• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares codegen opcodes and related utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
15 #define LLVM_CODEGEN_ISDOPCODES_H
16 
17 namespace llvm {
18 
19 /// ISD namespace - This namespace contains an enum which represents all of the
20 /// SelectionDAG node types and value types.
21 ///
22 namespace ISD {
23 
24   //===--------------------------------------------------------------------===//
25   /// ISD::NodeType enum - This enum defines the target-independent operators
26   /// for a SelectionDAG.
27   ///
28   /// Targets may also define target-dependent operator codes for SDNodes. For
29   /// example, on x86, these are the enum values in the X86ISD namespace.
30   /// Targets should aim to use target-independent operators to model their
31   /// instruction sets as much as possible, and only use target-dependent
32   /// operators when they have special requirements.
33   ///
34   /// Finally, during and after selection proper, SNodes may use special
35   /// operator codes that correspond directly with MachineInstr opcodes. These
36   /// are used to represent selected instructions. See the isMachineOpcode()
37   /// and getMachineOpcode() member functions of SDNode.
38   ///
39   enum NodeType {
40     // DELETED_NODE - This is an illegal value that is used to catch
41     // errors.  This opcode is not a legal opcode for any node.
42     DELETED_NODE,
43 
44     // EntryToken - This is the marker used to indicate the start of the region.
45     EntryToken,
46 
47     // TokenFactor - This node takes multiple tokens as input and produces a
48     // single token result.  This is used to represent the fact that the operand
49     // operators are independent of each other.
50     TokenFactor,
51 
52     // AssertSext, AssertZext - These nodes record if a register contains a
53     // value that has already been zero or sign extended from a narrower type.
54     // These nodes take two operands.  The first is the node that has already
55     // been extended, and the second is a value type node indicating the width
56     // of the extension
57     AssertSext, AssertZext,
58 
59     // Various leaf nodes.
60     BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
61     Constant, ConstantFP,
62     GlobalAddress, GlobalTLSAddress, FrameIndex,
63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64 
65     // The address of the GOT
66     GLOBAL_OFFSET_TABLE,
67 
68     // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69     // llvm.returnaddress on the DAG.  These nodes take one operand, the index
70     // of the frame or return address to return.  An index of zero corresponds
71     // to the current function's frame or return address, an index of one to the
72     // parent's frame or return address, and so on.
73     FRAMEADDR, RETURNADDR,
74 
75     // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76     // first (possible) on-stack argument. This is needed for correct stack
77     // adjustment during unwind.
78     FRAME_TO_ARGS_OFFSET,
79 
80     // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
81     // address of the exception block on entry to an landing pad block.
82     EXCEPTIONADDR,
83 
84     // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
85     // address of the Language Specific Data Area for the enclosing function.
86     LSDAADDR,
87 
88     // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
89     // the selection index of the exception thrown.
90     EHSELECTION,
91 
92     // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
93     // 'eh_return' gcc dwarf builtin, which is used to return from
94     // exception. The general meaning is: adjust stack by OFFSET and pass
95     // execution to HANDLER. Many platform-related details also :)
96     EH_RETURN,
97 
98     // RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
99     // This corresponds to the eh.sjlj.setjmp intrinsic.
100     // It takes an input chain and a pointer to the jump buffer as inputs
101     // and returns an outchain.
102     EH_SJLJ_SETJMP,
103 
104     // OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
105     // This corresponds to the eh.sjlj.longjmp intrinsic.
106     // It takes an input chain and a pointer to the jump buffer as inputs
107     // and returns an outchain.
108     EH_SJLJ_LONGJMP,
109 
110     // TargetConstant* - Like Constant*, but the DAG does not do any folding,
111     // simplification, or lowering of the constant. They are used for constants
112     // which are known to fit in the immediate fields of their users, or for
113     // carrying magic numbers which are not values which need to be materialized
114     // in registers.
115     TargetConstant,
116     TargetConstantFP,
117 
118     // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
119     // anything else with this node, and this is valid in the target-specific
120     // dag, turning into a GlobalAddress operand.
121     TargetGlobalAddress,
122     TargetGlobalTLSAddress,
123     TargetFrameIndex,
124     TargetJumpTable,
125     TargetConstantPool,
126     TargetExternalSymbol,
127     TargetBlockAddress,
128 
129     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
130     /// This node represents a target intrinsic function with no side effects.
