• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "EventHub"
18 
19 // #define LOG_NDEBUG 0
20 
21 #include "EventHub.h"
22 
23 #include <hardware_legacy/power.h>
24 
25 #include <cutils/properties.h>
26 #include <utils/Log.h>
27 #include <utils/Timers.h>
28 #include <utils/threads.h>
29 #include <utils/Errors.h>
30 
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <unistd.h>
34 #include <fcntl.h>
35 #include <memory.h>
36 #include <errno.h>
37 #include <assert.h>
38 
39 #include <androidfw/KeyLayoutMap.h>
40 #include <androidfw/KeyCharacterMap.h>
41 #include <androidfw/VirtualKeyMap.h>
42 
43 #include <sha1.h>
44 #include <string.h>
45 #include <stdint.h>
46 #include <dirent.h>
47 
48 #include <sys/inotify.h>
49 #include <sys/epoll.h>
50 #include <sys/ioctl.h>
51 #include <sys/limits.h>
52 
53 /* this macro is used to tell if "bit" is set in "array"
54  * it selects a byte from the array, and does a boolean AND
55  * operation with a byte that only has the relevant bit set.
56  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57  */
58 #define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
59 
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits)  ((bits + 7) / 8)
62 
63 #define INDENT "  "
64 #define INDENT2 "    "
65 #define INDENT3 "      "
66 
67 namespace android {
68 
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71 
72 /* return the larger integer */
max(int v1,int v2)73 static inline int max(int v1, int v2)
74 {
75     return (v1 > v2) ? v1 : v2;
76 }
77 
toString(bool value)78 static inline const char* toString(bool value) {
79     return value ? "true" : "false";
80 }
81 
sha1(const String8 & in)82 static String8 sha1(const String8& in) {
83     SHA1_CTX ctx;
84     SHA1Init(&ctx);
85     SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86     u_char digest[SHA1_DIGEST_LENGTH];
87     SHA1Final(digest, &ctx);
88 
89     String8 out;
90     for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
91         out.appendFormat("%02x", digest[i]);
92     }
93     return out;
94 }
95 
setDescriptor(InputDeviceIdentifier & identifier)96 static void setDescriptor(InputDeviceIdentifier& identifier) {
97     // Compute a device descriptor that uniquely identifies the device.
98     // The descriptor is assumed to be a stable identifier.  Its value should not
99     // change between reboots, reconnections, firmware updates or new releases of Android.
100     // Ideally, we also want the descriptor to be short and relatively opaque.
101     String8 rawDescriptor;
102     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
103     if (!identifier.uniqueId.isEmpty()) {
104         rawDescriptor.append("uniqueId:");
105         rawDescriptor.append(identifier.uniqueId);
106     } if (identifier.vendor == 0 && identifier.product == 0) {
107         // If we don't know the vendor and product id, then the device is probably
108         // built-in so we need to rely on other information to uniquely identify
109         // the input device.  Usually we try to avoid relying on the device name or
110         // location but for built-in input device, they are unlikely to ever change.
111         if (!identifier.name.isEmpty()) {
112             rawDescriptor.append("name:");
113             rawDescriptor.append(identifier.name);
114         } else if (!identifier.location.isEmpty()) {
115             rawDescriptor.append("location:");
116             rawDescriptor.append(identifier.location);
117         }
118     }
119     identifier.descriptor = sha1(rawDescriptor);
120     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
121             identifier.descriptor.string());
122 }
123 
124 // --- Global Functions ---
125 
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)126 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
127     // Touch devices get dibs on touch-related axes.
128     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
129         switch (axis) {
130         case ABS_X:
131         case ABS_Y:
132         case ABS_PRESSURE:
133         case ABS_TOOL_WIDTH:
134         case ABS_DISTANCE:
135         case ABS_TILT_X:
136         case ABS_TILT_Y:
137         case ABS_MT_SLOT:
138         case ABS_MT_TOUCH_MAJOR:
139         case ABS_MT_TOUCH_MINOR:
140         case ABS_MT_WIDTH_MAJOR:
141         case ABS_MT_WIDTH_MINOR:
142         case ABS_MT_ORIENTATION:
143         case ABS_MT_POSITION_X:
144         case ABS_MT_POSITION_Y:
145         case ABS_MT_TOOL_TYPE:
146         case ABS_MT_BLOB_ID:
147         case ABS_MT_TRACKING_ID:
148         case ABS_MT_PRESSURE:
149         case ABS_MT_DISTANCE:
150             return INPUT_DEVICE_CLASS_TOUCH;
151         }
152     }
153 
154     // Joystick devices get the rest.
