select the instruction with FastISel.
1048 if (FastIS->SelectInstruction(Inst)) {
1049 --NumFastIselRemaining;
1050 ++NumFastIselSuccess;
1051 // If fast isel succeeded, skip over all the folded instructions, and
1052 // then see if there is a load right before the selected instructions.
1053 // Try to fold the load if so.
1054 const Instruction *BeforeInst = Inst;
1055 while (BeforeInst != Begin) {
1056 BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1057 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1058 break;
1059 }
1060 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1061 BeforeInst->hasOneUse() &&
1062 TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1063 // If we succeeded, don't re-select the load.
1064 BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1065 --NumFastIselRemaining;
1066 ++NumFastIselSuccess;
1067 }
1068 continue;
1069 }
1070
1071 #ifndef NDEBUG
1072 if (EnableFastISelVerbose2)
1073 collectFailStats(Inst);
1074 #endif
1075
1076 // Then handle certain instructions as single-LLVM-Instruction blocks.
1077 if (isa<CallInst>(Inst)) {
1078
1079 if (EnableFastISelVerbose || EnableFastISelAbort) {
1080 dbgs() << "FastISel missed call: ";
1081 Inst->dump();
1082 }
1083
1084 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1085 unsigned &R = FuncInfo->ValueMap[Inst];
1086 if (!R)
1087 R = FuncInfo->CreateRegs(Inst->getType());
1088 }
1089
1090 bool HadTailCall = false;
1091 SelectBasicBlock(Inst, BI, HadTailCall);
1092
1093 // Recompute NumFastIselRemaining as Selection DAG instruction
1094 // selection may have handled the call, input args, etc.
1095 unsigned RemainingNow = std::distance(Begin, BI);
1096 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1097
1098 // If the call was emitted as a tail call, we're done with the block.
1099 if (HadTailCall) {
1100 --BI;
1101 break;
1102 }
1103
1104 NumFastIselRemaining = RemainingNow;
1105 continue;
1106 }
1107
1108 if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1109 // Don't abort, and use a different message for terminator misses.
1110 NumFastIselFailures += NumFastIselRemaining;
1111 if (EnableFastISelVerbose || EnableFastISelAbort) {
1112 dbgs() << "FastISel missed terminator: ";
1113 Inst->dump();
1114 }
1115 } else {
1116 NumFastIselFailures += NumFastIselRemaining;
1117 if (EnableFastISelVerbose || EnableFastISelAbort) {
1118 dbgs() << "FastISel miss: ";
1119 Inst->dump();
1120 }
1121 if (EnableFastISelAbort)
1122 // The "fast" selector couldn't handle something and bailed.
1123 // For the purpose of debugging, just abort.
1124 llvm_unreachable("FastISel didn't select the entire block");
1125 }
1126 break;
1127 }
1128
1129 FastIS->recomputeInsertPt();
1130 }
1131
1132 if (Begin != BI)
1133 ++NumDAGBlocks;
1134 else
1135 ++NumFastIselBlocks;
1136
1137 if (Begin != BI) {
1138 // Run SelectionDAG instruction selection on the remainder of the block
1139 // not handled by FastISel. If FastISel is not run, this is the entire
1140 // block.
1141 bool HadTailCall;
1142 SelectBasicBlock(Begin, BI, HadTailCall);
1143 }
1144
1145 FinishBasicBlock();
1146 FuncInfo->PHINodesToUpdate.clear();
1147 }
1148
1149 delete FastIS;
1150 SDB->clearDanglingDebugInfo();
1151 }
1152
1153 void
FinishBasicBlock()1154 SelectionDAGISel::FinishBasicBlock() {
1155
1156 DEBUG(dbgs() << "Total amount of phi nodes to update: "
1157 << FuncInfo->PHINodesToUpdate.size() << "\n";
1158 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1159 dbgs() << "Node " << i << " : ("
1160 << FuncInfo->PHINodesToUpdate[i].first
1161 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1162
1163 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1164 // PHI nodes in successors.
1165 if (SDB->SwitchCases.empty() &&
1166 SDB->JTCases.empty() &&
1167 SDB->BitTestCases.empty()) {
1168 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1169 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1170 assert(PHI->isPHI() &&
1171 "This is not a machine PHI node that we are updating!");
1172 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1173 continue;
1174 PHI->addOperand(
1175 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1176 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1177 }
1178 return;
1179 }
1180
1181 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1182 // Lower header first, if it wasn't already lowered
1183 if (!SDB->BitTestCases[i].Emitted) {
1184 // Set the current basic block to the mbb we wish to insert the code into
1185 FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1186 FuncInfo->InsertPt = FuncInfo->MBB->end();
1187 // Emit the code
1188 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1189 CurDAG->setRoot(SDB->getRoot());
1190 SDB->clear();
1191 CodeGenAndEmitDAG();
1192 }
1193
1194 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1195 // Set the current basic block to the mbb we wish to insert the code into
1196 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1197 FuncInfo->InsertPt = FuncInfo->MBB->end();
1198 // Emit the code
1199 if (j+1 != ej)
1200 SDB->visitBitTestCase(SDB->BitTestCases[i],
1201 SDB->BitTestCases[i].Cases[j+1].ThisBB,
1202 SDB->BitTestCases[i].Reg,
1203 SDB->BitTestCases[i].Cases[j],
1204 FuncInfo->MBB);
1205 else
1206 SDB->visitBitTestCase(SDB->BitTestCases[i],
1207 SDB->BitTestCases[i].Default,
1208 SDB->BitTestCases[i].Reg,
1209 SDB->BitTestCases[i].Cases[j],
1210 FuncInfo->MBB);
1211
1212
1213 CurDAG->setRoot(SDB->getRoot());
1214 SDB->clear();
1215 CodeGenAndEmitDAG();
1216 }
1217
1218 // Update PHI Nodes
1219 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1220 pi != pe; ++pi) {
1221 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1222 MachineBasicBlock *PHIBB = PHI->getParent();
1223 assert(PHI->isPHI() &&
1224 "This is not a machine PHI node that we are updating!");
1225 // This is "default" BB. We have two jumps to it. From "header" BB and
1226 // from last "case" BB.
1227 if (PHIBB == SDB->BitTestCases[i].Default) {
1228 PHI->addOperand(MachineOperand::
1229 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1230 false));
1231 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1232 PHI->addOperand(MachineOperand::
1233 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1234 false));
1235 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1236 back().ThisBB));
1237 }
1238 // One of "cases" BB.
1239 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1240 j != ej; ++j) {
1241 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1242 if (cBB->isSuccessor(PHIBB)) {
1243 PHI->addOperand(MachineOperand::
1244 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1245 false));
1246 PHI->addOperand(MachineOperand::CreateMBB(cBB));
1247 }
1248 }
1249 }
1250 }
1251 SDB->BitTestCases.clear();
1252
1253 // If the JumpTable record is filled in, then we need to emit a jump table.
1254 // Updating the PHI nodes is tricky in this case, since we need to determine
1255 // whether the PHI is a successor of the range check MBB or the jump table MBB
1256 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1257 // Lower header first, if it wasn't already lowered
1258 if (!SDB->JTCases[i].first.Emitted) {
1259 // Set the current basic block to the mbb we wish to insert the code into
1260 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1261 FuncInfo->InsertPt = FuncInfo->MBB->end();
1262 // Emit the code
1263 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1264 FuncInfo->MBB);
1265 CurDAG->setRoot(SDB->getRoot());
1266 SDB->clear();
1267 CodeGenAndEmitDAG();
1268 }
1269
1270 // Set the current basic block to the mbb we wish to insert the code into
1271 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1272 FuncInfo->InsertPt = FuncInfo->MBB->end();
1273 // Emit the code
1274 SDB->visitJumpTable(SDB->JTCases[i].second);
1275 CurDAG->setRoot(SDB->getRoot());
1276 SDB->clear();
1277 CodeGenAndEmitDAG();
1278
1279 // Update PHI Nodes
1280 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1281 pi != pe; ++pi) {
1282 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1283 MachineBasicBlock *PHIBB = PHI->getParent();
1284 assert(PHI->isPHI() &&
1285 "This is not a machine PHI node that we are updating!");
1286 // "default" BB. We can go there only from header BB.
