• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "resolv_cache.h"
30 #include <resolv.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <time.h>
34 #include "pthread.h"
35 
36 #include <errno.h>
37 #include "arpa_nameser.h"
38 #include <sys/system_properties.h>
39 #include <net/if.h>
40 #include <netdb.h>
41 #include <linux/if.h>
42 
43 #include <arpa/inet.h>
44 #include "resolv_private.h"
45 #include "resolv_iface.h"
46 
47 /* This code implements a small and *simple* DNS resolver cache.
48  *
49  * It is only used to cache DNS answers for a time defined by the smallest TTL
50  * among the answer records in order to reduce DNS traffic. It is not supposed
51  * to be a full DNS cache, since we plan to implement that in the future in a
52  * dedicated process running on the system.
53  *
54  * Note that its design is kept simple very intentionally, i.e.:
55  *
56  *  - it takes raw DNS query packet data as input, and returns raw DNS
57  *    answer packet data as output
58  *
59  *    (this means that two similar queries that encode the DNS name
60  *     differently will be treated distinctly).
61  *
62  *    the smallest TTL value among the answer records are used as the time
63  *    to keep an answer in the cache.
64  *
65  *    this is bad, but we absolutely want to avoid parsing the answer packets
66  *    (and should be solved by the later full DNS cache process).
67  *
68  *  - the implementation is just a (query-data) => (answer-data) hash table
69  *    with a trivial least-recently-used expiration policy.
70  *
71  * Doing this keeps the code simple and avoids to deal with a lot of things
72  * that a full DNS cache is expected to do.
73  *
74  * The API is also very simple:
75  *
76  *   - the client calls _resolv_cache_get() to obtain a handle to the cache.
77  *     this will initialize the cache on first usage. the result can be NULL
78  *     if the cache is disabled.
79  *
80  *   - the client calls _resolv_cache_lookup() before performing a query
81  *
82  *     if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
83  *     has been copied into the client-provided answer buffer.
84  *
85  *     if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
86  *     a request normally, *then* call _resolv_cache_add() to add the received
87  *     answer to the cache.
88  *
89  *     if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
90  *     perform a request normally, and *not* call _resolv_cache_add()
91  *
92  *     note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
93  *     is too short to accomodate the cached result.
94  *
95  *  - when network settings change, the cache must be flushed since the list
96  *    of DNS servers probably changed. this is done by calling
97  *    _resolv_cache_reset()
98  *
99  *    the parameter to this function must be an ever-increasing generation
100  *    number corresponding to the current network settings state.
101  *
102  *    This is done because several threads could detect the same network
103  *    settings change (but at different times) and will all end up calling the
104  *    same function. Comparing with the last used generation number ensures
105  *    that the cache is only flushed once per network change.
106  */
107 
108 /* the name of an environment variable that will be checked the first time
109  * this code is called if its value is "0", then the resolver cache is
110  * disabled.
111  */
112 #define  CONFIG_ENV  "BIONIC_DNSCACHE"
113 
114 /* entries older than CONFIG_SECONDS seconds are always discarded.
115  */
116 #define  CONFIG_SECONDS    (60*10)    /* 10 minutes */
117 
118 /* default number of entries kept in the cache. This value has been
119  * determined by browsing through various sites and counting the number
120  * of corresponding requests. Keep in mind that our framework is currently
121  * performing two requests per name lookup (one for IPv4, the other for IPv6)
122  *
123  *    www.google.com      4
124  *    www.ysearch.com     6
125  *    www.amazon.com      8
126  *    www.nytimes.com     22
127  *    www.espn.com        28
128  *    www.msn.com         28
129  *    www.lemonde.fr      35
130  *
131  * (determined in 2009-2-17 from Paris, France, results may vary depending
132  *  on location)
133  *
134  * most high-level websites use lots of media/ad servers with different names
135  * but these are generally reused when browsing through the site.
136  *
137  * As such, a value of 64 should be relatively comfortable at the moment.
138  *
139  * The system property ro.net.dns_cache_size can be used to override the default
140  * value with a custom value
141  *
142  *
143  * ******************************************
144  * * NOTE - this has changed.
145  * * 1) we've added IPv6 support so each dns query results in 2 responses
146  * * 2) we've made this a system-wide cache, so the cost is less (it's not
147  * *    duplicated in each process) and the need is greater (more processes
148  * *    making different requests).
149  * * Upping by 2x for IPv6
150  * * Upping by another 5x for the centralized nature
151  * *****************************************
152  */
153 #define  CONFIG_MAX_ENTRIES    64 * 2 * 5
154 /* name of the system property that can be used to set the cache size */
155 #define  DNS_CACHE_SIZE_PROP_NAME   "ro.net.dns_cache_size"
156 
157 /****************************************************************************/
158 /****************************************************************************/
159 /*****                                                                  *****/
160 /*****                                                                  *****/
161 /*****                                                                  *****/
162 /****************************************************************************/
163 /****************************************************************************/
164 
165 /* set to 1 to debug cache operations */
166 #define  DEBUG       0
167 
168 /* set to 1 to debug query data */
169 #define  DEBUG_DATA  0
170 
171 #undef XLOG
172 #if DEBUG
173 #  include <logd.h>
174 #  define  XLOG(...)   \
175     __libc_android_log_print(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__)
176 
177 #include <stdio.h>
178 #include <stdarg.h>
179 
180 /** BOUNDED BUFFER FORMATTING
181  **/
182 
183 /* technical note:
184  *
185  *   the following debugging routines are used to append data to a bounded
186  *   buffer they take two parameters that are:
187  *
188  *   - p : a pointer to the current cursor position in the buffer
189  *         this value is initially set to the buffer's address.
190  *
191  *   - end : the address of the buffer's limit, i.e. of the first byte
192  *           after the buffer. this address should never be touched.
193  *
194  *           IMPORTANT: it is assumed that end > buffer_address, i.e.
195  *                      that the buffer is at least one byte.
196  *
197  *   the _bprint_() functions return the new value of 'p' after the data
198  *   has been appended, and also ensure the following:
199  *
200  *   - the returned value will never be strictly greater than 'end'
201  *
202  *   - a return value equal to 'end' means that truncation occured
203  *     (in which case, end[-1] will be set to 0)
204  *
205  *   - after returning from a _bprint_() function, the content of the buffer
206  *     is always 0-terminated, even in the event of truncation.
