1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/Basic/IdentifierTable.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 using namespace clang;
26
27 //===----------------------------------------------------------------------===//
28 // Decl Allocation/Deallocation Method Implementations
29 //===----------------------------------------------------------------------===//
30
anchor()31 void AccessSpecDecl::anchor() { }
32
CreateDeserialized(ASTContext & C,unsigned ID)33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
35 return new (Mem) AccessSpecDecl(EmptyShell());
36 }
37
DefinitionData(CXXRecordDecl * D)38 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
39 : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
40 UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false),
41 UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false),
42 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
43 Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
44 HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
45 HasMutableFields(false), HasOnlyCMembers(true),
46 HasTrivialDefaultConstructor(true),
47 HasConstexprNonCopyMoveConstructor(false),
48 DefaultedDefaultConstructorIsConstexpr(true),
49 DefaultedCopyConstructorIsConstexpr(true),
50 DefaultedMoveConstructorIsConstexpr(true),
51 HasConstexprDefaultConstructor(false), HasConstexprCopyConstructor(false),
52 HasConstexprMoveConstructor(false), HasTrivialCopyConstructor(true),
53 HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true),
54 HasTrivialMoveAssignment(true), HasTrivialDestructor(true),
55 HasIrrelevantDestructor(true),
56 HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
57 UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false),
58 DeclaredCopyConstructor(false), DeclaredMoveConstructor(false),
59 DeclaredCopyAssignment(false), DeclaredMoveAssignment(false),
60 DeclaredDestructor(false), FailedImplicitMoveConstructor(false),
61 FailedImplicitMoveAssignment(false), IsLambda(false), NumBases(0),
62 NumVBases(0), Bases(), VBases(), Definition(D), FirstFriend(0) {
63 }
64
CXXRecordDecl(Kind K,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)65 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
66 SourceLocation StartLoc, SourceLocation IdLoc,
67 IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
68 : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
69 DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
70 TemplateOrInstantiation() { }
71
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)72 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
73 DeclContext *DC, SourceLocation StartLoc,
74 SourceLocation IdLoc, IdentifierInfo *Id,
75 CXXRecordDecl* PrevDecl,
76 bool DelayTypeCreation) {
77 CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
78 Id, PrevDecl);
79
80 // FIXME: DelayTypeCreation seems like such a hack
81 if (!DelayTypeCreation)
82 C.getTypeDeclType(R, PrevDecl);
83 return R;
84 }
85
CreateLambda(const ASTContext & C,DeclContext * DC,SourceLocation Loc,bool Dependent)86 CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
87 SourceLocation Loc, bool Dependent) {
88 CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc,
89 0, 0);
90 R->IsBeingDefined = true;
91 R->DefinitionData = new (C) struct LambdaDefinitionData(R, Dependent);
92 C.getTypeDeclType(R, /*PrevDecl=*/0);
93 return R;
94 }
95
96 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)97 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
98 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
99 return new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
100 SourceLocation(), 0, 0);
101 }
102
103 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)104 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
105 unsigned NumBases) {
106 ASTContext &C = getASTContext();
107
108 if (!data().Bases.isOffset() && data().NumBases > 0)
109 C.Deallocate(data().getBases());
110
111 if (NumBases) {
112 // C++ [dcl.init.aggr]p1:
113 // An aggregate is [...] a class with [...] no base classes [...].
114 data().Aggregate = false;
115
116 // C++ [class]p4:
117 // A POD-struct is an aggregate class...
118 data().PlainOldData = false;
119 }
120
121 // The set of seen virtual base types.
122 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
123
124 // The virtual bases of this class.
125 SmallVector<const CXXBaseSpecifier *, 8> VBases;
126
127 data().Bases = new(C) CXXBaseSpecifier [NumBases];
128 data().NumBases = NumBases;
129 for (unsigned i = 0; i < NumBases; ++i) {
130 data().getBases()[i] = *Bases[i];
131 // Keep track of inherited vbases for this base class.
132 const CXXBaseSpecifier *Base = Bases[i];
133 QualType BaseType = Base->getType();
134 // Skip dependent types; we can't do any checking on them now.
135 if (BaseType->isDependentType())
136 continue;
137 CXXRecordDecl *BaseClassDecl
138 = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
139
140 // A class with a non-empty base class is not empty.
141 // FIXME: Standard ref?
142 if (!BaseClassDecl->isEmpty()) {
143 if (!data().Empty) {
144 // C++0x [class]p7:
145 // A standard-layout class is a class that:
146 // [...]
147 // -- either has no non-static data members in the most derived
148 // class and at most one base class with non-static data members,
149 // or has no base classes with non-static data members, and
150 // If this is the second non-empty base, then neither of these two
151 // clauses can be true.
152 data().IsStandardLayout = false;
153 }
154
155 data().Empty = false;
156 data().HasNoNonEmptyBases = false;
157 }
158
159 // C++ [class.virtual]p1:
160 // A class that declares or inherits a virtual function is called a
161 // polymorphic class.
162 if (BaseClassDecl->isPolymorphic())
163 data().Polymorphic = true;
164
165 // C++0x [class]p7:
166 // A standard-layout class is a class that: [...]
167 // -- has no non-standard-layout base classes
168 if (!BaseClassDecl->isStandardLayout())
169 data().IsStandardLayout = false;
170
171 // Record if this base is the first non-literal field or base.
172 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
173 data().HasNonLiteralTypeFieldsOrBases = true;
174
175 // Now go through all virtual bases of this base and add them.
176 for (CXXRecordDecl::base_class_iterator VBase =
177 BaseClassDecl->vbases_begin(),
178 E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
179 // Add this base if it's not already in the list.
180 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
181 VBases.push_back(VBase);
182 }
183
184 if (Base->isVirtual()) {
185 // Add this base if it's not already in the list.
186 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
187 VBases.push_back(Base);
188
189 // C++0x [meta.unary.prop] is_empty:
190 // T is a class type, but not a union type, with ... no virtual base
191 // classes
192 data().Empty = false;
193
194 // C++ [class.ctor]p5:
195 // A default constructor is trivial [...] if:
196 // -- its class has [...] no virtual bases
197 data().HasTrivialDefaultConstructor = false;
198
199 // C++0x [class.copy]p13:
200 // A copy/move constructor for class X is trivial if it is neither
201 // user-provided nor deleted and if
202 // -- class X has no virtual functions and no virtual base classes, and
203 data().HasTrivialCopyConstructor = false;
204 data().HasTrivialMoveConstructor = false;
205
206 // C++0x [class.copy]p27:
207 // A copy/move assignment operator for class X is trivial if it is
208 // neither user-provided nor deleted and if
209 // -- class X has no virtual functions and no virtual base classes, and
210 data().HasTrivialCopyAssignment = false;
211 data().HasTrivialMoveAssignment = false;
212
213 // C++0x [class]p7:
214 // A standard-layout class is a class that: [...]
215 // -- has [...] no virtual base classes
216 data().IsStandardLayout = false;
217
218 // C++11 [dcl.constexpr]p4:
219 // In the definition of a constexpr constructor [...]
220 // -- the class shall not have any virtual base classes
221 data().DefaultedDefaultConstructorIsConstexpr = false;
222 data().DefaultedCopyConstructorIsConstexpr = false;
223 data().DefaultedMoveConstructorIsConstexpr = false;
224 } else {
225 // C++ [class.ctor]p5:
226 // A default constructor is trivial [...] if:
227 // -- all the direct base classes of its class have trivial default
228 // constructors.
229 if (!BaseClassDecl->hasTrivialDefaultConstructor())
230 data().HasTrivialDefaultConstructor = false;
231
232 // C++0x [class.copy]p13:
233 // A copy/move constructor for class X is trivial if [...]
234 // [...]
235 // -- the constructor selected to copy/move each direct base class
236 // subobject is trivial, and
237 // FIXME: C++0x: We need to only consider the selected constructor
238 // instead of all of them.
239 if (!BaseClassDecl->hasTrivialCopyConstructor())
240 data().HasTrivialCopyConstructor = false;
241 if (!BaseClassDecl->hasTrivialMoveConstructor())
242 data().HasTrivialMoveConstructor = false;
243
244 // C++0x [class.copy]p27:
245 // A copy/move assignment operator for class X is trivial if [...]
246 // [...]
247 // -- the assignment operator selected to copy/move each direct base
248 // class subobject is trivial, and
249 // FIXME: C++0x: We need to only consider the selected operator instead
250 // of all of them.
251 if (!BaseClassDecl->hasTrivialCopyAssignment())
252 data().HasTrivialCopyAssignment = false;
253 if (!BaseClassDecl->hasTrivialMoveAssignment())
254 data().HasTrivialMoveAssignment = false;
255
256 // C++11 [class.ctor]p6:
257 // If that user-written default constructor would satisfy the
258 // requirements of a constexpr constructor, the implicitly-defined
259 // default constructor is constexpr.