155     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
156 }
157 
158 // --- EventHub::Device ---
159 
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)160 EventHub::Device::Device(int fd, int32_t id, const String8& path,
161         const InputDeviceIdentifier& identifier) :
162         next(NULL),
163         fd(fd), id(id), path(path), identifier(identifier),
164         classes(0), configuration(NULL), virtualKeyMap(NULL),
165         ffEffectPlaying(false), ffEffectId(-1) {
166     memset(keyBitmask, 0, sizeof(keyBitmask));
167     memset(absBitmask, 0, sizeof(absBitmask));
168     memset(relBitmask, 0, sizeof(relBitmask));
169     memset(swBitmask, 0, sizeof(swBitmask));
170     memset(ledBitmask, 0, sizeof(ledBitmask));
171     memset(ffBitmask, 0, sizeof(ffBitmask));
172     memset(propBitmask, 0, sizeof(propBitmask));
173 }
174 
~Device()175 EventHub::Device::~Device() {
176     close();
177     delete configuration;
178     delete virtualKeyMap;
179 }
180 
close()181 void EventHub::Device::close() {
182     if (fd >= 0) {
183         ::close(fd);
184         fd = -1;
185     }
186 }
187 
188 
189 // --- EventHub ---
190 
191 const uint32_t EventHub::EPOLL_ID_INOTIFY;
192 const uint32_t EventHub::EPOLL_ID_WAKE;
193 const int EventHub::EPOLL_SIZE_HINT;
194 const int EventHub::EPOLL_MAX_EVENTS;
195 
EventHub(void)196 EventHub::EventHub(void) :
197         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1),
198         mOpeningDevices(0), mClosingDevices(0),
199         mNeedToSendFinishedDeviceScan(false),
200         mNeedToReopenDevices(false), mNeedToScanDevices(true),
201         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
202     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
203 
204     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
205     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
206 
207     mINotifyFd = inotify_init();
208     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
209     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
210             DEVICE_PATH, errno);
211 
212     struct epoll_event eventItem;
213     memset(&eventItem, 0, sizeof(eventItem));
214     eventItem.events = EPOLLIN;
215     eventItem.data.u32 = EPOLL_ID_INOTIFY;
216     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
217     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
218 
219     int wakeFds[2];
220     result = pipe(wakeFds);
221     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
222 
223     mWakeReadPipeFd = wakeFds[0];
224     mWakeWritePipeFd = wakeFds[1];
225 
226     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
227     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
228             errno);
229 
230     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
231     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
232             errno);
233 
234     eventItem.data.u32 = EPOLL_ID_WAKE;
235     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
236     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
237             errno);
238 }
239 
~EventHub(void)240 EventHub::~EventHub(void) {
241     closeAllDevicesLocked();
242 
243     while (mClosingDevices) {
244         Device* device = mClosingDevices;
245         mClosingDevices = device->next;
246         delete device;
247     }
248 
249     ::close(mEpollFd);
250     ::close(mINotifyFd);
251     ::close(mWakeReadPipeFd);
252     ::close(mWakeWritePipeFd);
253 
254     release_wake_lock(WAKE_LOCK_ID);
255 }
256 
getDeviceIdentifier(int32_t deviceId) const257 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
258     AutoMutex _l(mLock);
259     Device* device = getDeviceLocked(deviceId);
260     if (device == NULL) return InputDeviceIdentifier();
261     return device->identifier;
262 }
263 
getDeviceClasses(int32_t deviceId) const264 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
265     AutoMutex _l(mLock);
266     Device* device = getDeviceLocked(deviceId);
267     if (device == NULL) return 0;
268     return device->classes;
269 }
270 
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const271 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272     AutoMutex _l(mLock);
273     Device* device = getDeviceLocked(deviceId);
274     if (device && device->configuration) {
275         *outConfiguration = *device->configuration;
276     } else {
277         outConfiguration->clear();
278     }
279 }
280 
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const281 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282         RawAbsoluteAxisInfo* outAxisInfo) const {
283     outAxisInfo->clear();
284 
285     if (axis >= 0 && axis <= ABS_MAX) {
286         AutoMutex _l(mLock);
287 
288         Device* device = getDeviceLocked(deviceId);
289         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290             struct input_absinfo info;
291             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293                      axis, device->identifier.name.string(), device->fd, errno);
294                 return -errno;
295             }
296 
297             if (info.minimum != info.maximum) {
298                 outAxisInfo->valid = true;
299                 outAxisInfo->minValue = info.minimum;
300                 outAxisInfo->maxValue = info.maximum;
301                 outAxisInfo->flat = info.flat;
302                 outAxisInfo->fuzz = info.fuzz;
303                 outAxisInfo->resolution = info.resolution;
304             }
305             return OK;
306         }
307     }
308     return -1;
309 }
310 
hasRelativeAxis(int32_t deviceId,int axis) const311 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312     if (axis >= 0 && axis <= REL_MAX) {
313         AutoMutex _l(mLock);
314 
315         Device* device = getDeviceLocked(deviceId);
316         if (device) {
317             return test_bit(axis, device->relBitmask);
318         }
319     }
320     return false;
321 }
322 
hasInputProperty(int32_t deviceId,int property) const323 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324     if (property >= 0 && property <= INPUT_PROP_MAX) {
325         AutoMutex _l(mLock);
326 
327         Device* device = getDeviceLocked(deviceId);
328         if (device) {
329             return test_bit(property, device->propBitmask);
330         }
331     }
332     return false;
333 }
334 
getScanCodeState(int32_t deviceId,int32_t scanCode) const335 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336     if (scanCode >= 0 && scanCode <= KEY_MAX) {
337         AutoMutex _l(mLock);
338 
339         Device* device = getDeviceLocked(deviceId);
340         if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342             memset(keyState, 0, sizeof(keyState));
343             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345             }
346         }
347     }
348     return AKEY_STATE_UNKNOWN;
349 }
350 
getKeyCodeState(int32_t deviceId,int32_t keyCode) const351 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352     AutoMutex _l(mLock);
353 
354     Device* device = getDeviceLocked(deviceId);
355     if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356         Vector<int32_t> scanCodes;
357         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358         if (scanCodes.size() != 0) {