207  *
208  *  these conventions allow you to call _bprint_ functions multiple times and
209  *  only check for truncation at the end of the sequence, as in:
210  *
211  *     char  buff[1000], *p = buff, *end = p + sizeof(buff);
212  *
213  *     p = _bprint_c(p, end, '"');
214  *     p = _bprint_s(p, end, my_string);
215  *     p = _bprint_c(p, end, '"');
216  *
217  *     if (p >= end) {
218  *        // buffer was too small
219  *     }
220  *
221  *     printf( "%s", buff );
222  */
223 
224 /* add a char to a bounded buffer */
225 static char*
_bprint_c(char * p,char * end,int c)226 _bprint_c( char*  p, char*  end, int  c )
227 {
228     if (p < end) {
229         if (p+1 == end)
230             *p++ = 0;
231         else {
232             *p++ = (char) c;
233             *p   = 0;
234         }
235     }
236     return p;
237 }
238 
239 /* add a sequence of bytes to a bounded buffer */
240 static char*
_bprint_b(char * p,char * end,const char * buf,int len)241 _bprint_b( char*  p, char*  end, const char*  buf, int  len )
242 {
243     int  avail = end - p;
244 
245     if (avail <= 0 || len <= 0)
246         return p;
247 
248     if (avail > len)
249         avail = len;
250 
251     memcpy( p, buf, avail );
252     p += avail;
253 
254     if (p < end)
255         p[0] = 0;
256     else
257         end[-1] = 0;
258 
259     return p;
260 }
261 
262 /* add a string to a bounded buffer */
263 static char*
_bprint_s(char * p,char * end,const char * str)264 _bprint_s( char*  p, char*  end, const char*  str )
265 {
266     return _bprint_b(p, end, str, strlen(str));
267 }
268 
269 /* add a formatted string to a bounded buffer */
270 static char*
_bprint(char * p,char * end,const char * format,...)271 _bprint( char*  p, char*  end, const char*  format, ... )
272 {
273     int      avail, n;
274     va_list  args;
275 
276     avail = end - p;
277 
278     if (avail <= 0)
279         return p;
280 
281     va_start(args, format);
282     n = vsnprintf( p, avail, format, args);
283     va_end(args);
284 
285     /* certain C libraries return -1 in case of truncation */
286     if (n < 0 || n > avail)
287         n = avail;
288 
289     p += n;
290     /* certain C libraries do not zero-terminate in case of truncation */
291     if (p == end)
292         p[-1] = 0;
293 
294     return p;
295 }
296 
297 /* add a hex value to a bounded buffer, up to 8 digits */
298 static char*
_bprint_hex(char * p,char * end,unsigned value,int numDigits)299 _bprint_hex( char*  p, char*  end, unsigned  value, int  numDigits )
300 {
301     char   text[sizeof(unsigned)*2];
302     int    nn = 0;
303 
304     while (numDigits-- > 0) {
305         text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15];
306     }
307     return _bprint_b(p, end, text, nn);
308 }
309 
310 /* add the hexadecimal dump of some memory area to a bounded buffer */
311 static char*
_bprint_hexdump(char * p,char * end,const uint8_t * data,int datalen)312 _bprint_hexdump( char*  p, char*  end, const uint8_t*  data, int  datalen )
313 {
314     int   lineSize = 16;
315 
316     while (datalen > 0) {
317         int  avail = datalen;
318         int  nn;
319 
320         if (avail > lineSize)
321             avail = lineSize;
322 
323         for (nn = 0; nn < avail; nn++) {
324             if (nn > 0)
325                 p = _bprint_c(p, end, ' ');
326             p = _bprint_hex(p, end, data[nn], 2);
327         }
328         for ( ; nn < lineSize; nn++ ) {
329             p = _bprint_s(p, end, "   ");
330         }
331         p = _bprint_s(p, end, "  ");
332 
333         for (nn = 0; nn < avail; nn++) {
334             int  c = data[nn];
335 
336             if (c < 32 || c > 127)
337                 c = '.';
338 
339             p = _bprint_c(p, end, c);
340         }
341         p = _bprint_c(p, end, '\n');
342 
343         data    += avail;
344         datalen -= avail;
345     }
346     return p;
347 }
348 
349 /* dump the content of a query of packet to the log */
350 static void
XLOG_BYTES(const void * base,int len)351 XLOG_BYTES( const void*  base, int  len )
352 {
353     char  buff[1024];
354     char*  p = buff, *end = p + sizeof(buff);
355 
356     p = _bprint_hexdump(p, end, base, len);
357     XLOG("%s",buff);
358 }
359 
360 #else /* !DEBUG */
361 #  define  XLOG(...)        ((void)0)
362 #  define  XLOG_BYTES(a,b)  ((void)0)
363 #endif
364 
365 static time_t
_time_now(void)366 _time_now( void )
367 {
368     struct timeval  tv;
369 
370     gettimeofday( &tv, NULL );
371     return tv.tv_sec;
372 }
373 
374 /* reminder: the general format of a DNS packet is the following:
375  *
376  *    HEADER  (12 bytes)
377  *    QUESTION  (variable)
378  *    ANSWER (variable)
379  *    AUTHORITY (variable)
380  *    ADDITIONNAL (variable)
381  *
382  * the HEADER is made of:
383  *
384  *   ID     : 16 : 16-bit unique query identification field
385  *
386  *   QR     :  1 : set to 0 for queries, and 1 for responses
387  *   Opcode :  4 : set to 0 for queries
388  *   AA     :  1 : set to 0 for queries
389  *   TC     :  1 : truncation flag, will be set to 0 in queries
390  *   RD     :  1 : recursion desired
391  *
392  *   RA     :  1 : recursion available (0 in queries)
393  *   Z      :  3 : three reserved zero bits
394  *   RCODE  :  4 : response code (always 0=NOERROR in queries)
395  *
396  *   QDCount: 16 : question count
397  *   ANCount: 16 : Answer count (0 in queries)
398  *   NSCount: 16: Authority Record count (0 in queries)
399  *   ARCount: 16: Additionnal Record count (0 in queries)
400  *
401  * the QUESTION is made of QDCount Question Record (QRs)
402  * the ANSWER is made of ANCount RRs
403  * the AUTHORITY is made of NSCount RRs
404  * the ADDITIONNAL is made of ARCount RRs
405  *
406  * Each Question Record (QR) is made of:
407  *
408  *   QNAME   : variable : Query DNS NAME
409  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
410  *   CLASS   : 16       : class of query (IN=1)
411  *
412  * Each Resource Record (RR) is made of:
413  *
414  *   NAME    : variable : DNS NAME
415  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
416  *   CLASS   : 16       : class of query (IN=1)
417  *   TTL     : 32       : seconds to cache this RR (0=none)
418  *   RDLENGTH: 16       : size of RDDATA in bytes
419  *   RDDATA  : variable : RR data (depends on TYPE)
420  *
421  * Each QNAME contains a domain name encoded as a sequence of 'labels'
422  * terminated by a zero. Each label has the following format:
423  *
424  *    LEN  : 8     : lenght of label (MUST be < 64)
425  *    NAME : 8*LEN : label length (must exclude dots)
426  *
427  * A value of 0 in the encoding is interpreted as the 'root' domain and
428  * terminates the encoding. So 'www.android.com' will be encoded as:
429  *
430  *   <3>www<7>android<3>com<0>
431  *
432  * Where <n> represents the byte with value 'n'
433  *
434  * Each NAME reflects the QNAME of the question, but has a slightly more
435  * complex encoding in order to provide message compression. This is achieved
436  * by using a 2-byte pointer, with format:
437  *
438  *    TYPE   : 2  : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
439  *    OFFSET : 14 : offset to another part of the DNS packet
440  *
441  * The offset is relative to the start of the DNS packet and must point
442  * A pointer terminates the encoding.
443  *
444  * The NAME can be encoded in one of the following formats:
445  *
446  *   - a sequence of simple labels terminated by 0 (like QNAMEs)
447  *   - a single pointer
448  *   - a sequence of simple labels terminated by a pointer
449  *
450  * A pointer shall always point to either a pointer of a sequence of
451  * labels (which can themselves be terminated by either a 0 or a pointer)
452  *
453  * The expanded length of a given domain name should not exceed 255 bytes.
454  *
455  * NOTE: we don't parse the answer packets, so don't need to deal with NAME
456  *       records, only QNAMEs.
457  */
458 
459 #define  DNS_HEADER_SIZE  12
460 
461 #define  DNS_TYPE_A   "\00\01"   /* big-endian decimal 1 */
462 #define  DNS_TYPE_PTR "\00\014"  /* big-endian decimal 12 */
463 #define  DNS_TYPE_MX  "\00\017"  /* big-endian decimal 15 */
464 #define  DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
465 #define  DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
466 
467 #define  DNS_CLASS_IN "\00\01"   /* big-endian decimal 1 */
468 
469 typedef struct {
470     const uint8_t*  base;
471     const uint8_t*  end;
472     const uint8_t*  cursor;
473 } DnsPacket;
474 
475 static void
_dnsPacket_init(DnsPacket * packet,const uint8_t * buff,int bufflen)476 _dnsPacket_init( DnsPacket*  packet, const uint8_t*  buff, int  bufflen )
477 {
478     packet->base   = buff;
479     packet->end    = buff + bufflen;
480     packet->cursor = buff;
481 }
482 
483 static void
_dnsPacket_rewind(DnsPacket * packet)484 _dnsPacket_rewind( DnsPacket*  packet )
485 {
486     packet->cursor = packet->base;
487 }
488 
489 static void
_dnsPacket_skip(DnsPacket * packet,int count)490 _dnsPacket_skip( DnsPacket*  packet, int  count )
491 {
492     const uint8_t*  p = packet->cursor + count;
493 
494     if (p > packet->end)
495         p = packet->end;
496 
497     packet->cursor = p;
498 }
499 
500 static int
_dnsPacket_readInt16(DnsPacket * packet)501 _dnsPacket_readInt16( DnsPacket*  packet )
502 {
503     const uint8_t*  p = packet->cursor;
504 
505     if (p+2 > packet->end)
506         return -1;
507 
508     packet->cursor = p+2;
509     return (p[0]<< 8) | p[1];
510 }
511 
512 /** QUERY CHECKING
513  **/
514 
515 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
516  * the cursor is only advanced in the case of success
517  */
518 static int
_dnsPacket_checkBytes(DnsPacket * packet,int numBytes,const void * bytes)519 _dnsPacket_checkBytes( DnsPacket*  packet, int  numBytes, const void*  bytes )
520 {
521     const uint8_t*  p = packet->cursor;
522 
523     if (p + numBytes > packet->end)
524         return 0;
525 
526     if (memcmp(p, bytes, numBytes) != 0)
527         return 0;
528 
529     packet->cursor = p + numBytes;
530     return 1;
531 }
532 
533 /* parse and skip a given QNAME stored in a query packet,
534  * from the current cursor position. returns 1 on success,
535  * or 0 for malformed data.