260 if (!BaseClassDecl->hasConstexprDefaultConstructor())
261 data().DefaultedDefaultConstructorIsConstexpr = false;
262
263 // C++11 [class.copy]p13:
264 // If the implicitly-defined constructor would satisfy the requirements
265 // of a constexpr constructor, the implicitly-defined constructor is
266 // constexpr.
267 // C++11 [dcl.constexpr]p4:
268 // -- every constructor involved in initializing [...] base class
269 // sub-objects shall be a constexpr constructor
270 if (!BaseClassDecl->hasConstexprCopyConstructor())
271 data().DefaultedCopyConstructorIsConstexpr = false;
272 if (BaseClassDecl->hasDeclaredMoveConstructor() ||
273 BaseClassDecl->needsImplicitMoveConstructor())
274 // FIXME: If the implicit move constructor generated for the base class
275 // would be ill-formed, the implicit move constructor generated for the
276 // derived class calls the base class' copy constructor.
277 data().DefaultedMoveConstructorIsConstexpr &=
278 BaseClassDecl->hasConstexprMoveConstructor();
279 else if (!BaseClassDecl->hasConstexprCopyConstructor())
280 data().DefaultedMoveConstructorIsConstexpr = false;
281 }
282
283 // C++ [class.ctor]p3:
284 // A destructor is trivial if all the direct base classes of its class
285 // have trivial destructors.
286 if (!BaseClassDecl->hasTrivialDestructor())
287 data().HasTrivialDestructor = false;
288
289 if (!BaseClassDecl->hasIrrelevantDestructor())
290 data().HasIrrelevantDestructor = false;
291
292 // A class has an Objective-C object member if... or any of its bases
293 // has an Objective-C object member.
294 if (BaseClassDecl->hasObjectMember())
295 setHasObjectMember(true);
296
297 // Keep track of the presence of mutable fields.
298 if (BaseClassDecl->hasMutableFields())
299 data().HasMutableFields = true;
300 }
301
302 if (VBases.empty())
303 return;
304
305 // Create base specifier for any direct or indirect virtual bases.
306 data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
307 data().NumVBases = VBases.size();
308 for (int I = 0, E = VBases.size(); I != E; ++I)
309 data().getVBases()[I] = *VBases[I];
310 }
311
312 /// Callback function for CXXRecordDecl::forallBases that acknowledges
313 /// that it saw a base class.
SawBase(const CXXRecordDecl *,void *)314 static bool SawBase(const CXXRecordDecl *, void *) {
315 return true;
316 }
317
hasAnyDependentBases() const318 bool CXXRecordDecl::hasAnyDependentBases() const {
319 if (!isDependentContext())
320 return false;
321
322 return !forallBases(SawBase, 0);
323 }
324
hasConstCopyConstructor() const325 bool CXXRecordDecl::hasConstCopyConstructor() const {
326 return getCopyConstructor(Qualifiers::Const) != 0;
327 }
328
isTriviallyCopyable() const329 bool CXXRecordDecl::isTriviallyCopyable() const {
330 // C++0x [class]p5:
331 // A trivially copyable class is a class that:
332 // -- has no non-trivial copy constructors,
333 if (!hasTrivialCopyConstructor()) return false;
334 // -- has no non-trivial move constructors,
335 if (!hasTrivialMoveConstructor()) return false;
336 // -- has no non-trivial copy assignment operators,
337 if (!hasTrivialCopyAssignment()) return false;
338 // -- has no non-trivial move assignment operators, and
339 if (!hasTrivialMoveAssignment()) return false;
340 // -- has a trivial destructor.
341 if (!hasTrivialDestructor()) return false;
342
343 return true;
344 }
345
346 /// \brief Perform a simplistic form of overload resolution that only considers
347 /// cv-qualifiers on a single parameter, and return the best overload candidate
348 /// (if there is one).
349 static CXXMethodDecl *
GetBestOverloadCandidateSimple(const SmallVectorImpl<std::pair<CXXMethodDecl *,Qualifiers>> & Cands)350 GetBestOverloadCandidateSimple(
351 const SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
352 if (Cands.empty())
353 return 0;
354 if (Cands.size() == 1)
355 return Cands[0].first;
356
357 unsigned Best = 0, N = Cands.size();
358 for (unsigned I = 1; I != N; ++I)
359 if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
360 Best = I;
361
362 for (unsigned I = 1; I != N; ++I)
363 if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
364 return 0;
365
366 return Cands[Best].first;
367 }
368
getCopyConstructor(unsigned TypeQuals) const369 CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{
370 ASTContext &Context = getASTContext();
371 QualType ClassType
372 = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
373 DeclarationName ConstructorName
374 = Context.DeclarationNames.getCXXConstructorName(
375 Context.getCanonicalType(ClassType));
376 unsigned FoundTQs;
377 SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
378 DeclContext::lookup_const_iterator Con, ConEnd;
379 for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
380 Con != ConEnd; ++Con) {
381 // C++ [class.copy]p2:
382 // A non-template constructor for class X is a copy constructor if [...]
383 if (isa<FunctionTemplateDecl>(*Con))
384 continue;
385
386 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
387 if (Constructor->isCopyConstructor(FoundTQs)) {
388 if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
389 (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
390 Found.push_back(std::make_pair(
391 const_cast<CXXConstructorDecl *>(Constructor),
392 Qualifiers::fromCVRMask(FoundTQs)));
393 }
394 }
395
396 return cast_or_null<CXXConstructorDecl>(
397 GetBestOverloadCandidateSimple(Found));
398 }
399
getMoveConstructor() const400 CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const {
401 for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I)
402 if (I->isMoveConstructor())
403 return *I;
404
405 return 0;
406 }
407
getCopyAssignmentOperator(bool ArgIsConst) const408 CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
409 ASTContext &Context = getASTContext();
410 QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
411 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
412
413 SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
414 DeclContext::lookup_const_iterator Op, OpEnd;
415 for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
416 // C++ [class.copy]p9:
417 // A user-declared copy assignment operator is a non-static non-template
418 // member function of class X with exactly one parameter of type X, X&,
419 // const X&, volatile X& or const volatile X&.
420 const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
421 if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
422 continue;
423
424 const FunctionProtoType *FnType
425 = Method->getType()->getAs<FunctionProtoType>();
426 assert(FnType && "Overloaded operator has no prototype.");
427 // Don't assert on this; an invalid decl might have been left in the AST.
428 if (FnType->getNumArgs() != 1 || FnType->isVariadic())
429 continue;
430
431 QualType ArgType = FnType->getArgType(0);
432 Qualifiers Quals;
433 if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
434 ArgType = Ref->getPointeeType();
435 // If we have a const argument and we have a reference to a non-const,
436 // this function does not match.
437 if (ArgIsConst && !ArgType.isConstQualified())
438 continue;
439
440 Quals = ArgType.getQualifiers();
441 } else {
442 // By-value copy-assignment operators are treated like const X&
443 // copy-assignment operators.
444 Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
445 }
446
447 if (!Context.hasSameUnqualifiedType(ArgType, Class))
448 continue;
449
450 // Save this copy-assignment operator. It might be "the one".
451 Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
452 }
453
454 // Use a simplistic form of overload resolution to find the candidate.
455 return GetBestOverloadCandidateSimple(Found);
456 }
457
getMoveAssignmentOperator() const458 CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const {
459 for (method_iterator I = method_begin(), E = method_end(); I != E; ++I)
460 if (I->isMoveAssignmentOperator())
461 return *I;
462
463 return 0;
464 }
465
markedVirtualFunctionPure()466 void CXXRecordDecl::markedVirtualFunctionPure() {
467 // C++ [class.abstract]p2:
468 // A class is abstract if it has at least one pure virtual function.
469 data().Abstract = true;
470 }
471
addedMember(Decl * D)472 void CXXRecordDecl::addedMember(Decl *D) {
473 if (!D->isImplicit() &&
474 !isa<FieldDecl>(D) &&
475 !isa<IndirectFieldDecl>(D) &&
476 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class))
477 data().HasOnlyCMembers = false;
478
479 // Ignore friends and invalid declarations.
480 if (D->getFriendObjectKind() || D->isInvalidDecl())
481 return;
482
483 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
484 if (FunTmpl)
485 D = FunTmpl->getTemplatedDecl();
486
487 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
488 if (Method->isVirtual()) {
489 // C++ [dcl.init.aggr]p1:
490 // An aggregate is an array or a class with [...] no virtual functions.
491 data().Aggregate = false;
492
493 // C++ [class]p4:
494 // A POD-struct is an aggregate class...