359             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360             memset(keyState, 0, sizeof(keyState));
361             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362                 for (size_t i = 0; i < scanCodes.size(); i++) {
363                     int32_t sc = scanCodes.itemAt(i);
364                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365                         return AKEY_STATE_DOWN;
366                     }
367                 }
368                 return AKEY_STATE_UP;
369             }
370         }
371     }
372     return AKEY_STATE_UNKNOWN;
373 }
374 
getSwitchState(int32_t deviceId,int32_t sw) const375 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376     if (sw >= 0 && sw <= SW_MAX) {
377         AutoMutex _l(mLock);
378 
379         Device* device = getDeviceLocked(deviceId);
380         if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382             memset(swState, 0, sizeof(swState));
383             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385             }
386         }
387     }
388     return AKEY_STATE_UNKNOWN;
389 }
390 
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const391 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392     *outValue = 0;
393 
394     if (axis >= 0 && axis <= ABS_MAX) {
395         AutoMutex _l(mLock);
396 
397         Device* device = getDeviceLocked(deviceId);
398         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399             struct input_absinfo info;
400             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402                      axis, device->identifier.name.string(), device->fd, errno);
403                 return -errno;
404             }
405 
406             *outValue = info.value;
407             return OK;
408         }
409     }
410     return -1;
411 }
412 
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const413 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414         const int32_t* keyCodes, uint8_t* outFlags) const {
415     AutoMutex _l(mLock);
416 
417     Device* device = getDeviceLocked(deviceId);
418     if (device && device->keyMap.haveKeyLayout()) {
419         Vector<int32_t> scanCodes;
420         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421             scanCodes.clear();
422 
423             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424                     keyCodes[codeIndex], &scanCodes);
425             if (! err) {
426                 // check the possible scan codes identified by the layout map against the
427                 // map of codes actually emitted by the driver
428                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
430                         outFlags[codeIndex] = 1;
431                         break;
432                     }
433                 }
434             }
435         }
436         return true;
437     }
438     return false;
439 }
440 
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t * outKeycode,uint32_t * outFlags) const441 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
442         int32_t* outKeycode, uint32_t* outFlags) const {
443     AutoMutex _l(mLock);
444     Device* device = getDeviceLocked(deviceId);
445 
446     if (device) {
447         // Check the key character map first.
448         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
449         if (kcm != NULL) {
450             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
451                 *outFlags = 0;
452                 return NO_ERROR;
453             }
454         }
455 
456         // Check the key layout next.
457         if (device->keyMap.haveKeyLayout()) {
458             if (!device->keyMap.keyLayoutMap->mapKey(
459                     scanCode, usageCode, outKeycode, outFlags)) {
460                 return NO_ERROR;
461             }
462         }
463     }
464 
465     *outKeycode = 0;
466     *outFlags = 0;
467     return NAME_NOT_FOUND;
468 }
469 
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const470 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
471     AutoMutex _l(mLock);
472     Device* device = getDeviceLocked(deviceId);
473 
474     if (device && device->keyMap.haveKeyLayout()) {
475         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
476         if (err == NO_ERROR) {
477             return NO_ERROR;
478         }
479     }
480 
481     return NAME_NOT_FOUND;
482 }
483 
setExcludedDevices(const Vector<String8> & devices)484 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
485     AutoMutex _l(mLock);
486 
487     mExcludedDevices = devices;
488 }
489 
hasScanCode(int32_t deviceId,int32_t scanCode) const490 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
491     AutoMutex _l(mLock);
492     Device* device = getDeviceLocked(deviceId);
493     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
494         if (test_bit(scanCode, device->keyBitmask)) {
495             return true;
496         }
497     }
498     return false;
499 }
500 
hasLed(int32_t deviceId,int32_t led) const501 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
502     AutoMutex _l(mLock);
503     Device* device = getDeviceLocked(deviceId);
504     if (device && led >= 0 && led <= LED_MAX) {
505         if (test_bit(led, device->ledBitmask)) {
506             return true;
507         }
508     }
509     return false;
510 }
511 
setLedState(int32_t deviceId,int32_t led,bool on)512 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
513     AutoMutex _l(mLock);
514     Device* device = getDeviceLocked(deviceId);
515     if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
516         struct input_event ev;
517         ev.time.tv_sec = 0;
518         ev.time.tv_usec = 0;
519         ev.type = EV_LED;
520         ev.code = led;
521         ev.value = on ? 1 : 0;
522 
523         ssize_t nWrite;
524         do {
525             nWrite = write(device->fd, &ev, sizeof(struct input_event));
526         } while (nWrite == -1 && errno == EINTR);
527     }
528 }
529 
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const530 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
531         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
532     outVirtualKeys.clear();
533 
534     AutoMutex _l(mLock);
535     Device* device = getDeviceLocked(deviceId);
536     if (device && device->virtualKeyMap) {
537         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
538     }
539 }
540 
getKeyCharacterMap(int32_t deviceId) const541 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
542     AutoMutex _l(mLock);
543     Device* device = getDeviceLocked(deviceId);
544     if (device) {
545         return device->getKeyCharacterMap();
546     }
547     return NULL;
548 }
549 
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)550 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
551         const sp<KeyCharacterMap>& map) {
552     AutoMutex _l(mLock);
553     Device* device = getDeviceLocked(deviceId);
554     if (device) {
555         if (map != device->overlayKeyMap) {
556             device->overlayKeyMap = map;
557             device->combinedKeyMap = KeyCharacterMap::combine(
558                     device->keyMap.keyCharacterMap, map);
559             return true;
560         }
561     }
562     return false;
563 }
564 
vibrate(int32_t deviceId,nsecs_t duration)565 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