536  */
537 static int
_dnsPacket_checkQName(DnsPacket * packet)538 _dnsPacket_checkQName( DnsPacket*  packet )
539 {
540     const uint8_t*  p   = packet->cursor;
541     const uint8_t*  end = packet->end;
542 
543     for (;;) {
544         int  c;
545 
546         if (p >= end)
547             break;
548 
549         c = *p++;
550 
551         if (c == 0) {
552             packet->cursor = p;
553             return 1;
554         }
555 
556         /* we don't expect label compression in QNAMEs */
557         if (c >= 64)
558             break;
559 
560         p += c;
561         /* we rely on the bound check at the start
562          * of the loop here */
563     }
564     /* malformed data */
565     XLOG("malformed QNAME");
566     return 0;
567 }
568 
569 /* parse and skip a given QR stored in a packet.
570  * returns 1 on success, and 0 on failure
571  */
572 static int
_dnsPacket_checkQR(DnsPacket * packet)573 _dnsPacket_checkQR( DnsPacket*  packet )
574 {
575     int  len;
576 
577     if (!_dnsPacket_checkQName(packet))
578         return 0;
579 
580     /* TYPE must be one of the things we support */
581     if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
582         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
583         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
584         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
585         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL))
586     {
587         XLOG("unsupported TYPE");
588         return 0;
589     }
590     /* CLASS must be IN */
591     if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
592         XLOG("unsupported CLASS");
593         return 0;
594     }
595 
596     return 1;
597 }
598 
599 /* check the header of a DNS Query packet, return 1 if it is one
600  * type of query we can cache, or 0 otherwise
601  */
602 static int
_dnsPacket_checkQuery(DnsPacket * packet)603 _dnsPacket_checkQuery( DnsPacket*  packet )
604 {
605     const uint8_t*  p = packet->base;
606     int             qdCount, anCount, dnCount, arCount;
607 
608     if (p + DNS_HEADER_SIZE > packet->end) {
609         XLOG("query packet too small");
610         return 0;
611     }
612 
613     /* QR must be set to 0, opcode must be 0 and AA must be 0 */
614     /* RA, Z, and RCODE must be 0 */
615     if ((p[2] & 0xFC) != 0 || p[3] != 0) {
616         XLOG("query packet flags unsupported");
617         return 0;
618     }
619 
620     /* Note that we ignore the TC and RD bits here for the
621      * following reasons:
622      *
623      * - there is no point for a query packet sent to a server
624      *   to have the TC bit set, but the implementation might
625      *   set the bit in the query buffer for its own needs
626      *   between a _resolv_cache_lookup and a
627      *   _resolv_cache_add. We should not freak out if this
628      *   is the case.
629      *
630      * - we consider that the result from a RD=0 or a RD=1
631      *   query might be different, hence that the RD bit
632      *   should be used to differentiate cached result.
633      *
634      *   this implies that RD is checked when hashing or
635      *   comparing query packets, but not TC
636      */
637 
638     /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
639     qdCount = (p[4] << 8) | p[5];
640     anCount = (p[6] << 8) | p[7];
641     dnCount = (p[8] << 8) | p[9];
642     arCount = (p[10]<< 8) | p[11];
643 
644     if (anCount != 0 || dnCount != 0 || arCount != 0) {
645         XLOG("query packet contains non-query records");
646         return 0;
647     }
648 
649     if (qdCount == 0) {
650         XLOG("query packet doesn't contain query record");
651         return 0;
652     }
653 
654     /* Check QDCOUNT QRs */
655     packet->cursor = p + DNS_HEADER_SIZE;
656 
657     for (;qdCount > 0; qdCount--)
658         if (!_dnsPacket_checkQR(packet))
659             return 0;
660 
661     return 1;
662 }
663 
664 /** QUERY DEBUGGING
665  **/
666 #if DEBUG
667 static char*
_dnsPacket_bprintQName(DnsPacket * packet,char * bp,char * bend)668 _dnsPacket_bprintQName(DnsPacket*  packet, char*  bp, char*  bend)
669 {
670     const uint8_t*  p   = packet->cursor;
671     const uint8_t*  end = packet->end;
672     int             first = 1;
673 
674     for (;;) {
675         int  c;
676 
677         if (p >= end)
678             break;
679 
680         c = *p++;
681 
682         if (c == 0) {
683             packet->cursor = p;
684             return bp;
685         }
686 
687         /* we don't expect label compression in QNAMEs */
688         if (c >= 64)
689             break;
690 
691         if (first)
692             first = 0;
693         else
694             bp = _bprint_c(bp, bend, '.');
695 
696         bp = _bprint_b(bp, bend, (const char*)p, c);
697 
698         p += c;
699         /* we rely on the bound check at the start
700          * of the loop here */
701     }
702     /* malformed data */
703     bp = _bprint_s(bp, bend, "<MALFORMED>");
704     return bp;
705 }
706 
707 static char*
_dnsPacket_bprintQR(DnsPacket * packet,char * p,char * end)708 _dnsPacket_bprintQR(DnsPacket*  packet, char*  p, char*  end)
709 {
710 #define  QQ(x)   { DNS_TYPE_##x, #x }
711     static const struct {
712         const char*  typeBytes;
713         const char*  typeString;
714     } qTypes[] =
715     {
716         QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL),
717         { NULL, NULL }
718     };
719     int          nn;
720     const char*  typeString = NULL;
721 
722     /* dump QNAME */
723     p = _dnsPacket_bprintQName(packet, p, end);
724 
725     /* dump TYPE */
726     p = _bprint_s(p, end, " (");
727 
728     for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
729         if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
730             typeString = qTypes[nn].typeString;
731             break;
732         }
733     }
734 
735     if (typeString != NULL)
736         p = _bprint_s(p, end, typeString);
737     else {
738         int  typeCode = _dnsPacket_readInt16(packet);
739         p = _bprint(p, end, "UNKNOWN-%d", typeCode);
740     }
741 
742     p = _bprint_c(p, end, ')');
743 
744     /* skip CLASS */
745     _dnsPacket_skip(packet, 2);
746     return p;
747 }
748 
749 /* this function assumes the packet has already been checked */
750 static char*
_dnsPacket_bprintQuery(DnsPacket * packet,char * p,char * end)751 _dnsPacket_bprintQuery( DnsPacket*  packet, char*  p, char*  end )
752 {
753     int   qdCount;
754 
755     if (packet->base[2] & 0x1) {
756         p = _bprint_s(p, end, "RECURSIVE ");
757     }
758 
759     _dnsPacket_skip(packet, 4);
760     qdCount = _dnsPacket_readInt16(packet);
761     _dnsPacket_skip(packet, 6);
762 
763     for ( ; qdCount > 0; qdCount-- ) {
764         p = _dnsPacket_bprintQR(packet, p, end);
765     }
766     return p;
767 }
768 #endif
769 
770 
771 /** QUERY HASHING SUPPORT
772  **
773  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
774  ** BEEN SUCCESFULLY CHECKED.
