• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Written by Doug Lea with assistance from members of JCP JSR-166
3  * Expert Group and released to the public domain, as explained at
4  * http://creativecommons.org/licenses/publicdomain
5  */
6 
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.concurrent.atomic.*;
10 import java.util.*;
11 
12 /**
13  * An {@link ExecutorService} that executes each submitted task using
14  * one of possibly several pooled threads, normally configured
15  * using {@link Executors} factory methods.
16  *
17  * <p>Thread pools address two different problems: they usually
18  * provide improved performance when executing large numbers of
19  * asynchronous tasks, due to reduced per-task invocation overhead,
20  * and they provide a means of bounding and managing the resources,
21  * including threads, consumed when executing a collection of tasks.
22  * Each {@code ThreadPoolExecutor} also maintains some basic
23  * statistics, such as the number of completed tasks.
24  *
25  * <p>To be useful across a wide range of contexts, this class
26  * provides many adjustable parameters and extensibility
27  * hooks. However, programmers are urged to use the more convenient
28  * {@link Executors} factory methods {@link
29  * Executors#newCachedThreadPool} (unbounded thread pool, with
30  * automatic thread reclamation), {@link Executors#newFixedThreadPool}
31  * (fixed size thread pool) and {@link
32  * Executors#newSingleThreadExecutor} (single background thread), that
33  * preconfigure settings for the most common usage
34  * scenarios. Otherwise, use the following guide when manually
35  * configuring and tuning this class:
36  *
37  * <dl>
38  *
39  * <dt>Core and maximum pool sizes</dt>
40  *
41  * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
42  * pool size (see {@link #getPoolSize})
43  * according to the bounds set by
44  * corePoolSize (see {@link #getCorePoolSize}) and
45  * maximumPoolSize (see {@link #getMaximumPoolSize}).
46  *
47  * When a new task is submitted in method {@link #execute}, and fewer
48  * than corePoolSize threads are running, a new thread is created to
49  * handle the request, even if other worker threads are idle.  If
50  * there are more than corePoolSize but less than maximumPoolSize
51  * threads running, a new thread will be created only if the queue is
52  * full.  By setting corePoolSize and maximumPoolSize the same, you
53  * create a fixed-size thread pool. By setting maximumPoolSize to an
54  * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
55  * allow the pool to accommodate an arbitrary number of concurrent
56  * tasks. Most typically, core and maximum pool sizes are set only
57  * upon construction, but they may also be changed dynamically using
58  * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
59  *
60  * <dt>On-demand construction</dt>
61  *
62  * <dd> By default, even core threads are initially created and
63  * started only when new tasks arrive, but this can be overridden
64  * dynamically using method {@link #prestartCoreThread} or {@link
65  * #prestartAllCoreThreads}.  You probably want to prestart threads if
66  * you construct the pool with a non-empty queue. </dd>
67  *
68  * <dt>Creating new threads</dt>
69  *
70  * <dd>New threads are created using a {@link ThreadFactory}.  If not
71  * otherwise specified, a {@link Executors#defaultThreadFactory} is
72  * used, that creates threads to all be in the same {@link
73  * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
74  * non-daemon status. By supplying a different ThreadFactory, you can
75  * alter the thread's name, thread group, priority, daemon status,
76  * etc. If a {@code ThreadFactory} fails to create a thread when asked
77  * by returning null from {@code newThread}, the executor will
78  * continue, but might not be able to execute any tasks.</dd>
79  *
80  * <dt>Keep-alive times</dt>
81  *
82  * <dd>If the pool currently has more than corePoolSize threads,
83  * excess threads will be terminated if they have been idle for more
84  * than the keepAliveTime (see {@link #getKeepAliveTime}). This
85  * provides a means of reducing resource consumption when the pool is
86  * not being actively used. If the pool becomes more active later, new
87  * threads will be constructed. This parameter can also be changed
88  * dynamically using method {@link #setKeepAliveTime}. Using a value
89  * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
90  * disables idle threads from ever terminating prior to shut down. By
91  * default, the keep-alive policy applies only when there are more
92  * than corePoolSizeThreads. But method {@link
93  * #allowCoreThreadTimeOut(boolean)} can be used to apply this
94  * time-out policy to core threads as well, so long as the
95  * keepAliveTime value is non-zero. </dd>
96  *
97  * <dt>Queuing</dt>
98  *
99  * <dd>Any {@link BlockingQueue} may be used to transfer and hold
100  * submitted tasks.  The use of this queue interacts with pool sizing:
101  *
102  * <ul>
103  *
104  * <li> If fewer than corePoolSize threads are running, the Executor
105  * always prefers adding a new thread
106  * rather than queuing.</li>
107  *
108  * <li> If corePoolSize or more threads are running, the Executor
109  * always prefers queuing a request rather than adding a new
110  * thread.</li>
111  *
112  * <li> If a request cannot be queued, a new thread is created unless
113  * this would exceed maximumPoolSize, in which case, the task will be
114  * rejected.</li>
115  *
116  * </ul>
117  *
118  * There are three general strategies for queuing:
119  * <ol>
120  *
121  * <li> <em> Direct handoffs.</em> A good default choice for a work
122  * queue is a {@link SynchronousQueue} that hands off tasks to threads
123  * without otherwise holding them. Here, an attempt to queue a task
124  * will fail if no threads are immediately available to run it, so a
125  * new thread will be constructed. This policy avoids lockups when
126  * handling sets of requests that might have internal dependencies.
127  * Direct handoffs generally require unbounded maximumPoolSizes to
128  * avoid rejection of new submitted tasks. This in turn admits the
129  * possibility of unbounded thread growth when commands continue to
130  * arrive on average faster than they can be processed.  </li>
131  *
132  * <li><em> Unbounded queues.</em> Using an unbounded queue (for
133  * example a {@link LinkedBlockingQueue} without a predefined
134  * capacity) will cause new tasks to wait in the queue when all
135  * corePoolSize threads are busy. Thus, no more than corePoolSize
136  * threads will ever be created. (And the value of the maximumPoolSize
137  * therefore doesn't have any effect.)  This may be appropriate when
138  * each task is completely independent of others, so tasks cannot
139  * affect each others execution; for example, in a web page server.
140  * While this style of queuing can be useful in smoothing out
141  * transient bursts of requests, it admits the possibility of
142  * unbounded work queue growth when commands continue to arrive on
143  * average faster than they can be processed.  </li>
144  *
145  * <li><em>Bounded queues.</em> A bounded queue (for example, an
146  * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
147  * used with finite maximumPoolSizes, but can be more difficult to
148  * tune and control.  Queue sizes and maximum pool sizes may be traded
149  * off for each other: Using large queues and small pools minimizes
150  * CPU usage, OS resources, and context-switching overhead, but can
151  * lead to artificially low throughput.  If tasks frequently block (for
152  * example if they are I/O bound), a system may be able to schedule
153  * time for more threads than you otherwise allow. Use of small queues
154  * generally requires larger pool sizes, which keeps CPUs busier but
155  * may encounter unacceptable scheduling overhead, which also
156  * decreases throughput.  </li>
157  *
158  * </ol>
159  *
160  * </dd>
161  *
162  * <dt>Rejected tasks</dt>
163  *
164  * <dd> New tasks submitted in method {@link #execute} will be
165  * <em>rejected</em> when the Executor has been shut down, and also
166  * when the Executor uses finite bounds for both maximum threads and
167  * work queue capacity, and is saturated.  In either case, the {@code
168  * execute} method invokes the {@link
169  * RejectedExecutionHandler#rejectedExecution} method of its {@link
170  * RejectedExecutionHandler}.  Four predefined handler policies are
171  * provided:
172  *
173  * <ol>
174  *
175  * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
176  * handler throws a runtime {@link RejectedExecutionException} upon
177  * rejection. </li>
178  *
179  * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
180  * that invokes {@code execute} itself runs the task. This provides a
181  * simple feedback control mechanism that will slow down the rate that
182  * new tasks are submitted. </li>
183  *
184  * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
185  * cannot be executed is simply dropped.  </li>
186  *
187  * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
188  * executor is not shut down, the task at the head of the work queue
189  * is dropped, and then execution is retried (which can fail again,
190  * causing this to be repeated.) </li>
191  *
192  * </ol>
193  *
194  * It is possible to define and use other kinds of {@link
195  * RejectedExecutionHandler} classes. Doing so requires some care
196  * especially when policies are designed to work only under particular
197  * capacity or queuing policies. </dd>
198  *
199  * <dt>Hook methods</dt>
200  *
201  * <dd>This class provides {@code protected} overridable {@link
202  * #beforeExecute} and {@link #afterExecute} methods that are called
203  * before and after execution of each task.  These can be used to
204  * manipulate the execution environment; for example, reinitializing
205  * ThreadLocals, gathering statistics, or adding log
206  * entries. Additionally, method {@link #terminated} can be overridden
207  * to perform any special processing that needs to be done once the
208  * Executor has fully terminated.
