1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integral
11 // constant values and operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_APINT_H
16 #define LLVM_APINT_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <string>
24
25 namespace llvm {
26 class Deserializer;
27 class FoldingSetNodeID;
28 class Serializer;
29 class StringRef;
30 class hash_code;
31 class raw_ostream;
32
33 template<typename T>
34 class SmallVectorImpl;
35
36 // An unsigned host type used as a single part of a multi-part
37 // bignum.
38 typedef uint64_t integerPart;
39
40 const unsigned int host_char_bit = 8;
41 const unsigned int integerPartWidth = host_char_bit *
42 static_cast<unsigned int>(sizeof(integerPart));
43
44 //===----------------------------------------------------------------------===//
45 // APInt Class
46 //===----------------------------------------------------------------------===//
47
48 /// APInt - This class represents arbitrary precision constant integral values.
49 /// It is a functional replacement for common case unsigned integer type like
50 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
51 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
52 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
53 /// and methods to manipulate integer values of any bit-width. It supports both
54 /// the typical integer arithmetic and comparison operations as well as bitwise
55 /// manipulation.
56 ///
57 /// The class has several invariants worth noting:
58 /// * All bit, byte, and word positions are zero-based.
59 /// * Once the bit width is set, it doesn't change except by the Truncate,
60 /// SignExtend, or ZeroExtend operations.
61 /// * All binary operators must be on APInt instances of the same bit width.
62 /// Attempting to use these operators on instances with different bit
63 /// widths will yield an assertion.
64 /// * The value is stored canonically as an unsigned value. For operations
65 /// where it makes a difference, there are both signed and unsigned variants
66 /// of the operation. For example, sdiv and udiv. However, because the bit
67 /// widths must be the same, operations such as Mul and Add produce the same
68 /// results regardless of whether the values are interpreted as signed or
69 /// not.
70 /// * In general, the class tries to follow the style of computation that LLVM
71 /// uses in its IR. This simplifies its use for LLVM.
72 ///
73 /// @brief Class for arbitrary precision integers.
74 class APInt {
75 unsigned BitWidth; ///< The number of bits in this APInt.
76
77 /// This union is used to store the integer value. When the
78 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
79 union {
80 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
81 uint64_t *pVal; ///< Used to store the >64 bits integer value.
82 };
83
84 /// This enum is used to hold the constants we needed for APInt.
85 enum {
86 /// Bits in a word
87 APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
88 CHAR_BIT,
89 /// Byte size of a word
90 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
91 };
92
93 /// This constructor is used only internally for speed of construction of
94 /// temporaries. It is unsafe for general use so it is not public.
95 /// @brief Fast internal constructor
APInt(uint64_t * val,unsigned bits)96 APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
97
98 /// @returns true if the number of bits <= 64, false otherwise.
99 /// @brief Determine if this APInt just has one word to store value.
isSingleWord()100 bool isSingleWord() const {
101 return BitWidth <= APINT_BITS_PER_WORD;
102 }
103
104 /// @returns the word position for the specified bit position.
105 /// @brief Determine which word a bit is in.
whichWord(unsigned bitPosition)106 static unsigned whichWord(unsigned bitPosition) {
107 return bitPosition / APINT_BITS_PER_WORD;
108 }
109
110 /// @returns the bit position in a word for the specified bit position
111 /// in the APInt.
112 /// @brief Determine which bit in a word a bit is in.
whichBit(unsigned bitPosition)113 static unsigned whichBit(unsigned bitPosition) {
114 return bitPosition % APINT_BITS_PER_WORD;
115 }
116
117 /// This method generates and returns a uint64_t (word) mask for a single
118 /// bit at a specific bit position. This is used to mask the bit in the
119 /// corresponding word.
120 /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
121 /// @brief Get a single bit mask.
maskBit(unsigned bitPosition)122 static uint64_t maskBit(unsigned bitPosition) {
123 return 1ULL << whichBit(bitPosition);
124 }
125
126 /// This method is used internally to clear the to "N" bits in the high order
127 /// word that are not used by the APInt. This is needed after the most
128 /// significant word is assigned a value to ensure that those bits are
129 /// zero'd out.
130 /// @brief Clear unused high order bits
clearUnusedBits()131 APInt& clearUnusedBits() {
132 // Compute how many bits are used in the final word
133 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
134 if (wordBits == 0)
135 // If all bits are used, we want to leave the value alone. This also
136 // avoids the undefined behavior of >> when the shift is the same size as
137 // the word size (64).
138 return *this;
139
140 // Mask out the high bits.
141 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
142 if (isSingleWord())
143 VAL &= mask;
144 else
145 pVal[getNumWords() - 1] &= mask;
146 return *this;
147 }
148
149 /// @returns the corresponding word for the specified bit position.
150 /// @brief Get the word corresponding to a bit position
getWord(unsigned bitPosition)151 uint64_t getWord(unsigned bitPosition) const {
152 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
153 }
154
155 /// Converts a string into a number. The string must be non-empty
156 /// and well-formed as a number of the given base. The bit-width
157 /// must be sufficient to hold the result.
158 ///
159 /// This is used by the constructors that take string arguments.
160 ///
161 /// StringRef::getAsInteger is superficially similar but (1) does
162 /// not assume that the string is well-formed and (2) grows the
163 /// result to hold the input.
164 ///
165 /// @param radix 2, 8, 10, 16, or 36
166 /// @brief Convert a char array into an APInt
167 void fromString(unsigned numBits, StringRef str, uint8_t radix);
168
169 /// This is used by the toString method to divide by the radix. It simply
170 /// provides a more convenient form of divide for internal use since KnuthDiv
171 /// has specific constraints on its inputs. If those constraints are not met
172 /// then it provides a simpler form of divide.
173 /// @brief An internal division function for dividing APInts.
174 static void divide(const APInt LHS, unsigned lhsWords,
175 const APInt &RHS, unsigned rhsWords,
176 APInt *Quotient, APInt *Remainder);
177
178 /// out-of-line slow case for inline constructor
179 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
180
181 /// shared code between two array constructors
182 void initFromArray(ArrayRef<uint64_t> array);
183
184 /// out-of-line slow case for inline copy constructor
185 void initSlowCase(const APInt& that);
186
187 /// out-of-line slow case for shl
188 APInt shlSlowCase(unsigned shiftAmt) const;
189
190 /// out-of-line slow case for operator&
191 APInt AndSlowCase(const APInt& RHS) const;
192
193 /// out-of-line slow case for operator|
194 APInt OrSlowCase(const APInt& RHS) const;
195
196 /// out-of-line slow case for operator^
197 APInt XorSlowCase(const APInt& RHS) const;
198
199 /// out-of-line slow case for operator=
200 APInt& AssignSlowCase(const APInt& RHS);
201
202 /// out-of-line slow case for operator==
203 bool EqualSlowCase(const APInt& RHS) const;
204
205 /// out-of-line slow case for operator==
206 bool EqualSlowCase(uint64_t Val) const;
207
208 /// out-of-line slow case for countLeadingZeros
209 unsigned countLeadingZerosSlowCase() const;
210
211 /// out-of-line slow case for countTrailingOnes
212 unsigned countTrailingOnesSlowCase() const;
213
214 /// out-of-line slow case for countPopulation
215 unsigned countPopulationSlowCase() const;
216
217 public:
218 /// @name Constructors
219 /// @{
220 /// If isSigned is true then val is treated as if it were a signed value
221 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
222 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
223 /// the range of val are zero filled).
224 /// @param numBits the bit width of the constructed APInt
225 /// @param val the initial value of the APInt
226 /// @param isSigned how to treat signedness of val
227 /// @brief Create a new APInt of numBits width, initialized as val.
228 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)229 : BitWidth(numBits), VAL(0) {
230 assert(BitWidth && "bitwidth too small");
231 if (isSingleWord())
232 VAL = val;
233 else
234 initSlowCase(numBits, val, isSigned);
235 clearUnusedBits();
236 }
237
238 /// Note that bigVal.size() can be smaller or larger than the corresponding
239 /// bit width but any extraneous bits will be dropped.