775  **/
776 
777 /* use 32-bit FNV hash function */
778 #define  FNV_MULT   16777619U
779 #define  FNV_BASIS  2166136261U
780 
781 static unsigned
_dnsPacket_hashBytes(DnsPacket * packet,int numBytes,unsigned hash)782 _dnsPacket_hashBytes( DnsPacket*  packet, int  numBytes, unsigned  hash )
783 {
784     const uint8_t*  p   = packet->cursor;
785     const uint8_t*  end = packet->end;
786 
787     while (numBytes > 0 && p < end) {
788         hash = hash*FNV_MULT ^ *p++;
789     }
790     packet->cursor = p;
791     return hash;
792 }
793 
794 
795 static unsigned
_dnsPacket_hashQName(DnsPacket * packet,unsigned hash)796 _dnsPacket_hashQName( DnsPacket*  packet, unsigned  hash )
797 {
798     const uint8_t*  p   = packet->cursor;
799     const uint8_t*  end = packet->end;
800 
801     for (;;) {
802         int  c;
803 
804         if (p >= end) {  /* should not happen */
805             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
806             break;
807         }
808 
809         c = *p++;
810 
811         if (c == 0)
812             break;
813 
814         if (c >= 64) {
815             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
816             break;
817         }
818         if (p + c >= end) {
819             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
820                     __FUNCTION__);
821             break;
822         }
823         while (c > 0) {
824             hash = hash*FNV_MULT ^ *p++;
825             c   -= 1;
826         }
827     }
828     packet->cursor = p;
829     return hash;
830 }
831 
832 static unsigned
_dnsPacket_hashQR(DnsPacket * packet,unsigned hash)833 _dnsPacket_hashQR( DnsPacket*  packet, unsigned  hash )
834 {
835     int   len;
836 
837     hash = _dnsPacket_hashQName(packet, hash);
838     hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
839     return hash;
840 }
841 
842 static unsigned
_dnsPacket_hashQuery(DnsPacket * packet)843 _dnsPacket_hashQuery( DnsPacket*  packet )
844 {
845     unsigned  hash = FNV_BASIS;
846     int       count;
847     _dnsPacket_rewind(packet);
848 
849     /* we ignore the TC bit for reasons explained in
850      * _dnsPacket_checkQuery().
851      *
852      * however we hash the RD bit to differentiate
853      * between answers for recursive and non-recursive
854      * queries.
855      */
856     hash = hash*FNV_MULT ^ (packet->base[2] & 1);
857 
858     /* assume: other flags are 0 */
859     _dnsPacket_skip(packet, 4);
860 
861     /* read QDCOUNT */
862     count = _dnsPacket_readInt16(packet);
863 
864     /* assume: ANcount, NScount, ARcount are 0 */
865     _dnsPacket_skip(packet, 6);
866 
867     /* hash QDCOUNT QRs */
868     for ( ; count > 0; count-- )
869         hash = _dnsPacket_hashQR(packet, hash);
870 
871     return hash;
872 }
873 
874 
875 /** QUERY COMPARISON
876  **
877  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
878  ** BEEN SUCCESFULLY CHECKED.
879  **/
880 
881 static int
_dnsPacket_isEqualDomainName(DnsPacket * pack1,DnsPacket * pack2)882 _dnsPacket_isEqualDomainName( DnsPacket*  pack1, DnsPacket*  pack2 )
883 {
884     const uint8_t*  p1   = pack1->cursor;
885     const uint8_t*  end1 = pack1->end;
886     const uint8_t*  p2   = pack2->cursor;
887     const uint8_t*  end2 = pack2->end;
888 
889     for (;;) {
890         int  c1, c2;
891 
892         if (p1 >= end1 || p2 >= end2) {
893             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
894             break;
895         }
896         c1 = *p1++;
897         c2 = *p2++;
898         if (c1 != c2)
899             break;
900 
901         if (c1 == 0) {
902             pack1->cursor = p1;
903             pack2->cursor = p2;
904             return 1;
905         }
906         if (c1 >= 64) {
907             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
908             break;
909         }
910         if ((p1+c1 > end1) || (p2+c1 > end2)) {
911             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
912                     __FUNCTION__);
913             break;
914         }
915         if (memcmp(p1, p2, c1) != 0)
916             break;
917         p1 += c1;
918         p2 += c1;
919         /* we rely on the bound checks at the start of the loop */
920     }
921     /* not the same, or one is malformed */
922     XLOG("different DN");
923     return 0;
924 }
925 
926 static int
_dnsPacket_isEqualBytes(DnsPacket * pack1,DnsPacket * pack2,int numBytes)927 _dnsPacket_isEqualBytes( DnsPacket*  pack1, DnsPacket*  pack2, int  numBytes )
928 {
929     const uint8_t*  p1 = pack1->cursor;
930     const uint8_t*  p2 = pack2->cursor;
931 
932     if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end )
933         return 0;
934 
935     if ( memcmp(p1, p2, numBytes) != 0 )
936         return 0;
937 
938     pack1->cursor += numBytes;
939     pack2->cursor += numBytes;
940     return 1;
941 }
942 
943 static int
_dnsPacket_isEqualQR(DnsPacket * pack1,DnsPacket * pack2)944 _dnsPacket_isEqualQR( DnsPacket*  pack1, DnsPacket*  pack2 )
945 {
946     /* compare domain name encoding + TYPE + CLASS */
947     if ( !_dnsPacket_isEqualDomainName(pack1, pack2) ||
948          !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) )
949         return 0;
950 
951     return 1;
952 }
953 
954 static int
_dnsPacket_isEqualQuery(DnsPacket * pack1,DnsPacket * pack2)955 _dnsPacket_isEqualQuery( DnsPacket*  pack1, DnsPacket*  pack2 )
956 {
957     int  count1, count2;
958 
959     /* compare the headers, ignore most fields */
960     _dnsPacket_rewind(pack1);
961     _dnsPacket_rewind(pack2);
962 
963     /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
964     if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
965         XLOG("different RD");
966         return 0;
967     }
968 
969     /* assume: other flags are all 0 */
970     _dnsPacket_skip(pack1, 4);
971     _dnsPacket_skip(pack2, 4);
972 
973     /* compare QDCOUNT */
974     count1 = _dnsPacket_readInt16(pack1);
975     count2 = _dnsPacket_readInt16(pack2);
976     if (count1 != count2 || count1 < 0) {
977         XLOG("different QDCOUNT");
978         return 0;
979     }
980 
981     /* assume: ANcount, NScount and ARcount are all 0 */
982     _dnsPacket_skip(pack1, 6);
983     _dnsPacket_skip(pack2, 6);
984 
985     /* compare the QDCOUNT QRs */
986     for ( ; count1 > 0; count1-- ) {
987         if (!_dnsPacket_isEqualQR(pack1, pack2)) {
988             XLOG("different QR");
989             return 0;
990         }
991     }
992     return 1;
993 }
994 
995 /****************************************************************************/
996 /****************************************************************************/
997 /*****                                                                  *****/
998 /*****                                                                  *****/
999 /*****                                                                  *****/
1000 /****************************************************************************/
1001 /****************************************************************************/
1002 
1003 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
1004  * structure though they are conceptually part of the hash table.
1005  *
1006  * similarly, mru_next and mru_prev are part of the global MRU list
1007  */
1008 typedef struct Entry {
1009     unsigned int     hash;   /* hash value */
1010     struct Entry*    hlink;  /* next in collision chain */
1011     struct Entry*    mru_prev;
1012     struct Entry*    mru_next;
1013 
1014     const uint8_t*   query;
1015     int              querylen;
1016     const uint8_t*   answer;
1017     int              answerlen;
1018     time_t           expires;   /* time_t when the entry isn't valid any more */
1019     int              id;        /* for debugging purpose */
1020 } Entry;
1021 
1022 /**
1023  * Parse the answer records and find the smallest
1024  * TTL among the answer records.
1025  *
1026  * The returned TTL is the number of seconds to
1027  * keep the answer in the cache.
1028  *
1029  * In case of parse error zero (0) is returned which
1030  * indicates that the answer shall not be cached.