495 data().PlainOldData = false;
496
497 // Virtual functions make the class non-empty.
498 // FIXME: Standard ref?
499 data().Empty = false;
500
501 // C++ [class.virtual]p1:
502 // A class that declares or inherits a virtual function is called a
503 // polymorphic class.
504 data().Polymorphic = true;
505
506 // C++0x [class.ctor]p5
507 // A default constructor is trivial [...] if:
508 // -- its class has no virtual functions [...]
509 data().HasTrivialDefaultConstructor = false;
510
511 // C++0x [class.copy]p13:
512 // A copy/move constructor for class X is trivial if [...]
513 // -- class X has no virtual functions [...]
514 data().HasTrivialCopyConstructor = false;
515 data().HasTrivialMoveConstructor = false;
516
517 // C++0x [class.copy]p27:
518 // A copy/move assignment operator for class X is trivial if [...]
519 // -- class X has no virtual functions [...]
520 data().HasTrivialCopyAssignment = false;
521 data().HasTrivialMoveAssignment = false;
522
523 // C++0x [class]p7:
524 // A standard-layout class is a class that: [...]
525 // -- has no virtual functions
526 data().IsStandardLayout = false;
527 }
528 }
529
530 if (D->isImplicit()) {
531 // Notify that an implicit member was added after the definition
532 // was completed.
533 if (!isBeingDefined())
534 if (ASTMutationListener *L = getASTMutationListener())
535 L->AddedCXXImplicitMember(data().Definition, D);
536
537 // If this is a special member function, note that it was added and then
538 // return early.
539 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
540 if (Constructor->isDefaultConstructor()) {
541 data().DeclaredDefaultConstructor = true;
542 if (Constructor->isConstexpr()) {
543 data().HasConstexprDefaultConstructor = true;
544 data().HasConstexprNonCopyMoveConstructor = true;
545 }
546 } else if (Constructor->isCopyConstructor()) {
547 data().DeclaredCopyConstructor = true;
548 if (Constructor->isConstexpr())
549 data().HasConstexprCopyConstructor = true;
550 } else if (Constructor->isMoveConstructor()) {
551 data().DeclaredMoveConstructor = true;
552 if (Constructor->isConstexpr())
553 data().HasConstexprMoveConstructor = true;
554 } else
555 goto NotASpecialMember;
556 return;
557 } else if (isa<CXXDestructorDecl>(D)) {
558 data().DeclaredDestructor = true;
559 return;
560 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
561 if (Method->isCopyAssignmentOperator())
562 data().DeclaredCopyAssignment = true;
563 else if (Method->isMoveAssignmentOperator())
564 data().DeclaredMoveAssignment = true;
565 else
566 goto NotASpecialMember;
567 return;
568 }
569
570 NotASpecialMember:;
571 // Any other implicit declarations are handled like normal declarations.
572 }
573
574 // Handle (user-declared) constructors.
575 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
576 // Note that we have a user-declared constructor.
577 data().UserDeclaredConstructor = true;
578
579 // Technically, "user-provided" is only defined for special member
580 // functions, but the intent of the standard is clearly that it should apply
581 // to all functions.
582 bool UserProvided = Constructor->isUserProvided();
583
584 if (Constructor->isDefaultConstructor()) {
585 data().DeclaredDefaultConstructor = true;
586 if (UserProvided) {
587 // C++0x [class.ctor]p5:
588 // A default constructor is trivial if it is not user-provided [...]
589 data().HasTrivialDefaultConstructor = false;
590 data().UserProvidedDefaultConstructor = true;
591 }
592 if (Constructor->isConstexpr()) {
593 data().HasConstexprDefaultConstructor = true;
594 data().HasConstexprNonCopyMoveConstructor = true;
595 }
596 }
597
598 // Note when we have a user-declared copy or move constructor, which will
599 // suppress the implicit declaration of those constructors.
600 if (!FunTmpl) {
601 if (Constructor->isCopyConstructor()) {
602 data().UserDeclaredCopyConstructor = true;
603 data().DeclaredCopyConstructor = true;
604
605 // C++0x [class.copy]p13:
606 // A copy/move constructor for class X is trivial if it is not
607 // user-provided [...]
608 if (UserProvided)
609 data().HasTrivialCopyConstructor = false;
610
611 if (Constructor->isConstexpr())
612 data().HasConstexprCopyConstructor = true;
613 } else if (Constructor->isMoveConstructor()) {
614 data().UserDeclaredMoveConstructor = true;
615 data().DeclaredMoveConstructor = true;
616
617 // C++0x [class.copy]p13:
618 // A copy/move constructor for class X is trivial if it is not
619 // user-provided [...]
620 if (UserProvided)
621 data().HasTrivialMoveConstructor = false;
622
623 if (Constructor->isConstexpr())
624 data().HasConstexprMoveConstructor = true;
625 }
626 }
627 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) {
628 // Record if we see any constexpr constructors which are neither copy
629 // nor move constructors.
630 data().HasConstexprNonCopyMoveConstructor = true;
631 }
632
633 // C++ [dcl.init.aggr]p1:
634 // An aggregate is an array or a class with no user-declared
635 // constructors [...].
636 // C++0x [dcl.init.aggr]p1:
637 // An aggregate is an array or a class with no user-provided
638 // constructors [...].
639 if (!getASTContext().getLangOpts().CPlusPlus0x || UserProvided)
640 data().Aggregate = false;
641
642 // C++ [class]p4:
643 // A POD-struct is an aggregate class [...]
644 // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
645 // type is technically an aggregate in C++0x since it wouldn't be in 03.
646 data().PlainOldData = false;
647
648 return;
649 }
650
651 // Handle (user-declared) destructors.
652 if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
653 data().DeclaredDestructor = true;
654 data().UserDeclaredDestructor = true;
655 data().HasIrrelevantDestructor = false;
656
657 // C++ [class]p4:
658 // A POD-struct is an aggregate class that has [...] no user-defined
659 // destructor.
660 // This bit is the C++03 POD bit, not the 0x one.
661 data().PlainOldData = false;
662
663 // C++11 [class.dtor]p5:
664 // A destructor is trivial if it is not user-provided and if
665 // -- the destructor is not virtual.
666 if (DD->isUserProvided() || DD->isVirtual()) {
667 data().HasTrivialDestructor = false;
668 // C++11 [dcl.constexpr]p1:
669 // The constexpr specifier shall be applied only to [...] the
670 // declaration of a static data member of a literal type.
671 // C++11 [basic.types]p10:
672 // A type is a literal type if it is [...] a class type that [...] has
673 // a trivial destructor.
674 data().DefaultedDefaultConstructorIsConstexpr = false;
675 data().DefaultedCopyConstructorIsConstexpr = false;
676 data().DefaultedMoveConstructorIsConstexpr = false;
677 }
678
679 return;
680 }
681
682 // Handle (user-declared) member functions.
683 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
684 if (Method->isCopyAssignmentOperator()) {
685 // C++ [class]p4:
686 // A POD-struct is an aggregate class that [...] has no user-defined
687 // copy assignment operator [...].
688 // This is the C++03 bit only.
689 data().PlainOldData = false;
690
691 // This is a copy assignment operator.
692
693 // Suppress the implicit declaration of a copy constructor.
694 data().UserDeclaredCopyAssignment = true;
695 data().DeclaredCopyAssignment = true;
696
697 // C++0x [class.copy]p27:
698 // A copy/move assignment operator for class X is trivial if it is
699 // neither user-provided nor deleted [...]
700 if (Method->isUserProvided())
701 data().HasTrivialCopyAssignment = false;
702
703 return;
704 }
705
706 if (Method->isMoveAssignmentOperator()) {
707 // This is an extension in C++03 mode, but we'll keep consistency by
708 // taking a move assignment operator to induce non-POD-ness
709 data().PlainOldData = false;
710
711 // This is a move assignment operator.
712 data().UserDeclaredMoveAssignment = true;
713 data().DeclaredMoveAssignment = true;
714
715 // C++0x [class.copy]p27:
716 // A copy/move assignment operator for class X is trivial if it is
717 // neither user-provided nor deleted [...]
718 if (Method->isUserProvided())
719 data().HasTrivialMoveAssignment = false;
720 }
721
722 // Keep the list of conversion functions up-to-date.
723 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
724 // We don't record specializations.
725 if (Conversion->getPrimaryTemplate())
726 return;
727
728 // FIXME: We intentionally don't use the decl's access here because it
729 // hasn't been set yet. That's really just a misdesign in Sema.