131     /// The first operand is the ID number of the intrinsic from the
132     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
133     /// node returns the result of the intrinsic.
134     INTRINSIC_WO_CHAIN,
135 
136     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
137     /// This node represents a target intrinsic function with side effects that
138     /// returns a result.  The first operand is a chain pointer.  The second is
139     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
140     /// operands to the intrinsic follow.  The node has two results, the result
141     /// of the intrinsic and an output chain.
142     INTRINSIC_W_CHAIN,
143 
144     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
145     /// This node represents a target intrinsic function with side effects that
146     /// does not return a result.  The first operand is a chain pointer.  The
147     /// second is the ID number of the intrinsic from the llvm::Intrinsic
148     /// namespace.  The operands to the intrinsic follow.
149     INTRINSIC_VOID,
150 
151     // CopyToReg - This node has three operands: a chain, a register number to
152     // set to this value, and a value.
153     CopyToReg,
154 
155     // CopyFromReg - This node indicates that the input value is a virtual or
156     // physical register that is defined outside of the scope of this
157     // SelectionDAG.  The register is available from the RegisterSDNode object.
158     CopyFromReg,
159 
160     // UNDEF - An undefined node
161     UNDEF,
162 
163     // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
164     // a Constant, which is required to be operand #1) half of the integer or
165     // float value specified as operand #0.  This is only for use before
166     // legalization, for values that will be broken into multiple registers.
167     EXTRACT_ELEMENT,
168 
169     // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
170     // two values of the same integer value type, this produces a value twice as
171     // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
172     BUILD_PAIR,
173 
174     // MERGE_VALUES - This node takes multiple discrete operands and returns
175     // them all as its individual results.  This nodes has exactly the same
176     // number of inputs and outputs. This node is useful for some pieces of the
177     // code generator that want to think about a single node with multiple
178     // results, not multiple nodes.
179     MERGE_VALUES,
180 
181     // Simple integer binary arithmetic operators.
182     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
183 
184     // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
185     // a signed/unsigned value of type i[2*N], and return the full value as
186     // two results, each of type iN.
187     SMUL_LOHI, UMUL_LOHI,
188 
189     // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
190     // remainder result.
191     SDIVREM, UDIVREM,
192 
193     // CARRY_FALSE - This node is used when folding other nodes,
194     // like ADDC/SUBC, which indicate the carry result is always false.
195     CARRY_FALSE,
196 
197     // Carry-setting nodes for multiple precision addition and subtraction.
198     // These nodes take two operands of the same value type, and produce two
199     // results.  The first result is the normal add or sub result, the second
200     // result is the carry flag result.
201     ADDC, SUBC,
202 
203     // Carry-using nodes for multiple precision addition and subtraction.  These
204     // nodes take three operands: The first two are the normal lhs and rhs to
205     // the add or sub, and the third is the input carry flag.  These nodes
206     // produce two results; the normal result of the add or sub, and the output
207     // carry flag.  These nodes both read and write a carry flag to allow them
208     // to them to be chained together for add and sub of arbitrarily large
209     // values.
210     ADDE, SUBE,
211 
212     // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
213     // These nodes take two operands: the normal LHS and RHS to the add. They
214     // produce two results: the normal result of the add, and a boolean that
215     // indicates if an overflow occurred (*not* a flag, because it may be stored
216     // to memory, etc.).  If the type of the boolean is not i1 then the high
217     // bits conform to getBooleanContents.
218     // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
219     SADDO, UADDO,
220 
221     // Same for subtraction
222     SSUBO, USUBO,
223 
224     // Same for multiplication
225     SMULO, UMULO,
226 
227     // Simple binary floating point operators.
228     FADD, FSUB, FMUL, FMA, FDIV, FREM,
229 
230     // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
231     // DAG node does not require that X and Y have the same type, just that they
232     // are both floating point.  X and the result must have the same type.
233     // FCOPYSIGN(f32, f64) is allowed.
234     FCOPYSIGN,
235 
236     // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
237     // value as an integer 0/1 value.