566     AutoMutex _l(mLock);
567     Device* device = getDeviceLocked(deviceId);
568     if (device && !device->isVirtual()) {
569         ff_effect effect;
570         memset(&effect, 0, sizeof(effect));
571         effect.type = FF_RUMBLE;
572         effect.id = device->ffEffectId;
573         effect.u.rumble.strong_magnitude = 0xc000;
574         effect.u.rumble.weak_magnitude = 0xc000;
575         effect.replay.length = (duration + 999999LL) / 1000000LL;
576         effect.replay.delay = 0;
577         if (ioctl(device->fd, EVIOCSFF, &effect)) {
578             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
579                     device->identifier.name.string(), errno);
580             return;
581         }
582         device->ffEffectId = effect.id;
583 
584         struct input_event ev;
585         ev.time.tv_sec = 0;
586         ev.time.tv_usec = 0;
587         ev.type = EV_FF;
588         ev.code = device->ffEffectId;
589         ev.value = 1;
590         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
591             ALOGW("Could not start force feedback effect on device %s due to error %d.",
592                     device->identifier.name.string(), errno);
593             return;
594         }
595         device->ffEffectPlaying = true;
596     }
597 }
598 
cancelVibrate(int32_t deviceId)599 void EventHub::cancelVibrate(int32_t deviceId) {
600     AutoMutex _l(mLock);
601     Device* device = getDeviceLocked(deviceId);
602     if (device && !device->isVirtual()) {
603         if (device->ffEffectPlaying) {
604             device->ffEffectPlaying = false;
605 
606             struct input_event ev;
607             ev.time.tv_sec = 0;
608             ev.time.tv_usec = 0;
609             ev.type = EV_FF;
610             ev.code = device->ffEffectId;
611             ev.value = 0;
612             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
613                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
614                         device->identifier.name.string(), errno);
615                 return;
616             }
617         }
618     }
619 }
620 
getDeviceLocked(int32_t deviceId) const621 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
622     if (deviceId == BUILT_IN_KEYBOARD_ID) {
623         deviceId = mBuiltInKeyboardId;
624     }
625     ssize_t index = mDevices.indexOfKey(deviceId);
626     return index >= 0 ? mDevices.valueAt(index) : NULL;
627 }
628 
getDeviceByPathLocked(const char * devicePath) const629 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
630     for (size_t i = 0; i < mDevices.size(); i++) {
631         Device* device = mDevices.valueAt(i);
632         if (device->path == devicePath) {
633             return device;
634         }
635     }
636     return NULL;
637 }
638 
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)639 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
640     ALOG_ASSERT(bufferSize >= 1);
641 
642     AutoMutex _l(mLock);
643 
644     struct input_event readBuffer[bufferSize];
645 
646     RawEvent* event = buffer;
647     size_t capacity = bufferSize;
648     bool awoken = false;
649     for (;;) {
650         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
651 
652         // Reopen input devices if needed.
653         if (mNeedToReopenDevices) {
654             mNeedToReopenDevices = false;
655 
656             ALOGI("Reopening all input devices due to a configuration change.");
657 
658             closeAllDevicesLocked();
659             mNeedToScanDevices = true;
660             break; // return to the caller before we actually rescan
661         }
662 
663         // Report any devices that had last been added/removed.
664         while (mClosingDevices) {
665             Device* device = mClosingDevices;
666             ALOGV("Reporting device closed: id=%d, name=%s\n",
667                  device->id, device->path.string());
668             mClosingDevices = device->next;
669             event->when = now;
670             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
671             event->type = DEVICE_REMOVED;
672             event += 1;
673             delete device;
674             mNeedToSendFinishedDeviceScan = true;
675             if (--capacity == 0) {
676                 break;
677             }
678         }
679 
680         if (mNeedToScanDevices) {
681             mNeedToScanDevices = false;
682             scanDevicesLocked();
683             mNeedToSendFinishedDeviceScan = true;
684         }
685 
686         while (mOpeningDevices != NULL) {
687             Device* device = mOpeningDevices;
688             ALOGV("Reporting device opened: id=%d, name=%s\n",
689                  device->id, device->path.string());
690             mOpeningDevices = device->next;
691             event->when = now;
692             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
693             event->type = DEVICE_ADDED;
694             event += 1;
695             mNeedToSendFinishedDeviceScan = true;
696             if (--capacity == 0) {
697                 break;
698             }
699         }
700 
701         if (mNeedToSendFinishedDeviceScan) {
702             mNeedToSendFinishedDeviceScan = false;
703             event->when = now;
704             event->type = FINISHED_DEVICE_SCAN;
705             event += 1;
706             if (--capacity == 0) {
707                 break;
708             }
709         }
710 
711         // Grab the next input event.
712         bool deviceChanged = false;
713         while (mPendingEventIndex < mPendingEventCount) {
714             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
715             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
716                 if (eventItem.events & EPOLLIN) {
717                     mPendingINotify = true;
718                 } else {
719                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
720                 }
721                 continue;
722             }
723 
724             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
725                 if (eventItem.events & EPOLLIN) {
726                     ALOGV("awoken after wake()");
727                     awoken = true;
728                     char buffer[16];
729                     ssize_t nRead;
730                     do {
731                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
732                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
733                 } else {
734                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
735                             eventItem.events);
736                 }
737                 continue;
738             }
739 
740             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
741             if (deviceIndex < 0) {
742                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
743                         eventItem.events, eventItem.data.u32);
744                 continue;
745             }
746 
747             Device* device = mDevices.valueAt(deviceIndex);
748             if (eventItem.events & EPOLLIN) {
749                 int32_t readSize = read(device->fd, readBuffer,
750                         sizeof(struct input_event) * capacity);
751                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
752                     // Device was removed before INotify noticed.