240 /// @param numBits the bit width of the constructed APInt
241 /// @param bigVal a sequence of words to form the initial value of the APInt
242 /// @brief Construct an APInt of numBits width, initialized as bigVal[].
243 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
244 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
245 /// deprecated because this constructor is prone to ambiguity with the
246 /// APInt(unsigned, uint64_t, bool) constructor.
247 ///
248 /// If this overload is ever deleted, care should be taken to prevent calls
249 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
250 /// constructor.
251 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
252
253 /// This constructor interprets the string \arg str in the given radix. The
254 /// interpretation stops when the first character that is not suitable for the
255 /// radix is encountered, or the end of the string. Acceptable radix values
256 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
257 /// string to require more bits than numBits.
258 ///
259 /// @param numBits the bit width of the constructed APInt
260 /// @param str the string to be interpreted
261 /// @param radix the radix to use for the conversion
262 /// @brief Construct an APInt from a string representation.
263 APInt(unsigned numBits, StringRef str, uint8_t radix);
264
265 /// Simply makes *this a copy of that.
266 /// @brief Copy Constructor.
APInt(const APInt & that)267 APInt(const APInt& that)
268 : BitWidth(that.BitWidth), VAL(0) {
269 assert(BitWidth && "bitwidth too small");
270 if (isSingleWord())
271 VAL = that.VAL;
272 else
273 initSlowCase(that);
274 }
275
276 /// @brief Destructor.
~APInt()277 ~APInt() {
278 if (!isSingleWord())
279 delete [] pVal;
280 }
281
282 /// Default constructor that creates an uninitialized APInt. This is useful
283 /// for object deserialization (pair this with the static method Read).
APInt()284 explicit APInt() : BitWidth(1) {}
285
286 /// Profile - Used to insert APInt objects, or objects that contain APInt
287 /// objects, into FoldingSets.
288 void Profile(FoldingSetNodeID& id) const;
289
290 /// @}
291 /// @name Value Tests
292 /// @{
293 /// This tests the high bit of this APInt to determine if it is set.
294 /// @returns true if this APInt is negative, false otherwise
295 /// @brief Determine sign of this APInt.
isNegative()296 bool isNegative() const {
297 return (*this)[BitWidth - 1];
298 }
299
300 /// This tests the high bit of the APInt to determine if it is unset.
301 /// @brief Determine if this APInt Value is non-negative (>= 0)
isNonNegative()302 bool isNonNegative() const {
303 return !isNegative();
304 }
305
306 /// This tests if the value of this APInt is positive (> 0). Note
307 /// that 0 is not a positive value.
308 /// @returns true if this APInt is positive.
309 /// @brief Determine if this APInt Value is positive.
isStrictlyPositive()310 bool isStrictlyPositive() const {
311 return isNonNegative() && !!*this;
312 }
313
314 /// This checks to see if the value has all bits of the APInt are set or not.
315 /// @brief Determine if all bits are set
isAllOnesValue()316 bool isAllOnesValue() const {
317 return countPopulation() == BitWidth;
318 }
319
320 /// This checks to see if the value of this APInt is the maximum unsigned
321 /// value for the APInt's bit width.
322 /// @brief Determine if this is the largest unsigned value.
isMaxValue()323 bool isMaxValue() const {
324 return countPopulation() == BitWidth;
325 }
326
327 /// This checks to see if the value of this APInt is the maximum signed
328 /// value for the APInt's bit width.
329 /// @brief Determine if this is the largest signed value.
isMaxSignedValue()330 bool isMaxSignedValue() const {
331 return BitWidth == 1 ? VAL == 0 :
332 !isNegative() && countPopulation() == BitWidth - 1;
333 }
334
335 /// This checks to see if the value of this APInt is the minimum unsigned
336 /// value for the APInt's bit width.
337 /// @brief Determine if this is the smallest unsigned value.
isMinValue()338 bool isMinValue() const {
339 return !*this;
340 }
341
342 /// This checks to see if the value of this APInt is the minimum signed
343 /// value for the APInt's bit width.
344 /// @brief Determine if this is the smallest signed value.
isMinSignedValue()345 bool isMinSignedValue() const {
346 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
347 }
348
349 /// @brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)350 bool isIntN(unsigned N) const {
351 assert(N && "N == 0 ???");
352 if (N >= getBitWidth())
353 return true;
354
355 if (isSingleWord())
356 return isUIntN(N, VAL);
357 return APInt(N, makeArrayRef(pVal, getNumWords())).zext(getBitWidth())
358 == (*this);
359 }
360
361 /// @brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)362 bool isSignedIntN(unsigned N) const {
363 assert(N && "N == 0 ???");
364 return getMinSignedBits() <= N;
365 }
366
367 /// @returns true if the argument APInt value is a power of two > 0.
isPowerOf2()368 bool isPowerOf2() const {
369 if (isSingleWord())
370 return isPowerOf2_64(VAL);
371 return countPopulationSlowCase() == 1;
372 }
373
374 /// isSignBit - Return true if this is the value returned by getSignBit.
isSignBit()375 bool isSignBit() const { return isMinSignedValue(); }
376
377 /// This converts the APInt to a boolean value as a test against zero.
378 /// @brief Boolean conversion function.
getBoolValue()379 bool getBoolValue() const {
380 return !!*this;
381 }
382
383 /// getLimitedValue - If this value is smaller than the specified limit,
384 /// return it, otherwise return the limit value. This causes the value
385 /// to saturate to the limit.
386 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
387 return (getActiveBits() > 64 || getZExtValue() > Limit) ?
388 Limit : getZExtValue();
389 }
390
391 /// @}
392 /// @name Value Generators
393 /// @{
394 /// @brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)395 static APInt getMaxValue(unsigned numBits) {
396 return getAllOnesValue(numBits);
397 }
398
399 /// @brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)400 static APInt getSignedMaxValue(unsigned numBits) {
401 APInt API = getAllOnesValue(numBits);
402 API.clearBit(numBits - 1);
403 return API;
404 }
405
406 /// @brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)407 static APInt getMinValue(unsigned numBits) {
408 return APInt(numBits, 0);
409 }
410
411 /// @brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)412 static APInt getSignedMinValue(unsigned numBits) {
413 APInt API(numBits, 0);
414 API.setBit(numBits - 1);
415 return API;
416 }
417
418 /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
419 /// it helps code readability when we want to get a SignBit.
420 /// @brief Get the SignBit for a specific bit width.
getSignBit(unsigned BitWidth)421 static APInt getSignBit(unsigned BitWidth) {
422 return getSignedMinValue(BitWidth);
423 }
424
425 /// @returns the all-ones value for an APInt of the specified bit-width.
426 /// @brief Get the all-ones value.
getAllOnesValue(unsigned numBits)427 static APInt getAllOnesValue(unsigned numBits) {
428 return APInt(numBits, -1ULL, true);
429 }
430
431 /// @returns the '0' value for an APInt of the specified bit-width.
432 /// @brief Get the '0' value.
getNullValue(unsigned numBits)433 static APInt getNullValue(unsigned numBits) {
434 return APInt(numBits, 0);
435 }
436
437 /// Get an APInt with the same BitWidth as this APInt, just zero mask
438 /// the low bits and right shift to the least significant bit.
439 /// @returns the high "numBits" bits of this APInt.
440 APInt getHiBits(unsigned numBits) const;
441
442 /// Get an APInt with the same BitWidth as this APInt, just zero mask
443 /// the high bits.
444 /// @returns the low "numBits" bits of this APInt.
445 APInt getLoBits(unsigned numBits) const;
446
447 /// getOneBitSet - Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)448 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
449 APInt Res(numBits, 0);
450 Res.setBit(BitNo);
451 return Res;
452 }
453
454 /// Constructs an APInt value that has a contiguous range of bits set. The
455 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
456 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
457 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
458 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
459 /// @param numBits the intended bit width of the result
460 /// @param loBit the index of the lowest bit set.
461 /// @param hiBit the index of the highest bit set.
462 /// @returns An APInt value with the requested bits set.