238     FGETSIGN,
239 
240     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
241     /// specified, possibly variable, elements.  The number of elements is
242     /// required to be a power of two.  The types of the operands must all be
243     /// the same and must match the vector element type, except that integer
244     /// types are allowed to be larger than the element type, in which case
245     /// the operands are implicitly truncated.
246     BUILD_VECTOR,
247 
248     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
249     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
250     /// element type then VAL is truncated before replacement.
251     INSERT_VECTOR_ELT,
252 
253     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
254     /// identified by the (potentially variable) element number IDX.  If the
255     /// return type is an integer type larger than the element type of the
256     /// vector, the result is extended to the width of the return type.
257     EXTRACT_VECTOR_ELT,
258 
259     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
260     /// vector type with the same length and element type, this produces a
261     /// concatenated vector result value, with length equal to the sum of the
262     /// lengths of the input vectors.
263     CONCAT_VECTORS,
264 
265     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
266     /// with VECTOR2 inserted into VECTOR1 at the (potentially
267     /// variable) element number IDX, which must be a multiple of the
268     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
269     /// IDX are overwritten with VECTOR2.  Elements IDX through
270     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
271     INSERT_SUBVECTOR,
272 
273     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
274     /// vector value) starting with the element number IDX, which must be a
275     /// constant multiple of the result vector length.
276     EXTRACT_SUBVECTOR,
277 
278     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
279     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
280     /// values that indicate which value (or undef) each result element will
281     /// get.  These constant ints are accessible through the
282     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
283     /// 'vperm' instruction, except that the indices must be constants and are
284     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
285     VECTOR_SHUFFLE,
286 
287     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
288     /// scalar value into element 0 of the resultant vector type.  The top
289     /// elements 1 to N-1 of the N-element vector are undefined.  The type
290     /// of the operand must match the vector element type, except when they
291     /// are integer types.  In this case the operand is allowed to be wider
292     /// than the vector element type, and is implicitly truncated to it.
293     SCALAR_TO_VECTOR,
294 
295     // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
296     // an unsigned/signed value of type i[2*N], then return the top part.
297     MULHU, MULHS,
298 
299     /// Bitwise operators - logical and, logical or, logical xor.
300     AND, OR, XOR,
301 
302     /// Shift and rotation operations.  After legalization, the type of the
303     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
304     /// the shift amount can be any type, but care must be taken to ensure it is
305     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
306     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
307     /// to represent the shift amount.  By convention, DAGCombine and
308     /// SelectionDAGBuilder forces these shift amounts to i32 for simplicity.
309     ///
310     SHL, SRA, SRL, ROTL, ROTR,
311 
312     /// Byte Swap and Counting operators.
313     BSWAP, CTTZ, CTLZ, CTPOP,
314 
315     /// Bit counting operators with an undefined result for zero inputs.
316     CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
317 
318     // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
319     // i1 then the high bits must conform to getBooleanContents.
320     SELECT,
321 
322     // Select with a vector condition (op #0) and two vector operands (ops #1
323     // and #2), returning a vector result.  All vectors have the same length.
324     // Much like the scalar select and setcc, each bit in the condition selects
325     // whether the corresponding result element is taken from op #1 or op #2.
326     // At first, the VSELECT condition is of vXi1 type. Later, targets may change
327     // the condition type in order to match the VSELECT node using a a pattern.
328     // The condition follows the BooleanContent format of the target.
329     VSELECT,
330 
331     // Select with condition operator - This selects between a true value and
332     // a false value (ops #2 and #3) based on the boolean result of comparing
333     // the lhs and rhs (ops #0 and #1) of a conditional expression with the
334     // condition code in op #4, a CondCodeSDNode.
335     SELECT_CC,
336 
337     // SetCC operator - This evaluates to a true value iff the condition is
338     // true.  If the result value type is not i1 then the high bits conform
339     // to getBooleanContents.  The operands to this are the left and right
340     // operands to compare (ops #0, and #1) and the condition code to compare
341     // them with (op #2) as a CondCodeSDNode. If the operands are vector types
342     // then the result type must also be a vector type.
343     SETCC,
344 
345     // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
346     // integer shift operations, just like ADD/SUB_PARTS.  The operation
347     // ordering is:
348     //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
349     SHL_PARTS, SRA_PARTS, SRL_PARTS,
350 
351     // Conversion operators.  These are all single input single output
352     // operations.  For all of these, the result type must be strictly
353     // wider or narrower (depending on the operation) than the source
354     // type.