209  *
210  * <p>If hook or callback methods throw exceptions, internal worker
211  * threads may in turn fail and abruptly terminate.</dd>
212  *
213  * <dt>Queue maintenance</dt>
214  *
215  * <dd> Method {@link #getQueue} allows access to the work queue for
216  * purposes of monitoring and debugging.  Use of this method for any
217  * other purpose is strongly discouraged.  Two supplied methods,
218  * {@link #remove} and {@link #purge} are available to assist in
219  * storage reclamation when large numbers of queued tasks become
220  * cancelled.</dd>
221  *
222  * <dt>Finalization</dt>
223  *
224  * <dd> A pool that is no longer referenced in a program <em>AND</em>
225  * has no remaining threads will be {@code shutdown} automatically. If
226  * you would like to ensure that unreferenced pools are reclaimed even
227  * if users forget to call {@link #shutdown}, then you must arrange
228  * that unused threads eventually die, by setting appropriate
229  * keep-alive times, using a lower bound of zero core threads and/or
230  * setting {@link #allowCoreThreadTimeOut(boolean)}.  </dd>
231  *
232  * </dl>
233  *
234  * <p> <b>Extension example</b>. Most extensions of this class
235  * override one or more of the protected hook methods. For example,
236  * here is a subclass that adds a simple pause/resume feature:
237  *
238  *  <pre> {@code
239  * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
240  *   private boolean isPaused;
241  *   private ReentrantLock pauseLock = new ReentrantLock();
242  *   private Condition unpaused = pauseLock.newCondition();
243  *
244  *   public PausableThreadPoolExecutor(...) { super(...); }
245  *
246  *   protected void beforeExecute(Thread t, Runnable r) {
247  *     super.beforeExecute(t, r);
248  *     pauseLock.lock();
249  *     try {
250  *       while (isPaused) unpaused.await();
251  *     } catch (InterruptedException ie) {
252  *       t.interrupt();
253  *     } finally {
254  *       pauseLock.unlock();
255  *     }
256  *   }
257  *
258  *   public void pause() {
259  *     pauseLock.lock();
260  *     try {
261  *       isPaused = true;
262  *     } finally {
263  *       pauseLock.unlock();
264  *     }
265  *   }
266  *
267  *   public void resume() {
268  *     pauseLock.lock();
269  *     try {
270  *       isPaused = false;
271  *       unpaused.signalAll();
272  *     } finally {
273  *       pauseLock.unlock();
274  *     }
275  *   }
276  * }}</pre>
277  *
278  * @since 1.5
279  * @author Doug Lea
280  */
281 public class ThreadPoolExecutor extends AbstractExecutorService {
282     /**
283      * The main pool control state, ctl, is an atomic integer packing
284      * two conceptual fields
285      *   workerCount, indicating the effective number of threads
286      *   runState,    indicating whether running, shutting down etc
287      *
288      * In order to pack them into one int, we limit workerCount to
289      * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
290      * billion) otherwise representable. If this is ever an issue in
291      * the future, the variable can be changed to be an AtomicLong,
292      * and the shift/mask constants below adjusted. But until the need
293      * arises, this code is a bit faster and simpler using an int.
294      *
295      * The workerCount is the number of workers that have been
296      * permitted to start and not permitted to stop.  The value may be
297      * transiently different from the actual number of live threads,
298      * for example when a ThreadFactory fails to create a thread when
299      * asked, and when exiting threads are still performing
300      * bookkeeping before terminating. The user-visible pool size is
301      * reported as the current size of the workers set.
302      *
303      * The runState provides the main lifecyle control, taking on values:
304      *
305      *   RUNNING:  Accept new tasks and process queued tasks
306      *   SHUTDOWN: Don't accept new tasks, but process queued tasks
307      *   STOP:     Don't accept new tasks, don't process queued tasks,
308      *             and interrupt in-progress tasks
309      *   TIDYING:  All tasks have terminated, workerCount is zero,
310      *             the thread transitioning to state TIDYING
311      *             will run the terminated() hook method
312      *   TERMINATED: terminated() has completed
313      *
314      * The numerical order among these values matters, to allow
315      * ordered comparisons. The runState monotonically increases over
316      * time, but need not hit each state. The transitions are:
317      *
318      * RUNNING -> SHUTDOWN
319      *    On invocation of shutdown(), perhaps implicitly in finalize()
320      * (RUNNING or SHUTDOWN) -> STOP
321      *    On invocation of shutdownNow()
322      * SHUTDOWN -> TIDYING
323      *    When both queue and pool are empty
324      * STOP -> TIDYING
325      *    When pool is empty
326      * TIDYING -> TERMINATED
327      *    When the terminated() hook method has completed
328      *
329      * Threads waiting in awaitTermination() will return when the
330      * state reaches TERMINATED.
331      *
332      * Detecting the transition from SHUTDOWN to TIDYING is less
333      * straightforward than you'd like because the queue may become
334      * empty after non-empty and vice versa during SHUTDOWN state, but
335      * we can only terminate if, after seeing that it is empty, we see
336      * that workerCount is 0 (which sometimes entails a recheck -- see
337      * below).
338      */
339     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
340     private static final int COUNT_BITS = Integer.SIZE - 3;
341     private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
342 
343     // runState is stored in the high-order bits
344     private static final int RUNNING    = -1 << COUNT_BITS;
345     private static final int SHUTDOWN   =  0 << COUNT_BITS;
346     private static final int STOP       =  1 << COUNT_BITS;
347     private static final int TIDYING    =  2 << COUNT_BITS;
348     private static final int TERMINATED =  3 << COUNT_BITS;
349 
350     // Packing and unpacking ctl
runStateOf(int c)351     private static int runStateOf(int c)     { return c & ~CAPACITY; }
workerCountOf(int c)352     private static int workerCountOf(int c)  { return c & CAPACITY; }
ctlOf(int rs, int wc)353     private static int ctlOf(int rs, int wc) { return rs | wc; }
354 
355     /*
356      * Bit field accessors that don't require unpacking ctl.
357      * These depend on the bit layout and on workerCount being never negative.
358      */
359 
runStateLessThan(int c, int s)360     private static boolean runStateLessThan(int c, int s) {
361         return c < s;
362     }
363 
runStateAtLeast(int c, int s)364     private static boolean runStateAtLeast(int c, int s) {
365         return c >= s;
366     }
367 
isRunning(int c)368     private static boolean isRunning(int c) {
369         return c < SHUTDOWN;
370     }
371 
372     /**
373      * Attempt to CAS-increment the workerCount field of ctl.
374      */
compareAndIncrementWorkerCount(int expect)375     private boolean compareAndIncrementWorkerCount(int expect) {
376         return ctl.compareAndSet(expect, expect + 1);
377     }
378 
379     /**
380      * Attempt to CAS-decrement the workerCount field of ctl.
381      */
compareAndDecrementWorkerCount(int expect)382     private boolean compareAndDecrementWorkerCount(int expect) {
383         return ctl.compareAndSet(expect, expect - 1);
384     }
385 
386     /**
387      * Decrements the workerCount field of ctl. This is called only on
388      * abrupt termination of a thread (see processWorkerExit). Other
389      * decrements are performed within getTask.
390      */
decrementWorkerCount()391     private void decrementWorkerCount() {
392         do {} while (! compareAndDecrementWorkerCount(ctl.get()));
393     }
394 
395     /**
396      * The queue used for holding tasks and handing off to worker
397      * threads.  We do not require that workQueue.poll() returning
398      * null necessarily means that workQueue.isEmpty(), so rely
399      * solely on isEmpty to see if the queue is empty (which we must
400      * do for example when deciding whether to transition from
401      * SHUTDOWN to TIDYING).  This accommodates special-purpose
402      * queues such as DelayQueues for which poll() is allowed to
403      * return null even if it may later return non-null when delays
404      * expire.
405      */
406     private final BlockingQueue<Runnable> workQueue;
407 
408     /**
409      * Lock held on access to workers set and related bookkeeping.
410      * While we could use a concurrent set of some sort, it turns out
411      * to be generally preferable to use a lock. Among the reasons is
412      * that this serializes interruptIdleWorkers, which avoids
413      * unnecessary interrupt storms, especially during shutdown.
414      * Otherwise exiting threads would concurrently interrupt those
415      * that have not yet interrupted. It also simplifies some of the
416      * associated statistics bookkeeping of largestPoolSize etc. We
417      * also hold mainLock on shutdown and shutdownNow, for the sake of
418      * ensuring workers set is stable while separately checking
419      * permission to interrupt and actually interrupting.
420      */
421     private final ReentrantLock mainLock = new ReentrantLock();
422 
423     /**
424      * Set containing all worker threads in pool. Accessed only when
425      * holding mainLock.
426      */
427     private final HashSet<Worker> workers = new HashSet<Worker>();
428 
429     /**
430      * Wait condition to support awaitTermination
431      */
432     private final Condition termination = mainLock.newCondition();
433 
434     /**
435      * Tracks largest attained pool size. Accessed only under
436      * mainLock.