730
731 if (FunTmpl) {
732 if (FunTmpl->getPreviousDecl())
733 data().Conversions.replace(FunTmpl->getPreviousDecl(),
734 FunTmpl);
735 else
736 data().Conversions.addDecl(FunTmpl);
737 } else {
738 if (Conversion->getPreviousDecl())
739 data().Conversions.replace(Conversion->getPreviousDecl(),
740 Conversion);
741 else
742 data().Conversions.addDecl(Conversion);
743 }
744 }
745
746 return;
747 }
748
749 // Handle non-static data members.
750 if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
751 // C++ [class.bit]p2:
752 // A declaration for a bit-field that omits the identifier declares an
753 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
754 // initialized.
755 if (Field->isUnnamedBitfield())
756 return;
757
758 // C++ [dcl.init.aggr]p1:
759 // An aggregate is an array or a class (clause 9) with [...] no
760 // private or protected non-static data members (clause 11).
761 //
762 // A POD must be an aggregate.
763 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
764 data().Aggregate = false;
765 data().PlainOldData = false;
766 }
767
768 // C++0x [class]p7:
769 // A standard-layout class is a class that:
770 // [...]
771 // -- has the same access control for all non-static data members,
772 switch (D->getAccess()) {
773 case AS_private: data().HasPrivateFields = true; break;
774 case AS_protected: data().HasProtectedFields = true; break;
775 case AS_public: data().HasPublicFields = true; break;
776 case AS_none: llvm_unreachable("Invalid access specifier");
777 };
778 if ((data().HasPrivateFields + data().HasProtectedFields +
779 data().HasPublicFields) > 1)
780 data().IsStandardLayout = false;
781
782 // Keep track of the presence of mutable fields.
783 if (Field->isMutable())
784 data().HasMutableFields = true;
785
786 // C++0x [class]p9:
787 // A POD struct is a class that is both a trivial class and a
788 // standard-layout class, and has no non-static data members of type
789 // non-POD struct, non-POD union (or array of such types).
790 //
791 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
792 // that does not explicitly have no lifetime makes the class a non-POD.
793 // However, we delay setting PlainOldData to false in this case so that
794 // Sema has a chance to diagnostic causes where the same class will be
795 // non-POD with Automatic Reference Counting but a POD without Instant Objects.
796 // In this case, the class will become a non-POD class when we complete
797 // the definition.
798 ASTContext &Context = getASTContext();
799 QualType T = Context.getBaseElementType(Field->getType());
800 if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
801 if (!Context.getLangOpts().ObjCAutoRefCount ||
802 T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
803 setHasObjectMember(true);
804 } else if (!T.isPODType(Context))
805 data().PlainOldData = false;
806
807 if (T->isReferenceType()) {
808 data().HasTrivialDefaultConstructor = false;
809
810 // C++0x [class]p7:
811 // A standard-layout class is a class that:
812 // -- has no non-static data members of type [...] reference,
813 data().IsStandardLayout = false;
814 }
815
816 // Record if this field is the first non-literal or volatile field or base.
817 if (!T->isLiteralType() || T.isVolatileQualified())
818 data().HasNonLiteralTypeFieldsOrBases = true;
819
820 if (Field->hasInClassInitializer()) {
821 // C++0x [class]p5:
822 // A default constructor is trivial if [...] no non-static data member
823 // of its class has a brace-or-equal-initializer.
824 data().HasTrivialDefaultConstructor = false;
825
826 // C++0x [dcl.init.aggr]p1:
827 // An aggregate is a [...] class with [...] no
828 // brace-or-equal-initializers for non-static data members.
829 data().Aggregate = false;
830
831 // C++0x [class]p10:
832 // A POD struct is [...] a trivial class.
833 data().PlainOldData = false;
834 }
835
836 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
837 CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
838 if (FieldRec->getDefinition()) {
839 // C++0x [class.ctor]p5:
840 // A default constructor is trivial [...] if:
841 // -- for all the non-static data members of its class that are of
842 // class type (or array thereof), each such class has a trivial
843 // default constructor.
844 if (!FieldRec->hasTrivialDefaultConstructor())
845 data().HasTrivialDefaultConstructor = false;
846
847 // C++0x [class.copy]p13:
848 // A copy/move constructor for class X is trivial if [...]
849 // [...]
850 // -- for each non-static data member of X that is of class type (or
851 // an array thereof), the constructor selected to copy/move that
852 // member is trivial;
853 // FIXME: C++0x: We don't correctly model 'selected' constructors.
854 if (!FieldRec->hasTrivialCopyConstructor())
855 data().HasTrivialCopyConstructor = false;
856 if (!FieldRec->hasTrivialMoveConstructor())
857 data().HasTrivialMoveConstructor = false;
858
859 // C++0x [class.copy]p27:
860 // A copy/move assignment operator for class X is trivial if [...]
861 // [...]
862 // -- for each non-static data member of X that is of class type (or
863 // an array thereof), the assignment operator selected to
864 // copy/move that member is trivial;
865 // FIXME: C++0x: We don't correctly model 'selected' operators.
866 if (!FieldRec->hasTrivialCopyAssignment())
867 data().HasTrivialCopyAssignment = false;
868 if (!FieldRec->hasTrivialMoveAssignment())
869 data().HasTrivialMoveAssignment = false;
870
871 if (!FieldRec->hasTrivialDestructor())
872 data().HasTrivialDestructor = false;
873 if (!FieldRec->hasIrrelevantDestructor())
874 data().HasIrrelevantDestructor = false;
875 if (FieldRec->hasObjectMember())
876 setHasObjectMember(true);
877
878 // C++0x [class]p7:
879 // A standard-layout class is a class that:
880 // -- has no non-static data members of type non-standard-layout
881 // class (or array of such types) [...]
882 if (!FieldRec->isStandardLayout())
883 data().IsStandardLayout = false;
884
885 // C++0x [class]p7:
886 // A standard-layout class is a class that:
887 // [...]
888 // -- has no base classes of the same type as the first non-static
889 // data member.
890 // We don't want to expend bits in the state of the record decl
891 // tracking whether this is the first non-static data member so we
892 // cheat a bit and use some of the existing state: the empty bit.
893 // Virtual bases and virtual methods make a class non-empty, but they
894 // also make it non-standard-layout so we needn't check here.
895 // A non-empty base class may leave the class standard-layout, but not
896 // if we have arrived here, and have at least on non-static data
897 // member. If IsStandardLayout remains true, then the first non-static
898 // data member must come through here with Empty still true, and Empty
899 // will subsequently be set to false below.
900 if (data().IsStandardLayout && data().Empty) {
901 for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
902 BE = bases_end();
903 BI != BE; ++BI) {
904 if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
905 data().IsStandardLayout = false;
906 break;
907 }
908 }
909 }
910
911 // Keep track of the presence of mutable fields.
912 if (FieldRec->hasMutableFields())
913 data().HasMutableFields = true;
914
915 // C++11 [class.copy]p13:
916 // If the implicitly-defined constructor would satisfy the
917 // requirements of a constexpr constructor, the implicitly-defined
918 // constructor is constexpr.
919 // C++11 [dcl.constexpr]p4:
920 // -- every constructor involved in initializing non-static data
921 // members [...] shall be a constexpr constructor
922 if (!Field->hasInClassInitializer() &&
923 !FieldRec->hasConstexprDefaultConstructor())
924 // The standard requires any in-class initializer to be a constant
925 // expression. We consider this to be a defect.
926 data().DefaultedDefaultConstructorIsConstexpr = false;
927
928 if (!FieldRec->hasConstexprCopyConstructor())
929 data().DefaultedCopyConstructorIsConstexpr = false;
930
931 if (FieldRec->hasDeclaredMoveConstructor() ||
932 FieldRec->needsImplicitMoveConstructor())
933 // FIXME: If the implicit move constructor generated for the member's
934 // class would be ill-formed, the implicit move constructor generated
935 // for this class calls the member's copy constructor.
936 data().DefaultedMoveConstructorIsConstexpr &=
937 FieldRec->hasConstexprMoveConstructor();
938 else if (!FieldRec->hasConstexprCopyConstructor())
939 data().DefaultedMoveConstructorIsConstexpr = false;
940 }
941 } else {
942 // Base element type of field is a non-class type.
943 if (!T->isLiteralType()) {
944 data().DefaultedDefaultConstructorIsConstexpr = false;
945 data().DefaultedCopyConstructorIsConstexpr = false;
946 data().DefaultedMoveConstructorIsConstexpr = false;
947 } else if (!Field->hasInClassInitializer())
948 data().DefaultedDefaultConstructorIsConstexpr = false;
949 }
950
951 // C++0x [class]p7:
952 // A standard-layout class is a class that:
953 // [...]
954 // -- either has no non-static data members in the most derived
955 // class and at most one base class with non-static data members,
956 // or has no base classes with non-static data members, and
957 // At this point we know that we have a non-static data member, so the last
958 // clause holds.