355 
356     // SIGN_EXTEND - Used for integer types, replicating the sign bit
357     // into new bits.
358     SIGN_EXTEND,
359 
360     // ZERO_EXTEND - Used for integer types, zeroing the new bits.
361     ZERO_EXTEND,
362 
363     // ANY_EXTEND - Used for integer types.  The high bits are undefined.
364     ANY_EXTEND,
365 
366     // TRUNCATE - Completely drop the high bits.
367     TRUNCATE,
368 
369     // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
370     // depends on the first letter) to floating point.
371     SINT_TO_FP,
372     UINT_TO_FP,
373 
374     // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
375     // sign extend a small value in a large integer register (e.g. sign
376     // extending the low 8 bits of a 32-bit register to fill the top 24 bits
377     // with the 7th bit).  The size of the smaller type is indicated by the 1th
378     // operand, a ValueType node.
379     SIGN_EXTEND_INREG,
380 
381     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
382     /// integer.
383     FP_TO_SINT,
384     FP_TO_UINT,
385 
386     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
387     /// down to the precision of the destination VT.  TRUNC is a flag, which is
388     /// always an integer that is zero or one.  If TRUNC is 0, this is a
389     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
390     /// value of Y.
391     ///
392     /// The TRUNC = 1 case is used in cases where we know that the value will
393     /// not be modified by the node, because Y is not using any of the extra
394     /// precision of source type.  This allows certain transformations like
395     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
396     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
397     FP_ROUND,
398 
399     // FLT_ROUNDS_ - Returns current rounding mode:
400     // -1 Undefined
401     //  0 Round to 0
402     //  1 Round to nearest
403     //  2 Round to +inf
404     //  3 Round to -inf
405     FLT_ROUNDS_,
406 
407     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
408     /// rounds it to a floating point value.  It then promotes it and returns it
409     /// in a register of the same size.  This operation effectively just
410     /// discards excess precision.  The type to round down to is specified by
411     /// the VT operand, a VTSDNode.
412     FP_ROUND_INREG,
413 
414     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
415     FP_EXTEND,
416 
417     // BITCAST - This operator converts between integer, vector and FP
418     // values, as if the value was stored to memory with one type and loaded
419     // from the same address with the other type (or equivalently for vector
420     // format conversions, etc).  The source and result are required to have
421     // the same bit size (e.g.  f32 <-> i32).  This can also be used for
422     // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
423     // getNode().
424     BITCAST,
425 
426     // CONVERT_RNDSAT - This operator is used to support various conversions
427     // between various types (float, signed, unsigned and vectors of those
428     // types) with rounding and saturation. NOTE: Avoid using this operator as
429     // most target don't support it and the operator might be removed in the
430     // future. It takes the following arguments:
431     //   0) value
432     //   1) dest type (type to convert to)
433     //   2) src type (type to convert from)
434     //   3) rounding imm
435     //   4) saturation imm
436     //   5) ISD::CvtCode indicating the type of conversion to do
437     CONVERT_RNDSAT,
438 
439     // FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
440     // promotions and truncation for half-precision (16 bit) floating
441     // numbers. We need special nodes since FP16 is a storage-only type with
442     // special semantics of operations.
443     FP16_TO_FP32, FP32_TO_FP16,
444 
445     // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
446     // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
447     // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
448     // point operations. These are inspired by libm.
449     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
450     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
451     FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
452 
453     // LOAD and STORE have token chains as their first operand, then the same
454     // operands as an LLVM load/store instruction, then an offset node that
455     // is added / subtracted from the base pointer to form the address (for
456     // indexed memory ops).
457     LOAD, STORE,
458 
459     // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
460     // to a specified boundary.  This node always has two return values: a new
461     // stack pointer value and a chain. The first operand is the token chain,
462     // the second is the number of bytes to allocate, and the third is the
463     // alignment boundary.  The size is guaranteed to be a multiple of the stack
464     // alignment, and the alignment is guaranteed to be bigger than the stack
465     // alignment (if required) or 0 to get standard stack alignment.
466     DYNAMIC_STACKALLOC,
467 
468     // Control flow instructions.  These all have token chains.