463 /// @brief Get a value with a block of bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)464 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
465 assert(hiBit <= numBits && "hiBit out of range");
466 assert(loBit < numBits && "loBit out of range");
467 if (hiBit < loBit)
468 return getLowBitsSet(numBits, hiBit) |
469 getHighBitsSet(numBits, numBits-loBit);
470 return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
471 }
472
473 /// Constructs an APInt value that has the top hiBitsSet bits set.
474 /// @param numBits the bitwidth of the result
475 /// @param hiBitsSet the number of high-order bits set in the result.
476 /// @brief Get a value with high bits set
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)477 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
478 assert(hiBitsSet <= numBits && "Too many bits to set!");
479 // Handle a degenerate case, to avoid shifting by word size
480 if (hiBitsSet == 0)
481 return APInt(numBits, 0);
482 unsigned shiftAmt = numBits - hiBitsSet;
483 // For small values, return quickly
484 if (numBits <= APINT_BITS_PER_WORD)
485 return APInt(numBits, ~0ULL << shiftAmt);
486 return getAllOnesValue(numBits).shl(shiftAmt);
487 }
488
489 /// Constructs an APInt value that has the bottom loBitsSet bits set.
490 /// @param numBits the bitwidth of the result
491 /// @param loBitsSet the number of low-order bits set in the result.
492 /// @brief Get a value with low bits set
getLowBitsSet(unsigned numBits,unsigned loBitsSet)493 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
494 assert(loBitsSet <= numBits && "Too many bits to set!");
495 // Handle a degenerate case, to avoid shifting by word size
496 if (loBitsSet == 0)
497 return APInt(numBits, 0);
498 if (loBitsSet == APINT_BITS_PER_WORD)
499 return APInt(numBits, -1ULL);
500 // For small values, return quickly.
501 if (loBitsSet <= APINT_BITS_PER_WORD)
502 return APInt(numBits, -1ULL >> (APINT_BITS_PER_WORD - loBitsSet));
503 return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
504 }
505
506 /// \brief Overload to compute a hash_code for an APInt value.
507 friend hash_code hash_value(const APInt &Arg);
508
509 /// This function returns a pointer to the internal storage of the APInt.
510 /// This is useful for writing out the APInt in binary form without any
511 /// conversions.
getRawData()512 const uint64_t* getRawData() const {
513 if (isSingleWord())
514 return &VAL;
515 return &pVal[0];
516 }
517
518 /// @}
519 /// @name Unary Operators
520 /// @{
521 /// @returns a new APInt value representing *this incremented by one
522 /// @brief Postfix increment operator.
523 const APInt operator++(int) {
524 APInt API(*this);
525 ++(*this);
526 return API;
527 }
528
529 /// @returns *this incremented by one
530 /// @brief Prefix increment operator.
531 APInt& operator++();
532
533 /// @returns a new APInt representing *this decremented by one.
534 /// @brief Postfix decrement operator.
535 const APInt operator--(int) {
536 APInt API(*this);
537 --(*this);
538 return API;
539 }
540
541 /// @returns *this decremented by one.
542 /// @brief Prefix decrement operator.
543 APInt& operator--();
544
545 /// Performs a bitwise complement operation on this APInt.
546 /// @returns an APInt that is the bitwise complement of *this
547 /// @brief Unary bitwise complement operator.
548 APInt operator~() const {
549 APInt Result(*this);
550 Result.flipAllBits();
551 return Result;
552 }
553
554 /// Negates *this using two's complement logic.
555 /// @returns An APInt value representing the negation of *this.
556 /// @brief Unary negation operator
557 APInt operator-() const {
558 return APInt(BitWidth, 0) - (*this);
559 }
560
561 /// Performs logical negation operation on this APInt.
562 /// @returns true if *this is zero, false otherwise.
563 /// @brief Logical negation operator.
564 bool operator!() const {
565 if (isSingleWord())
566 return !VAL;
567
568 for (unsigned i = 0; i != getNumWords(); ++i)
569 if (pVal[i])
570 return false;
571 return true;
572 }
573
574 /// @}
575 /// @name Assignment Operators
576 /// @{
577 /// @returns *this after assignment of RHS.
578 /// @brief Copy assignment operator.
579 APInt& operator=(const APInt& RHS) {
580 // If the bitwidths are the same, we can avoid mucking with memory
581 if (isSingleWord() && RHS.isSingleWord()) {
582 VAL = RHS.VAL;
583 BitWidth = RHS.BitWidth;
584 return clearUnusedBits();
585 }
586
587 return AssignSlowCase(RHS);
588 }
589
590 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
591 /// the bit width, the excess bits are truncated. If the bit width is larger
592 /// than 64, the value is zero filled in the unspecified high order bits.
593 /// @returns *this after assignment of RHS value.
594 /// @brief Assignment operator.
595 APInt& operator=(uint64_t RHS);
596
597 /// Performs a bitwise AND operation on this APInt and RHS. The result is
598 /// assigned to *this.
599 /// @returns *this after ANDing with RHS.
600 /// @brief Bitwise AND assignment operator.
601 APInt& operator&=(const APInt& RHS);
602
603 /// Performs a bitwise OR operation on this APInt and RHS. The result is
604 /// assigned *this;
605 /// @returns *this after ORing with RHS.
606 /// @brief Bitwise OR assignment operator.
607 APInt& operator|=(const APInt& RHS);
608
609 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
610 /// logically zero-extended or truncated to match the bit-width of
611 /// the LHS.
612 ///
613 /// @brief Bitwise OR assignment operator.
614 APInt& operator|=(uint64_t RHS) {
615 if (isSingleWord()) {
616 VAL |= RHS;
617 clearUnusedBits();
618 } else {
619 pVal[0] |= RHS;
620 }
621 return *this;
622 }
623
624 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
625 /// assigned to *this.
626 /// @returns *this after XORing with RHS.
627 /// @brief Bitwise XOR assignment operator.
628 APInt& operator^=(const APInt& RHS);
629
630 /// Multiplies this APInt by RHS and assigns the result to *this.
631 /// @returns *this
632 /// @brief Multiplication assignment operator.
633 APInt& operator*=(const APInt& RHS);
634
635 /// Adds RHS to *this and assigns the result to *this.
636 /// @returns *this
637 /// @brief Addition assignment operator.
638 APInt& operator+=(const APInt& RHS);
639
640 /// Subtracts RHS from *this and assigns the result to *this.
641 /// @returns *this
642 /// @brief Subtraction assignment operator.
643 APInt& operator-=(const APInt& RHS);
644
645 /// Shifts *this left by shiftAmt and assigns the result to *this.
646 /// @returns *this after shifting left by shiftAmt
647 /// @brief Left-shift assignment function.
648 APInt& operator<<=(unsigned shiftAmt) {
649 *this = shl(shiftAmt);
650 return *this;
651 }
652
653 /// @}
654 /// @name Binary Operators
655 /// @{
656 /// Performs a bitwise AND operation on *this and RHS.
657 /// @returns An APInt value representing the bitwise AND of *this and RHS.
658 /// @brief Bitwise AND operator.
659 APInt operator&(const APInt& RHS) const {
660 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
661 if (isSingleWord())
662 return APInt(getBitWidth(), VAL & RHS.VAL);
663 return AndSlowCase(RHS);
664 }
And(const APInt & RHS)665 APInt And(const APInt& RHS) const {
666 return this->operator&(RHS);
667 }
668
669 /// Performs a bitwise OR operation on *this and RHS.
670 /// @returns An APInt value representing the bitwise OR of *this and RHS.
671 /// @brief Bitwise OR operator.
672 APInt operator|(const APInt& RHS) const {
673 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
674 if (isSingleWord())
675 return APInt(getBitWidth(), VAL | RHS.VAL);
676 return OrSlowCase(RHS);
677 }
Or(const APInt & RHS)678 APInt Or(const APInt& RHS) const {
679 return this->operator|(RHS);
680 }
681
682 /// Performs a bitwise XOR operation on *this and RHS.
683 /// @returns An APInt value representing the bitwise XOR of *this and RHS.
684 /// @brief Bitwise XOR operator.