1031  */
1032 static u_long
answer_getTTL(const void * answer,int answerlen)1033 answer_getTTL(const void* answer, int answerlen)
1034 {
1035     ns_msg handle;
1036     int ancount, n;
1037     u_long result, ttl;
1038     ns_rr rr;
1039 
1040     result = 0;
1041     if (ns_initparse(answer, answerlen, &handle) >= 0) {
1042         // get number of answer records
1043         ancount = ns_msg_count(handle, ns_s_an);
1044         for (n = 0; n < ancount; n++) {
1045             if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
1046                 ttl = ns_rr_ttl(rr);
1047                 if (n == 0 || ttl < result) {
1048                     result = ttl;
1049                 }
1050             } else {
1051                 XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
1052             }
1053         }
1054     } else {
1055         XLOG("ns_parserr failed. %s\n", strerror(errno));
1056     }
1057 
1058     XLOG("TTL = %d\n", result);
1059 
1060     return result;
1061 }
1062 
1063 static void
entry_free(Entry * e)1064 entry_free( Entry*  e )
1065 {
1066     /* everything is allocated in a single memory block */
1067     if (e) {
1068         free(e);
1069     }
1070 }
1071 
1072 static __inline__ void
entry_mru_remove(Entry * e)1073 entry_mru_remove( Entry*  e )
1074 {
1075     e->mru_prev->mru_next = e->mru_next;
1076     e->mru_next->mru_prev = e->mru_prev;
1077 }
1078 
1079 static __inline__ void
entry_mru_add(Entry * e,Entry * list)1080 entry_mru_add( Entry*  e, Entry*  list )
1081 {
1082     Entry*  first = list->mru_next;
1083 
1084     e->mru_next = first;
1085     e->mru_prev = list;
1086 
1087     list->mru_next  = e;
1088     first->mru_prev = e;
1089 }
1090 
1091 /* compute the hash of a given entry, this is a hash of most
1092  * data in the query (key) */
1093 static unsigned
entry_hash(const Entry * e)1094 entry_hash( const Entry*  e )
1095 {
1096     DnsPacket  pack[1];
1097 
1098     _dnsPacket_init(pack, e->query, e->querylen);
1099     return _dnsPacket_hashQuery(pack);
1100 }
1101 
1102 /* initialize an Entry as a search key, this also checks the input query packet
1103  * returns 1 on success, or 0 in case of unsupported/malformed data */
1104 static int
entry_init_key(Entry * e,const void * query,int querylen)1105 entry_init_key( Entry*  e, const void*  query, int  querylen )
1106 {
1107     DnsPacket  pack[1];
1108 
1109     memset(e, 0, sizeof(*e));
1110 
1111     e->query    = query;
1112     e->querylen = querylen;
1113     e->hash     = entry_hash(e);
1114 
1115     _dnsPacket_init(pack, query, querylen);
1116 
1117     return _dnsPacket_checkQuery(pack);
1118 }
1119 
1120 /* allocate a new entry as a cache node */
1121 static Entry*
entry_alloc(const Entry * init,const void * answer,int answerlen)1122 entry_alloc( const Entry*  init, const void*  answer, int  answerlen )
1123 {
1124     Entry*  e;
1125     int     size;
1126 
1127     size = sizeof(*e) + init->querylen + answerlen;
1128     e    = calloc(size, 1);
1129     if (e == NULL)
1130         return e;
1131 
1132     e->hash     = init->hash;
1133     e->query    = (const uint8_t*)(e+1);
1134     e->querylen = init->querylen;
1135 
1136     memcpy( (char*)e->query, init->query, e->querylen );
1137 
1138     e->answer    = e->query + e->querylen;
1139     e->answerlen = answerlen;
1140 
1141     memcpy( (char*)e->answer, answer, e->answerlen );
1142 
1143     return e;
1144 }
1145 
1146 static int
entry_equals(const Entry * e1,const Entry * e2)1147 entry_equals( const Entry*  e1, const Entry*  e2 )
1148 {
1149     DnsPacket  pack1[1], pack2[1];
1150 
1151     if (e1->querylen != e2->querylen) {
1152         return 0;
1153     }
1154     _dnsPacket_init(pack1, e1->query, e1->querylen);
1155     _dnsPacket_init(pack2, e2->query, e2->querylen);
1156 
1157     return _dnsPacket_isEqualQuery(pack1, pack2);
1158 }
1159 
1160 /****************************************************************************/
1161 /****************************************************************************/
1162 /*****                                                                  *****/
1163 /*****                                                                  *****/
1164 /*****                                                                  *****/
1165 /****************************************************************************/
1166 /****************************************************************************/
1167 
1168 /* We use a simple hash table with external collision lists
1169  * for simplicity, the hash-table fields 'hash' and 'hlink' are
1170  * inlined in the Entry structure.
1171  */
1172 
1173 typedef struct resolv_cache {
1174     int              max_entries;
1175     int              num_entries;
1176     Entry            mru_list;
1177     pthread_mutex_t  lock;
1178     unsigned         generation;
1179     int              last_id;
1180     Entry*           entries;
1181 } Cache;
1182 
1183 typedef struct resolv_cache_info {
1184     char                        ifname[IF_NAMESIZE + 1];
1185     struct in_addr              ifaddr;
1186     Cache*                      cache;
1187     struct resolv_cache_info*   next;
1188     char*                       nameservers[MAXNS +1];
1189     struct addrinfo*            nsaddrinfo[MAXNS + 1];
1190 } CacheInfo;
1191 
1192 #define  HTABLE_VALID(x)  ((x) != NULL && (x) != HTABLE_DELETED)
1193 
1194 static void
_cache_flush_locked(Cache * cache)1195 _cache_flush_locked( Cache*  cache )
1196 {
1197     int     nn;
1198     time_t  now = _time_now();
1199 
1200     for (nn = 0; nn < cache->max_entries; nn++)
1201     {
1202         Entry**  pnode = (Entry**) &cache->entries[nn];
1203 
1204         while (*pnode != NULL) {
1205             Entry*  node = *pnode;
1206             *pnode = node->hlink;
1207             entry_free(node);
1208         }
1209     }
1210 
1211     cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
1212     cache->num_entries       = 0;
1213     cache->last_id           = 0;
1214 
1215     XLOG("*************************\n"
1216          "*** DNS CACHE FLUSHED ***\n"
1217          "*************************");
1218 }
1219 
1220 /* Return max number of entries allowed in the cache,
1221  * i.e. cache size. The cache size is either defined
1222  * by system property ro.net.dns_cache_size or by
1223  * CONFIG_MAX_ENTRIES if system property not set
1224  * or set to invalid value. */
1225 static int
_res_cache_get_max_entries(void)1226 _res_cache_get_max_entries( void )
1227 {
1228     int result = -1;
1229     char cache_size[PROP_VALUE_MAX];
1230 
1231     const char* cache_mode = getenv("ANDROID_DNS_MODE");
1232 
1233     if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) {
1234         // Don't use the cache in local mode.  This is used by the
1235         // proxy itself.
1236         // TODO - change this to 0 when all dns stuff uses proxy (5918973)
1237         XLOG("setup cache for non-cache process. size=1");
1238         return 1;
1239     }
1240 
1241     if (__system_property_get(DNS_CACHE_SIZE_PROP_NAME, cache_size) > 0) {
1242         result = atoi(cache_size);
1243     }
1244 
1245     // ro.net.dns_cache_size not set or set to negative value
1246     if (result <= 0) {
1247         result = CONFIG_MAX_ENTRIES;
1248     }
1249 
1250     XLOG("cache size: %d", result);
1251     return result;
1252 }
1253 
1254 static struct resolv_cache*
_resolv_cache_create(void)1255 _resolv_cache_create( void )
1256 {
1257     struct resolv_cache*  cache;
1258 
1259     cache = calloc(sizeof(*cache), 1);
1260     if (cache) {
1261         cache->max_entries = _res_cache_get_max_entries();
1262         cache->entries = calloc(sizeof(*cache->entries), cache->max_entries);
1263         if (cache->entries) {
1264             cache->generation = ~0U;
1265             pthread_mutex_init( &cache->lock, NULL );
1266             cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
1267             XLOG("%s: cache created\n", __FUNCTION__);
1268         } else {
1269             free(cache);
1270             cache = NULL;
1271         }
1272     }
1273     return cache;
1274 }
1275 
1276 
1277 #if DEBUG
1278 static void
_dump_query(const uint8_t * query,int querylen)1279 _dump_query( const uint8_t*  query, int  querylen )
1280 {
1281     char       temp[256], *p=temp, *end=p+sizeof(temp);
1282     DnsPacket  pack[1];
1283 
1284     _dnsPacket_init(pack, query, querylen);
1285     p = _dnsPacket_bprintQuery(pack, p, end);
1286     XLOG("QUERY: %s", temp);
1287 }
1288 
1289 static void
_cache_dump_mru(Cache * cache)1290 _cache_dump_mru( Cache*  cache )
1291 {
1292     char    temp[512], *p=temp, *end=p+sizeof(temp);
1293     Entry*  e;
1294 
1295     p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
1296     for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
1297         p = _bprint(p, end, " %d", e->id);
1298 
1299     XLOG("%s", temp);
1300 }
1301 
1302 static void
_dump_answer(const void * answer,int answerlen)1303 _dump_answer(const void* answer, int answerlen)
1304 {
1305     res_state statep;
1306     FILE* fp;
1307     char* buf;
1308     int fileLen;
1309 
1310     fp = fopen("/data/reslog.txt", "w+");
1311     if (fp != NULL) {
1312         statep = __res_get_state();
1313 
1314         res_pquery(statep, answer, answerlen, fp);
1315 
1316         //Get file length
1317         fseek(fp, 0, SEEK_END);
1318         fileLen=ftell(fp);
1319         fseek(fp, 0, SEEK_SET);
1320         buf = (char *)malloc(fileLen+1);
1321         if (buf != NULL) {
1322             //Read file contents into buffer
1323             fread(buf, fileLen, 1, fp);
1324             XLOG("%s\n", buf);
1325             free(buf);
1326         }
1327         fclose(fp);
1328         remove("/data/reslog.txt");
1329     }
1330     else {
1331         XLOG("_dump_answer: can't open file\n");
1332     }
1333 }
1334 #endif
1335 
1336 #if DEBUG
1337 #  define  XLOG_QUERY(q,len)   _dump_query((q), (len))
1338 #  define  XLOG_ANSWER(a, len) _dump_answer((a), (len))
1339 #else
1340 #  define  XLOG_QUERY(q,len)   ((void)0)
1341 #  define  XLOG_ANSWER(a,len)  ((void)0)
1342 #endif
1343 
1344 /* This function tries to find a key within the hash table
1345  * In case of success, it will return a *pointer* to the hashed key.