1287 if (PHIBB == SDB->JTCases[i].second.Default) {
1288 PHI->addOperand
1289 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1290 false));
1291 PHI->addOperand
1292 (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1293 }
1294 // JT BB. Just iterate over successors here
1295 if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1296 PHI->addOperand
1297 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1298 false));
1299 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1300 }
1301 }
1302 }
1303 SDB->JTCases.clear();
1304
1305 // If the switch block involved a branch to one of the actual successors, we
1306 // need to update PHI nodes in that block.
1307 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1308 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1309 assert(PHI->isPHI() &&
1310 "This is not a machine PHI node that we are updating!");
1311 if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1312 PHI->addOperand(
1313 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1314 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1315 }
1316 }
1317
1318 // If we generated any switch lowering information, build and codegen any
1319 // additional DAGs necessary.
1320 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1321 // Set the current basic block to the mbb we wish to insert the code into
1322 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1323 FuncInfo->InsertPt = FuncInfo->MBB->end();
1324
1325 // Determine the unique successors.
1326 SmallVector<MachineBasicBlock *, 2> Succs;
1327 Succs.push_back(SDB->SwitchCases[i].TrueBB);
1328 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1329 Succs.push_back(SDB->SwitchCases[i].FalseBB);
1330
1331 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1332 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1333 CurDAG->setRoot(SDB->getRoot());
1334 SDB->clear();
1335 CodeGenAndEmitDAG();
1336
1337 // Remember the last block, now that any splitting is done, for use in
1338 // populating PHI nodes in successors.
1339 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1340
1341 // Handle any PHI nodes in successors of this chunk, as if we were coming
1342 // from the original BB before switch expansion. Note that PHI nodes can
1343 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1344 // handle them the right number of times.
1345 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1346 FuncInfo->MBB = Succs[i];
1347 FuncInfo->InsertPt = FuncInfo->MBB->end();
1348 // FuncInfo->MBB may have been removed from the CFG if a branch was
1349 // constant folded.
1350 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1351 for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1352 Phi != FuncInfo->MBB->end() && Phi->isPHI();
1353 ++Phi) {
1354 // This value for this PHI node is recorded in PHINodesToUpdate.
1355 for (unsigned pn = 0; ; ++pn) {
1356 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1357 "Didn't find PHI entry!");
1358 if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1359 Phi->addOperand(MachineOperand::
1360 CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1361 false));
1362 Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1363 break;
1364 }
1365 }
1366 }
1367 }
1368 }
1369 }
1370 SDB->SwitchCases.clear();
1371 }
1372
1373
1374 /// Create the scheduler. If a specific scheduler was specified
1375 /// via the SchedulerRegistry, use it, otherwise select the
1376 /// one preferred by the target.
1377 ///
CreateScheduler()1378 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1379 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1380
1381 if (!Ctor) {
1382 Ctor = ISHeuristic;
1383 RegisterScheduler::setDefault(Ctor);
1384 }
1385
1386 return Ctor(this, OptLevel);
1387 }
1388
1389 //===----------------------------------------------------------------------===//
1390 // Helper functions used by the generated instruction selector.
1391 //===----------------------------------------------------------------------===//
1392 // Calls to these methods are generated by tblgen.
1393
1394 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1395 /// the dag combiner simplified the 255, we still want to match. RHS is the
1396 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1397 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1398 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1399 int64_t DesiredMaskS) const {
1400 const APInt &ActualMask = RHS->getAPIntValue();
1401 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1402
1403 // If the actual mask exactly matches, success!
1404 if (ActualMask == DesiredMask)
1405 return true;
1406
1407 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1408 if (ActualMask.intersects(~DesiredMask))
1409 return false;
1410
1411 // Otherwise, the DAG Combiner may have proven that the value coming in is
1412 // either already zero or is not demanded. Check for known zero input bits.
1413 APInt NeededMask = DesiredMask & ~ActualMask;
1414 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1415 return true;
1416
1417 // TODO: check to see if missing bits are just not demanded.
1418
1419 // Otherwise, this pattern doesn't match.
1420 return false;
1421 }
1422
1423 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1424 /// the dag combiner simplified the 255, we still want to match. RHS is the
1425 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1426 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1427 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1428 int64_t DesiredMaskS) const {
1429 const APInt &ActualMask = RHS->getAPIntValue();
1430 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1431
1432 // If the actual mask exactly matches, success!
1433 if (ActualMask == DesiredMask)
1434 return true;
1435
1436 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1437 if (ActualMask.intersects(~DesiredMask))
1438 return false;
1439
1440 // Otherwise, the DAG Combiner may have proven that the value coming in is
1441 // either already zero or is not demanded. Check for known zero input bits.
1442 APInt NeededMask = DesiredMask & ~ActualMask;
1443
1444 APInt KnownZero, KnownOne;
1445 CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1446
1447 // If all the missing bits in the or are already known to be set, match!
1448 if ((NeededMask & KnownOne) == NeededMask)
1449 return true;
1450
1451 // TODO: check to see if missing bits are just not demanded.
1452
1453 // Otherwise, this pattern doesn't match.
1454 return false;
1455 }
1456
1457
1458 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1459 /// by tblgen. Others should not call it.
1460 void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops)1461 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1462 std::vector<SDValue> InOps;
1463 std::swap(InOps, Ops);
1464
1465 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1466 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1467 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1468 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1469
1470 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1471 if (InOps[e-1].getValueType() == MVT::Glue)
1472 --e; // Don't process a glue operand if it is here.
1473
1474 while (i != e) {
1475 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1476 if (!InlineAsm::isMemKind(Flags)) {
1477 // Just skip over this operand, copying the operands verbatim.
1478 Ops.insert(Ops.end(), InOps.begin()+i,
1479 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1480 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1481 } else {
1482 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1483 "Memory operand with multiple values?");
1484 // Otherwise, this is a memory operand. Ask the target to select it.
1485 std::vector<SDValue> SelOps;
1486 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1487 report_fatal_error("Could not match memory address. Inline asm"
1488 " failure!");
1489
1490 // Add this to the output node.
1491 unsigned NewFlags =
1492 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1493 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1494 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1495 i += 2;
1496 }
1497 }
1498
1499 // Add the glue input back if present.
1500 if (e != InOps.size())
1501 Ops.push_back(InOps.back());
1502 }
1503
1504 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1505 /// SDNode.
1506 ///
findGlueUse(SDNode * N)1507 static SDNode *findGlueUse(SDNode *N) {
1508 unsigned FlagResNo = N->getNumValues()-1;
1509 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1510 SDUse &Use = I.getUse();
1511 if (Use.getResNo() == FlagResNo)
1512 return Use.getUser();
1513 }
1514 return NULL;
1515 }
1516
1517 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1518 /// This function recursively traverses up the operand chain, ignoring
1519 /// certain nodes.
findNonImmUse(SDNode * Use,SDNode * Def,SDNode * ImmedUse,SDNode * Root,SmallPtrSet<SDNode *,16> & Visited,bool IgnoreChains)1520 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1521 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1522 bool IgnoreChains) {
1523 // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1524 // greater than all of its (recursive) operands. If we scan to a point where
1525 // 'use' is smaller than the node we're scanning for, then we know we will
1526 // never find it.
1527 //
1528 // The Use may be -1 (unassigned) if it is a newly allocated node. This can
1529 // happen because we scan down to newly selected nodes in the case of glue
1530 // uses.
1531 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1532 return false;
1533
1534 // Don't revisit nodes if we already scanned it and didn't fail, we know we
1535 // won't fail if we scan it again.
1536 if (!Visited.insert(Use))
1537 return false;
1538
1539 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1540 // Ignore chain uses, they are validated by HandleMergeInputChains.
1541 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1542 continue;
1543
1544 SDNode *N = Use->getOperand(i).getNode();
1545 if (N == Def) {
1546 if (Use == ImmedUse || Use == Root)
1547 continue; // We are not looking for immediate use.