437      */
438     private int largestPoolSize;
439 
440     /**
441      * Counter for completed tasks. Updated only on termination of
442      * worker threads. Accessed only under mainLock.
443      */
444     private long completedTaskCount;
445 
446     /*
447      * All user control parameters are declared as volatiles so that
448      * ongoing actions are based on freshest values, but without need
449      * for locking, since no internal invariants depend on them
450      * changing synchronously with respect to other actions.
451      */
452 
453     /**
454      * Factory for new threads. All threads are created using this
455      * factory (via method addWorker).  All callers must be prepared
456      * for addWorker to fail, which may reflect a system or user's
457      * policy limiting the number of threads.  Even though it is not
458      * treated as an error, failure to create threads may result in
459      * new tasks being rejected or existing ones remaining stuck in
460      * the queue. On the other hand, no special precautions exist to
461      * handle OutOfMemoryErrors that might be thrown while trying to
462      * create threads, since there is generally no recourse from
463      * within this class.
464      */
465     private volatile ThreadFactory threadFactory;
466 
467     /**
468      * Handler called when saturated or shutdown in execute.
469      */
470     private volatile RejectedExecutionHandler handler;
471 
472     /**
473      * Timeout in nanoseconds for idle threads waiting for work.
474      * Threads use this timeout when there are more than corePoolSize
475      * present or if allowCoreThreadTimeOut. Otherwise they wait
476      * forever for new work.
477      */
478     private volatile long keepAliveTime;
479 
480     /**
481      * If false (default), core threads stay alive even when idle.
482      * If true, core threads use keepAliveTime to time out waiting
483      * for work.
484      */
485     private volatile boolean allowCoreThreadTimeOut;
486 
487     /**
488      * Core pool size is the minimum number of workers to keep alive
489      * (and not allow to time out etc) unless allowCoreThreadTimeOut
490      * is set, in which case the minimum is zero.
491      */
492     private volatile int corePoolSize;
493 
494     /**
495      * Maximum pool size. Note that the actual maximum is internally
496      * bounded by CAPACITY.
497      */
498     private volatile int maximumPoolSize;
499 
500     /**
501      * The default rejected execution handler
502      */
503     private static final RejectedExecutionHandler defaultHandler =
504         new AbortPolicy();
505 
506     /**
507      * Permission required for callers of shutdown and shutdownNow.
508      * We additionally require (see checkShutdownAccess) that callers
509      * have permission to actually interrupt threads in the worker set
510      * (as governed by Thread.interrupt, which relies on
511      * ThreadGroup.checkAccess, which in turn relies on
512      * SecurityManager.checkAccess). Shutdowns are attempted only if
513      * these checks pass.
514      *
515      * All actual invocations of Thread.interrupt (see
516      * interruptIdleWorkers and interruptWorkers) ignore
517      * SecurityExceptions, meaning that the attempted interrupts
518      * silently fail. In the case of shutdown, they should not fail
519      * unless the SecurityManager has inconsistent policies, sometimes
520      * allowing access to a thread and sometimes not. In such cases,
521      * failure to actually interrupt threads may disable or delay full
522      * termination. Other uses of interruptIdleWorkers are advisory,
523      * and failure to actually interrupt will merely delay response to
524      * configuration changes so is not handled exceptionally.
525      */
526     private static final RuntimePermission shutdownPerm =
527         new RuntimePermission("modifyThread");
528 
529     /**
530      * Class Worker mainly maintains interrupt control state for
531      * threads running tasks, along with other minor bookkeeping.
532      * This class opportunistically extends AbstractQueuedSynchronizer
533      * to simplify acquiring and releasing a lock surrounding each
534      * task execution.  This protects against interrupts that are
535      * intended to wake up a worker thread waiting for a task from
536      * instead interrupting a task being run.  We implement a simple
537      * non-reentrant mutual exclusion lock rather than use ReentrantLock
538      * because we do not want worker tasks to be able to reacquire the
539      * lock when they invoke pool control methods like setCorePoolSize.
540      */
541     private final class Worker
542         extends AbstractQueuedSynchronizer
543         implements Runnable
544     {
545         /**
546          * This class will never be serialized, but we provide a
547          * serialVersionUID to suppress a javac warning.
548          */
549         private static final long serialVersionUID = 6138294804551838833L;
550 
551         /** Thread this worker is running in.  Null if factory fails. */
552         final Thread thread;
553         /** Initial task to run.  Possibly null. */
554         Runnable firstTask;
555         /** Per-thread task counter */
556         volatile long completedTasks;
557 
558         /**
559          * Creates with given first task and thread from ThreadFactory.
560          * @param firstTask the first task (null if none)
561          */
Worker(Runnable firstTask)562         Worker(Runnable firstTask) {
563             this.firstTask = firstTask;
564             this.thread = getThreadFactory().newThread(this);
565         }
566 
567         /** Delegates main run loop to outer runWorker  */
run()568         public void run() {
569             runWorker(this);
570         }
571 
572         // Lock methods
573         //
574         // The value 0 represents the unlocked state.
575         // The value 1 represents the locked state.
576 
isHeldExclusively()577         protected boolean isHeldExclusively() {
578             return getState() == 1;
579         }
580 
tryAcquire(int unused)581         protected boolean tryAcquire(int unused) {
582             if (compareAndSetState(0, 1)) {
583                 setExclusiveOwnerThread(Thread.currentThread());
584                 return true;
585             }
586             return false;
587         }
588 
tryRelease(int unused)589         protected boolean tryRelease(int unused) {
590             setExclusiveOwnerThread(null);
591             setState(0);
592             return true;
593         }
594 
lock()595         public void lock()        { acquire(1); }
tryLock()596         public boolean tryLock()  { return tryAcquire(1); }
unlock()597         public void unlock()      { release(1); }
isLocked()598         public boolean isLocked() { return isHeldExclusively(); }
599     }
600 
601     /*
602      * Methods for setting control state
603      */
604 
605     /**
606      * Transitions runState to given target, or leaves it alone if
607      * already at least the given target.
608      *
609      * @param targetState the desired state, either SHUTDOWN or STOP
610      *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
611      */
advanceRunState(int targetState)612     private void advanceRunState(int targetState) {
613         for (;;) {
614             int c = ctl.get();
615             if (runStateAtLeast(c, targetState) ||
616                 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
617                 break;
618         }
619     }
620 
621     /**
622      * Transitions to TERMINATED state if either (SHUTDOWN and pool
623      * and queue empty) or (STOP and pool empty).  If otherwise
624      * eligible to terminate but workerCount is nonzero, interrupts an
625      * idle worker to ensure that shutdown signals propagate. This
626      * method must be called following any action that might make
627      * termination possible -- reducing worker count or removing tasks
628      * from the queue during shutdown. The method is non-private to
629      * allow access from ScheduledThreadPoolExecutor.
630      */
tryTerminate()631     final void tryTerminate() {
632         for (;;) {
633             int c = ctl.get();
634             if (isRunning(c) ||
635                 runStateAtLeast(c, TIDYING) ||
636                 (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
637                 return;
638             if (workerCountOf(c) != 0) { // Eligible to terminate
639                 interruptIdleWorkers(ONLY_ONE);
640                 return;
641             }
642 
643             final ReentrantLock mainLock = this.mainLock;
644             mainLock.lock();
645             try {
646                 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
647                     try {
648                         terminated();
649                     } finally {
650                         ctl.set(ctlOf(TERMINATED, 0));
651                         termination.signalAll();
652                     }
653                     return;
654                 }
655             } finally {
656                 mainLock.unlock();
657             }
658             // else retry on failed CAS
659         }
660     }
661 
662     /*
663      * Methods for controlling interrupts to worker threads.
664      */
665 
666     /**
667      * If there is a security manager, makes sure caller has
668      * permission to shut down threads in general (see shutdownPerm).
669      * If this passes, additionally makes sure the caller is allowed
670      * to interrupt each worker thread. This might not be true even if
671      * first check passed, if the SecurityManager treats some threads
672      * specially.
673      */
checkShutdownAccess()674     private void checkShutdownAccess() {
675         SecurityManager security = System.getSecurityManager();
676         if (security != null) {
677             security.checkPermission(shutdownPerm);
678             final ReentrantLock mainLock = this.mainLock;
679             mainLock.lock();
680             try {
681                 for (Worker w : workers)
682                     security.checkAccess(w.thread);
683             } finally {
684                 mainLock.unlock();
685             }
686         }
687     }
688 
689     /**
690      * Interrupts all threads, even if active. Ignores SecurityExceptions
691      * (in which case some threads may remain uninterrupted).
692      */
interruptWorkers()693     private void interruptWorkers() {
694         final ReentrantLock mainLock = this.mainLock;
695         mainLock.lock();
696         try {
697             for (Worker w : workers) {
698                 try {
699                     w.thread.interrupt();
700                 } catch (SecurityException ignore) {
701                 }
702             }
703         } finally {
704             mainLock.unlock();
705         }
706     }
707 
708     /**
709      * Interrupts threads that might be waiting for tasks (as
710      * indicated by not being locked) so they can check for
711      * termination or configuration changes. Ignores
712      * SecurityExceptions (in which case some threads may remain
713      * uninterrupted).