959 if (!data().HasNoNonEmptyBases)
960 data().IsStandardLayout = false;
961
962 // If this is not a zero-length bit-field, then the class is not empty.
963 if (data().Empty) {
964 if (!Field->isBitField() ||
965 (!Field->getBitWidth()->isTypeDependent() &&
966 !Field->getBitWidth()->isValueDependent() &&
967 Field->getBitWidthValue(Context) != 0))
968 data().Empty = false;
969 }
970 }
971
972 // Handle using declarations of conversion functions.
973 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
974 if (Shadow->getDeclName().getNameKind()
975 == DeclarationName::CXXConversionFunctionName)
976 data().Conversions.addDecl(Shadow, Shadow->getAccess());
977 }
978
isCLike() const979 bool CXXRecordDecl::isCLike() const {
980 if (getTagKind() == TTK_Class || !TemplateOrInstantiation.isNull())
981 return false;
982 if (!hasDefinition())
983 return true;
984
985 return isPOD() && data().HasOnlyCMembers;
986 }
987
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const988 void CXXRecordDecl::getCaptureFields(
989 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
990 FieldDecl *&ThisCapture) const {
991 Captures.clear();
992 ThisCapture = 0;
993
994 LambdaDefinitionData &Lambda = getLambdaData();
995 RecordDecl::field_iterator Field = field_begin();
996 for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
997 C != CEnd; ++C, ++Field) {
998 if (C->capturesThis()) {
999 ThisCapture = *Field;
1000 continue;
1001 }
1002
1003 Captures[C->getCapturedVar()] = *Field;
1004 }
1005 }
1006
1007
GetConversionType(ASTContext & Context,NamedDecl * Conv)1008 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1009 QualType T;
1010 if (isa<UsingShadowDecl>(Conv))
1011 Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
1012 if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
1013 T = ConvTemp->getTemplatedDecl()->getResultType();
1014 else
1015 T = cast<CXXConversionDecl>(Conv)->getConversionType();
1016 return Context.getCanonicalType(T);
1017 }
1018
1019 /// Collect the visible conversions of a base class.
1020 ///
1021 /// \param Base a base class of the class we're considering
1022 /// \param InVirtual whether this base class is a virtual base (or a base
1023 /// of a virtual base)
1024 /// \param Access the access along the inheritance path to this base
1025 /// \param ParentHiddenTypes the conversions provided by the inheritors
1026 /// of this base
1027 /// \param Output the set to which to add conversions from non-virtual bases
1028 /// \param VOutput the set to which to add conversions from virtual bases
1029 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1030 /// virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,UnresolvedSetImpl & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1031 static void CollectVisibleConversions(ASTContext &Context,
1032 CXXRecordDecl *Record,
1033 bool InVirtual,
1034 AccessSpecifier Access,
1035 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1036 UnresolvedSetImpl &Output,
1037 UnresolvedSetImpl &VOutput,
1038 llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1039 // The set of types which have conversions in this class or its
1040 // subclasses. As an optimization, we don't copy the derived set
1041 // unless it might change.
1042 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1043 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1044
1045 // Collect the direct conversions and figure out which conversions
1046 // will be hidden in the subclasses.
1047 UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
1048 if (!Cs.empty()) {
1049 HiddenTypesBuffer = ParentHiddenTypes;
1050 HiddenTypes = &HiddenTypesBuffer;
1051
1052 for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1053 bool Hidden =
1054 !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
1055
1056 // If this conversion is hidden and we're in a virtual base,
1057 // remember that it's hidden along some inheritance path.
1058 if (Hidden && InVirtual)
1059 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1060
1061 // If this conversion isn't hidden, add it to the appropriate output.
1062 else if (!Hidden) {
1063 AccessSpecifier IAccess
1064 = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1065
1066 if (InVirtual)
1067 VOutput.addDecl(I.getDecl(), IAccess);
1068 else
1069 Output.addDecl(I.getDecl(), IAccess);
1070 }
1071 }
1072 }
1073
1074 // Collect information recursively from any base classes.
1075 for (CXXRecordDecl::base_class_iterator
1076 I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
1077 const RecordType *RT = I->getType()->getAs<RecordType>();
1078 if (!RT) continue;
1079
1080 AccessSpecifier BaseAccess
1081 = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
1082 bool BaseInVirtual = InVirtual || I->isVirtual();
1083
1084 CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1085 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1086 *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1087 }
1088 }
1089
1090 /// Collect the visible conversions of a class.
1091 ///
1092 /// This would be extremely straightforward if it weren't for virtual
1093 /// bases. It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,UnresolvedSetImpl & Output)1094 static void CollectVisibleConversions(ASTContext &Context,
1095 CXXRecordDecl *Record,
1096 UnresolvedSetImpl &Output) {
1097 // The collection of all conversions in virtual bases that we've
1098 // found. These will be added to the output as long as they don't
1099 // appear in the hidden-conversions set.
1100 UnresolvedSet<8> VBaseCs;
1101
1102 // The set of conversions in virtual bases that we've determined to
1103 // be hidden.
1104 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1105
1106 // The set of types hidden by classes derived from this one.
1107 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1108
1109 // Go ahead and collect the direct conversions and add them to the
1110 // hidden-types set.
1111 UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
1112 Output.append(Cs.begin(), Cs.end());
1113 for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
1114 HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
1115
1116 // Recursively collect conversions from base classes.
1117 for (CXXRecordDecl::base_class_iterator
1118 I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
1119 const RecordType *RT = I->getType()->getAs<RecordType>();
1120 if (!RT) continue;
1121
1122 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1123 I->isVirtual(), I->getAccessSpecifier(),
1124 HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1125 }
1126
1127 // Add any unhidden conversions provided by virtual bases.
1128 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1129 I != E; ++I) {
1130 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1131 Output.addDecl(I.getDecl(), I.getAccess());
1132 }
1133 }
1134
1135 /// getVisibleConversionFunctions - get all conversion functions visible
1136 /// in current class; including conversion function templates.
getVisibleConversionFunctions()1137 const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
1138 // If root class, all conversions are visible.
1139 if (bases_begin() == bases_end())
1140 return &data().Conversions;
1141 // If visible conversion list is already evaluated, return it.
1142 if (data().ComputedVisibleConversions)
1143 return &data().VisibleConversions;
1144 CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
1145 data().ComputedVisibleConversions = true;
1146 return &data().VisibleConversions;
1147 }
1148
removeConversion(const NamedDecl * ConvDecl)1149 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1150 // This operation is O(N) but extremely rare. Sema only uses it to
1151 // remove UsingShadowDecls in a class that were followed by a direct
1152 // declaration, e.g.:
1153 // class A : B {
1154 // using B::operator int;
1155 // operator int();
1156 // };
1157 // This is uncommon by itself and even more uncommon in conjunction
1158 // with sufficiently large numbers of directly-declared conversions
1159 // that asymptotic behavior matters.
1160
1161 UnresolvedSetImpl &Convs = *getConversionFunctions();
1162 for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1163 if (Convs[I].getDecl() == ConvDecl) {
1164 Convs.erase(I);
1165 assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1166 && "conversion was found multiple times in unresolved set");
1167 return;
1168 }
1169 }
1170
1171 llvm_unreachable("conversion not found in set!");
1172 }
1173
getInstantiatedFromMemberClass() const1174 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1175 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1176 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1177
1178 return 0;
1179 }
1180
getMemberSpecializationInfo() const1181 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1182 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1183 }
1184
1185 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1186 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1187 TemplateSpecializationKind TSK) {
1188 assert(TemplateOrInstantiation.isNull() &&
1189 "Previous template or instantiation?");
1190 assert(!isa<ClassTemplateSpecializationDecl>(this));
1191 TemplateOrInstantiation
1192 = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1193 }
1194
getTemplateSpecializationKind() const1195 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1196 if (const ClassTemplateSpecializationDecl *Spec
1197 = dyn_cast<ClassTemplateSpecializationDecl>(this))
1198 return Spec->getSpecializationKind();
1199
1200 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1201 return MSInfo->getTemplateSpecializationKind();
1202
1203 return TSK_Undeclared;
1204 }
1205
1206 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1207 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1208 if (ClassTemplateSpecializationDecl *Spec
1209 = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1210 Spec->setSpecializationKind(TSK);
1211 return;
1212 }
1213
1214 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1215 MSInfo->setTemplateSpecializationKind(TSK);
1216 return;
1217 }
1218
1219 llvm_unreachable("Not a class template or member class specialization");
1220 }
1221
getDestructor() const1222 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1223 ASTContext &Context = getASTContext();
1224 QualType ClassType = Context.getTypeDeclType(this);
1225
1226 DeclarationName Name
1227 = Context.DeclarationNames.getCXXDestructorName(
1228 Context.getCanonicalType(ClassType));
1229
1230 DeclContext::lookup_const_iterator I, E;
1231 llvm::tie(I, E) = lookup(Name);
1232 if (I == E)
1233 return 0;
1234
1235 CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
1236 return Dtor;
1237 }
1238
completeDefinition()1239 void CXXRecordDecl::completeDefinition() {
1240 completeDefinition(0);
1241 }
1242
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1243 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1244 RecordDecl::completeDefinition();
1245
1246 if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
1247 // Objective-C Automatic Reference Counting:
1248 // If a class has a non-static data member of Objective-C pointer
1249 // type (or array thereof), it is a non-POD type and its
1250 // default constructor (if any), copy constructor, copy assignment
1251 // operator, and destructor are non-trivial.