685 APInt operator^(const APInt& RHS) const {
686 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
687 if (isSingleWord())
688 return APInt(BitWidth, VAL ^ RHS.VAL);
689 return XorSlowCase(RHS);
690 }
Xor(const APInt & RHS)691 APInt Xor(const APInt& RHS) const {
692 return this->operator^(RHS);
693 }
694
695 /// Multiplies this APInt by RHS and returns the result.
696 /// @brief Multiplication operator.
697 APInt operator*(const APInt& RHS) const;
698
699 /// Adds RHS to this APInt and returns the result.
700 /// @brief Addition operator.
701 APInt operator+(const APInt& RHS) const;
702 APInt operator+(uint64_t RHS) const {
703 return (*this) + APInt(BitWidth, RHS);
704 }
705
706 /// Subtracts RHS from this APInt and returns the result.
707 /// @brief Subtraction operator.
708 APInt operator-(const APInt& RHS) const;
709 APInt operator-(uint64_t RHS) const {
710 return (*this) - APInt(BitWidth, RHS);
711 }
712
713 APInt operator<<(unsigned Bits) const {
714 return shl(Bits);
715 }
716
717 APInt operator<<(const APInt &Bits) const {
718 return shl(Bits);
719 }
720
721 /// Arithmetic right-shift this APInt by shiftAmt.
722 /// @brief Arithmetic right-shift function.
723 APInt ashr(unsigned shiftAmt) const;
724
725 /// Logical right-shift this APInt by shiftAmt.
726 /// @brief Logical right-shift function.
727 APInt lshr(unsigned shiftAmt) const;
728
729 /// Left-shift this APInt by shiftAmt.
730 /// @brief Left-shift function.
shl(unsigned shiftAmt)731 APInt shl(unsigned shiftAmt) const {
732 assert(shiftAmt <= BitWidth && "Invalid shift amount");
733 if (isSingleWord()) {
734 if (shiftAmt == BitWidth)
735 return APInt(BitWidth, 0); // avoid undefined shift results
736 return APInt(BitWidth, VAL << shiftAmt);
737 }
738 return shlSlowCase(shiftAmt);
739 }
740
741 /// @brief Rotate left by rotateAmt.
742 APInt rotl(unsigned rotateAmt) const;
743
744 /// @brief Rotate right by rotateAmt.
745 APInt rotr(unsigned rotateAmt) const;
746
747 /// Arithmetic right-shift this APInt by shiftAmt.
748 /// @brief Arithmetic right-shift function.
749 APInt ashr(const APInt &shiftAmt) const;
750
751 /// Logical right-shift this APInt by shiftAmt.
752 /// @brief Logical right-shift function.
753 APInt lshr(const APInt &shiftAmt) const;
754
755 /// Left-shift this APInt by shiftAmt.
756 /// @brief Left-shift function.
757 APInt shl(const APInt &shiftAmt) const;
758
759 /// @brief Rotate left by rotateAmt.
760 APInt rotl(const APInt &rotateAmt) const;
761
762 /// @brief Rotate right by rotateAmt.
763 APInt rotr(const APInt &rotateAmt) const;
764
765 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
766 /// RHS are treated as unsigned quantities for purposes of this division.
767 /// @returns a new APInt value containing the division result
768 /// @brief Unsigned division operation.
769 APInt udiv(const APInt &RHS) const;
770
771 /// Signed divide this APInt by APInt RHS.
772 /// @brief Signed division function for APInt.
sdiv(const APInt & RHS)773 APInt sdiv(const APInt &RHS) const {
774 if (isNegative())
775 if (RHS.isNegative())
776 return (-(*this)).udiv(-RHS);
777 else
778 return -((-(*this)).udiv(RHS));
779 else if (RHS.isNegative())
780 return -(this->udiv(-RHS));
781 return this->udiv(RHS);
782 }
783
784 /// Perform an unsigned remainder operation on this APInt with RHS being the
785 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
786 /// of this operation. Note that this is a true remainder operation and not
787 /// a modulo operation because the sign follows the sign of the dividend
788 /// which is *this.
789 /// @returns a new APInt value containing the remainder result
790 /// @brief Unsigned remainder operation.
791 APInt urem(const APInt &RHS) const;
792
793 /// Signed remainder operation on APInt.
794 /// @brief Function for signed remainder operation.
srem(const APInt & RHS)795 APInt srem(const APInt &RHS) const {
796 if (isNegative())
797 if (RHS.isNegative())
798 return -((-(*this)).urem(-RHS));
799 else
800 return -((-(*this)).urem(RHS));
801 else if (RHS.isNegative())
802 return this->urem(-RHS);
803 return this->urem(RHS);
804 }
805
806 /// Sometimes it is convenient to divide two APInt values and obtain both the
807 /// quotient and remainder. This function does both operations in the same
808 /// computation making it a little more efficient. The pair of input arguments
809 /// may overlap with the pair of output arguments. It is safe to call
810 /// udivrem(X, Y, X, Y), for example.
811 /// @brief Dual division/remainder interface.
812 static void udivrem(const APInt &LHS, const APInt &RHS,
813 APInt &Quotient, APInt &Remainder);
814
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)815 static void sdivrem(const APInt &LHS, const APInt &RHS,
816 APInt &Quotient, APInt &Remainder) {
817 if (LHS.isNegative()) {
818 if (RHS.isNegative())
819 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
820 else
821 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
822 Quotient = -Quotient;
823 Remainder = -Remainder;
824 } else if (RHS.isNegative()) {
825 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
826 Quotient = -Quotient;
827 } else {
828 APInt::udivrem(LHS, RHS, Quotient, Remainder);
829 }
830 }
831
832
833 // Operations that return overflow indicators.
834 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
835 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
836 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
837 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
838 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
839 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
840 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
841 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
842
843 /// @returns the bit value at bitPosition
844 /// @brief Array-indexing support.
845 bool operator[](unsigned bitPosition) const {
846 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
847 return (maskBit(bitPosition) &
848 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
849 }
850
851 /// @}
852 /// @name Comparison Operators
853 /// @{
854 /// Compares this APInt with RHS for the validity of the equality
855 /// relationship.
856 /// @brief Equality operator.
857 bool operator==(const APInt& RHS) const {
858 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
859 if (isSingleWord())
860 return VAL == RHS.VAL;
861 return EqualSlowCase(RHS);
862 }
863
864 /// Compares this APInt with a uint64_t for the validity of the equality
865 /// relationship.
866 /// @returns true if *this == Val
867 /// @brief Equality operator.
868 bool operator==(uint64_t Val) const {
869 if (isSingleWord())
870 return VAL == Val;
871 return EqualSlowCase(Val);
872 }
873
874 /// Compares this APInt with RHS for the validity of the equality
875 /// relationship.
876 /// @returns true if *this == Val
877 /// @brief Equality comparison.
eq(const APInt & RHS)878 bool eq(const APInt &RHS) const {
879 return (*this) == RHS;
880 }
881
882 /// Compares this APInt with RHS for the validity of the inequality
883 /// relationship.
884 /// @returns true if *this != Val
885 /// @brief Inequality operator.
886 bool operator!=(const APInt& RHS) const {
887 return !((*this) == RHS);
888 }
889
890 /// Compares this APInt with a uint64_t for the validity of the inequality
891 /// relationship.
892 /// @returns true if *this != Val
893 /// @brief Inequality operator.
894 bool operator!=(uint64_t Val) const {
895 return !((*this) == Val);
896 }
897
898 /// Compares this APInt with RHS for the validity of the inequality
899 /// relationship.
900 /// @returns true if *this != Val
901 /// @brief Inequality comparison
ne(const APInt & RHS)902 bool ne(const APInt &RHS) const {
903 return !((*this) == RHS);
904 }
905
906 /// Regards both *this and RHS as unsigned quantities and compares them for
907 /// the validity of the less-than relationship.
908 /// @returns true if *this < RHS when both are considered unsigned.
909 /// @brief Unsigned less than comparison
910 bool ult(const APInt &RHS) const;
911
912 /// Regards both *this as an unsigned quantity and compares it with RHS for
913 /// the validity of the less-than relationship.
914 /// @returns true if *this < RHS when considered unsigned.