1346  * In case of failure, it will return a *pointer* to NULL
1347  *
1348  * So, the caller must check '*result' to check for success/failure.
1349  *
1350  * The main idea is that the result can later be used directly in
1351  * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
1352  * parameter. This makes the code simpler and avoids re-searching
1353  * for the key position in the htable.
1354  *
1355  * The result of a lookup_p is only valid until you alter the hash
1356  * table.
1357  */
1358 static Entry**
_cache_lookup_p(Cache * cache,Entry * key)1359 _cache_lookup_p( Cache*   cache,
1360                  Entry*   key )
1361 {
1362     int      index = key->hash % cache->max_entries;
1363     Entry**  pnode = (Entry**) &cache->entries[ index ];
1364 
1365     while (*pnode != NULL) {
1366         Entry*  node = *pnode;
1367 
1368         if (node == NULL)
1369             break;
1370 
1371         if (node->hash == key->hash && entry_equals(node, key))
1372             break;
1373 
1374         pnode = &node->hlink;
1375     }
1376     return pnode;
1377 }
1378 
1379 /* Add a new entry to the hash table. 'lookup' must be the
1380  * result of an immediate previous failed _lookup_p() call
1381  * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1382  * newly created entry
1383  */
1384 static void
_cache_add_p(Cache * cache,Entry ** lookup,Entry * e)1385 _cache_add_p( Cache*   cache,
1386               Entry**  lookup,
1387               Entry*   e )
1388 {
1389     *lookup = e;
1390     e->id = ++cache->last_id;
1391     entry_mru_add(e, &cache->mru_list);
1392     cache->num_entries += 1;
1393 
1394     XLOG("%s: entry %d added (count=%d)", __FUNCTION__,
1395          e->id, cache->num_entries);
1396 }
1397 
1398 /* Remove an existing entry from the hash table,
1399  * 'lookup' must be the result of an immediate previous
1400  * and succesful _lookup_p() call.
1401  */
1402 static void
_cache_remove_p(Cache * cache,Entry ** lookup)1403 _cache_remove_p( Cache*   cache,
1404                  Entry**  lookup )
1405 {
1406     Entry*  e  = *lookup;
1407 
1408     XLOG("%s: entry %d removed (count=%d)", __FUNCTION__,
1409          e->id, cache->num_entries-1);
1410 
1411     entry_mru_remove(e);
1412     *lookup = e->hlink;
1413     entry_free(e);
1414     cache->num_entries -= 1;
1415 }
1416 
1417 /* Remove the oldest entry from the hash table.
1418  */
1419 static void
_cache_remove_oldest(Cache * cache)1420 _cache_remove_oldest( Cache*  cache )
1421 {
1422     Entry*   oldest = cache->mru_list.mru_prev;
1423     Entry**  lookup = _cache_lookup_p(cache, oldest);
1424 
1425     if (*lookup == NULL) { /* should not happen */
1426         XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
1427         return;
1428     }
1429     if (DEBUG) {
1430         XLOG("Cache full - removing oldest");
1431         XLOG_QUERY(oldest->query, oldest->querylen);
1432     }
1433     _cache_remove_p(cache, lookup);
1434 }
1435 
1436 
1437 ResolvCacheStatus
_resolv_cache_lookup(struct resolv_cache * cache,const void * query,int querylen,void * answer,int answersize,int * answerlen)1438 _resolv_cache_lookup( struct resolv_cache*  cache,
1439                       const void*           query,
1440                       int                   querylen,
1441                       void*                 answer,
1442                       int                   answersize,
1443                       int                  *answerlen )
1444 {
1445     DnsPacket  pack[1];
1446     Entry      key[1];
1447     int        index;
1448     Entry**    lookup;
1449     Entry*     e;
1450     time_t     now;
1451 
1452     ResolvCacheStatus  result = RESOLV_CACHE_NOTFOUND;
1453 
1454     XLOG("%s: lookup", __FUNCTION__);
1455     XLOG_QUERY(query, querylen);
1456 
1457     /* we don't cache malformed queries */
1458     if (!entry_init_key(key, query, querylen)) {
1459         XLOG("%s: unsupported query", __FUNCTION__);
1460         return RESOLV_CACHE_UNSUPPORTED;
1461     }
1462     /* lookup cache */
1463     pthread_mutex_lock( &cache->lock );
1464 
1465     /* see the description of _lookup_p to understand this.
1466      * the function always return a non-NULL pointer.
1467      */
1468     lookup = _cache_lookup_p(cache, key);
1469     e      = *lookup;
1470 
1471     if (e == NULL) {
1472         XLOG( "NOT IN CACHE");
1473         goto Exit;
1474     }
1475 
1476     now = _time_now();
1477 
1478     /* remove stale entries here */
1479     if (now >= e->expires) {
1480         XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup );
1481         XLOG_QUERY(e->query, e->querylen);
1482         _cache_remove_p(cache, lookup);
1483         goto Exit;
1484     }
1485 
1486     *answerlen = e->answerlen;
1487     if (e->answerlen > answersize) {
1488         /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1489         result = RESOLV_CACHE_UNSUPPORTED;
1490         XLOG(" ANSWER TOO LONG");
1491         goto Exit;
1492     }
1493 
1494     memcpy( answer, e->answer, e->answerlen );
1495 
1496     /* bump up this entry to the top of the MRU list */
1497     if (e != cache->mru_list.mru_next) {
1498         entry_mru_remove( e );
1499         entry_mru_add( e, &cache->mru_list );
1500     }
1501 
1502     XLOG( "FOUND IN CACHE entry=%p", e );
1503     result = RESOLV_CACHE_FOUND;
1504 
1505 Exit:
1506     pthread_mutex_unlock( &cache->lock );
1507     return result;
1508 }
1509 
1510 
1511 void
_resolv_cache_add(struct resolv_cache * cache,const void * query,int querylen,const void * answer,int answerlen)1512 _resolv_cache_add( struct resolv_cache*  cache,
1513                    const void*           query,
1514                    int                   querylen,
1515                    const void*           answer,
1516                    int                   answerlen )
1517 {
1518     Entry    key[1];
1519     Entry*   e;
1520     Entry**  lookup;
1521     u_long   ttl;
1522 
1523     /* don't assume that the query has already been cached
1524      */
1525     if (!entry_init_key( key, query, querylen )) {
1526         XLOG( "%s: passed invalid query ?", __FUNCTION__);
1527         return;
1528     }
1529 
1530     pthread_mutex_lock( &cache->lock );
1531 
1532     XLOG( "%s: query:", __FUNCTION__ );
1533     XLOG_QUERY(query,querylen);
1534     XLOG_ANSWER(answer, answerlen);
1535 #if DEBUG_DATA
1536     XLOG( "answer:");
1537     XLOG_BYTES(answer,answerlen);
1538 #endif
1539 
1540     lookup = _cache_lookup_p(cache, key);
1541     e      = *lookup;
1542 
1543     if (e != NULL) { /* should not happen */
1544         XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1545              __FUNCTION__, e);
1546         goto Exit;
1547     }
1548 
1549     if (cache->num_entries >= cache->max_entries) {
1550         _cache_remove_oldest(cache);
1551         /* need to lookup again */
1552         lookup = _cache_lookup_p(cache, key);
1553         e      = *lookup;
1554         if (e != NULL) {
1555             XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1556                 __FUNCTION__, e);
1557             goto Exit;
1558         }
1559     }
1560 
1561     ttl = answer_getTTL(answer, answerlen);
1562     if (ttl > 0) {
1563         e = entry_alloc(key, answer, answerlen);
1564         if (e != NULL) {
1565             e->expires = ttl + _time_now();
1566             _cache_add_p(cache, lookup, e);
1567         }
1568     }
1569 #if DEBUG
1570     _cache_dump_mru(cache);
1571 #endif
1572 Exit:
1573     pthread_mutex_unlock( &cache->lock );
1574 }
1575 
1576 /****************************************************************************/
1577 /****************************************************************************/
1578 /*****                                                                  *****/
1579 /*****                                                                  *****/
1580 /*****                                                                  *****/
1581 /****************************************************************************/
1582 /****************************************************************************/
1583 
1584 static pthread_once_t        _res_cache_once;
1585 
1586 // Head of the list of caches.  Protected by _res_cache_list_lock.