1252 struct DefinitionData &Data = data();
1253 Data.PlainOldData = false;
1254 Data.HasTrivialDefaultConstructor = false;
1255 Data.HasTrivialCopyConstructor = false;
1256 Data.HasTrivialCopyAssignment = false;
1257 Data.HasTrivialDestructor = false;
1258 Data.HasIrrelevantDestructor = false;
1259 }
1260
1261 // If the class may be abstract (but hasn't been marked as such), check for
1262 // any pure final overriders.
1263 if (mayBeAbstract()) {
1264 CXXFinalOverriderMap MyFinalOverriders;
1265 if (!FinalOverriders) {
1266 getFinalOverriders(MyFinalOverriders);
1267 FinalOverriders = &MyFinalOverriders;
1268 }
1269
1270 bool Done = false;
1271 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1272 MEnd = FinalOverriders->end();
1273 M != MEnd && !Done; ++M) {
1274 for (OverridingMethods::iterator SO = M->second.begin(),
1275 SOEnd = M->second.end();
1276 SO != SOEnd && !Done; ++SO) {
1277 assert(SO->second.size() > 0 &&
1278 "All virtual functions have overridding virtual functions");
1279
1280 // C++ [class.abstract]p4:
1281 // A class is abstract if it contains or inherits at least one
1282 // pure virtual function for which the final overrider is pure
1283 // virtual.
1284 if (SO->second.front().Method->isPure()) {
1285 data().Abstract = true;
1286 Done = true;
1287 break;
1288 }
1289 }
1290 }
1291 }
1292
1293 // Set access bits correctly on the directly-declared conversions.
1294 for (UnresolvedSetIterator I = data().Conversions.begin(),
1295 E = data().Conversions.end();
1296 I != E; ++I)
1297 data().Conversions.setAccess(I, (*I)->getAccess());
1298 }
1299
mayBeAbstract() const1300 bool CXXRecordDecl::mayBeAbstract() const {
1301 if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1302 isDependentContext())
1303 return false;
1304
1305 for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
1306 BEnd = bases_end();
1307 B != BEnd; ++B) {
1308 CXXRecordDecl *BaseDecl
1309 = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
1310 if (BaseDecl->isAbstract())
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
anchor()1317 void CXXMethodDecl::anchor() { }
1318
1319 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isStatic,StorageClass SCAsWritten,bool isInline,bool isConstexpr,SourceLocation EndLocation)1320 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1321 SourceLocation StartLoc,
1322 const DeclarationNameInfo &NameInfo,
1323 QualType T, TypeSourceInfo *TInfo,
1324 bool isStatic, StorageClass SCAsWritten, bool isInline,
1325 bool isConstexpr, SourceLocation EndLocation) {
1326 return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
1327 isStatic, SCAsWritten, isInline, isConstexpr,
1328 EndLocation);
1329 }
1330
CreateDeserialized(ASTContext & C,unsigned ID)1331 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1332 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
1333 return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(),
1334 DeclarationNameInfo(), QualType(),
1335 0, false, SC_None, false, false,
1336 SourceLocation());
1337 }
1338
isUsualDeallocationFunction() const1339 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1340 if (getOverloadedOperator() != OO_Delete &&
1341 getOverloadedOperator() != OO_Array_Delete)
1342 return false;
1343
1344 // C++ [basic.stc.dynamic.deallocation]p2:
1345 // A template instance is never a usual deallocation function,
1346 // regardless of its signature.
1347 if (getPrimaryTemplate())
1348 return false;
1349
1350 // C++ [basic.stc.dynamic.deallocation]p2:
1351 // If a class T has a member deallocation function named operator delete
1352 // with exactly one parameter, then that function is a usual (non-placement)
1353 // deallocation function. [...]
1354 if (getNumParams() == 1)
1355 return true;
1356
1357 // C++ [basic.stc.dynamic.deallocation]p2:
1358 // [...] If class T does not declare such an operator delete but does
1359 // declare a member deallocation function named operator delete with
1360 // exactly two parameters, the second of which has type std::size_t (18.1),
1361 // then this function is a usual deallocation function.
1362 ASTContext &Context = getASTContext();
1363 if (getNumParams() != 2 ||
1364 !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1365 Context.getSizeType()))
1366 return false;
1367
1368 // This function is a usual deallocation function if there are no
1369 // single-parameter deallocation functions of the same kind.
1370 for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
1371 R.first != R.second; ++R.first) {
1372 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
1373 if (FD->getNumParams() == 1)
1374 return false;
1375 }
1376
1377 return true;
1378 }
1379
isCopyAssignmentOperator() const1380 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1381 // C++0x [class.copy]p17:
1382 // A user-declared copy assignment operator X::operator= is a non-static
1383 // non-template member function of class X with exactly one parameter of
1384 // type X, X&, const X&, volatile X& or const volatile X&.
1385 if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1386 /*non-static*/ isStatic() ||
1387 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate())
1388 return false;
1389
1390 QualType ParamType = getParamDecl(0)->getType();
1391 if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1392 ParamType = Ref->getPointeeType();
1393
1394 ASTContext &Context = getASTContext();
1395 QualType ClassType
1396 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1397 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1398 }
1399
isMoveAssignmentOperator() const1400 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1401 // C++0x [class.copy]p19:
1402 // A user-declared move assignment operator X::operator= is a non-static
1403 // non-template member function of class X with exactly one parameter of type
1404 // X&&, const X&&, volatile X&&, or const volatile X&&.
1405 if (getOverloadedOperator() != OO_Equal || isStatic() ||
1406 getPrimaryTemplate() || getDescribedFunctionTemplate())
1407 return false;
1408
1409 QualType ParamType = getParamDecl(0)->getType();
1410 if (!isa<RValueReferenceType>(ParamType))
1411 return false;
1412 ParamType = ParamType->getPointeeType();
1413
1414 ASTContext &Context = getASTContext();
1415 QualType ClassType
1416 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1417 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1418 }
1419
addOverriddenMethod(const CXXMethodDecl * MD)1420 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1421 assert(MD->isCanonicalDecl() && "Method is not canonical!");
1422 assert(!MD->getParent()->isDependentContext() &&
1423 "Can't add an overridden method to a class template!");
1424 assert(MD->isVirtual() && "Method is not virtual!");
1425
1426 getASTContext().addOverriddenMethod(this, MD);
1427 }
1428
begin_overridden_methods() const1429 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1430 if (isa<CXXConstructorDecl>(this)) return 0;
1431 return getASTContext().overridden_methods_begin(this);
1432 }
1433
end_overridden_methods() const1434 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1435 if (isa<CXXConstructorDecl>(this)) return 0;
1436 return getASTContext().overridden_methods_end(this);
1437 }
1438
size_overridden_methods() const1439 unsigned CXXMethodDecl::size_overridden_methods() const {
1440 if (isa<CXXConstructorDecl>(this)) return 0;
1441 return getASTContext().overridden_methods_size(this);
1442 }
1443
getThisType(ASTContext & C) const1444 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1445 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1446 // If the member function is declared const, the type of this is const X*,
1447 // if the member function is declared volatile, the type of this is
1448 // volatile X*, and if the member function is declared const volatile,
1449 // the type of this is const volatile X*.
1450
1451 assert(isInstance() && "No 'this' for static methods!");
1452
1453 QualType ClassTy = C.getTypeDeclType(getParent());
1454 ClassTy = C.getQualifiedType(ClassTy,
1455 Qualifiers::fromCVRMask(getTypeQualifiers()));
1456 return C.getPointerType(ClassTy);
1457 }
1458
hasInlineBody() const1459 bool CXXMethodDecl::hasInlineBody() const {
1460 // If this function is a template instantiation, look at the template from
1461 // which it was instantiated.