1548 assert(N != Root);
1549 return true;
1550 }
1551
1552 // Traverse up the operand chain.
1553 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1554 return true;
1555 }
1556 return false;
1557 }
1558
1559 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1560 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1561 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1562 SDNode *Root) const {
1563 if (OptLevel == CodeGenOpt::None) return false;
1564 return N.hasOneUse();
1565 }
1566
1567 /// IsLegalToFold - Returns true if the specific operand node N of
1568 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)1569 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1570 CodeGenOpt::Level OptLevel,
1571 bool IgnoreChains) {
1572 if (OptLevel == CodeGenOpt::None) return false;
1573
1574 // If Root use can somehow reach N through a path that that doesn't contain
1575 // U then folding N would create a cycle. e.g. In the following
1576 // diagram, Root can reach N through X. If N is folded into into Root, then
1577 // X is both a predecessor and a successor of U.
1578 //
1579 // [N*] //
1580 // ^ ^ //
1581 // / \ //
1582 // [U*] [X]? //
1583 // ^ ^ //
1584 // \ / //
1585 // \ / //
1586 // [Root*] //
1587 //
1588 // * indicates nodes to be folded together.
1589 //
1590 // If Root produces glue, then it gets (even more) interesting. Since it
1591 // will be "glued" together with its glue use in the scheduler, we need to
1592 // check if it might reach N.
1593 //
1594 // [N*] //
1595 // ^ ^ //
1596 // / \ //
1597 // [U*] [X]? //
1598 // ^ ^ //
1599 // \ \ //
1600 // \ | //
1601 // [Root*] | //
1602 // ^ | //
1603 // f | //
1604 // | / //
1605 // [Y] / //
1606 // ^ / //
1607 // f / //
1608 // | / //
1609 // [GU] //
1610 //
1611 // If GU (glue use) indirectly reaches N (the load), and Root folds N
1612 // (call it Fold), then X is a predecessor of GU and a successor of
1613 // Fold. But since Fold and GU are glued together, this will create
1614 // a cycle in the scheduling graph.
1615
1616 // If the node has glue, walk down the graph to the "lowest" node in the
1617 // glueged set.
1618 EVT VT = Root->getValueType(Root->getNumValues()-1);
1619 while (VT == MVT::Glue) {
1620 SDNode *GU = findGlueUse(Root);
1621 if (GU == NULL)
1622 break;
1623 Root = GU;
1624 VT = Root->getValueType(Root->getNumValues()-1);
1625
1626 // If our query node has a glue result with a use, we've walked up it. If
1627 // the user (which has already been selected) has a chain or indirectly uses
1628 // the chain, our WalkChainUsers predicate will not consider it. Because of
1629 // this, we cannot ignore chains in this predicate.
1630 IgnoreChains = false;
1631 }
1632
1633
1634 SmallPtrSet<SDNode*, 16> Visited;
1635 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1636 }
1637
Select_INLINEASM(SDNode * N)1638 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1639 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1640 SelectInlineAsmMemoryOperands(Ops);
1641
1642 std::vector<EVT> VTs;
1643 VTs.push_back(MVT::Other);
1644 VTs.push_back(MVT::Glue);
1645 SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1646 VTs, &Ops[0], Ops.size());
1647 New->setNodeId(-1);
1648 return New.getNode();
1649 }
1650
Select_UNDEF(SDNode * N)1651 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1652 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1653 }
1654
1655 /// GetVBR - decode a vbr encoding whose top bit is set.
1656 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)1657 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1658 assert(Val >= 128 && "Not a VBR");
1659 Val &= 127; // Remove first vbr bit.
1660
1661 unsigned Shift = 7;
1662 uint64_t NextBits;
1663 do {
1664 NextBits = MatcherTable[Idx++];
1665 Val |= (NextBits&127) << Shift;
1666 Shift += 7;
1667 } while (NextBits & 128);
1668
1669 return Val;
1670 }
1671
1672
1673 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1674 /// interior glue and chain results to use the new glue and chain results.
1675 void SelectionDAGISel::
UpdateChainsAndGlue(SDNode * NodeToMatch,SDValue InputChain,const SmallVectorImpl<SDNode * > & ChainNodesMatched,SDValue InputGlue,const SmallVectorImpl<SDNode * > & GlueResultNodesMatched,bool isMorphNodeTo)1676 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1677 const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1678 SDValue InputGlue,
1679 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1680 bool isMorphNodeTo) {
1681 SmallVector<SDNode*, 4> NowDeadNodes;
1682
1683 ISelUpdater ISU(ISelPosition);
1684
1685 // Now that all the normal results are replaced, we replace the chain and
1686 // glue results if present.
1687 if (!ChainNodesMatched.empty()) {
1688 assert(InputChain.getNode() != 0 &&
1689 "Matched input chains but didn't produce a chain");
1690 // Loop over all of the nodes we matched that produced a chain result.
1691 // Replace all the chain results with the final chain we ended up with.
1692 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1693 SDNode *ChainNode = ChainNodesMatched[i];
1694
1695 // If this node was already deleted, don't look at it.
1696 if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1697 continue;
1698
1699 // Don't replace the results of the root node if we're doing a
1700 // MorphNodeTo.
1701 if (ChainNode == NodeToMatch && isMorphNodeTo)
1702 continue;
1703
1704 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1705 if (ChainVal.getValueType() == MVT::Glue)
1706 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1707 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1708 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1709
1710 // If the node became dead and we haven't already seen it, delete it.
1711 if (ChainNode->use_empty() &&
1712 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1713 NowDeadNodes.push_back(ChainNode);
1714 }
1715 }
1716
1717 // If the result produces glue, update any glue results in the matched
1718 // pattern with the glue result.
1719 if (InputGlue.getNode() != 0) {
1720 // Handle any interior nodes explicitly marked.
1721 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1722 SDNode *FRN = GlueResultNodesMatched[i];
1723
1724 // If this node was already deleted, don't look at it.
1725 if (FRN->getOpcode() == ISD::DELETED_NODE)
1726 continue;
1727
1728 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1729 "Doesn't have a glue result");
1730 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1731 InputGlue, &ISU);
1732
1733 // If the node became dead and we haven't already seen it, delete it.
1734 if (FRN->use_empty() &&
1735 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1736 NowDeadNodes.push_back(FRN);
1737 }
1738 }
1739
1740 if (!NowDeadNodes.empty())
1741 CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1742
1743 DEBUG(errs() << "ISEL: Match complete!\n");
1744 }
1745
1746 enum ChainResult {
1747 CR_Simple,
1748 CR_InducesCycle,
1749 CR_LeadsToInteriorNode
1750 };
1751
1752 /// WalkChainUsers - Walk down the users of the specified chained node that is
1753 /// part of the pattern we're matching, looking at all of the users we find.
1754 /// This determines whether something is an interior node, whether we have a
1755 /// non-pattern node in between two pattern nodes (which prevent folding because
1756 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1757 /// between pattern nodes (in which case the TF becomes part of the pattern).
1758 ///
1759 /// The walk we do here is guaranteed to be small because we quickly get down to
1760 /// already selected nodes "below" us.
1761 static ChainResult
WalkChainUsers(SDNode * ChainedNode,SmallVectorImpl<SDNode * > & ChainedNodesInPattern,SmallVectorImpl<SDNode * > & InteriorChainedNodes)1762 WalkChainUsers(SDNode *ChainedNode,
1763 SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1764 SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1765 ChainResult Result = CR_Simple;
1766
1767 for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1768 E = ChainedNode->use_end(); UI != E; ++UI) {
1769 // Make sure the use is of the chain, not some other value we produce.
1770 if (UI.getUse().getValueType() != MVT::Other) continue;
1771
1772 SDNode *User = *UI;
1773
1774 // If we see an already-selected machine node, then we've gone beyond the
1775 // pattern that we're selecting down into the already selected chunk of the
1776 // DAG.