915 /// @brief Unsigned less than comparison
ult(uint64_t RHS)916 bool ult(uint64_t RHS) const {
917 return ult(APInt(getBitWidth(), RHS));
918 }
919
920 /// Regards both *this and RHS as signed quantities and compares them for
921 /// validity of the less-than relationship.
922 /// @returns true if *this < RHS when both are considered signed.
923 /// @brief Signed less than comparison
924 bool slt(const APInt& RHS) const;
925
926 /// Regards both *this as a signed quantity and compares it with RHS for
927 /// the validity of the less-than relationship.
928 /// @returns true if *this < RHS when considered signed.
929 /// @brief Signed less than comparison
slt(uint64_t RHS)930 bool slt(uint64_t RHS) const {
931 return slt(APInt(getBitWidth(), RHS));
932 }
933
934 /// Regards both *this and RHS as unsigned quantities and compares them for
935 /// validity of the less-or-equal relationship.
936 /// @returns true if *this <= RHS when both are considered unsigned.
937 /// @brief Unsigned less or equal comparison
ule(const APInt & RHS)938 bool ule(const APInt& RHS) const {
939 return ult(RHS) || eq(RHS);
940 }
941
942 /// Regards both *this as an unsigned quantity and compares it with RHS for
943 /// the validity of the less-or-equal relationship.
944 /// @returns true if *this <= RHS when considered unsigned.
945 /// @brief Unsigned less or equal comparison
ule(uint64_t RHS)946 bool ule(uint64_t RHS) const {
947 return ule(APInt(getBitWidth(), RHS));
948 }
949
950 /// Regards both *this and RHS as signed quantities and compares them for
951 /// validity of the less-or-equal relationship.
952 /// @returns true if *this <= RHS when both are considered signed.
953 /// @brief Signed less or equal comparison
sle(const APInt & RHS)954 bool sle(const APInt& RHS) const {
955 return slt(RHS) || eq(RHS);
956 }
957
958 /// Regards both *this as a signed quantity and compares it with RHS for
959 /// the validity of the less-or-equal relationship.
960 /// @returns true if *this <= RHS when considered signed.
961 /// @brief Signed less or equal comparison
sle(uint64_t RHS)962 bool sle(uint64_t RHS) const {
963 return sle(APInt(getBitWidth(), RHS));
964 }
965
966 /// Regards both *this and RHS as unsigned quantities and compares them for
967 /// the validity of the greater-than relationship.
968 /// @returns true if *this > RHS when both are considered unsigned.
969 /// @brief Unsigned greather than comparison
ugt(const APInt & RHS)970 bool ugt(const APInt& RHS) const {
971 return !ult(RHS) && !eq(RHS);
972 }
973
974 /// Regards both *this as an unsigned quantity and compares it with RHS for
975 /// the validity of the greater-than relationship.
976 /// @returns true if *this > RHS when considered unsigned.
977 /// @brief Unsigned greater than comparison
ugt(uint64_t RHS)978 bool ugt(uint64_t RHS) const {
979 return ugt(APInt(getBitWidth(), RHS));
980 }
981
982 /// Regards both *this and RHS as signed quantities and compares them for
983 /// the validity of the greater-than relationship.
984 /// @returns true if *this > RHS when both are considered signed.
985 /// @brief Signed greather than comparison
sgt(const APInt & RHS)986 bool sgt(const APInt& RHS) const {
987 return !slt(RHS) && !eq(RHS);
988 }
989
990 /// Regards both *this as a signed quantity and compares it with RHS for
991 /// the validity of the greater-than relationship.
992 /// @returns true if *this > RHS when considered signed.
993 /// @brief Signed greater than comparison
sgt(uint64_t RHS)994 bool sgt(uint64_t RHS) const {
995 return sgt(APInt(getBitWidth(), RHS));
996 }
997
998 /// Regards both *this and RHS as unsigned quantities and compares them for
999 /// validity of the greater-or-equal relationship.
1000 /// @returns true if *this >= RHS when both are considered unsigned.
1001 /// @brief Unsigned greater or equal comparison
uge(const APInt & RHS)1002 bool uge(const APInt& RHS) const {
1003 return !ult(RHS);
1004 }
1005
1006 /// Regards both *this as an unsigned quantity and compares it with RHS for
1007 /// the validity of the greater-or-equal relationship.
1008 /// @returns true if *this >= RHS when considered unsigned.
1009 /// @brief Unsigned greater or equal comparison
uge(uint64_t RHS)1010 bool uge(uint64_t RHS) const {
1011 return uge(APInt(getBitWidth(), RHS));
1012 }
1013
1014 /// Regards both *this and RHS as signed quantities and compares them for
1015 /// validity of the greater-or-equal relationship.
1016 /// @returns true if *this >= RHS when both are considered signed.
1017 /// @brief Signed greather or equal comparison
sge(const APInt & RHS)1018 bool sge(const APInt& RHS) const {
1019 return !slt(RHS);
1020 }
1021
1022 /// Regards both *this as a signed quantity and compares it with RHS for
1023 /// the validity of the greater-or-equal relationship.
1024 /// @returns true if *this >= RHS when considered signed.
1025 /// @brief Signed greater or equal comparison
sge(uint64_t RHS)1026 bool sge(uint64_t RHS) const {
1027 return sge(APInt(getBitWidth(), RHS));
1028 }
1029
1030
1031
1032
1033 /// This operation tests if there are any pairs of corresponding bits
1034 /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1035 bool intersects(const APInt &RHS) const {
1036 return (*this & RHS) != 0;
1037 }
1038
1039 /// @}
1040 /// @name Resizing Operators
1041 /// @{
1042 /// Truncate the APInt to a specified width. It is an error to specify a width
1043 /// that is greater than or equal to the current width.
1044 /// @brief Truncate to new width.
1045 APInt trunc(unsigned width) const;
1046
1047 /// This operation sign extends the APInt to a new width. If the high order
1048 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1049 /// It is an error to specify a width that is less than or equal to the
1050 /// current width.
1051 /// @brief Sign extend to a new width.
1052 APInt sext(unsigned width) const;
1053
1054 /// This operation zero extends the APInt to a new width. The high order bits
1055 /// are filled with 0 bits. It is an error to specify a width that is less
1056 /// than or equal to the current width.
1057 /// @brief Zero extend to a new width.
1058 APInt zext(unsigned width) const;
1059
1060 /// Make this APInt have the bit width given by \p width. The value is sign
1061 /// extended, truncated, or left alone to make it that width.
1062 /// @brief Sign extend or truncate to width
1063 APInt sextOrTrunc(unsigned width) const;
1064
1065 /// Make this APInt have the bit width given by \p width. The value is zero
1066 /// extended, truncated, or left alone to make it that width.
1067 /// @brief Zero extend or truncate to width
1068 APInt zextOrTrunc(unsigned width) const;
1069
1070 /// Make this APInt have the bit width given by \p width. The value is sign
1071 /// extended, or left alone to make it that width.
1072 /// @brief Sign extend or truncate to width
1073 APInt sextOrSelf(unsigned width) const;
1074
1075 /// Make this APInt have the bit width given by \p width. The value is zero
1076 /// extended, or left alone to make it that width.
1077 /// @brief Zero extend or truncate to width
1078 APInt zextOrSelf(unsigned width) const;
1079
1080 /// @}
1081 /// @name Bit Manipulation Operators
1082 /// @{
1083 /// @brief Set every bit to 1.
setAllBits()1084 void setAllBits() {
1085 if (isSingleWord())
1086 VAL = -1ULL;
1087 else {
1088 // Set all the bits in all the words.
1089 for (unsigned i = 0; i < getNumWords(); ++i)
1090 pVal[i] = -1ULL;
1091 }
1092 // Clear the unused ones
1093 clearUnusedBits();
1094 }
1095
1096 /// Set the given bit to 1 whose position is given as "bitPosition".
1097 /// @brief Set a given bit to 1.
1098 void setBit(unsigned bitPosition);
1099
1100 /// @brief Set every bit to 0.
clearAllBits()1101 void clearAllBits() {
1102 if (isSingleWord())
1103 VAL = 0;
1104 else
1105 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1106 }
1107
1108 /// Set the given bit to 0 whose position is given as "bitPosition".
1109 /// @brief Set a given bit to 0.