1587 static struct resolv_cache_info _res_cache_list;
1588 
1589 // name of the current default inteface
1590 static char            _res_default_ifname[IF_NAMESIZE + 1];
1591 
1592 // lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
1593 static pthread_mutex_t _res_cache_list_lock;
1594 
1595 
1596 /* lookup the default interface name */
1597 static char *_get_default_iface_locked();
1598 /* insert resolv_cache_info into the list of resolv_cache_infos */
1599 static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
1600 /* creates a resolv_cache_info */
1601 static struct resolv_cache_info* _create_cache_info( void );
1602 /* gets cache associated with an interface name, or NULL if none exists */
1603 static struct resolv_cache* _find_named_cache_locked(const char* ifname);
1604 /* gets a resolv_cache_info associated with an interface name, or NULL if not found */
1605 static struct resolv_cache_info* _find_cache_info_locked(const char* ifname);
1606 /* free dns name server list of a resolv_cache_info structure */
1607 static void _free_nameservers(struct resolv_cache_info* cache_info);
1608 /* look up the named cache, and creates one if needed */
1609 static struct resolv_cache* _get_res_cache_for_iface_locked(const char* ifname);
1610 /* empty the named cache */
1611 static void _flush_cache_for_iface_locked(const char* ifname);
1612 /* empty the nameservers set for the named cache */
1613 static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
1614 /* lookup the namserver for the name interface */
1615 static int _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen);
1616 /* lookup the addr of the nameserver for the named interface */
1617 static struct addrinfo* _get_nameserver_addr_locked(const char* ifname, int n);
1618 /* lookup the inteface's address */
1619 static struct in_addr* _get_addr_locked(const char * ifname);
1620 
1621 
1622 
1623 static void
_res_cache_init(void)1624 _res_cache_init(void)
1625 {
1626     const char*  env = getenv(CONFIG_ENV);
1627 
1628     if (env && atoi(env) == 0) {
1629         /* the cache is disabled */
1630         return;
1631     }
1632 
1633     memset(&_res_default_ifname, 0, sizeof(_res_default_ifname));
1634     memset(&_res_cache_list, 0, sizeof(_res_cache_list));
1635     pthread_mutex_init(&_res_cache_list_lock, NULL);
1636 }
1637 
1638 struct resolv_cache*
__get_res_cache(void)1639 __get_res_cache(void)
1640 {
1641     struct resolv_cache *cache;
1642 
1643     pthread_once(&_res_cache_once, _res_cache_init);
1644 
1645     pthread_mutex_lock(&_res_cache_list_lock);
1646 
1647     char* ifname = _get_default_iface_locked();
1648 
1649     // if default interface not set then use the first cache
1650     // associated with an interface as the default one.
1651     if (ifname[0] == '\0') {
1652         struct resolv_cache_info* cache_info = _res_cache_list.next;
1653         while (cache_info) {
1654             if (cache_info->ifname[0] != '\0') {
1655                 ifname = cache_info->ifname;
1656                 break;
1657             }
1658 
1659             cache_info = cache_info->next;
1660         }
1661     }
1662     cache = _get_res_cache_for_iface_locked(ifname);
1663 
1664     pthread_mutex_unlock(&_res_cache_list_lock);
1665     XLOG("_get_res_cache. default_ifname = %s\n", ifname);
1666     return cache;
1667 }
1668 
1669 static struct resolv_cache*
_get_res_cache_for_iface_locked(const char * ifname)1670 _get_res_cache_for_iface_locked(const char* ifname)
1671 {
1672     if (ifname == NULL)
1673         return NULL;
1674 
1675     struct resolv_cache* cache = _find_named_cache_locked(ifname);
1676     if (!cache) {
1677         struct resolv_cache_info* cache_info = _create_cache_info();
1678         if (cache_info) {
1679             cache = _resolv_cache_create();
1680             if (cache) {
1681                 int len = sizeof(cache_info->ifname);
1682                 cache_info->cache = cache;
1683                 strncpy(cache_info->ifname, ifname, len - 1);
1684                 cache_info->ifname[len - 1] = '\0';
1685 
1686                 _insert_cache_info_locked(cache_info);
1687             } else {
1688                 free(cache_info);
1689             }
1690         }
1691     }
1692     return cache;
1693 }
1694 
1695 void
_resolv_cache_reset(unsigned generation)1696 _resolv_cache_reset(unsigned  generation)
1697 {
1698     XLOG("%s: generation=%d", __FUNCTION__, generation);
1699 
1700     pthread_once(&_res_cache_once, _res_cache_init);
1701     pthread_mutex_lock(&_res_cache_list_lock);
1702 
1703     char* ifname = _get_default_iface_locked();
1704     // if default interface not set then use the first cache
1705     // associated with an interface as the default one.
1706     // Note: Copied the code from __get_res_cache since this
1707     // method will be deleted/obsolete when cache per interface
1708     // implemented all over
1709     if (ifname[0] == '\0') {
1710         struct resolv_cache_info* cache_info = _res_cache_list.next;
1711         while (cache_info) {
1712             if (cache_info->ifname[0] != '\0') {
1713                 ifname = cache_info->ifname;
1714                 break;
1715             }
1716 
1717             cache_info = cache_info->next;
1718         }
1719     }
1720     struct resolv_cache* cache = _get_res_cache_for_iface_locked(ifname);
1721 
1722     if (cache != NULL) {
1723         pthread_mutex_lock( &cache->lock );
1724         if (cache->generation != generation) {
1725             _cache_flush_locked(cache);
1726             cache->generation = generation;
1727         }
1728         pthread_mutex_unlock( &cache->lock );
1729     }
1730 
1731     pthread_mutex_unlock(&_res_cache_list_lock);
1732 }
1733 
1734 void
_resolv_flush_cache_for_default_iface(void)1735 _resolv_flush_cache_for_default_iface(void)
1736 {
1737     char* ifname;
1738 
1739     pthread_once(&_res_cache_once, _res_cache_init);
1740     pthread_mutex_lock(&_res_cache_list_lock);
1741 
1742     ifname = _get_default_iface_locked();
1743     _flush_cache_for_iface_locked(ifname);
1744 
1745     pthread_mutex_unlock(&_res_cache_list_lock);
1746 }
1747 
1748 void
_resolv_flush_cache_for_iface(const char * ifname)1749 _resolv_flush_cache_for_iface(const char* ifname)
1750 {
1751     pthread_once(&_res_cache_once, _res_cache_init);
1752     pthread_mutex_lock(&_res_cache_list_lock);
1753 
1754     _flush_cache_for_iface_locked(ifname);
1755 
1756     pthread_mutex_unlock(&_res_cache_list_lock);
1757 }
1758 
1759 static void
_flush_cache_for_iface_locked(const char * ifname)1760 _flush_cache_for_iface_locked(const char* ifname)
1761 {
1762     struct resolv_cache* cache = _find_named_cache_locked(ifname);
1763     if (cache) {
1764         pthread_mutex_lock(&cache->lock);
1765         _cache_flush_locked(cache);
1766         pthread_mutex_unlock(&cache->lock);
1767     }
1768 }
1769 
1770 static struct resolv_cache_info*
_create_cache_info(void)1771 _create_cache_info(void)
1772 {
1773     struct resolv_cache_info*  cache_info;
1774 
1775     cache_info = calloc(sizeof(*cache_info), 1);
1776     return cache_info;
1777 }
1778 
1779 static void
_insert_cache_info_locked(struct resolv_cache_info * cache_info)1780 _insert_cache_info_locked(struct resolv_cache_info* cache_info)
1781 {
1782     struct resolv_cache_info* last;
1783 
1784     for (last = &_res_cache_list; last->next; last = last->next);
1785 
1786     last->next = cache_info;
1787 
1788 }
1789 
1790 static struct resolv_cache*