1777 if (User->isMachineOpcode() ||
1778 User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
1779 continue;
1780
1781 if (User->getOpcode() == ISD::CopyToReg ||
1782 User->getOpcode() == ISD::CopyFromReg ||
1783 User->getOpcode() == ISD::INLINEASM ||
1784 User->getOpcode() == ISD::EH_LABEL) {
1785 // If their node ID got reset to -1 then they've already been selected.
1786 // Treat them like a MachineOpcode.
1787 if (User->getNodeId() == -1)
1788 continue;
1789 }
1790
1791 // If we have a TokenFactor, we handle it specially.
1792 if (User->getOpcode() != ISD::TokenFactor) {
1793 // If the node isn't a token factor and isn't part of our pattern, then it
1794 // must be a random chained node in between two nodes we're selecting.
1795 // This happens when we have something like:
1796 // x = load ptr
1797 // call
1798 // y = x+4
1799 // store y -> ptr
1800 // Because we structurally match the load/store as a read/modify/write,
1801 // but the call is chained between them. We cannot fold in this case
1802 // because it would induce a cycle in the graph.
1803 if (!std::count(ChainedNodesInPattern.begin(),
1804 ChainedNodesInPattern.end(), User))
1805 return CR_InducesCycle;
1806
1807 // Otherwise we found a node that is part of our pattern. For example in:
1808 // x = load ptr
1809 // y = x+4
1810 // store y -> ptr
1811 // This would happen when we're scanning down from the load and see the
1812 // store as a user. Record that there is a use of ChainedNode that is
1813 // part of the pattern and keep scanning uses.
1814 Result = CR_LeadsToInteriorNode;
1815 InteriorChainedNodes.push_back(User);
1816 continue;
1817 }
1818
1819 // If we found a TokenFactor, there are two cases to consider: first if the
1820 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1821 // uses of the TF are in our pattern) we just want to ignore it. Second,
1822 // the TokenFactor can be sandwiched in between two chained nodes, like so:
1823 // [Load chain]
1824 // ^
1825 // |
1826 // [Load]
1827 // ^ ^
1828 // | \ DAG's like cheese
1829 // / \ do you?
1830 // / |
1831 // [TokenFactor] [Op]
1832 // ^ ^
1833 // | |
1834 // \ /
1835 // \ /
1836 // [Store]
1837 //
1838 // In this case, the TokenFactor becomes part of our match and we rewrite it
1839 // as a new TokenFactor.
1840 //
1841 // To distinguish these two cases, do a recursive walk down the uses.
1842 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1843 case CR_Simple:
1844 // If the uses of the TokenFactor are just already-selected nodes, ignore
1845 // it, it is "below" our pattern.
1846 continue;
1847 case CR_InducesCycle:
1848 // If the uses of the TokenFactor lead to nodes that are not part of our
1849 // pattern that are not selected, folding would turn this into a cycle,
1850 // bail out now.
1851 return CR_InducesCycle;
1852 case CR_LeadsToInteriorNode:
1853 break; // Otherwise, keep processing.
1854 }
1855
1856 // Okay, we know we're in the interesting interior case. The TokenFactor
1857 // is now going to be considered part of the pattern so that we rewrite its
1858 // uses (it may have uses that are not part of the pattern) with the
1859 // ultimate chain result of the generated code. We will also add its chain
1860 // inputs as inputs to the ultimate TokenFactor we create.
1861 Result = CR_LeadsToInteriorNode;
1862 ChainedNodesInPattern.push_back(User);
1863 InteriorChainedNodes.push_back(User);
1864 continue;
1865 }
1866
1867 return Result;
1868 }
1869
1870 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1871 /// operation for when the pattern matched at least one node with a chains. The
1872 /// input vector contains a list of all of the chained nodes that we match. We
1873 /// must determine if this is a valid thing to cover (i.e. matching it won't
1874 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1875 /// be used as the input node chain for the generated nodes.
1876 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)1877 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1878 SelectionDAG *CurDAG) {
1879 // Walk all of the chained nodes we've matched, recursively scanning down the
1880 // users of the chain result. This adds any TokenFactor nodes that are caught
1881 // in between chained nodes to the chained and interior nodes list.
1882 SmallVector<SDNode*, 3> InteriorChainedNodes;
1883 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1884 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1885 InteriorChainedNodes) == CR_InducesCycle)
1886 return SDValue(); // Would induce a cycle.
1887 }
1888
1889 // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1890 // that we are interested in. Form our input TokenFactor node.
1891 SmallVector<SDValue, 3> InputChains;
1892 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1893 // Add the input chain of this node to the InputChains list (which will be
1894 // the operands of the generated TokenFactor) if it's not an interior node.
1895 SDNode *N = ChainNodesMatched[i];
1896 if (N->getOpcode() != ISD::TokenFactor) {
1897 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1898 continue;
1899
1900 // Otherwise, add the input chain.
1901 SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1902 assert(InChain.getValueType() == MVT::Other && "Not a chain");
1903 InputChains.push_back(InChain);
1904 continue;
1905 }
1906
1907 // If we have a token factor, we want to add all inputs of the token factor
1908 // that are not part of the pattern we're matching.
1909 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1910 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1911 N->getOperand(op).getNode()))
1912 InputChains.push_back(N->getOperand(op));
1913 }
1914 }
1915
1916 SDValue Res;
1917 if (InputChains.size() == 1)
1918 return InputChains[0];
1919 return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1920 MVT::Other, &InputChains[0], InputChains.size());
1921 }
1922
1923 /// MorphNode - Handle morphing a node in place for the selector.
1924 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,const SDValue * Ops,unsigned NumOps,unsigned EmitNodeInfo)1925 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1926 const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1927 // It is possible we're using MorphNodeTo to replace a node with no
1928 // normal results with one that has a normal result (or we could be
1929 // adding a chain) and the input could have glue and chains as well.
1930 // In this case we need to shift the operands down.
1931 // FIXME: This is a horrible hack and broken in obscure cases, no worse
1932 // than the old isel though.
1933 int OldGlueResultNo = -1, OldChainResultNo = -1;
1934
1935 unsigned NTMNumResults = Node->getNumValues();
1936 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1937 OldGlueResultNo = NTMNumResults-1;
1938 if (NTMNumResults != 1 &&
1939 Node->getValueType(NTMNumResults-2) == MVT::Other)
1940 OldChainResultNo = NTMNumResults-2;
1941 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1942 OldChainResultNo = NTMNumResults-1;
1943
1944 // Call the underlying SelectionDAG routine to do the transmogrification. Note
1945 // that this deletes operands of the old node that become dead.
1946 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1947
1948 // MorphNodeTo can operate in two ways: if an existing node with the
1949 // specified operands exists, it can just return it. Otherwise, it
1950 // updates the node in place to have the requested operands.
1951 if (Res == Node) {
1952 // If we updated the node in place, reset the node ID. To the isel,
1953 // this should be just like a newly allocated machine node.
1954 Res->setNodeId(-1);
1955 }
1956
1957 unsigned ResNumResults = Res->getNumValues();
1958 // Move the glue if needed.
1959 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1960 (unsigned)OldGlueResultNo != ResNumResults-1)
1961 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1962 SDValue(Res, ResNumResults-1));
1963
1964 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1965 --ResNumResults;
1966
1967 // Move the chain reference if needed.
1968 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1969 (unsigned)OldChainResultNo != ResNumResults-1)
1970 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1971 SDValue(Res, ResNumResults-1));
1972
1973 // Otherwise, no replacement happened because the node already exists. Replace
1974 // Uses of the old node with the new one.
1975 if (Res != Node)
1976 CurDAG->ReplaceAllUsesWith(Node, Res);
1977
1978 return Res;
1979 }
1980
1981 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1982 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)1983 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1984 SDValue N,
1985 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1986 // Accept if it is exactly the same as a previously recorded node.