469 
470     // BR - Unconditional branch.  The first operand is the chain
471     // operand, the second is the MBB to branch to.
472     BR,
473 
474     // BRIND - Indirect branch.  The first operand is the chain, the second
475     // is the value to branch to, which must be of the same type as the target's
476     // pointer type.
477     BRIND,
478 
479     // BR_JT - Jumptable branch. The first operand is the chain, the second
480     // is the jumptable index, the last one is the jumptable entry index.
481     BR_JT,
482 
483     // BRCOND - Conditional branch.  The first operand is the chain, the
484     // second is the condition, the third is the block to branch to if the
485     // condition is true.  If the type of the condition is not i1, then the
486     // high bits must conform to getBooleanContents.
487     BRCOND,
488 
489     // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
490     // that the condition is represented as condition code, and two nodes to
491     // compare, rather than as a combined SetCC node.  The operands in order are
492     // chain, cc, lhs, rhs, block to branch to if condition is true.
493     BR_CC,
494 
495     // INLINEASM - Represents an inline asm block.  This node always has two
496     // return values: a chain and a flag result.  The inputs are as follows:
497     //   Operand #0   : Input chain.
498     //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
499     //   Operand #2   : a MDNodeSDNode with the !srcloc metadata.
500     //   Operand #3   : HasSideEffect, IsAlignStack bits.
501     //   After this, it is followed by a list of operands with this format:
502     //     ConstantSDNode: Flags that encode whether it is a mem or not, the
503     //                     of operands that follow, etc.  See InlineAsm.h.
504     //     ... however many operands ...
505     //   Operand #last: Optional, an incoming flag.
506     //
507     // The variable width operands are required to represent target addressing
508     // modes as a single "operand", even though they may have multiple
509     // SDOperands.
510     INLINEASM,
511 
512     // EH_LABEL - Represents a label in mid basic block used to track
513     // locations needed for debug and exception handling tables.  These nodes
514     // take a chain as input and return a chain.
515     EH_LABEL,
516 
517     // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
518     // value, the same type as the pointer type for the system, and an output
519     // chain.
520     STACKSAVE,
521 
522     // STACKRESTORE has two operands, an input chain and a pointer to restore to
523     // it returns an output chain.
524     STACKRESTORE,
525 
526     // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
527     // a call sequence, and carry arbitrary information that target might want
528     // to know.  The first operand is a chain, the rest are specified by the
529     // target and not touched by the DAG optimizers.
530     // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
531     CALLSEQ_START,  // Beginning of a call sequence
532     CALLSEQ_END,    // End of a call sequence
533 
534     // VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
535     // and the alignment. It returns a pair of values: the vaarg value and a
536     // new chain.
537     VAARG,
538 
539     // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
540     // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
541     // source.
542     VACOPY,
543 
544     // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
545     // pointer, and a SRCVALUE.
546     VAEND, VASTART,
547 
548     // SRCVALUE - This is a node type that holds a Value* that is used to
549     // make reference to a value in the LLVM IR.
550     SRCVALUE,
551 
552     // MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
553     // reference metadata in the IR.
554     MDNODE_SDNODE,
555 
556     // PCMARKER - This corresponds to the pcmarker intrinsic.
557     PCMARKER,
558 
559     // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
560     // The only operand is a chain and a value and a chain are produced.  The
561     // value is the contents of the architecture specific cycle counter like
562     // register (or other high accuracy low latency clock source)
563     READCYCLECOUNTER,
564 
565     // HANDLENODE node - Used as a handle for various purposes.
566     HANDLENODE,
567 
568     // INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
569     // takes as input a token chain, the pointer to the trampoline, the pointer
570     // to the nested function, the pointer to pass for the 'nest' parameter, a
571     // SRCVALUE for the trampoline and another for the nested function (allowing
572     // targets to access the original Function*).  It produces a token chain as
573     // output.
574     INIT_TRAMPOLINE,
575 
576     // ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
577     // It takes a pointer to the trampoline and produces a (possibly) new
578     // pointer to the same trampoline with platform-specific adjustments
579     // applied.  The pointer it returns points to an executable block of code.
580     ADJUST_TRAMPOLINE,
581 
582     // TRAP - Trapping instruction
583     TRAP,
584 
585     // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
586     // their first operand. The other operands are the address to prefetch,
587     // read / write specifier, locality specifier and instruction / data cache
588     // specifier.