1110 void clearBit(unsigned bitPosition);
1111
1112 /// @brief Toggle every bit to its opposite value.
flipAllBits()1113 void flipAllBits() {
1114 if (isSingleWord())
1115 VAL ^= -1ULL;
1116 else {
1117 for (unsigned i = 0; i < getNumWords(); ++i)
1118 pVal[i] ^= -1ULL;
1119 }
1120 clearUnusedBits();
1121 }
1122
1123 /// Toggle a given bit to its opposite value whose position is given
1124 /// as "bitPosition".
1125 /// @brief Toggles a given bit to its opposite value.
1126 void flipBit(unsigned bitPosition);
1127
1128 /// @}
1129 /// @name Value Characterization Functions
1130 /// @{
1131
1132 /// @returns the total number of bits.
getBitWidth()1133 unsigned getBitWidth() const {
1134 return BitWidth;
1135 }
1136
1137 /// Here one word's bitwidth equals to that of uint64_t.
1138 /// @returns the number of words to hold the integer value of this APInt.
1139 /// @brief Get the number of words.
getNumWords()1140 unsigned getNumWords() const {
1141 return getNumWords(BitWidth);
1142 }
1143
1144 /// Here one word's bitwidth equals to that of uint64_t.
1145 /// @returns the number of words to hold the integer value with a
1146 /// given bit width.
1147 /// @brief Get the number of words.
getNumWords(unsigned BitWidth)1148 static unsigned getNumWords(unsigned BitWidth) {
1149 return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1150 }
1151
1152 /// This function returns the number of active bits which is defined as the
1153 /// bit width minus the number of leading zeros. This is used in several
1154 /// computations to see how "wide" the value is.
1155 /// @brief Compute the number of active bits in the value
getActiveBits()1156 unsigned getActiveBits() const {
1157 return BitWidth - countLeadingZeros();
1158 }
1159
1160 /// This function returns the number of active words in the value of this
1161 /// APInt. This is used in conjunction with getActiveData to extract the raw
1162 /// value of the APInt.
getActiveWords()1163 unsigned getActiveWords() const {
1164 return whichWord(getActiveBits()-1) + 1;
1165 }
1166
1167 /// Computes the minimum bit width for this APInt while considering it to be
1168 /// a signed (and probably negative) value. If the value is not negative,
1169 /// this function returns the same value as getActiveBits()+1. Otherwise, it
1170 /// returns the smallest bit width that will retain the negative value. For
1171 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1172 /// for -1, this function will always return 1.
1173 /// @brief Get the minimum bit size for this signed APInt
getMinSignedBits()1174 unsigned getMinSignedBits() const {
1175 if (isNegative())
1176 return BitWidth - countLeadingOnes() + 1;
1177 return getActiveBits()+1;
1178 }
1179
1180 /// This method attempts to return the value of this APInt as a zero extended
1181 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1182 /// uint64_t. Otherwise an assertion will result.
1183 /// @brief Get zero extended value
getZExtValue()1184 uint64_t getZExtValue() const {
1185 if (isSingleWord())
1186 return VAL;
1187 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1188 return pVal[0];
1189 }
1190
1191 /// This method attempts to return the value of this APInt as a sign extended
1192 /// int64_t. The bit width must be <= 64 or the value must fit within an
1193 /// int64_t. Otherwise an assertion will result.
1194 /// @brief Get sign extended value
getSExtValue()1195 int64_t getSExtValue() const {
1196 if (isSingleWord())
1197 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1198 (APINT_BITS_PER_WORD - BitWidth);
1199 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1200 return int64_t(pVal[0]);
1201 }
1202
1203 /// This method determines how many bits are required to hold the APInt
1204 /// equivalent of the string given by \arg str.
1205 /// @brief Get bits required for string value.
1206 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1207
1208 /// countLeadingZeros - This function is an APInt version of the
1209 /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1210 /// of zeros from the most significant bit to the first one bit.
1211 /// @returns BitWidth if the value is zero.
1212 /// @returns the number of zeros from the most significant bit to the first
1213 /// one bits.
countLeadingZeros()1214 unsigned countLeadingZeros() const {
1215 if (isSingleWord()) {
1216 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1217 return CountLeadingZeros_64(VAL) - unusedBits;
1218 }
1219 return countLeadingZerosSlowCase();
1220 }
1221
1222 /// countLeadingOnes - This function is an APInt version of the
1223 /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1224 /// of ones from the most significant bit to the first zero bit.
1225 /// @returns 0 if the high order bit is not set
1226 /// @returns the number of 1 bits from the most significant to the least
1227 /// @brief Count the number of leading one bits.
1228 unsigned countLeadingOnes() const;
1229
1230 /// Computes the number of leading bits of this APInt that are equal to its
1231 /// sign bit.
getNumSignBits()1232 unsigned getNumSignBits() const {
1233 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1234 }
1235
1236 /// countTrailingZeros - This function is an APInt version of the
1237 /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1238 /// the number of zeros from the least significant bit to the first set bit.
1239 /// @returns BitWidth if the value is zero.
1240 /// @returns the number of zeros from the least significant bit to the first
1241 /// one bit.
1242 /// @brief Count the number of trailing zero bits.
1243 unsigned countTrailingZeros() const;
1244
1245 /// countTrailingOnes - This function is an APInt version of the
1246 /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1247 /// the number of ones from the least significant bit to the first zero bit.
1248 /// @returns BitWidth if the value is all ones.
1249 /// @returns the number of ones from the least significant bit to the first
1250 /// zero bit.
1251 /// @brief Count the number of trailing one bits.
countTrailingOnes()1252 unsigned countTrailingOnes() const {
1253 if (isSingleWord())
1254 return CountTrailingOnes_64(VAL);
1255 return countTrailingOnesSlowCase();
1256 }
1257
1258 /// countPopulation - This function is an APInt version of the
1259 /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1260 /// of 1 bits in the APInt value.
1261 /// @returns 0 if the value is zero.
1262 /// @returns the number of set bits.
1263 /// @brief Count the number of bits set.
countPopulation()1264 unsigned countPopulation() const {
1265 if (isSingleWord())
1266 return CountPopulation_64(VAL);
1267 return countPopulationSlowCase();
1268 }
1269
1270 /// @}
1271 /// @name Conversion Functions
1272 /// @{
1273 void print(raw_ostream &OS, bool isSigned) const;
1274
1275 /// toString - Converts an APInt to a string and append it to Str. Str is
1276 /// commonly a SmallString.
1277 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1278 bool formatAsCLiteral = false) const;
1279
1280 /// Considers the APInt to be unsigned and converts it into a string in the
1281 /// radix given. The radix can be 2, 8, 10 16, or 36.
1282 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1283 toString(Str, Radix, false, false);
1284 }
1285
1286 /// Considers the APInt to be signed and converts it into a string in the
1287 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1288 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1289 toString(Str, Radix, true, false);
1290 }
1291
1292 /// toString - This returns the APInt as a std::string. Note that this is an
1293 /// inefficient method. It is better to pass in a SmallVector/SmallString
1294 /// to the methods above to avoid thrashing the heap for the string.
1295 std::string toString(unsigned Radix, bool Signed) const;
1296
1297
1298 /// @returns a byte-swapped representation of this APInt Value.
1299 APInt byteSwap() const;
1300
1301 /// @brief Converts this APInt to a double value.
1302 double roundToDouble(bool isSigned) const;
1303
1304 /// @brief Converts this unsigned APInt to a double value.
roundToDouble()1305 double roundToDouble() const {
1306 return roundToDouble(false);
1307 }
1308
1309 /// @brief Converts this signed APInt to a double value.
signedRoundToDouble()1310 double signedRoundToDouble() const {
1311 return roundToDouble(true);
1312 }
1313
1314 /// The conversion does not do a translation from integer to double, it just
1315 /// re-interprets the bits as a double. Note that it is valid to do this on
1316 /// any bit width. Exactly 64 bits will be translated.