1987 unsigned RecNo = MatcherTable[MatcherIndex++];
1988 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1989 return N == RecordedNodes[RecNo].first;
1990 }
1991
1992 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1993 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,SelectionDAGISel & SDISel)1994 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1995 SelectionDAGISel &SDISel) {
1996 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1997 }
1998
1999 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2000 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,SelectionDAGISel & SDISel,SDNode * N)2001 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2002 SelectionDAGISel &SDISel, SDNode *N) {
2003 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2004 }
2005
2006 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2007 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2008 SDNode *N) {
2009 uint16_t Opc = MatcherTable[MatcherIndex++];
2010 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2011 return N->getOpcode() == Opc;
2012 }
2013
2014 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering & TLI)2015 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2016 SDValue N, const TargetLowering &TLI) {
2017 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2018 if (N.getValueType() == VT) return true;
2019
2020 // Handle the case when VT is iPTR.
2021 return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2022 }
2023
2024 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering & TLI,unsigned ChildNo)2025 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2026 SDValue N, const TargetLowering &TLI,
2027 unsigned ChildNo) {
2028 if (ChildNo >= N.getNumOperands())
2029 return false; // Match fails if out of range child #.
2030 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2031 }
2032
2033
2034 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2035 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2036 SDValue N) {
2037 return cast<CondCodeSDNode>(N)->get() ==
2038 (ISD::CondCode)MatcherTable[MatcherIndex++];
2039 }
2040
2041 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering & TLI)2042 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2043 SDValue N, const TargetLowering &TLI) {
2044 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2045 if (cast<VTSDNode>(N)->getVT() == VT)
2046 return true;
2047
2048 // Handle the case when VT is iPTR.
2049 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2050 }
2051
2052 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2053 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2054 SDValue N) {
2055 int64_t Val = MatcherTable[MatcherIndex++];
2056 if (Val & 128)
2057 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2058
2059 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2060 return C != 0 && C->getSExtValue() == Val;
2061 }
2062
2063 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,SelectionDAGISel & SDISel)2064 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2065 SDValue N, SelectionDAGISel &SDISel) {
2066 int64_t Val = MatcherTable[MatcherIndex++];
2067 if (Val & 128)
2068 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2069
2070 if (N->getOpcode() != ISD::AND) return false;
2071
2072 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2073 return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2074 }
2075
2076 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,SelectionDAGISel & SDISel)2077 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2078 SDValue N, SelectionDAGISel &SDISel) {
2079 int64_t Val = MatcherTable[MatcherIndex++];
2080 if (Val & 128)
2081 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2082
2083 if (N->getOpcode() != ISD::OR) return false;
2084
2085 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2086 return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2087 }
2088
2089 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2090 /// scope, evaluate the current node. If the current predicate is known to
2091 /// fail, set Result=true and return anything. If the current predicate is
2092 /// known to pass, set Result=false and return the MatcherIndex to continue
2093 /// with. If the current predicate is unknown, set Result=false and return the
2094 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2095 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2096 unsigned Index, SDValue N,
2097 bool &Result, SelectionDAGISel &SDISel,
2098 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2099 switch (Table[Index++]) {
2100 default:
2101 Result = false;
2102 return Index-1; // Could not evaluate this predicate.
2103 case SelectionDAGISel::OPC_CheckSame:
2104 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2105 return Index;
2106 case SelectionDAGISel::OPC_CheckPatternPredicate:
2107 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2108 return Index;
2109 case SelectionDAGISel::OPC_CheckPredicate:
2110 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2111 return Index;
2112 case SelectionDAGISel::OPC_CheckOpcode:
2113 Result = !::CheckOpcode(Table, Index, N.getNode());
2114 return Index;
2115 case SelectionDAGISel::OPC_CheckType:
2116 Result = !::CheckType(Table, Index, N, SDISel.TLI);
2117 return Index;
2118 case SelectionDAGISel::OPC_CheckChild0Type:
2119 case SelectionDAGISel::OPC_CheckChild1Type:
2120 case SelectionDAGISel::OPC_CheckChild2Type:
2121 case SelectionDAGISel::OPC_CheckChild3Type:
2122 case SelectionDAGISel::OPC_CheckChild4Type:
2123 case SelectionDAGISel::OPC_CheckChild5Type:
2124 case SelectionDAGISel::OPC_CheckChild6Type:
2125 case SelectionDAGISel::OPC_CheckChild7Type:
2126 Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2127 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2128 return Index;
2129 case SelectionDAGISel::OPC_CheckCondCode:
2130 Result = !::CheckCondCode(Table, Index, N);
2131 return Index;
2132 case SelectionDAGISel::OPC_CheckValueType:
2133 Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2134 return Index;
2135 case SelectionDAGISel::OPC_CheckInteger:
2136 Result = !::CheckInteger(Table, Index, N);
2137 return Index;
2138 case SelectionDAGISel::OPC_CheckAndImm:
2139 Result = !::CheckAndImm(Table, Index, N, SDISel);
2140 return Index;
2141 case SelectionDAGISel::OPC_CheckOrImm:
2142 Result = !::CheckOrImm(Table, Index, N, SDISel);
2143 return Index;
2144 }
2145 }
2146
2147 namespace {
2148
2149 struct MatchScope {
2150 /// FailIndex - If this match fails, this is the index to continue with.
2151 unsigned FailIndex;
2152
2153 /// NodeStack - The node stack when the scope was formed.
2154 SmallVector<SDValue, 4> NodeStack;
2155
2156 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2157 unsigned NumRecordedNodes;
2158
2159 /// NumMatchedMemRefs - The number of matched memref entries.
2160 unsigned NumMatchedMemRefs;
2161
2162 /// InputChain/InputGlue - The current chain/glue
2163 SDValue InputChain, InputGlue;
2164
2165 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2166 bool HasChainNodesMatched, HasGlueResultNodesMatched;
2167 };
2168
2169 }
2170
2171 SDNode *SelectionDAGISel::
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2172 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2173 unsigned TableSize) {
2174 // FIXME: Should these even be selected? Handle these cases in the caller?
2175 switch (NodeToMatch->getOpcode()) {
2176 default:
2177 break;
2178 case ISD::EntryToken: // These nodes remain the same.
2179 case ISD::BasicBlock:
2180 case ISD::Register:
2181 case ISD::RegisterMask:
2182 //case ISD::VALUETYPE:
2183 //case ISD::CONDCODE:
2184 case ISD::HANDLENODE:
2185 case ISD::MDNODE_SDNODE:
2186 case ISD::TargetConstant:
2187 case ISD::TargetConstantFP:
2188 case ISD::TargetConstantPool:
2189 case ISD::TargetFrameIndex:
2190 case ISD::TargetExternalSymbol:
2191 case ISD::TargetBlockAddress:
2192 case ISD::TargetJumpTable:
2193 case ISD::TargetGlobalTLSAddress:
2194 case ISD::TargetGlobalAddress:
2195 case ISD::TokenFactor:
2196 case ISD::CopyFromReg:
2197 case ISD::CopyToReg:
2198 case ISD::EH_LABEL:
2199 NodeToMatch->setNodeId(-1); // Mark selected.
2200 return 0;
2201 case ISD::AssertSext:
2202 case ISD::AssertZext:
2203 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2204 NodeToMatch->getOperand(0));
2205 return 0;
2206 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2207 case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
2208 }
2209
2210 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2211
2212 // Set up the node stack with NodeToMatch as the only node on the stack.
2213 SmallVector<SDValue, 8> NodeStack;
2214 SDValue N = SDValue(NodeToMatch, 0);
2215 NodeStack.push_back(N);
2216
2217 // MatchScopes - Scopes used when matching, if a match failure happens, this
2218 // indicates where to continue checking.
2219 SmallVector<MatchScope, 8> MatchScopes;
2220
2221 // RecordedNodes - This is the set of nodes that have been recorded by the
2222 // state machine. The second value is the parent of the node, or null if the
2223 // root is recorded.
2224 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2225
2226 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2227 // pattern.
2228 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2229
2230 // These are the current input chain and glue for use when generating nodes.
2231 // Various Emit operations change these. For example, emitting a copytoreg
2232 // uses and updates these.
2233 SDValue InputChain, InputGlue;
2234
2235 // ChainNodesMatched - If a pattern matches nodes that have input/output
2236 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2237 // which ones they are. The result is captured into this list so that we can
2238 // update the chain results when the pattern is complete.