753                     ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
754                             "capacity: %d errno: %d)\n",
755                             device->fd, readSize, bufferSize, capacity, errno);
756                     deviceChanged = true;
757                     closeDeviceLocked(device);
758                 } else if (readSize < 0) {
759                     if (errno != EAGAIN && errno != EINTR) {
760                         ALOGW("could not get event (errno=%d)", errno);
761                     }
762                 } else if ((readSize % sizeof(struct input_event)) != 0) {
763                     ALOGE("could not get event (wrong size: %d)", readSize);
764                 } else {
765                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
766 
767                     size_t count = size_t(readSize) / sizeof(struct input_event);
768                     for (size_t i = 0; i < count; i++) {
769                         const struct input_event& iev = readBuffer[i];
770                         ALOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
771                                 device->path.string(),
772                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
773                                 iev.type, iev.code, iev.value);
774 
775 #ifdef HAVE_POSIX_CLOCKS
776                         // Use the time specified in the event instead of the current time
777                         // so that downstream code can get more accurate estimates of
778                         // event dispatch latency from the time the event is enqueued onto
779                         // the evdev client buffer.
780                         //
781                         // The event's timestamp fortuitously uses the same monotonic clock
782                         // time base as the rest of Android.  The kernel event device driver
783                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
784                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
785                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
786                         // system call that also queries ktime_get_ts().
787                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
788                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
789                         ALOGV("event time %lld, now %lld", event->when, now);
790 #else
791                         event->when = now;
792 #endif
793                         event->deviceId = deviceId;
794                         event->type = iev.type;
795                         event->code = iev.code;
796                         event->value = iev.value;
797                         event += 1;
798                     }
799                     capacity -= count;
800                     if (capacity == 0) {
801                         // The result buffer is full.  Reset the pending event index
802                         // so we will try to read the device again on the next iteration.
803                         mPendingEventIndex -= 1;
804                         break;
805                     }
806                 }
807             } else if (eventItem.events & EPOLLHUP) {
808                 ALOGI("Removing device %s due to epoll hang-up event.",
809                         device->identifier.name.string());
810                 deviceChanged = true;
811                 closeDeviceLocked(device);
812             } else {
813                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
814                         eventItem.events, device->identifier.name.string());
815             }
816         }
817 
818         // readNotify() will modify the list of devices so this must be done after
819         // processing all other events to ensure that we read all remaining events
820         // before closing the devices.
821         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
822             mPendingINotify = false;
823             readNotifyLocked();
824             deviceChanged = true;
825         }
826 
827         // Report added or removed devices immediately.
828         if (deviceChanged) {
829             continue;
830         }
831 
832         // Return now if we have collected any events or if we were explicitly awoken.
833         if (event != buffer || awoken) {
834             break;
835         }
836 
837         // Poll for events.  Mind the wake lock dance!
838         // We hold a wake lock at all times except during epoll_wait().  This works due to some
839         // subtle choreography.  When a device driver has pending (unread) events, it acquires
840         // a kernel wake lock.  However, once the last pending event has been read, the device
841         // driver will release the kernel wake lock.  To prevent the system from going to sleep
842         // when this happens, the EventHub holds onto its own user wake lock while the client
843         // is processing events.  Thus the system can only sleep if there are no events
844         // pending or currently being processed.
845         //
846         // The timeout is advisory only.  If the device is asleep, it will not wake just to
847         // service the timeout.
848         mPendingEventIndex = 0;
849 
850         mLock.unlock(); // release lock before poll, must be before release_wake_lock
851         release_wake_lock(WAKE_LOCK_ID);
852 
853         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
854 
855         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
856         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
857 
858         if (pollResult == 0) {
859             // Timed out.
860             mPendingEventCount = 0;
861             break;
862         }
863 
864         if (pollResult < 0) {
865             // An error occurred.
866             mPendingEventCount = 0;
867 
868             // Sleep after errors to avoid locking up the system.
869             // Hopefully the error is transient.
870             if (errno != EINTR) {
871                 ALOGW("poll failed (errno=%d)\n", errno);
872                 usleep(100000);
873             }
874         } else {
875             // Some events occurred.
876             mPendingEventCount = size_t(pollResult);
877         }
878     }
879 
880     // All done, return the number of events we read.
881     return event - buffer;
882 }
883 
wake()884 void EventHub::wake() {
885     ALOGV("wake() called");
886 
887     ssize_t nWrite;
888     do {
889         nWrite = write(mWakeWritePipeFd, "W", 1);
890     } while (nWrite == -1 && errno == EINTR);
891 
892     if (nWrite != 1 && errno != EAGAIN) {
893         ALOGW("Could not write wake signal, errno=%d", errno);
894     }
895 }
896 
scanDevicesLocked()897 void EventHub::scanDevicesLocked() {
898     status_t res = scanDirLocked(DEVICE_PATH);
899     if(res < 0) {
900         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
901     }
902     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
903         createVirtualKeyboardLocked();
904     }
905 }
906 
907 // ----------------------------------------------------------------------------
908 
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)909 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
910     const uint8_t* end = array + endIndex;
911     array += startIndex;
912     while (array != end) {
913         if (*(array++) != 0) {
914             return true;
915         }
916     }
917     return false;
918 }
919 
920 static const int32_t GAMEPAD_KEYCODES[] = {
921         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
922         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
923         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
924         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
925         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
926         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
927         AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
928         AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
929         AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
930         AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
931 };
932 
openDeviceLocked(const char * devicePath)933 status_t EventHub::openDeviceLocked(const char *devicePath) {
934     char buffer[80];
935 
936     ALOGV("Opening device: %s", devicePath);
937 
938     int fd = open(devicePath, O_RDWR | O_CLOEXEC);
939     if(fd < 0) {
940         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
941         return -1;
942     }
943 
944     InputDeviceIdentifier identifier;
945 
946     // Get device name.