1317 /// @brief Converts APInt bits to a double
bitsToDouble()1318 double bitsToDouble() const {
1319 union {
1320 uint64_t I;
1321 double D;
1322 } T;
1323 T.I = (isSingleWord() ? VAL : pVal[0]);
1324 return T.D;
1325 }
1326
1327 /// The conversion does not do a translation from integer to float, it just
1328 /// re-interprets the bits as a float. Note that it is valid to do this on
1329 /// any bit width. Exactly 32 bits will be translated.
1330 /// @brief Converts APInt bits to a double
bitsToFloat()1331 float bitsToFloat() const {
1332 union {
1333 unsigned I;
1334 float F;
1335 } T;
1336 T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1337 return T.F;
1338 }
1339
1340 /// The conversion does not do a translation from double to integer, it just
1341 /// re-interprets the bits of the double.
1342 /// @brief Converts a double to APInt bits.
doubleToBits(double V)1343 static APInt doubleToBits(double V) {
1344 union {
1345 uint64_t I;
1346 double D;
1347 } T;
1348 T.D = V;
1349 return APInt(sizeof T * CHAR_BIT, T.I);
1350 }
1351
1352 /// The conversion does not do a translation from float to integer, it just
1353 /// re-interprets the bits of the float.
1354 /// @brief Converts a float to APInt bits.
floatToBits(float V)1355 static APInt floatToBits(float V) {
1356 union {
1357 unsigned I;
1358 float F;
1359 } T;
1360 T.F = V;
1361 return APInt(sizeof T * CHAR_BIT, T.I);
1362 }
1363
1364 /// @}
1365 /// @name Mathematics Operations
1366 /// @{
1367
1368 /// @returns the floor log base 2 of this APInt.
logBase2()1369 unsigned logBase2() const {
1370 return BitWidth - 1 - countLeadingZeros();
1371 }
1372
1373 /// @returns the ceil log base 2 of this APInt.
ceilLogBase2()1374 unsigned ceilLogBase2() const {
1375 return BitWidth - (*this - 1).countLeadingZeros();
1376 }
1377
1378 /// @returns the log base 2 of this APInt if its an exact power of two, -1
1379 /// otherwise
exactLogBase2()1380 int32_t exactLogBase2() const {
1381 if (!isPowerOf2())
1382 return -1;
1383 return logBase2();
1384 }
1385
1386 /// @brief Compute the square root
1387 APInt sqrt() const;
1388
1389 /// If *this is < 0 then return -(*this), otherwise *this;
1390 /// @brief Get the absolute value;
abs()1391 APInt abs() const {
1392 if (isNegative())
1393 return -(*this);
1394 return *this;
1395 }
1396
1397 /// @returns the multiplicative inverse for a given modulo.
1398 APInt multiplicativeInverse(const APInt& modulo) const;
1399
1400 /// @}
1401 /// @name Support for division by constant
1402 /// @{
1403
1404 /// Calculate the magic number for signed division by a constant.
1405 struct ms;
1406 ms magic() const;
1407
1408 /// Calculate the magic number for unsigned division by a constant.
1409 struct mu;
1410 mu magicu(unsigned LeadingZeros = 0) const;
1411
1412 /// @}
1413 /// @name Building-block Operations for APInt and APFloat
1414 /// @{
1415
1416 // These building block operations operate on a representation of
1417 // arbitrary precision, two's-complement, bignum integer values.
1418 // They should be sufficient to implement APInt and APFloat bignum
1419 // requirements. Inputs are generally a pointer to the base of an
1420 // array of integer parts, representing an unsigned bignum, and a
1421 // count of how many parts there are.
1422
1423 /// Sets the least significant part of a bignum to the input value,
1424 /// and zeroes out higher parts. */
1425 static void tcSet(integerPart *, integerPart, unsigned int);
1426
1427 /// Assign one bignum to another.
1428 static void tcAssign(integerPart *, const integerPart *, unsigned int);
1429
1430 /// Returns true if a bignum is zero, false otherwise.
1431 static bool tcIsZero(const integerPart *, unsigned int);
1432
1433 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1434 static int tcExtractBit(const integerPart *, unsigned int bit);
1435
1436 /// Copy the bit vector of width srcBITS from SRC, starting at bit
1437 /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1438 /// becomes the least significant bit of DST. All high bits above
1439 /// srcBITS in DST are zero-filled.
1440 static void tcExtract(integerPart *, unsigned int dstCount,
1441 const integerPart *,
1442 unsigned int srcBits, unsigned int srcLSB);
1443
1444 /// Set the given bit of a bignum. Zero-based.
1445 static void tcSetBit(integerPart *, unsigned int bit);
1446
1447 /// Clear the given bit of a bignum. Zero-based.
1448 static void tcClearBit(integerPart *, unsigned int bit);
1449
1450 /// Returns the bit number of the least or most significant set bit
1451 /// of a number. If the input number has no bits set -1U is
1452 /// returned.
1453 static unsigned int tcLSB(const integerPart *, unsigned int);
1454 static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1455
1456 /// Negate a bignum in-place.
1457 static void tcNegate(integerPart *, unsigned int);
1458
1459 /// DST += RHS + CARRY where CARRY is zero or one. Returns the
1460 /// carry flag.
1461 static integerPart tcAdd(integerPart *, const integerPart *,
1462 integerPart carry, unsigned);
1463
1464 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the
1465 /// carry flag.
1466 static integerPart tcSubtract(integerPart *, const integerPart *,
1467 integerPart carry, unsigned);
1468
1469 /// DST += SRC * MULTIPLIER + PART if add is true
1470 /// DST = SRC * MULTIPLIER + PART if add is false
1471 ///
1472 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
1473 /// they must start at the same point, i.e. DST == SRC.
1474 ///
1475 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1476 /// returned. Otherwise DST is filled with the least significant
1477 /// DSTPARTS parts of the result, and if all of the omitted higher
1478 /// parts were zero return zero, otherwise overflow occurred and
1479 /// return one.
1480 static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1481 integerPart multiplier, integerPart carry,
1482 unsigned int srcParts, unsigned int dstParts,
1483 bool add);
1484
1485 /// DST = LHS * RHS, where DST has the same width as the operands
1486 /// and is filled with the least significant parts of the result.
1487 /// Returns one if overflow occurred, otherwise zero. DST must be
1488 /// disjoint from both operands.
1489 static int tcMultiply(integerPart *, const integerPart *,
1490 const integerPart *, unsigned);
1491
1492 /// DST = LHS * RHS, where DST has width the sum of the widths of
1493 /// the operands. No overflow occurs. DST must be disjoint from
1494 /// both operands. Returns the number of parts required to hold the
1495 /// result.
1496 static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1497 const integerPart *, unsigned, unsigned);
1498
1499 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1500 /// Otherwise set LHS to LHS / RHS with the fractional part
1501 /// discarded, set REMAINDER to the remainder, return zero. i.e.
1502 ///
1503 /// OLD_LHS = RHS * LHS + REMAINDER
1504 ///
1505 /// SCRATCH is a bignum of the same size as the operands and result
1506 /// for use by the routine; its contents need not be initialized
1507 /// and are destroyed. LHS, REMAINDER and SCRATCH must be
1508 /// distinct.
1509 static int tcDivide(integerPart *lhs, const integerPart *rhs,
1510 integerPart *remainder, integerPart *scratch,
1511 unsigned int parts);
1512
1513 /// Shift a bignum left COUNT bits. Shifted in bits are zero.
1514 /// There are no restrictions on COUNT.
1515 static void tcShiftLeft(integerPart *, unsigned int parts,
1516 unsigned int count);
1517
1518 /// Shift a bignum right COUNT bits. Shifted in bits are zero.
1519 /// There are no restrictions on COUNT.
1520 static void tcShiftRight(integerPart *, unsigned int parts,
1521 unsigned int count);
1522
1523 /// The obvious AND, OR and XOR and complement operations.
1524 static void tcAnd(integerPart *, const integerPart *, unsigned int);
1525 static void tcOr(integerPart *, const integerPart *, unsigned int);
1526 static void tcXor(integerPart *, const integerPart *, unsigned int);
1527 static void tcComplement(integerPart *, unsigned int);
1528
1529 /// Comparison (unsigned) of two bignums.
1530 static int tcCompare(const integerPart *, const integerPart *,
1531 unsigned int);
1532
1533 /// Increment a bignum in-place. Return the carry flag.