_find_named_cache_locked(const char * ifname)1791 _find_named_cache_locked(const char* ifname) {
1792 
1793     struct resolv_cache_info* info = _find_cache_info_locked(ifname);
1794 
1795     if (info != NULL) return info->cache;
1796 
1797     return NULL;
1798 }
1799 
1800 static struct resolv_cache_info*
_find_cache_info_locked(const char * ifname)1801 _find_cache_info_locked(const char* ifname)
1802 {
1803     if (ifname == NULL)
1804         return NULL;
1805 
1806     struct resolv_cache_info* cache_info = _res_cache_list.next;
1807 
1808     while (cache_info) {
1809         if (strcmp(cache_info->ifname, ifname) == 0) {
1810             break;
1811         }
1812 
1813         cache_info = cache_info->next;
1814     }
1815     return cache_info;
1816 }
1817 
1818 static char*
_get_default_iface_locked(void)1819 _get_default_iface_locked(void)
1820 {
1821     char* iface = _res_default_ifname;
1822 
1823     return iface;
1824 }
1825 
1826 void
_resolv_set_default_iface(const char * ifname)1827 _resolv_set_default_iface(const char* ifname)
1828 {
1829     XLOG("_resolv_set_default_if ifname %s\n",ifname);
1830 
1831     pthread_once(&_res_cache_once, _res_cache_init);
1832     pthread_mutex_lock(&_res_cache_list_lock);
1833 
1834     int size = sizeof(_res_default_ifname);
1835     memset(_res_default_ifname, 0, size);
1836     strncpy(_res_default_ifname, ifname, size - 1);
1837     _res_default_ifname[size - 1] = '\0';
1838 
1839     pthread_mutex_unlock(&_res_cache_list_lock);
1840 }
1841 
1842 void
_resolv_set_nameservers_for_iface(const char * ifname,char ** servers,int numservers)1843 _resolv_set_nameservers_for_iface(const char* ifname, char** servers, int numservers)
1844 {
1845     int i, rt, index;
1846     struct addrinfo hints;
1847     char sbuf[NI_MAXSERV];
1848 
1849     pthread_once(&_res_cache_once, _res_cache_init);
1850 
1851     pthread_mutex_lock(&_res_cache_list_lock);
1852     // creates the cache if not created
1853     _get_res_cache_for_iface_locked(ifname);
1854 
1855     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
1856 
1857     if (cache_info != NULL) {
1858         // free current before adding new
1859         _free_nameservers_locked(cache_info);
1860 
1861         memset(&hints, 0, sizeof(hints));
1862         hints.ai_family = PF_UNSPEC;
1863         hints.ai_socktype = SOCK_DGRAM; /*dummy*/
1864         hints.ai_flags = AI_NUMERICHOST;
1865         sprintf(sbuf, "%u", NAMESERVER_PORT);
1866 
1867         index = 0;
1868         for (i = 0; i < numservers && i < MAXNS; i++) {
1869             rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]);
1870             if (rt == 0) {
1871                 cache_info->nameservers[index] = strdup(servers[i]);
1872                 index++;
1873             } else {
1874                 cache_info->nsaddrinfo[index] = NULL;
1875             }
1876         }
1877     }
1878     pthread_mutex_unlock(&_res_cache_list_lock);
1879 }
1880 
1881 static void
_free_nameservers_locked(struct resolv_cache_info * cache_info)1882 _free_nameservers_locked(struct resolv_cache_info* cache_info)
1883 {
1884     int i;
1885     for (i = 0; i <= MAXNS; i++) {
1886         free(cache_info->nameservers[i]);
1887         cache_info->nameservers[i] = NULL;
1888         if (cache_info->nsaddrinfo[i] != NULL) {
1889             freeaddrinfo(cache_info->nsaddrinfo[i]);
1890             cache_info->nsaddrinfo[i] = NULL;
1891         }
1892     }
1893 }
1894 
1895 int
_resolv_cache_get_nameserver(int n,char * addr,int addrLen)1896 _resolv_cache_get_nameserver(int n, char* addr, int addrLen)
1897 {
1898     char *ifname;
1899     int result = 0;
1900 
1901     pthread_once(&_res_cache_once, _res_cache_init);
1902     pthread_mutex_lock(&_res_cache_list_lock);
1903 
1904     ifname = _get_default_iface_locked();
1905     result = _get_nameserver_locked(ifname, n, addr, addrLen);
1906 
1907     pthread_mutex_unlock(&_res_cache_list_lock);
1908     return result;
1909 }
1910 
1911 static int
_get_nameserver_locked(const char * ifname,int n,char * addr,int addrLen)1912 _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen)
1913 {
1914     int len = 0;
1915     char* ns;
1916     struct resolv_cache_info* cache_info;
1917 
1918     if (n < 1 || n > MAXNS || !addr)
1919         return 0;
1920 
1921     cache_info = _find_cache_info_locked(ifname);
1922     if (cache_info) {
1923         ns = cache_info->nameservers[n - 1];
1924         if (ns) {
1925             len = strlen(ns);
1926             if (len < addrLen) {
1927                 strncpy(addr, ns, len);
1928                 addr[len] = '\0';
1929             } else {
1930                 len = 0;
1931             }
1932         }
1933     }
1934 
1935     return len;
1936 }
1937 
1938 struct addrinfo*
_cache_get_nameserver_addr(int n)1939 _cache_get_nameserver_addr(int n)
1940 {
1941     struct addrinfo *result;
1942     char* ifname;
1943 
1944     pthread_once(&_res_cache_once, _res_cache_init);
1945     pthread_mutex_lock(&_res_cache_list_lock);
1946 
1947     ifname = _get_default_iface_locked();
1948 
1949     result = _get_nameserver_addr_locked(ifname, n);
1950     pthread_mutex_unlock(&_res_cache_list_lock);
1951     return result;
1952 }
1953 
1954 static struct addrinfo*
_get_nameserver_addr_locked(const char * ifname,int n)1955 _get_nameserver_addr_locked(const char* ifname, int n)
1956 {
1957     struct addrinfo* ai = NULL;
1958     struct resolv_cache_info* cache_info;
1959 
1960     if (n < 1 || n > MAXNS)
1961         return NULL;
1962 
1963     cache_info = _find_cache_info_locked(ifname);
1964     if (cache_info) {
1965         ai = cache_info->nsaddrinfo[n - 1];
1966     }
1967     return ai;
1968 }
1969 
1970 void
_resolv_set_addr_of_iface(const char * ifname,struct in_addr * addr)1971 _resolv_set_addr_of_iface(const char* ifname, struct in_addr* addr)
1972 {
1973     pthread_once(&_res_cache_once, _res_cache_init);
1974     pthread_mutex_lock(&_res_cache_list_lock);
1975     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
1976     if (cache_info) {
1977         memcpy(&cache_info->ifaddr, addr, sizeof(*addr));
1978 
1979         if (DEBUG) {
1980             char* addr_s = inet_ntoa(cache_info->ifaddr);
1981             XLOG("address of interface %s is %s\n", ifname, addr_s);
1982         }
1983     }
1984     pthread_mutex_unlock(&_res_cache_list_lock);
1985 }
1986 
1987 struct in_addr*
_resolv_get_addr_of_default_iface(void)1988 _resolv_get_addr_of_default_iface(void)
1989 {
1990     struct in_addr* ai = NULL;
1991     char* ifname;
1992 
1993     pthread_once(&_res_cache_once, _res_cache_init);
1994     pthread_mutex_lock(&_res_cache_list_lock);
1995     ifname = _get_default_iface_locked();
1996     ai = _get_addr_locked(ifname);
1997     pthread_mutex_unlock(&_res_cache_list_lock);
1998 
1999     return ai;
2000 }
2001 
2002 struct in_addr*
_resolv_get_addr_of_iface(const char * ifname)2003 _resolv_get_addr_of_iface(const char* ifname)
2004 {
2005     struct in_addr* ai = NULL;
2006 
2007     pthread_once(&_res_cache_once, _res_cache_init);
2008     pthread_mutex_lock(&_res_cache_list_lock);
2009     ai =_get_addr_locked(ifname);
2010     pthread_mutex_unlock(&_res_cache_list_lock);
2011     return ai;
2012 }
2013 
2014 static struct in_addr*
_get_addr_locked(const char * ifname)2015 _get_addr_locked(const char * ifname)
2016 {
2017     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
2018     if (cache_info) {
2019         return &cache_info->ifaddr;
2020     }
2021     return NULL;
2022 }
2023