2239 SmallVector<SDNode*, 3> ChainNodesMatched;
2240 SmallVector<SDNode*, 3> GlueResultNodesMatched;
2241
2242 DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2243 NodeToMatch->dump(CurDAG);
2244 errs() << '\n');
2245
2246 // Determine where to start the interpreter. Normally we start at opcode #0,
2247 // but if the state machine starts with an OPC_SwitchOpcode, then we
2248 // accelerate the first lookup (which is guaranteed to be hot) with the
2249 // OpcodeOffset table.
2250 unsigned MatcherIndex = 0;
2251
2252 if (!OpcodeOffset.empty()) {
2253 // Already computed the OpcodeOffset table, just index into it.
2254 if (N.getOpcode() < OpcodeOffset.size())
2255 MatcherIndex = OpcodeOffset[N.getOpcode()];
2256 DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n");
2257
2258 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2259 // Otherwise, the table isn't computed, but the state machine does start
2260 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2261 // is the first time we're selecting an instruction.
2262 unsigned Idx = 1;
2263 while (1) {
2264 // Get the size of this case.
2265 unsigned CaseSize = MatcherTable[Idx++];
2266 if (CaseSize & 128)
2267 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2268 if (CaseSize == 0) break;
2269
2270 // Get the opcode, add the index to the table.
2271 uint16_t Opc = MatcherTable[Idx++];
2272 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2273 if (Opc >= OpcodeOffset.size())
2274 OpcodeOffset.resize((Opc+1)*2);
2275 OpcodeOffset[Opc] = Idx;
2276 Idx += CaseSize;
2277 }
2278
2279 // Okay, do the lookup for the first opcode.
2280 if (N.getOpcode() < OpcodeOffset.size())
2281 MatcherIndex = OpcodeOffset[N.getOpcode()];
2282 }
2283
2284 while (1) {
2285 assert(MatcherIndex < TableSize && "Invalid index");
2286 #ifndef NDEBUG
2287 unsigned CurrentOpcodeIndex = MatcherIndex;
2288 #endif
2289 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2290 switch (Opcode) {
2291 case OPC_Scope: {
2292 // Okay, the semantics of this operation are that we should push a scope
2293 // then evaluate the first child. However, pushing a scope only to have
2294 // the first check fail (which then pops it) is inefficient. If we can
2295 // determine immediately that the first check (or first several) will
2296 // immediately fail, don't even bother pushing a scope for them.
2297 unsigned FailIndex;
2298
2299 while (1) {
2300 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2301 if (NumToSkip & 128)
2302 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2303 // Found the end of the scope with no match.
2304 if (NumToSkip == 0) {
2305 FailIndex = 0;
2306 break;
2307 }
2308
2309 FailIndex = MatcherIndex+NumToSkip;
2310
2311 unsigned MatcherIndexOfPredicate = MatcherIndex;
2312 (void)MatcherIndexOfPredicate; // silence warning.
2313
2314 // If we can't evaluate this predicate without pushing a scope (e.g. if
2315 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2316 // push the scope and evaluate the full predicate chain.
2317 bool Result;
2318 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2319 Result, *this, RecordedNodes);
2320 if (!Result)
2321 break;
2322
2323 DEBUG(errs() << " Skipped scope entry (due to false predicate) at "
2324 << "index " << MatcherIndexOfPredicate
2325 << ", continuing at " << FailIndex << "\n");
2326 ++NumDAGIselRetries;
2327
2328 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2329 // move to the next case.
2330 MatcherIndex = FailIndex;
2331 }
2332
2333 // If the whole scope failed to match, bail.
2334 if (FailIndex == 0) break;
2335
2336 // Push a MatchScope which indicates where to go if the first child fails
2337 // to match.
2338 MatchScope NewEntry;
2339 NewEntry.FailIndex = FailIndex;
2340 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2341 NewEntry.NumRecordedNodes = RecordedNodes.size();
2342 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2343 NewEntry.InputChain = InputChain;
2344 NewEntry.InputGlue = InputGlue;
2345 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2346 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2347 MatchScopes.push_back(NewEntry);
2348 continue;
2349 }
2350 case OPC_RecordNode: {
2351 // Remember this node, it may end up being an operand in the pattern.
2352 SDNode *Parent = 0;
2353 if (NodeStack.size() > 1)
2354 Parent = NodeStack[NodeStack.size()-2].getNode();
2355 RecordedNodes.push_back(std::make_pair(N, Parent));
2356 continue;
2357 }
2358
2359 case OPC_RecordChild0: case OPC_RecordChild1:
2360 case OPC_RecordChild2: case OPC_RecordChild3:
2361 case OPC_RecordChild4: case OPC_RecordChild5:
2362 case OPC_RecordChild6: case OPC_RecordChild7: {
2363 unsigned ChildNo = Opcode-OPC_RecordChild0;
2364 if (ChildNo >= N.getNumOperands())
2365 break; // Match fails if out of range child #.
2366
2367 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2368 N.getNode()));
2369 continue;
2370 }
2371 case OPC_RecordMemRef:
2372 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2373 continue;
2374
2375 case OPC_CaptureGlueInput:
2376 // If the current node has an input glue, capture it in InputGlue.
2377 if (N->getNumOperands() != 0 &&
2378 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2379 InputGlue = N->getOperand(N->getNumOperands()-1);
2380 continue;
2381
2382 case OPC_MoveChild: {
2383 unsigned ChildNo = MatcherTable[MatcherIndex++];
2384 if (ChildNo >= N.getNumOperands())
2385 break; // Match fails if out of range child #.
2386 N = N.getOperand(ChildNo);
2387 NodeStack.push_back(N);
2388 continue;
2389 }
2390
2391 case OPC_MoveParent:
2392 // Pop the current node off the NodeStack.
2393 NodeStack.pop_back();
2394 assert(!NodeStack.empty() && "Node stack imbalance!");
2395 N = NodeStack.back();
2396 continue;
2397
2398 case OPC_CheckSame:
2399 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2400 continue;
2401 case OPC_CheckPatternPredicate:
2402 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2403 continue;
2404 case OPC_CheckPredicate:
2405 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2406 N.getNode()))
2407 break;
2408 continue;
2409 case OPC_CheckComplexPat: {
2410 unsigned CPNum = MatcherTable[MatcherIndex++];
2411 unsigned RecNo = MatcherTable[MatcherIndex++];
2412 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2413 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2414 RecordedNodes[RecNo].first, CPNum,
2415 RecordedNodes))
2416 break;
2417 continue;
2418 }
2419 case OPC_CheckOpcode:
2420 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2421 continue;
2422
2423 case OPC_CheckType:
2424 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2425 continue;
2426
2427 case OPC_SwitchOpcode: {
2428 unsigned CurNodeOpcode = N.getOpcode();
2429 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2430 unsigned CaseSize;
2431 while (1) {
2432 // Get the size of this case.
2433 CaseSize = MatcherTable[MatcherIndex++];
2434 if (CaseSize & 128)
2435 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2436 if (CaseSize == 0) break;
2437
2438 uint16_t Opc = MatcherTable[MatcherIndex++];
2439 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2440
2441 // If the opcode matches, then we will execute this case.
2442 if (CurNodeOpcode == Opc)
2443 break;
2444
2445 // Otherwise, skip over this case.
2446 MatcherIndex += CaseSize;
2447 }
2448
2449 // If no cases matched, bail out.
2450 if (CaseSize == 0) break;
2451
2452 // Otherwise, execute the case we found.
2453 DEBUG(errs() << " OpcodeSwitch from " << SwitchStart
2454 << " to " << MatcherIndex << "\n");
2455 continue;
2456 }
2457
2458 case OPC_SwitchType: {
2459 MVT CurNodeVT = N.getValueType().getSimpleVT();
2460 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2461 unsigned CaseSize;
2462 while (1) {
2463 // Get the size of this case.
2464 CaseSize = MatcherTable[MatcherIndex++];
2465 if (CaseSize & 128)
2466 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2467 if (CaseSize == 0) break;
2468
2469 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2470 if (CaseVT == MVT::iPTR)
2471 CaseVT = TLI.getPointerTy();
2472
2473 // If the VT matches, then we will execute this case.