947     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
948         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
949     } else {
950         buffer[sizeof(buffer) - 1] = '\0';
951         identifier.name.setTo(buffer);
952     }
953 
954     // Check to see if the device is on our excluded list
955     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
956         const String8& item = mExcludedDevices.itemAt(i);
957         if (identifier.name == item) {
958             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
959             close(fd);
960             return -1;
961         }
962     }
963 
964     // Get device driver version.
965     int driverVersion;
966     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
967         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
968         close(fd);
969         return -1;
970     }
971 
972     // Get device identifier.
973     struct input_id inputId;
974     if(ioctl(fd, EVIOCGID, &inputId)) {
975         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
976         close(fd);
977         return -1;
978     }
979     identifier.bus = inputId.bustype;
980     identifier.product = inputId.product;
981     identifier.vendor = inputId.vendor;
982     identifier.version = inputId.version;
983 
984     // Get device physical location.
985     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
986         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
987     } else {
988         buffer[sizeof(buffer) - 1] = '\0';
989         identifier.location.setTo(buffer);
990     }
991 
992     // Get device unique id.
993     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
994         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
995     } else {
996         buffer[sizeof(buffer) - 1] = '\0';
997         identifier.uniqueId.setTo(buffer);
998     }
999 
1000     // Fill in the descriptor.
1001     setDescriptor(identifier);
1002 
1003     // Make file descriptor non-blocking for use with poll().
1004     if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1005         ALOGE("Error %d making device file descriptor non-blocking.", errno);
1006         close(fd);
1007         return -1;
1008     }
1009 
1010     // Allocate device.  (The device object takes ownership of the fd at this point.)
1011     int32_t deviceId = mNextDeviceId++;
1012     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1013 
1014     ALOGV("add device %d: %s\n", deviceId, devicePath);
1015     ALOGV("  bus:        %04x\n"
1016          "  vendor      %04x\n"
1017          "  product     %04x\n"
1018          "  version     %04x\n",
1019         identifier.bus, identifier.vendor, identifier.product, identifier.version);
1020     ALOGV("  name:       \"%s\"\n", identifier.name.string());
1021     ALOGV("  location:   \"%s\"\n", identifier.location.string());
1022     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1023     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1024     ALOGV("  driver:     v%d.%d.%d\n",
1025         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1026 
1027     // Load the configuration file for the device.
1028     loadConfigurationLocked(device);
1029 
1030     // Figure out the kinds of events the device reports.
1031     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1032     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1033     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1034     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1035     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1036     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1037     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1038 
1039     // See if this is a keyboard.  Ignore everything in the button range except for
1040     // joystick and gamepad buttons which are handled like keyboards for the most part.
1041     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1042             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1043                     sizeof_bit_array(KEY_MAX + 1));
1044     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1045                     sizeof_bit_array(BTN_MOUSE))
1046             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1047                     sizeof_bit_array(BTN_DIGI));
1048     if (haveKeyboardKeys || haveGamepadButtons) {
1049         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1050     }
1051 
1052     // See if this is a cursor device such as a trackball or mouse.
1053     if (test_bit(BTN_MOUSE, device->keyBitmask)
1054             && test_bit(REL_X, device->relBitmask)
1055             && test_bit(REL_Y, device->relBitmask)) {
1056         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1057     }
1058 
1059     // See if this is a touch pad.
1060     // Is this a new modern multi-touch driver?
1061     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1062             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1063         // Some joysticks such as the PS3 controller report axes that conflict
1064         // with the ABS_MT range.  Try to confirm that the device really is
1065         // a touch screen.
1066         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1067             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1068         }
1069     // Is this an old style single-touch driver?
1070     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1071             && test_bit(ABS_X, device->absBitmask)
1072             && test_bit(ABS_Y, device->absBitmask)) {
1073         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1074     }
1075 
1076     // See if this device is a joystick.
1077     // Assumes that joysticks always have gamepad buttons in order to distinguish them
1078     // from other devices such as accelerometers that also have absolute axes.
1079     if (haveGamepadButtons) {
1080         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1081         for (int i = 0; i <= ABS_MAX; i++) {
1082             if (test_bit(i, device->absBitmask)
1083                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1084                 device->classes = assumedClasses;
1085                 break;
1086             }
1087         }
1088     }
1089 
1090     // Check whether this device has switches.
1091     for (int i = 0; i <= SW_MAX; i++) {
1092         if (test_bit(i, device->swBitmask)) {
1093             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1094             break;
1095         }
1096     }
1097 
1098     // Check whether this device supports the vibrator.
1099     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1100         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1101     }
1102 
1103     // Configure virtual keys.
1104     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1105         // Load the virtual keys for the touch screen, if any.
1106         // We do this now so that we can make sure to load the keymap if necessary.
1107         status_t status = loadVirtualKeyMapLocked(device);
1108         if (!status) {
1109             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1110         }
1111     }
1112 
1113     // Load the key map.
1114     // We need to do this for joysticks too because the key layout may specify axes.
1115     status_t keyMapStatus = NAME_NOT_FOUND;
1116     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1117         // Load the keymap for the device.
1118         keyMapStatus = loadKeyMapLocked(device);
1119     }
1120 
1121     // Configure the keyboard, gamepad or virtual keyboard.
1122     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1123         // Register the keyboard as a built-in keyboard if it is eligible.