714      *
715      * @param onlyOne If true, interrupt at most one worker. This is
716      * called only from tryTerminate when termination is otherwise
717      * enabled but there are still other workers.  In this case, at
718      * most one waiting worker is interrupted to propagate shutdown
719      * signals in case all threads are currently waiting.
720      * Interrupting any arbitrary thread ensures that newly arriving
721      * workers since shutdown began will also eventually exit.
722      * To guarantee eventual termination, it suffices to always
723      * interrupt only one idle worker, but shutdown() interrupts all
724      * idle workers so that redundant workers exit promptly, not
725      * waiting for a straggler task to finish.
726      */
interruptIdleWorkers(boolean onlyOne)727     private void interruptIdleWorkers(boolean onlyOne) {
728         final ReentrantLock mainLock = this.mainLock;
729         mainLock.lock();
730         try {
731             for (Worker w : workers) {
732                 Thread t = w.thread;
733                 if (!t.isInterrupted() && w.tryLock()) {
734                     try {
735                         t.interrupt();
736                     } catch (SecurityException ignore) {
737                     } finally {
738                         w.unlock();
739                     }
740                 }
741                 if (onlyOne)
742                     break;
743             }
744         } finally {
745             mainLock.unlock();
746         }
747     }
748 
749     /**
750      * Common form of interruptIdleWorkers, to avoid having to
751      * remember what the boolean argument means.
752      */
interruptIdleWorkers()753     private void interruptIdleWorkers() {
754         interruptIdleWorkers(false);
755     }
756 
757     private static final boolean ONLY_ONE = true;
758 
759     /**
760      * Ensures that unless the pool is stopping, the current thread
761      * does not have its interrupt set. This requires a double-check
762      * of state in case the interrupt was cleared concurrently with a
763      * shutdownNow -- if so, the interrupt is re-enabled.
764      */
clearInterruptsForTaskRun()765     private void clearInterruptsForTaskRun() {
766         if (runStateLessThan(ctl.get(), STOP) &&
767             Thread.interrupted() &&
768             runStateAtLeast(ctl.get(), STOP))
769             Thread.currentThread().interrupt();
770     }
771 
772     /*
773      * Misc utilities, most of which are also exported to
774      * ScheduledThreadPoolExecutor
775      */
776 
777     /**
778      * Invokes the rejected execution handler for the given command.
779      * Package-protected for use by ScheduledThreadPoolExecutor.
780      */
reject(Runnable command)781     final void reject(Runnable command) {
782         handler.rejectedExecution(command, this);
783     }
784 
785     /**
786      * Performs any further cleanup following run state transition on
787      * invocation of shutdown.  A no-op here, but used by
788      * ScheduledThreadPoolExecutor to cancel delayed tasks.
789      */
onShutdown()790     void onShutdown() {
791     }
792 
793     /**
794      * State check needed by ScheduledThreadPoolExecutor to
795      * enable running tasks during shutdown.
796      *
797      * @param shutdownOK true if should return true if SHUTDOWN
798      */
isRunningOrShutdown(boolean shutdownOK)799     final boolean isRunningOrShutdown(boolean shutdownOK) {
800         int rs = runStateOf(ctl.get());
801         return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
802     }
803 
804     /**
805      * Drains the task queue into a new list, normally using
806      * drainTo. But if the queue is a DelayQueue or any other kind of
807      * queue for which poll or drainTo may fail to remove some
808      * elements, it deletes them one by one.
809      */
drainQueue()810     private List<Runnable> drainQueue() {
811         BlockingQueue<Runnable> q = workQueue;
812         List<Runnable> taskList = new ArrayList<Runnable>();
813         q.drainTo(taskList);
814         if (!q.isEmpty()) {
815             for (Runnable r : q.toArray(new Runnable[0])) {
816                 if (q.remove(r))
817                     taskList.add(r);
818             }
819         }
820         return taskList;
821     }
822 
823     /*
824      * Methods for creating, running and cleaning up after workers
825      */
826 
827     /**
828      * Checks if a new worker can be added with respect to current
829      * pool state and the given bound (either core or maximum). If so,
830      * the worker count is adjusted accordingly, and, if possible, a
831      * new worker is created and started running firstTask as its
832      * first task. This method returns false if the pool is stopped or
833      * eligible to shut down. It also returns false if the thread
834      * factory fails to create a thread when asked, which requires a
835      * backout of workerCount, and a recheck for termination, in case
836      * the existence of this worker was holding up termination.
837      *
838      * @param firstTask the task the new thread should run first (or
839      * null if none). Workers are created with an initial first task
840      * (in method execute()) to bypass queuing when there are fewer
841      * than corePoolSize threads (in which case we always start one),
842      * or when the queue is full (in which case we must bypass queue).
843      * Initially idle threads are usually created via
844      * prestartCoreThread or to replace other dying workers.
845      *
846      * @param core if true use corePoolSize as bound, else
847      * maximumPoolSize. (A boolean indicator is used here rather than a
848      * value to ensure reads of fresh values after checking other pool
849      * state).
850      * @return true if successful
851      */
addWorker(Runnable firstTask, boolean core)852     private boolean addWorker(Runnable firstTask, boolean core) {
853         retry:
854         for (;;) {
855             int c = ctl.get();
856             int rs = runStateOf(c);
857 
858             // Check if queue empty only if necessary.
859             if (rs >= SHUTDOWN &&
860                 ! (rs == SHUTDOWN &&
861                    firstTask == null &&
862                    ! workQueue.isEmpty()))
863                 return false;
864 
865             for (;;) {
866                 int wc = workerCountOf(c);
867                 if (wc >= CAPACITY ||
868                     wc >= (core ? corePoolSize : maximumPoolSize))
869                     return false;
870                 if (compareAndIncrementWorkerCount(c))
871                     break retry;
872                 c = ctl.get();  // Re-read ctl
873                 if (runStateOf(c) != rs)
874                     continue retry;
875                 // else CAS failed due to workerCount change; retry inner loop
876             }
877         }
878 
879         Worker w = new Worker(firstTask);
880         Thread t = w.thread;
881 
882         final ReentrantLock mainLock = this.mainLock;
883         mainLock.lock();
884         try {
885             // Recheck while holding lock.
886             // Back out on ThreadFactory failure or if
887             // shut down before lock acquired.
888             int c = ctl.get();
889             int rs = runStateOf(c);
890 
891             if (t == null ||
892                 (rs >= SHUTDOWN &&
893                  ! (rs == SHUTDOWN &&
894                     firstTask == null))) {
895                 decrementWorkerCount();
896                 tryTerminate();
897                 return false;
898             }
899 
900             workers.add(w);
901 
902             int s = workers.size();
903             if (s > largestPoolSize)
904                 largestPoolSize = s;
905         } finally {
906             mainLock.unlock();
907         }
908 
909         t.start();
910         // It is possible (but unlikely) for a thread to have been
911         // added to workers, but not yet started, during transition to
912         // STOP, which could result in a rare missed interrupt,
913         // because Thread.interrupt is not guaranteed to have any effect
914         // on a non-yet-started Thread (see Thread#interrupt).
915         if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
916             t.interrupt();
917 
918         return true;
919     }
920 
921     /**
922      * Performs cleanup and bookkeeping for a dying worker. Called
923      * only from worker threads. Unless completedAbruptly is set,
924      * assumes that workerCount has already been adjusted to account
925      * for exit.  This method removes thread from worker set, and
926      * possibly terminates the pool or replaces the worker if either
927      * it exited due to user task exception or if fewer than
928      * corePoolSize workers are running or queue is non-empty but
929      * there are no workers.
930      *
931      * @param w the worker
932      * @param completedAbruptly if the worker died due to user exception
933      */
processWorkerExit(Worker w, boolean completedAbruptly)934     private void processWorkerExit(Worker w, boolean completedAbruptly) {
935         if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
936             decrementWorkerCount();
937 
938         final ReentrantLock mainLock = this.mainLock;
939         mainLock.lock();
940         try {
941             completedTaskCount += w.completedTasks;
942             workers.remove(w);
943         } finally {
944             mainLock.unlock();
945         }
946 
947         tryTerminate();
948 
949         int c = ctl.get();
950         if (runStateLessThan(c, STOP)) {
951             if (!completedAbruptly) {
952                 int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
953                 if (min == 0 && ! workQueue.isEmpty())
954                     min = 1;
955                 if (workerCountOf(c) >= min)
956                     return; // replacement not needed
957             }
958             addWorker(null, false);
959         }
960     }
961 
962     /**
963      * Performs blocking or timed wait for a task, depending on
964      * current configuration settings, or returns null if this worker
965      * must exit because of any of:
966      * 1. There are more than maximumPoolSize workers (due to
967      *    a call to setMaximumPoolSize).
968      * 2. The pool is stopped.
969      * 3. The pool is shutdown and the queue is empty.