2474 if (CurNodeVT == CaseVT)
2475 break;
2476
2477 // Otherwise, skip over this case.
2478 MatcherIndex += CaseSize;
2479 }
2480
2481 // If no cases matched, bail out.
2482 if (CaseSize == 0) break;
2483
2484 // Otherwise, execute the case we found.
2485 DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2486 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2487 continue;
2488 }
2489 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2490 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2491 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2492 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2493 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2494 Opcode-OPC_CheckChild0Type))
2495 break;
2496 continue;
2497 case OPC_CheckCondCode:
2498 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2499 continue;
2500 case OPC_CheckValueType:
2501 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2502 continue;
2503 case OPC_CheckInteger:
2504 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2505 continue;
2506 case OPC_CheckAndImm:
2507 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2508 continue;
2509 case OPC_CheckOrImm:
2510 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2511 continue;
2512
2513 case OPC_CheckFoldableChainNode: {
2514 assert(NodeStack.size() != 1 && "No parent node");
2515 // Verify that all intermediate nodes between the root and this one have
2516 // a single use.
2517 bool HasMultipleUses = false;
2518 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2519 if (!NodeStack[i].hasOneUse()) {
2520 HasMultipleUses = true;
2521 break;
2522 }
2523 if (HasMultipleUses) break;
2524
2525 // Check to see that the target thinks this is profitable to fold and that
2526 // we can fold it without inducing cycles in the graph.
2527 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2528 NodeToMatch) ||
2529 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2530 NodeToMatch, OptLevel,
2531 true/*We validate our own chains*/))
2532 break;
2533
2534 continue;
2535 }
2536 case OPC_EmitInteger: {
2537 MVT::SimpleValueType VT =
2538 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2539 int64_t Val = MatcherTable[MatcherIndex++];
2540 if (Val & 128)
2541 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2542 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2543 CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2544 continue;
2545 }
2546 case OPC_EmitRegister: {
2547 MVT::SimpleValueType VT =
2548 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2549 unsigned RegNo = MatcherTable[MatcherIndex++];
2550 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2551 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2552 continue;
2553 }
2554 case OPC_EmitRegister2: {
2555 // For targets w/ more than 256 register names, the register enum
2556 // values are stored in two bytes in the matcher table (just like
2557 // opcodes).
2558 MVT::SimpleValueType VT =
2559 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2560 unsigned RegNo = MatcherTable[MatcherIndex++];
2561 RegNo |= MatcherTable[MatcherIndex++] << 8;
2562 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2563 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2564 continue;
2565 }
2566
2567 case OPC_EmitConvertToTarget: {
2568 // Convert from IMM/FPIMM to target version.
2569 unsigned RecNo = MatcherTable[MatcherIndex++];
2570 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2571 SDValue Imm = RecordedNodes[RecNo].first;
2572
2573 if (Imm->getOpcode() == ISD::Constant) {
2574 int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2575 Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2576 } else if (Imm->getOpcode() == ISD::ConstantFP) {
2577 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2578 Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2579 }
2580
2581 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2582 continue;
2583 }
2584
2585 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
2586 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
2587 // These are space-optimized forms of OPC_EmitMergeInputChains.
2588 assert(InputChain.getNode() == 0 &&
2589 "EmitMergeInputChains should be the first chain producing node");
2590 assert(ChainNodesMatched.empty() &&
2591 "Should only have one EmitMergeInputChains per match");
2592
2593 // Read all of the chained nodes.
2594 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2595 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2596 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2597
2598 // FIXME: What if other value results of the node have uses not matched
2599 // by this pattern?
2600 if (ChainNodesMatched.back() != NodeToMatch &&
2601 !RecordedNodes[RecNo].first.hasOneUse()) {
2602 ChainNodesMatched.clear();
2603 break;
2604 }
2605
2606 // Merge the input chains if they are not intra-pattern references.
2607 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2608
2609 if (InputChain.getNode() == 0)
2610 break; // Failed to merge.
2611 continue;
2612 }
2613
2614 case OPC_EmitMergeInputChains: {
2615 assert(InputChain.getNode() == 0 &&
2616 "EmitMergeInputChains should be the first chain producing node");
2617 // This node gets a list of nodes we matched in the input that have
2618 // chains. We want to token factor all of the input chains to these nodes
2619 // together. However, if any of the input chains is actually one of the
2620 // nodes matched in this pattern, then we have an intra-match reference.
2621 // Ignore these because the newly token factored chain should not refer to
2622 // the old nodes.
2623 unsigned NumChains = MatcherTable[MatcherIndex++];
2624 assert(NumChains != 0 && "Can't TF zero chains");
2625
2626 assert(ChainNodesMatched.empty() &&
2627 "Should only have one EmitMergeInputChains per match");
2628
2629 // Read all of the chained nodes.
2630 for (unsigned i = 0; i != NumChains; ++i) {
2631 unsigned RecNo = MatcherTable[MatcherIndex++];
2632 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2633 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2634
2635 // FIXME: What if other value results of the node have uses not matched
2636 // by this pattern?
2637 if (ChainNodesMatched.back() != NodeToMatch &&
2638 !RecordedNodes[RecNo].first.hasOneUse()) {
2639 ChainNodesMatched.clear();
2640 break;
2641 }
2642 }
2643
2644 // If the inner loop broke out, the match fails.
2645 if (ChainNodesMatched.empty())
2646 break;
2647
2648 // Merge the input chains if they are not intra-pattern references.
2649 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2650
2651 if (InputChain.getNode() == 0)
2652 break; // Failed to merge.
2653
2654 continue;
2655 }
2656
2657 case OPC_EmitCopyToReg: {
2658 unsigned RecNo = MatcherTable[MatcherIndex++];
2659 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2660 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2661
2662 if (InputChain.getNode() == 0)
2663 InputChain = CurDAG->getEntryNode();
2664
2665 InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2666 DestPhysReg, RecordedNodes[RecNo].first,
2667 InputGlue);
2668
2669 InputGlue = InputChain.getValue(1);
2670 continue;
2671 }
2672
2673 case OPC_EmitNodeXForm: {
2674 unsigned XFormNo = MatcherTable[MatcherIndex++];
2675 unsigned RecNo = MatcherTable[MatcherIndex++];
2676 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2677 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2678 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2679 continue;
2680 }
2681
2682 case OPC_EmitNode:
2683 case OPC_MorphNodeTo: {
2684 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2685 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2686 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2687 // Get the result VT list.
2688 unsigned NumVTs = MatcherTable[MatcherIndex++];
2689 SmallVector<EVT, 4> VTs;
2690 for (unsigned i = 0; i != NumVTs; ++i) {
2691 MVT::SimpleValueType VT =
2692 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2693 if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2694 VTs.push_back(VT);
2695 }
2696
2697 if (EmitNodeInfo & OPFL_Chain)
2698 VTs.push_back(MVT::Other);
2699 if (EmitNodeInfo & OPFL_GlueOutput)
2700 VTs.push_back(MVT::Glue);
2701
2702 // This is hot code, so optimize the two most common cases of 1 and 2
2703 // results.
2704 SDVTList VTList;
2705 if (VTs.size() == 1)
2706 VTList = CurDAG->getVTList(VTs[0]);
2707 else if (VTs.size() == 2)
2708 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2709 else
2710 VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2711
2712 // Get the operand list.
2713 unsigned NumOps = MatcherTable[MatcherIndex++];
2714 SmallVector<SDValue, 8> Ops;
2715 for (unsigned i = 0; i != NumOps; ++i) {
2716 unsigned RecNo = MatcherTable[MatcherIndex++];
2717 if (RecNo & 128)
2718 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2719
2720 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2721 Ops.push_back(RecordedNodes[RecNo].first);
2722 }
2723
2724 // If there are variadic operands to add, handle them now.
2725 if (EmitNodeInfo & OPFL_VariadicInfo) {
2726 // Determine the start index to copy from.
2727 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2728 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2729 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2730 "Invalid variadic node");
2731 // Copy all of the variadic operands, not including a potential glue
2732 // input.