1124         if (!keyMapStatus
1125                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1126                 && isEligibleBuiltInKeyboard(device->identifier,
1127                         device->configuration, &device->keyMap)) {
1128             mBuiltInKeyboardId = device->id;
1129         }
1130 
1131         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1132         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1133             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1134         }
1135 
1136         // See if this device has a DPAD.
1137         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1138                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1139                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1140                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1141                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1142             device->classes |= INPUT_DEVICE_CLASS_DPAD;
1143         }
1144 
1145         // See if this device has a gamepad.
1146         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1147             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1148                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1149                 break;
1150             }
1151         }
1152     }
1153 
1154     // If the device isn't recognized as something we handle, don't monitor it.
1155     if (device->classes == 0) {
1156         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1157                 deviceId, devicePath, device->identifier.name.string());
1158         delete device;
1159         return -1;
1160     }
1161 
1162     // Determine whether the device is external or internal.
1163     if (isExternalDeviceLocked(device)) {
1164         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1165     }
1166 
1167     // Register with epoll.
1168     struct epoll_event eventItem;
1169     memset(&eventItem, 0, sizeof(eventItem));
1170     eventItem.events = EPOLLIN;
1171     eventItem.data.u32 = deviceId;
1172     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1173         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1174         delete device;
1175         return -1;
1176     }
1177 
1178     // Enable wake-lock behavior on kernels that support it.
1179     // TODO: Only need this for devices that can really wake the system.
1180     bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
1181 
1182     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1183     // associated with input events.  This is important because the input system
1184     // uses the timestamps extensively and assumes they were recorded using the monotonic
1185     // clock.
1186     //
1187     // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1188     // clock to use to input event timestamps.  The standard kernel behavior was to
1189     // record a real time timestamp, which isn't what we want.  Android kernels therefore
1190     // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1191     // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1192     // clock to be used instead of the real time clock.
1193     //
1194     // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1195     // Therefore, we no longer require the Android-specific kernel patch described above
1196     // as long as we make sure to set select the monotonic clock.  We do that here.
1197     int clockId = CLOCK_MONOTONIC;
1198     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1199 
1200     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1201             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1202             "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
1203          deviceId, fd, devicePath, device->identifier.name.string(),
1204          device->classes,
1205          device->configurationFile.string(),
1206          device->keyMap.keyLayoutFile.string(),
1207          device->keyMap.keyCharacterMapFile.string(),
1208          toString(mBuiltInKeyboardId == deviceId),
1209          toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
1210 
1211     addDeviceLocked(device);
1212     return 0;
1213 }
1214 
createVirtualKeyboardLocked()1215 void EventHub::createVirtualKeyboardLocked() {
1216     InputDeviceIdentifier identifier;
1217     identifier.name = "Virtual";
1218     identifier.uniqueId = "<virtual>";
1219     setDescriptor(identifier);
1220 
1221     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1222     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1223             | INPUT_DEVICE_CLASS_ALPHAKEY
1224             | INPUT_DEVICE_CLASS_DPAD
1225             | INPUT_DEVICE_CLASS_VIRTUAL;
1226     loadKeyMapLocked(device);
1227     addDeviceLocked(device);
1228 }
1229 
addDeviceLocked(Device * device)1230 void EventHub::addDeviceLocked(Device* device) {
1231     mDevices.add(device->id, device);
1232     device->next = mOpeningDevices;
1233     mOpeningDevices = device;
1234 }
1235 
loadConfigurationLocked(Device * device)1236 void EventHub::loadConfigurationLocked(Device* device) {
1237     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1238             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1239     if (device->configurationFile.isEmpty()) {
1240         ALOGD("No input device configuration file found for device '%s'.",
1241                 device->identifier.name.string());
1242     } else {
1243         status_t status = PropertyMap::load(device->configurationFile,
1244                 &device->configuration);
1245         if (status) {
1246             ALOGE("Error loading input device configuration file for device '%s'.  "
1247                     "Using default configuration.",
1248                     device->identifier.name.string());
1249         }
1250     }
1251 }
1252 
loadVirtualKeyMapLocked(Device * device)1253 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1254     // The virtual key map is supplied by the kernel as a system board property file.
1255     String8 path;
1256     path.append("/sys/board_properties/virtualkeys.");
1257     path.append(device->identifier.name);
1258     if (access(path.string(), R_OK)) {
1259         return NAME_NOT_FOUND;
1260     }
1261     return VirtualKeyMap::load(path, &device->virtualKeyMap);
1262 }
1263 
loadKeyMapLocked(Device * device)1264 status_t EventHub::loadKeyMapLocked(Device* device) {
1265     return device->keyMap.load(device->identifier, device->configuration);
1266 }
1267 
isExternalDeviceLocked(Device * device)1268 bool EventHub::isExternalDeviceLocked(Device* device) {
1269     if (device->configuration) {
1270         bool value;
1271         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1272             return !value;
1273         }
1274     }
1275     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1276 }
1277 
hasKeycodeLocked(Device * device,int keycode) const1278 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1279     if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1280         return false;
1281     }
1282 
1283     Vector<int32_t> scanCodes;
1284     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1285     const size_t N = scanCodes.size();
1286     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1287         int32_t sc = scanCodes.itemAt(i);
1288         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1289             return true;
1290         }
1291     }
1292 
1293     return false;
1294 }
1295 
closeDeviceByPathLocked(const char * devicePath)1296 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1297     Device* device = getDeviceByPathLocked(devicePath);
1298     if (device) {
1299         closeDeviceLocked(device);
1300         return 0;
1301     }
1302     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1303     return -1;
1304 }
1305 
closeAllDevicesLocked()1306 void EventHub::closeAllDevicesLocked() {
1307     while (mDevices.size() > 0) {
1308         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1309     }
1310 }
1311 
closeDeviceLocked(Device * device)1312 void EventHub::closeDeviceLocked(Device* device) {
1313     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1314          device->path.string(), device->identifier.name.string(), device->id,
1315          device->fd, device->classes);
1316 
1317     if (device->id == mBuiltInKeyboardId) {
1318         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1319                 device->path.string(), mBuiltInKeyboardId);
1320         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1321     }
1322 
1323     if (!device->isVirtual()) {
1324         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1325             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1326         }
1327     }
1328 
1329     mDevices.removeItem(device->id);
1330     device->close();
1331 
1332     // Unlink for opening devices list if it is present.