970      * 4. This worker timed out waiting for a task, and timed-out
971      *    workers are subject to termination (that is,
972      *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
973      *    both before and after the timed wait.
974      *
975      * @return task, or null if the worker must exit, in which case
976      *         workerCount is decremented
977      */
getTask()978     private Runnable getTask() {
979         boolean timedOut = false; // Did the last poll() time out?
980 
981         retry:
982         for (;;) {
983             int c = ctl.get();
984             int rs = runStateOf(c);
985 
986             // Check if queue empty only if necessary.
987             if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
988                 decrementWorkerCount();
989                 return null;
990             }
991 
992             boolean timed;      // Are workers subject to culling?
993 
994             for (;;) {
995                 int wc = workerCountOf(c);
996                 timed = allowCoreThreadTimeOut || wc > corePoolSize;
997 
998                 if (wc <= maximumPoolSize && ! (timedOut && timed))
999                     break;
1000                 if (compareAndDecrementWorkerCount(c))
1001                     return null;
1002                 c = ctl.get();  // Re-read ctl
1003                 if (runStateOf(c) != rs)
1004                     continue retry;
1005                 // else CAS failed due to workerCount change; retry inner loop
1006             }
1007 
1008             try {
1009                 Runnable r = timed ?
1010                     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1011                     workQueue.take();
1012                 if (r != null)
1013                     return r;
1014                 timedOut = true;
1015             } catch (InterruptedException retry) {
1016                 timedOut = false;
1017             }
1018         }
1019     }
1020 
1021     /**
1022      * Main worker run loop.  Repeatedly gets tasks from queue and
1023      * executes them, while coping with a number of issues:
1024      *
1025      * 1. We may start out with an initial task, in which case we
1026      * don't need to get the first one. Otherwise, as long as pool is
1027      * running, we get tasks from getTask. If it returns null then the
1028      * worker exits due to changed pool state or configuration
1029      * parameters.  Other exits result from exception throws in
1030      * external code, in which case completedAbruptly holds, which
1031      * usually leads processWorkerExit to replace this thread.
1032      *
1033      * 2. Before running any task, the lock is acquired to prevent
1034      * other pool interrupts while the task is executing, and
1035      * clearInterruptsForTaskRun called to ensure that unless pool is
1036      * stopping, this thread does not have its interrupt set.
1037      *
1038      * 3. Each task run is preceded by a call to beforeExecute, which
1039      * might throw an exception, in which case we cause thread to die
1040      * (breaking loop with completedAbruptly true) without processing
1041      * the task.
1042      *
1043      * 4. Assuming beforeExecute completes normally, we run the task,
1044      * gathering any of its thrown exceptions to send to
1045      * afterExecute. We separately handle RuntimeException, Error
1046      * (both of which the specs guarantee that we trap) and arbitrary
1047      * Throwables.  Because we cannot rethrow Throwables within
1048      * Runnable.run, we wrap them within Errors on the way out (to the
1049      * thread's UncaughtExceptionHandler).  Any thrown exception also
1050      * conservatively causes thread to die.
1051      *
1052      * 5. After task.run completes, we call afterExecute, which may
1053      * also throw an exception, which will also cause thread to
1054      * die. According to JLS Sec 14.20, this exception is the one that
1055      * will be in effect even if task.run throws.
1056      *
1057      * The net effect of the exception mechanics is that afterExecute
1058      * and the thread's UncaughtExceptionHandler have as accurate
1059      * information as we can provide about any problems encountered by
1060      * user code.
1061      *
1062      * @param w the worker
1063      */
runWorker(Worker w)1064     final void runWorker(Worker w) {
1065         Runnable task = w.firstTask;
1066         w.firstTask = null;
1067         boolean completedAbruptly = true;
1068         try {
1069             while (task != null || (task = getTask()) != null) {
1070                 w.lock();
1071                 clearInterruptsForTaskRun();
1072                 try {
1073                     beforeExecute(w.thread, task);
1074                     Throwable thrown = null;
1075                     try {
1076                         task.run();
1077                     } catch (RuntimeException x) {
1078                         thrown = x; throw x;
1079                     } catch (Error x) {
1080                         thrown = x; throw x;
1081                     } catch (Throwable x) {
1082                         thrown = x; throw new Error(x);
1083                     } finally {
1084                         afterExecute(task, thrown);
1085                     }
1086                 } finally {
1087                     task = null;
1088                     w.completedTasks++;
1089                     w.unlock();
1090                 }
1091             }
1092             completedAbruptly = false;
1093         } finally {
1094             processWorkerExit(w, completedAbruptly);
1095         }
1096     }
1097 
1098     // Public constructors and methods
1099 
1100     /**
1101      * Creates a new {@code ThreadPoolExecutor} with the given initial
1102      * parameters and default thread factory and rejected execution handler.
1103      * It may be more convenient to use one of the {@link Executors} factory
1104      * methods instead of this general purpose constructor.
1105      *
1106      * @param corePoolSize the number of threads to keep in the pool, even
1107      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1108      * @param maximumPoolSize the maximum number of threads to allow in the
1109      *        pool
1110      * @param keepAliveTime when the number of threads is greater than
1111      *        the core, this is the maximum time that excess idle threads
1112      *        will wait for new tasks before terminating.
1113      * @param unit the time unit for the {@code keepAliveTime} argument
1114      * @param workQueue the queue to use for holding tasks before they are
1115      *        executed.  This queue will hold only the {@code Runnable}
1116      *        tasks submitted by the {@code execute} method.
1117      * @throws IllegalArgumentException if one of the following holds:<br>
1118      *         {@code corePoolSize < 0}<br>
1119      *         {@code keepAliveTime < 0}<br>
1120      *         {@code maximumPoolSize <= 0}<br>
1121      *         {@code maximumPoolSize < corePoolSize}
1122      * @throws NullPointerException if {@code workQueue} is null
1123      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue)1124     public ThreadPoolExecutor(int corePoolSize,
1125                               int maximumPoolSize,
1126                               long keepAliveTime,
1127                               TimeUnit unit,
1128                               BlockingQueue<Runnable> workQueue) {
1129         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1130              Executors.defaultThreadFactory(), defaultHandler);
1131     }
1132 
1133     /**
1134      * Creates a new {@code ThreadPoolExecutor} with the given initial
1135      * parameters and default rejected execution handler.
1136      *
1137      * @param corePoolSize the number of threads to keep in the pool, even
1138      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1139      * @param maximumPoolSize the maximum number of threads to allow in the
1140      *        pool
1141      * @param keepAliveTime when the number of threads is greater than
1142      *        the core, this is the maximum time that excess idle threads
1143      *        will wait for new tasks before terminating.
1144      * @param unit the time unit for the {@code keepAliveTime} argument
1145      * @param workQueue the queue to use for holding tasks before they are
1146      *        executed.  This queue will hold only the {@code Runnable}
1147      *        tasks submitted by the {@code execute} method.
1148      * @param threadFactory the factory to use when the executor
1149      *        creates a new thread
1150      * @throws IllegalArgumentException if one of the following holds:<br>
1151      *         {@code corePoolSize < 0}<br>
1152      *         {@code keepAliveTime < 0}<br>
1153      *         {@code maximumPoolSize <= 0}<br>
1154      *         {@code maximumPoolSize < corePoolSize}
1155      * @throws NullPointerException if {@code workQueue}
1156      *         or {@code threadFactory} is null
1157      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory)1158     public ThreadPoolExecutor(int corePoolSize,
1159                               int maximumPoolSize,
1160                               long keepAliveTime,
1161                               TimeUnit unit,
1162                               BlockingQueue<Runnable> workQueue,
1163                               ThreadFactory threadFactory) {
1164         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1165              threadFactory, defaultHandler);
1166     }
1167 
1168     /**
1169      * Creates a new {@code ThreadPoolExecutor} with the given initial
1170      * parameters and default thread factory.
1171      *
1172      * @param corePoolSize the number of threads to keep in the pool, even
1173      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1174      * @param maximumPoolSize the maximum number of threads to allow in the
1175      *        pool
1176      * @param keepAliveTime when the number of threads is greater than
1177      *        the core, this is the maximum time that excess idle threads
1178      *        will wait for new tasks before terminating.
1179      * @param unit the time unit for the {@code keepAliveTime} argument
1180      * @param workQueue the queue to use for holding tasks before they are
1181      *        executed.  This queue will hold only the {@code Runnable}
1182      *        tasks submitted by the {@code execute} method.
1183      * @param handler the handler to use when execution is blocked
1184      *        because the thread bounds and queue capacities are reached
1185      * @throws IllegalArgumentException if one of the following holds:<br>
1186      *         {@code corePoolSize < 0}<br>
1187      *         {@code keepAliveTime < 0}<br>
1188      *         {@code maximumPoolSize <= 0}<br>
1189      *         {@code maximumPoolSize < corePoolSize}
1190      * @throws NullPointerException if {@code workQueue}
1191      *         or {@code handler} is null
1192      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)1193     public ThreadPoolExecutor(int corePoolSize,
1194                               int maximumPoolSize,
1195                               long keepAliveTime,
1196                               TimeUnit unit,
1197                               BlockingQueue<Runnable> workQueue,
1198                               RejectedExecutionHandler handler) {
1199         this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1200              Executors.defaultThreadFactory(), handler);
1201     }
1202 
1203     /**
1204      * Creates a new {@code ThreadPoolExecutor} with the given initial
1205      * parameters.