2733 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2734 i != e; ++i) {
2735 SDValue V = NodeToMatch->getOperand(i);
2736 if (V.getValueType() == MVT::Glue) break;
2737 Ops.push_back(V);
2738 }
2739 }
2740
2741 // If this has chain/glue inputs, add them.
2742 if (EmitNodeInfo & OPFL_Chain)
2743 Ops.push_back(InputChain);
2744 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2745 Ops.push_back(InputGlue);
2746
2747 // Create the node.
2748 SDNode *Res = 0;
2749 if (Opcode != OPC_MorphNodeTo) {
2750 // If this is a normal EmitNode command, just create the new node and
2751 // add the results to the RecordedNodes list.
2752 Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2753 VTList, Ops.data(), Ops.size());
2754
2755 // Add all the non-glue/non-chain results to the RecordedNodes list.
2756 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2757 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2758 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2759 (SDNode*) 0));
2760 }
2761
2762 } else {
2763 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2764 EmitNodeInfo);
2765 }
2766
2767 // If the node had chain/glue results, update our notion of the current
2768 // chain and glue.
2769 if (EmitNodeInfo & OPFL_GlueOutput) {
2770 InputGlue = SDValue(Res, VTs.size()-1);
2771 if (EmitNodeInfo & OPFL_Chain)
2772 InputChain = SDValue(Res, VTs.size()-2);
2773 } else if (EmitNodeInfo & OPFL_Chain)
2774 InputChain = SDValue(Res, VTs.size()-1);
2775
2776 // If the OPFL_MemRefs glue is set on this node, slap all of the
2777 // accumulated memrefs onto it.
2778 //
2779 // FIXME: This is vastly incorrect for patterns with multiple outputs
2780 // instructions that access memory and for ComplexPatterns that match
2781 // loads.
2782 if (EmitNodeInfo & OPFL_MemRefs) {
2783 // Only attach load or store memory operands if the generated
2784 // instruction may load or store.
2785 const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2786 bool mayLoad = MCID.mayLoad();
2787 bool mayStore = MCID.mayStore();
2788
2789 unsigned NumMemRefs = 0;
2790 for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2791 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2792 if ((*I)->isLoad()) {
2793 if (mayLoad)
2794 ++NumMemRefs;
2795 } else if ((*I)->isStore()) {
2796 if (mayStore)
2797 ++NumMemRefs;
2798 } else {
2799 ++NumMemRefs;
2800 }
2801 }
2802
2803 MachineSDNode::mmo_iterator MemRefs =
2804 MF->allocateMemRefsArray(NumMemRefs);
2805
2806 MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2807 for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2808 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2809 if ((*I)->isLoad()) {
2810 if (mayLoad)
2811 *MemRefsPos++ = *I;
2812 } else if ((*I)->isStore()) {
2813 if (mayStore)
2814 *MemRefsPos++ = *I;
2815 } else {
2816 *MemRefsPos++ = *I;
2817 }
2818 }
2819
2820 cast<MachineSDNode>(Res)
2821 ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2822 }
2823
2824 DEBUG(errs() << " "
2825 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2826 << " node: "; Res->dump(CurDAG); errs() << "\n");
2827
2828 // If this was a MorphNodeTo then we're completely done!
2829 if (Opcode == OPC_MorphNodeTo) {
2830 // Update chain and glue uses.
2831 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2832 InputGlue, GlueResultNodesMatched, true);
2833 return Res;
2834 }
2835
2836 continue;
2837 }
2838
2839 case OPC_MarkGlueResults: {
2840 unsigned NumNodes = MatcherTable[MatcherIndex++];
2841
2842 // Read and remember all the glue-result nodes.
2843 for (unsigned i = 0; i != NumNodes; ++i) {
2844 unsigned RecNo = MatcherTable[MatcherIndex++];
2845 if (RecNo & 128)
2846 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2847
2848 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2849 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2850 }
2851 continue;
2852 }
2853
2854 case OPC_CompleteMatch: {
2855 // The match has been completed, and any new nodes (if any) have been
2856 // created. Patch up references to the matched dag to use the newly
2857 // created nodes.
2858 unsigned NumResults = MatcherTable[MatcherIndex++];
2859
2860 for (unsigned i = 0; i != NumResults; ++i) {
2861 unsigned ResSlot = MatcherTable[MatcherIndex++];
2862 if (ResSlot & 128)
2863 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2864
2865 assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2866 SDValue Res = RecordedNodes[ResSlot].first;
2867
2868 assert(i < NodeToMatch->getNumValues() &&
2869 NodeToMatch->getValueType(i) != MVT::Other &&
2870 NodeToMatch->getValueType(i) != MVT::Glue &&
2871 "Invalid number of results to complete!");
2872 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2873 NodeToMatch->getValueType(i) == MVT::iPTR ||
2874 Res.getValueType() == MVT::iPTR ||
2875 NodeToMatch->getValueType(i).getSizeInBits() ==
2876 Res.getValueType().getSizeInBits()) &&
2877 "invalid replacement");
2878 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2879 }
2880
2881 // If the root node defines glue, add it to the glue nodes to update list.
2882 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2883 GlueResultNodesMatched.push_back(NodeToMatch);
2884
2885 // Update chain and glue uses.
2886 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2887 InputGlue, GlueResultNodesMatched, false);
2888
2889 assert(NodeToMatch->use_empty() &&
2890 "Didn't replace all uses of the node?");
2891
2892 // FIXME: We just return here, which interacts correctly with SelectRoot
2893 // above. We should fix this to not return an SDNode* anymore.
2894 return 0;
2895 }
2896 }
2897
2898 // If the code reached this point, then the match failed. See if there is
2899 // another child to try in the current 'Scope', otherwise pop it until we
2900 // find a case to check.
2901 DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
2902 ++NumDAGIselRetries;
2903 while (1) {
2904 if (MatchScopes.empty()) {
2905 CannotYetSelect(NodeToMatch);
2906 return 0;
2907 }
2908
2909 // Restore the interpreter state back to the point where the scope was
2910 // formed.
2911 MatchScope &LastScope = MatchScopes.back();
2912 RecordedNodes.resize(LastScope.NumRecordedNodes);
2913 NodeStack.clear();
2914 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2915 N = NodeStack.back();
2916
2917 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2918 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2919 MatcherIndex = LastScope.FailIndex;
2920
2921 DEBUG(errs() << " Continuing at " << MatcherIndex << "\n");
2922
2923 InputChain = LastScope.InputChain;
2924 InputGlue = LastScope.InputGlue;
2925 if (!LastScope.HasChainNodesMatched)
2926 ChainNodesMatched.clear();
2927 if (!LastScope.HasGlueResultNodesMatched)
2928 GlueResultNodesMatched.clear();
2929
2930 // Check to see what the offset is at the new MatcherIndex. If it is zero
2931 // we have reached the end of this scope, otherwise we have another child
2932 // in the current scope to try.
2933 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2934 if (NumToSkip & 128)
2935 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2936
2937 // If we have another child in this scope to match, update FailIndex and
2938 // try it.
2939 if (NumToSkip != 0) {
2940 LastScope.FailIndex = MatcherIndex+NumToSkip;
2941 break;
2942 }
2943
2944 // End of this scope, pop it and try the next child in the containing
2945 // scope.
2946 MatchScopes.pop_back();
2947 }
2948 }
2949 }
2950
2951
2952
CannotYetSelect(SDNode * N)2953 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2954 std::string msg;
2955 raw_string_ostream Msg(msg);
2956 Msg << "Cannot select: ";
2957
2958 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2959 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2960 N->getOpcode() != ISD::INTRINSIC_VOID) {
2961 N->printrFull(Msg, CurDAG);
2962 } else {
2963 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2964 unsigned iid =
2965 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2966 if (iid < Intrinsic::num_intrinsics)
2967 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2968 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2969 Msg << "target intrinsic %" << TII->getName(iid);
2970 else
2971 Msg << "unknown intrinsic #" << iid;
2972 }
2973 report_fatal_error(Msg.str());
2974 }
2975
2976 char SelectionDAGISel::ID = 0;
2977