589     PREFETCH,
590 
591     // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
592     //                       store-store, device)
593     // This corresponds to the memory.barrier intrinsic.
594     // it takes an input chain, 4 operands to specify the type of barrier, an
595     // operand specifying if the barrier applies to device and uncached memory
596     // and produces an output chain.
597     MEMBARRIER,
598 
599     // OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
600     // This corresponds to the fence instruction. It takes an input chain, and
601     // two integer constants: an AtomicOrdering and a SynchronizationScope.
602     ATOMIC_FENCE,
603 
604     // Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
605     // This corresponds to "load atomic" instruction.
606     ATOMIC_LOAD,
607 
608     // OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr, val)
609     // This corresponds to "store atomic" instruction.
610     ATOMIC_STORE,
611 
612     // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
613     // This corresponds to the cmpxchg instruction.
614     ATOMIC_CMP_SWAP,
615 
616     // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
617     // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
618     // These correspond to the atomicrmw instruction.
619     ATOMIC_SWAP,
620     ATOMIC_LOAD_ADD,
621     ATOMIC_LOAD_SUB,
622     ATOMIC_LOAD_AND,
623     ATOMIC_LOAD_OR,
624     ATOMIC_LOAD_XOR,
625     ATOMIC_LOAD_NAND,
626     ATOMIC_LOAD_MIN,
627     ATOMIC_LOAD_MAX,
628     ATOMIC_LOAD_UMIN,
629     ATOMIC_LOAD_UMAX,
630 
631     /// BUILTIN_OP_END - This must be the last enum value in this list.
632     /// The target-specific pre-isel opcode values start here.
633     BUILTIN_OP_END
634   };
635 
636   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
637   /// which do not reference a specific memory location should be less than
638   /// this value. Those that do must not be less than this value, and can
639   /// be used with SelectionDAG::getMemIntrinsicNode.
640   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
641 
642   //===--------------------------------------------------------------------===//
643   /// MemIndexedMode enum - This enum defines the load / store indexed
644   /// addressing modes.
645   ///
646   /// UNINDEXED    "Normal" load / store. The effective address is already
647   ///              computed and is available in the base pointer. The offset
648   ///              operand is always undefined. In addition to producing a
649   ///              chain, an unindexed load produces one value (result of the
650   ///              load); an unindexed store does not produce a value.
651   ///
652   /// PRE_INC      Similar to the unindexed mode where the effective address is
653   /// PRE_DEC      the value of the base pointer add / subtract the offset.
654   ///              It considers the computation as being folded into the load /
655   ///              store operation (i.e. the load / store does the address
656   ///              computation as well as performing the memory transaction).
657   ///              The base operand is always undefined. In addition to
658   ///              producing a chain, pre-indexed load produces two values
659   ///              (result of the load and the result of the address
660   ///              computation); a pre-indexed store produces one value (result
661   ///              of the address computation).
662   ///
663   /// POST_INC     The effective address is the value of the base pointer. The
664   /// POST_DEC     value of the offset operand is then added to / subtracted
665   ///              from the base after memory transaction. In addition to
666   ///              producing a chain, post-indexed load produces two values
667   ///              (the result of the load and the result of the base +/- offset
668   ///              computation); a post-indexed store produces one value (the
669   ///              the result of the base +/- offset computation).
670   enum MemIndexedMode {
671     UNINDEXED = 0,
672     PRE_INC,
673     PRE_DEC,
674     POST_INC,
675     POST_DEC,
676     LAST_INDEXED_MODE
677   };
678 
679   //===--------------------------------------------------------------------===//
680   /// LoadExtType enum - This enum defines the three variants of LOADEXT
681   /// (load with extension).
682   ///
683   /// SEXTLOAD loads the integer operand and sign extends it to a larger
684   ///          integer result type.
685   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
686   ///          integer result type.
687   /// EXTLOAD  is used for two things: floating point extending loads and
688   ///          integer extending loads [the top bits are undefined].
689   enum LoadExtType {
690     NON_EXTLOAD = 0,
691     EXTLOAD,
692     SEXTLOAD,
693     ZEXTLOAD,
694     LAST_LOADEXT_TYPE
695   };
696 
697   //===--------------------------------------------------------------------===//
698   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
699   /// below work out, when considering SETFALSE (something that never exists
700   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
701   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
702   /// to.  If the "N" column is 1, the result of the comparison is undefined if
703   /// the input is a NAN.