1206      *
1207      * @param corePoolSize the number of threads to keep in the pool, even
1208      *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
1209      * @param maximumPoolSize the maximum number of threads to allow in the
1210      *        pool
1211      * @param keepAliveTime when the number of threads is greater than
1212      *        the core, this is the maximum time that excess idle threads
1213      *        will wait for new tasks before terminating.
1214      * @param unit the time unit for the {@code keepAliveTime} argument
1215      * @param workQueue the queue to use for holding tasks before they are
1216      *        executed.  This queue will hold only the {@code Runnable}
1217      *        tasks submitted by the {@code execute} method.
1218      * @param threadFactory the factory to use when the executor
1219      *        creates a new thread
1220      * @param handler the handler to use when execution is blocked
1221      *        because the thread bounds and queue capacities are reached
1222      * @throws IllegalArgumentException if one of the following holds:<br>
1223      *         {@code corePoolSize < 0}<br>
1224      *         {@code keepAliveTime < 0}<br>
1225      *         {@code maximumPoolSize <= 0}<br>
1226      *         {@code maximumPoolSize < corePoolSize}
1227      * @throws NullPointerException if {@code workQueue}
1228      *         or {@code threadFactory} or {@code handler} is null
1229      */
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)1230     public ThreadPoolExecutor(int corePoolSize,
1231                               int maximumPoolSize,
1232                               long keepAliveTime,
1233                               TimeUnit unit,
1234                               BlockingQueue<Runnable> workQueue,
1235                               ThreadFactory threadFactory,
1236                               RejectedExecutionHandler handler) {
1237         if (corePoolSize < 0 ||
1238             maximumPoolSize <= 0 ||
1239             maximumPoolSize < corePoolSize ||
1240             keepAliveTime < 0)
1241             throw new IllegalArgumentException();
1242         if (workQueue == null || threadFactory == null || handler == null)
1243             throw new NullPointerException();
1244         this.corePoolSize = corePoolSize;
1245         this.maximumPoolSize = maximumPoolSize;
1246         this.workQueue = workQueue;
1247         this.keepAliveTime = unit.toNanos(keepAliveTime);
1248         this.threadFactory = threadFactory;
1249         this.handler = handler;
1250     }
1251 
1252     /**
1253      * Executes the given task sometime in the future.  The task
1254      * may execute in a new thread or in an existing pooled thread.
1255      *
1256      * If the task cannot be submitted for execution, either because this
1257      * executor has been shutdown or because its capacity has been reached,
1258      * the task is handled by the current {@code RejectedExecutionHandler}.
1259      *
1260      * @param command the task to execute
1261      * @throws RejectedExecutionException at discretion of
1262      *         {@code RejectedExecutionHandler}, if the task
1263      *         cannot be accepted for execution
1264      * @throws NullPointerException if {@code command} is null
1265      */
execute(Runnable command)1266     public void execute(Runnable command) {
1267         if (command == null)
1268             throw new NullPointerException();
1269         /*
1270          * Proceed in 3 steps:
1271          *
1272          * 1. If fewer than corePoolSize threads are running, try to
1273          * start a new thread with the given command as its first
1274          * task.  The call to addWorker atomically checks runState and
1275          * workerCount, and so prevents false alarms that would add
1276          * threads when it shouldn't, by returning false.
1277          *
1278          * 2. If a task can be successfully queued, then we still need
1279          * to double-check whether we should have added a thread
1280          * (because existing ones died since last checking) or that
1281          * the pool shut down since entry into this method. So we
1282          * recheck state and if necessary roll back the enqueuing if
1283          * stopped, or start a new thread if there are none.
1284          *
1285          * 3. If we cannot queue task, then we try to add a new
1286          * thread.  If it fails, we know we are shut down or saturated
1287          * and so reject the task.
1288          */
1289         int c = ctl.get();
1290         if (workerCountOf(c) < corePoolSize) {
1291             if (addWorker(command, true))
1292                 return;
1293             c = ctl.get();
1294         }
1295         if (isRunning(c) && workQueue.offer(command)) {
1296             int recheck = ctl.get();
1297             if (! isRunning(recheck) && remove(command))
1298                 reject(command);
1299             else if (workerCountOf(recheck) == 0)
1300                 addWorker(null, false);
1301         }
1302         else if (!addWorker(command, false))
1303             reject(command);
1304     }
1305 
1306     /**
1307      * Initiates an orderly shutdown in which previously submitted
1308      * tasks are executed, but no new tasks will be accepted.
1309      * Invocation has no additional effect if already shut down.
1310      *
1311      * <p>This method does not wait for previously submitted tasks to
1312      * complete execution.  Use {@link #awaitTermination awaitTermination}
1313      * to do that.
1314      *
1315      * @throws SecurityException {@inheritDoc}
1316      */
shutdown()1317     public void shutdown() {
1318         final ReentrantLock mainLock = this.mainLock;
1319         mainLock.lock();
1320         try {
1321             checkShutdownAccess();
1322             advanceRunState(SHUTDOWN);
1323             interruptIdleWorkers();
1324             onShutdown(); // hook for ScheduledThreadPoolExecutor
1325         } finally {
1326             mainLock.unlock();
1327         }
1328         tryTerminate();
1329     }
1330 
1331     /**
1332      * Attempts to stop all actively executing tasks, halts the
1333      * processing of waiting tasks, and returns a list of the tasks
1334      * that were awaiting execution. These tasks are drained (removed)
1335      * from the task queue upon return from this method.
1336      *
1337      * <p>This method does not wait for actively executing tasks to
1338      * terminate.  Use {@link #awaitTermination awaitTermination} to
1339      * do that.
1340      *
1341      * <p>There are no guarantees beyond best-effort attempts to stop
1342      * processing actively executing tasks.  This implementation
1343      * cancels tasks via {@link Thread#interrupt}, so any task that
1344      * fails to respond to interrupts may never terminate.
1345      *
1346      * @throws SecurityException {@inheritDoc}
1347      */
shutdownNow()1348     public List<Runnable> shutdownNow() {
1349         List<Runnable> tasks;
1350         final ReentrantLock mainLock = this.mainLock;
1351         mainLock.lock();
1352         try {
1353             checkShutdownAccess();
1354             advanceRunState(STOP);
1355             interruptWorkers();
1356             tasks = drainQueue();
1357         } finally {
1358             mainLock.unlock();
1359         }
1360         tryTerminate();
1361         return tasks;
1362     }
1363 
isShutdown()1364     public boolean isShutdown() {
1365         return ! isRunning(ctl.get());
1366     }
1367 
1368     /**
1369      * Returns true if this executor is in the process of terminating
1370      * after {@link #shutdown} or {@link #shutdownNow} but has not
1371      * completely terminated.  This method may be useful for
1372      * debugging. A return of {@code true} reported a sufficient
1373      * period after shutdown may indicate that submitted tasks have
1374      * ignored or suppressed interruption, causing this executor not
1375      * to properly terminate.
1376      *
1377      * @return true if terminating but not yet terminated
1378      */
isTerminating()1379     public boolean isTerminating() {
1380         int c = ctl.get();
1381         return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1382     }
1383 
isTerminated()1384     public boolean isTerminated() {
1385         return runStateAtLeast(ctl.get(), TERMINATED);
1386     }
1387 
awaitTermination(long timeout, TimeUnit unit)1388     public boolean awaitTermination(long timeout, TimeUnit unit)
1389         throws InterruptedException {
1390         long nanos = unit.toNanos(timeout);
1391         final ReentrantLock mainLock = this.mainLock;
1392         mainLock.lock();
1393         try {
1394             for (;;) {
1395                 if (runStateAtLeast(ctl.get(), TERMINATED))
1396                     return true;
1397                 if (nanos <= 0)
1398                     return false;
1399                 nanos = termination.awaitNanos(nanos);
1400             }
1401         } finally {
1402             mainLock.unlock();
1403         }
1404     }
1405 
1406     /**
1407      * Invokes {@code shutdown} when this executor is no longer
1408      * referenced and it has no threads.
1409      */
finalize()1410     protected void finalize() {
1411         shutdown();
1412     }
1413 
1414     /**
1415      * Sets the thread factory used to create new threads.
1416      *
1417      * @param threadFactory the new thread factory
1418      * @throws NullPointerException if threadFactory is null
1419      * @see #getThreadFactory
1420      */
setThreadFactory(ThreadFactory threadFactory)1421     public void setThreadFactory(ThreadFactory threadFactory) {
1422         if (threadFactory == null)
1423             throw new NullPointerException();
1424         this.threadFactory = threadFactory;
1425     }
1426 
1427     /**
1428      * Returns the thread factory used to create new threads.