1534 static integerPart tcIncrement(integerPart *, unsigned int);
1535
1536 /// Set the least significant BITS and clear the rest.
1537 static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1538 unsigned int bits);
1539
1540 /// @brief debug method
1541 void dump() const;
1542
1543 /// @}
1544 };
1545
1546 /// Magic data for optimising signed division by a constant.
1547 struct APInt::ms {
1548 APInt m; ///< magic number
1549 unsigned s; ///< shift amount
1550 };
1551
1552 /// Magic data for optimising unsigned division by a constant.
1553 struct APInt::mu {
1554 APInt m; ///< magic number
1555 bool a; ///< add indicator
1556 unsigned s; ///< shift amount
1557 };
1558
1559 inline bool operator==(uint64_t V1, const APInt& V2) {
1560 return V2 == V1;
1561 }
1562
1563 inline bool operator!=(uint64_t V1, const APInt& V2) {
1564 return V2 != V1;
1565 }
1566
1567 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1568 I.print(OS, true);
1569 return OS;
1570 }
1571
1572 namespace APIntOps {
1573
1574 /// @brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1575 inline APInt smin(const APInt &A, const APInt &B) {
1576 return A.slt(B) ? A : B;
1577 }
1578
1579 /// @brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1580 inline APInt smax(const APInt &A, const APInt &B) {
1581 return A.sgt(B) ? A : B;
1582 }
1583
1584 /// @brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1585 inline APInt umin(const APInt &A, const APInt &B) {
1586 return A.ult(B) ? A : B;
1587 }
1588
1589 /// @brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1590 inline APInt umax(const APInt &A, const APInt &B) {
1591 return A.ugt(B) ? A : B;
1592 }
1593
1594 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1595 inline bool isIntN(unsigned N, const APInt& APIVal) {
1596 return APIVal.isIntN(N);
1597 }
1598
1599 /// @brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1600 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1601 return APIVal.isSignedIntN(N);
1602 }
1603
1604 /// @returns true if the argument APInt value is a sequence of ones
1605 /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1606 inline bool isMask(unsigned numBits, const APInt& APIVal) {
1607 return numBits <= APIVal.getBitWidth() &&
1608 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1609 }
1610
1611 /// @returns true if the argument APInt value contains a sequence of ones
1612 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1613 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1614 return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1615 }
1616
1617 /// @returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1618 inline APInt byteSwap(const APInt& APIVal) {
1619 return APIVal.byteSwap();
1620 }
1621
1622 /// @returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1623 inline unsigned logBase2(const APInt& APIVal) {
1624 return APIVal.logBase2();
1625 }
1626
1627 /// GreatestCommonDivisor - This function returns the greatest common
1628 /// divisor of the two APInt values using Euclid's algorithm.
1629 /// @returns the greatest common divisor of Val1 and Val2
1630 /// @brief Compute GCD of two APInt values.
1631 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1632
1633 /// Treats the APInt as an unsigned value for conversion purposes.
1634 /// @brief Converts the given APInt to a double value.
RoundAPIntToDouble(const APInt & APIVal)1635 inline double RoundAPIntToDouble(const APInt& APIVal) {
1636 return APIVal.roundToDouble();
1637 }
1638
1639 /// Treats the APInt as a signed value for conversion purposes.
1640 /// @brief Converts the given APInt to a double value.
RoundSignedAPIntToDouble(const APInt & APIVal)1641 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1642 return APIVal.signedRoundToDouble();
1643 }
1644
1645 /// @brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1646 inline float RoundAPIntToFloat(const APInt& APIVal) {
1647 return float(RoundAPIntToDouble(APIVal));
1648 }
1649
1650 /// Treast the APInt as a signed value for conversion purposes.
1651 /// @brief Converts the given APInt to a float value.
RoundSignedAPIntToFloat(const APInt & APIVal)1652 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1653 return float(APIVal.signedRoundToDouble());
1654 }
1655
1656 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1657 /// @brief Converts the given double value into a APInt.
1658 APInt RoundDoubleToAPInt(double Double, unsigned width);
1659
1660 /// RoundFloatToAPInt - Converts a float value into an APInt value.
1661 /// @brief Converts a float value into a APInt.
RoundFloatToAPInt(float Float,unsigned width)1662 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1663 return RoundDoubleToAPInt(double(Float), width);
1664 }
1665
1666 /// Arithmetic right-shift the APInt by shiftAmt.
1667 /// @brief Arithmetic right-shift function.
ashr(const APInt & LHS,unsigned shiftAmt)1668 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1669 return LHS.ashr(shiftAmt);
1670 }
1671
1672 /// Logical right-shift the APInt by shiftAmt.
1673 /// @brief Logical right-shift function.
lshr(const APInt & LHS,unsigned shiftAmt)1674 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1675 return LHS.lshr(shiftAmt);
1676 }
1677
1678 /// Left-shift the APInt by shiftAmt.
1679 /// @brief Left-shift function.
shl(const APInt & LHS,unsigned shiftAmt)1680 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1681 return LHS.shl(shiftAmt);
1682 }
1683
1684 /// Signed divide APInt LHS by APInt RHS.
1685 /// @brief Signed division function for APInt.
sdiv(const APInt & LHS,const APInt & RHS)1686 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1687 return LHS.sdiv(RHS);
1688 }
1689
1690 /// Unsigned divide APInt LHS by APInt RHS.
1691 /// @brief Unsigned division function for APInt.
udiv(const APInt & LHS,const APInt & RHS)1692 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1693 return LHS.udiv(RHS);
1694 }
1695
1696 /// Signed remainder operation on APInt.
1697 /// @brief Function for signed remainder operation.
srem(const APInt & LHS,const APInt & RHS)1698 inline APInt srem(const APInt& LHS, const APInt& RHS) {
1699 return LHS.srem(RHS);
1700 }
1701
1702 /// Unsigned remainder operation on APInt.
1703 /// @brief Function for unsigned remainder operation.
urem(const APInt & LHS,const APInt & RHS)1704 inline APInt urem(const APInt& LHS, const APInt& RHS) {
1705 return LHS.urem(RHS);
1706 }
1707
1708 /// Performs multiplication on APInt values.
1709 /// @brief Function for multiplication operation.
mul(const APInt & LHS,const APInt & RHS)1710 inline APInt mul(const APInt& LHS, const APInt& RHS) {
1711 return LHS * RHS;
1712 }
1713
1714 /// Performs addition on APInt values.
1715 /// @brief Function for addition operation.
add(const APInt & LHS,const APInt & RHS)1716 inline APInt add(const APInt& LHS, const APInt& RHS) {
1717 return LHS + RHS;
1718 }
1719
1720 /// Performs subtraction on APInt values.
1721 /// @brief Function for subtraction operation.
sub(const APInt & LHS,const APInt & RHS)1722 inline APInt sub(const APInt& LHS, const APInt& RHS) {
1723 return LHS - RHS;
1724 }
1725
1726 /// Performs bitwise AND operation on APInt LHS and
1727 /// APInt RHS.
1728 /// @brief Bitwise AND function for APInt.
And(const APInt & LHS,const APInt & RHS)1729 inline APInt And(const APInt& LHS, const APInt& RHS) {
1730 return LHS & RHS;
1731 }
1732
1733 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1734 /// @brief Bitwise OR function for APInt.
Or(const APInt & LHS,const APInt & RHS)1735 inline APInt Or(const APInt& LHS, const APInt& RHS) {
1736 return LHS | RHS;
1737 }
1738
1739 /// Performs bitwise XOR operation on APInt.
1740 /// @brief Bitwise XOR function for APInt.
Xor(const APInt & LHS,const APInt & RHS)1741 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1742 return LHS ^ RHS;
1743 }
1744
1745 /// Performs a bitwise complement operation on APInt.
1746 /// @brief Bitwise complement function.
Not(const APInt & APIVal)1747 inline APInt Not(const APInt& APIVal) {
1748 return ~APIVal;
1749 }
1750
1751 } // End of APIntOps namespace
1752
1753 } // End of llvm namespace
1754
1755 #endif
1756