1462 const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1463 if (!CheckFn)
1464 CheckFn = this;
1465
1466 const FunctionDecl *fn;
1467 return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1468 }
1469
isLambdaStaticInvoker() const1470 bool CXXMethodDecl::isLambdaStaticInvoker() const {
1471 return getParent()->isLambda() &&
1472 getIdentifier() && getIdentifier()->getName() == "__invoke";
1473 }
1474
1475
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)1476 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1477 TypeSourceInfo *TInfo, bool IsVirtual,
1478 SourceLocation L, Expr *Init,
1479 SourceLocation R,
1480 SourceLocation EllipsisLoc)
1481 : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1482 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1483 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1484 {
1485 }
1486
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1487 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1488 FieldDecl *Member,
1489 SourceLocation MemberLoc,
1490 SourceLocation L, Expr *Init,
1491 SourceLocation R)
1492 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1493 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1494 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1495 {
1496 }
1497
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1498 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1499 IndirectFieldDecl *Member,
1500 SourceLocation MemberLoc,
1501 SourceLocation L, Expr *Init,
1502 SourceLocation R)
1503 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1504 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1505 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1506 {
1507 }
1508
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)1509 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1510 TypeSourceInfo *TInfo,
1511 SourceLocation L, Expr *Init,
1512 SourceLocation R)
1513 : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1514 LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1515 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1516 {
1517 }
1518
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1519 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1520 FieldDecl *Member,
1521 SourceLocation MemberLoc,
1522 SourceLocation L, Expr *Init,
1523 SourceLocation R,
1524 VarDecl **Indices,
1525 unsigned NumIndices)
1526 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1527 LParenLoc(L), RParenLoc(R), IsVirtual(false),
1528 IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1529 {
1530 VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1531 memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1532 }
1533
Create(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1534 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1535 FieldDecl *Member,
1536 SourceLocation MemberLoc,
1537 SourceLocation L, Expr *Init,
1538 SourceLocation R,
1539 VarDecl **Indices,
1540 unsigned NumIndices) {
1541 void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1542 sizeof(VarDecl *) * NumIndices,
1543 llvm::alignOf<CXXCtorInitializer>());
1544 return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1545 Indices, NumIndices);
1546 }
1547
getBaseClassLoc() const1548 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1549 if (isBaseInitializer())
1550 return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1551 else
1552 return TypeLoc();
1553 }
1554
getBaseClass() const1555 const Type *CXXCtorInitializer::getBaseClass() const {
1556 if (isBaseInitializer())
1557 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1558 else
1559 return 0;
1560 }
1561
getSourceLocation() const1562 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1563 if (isAnyMemberInitializer())
1564 return getMemberLocation();
1565
1566 if (isInClassMemberInitializer())
1567 return getAnyMember()->getLocation();
1568
1569 if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1570 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1571
1572 return SourceLocation();
1573 }
1574
getSourceRange() const1575 SourceRange CXXCtorInitializer::getSourceRange() const {
1576 if (isInClassMemberInitializer()) {
1577 FieldDecl *D = getAnyMember();
1578 if (Expr *I = D->getInClassInitializer())
1579 return I->getSourceRange();
1580 return SourceRange();
1581 }
1582
1583 return SourceRange(getSourceLocation(), getRParenLoc());
1584 }
1585
anchor()1586 void CXXConstructorDecl::anchor() { }
1587
1588 CXXConstructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1589 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1590 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
1591 return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
1592 QualType(), 0, false, false, false,false);
1593 }
1594
1595 CXXConstructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicit,bool isInline,bool isImplicitlyDeclared,bool isConstexpr)1596 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1597 SourceLocation StartLoc,
1598 const DeclarationNameInfo &NameInfo,
1599 QualType T, TypeSourceInfo *TInfo,
1600 bool isExplicit, bool isInline,
1601 bool isImplicitlyDeclared, bool isConstexpr) {
1602 assert(NameInfo.getName().getNameKind()
1603 == DeclarationName::CXXConstructorName &&
1604 "Name must refer to a constructor");
1605 return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
1606 isExplicit, isInline, isImplicitlyDeclared,
1607 isConstexpr);
1608 }
1609
getTargetConstructor() const1610 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1611 assert(isDelegatingConstructor() && "Not a delegating constructor!");
1612 Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1613 if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1614 return Construct->getConstructor();
1615
1616 return 0;
1617 }
1618
isDefaultConstructor() const1619 bool CXXConstructorDecl::isDefaultConstructor() const {
1620 // C++ [class.ctor]p5:
1621 // A default constructor for a class X is a constructor of class
1622 // X that can be called without an argument.
1623 return (getNumParams() == 0) ||
1624 (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1625 }
1626
1627 bool
isCopyConstructor(unsigned & TypeQuals) const1628 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1629 return isCopyOrMoveConstructor(TypeQuals) &&
1630 getParamDecl(0)->getType()->isLValueReferenceType();
1631 }
1632
isMoveConstructor(unsigned & TypeQuals) const1633 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1634 return isCopyOrMoveConstructor(TypeQuals) &&
1635 getParamDecl(0)->getType()->isRValueReferenceType();
1636 }
1637
1638 /// \brief Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const1639 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1640 // C++ [class.copy]p2:
1641 // A non-template constructor for class X is a copy constructor
1642 // if its first parameter is of type X&, const X&, volatile X& or
1643 // const volatile X&, and either there are no other parameters
1644 // or else all other parameters have default arguments (8.3.6).
1645 // C++0x [class.copy]p3:
1646 // A non-template constructor for class X is a move constructor if its
1647 // first parameter is of type X&&, const X&&, volatile X&&, or
1648 // const volatile X&&, and either there are no other parameters or else
1649 // all other parameters have default arguments.
1650 if ((getNumParams() < 1) ||
1651 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1652 (getPrimaryTemplate() != 0) ||
1653 (getDescribedFunctionTemplate() != 0))
1654 return false;
1655
1656 const ParmVarDecl *Param = getParamDecl(0);
1657
1658 // Do we have a reference type?
1659 const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1660 if (!ParamRefType)
1661 return false;
1662
1663 // Is it a reference to our class type?
1664 ASTContext &Context = getASTContext();
1665
1666 CanQualType PointeeType
1667 = Context.getCanonicalType(ParamRefType->getPointeeType());
1668 CanQualType ClassTy
1669 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1670 if (PointeeType.getUnqualifiedType() != ClassTy)
1671 return false;
1672
1673 // FIXME: other qualifiers?
1674
1675 // We have a copy or move constructor.
1676 TypeQuals = PointeeType.getCVRQualifiers();
1677 return true;
1678 }
1679
isConvertingConstructor(bool AllowExplicit) const1680 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1681 // C++ [class.conv.ctor]p1:
1682 // A constructor declared without the function-specifier explicit
1683 // that can be called with a single parameter specifies a
1684 // conversion from the type of its first parameter to the type of
1685 // its class. Such a constructor is called a converting
1686 // constructor.
1687 if (isExplicit() && !AllowExplicit)
1688 return false;
1689
1690 return (getNumParams() == 0 &&
1691 getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1692 (getNumParams() == 1) ||
1693 (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
1694 }
1695
isSpecializationCopyingObject() const1696 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1697 if ((getNumParams() < 1) ||
1698 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1699 (getPrimaryTemplate() == 0) ||
1700 (getDescribedFunctionTemplate() != 0))
1701 return false;
1702
1703 const ParmVarDecl *Param = getParamDecl(0);
1704
1705 ASTContext &Context = getASTContext();
1706 CanQualType ParamType = Context.getCanonicalType(Param->getType());
1707
1708 // Is it the same as our our class type?