1429      *
1430      * @return the current thread factory
1431      * @see #setThreadFactory
1432      */
getThreadFactory()1433     public ThreadFactory getThreadFactory() {
1434         return threadFactory;
1435     }
1436 
1437     /**
1438      * Sets a new handler for unexecutable tasks.
1439      *
1440      * @param handler the new handler
1441      * @throws NullPointerException if handler is null
1442      * @see #getRejectedExecutionHandler
1443      */
setRejectedExecutionHandler(RejectedExecutionHandler handler)1444     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1445         if (handler == null)
1446             throw new NullPointerException();
1447         this.handler = handler;
1448     }
1449 
1450     /**
1451      * Returns the current handler for unexecutable tasks.
1452      *
1453      * @return the current handler
1454      * @see #setRejectedExecutionHandler
1455      */
getRejectedExecutionHandler()1456     public RejectedExecutionHandler getRejectedExecutionHandler() {
1457         return handler;
1458     }
1459 
1460     /**
1461      * Sets the core number of threads.  This overrides any value set
1462      * in the constructor.  If the new value is smaller than the
1463      * current value, excess existing threads will be terminated when
1464      * they next become idle.  If larger, new threads will, if needed,
1465      * be started to execute any queued tasks.
1466      *
1467      * @param corePoolSize the new core size
1468      * @throws IllegalArgumentException if {@code corePoolSize < 0}
1469      * @see #getCorePoolSize
1470      */
setCorePoolSize(int corePoolSize)1471     public void setCorePoolSize(int corePoolSize) {
1472         if (corePoolSize < 0)
1473             throw new IllegalArgumentException();
1474         int delta = corePoolSize - this.corePoolSize;
1475         this.corePoolSize = corePoolSize;
1476         if (workerCountOf(ctl.get()) > corePoolSize)
1477             interruptIdleWorkers();
1478         else if (delta > 0) {
1479             // We don't really know how many new threads are "needed".
1480             // As a heuristic, prestart enough new workers (up to new
1481             // core size) to handle the current number of tasks in
1482             // queue, but stop if queue becomes empty while doing so.
1483             int k = Math.min(delta, workQueue.size());
1484             while (k-- > 0 && addWorker(null, true)) {
1485                 if (workQueue.isEmpty())
1486                     break;
1487             }
1488         }
1489     }
1490 
1491     /**
1492      * Returns the core number of threads.
1493      *
1494      * @return the core number of threads
1495      * @see #setCorePoolSize
1496      */
getCorePoolSize()1497     public int getCorePoolSize() {
1498         return corePoolSize;
1499     }
1500 
1501     /**
1502      * Starts a core thread, causing it to idly wait for work. This
1503      * overrides the default policy of starting core threads only when
1504      * new tasks are executed. This method will return {@code false}
1505      * if all core threads have already been started.
1506      *
1507      * @return {@code true} if a thread was started
1508      */
prestartCoreThread()1509     public boolean prestartCoreThread() {
1510         return workerCountOf(ctl.get()) < corePoolSize &&
1511             addWorker(null, true);
1512     }
1513 
1514     /**
1515      * Starts all core threads, causing them to idly wait for work. This
1516      * overrides the default policy of starting core threads only when
1517      * new tasks are executed.
1518      *
1519      * @return the number of threads started
1520      */
prestartAllCoreThreads()1521     public int prestartAllCoreThreads() {
1522         int n = 0;
1523         while (addWorker(null, true))
1524             ++n;
1525         return n;
1526     }
1527 
1528     /**
1529      * Returns true if this pool allows core threads to time out and
1530      * terminate if no tasks arrive within the keepAlive time, being
1531      * replaced if needed when new tasks arrive. When true, the same
1532      * keep-alive policy applying to non-core threads applies also to
1533      * core threads. When false (the default), core threads are never
1534      * terminated due to lack of incoming tasks.
1535      *
1536      * @return {@code true} if core threads are allowed to time out,
1537      *         else {@code false}
1538      *
1539      * @since 1.6
1540      */
allowsCoreThreadTimeOut()1541     public boolean allowsCoreThreadTimeOut() {
1542         return allowCoreThreadTimeOut;
1543     }
1544 
1545     /**
1546      * Sets the policy governing whether core threads may time out and
1547      * terminate if no tasks arrive within the keep-alive time, being
1548      * replaced if needed when new tasks arrive. When false, core
1549      * threads are never terminated due to lack of incoming
1550      * tasks. When true, the same keep-alive policy applying to
1551      * non-core threads applies also to core threads. To avoid
1552      * continual thread replacement, the keep-alive time must be
1553      * greater than zero when setting {@code true}. This method
1554      * should in general be called before the pool is actively used.
1555      *
1556      * @param value {@code true} if should time out, else {@code false}
1557      * @throws IllegalArgumentException if value is {@code true}
1558      *         and the current keep-alive time is not greater than zero
1559      *
1560      * @since 1.6
1561      */
allowCoreThreadTimeOut(boolean value)1562     public void allowCoreThreadTimeOut(boolean value) {
1563         if (value && keepAliveTime <= 0)
1564             throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1565         if (value != allowCoreThreadTimeOut) {
1566             allowCoreThreadTimeOut = value;
1567             if (value)
1568                 interruptIdleWorkers();
1569         }
1570     }
1571 
1572     /**
1573      * Sets the maximum allowed number of threads. This overrides any
1574      * value set in the constructor. If the new value is smaller than
1575      * the current value, excess existing threads will be
1576      * terminated when they next become idle.
1577      *
1578      * @param maximumPoolSize the new maximum
1579      * @throws IllegalArgumentException if the new maximum is
1580      *         less than or equal to zero, or
1581      *         less than the {@linkplain #getCorePoolSize core pool size}
1582      * @see #getMaximumPoolSize
1583      */
setMaximumPoolSize(int maximumPoolSize)1584     public void setMaximumPoolSize(int maximumPoolSize) {
1585         if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1586             throw new IllegalArgumentException();
1587         this.maximumPoolSize = maximumPoolSize;
1588         if (workerCountOf(ctl.get()) > maximumPoolSize)
1589             interruptIdleWorkers();
1590     }
1591 
1592     /**
1593      * Returns the maximum allowed number of threads.
1594      *
1595      * @return the maximum allowed number of threads
1596      * @see #setMaximumPoolSize
1597      */
getMaximumPoolSize()1598     public int getMaximumPoolSize() {
1599         return maximumPoolSize;
1600     }
1601 
1602     /**
1603      * Sets the time limit for which threads may remain idle before
1604      * being terminated.  If there are more than the core number of
1605      * threads currently in the pool, after waiting this amount of
1606      * time without processing a task, excess threads will be
1607      * terminated.  This overrides any value set in the constructor.
1608      *
1609      * @param time the time to wait.  A time value of zero will cause
1610      *        excess threads to terminate immediately after executing tasks.
1611      * @param unit the time unit of the {@code time} argument
1612      * @throws IllegalArgumentException if {@code time} less than zero or
1613      *         if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1614      * @see #getKeepAliveTime
1615      */
setKeepAliveTime(long time, TimeUnit unit)1616     public void setKeepAliveTime(long time, TimeUnit unit) {
1617         if (time < 0)
1618             throw new IllegalArgumentException();
1619         if (time == 0 && allowsCoreThreadTimeOut())
1620             throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1621         long keepAliveTime = unit.toNanos(time);
1622         long delta = keepAliveTime - this.keepAliveTime;
1623         this.keepAliveTime = keepAliveTime;
1624         if (delta < 0)
1625             interruptIdleWorkers();
1626     }
1627 
1628     /**
1629      * Returns the thread keep-alive time, which is the amount of time
1630      * that threads in excess of the core pool size may remain
1631      * idle before being terminated.
1632      *
1633      * @param unit the desired time unit of the result
1634      * @return the time limit
1635      * @see #setKeepAliveTime
1636      */
getKeepAliveTime(TimeUnit unit)1637     public long getKeepAliveTime(TimeUnit unit) {
1638         return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1639     }
1640 
1641     /* User-level queue utilities */
1642 
1643     /**
1644      * Returns the task queue used by this executor. Access to the
1645      * task queue is intended primarily for debugging and monitoring.
1646      * This queue may be in active use.  Retrieving the task queue
1647      * does not prevent queued tasks from executing.
1648      *
1649      * @return the task queue
1650      */
getQueue()1651     public BlockingQueue<Runnable> getQueue() {
1652         return workQueue;
1653     }
1654 
1655     /**
1656      * Removes this task from the executor's internal queue if it is
1657      * present, thus causing it not to be run if it has not already
1658      * started.
1659      *
1660      * <p> This method may be useful as one part of a cancellation
1661      * scheme.  It may fail to remove tasks that have been converted
1662      * into other forms before being placed on the internal queue. For
1663      * example, a task entered using {@code submit} might be
1664      * converted into a form that maintains {@code Future} status.