1333     Device* pred = NULL;
1334     bool found = false;
1335     for (Device* entry = mOpeningDevices; entry != NULL; ) {
1336         if (entry == device) {
1337             found = true;
1338             break;
1339         }
1340         pred = entry;
1341         entry = entry->next;
1342     }
1343     if (found) {
1344         // Unlink the device from the opening devices list then delete it.
1345         // We don't need to tell the client that the device was closed because
1346         // it does not even know it was opened in the first place.
1347         ALOGI("Device %s was immediately closed after opening.", device->path.string());
1348         if (pred) {
1349             pred->next = device->next;
1350         } else {
1351             mOpeningDevices = device->next;
1352         }
1353         delete device;
1354     } else {
1355         // Link into closing devices list.
1356         // The device will be deleted later after we have informed the client.
1357         device->next = mClosingDevices;
1358         mClosingDevices = device;
1359     }
1360 }
1361 
readNotifyLocked()1362 status_t EventHub::readNotifyLocked() {
1363     int res;
1364     char devname[PATH_MAX];
1365     char *filename;
1366     char event_buf[512];
1367     int event_size;
1368     int event_pos = 0;
1369     struct inotify_event *event;
1370 
1371     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1372     res = read(mINotifyFd, event_buf, sizeof(event_buf));
1373     if(res < (int)sizeof(*event)) {
1374         if(errno == EINTR)
1375             return 0;
1376         ALOGW("could not get event, %s\n", strerror(errno));
1377         return -1;
1378     }
1379     //printf("got %d bytes of event information\n", res);
1380 
1381     strcpy(devname, DEVICE_PATH);
1382     filename = devname + strlen(devname);
1383     *filename++ = '/';
1384 
1385     while(res >= (int)sizeof(*event)) {
1386         event = (struct inotify_event *)(event_buf + event_pos);
1387         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1388         if(event->len) {
1389             strcpy(filename, event->name);
1390             if(event->mask & IN_CREATE) {
1391                 openDeviceLocked(devname);
1392             } else {
1393                 ALOGI("Removing device '%s' due to inotify event\n", devname);
1394                 closeDeviceByPathLocked(devname);
1395             }
1396         }
1397         event_size = sizeof(*event) + event->len;
1398         res -= event_size;
1399         event_pos += event_size;
1400     }
1401     return 0;
1402 }
1403 
scanDirLocked(const char * dirname)1404 status_t EventHub::scanDirLocked(const char *dirname)
1405 {
1406     char devname[PATH_MAX];
1407     char *filename;
1408     DIR *dir;
1409     struct dirent *de;
1410     dir = opendir(dirname);
1411     if(dir == NULL)
1412         return -1;
1413     strcpy(devname, dirname);
1414     filename = devname + strlen(devname);
1415     *filename++ = '/';
1416     while((de = readdir(dir))) {
1417         if(de->d_name[0] == '.' &&
1418            (de->d_name[1] == '\0' ||
1419             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1420             continue;
1421         strcpy(filename, de->d_name);
1422         openDeviceLocked(devname);
1423     }
1424     closedir(dir);
1425     return 0;
1426 }
1427 
requestReopenDevices()1428 void EventHub::requestReopenDevices() {
1429     ALOGV("requestReopenDevices() called");
1430 
1431     AutoMutex _l(mLock);
1432     mNeedToReopenDevices = true;
1433 }
1434 
dump(String8 & dump)1435 void EventHub::dump(String8& dump) {
1436     dump.append("Event Hub State:\n");
1437 
1438     { // acquire lock
1439         AutoMutex _l(mLock);
1440 
1441         dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1442 
1443         dump.append(INDENT "Devices:\n");
1444 
1445         for (size_t i = 0; i < mDevices.size(); i++) {
1446             const Device* device = mDevices.valueAt(i);
1447             if (mBuiltInKeyboardId == device->id) {
1448                 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1449                         device->id, device->identifier.name.string());
1450             } else {
1451                 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1452                         device->identifier.name.string());
1453             }
1454             dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1455             dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1456             dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1457             dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1458             dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1459             dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1460                     "product=0x%04x, version=0x%04x\n",
1461                     device->identifier.bus, device->identifier.vendor,
1462                     device->identifier.product, device->identifier.version);
1463             dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1464                     device->keyMap.keyLayoutFile.string());
1465             dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1466                     device->keyMap.keyCharacterMapFile.string());
1467             dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1468                     device->configurationFile.string());
1469             dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1470                     toString(device->overlayKeyMap != NULL));
1471         }
1472     } // release lock
1473 }
1474 
monitor()1475 void EventHub::monitor() {
1476     // Acquire and release the lock to ensure that the event hub has not deadlocked.
1477     mLock.lock();
1478     mLock.unlock();
1479 }
1480 
1481 
1482 }; // namespace android
1483