1709 CanQualType ClassTy
1710 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1711 if (ParamType.getUnqualifiedType() != ClassTy)
1712 return false;
1713
1714 return true;
1715 }
1716
getInheritedConstructor() const1717 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1718 // Hack: we store the inherited constructor in the overridden method table
1719 method_iterator It = getASTContext().overridden_methods_begin(this);
1720 if (It == getASTContext().overridden_methods_end(this))
1721 return 0;
1722
1723 return cast<CXXConstructorDecl>(*It);
1724 }
1725
1726 void
setInheritedConstructor(const CXXConstructorDecl * BaseCtor)1727 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1728 // Hack: we store the inherited constructor in the overridden method table
1729 assert(getASTContext().overridden_methods_size(this) == 0 &&
1730 "Base ctor already set.");
1731 getASTContext().addOverriddenMethod(this, BaseCtor);
1732 }
1733
anchor()1734 void CXXDestructorDecl::anchor() { }
1735
1736 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1737 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1738 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
1739 return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1740 QualType(), 0, false, false);
1741 }
1742
1743 CXXDestructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)1744 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1745 SourceLocation StartLoc,
1746 const DeclarationNameInfo &NameInfo,
1747 QualType T, TypeSourceInfo *TInfo,
1748 bool isInline, bool isImplicitlyDeclared) {
1749 assert(NameInfo.getName().getNameKind()
1750 == DeclarationName::CXXDestructorName &&
1751 "Name must refer to a destructor");
1752 return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
1753 isImplicitlyDeclared);
1754 }
1755
anchor()1756 void CXXConversionDecl::anchor() { }
1757
1758 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1759 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1760 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
1761 return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
1762 QualType(), 0, false, false, false,
1763 SourceLocation());
1764 }
1765
1766 CXXConversionDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicit,bool isConstexpr,SourceLocation EndLocation)1767 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1768 SourceLocation StartLoc,
1769 const DeclarationNameInfo &NameInfo,
1770 QualType T, TypeSourceInfo *TInfo,
1771 bool isInline, bool isExplicit,
1772 bool isConstexpr, SourceLocation EndLocation) {
1773 assert(NameInfo.getName().getNameKind()
1774 == DeclarationName::CXXConversionFunctionName &&
1775 "Name must refer to a conversion function");
1776 return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
1777 isInline, isExplicit, isConstexpr,
1778 EndLocation);
1779 }
1780
isLambdaToBlockPointerConversion() const1781 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
1782 return isImplicit() && getParent()->isLambda() &&
1783 getConversionType()->isBlockPointerType();
1784 }
1785
anchor()1786 void LinkageSpecDecl::anchor() { }
1787
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,SourceLocation RBraceLoc)1788 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1789 DeclContext *DC,
1790 SourceLocation ExternLoc,
1791 SourceLocation LangLoc,
1792 LanguageIDs Lang,
1793 SourceLocation RBraceLoc) {
1794 return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
1795 }
1796
CreateDeserialized(ASTContext & C,unsigned ID)1797 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1798 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
1799 return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
1800 lang_c, SourceLocation());
1801 }
1802
anchor()1803 void UsingDirectiveDecl::anchor() { }
1804
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)1805 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1806 SourceLocation L,
1807 SourceLocation NamespaceLoc,
1808 NestedNameSpecifierLoc QualifierLoc,
1809 SourceLocation IdentLoc,
1810 NamedDecl *Used,
1811 DeclContext *CommonAncestor) {
1812 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1813 Used = NS->getOriginalNamespace();
1814 return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1815 IdentLoc, Used, CommonAncestor);
1816 }
1817
1818 UsingDirectiveDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1819 UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1820 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
1821 return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
1822 NestedNameSpecifierLoc(),
1823 SourceLocation(), 0, 0);
1824 }
1825
getNominatedNamespace()1826 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1827 if (NamespaceAliasDecl *NA =
1828 dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1829 return NA->getNamespace();
1830 return cast_or_null<NamespaceDecl>(NominatedNamespace);
1831 }
1832
anchor()1833 void NamespaceDecl::anchor() { }
1834
NamespaceDecl(DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1835 NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline,
1836 SourceLocation StartLoc,
1837 SourceLocation IdLoc, IdentifierInfo *Id,
1838 NamespaceDecl *PrevDecl)
1839 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
1840 LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline)
1841 {
1842 setPreviousDeclaration(PrevDecl);
1843
1844 if (PrevDecl)
1845 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
1846 }
1847
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1848 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
1849 bool Inline, SourceLocation StartLoc,
1850 SourceLocation IdLoc, IdentifierInfo *Id,
1851 NamespaceDecl *PrevDecl) {
1852 return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
1853 }
1854
CreateDeserialized(ASTContext & C,unsigned ID)1855 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1856 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
1857 return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(),
1858 0, 0);
1859 }
1860
anchor()1861 void NamespaceAliasDecl::anchor() { }
1862
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)1863 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
1864 SourceLocation UsingLoc,
1865 SourceLocation AliasLoc,
1866 IdentifierInfo *Alias,
1867 NestedNameSpecifierLoc QualifierLoc,
1868 SourceLocation IdentLoc,
1869 NamedDecl *Namespace) {
1870 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
1871 Namespace = NS->getOriginalNamespace();
1872 return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
1873 QualifierLoc, IdentLoc, Namespace);
1874 }
1875
1876 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1877 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1878 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
1879 return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
1880 NestedNameSpecifierLoc(),
1881 SourceLocation(), 0);
1882 }
1883
anchor()1884 void UsingShadowDecl::anchor() { }
1885
1886 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1887 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1888 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
1889 return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
1890 }
1891
getUsingDecl() const1892 UsingDecl *UsingShadowDecl::getUsingDecl() const {
1893 const UsingShadowDecl *Shadow = this;
1894 while (const UsingShadowDecl *NextShadow =
1895 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
1896 Shadow = NextShadow;
1897 return cast<UsingDecl>(Shadow->UsingOrNextShadow);
1898 }
1899
anchor()1900 void UsingDecl::anchor() { }
1901
addShadowDecl(UsingShadowDecl * S)1902 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
1903 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
1904 "declaration already in set");
1905 assert(S->getUsingDecl() == this);
1906
1907 if (FirstUsingShadow.getPointer())
1908 S->UsingOrNextShadow = FirstUsingShadow.getPointer();
1909 FirstUsingShadow.setPointer(S);
1910 }
1911
removeShadowDecl(UsingShadowDecl * S)1912 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
1913 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
1914 "declaration not in set");
1915 assert(S->getUsingDecl() == this);
1916
1917 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
1918
1919 if (FirstUsingShadow.getPointer() == S) {
1920 FirstUsingShadow.setPointer(
1921 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
1922 S->UsingOrNextShadow = this;
1923 return;
1924 }
1925
1926 UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
1927 while (Prev->UsingOrNextShadow != S)
1928 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
1929 Prev->UsingOrNextShadow = S->UsingOrNextShadow;
1930 S->UsingOrNextShadow = this;
1931 }
1932
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool IsTypeNameArg)1933 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
1934 NestedNameSpecifierLoc QualifierLoc,
1935 const DeclarationNameInfo &NameInfo,
1936 bool IsTypeNameArg) {
1937 return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
1938 }
1939
CreateDeserialized(ASTContext & C,unsigned ID)1940 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1941 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
1942 return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
1943 DeclarationNameInfo(), false);
1944 }
1945
anchor()1946 void UnresolvedUsingValueDecl::anchor() { }
1947
1948 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)1949 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
1950 SourceLocation UsingLoc,
1951 NestedNameSpecifierLoc QualifierLoc,
1952 const DeclarationNameInfo &NameInfo) {
1953 return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
1954 QualifierLoc, NameInfo);
1955 }
1956
1957 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1958 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1959 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
1960 return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
1961 NestedNameSpecifierLoc(),
1962 DeclarationNameInfo());
1963 }
1964
anchor()1965 void UnresolvedUsingTypenameDecl::anchor() { }
1966
1967 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName)1968 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
1969 SourceLocation UsingLoc,
1970 SourceLocation TypenameLoc,
1971 NestedNameSpecifierLoc QualifierLoc,
1972 SourceLocation TargetNameLoc,
1973 DeclarationName TargetName) {
1974 return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
1975 QualifierLoc, TargetNameLoc,
1976 TargetName.getAsIdentifierInfo());
1977 }
1978
1979 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1980 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1981 void *Mem = AllocateDeserializedDecl(C, ID,
1982 sizeof(UnresolvedUsingTypenameDecl));
1983 return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
1984 SourceLocation(),
1985 NestedNameSpecifierLoc(),
1986 SourceLocation(),
1987 0);
1988 }
1989
anchor()1990 void StaticAssertDecl::anchor() { }
1991
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc)1992 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
1993 SourceLocation StaticAssertLoc,
1994 Expr *AssertExpr,
1995 StringLiteral *Message,
1996 SourceLocation RParenLoc) {
1997 return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
1998 RParenLoc);
1999 }
2000
CreateDeserialized(ASTContext & C,unsigned ID)2001 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2002 unsigned ID) {
2003 void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
2004 return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,SourceLocation());
2005 }
2006
getAccessName(AccessSpecifier AS)2007 static const char *getAccessName(AccessSpecifier AS) {
2008 switch (AS) {
2009 case AS_none:
2010 llvm_unreachable("Invalid access specifier!");
2011 case AS_public:
2012 return "public";
2013 case AS_private:
2014 return "private";
2015 case AS_protected:
2016 return "protected";
2017 }
2018 llvm_unreachable("Invalid access specifier!");
2019 }
2020
operator <<(const DiagnosticBuilder & DB,AccessSpecifier AS)2021 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2022 AccessSpecifier AS) {
2023 return DB << getAccessName(AS);
2024 }
2025
operator <<(const PartialDiagnostic & DB,AccessSpecifier AS)2026 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2027 AccessSpecifier AS) {
2028 return DB << getAccessName(AS);
2029 }
2030