704   ///
705   /// All of these (except for the 'always folded ops') should be handled for
706   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
707   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
708   ///
709   /// Note that these are laid out in a specific order to allow bit-twiddling
710   /// to transform conditions.
711   enum CondCode {
712     // Opcode          N U L G E       Intuitive operation
713     SETFALSE,      //    0 0 0 0       Always false (always folded)
714     SETOEQ,        //    0 0 0 1       True if ordered and equal
715     SETOGT,        //    0 0 1 0       True if ordered and greater than
716     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
717     SETOLT,        //    0 1 0 0       True if ordered and less than
718     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
719     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
720     SETO,          //    0 1 1 1       True if ordered (no nans)
721     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
722     SETUEQ,        //    1 0 0 1       True if unordered or equal
723     SETUGT,        //    1 0 1 0       True if unordered or greater than
724     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
725     SETULT,        //    1 1 0 0       True if unordered or less than
726     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
727     SETUNE,        //    1 1 1 0       True if unordered or not equal
728     SETTRUE,       //    1 1 1 1       Always true (always folded)
729     // Don't care operations: undefined if the input is a nan.
730     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
731     SETEQ,         //  1 X 0 0 1       True if equal
732     SETGT,         //  1 X 0 1 0       True if greater than
733     SETGE,         //  1 X 0 1 1       True if greater than or equal
734     SETLT,         //  1 X 1 0 0       True if less than
735     SETLE,         //  1 X 1 0 1       True if less than or equal
736     SETNE,         //  1 X 1 1 0       True if not equal
737     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
738 
739     SETCC_INVALID       // Marker value.
740   };
741 
742   /// isSignedIntSetCC - Return true if this is a setcc instruction that
743   /// performs a signed comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)744   inline bool isSignedIntSetCC(CondCode Code) {
745     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
746   }
747 
748   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
749   /// performs an unsigned comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)750   inline bool isUnsignedIntSetCC(CondCode Code) {
751     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
752   }
753 
754   /// isTrueWhenEqual - Return true if the specified condition returns true if
755   /// the two operands to the condition are equal.  Note that if one of the two
756   /// operands is a NaN, this value is meaningless.
isTrueWhenEqual(CondCode Cond)757   inline bool isTrueWhenEqual(CondCode Cond) {
758     return ((int)Cond & 1) != 0;
759   }
760 
761   /// getUnorderedFlavor - This function returns 0 if the condition is always
762   /// false if an operand is a NaN, 1 if the condition is always true if the
763   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
764   /// NaN.
getUnorderedFlavor(CondCode Cond)765   inline unsigned getUnorderedFlavor(CondCode Cond) {
766     return ((int)Cond >> 3) & 3;
767   }
768 
769   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
770   /// 'op' is a valid SetCC operation.
771   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
772 
773   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
774   /// when given the operation for (X op Y).
775   CondCode getSetCCSwappedOperands(CondCode Operation);
776 
777   /// getSetCCOrOperation - Return the result of a logical OR between different
778   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
779   /// function returns SETCC_INVALID if it is not possible to represent the
780   /// resultant comparison.
781   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
782 
783   /// getSetCCAndOperation - Return the result of a logical AND between
784   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
785   /// function returns SETCC_INVALID if it is not possible to represent the
786   /// resultant comparison.
787   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
788 
789   //===--------------------------------------------------------------------===//
790   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
791   /// supports.
792   enum CvtCode {
793     CVT_FF,     // Float from Float
794     CVT_FS,     // Float from Signed
795     CVT_FU,     // Float from Unsigned
796     CVT_SF,     // Signed from Float
797     CVT_UF,     // Unsigned from Float
798     CVT_SS,     // Signed from Signed
799     CVT_SU,     // Signed from Unsigned
800     CVT_US,     // Unsigned from Signed
801     CVT_UU,     // Unsigned from Unsigned
802     CVT_INVALID // Marker - Invalid opcode
803   };
804 
805 } // end llvm::ISD namespace
806 
807 } // end llvm namespace
808 
809 #endif
810