1665      * However, in such cases, method {@link #purge} may be used to
1666      * remove those Futures that have been cancelled.
1667      *
1668      * @param task the task to remove
1669      * @return true if the task was removed
1670      */
remove(Runnable task)1671     public boolean remove(Runnable task) {
1672         boolean removed = workQueue.remove(task);
1673         tryTerminate(); // In case SHUTDOWN and now empty
1674         return removed;
1675     }
1676 
1677     /**
1678      * Tries to remove from the work queue all {@link Future}
1679      * tasks that have been cancelled. This method can be useful as a
1680      * storage reclamation operation, that has no other impact on
1681      * functionality. Cancelled tasks are never executed, but may
1682      * accumulate in work queues until worker threads can actively
1683      * remove them. Invoking this method instead tries to remove them now.
1684      * However, this method may fail to remove tasks in
1685      * the presence of interference by other threads.
1686      */
purge()1687     public void purge() {
1688         final BlockingQueue<Runnable> q = workQueue;
1689         try {
1690             Iterator<Runnable> it = q.iterator();
1691             while (it.hasNext()) {
1692                 Runnable r = it.next();
1693                 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1694                     it.remove();
1695             }
1696         } catch (ConcurrentModificationException fallThrough) {
1697             // Take slow path if we encounter interference during traversal.
1698             // Make copy for traversal and call remove for cancelled entries.
1699             // The slow path is more likely to be O(N*N).
1700             for (Object r : q.toArray())
1701                 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1702                     q.remove(r);
1703         }
1704 
1705         tryTerminate(); // In case SHUTDOWN and now empty
1706     }
1707 
1708     /* Statistics */
1709 
1710     /**
1711      * Returns the current number of threads in the pool.
1712      *
1713      * @return the number of threads
1714      */
getPoolSize()1715     public int getPoolSize() {
1716         final ReentrantLock mainLock = this.mainLock;
1717         mainLock.lock();
1718         try {
1719             // Remove rare and surprising possibility of
1720             // isTerminated() && getPoolSize() > 0
1721             return runStateAtLeast(ctl.get(), TIDYING) ? 0
1722                 : workers.size();
1723         } finally {
1724             mainLock.unlock();
1725         }
1726     }
1727 
1728     /**
1729      * Returns the approximate number of threads that are actively
1730      * executing tasks.
1731      *
1732      * @return the number of threads
1733      */
getActiveCount()1734     public int getActiveCount() {
1735         final ReentrantLock mainLock = this.mainLock;
1736         mainLock.lock();
1737         try {
1738             int n = 0;
1739             for (Worker w : workers)
1740                 if (w.isLocked())
1741                     ++n;
1742             return n;
1743         } finally {
1744             mainLock.unlock();
1745         }
1746     }
1747 
1748     /**
1749      * Returns the largest number of threads that have ever
1750      * simultaneously been in the pool.
1751      *
1752      * @return the number of threads
1753      */
getLargestPoolSize()1754     public int getLargestPoolSize() {
1755         final ReentrantLock mainLock = this.mainLock;
1756         mainLock.lock();
1757         try {
1758             return largestPoolSize;
1759         } finally {
1760             mainLock.unlock();
1761         }
1762     }
1763 
1764     /**
1765      * Returns the approximate total number of tasks that have ever been
1766      * scheduled for execution. Because the states of tasks and
1767      * threads may change dynamically during computation, the returned
1768      * value is only an approximation.
1769      *
1770      * @return the number of tasks
1771      */
getTaskCount()1772     public long getTaskCount() {
1773         final ReentrantLock mainLock = this.mainLock;
1774         mainLock.lock();
1775         try {
1776             long n = completedTaskCount;
1777             for (Worker w : workers) {
1778                 n += w.completedTasks;
1779                 if (w.isLocked())
1780                     ++n;
1781             }
1782             return n + workQueue.size();
1783         } finally {
1784             mainLock.unlock();
1785         }
1786     }
1787 
1788     /**
1789      * Returns the approximate total number of tasks that have
1790      * completed execution. Because the states of tasks and threads
1791      * may change dynamically during computation, the returned value
1792      * is only an approximation, but one that does not ever decrease
1793      * across successive calls.
1794      *
1795      * @return the number of tasks
1796      */
getCompletedTaskCount()1797     public long getCompletedTaskCount() {
1798         final ReentrantLock mainLock = this.mainLock;
1799         mainLock.lock();
1800         try {
1801             long n = completedTaskCount;
1802             for (Worker w : workers)
1803                 n += w.completedTasks;
1804             return n;
1805         } finally {
1806             mainLock.unlock();
1807         }
1808     }
1809 
1810     /**
1811      * Returns a string identifying this pool, as well as its state,
1812      * including indications of run state and estimated worker and
1813      * task counts.
1814      *
1815      * @return a string identifying this pool, as well as its state
1816      */
toString()1817     public String toString() {
1818         long ncompleted;
1819         int nworkers, nactive;
1820         final ReentrantLock mainLock = this.mainLock;
1821         mainLock.lock();
1822         try {
1823             ncompleted = completedTaskCount;
1824             nactive = 0;
1825             nworkers = workers.size();
1826             for (Worker w : workers) {
1827                 ncompleted += w.completedTasks;
1828                 if (w.isLocked())
1829                     ++nactive;
1830             }
1831         } finally {
1832             mainLock.unlock();
1833         }
1834         int c = ctl.get();
1835         String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
1836                      (runStateAtLeast(c, TERMINATED) ? "Terminated" :
1837                       "Shutting down"));
1838         return super.toString() +
1839             "[" + rs +
1840             ", pool size = " + nworkers +
1841             ", active threads = " + nactive +
1842             ", queued tasks = " + workQueue.size() +
1843             ", completed tasks = " + ncompleted +
1844             "]";
1845     }
1846 
1847     /* Extension hooks */
1848 
1849     /**
1850      * Method invoked prior to executing the given Runnable in the
1851      * given thread.  This method is invoked by thread {@code t} that
1852      * will execute task {@code r}, and may be used to re-initialize
1853      * ThreadLocals, or to perform logging.
1854      *
1855      * <p>This implementation does nothing, but may be customized in
1856      * subclasses. Note: To properly nest multiple overridings, subclasses
1857      * should generally invoke {@code super.beforeExecute} at the end of
1858      * this method.
1859      *
1860      * @param t the thread that will run task {@code r}
1861      * @param r the task that will be executed
1862      */
beforeExecute(Thread t, Runnable r)1863     protected void beforeExecute(Thread t, Runnable r) { }
1864 
1865     /**
1866      * Method invoked upon completion of execution of the given Runnable.
1867      * This method is invoked by the thread that executed the task. If
1868      * non-null, the Throwable is the uncaught {@code RuntimeException}
1869      * or {@code Error} that caused execution to terminate abruptly.
1870      *
1871      * <p>This implementation does nothing, but may be customized in
1872      * subclasses. Note: To properly nest multiple overridings, subclasses
1873      * should generally invoke {@code super.afterExecute} at the
1874      * beginning of this method.
1875      *
1876      * <p><b>Note:</b> When actions are enclosed in tasks (such as
1877      * {@link FutureTask}) either explicitly or via methods such as
1878      * {@code submit}, these task objects catch and maintain
1879      * computational exceptions, and so they do not cause abrupt
1880      * termination, and the internal exceptions are <em>not</em>
1881      * passed to this method. If you would like to trap both kinds of
1882      * failures in this method, you can further probe for such cases,
1883      * as in this sample subclass that prints either the direct cause
1884      * or the underlying exception if a task has been aborted:
1885      *
1886      *  <pre> {@code
1887      * class ExtendedExecutor extends ThreadPoolExecutor {
1888      *   // ...
1889      *   protected void afterExecute(Runnable r, Throwable t) {
1890      *     super.afterExecute(r, t);
1891      *     if (t == null && r instanceof Future<?>) {
1892      *       try {
1893      *         Object result = ((Future<?>) r).get();
1894      *       } catch (CancellationException ce) {
1895      *           t = ce;
1896      *       } catch (ExecutionException ee) {
1897      *           t = ee.getCause();
1898      *       } catch (InterruptedException ie) {
1899      *           Thread.currentThread().interrupt(); // ignore/reset
1900      *       }
1901      *     }
1902      *     if (t != null)
1903      *       System.out.println(t);
1904      *   }
1905      * }}</pre>
1906      *
1907      * @param r the runnable that has completed
1908      * @param t the exception that caused termination, or null if
1909      * execution completed normally
1910      */
afterExecute(Runnable r, Throwable t)1911     protected void afterExecute(Runnable r, Throwable t) { }
1912 
1913     /**
1914      * Method invoked when the Executor has terminated.  Default
1915      * implementation does nothing. Note: To properly nest multiple
1916      * overridings, subclasses should generally invoke
1917      * {@code super.terminated} within this method.
1918      */
terminated()1919     protected void terminated() { }
1920 
1921     /* Predefined RejectedExecutionHandlers */
1922 
1923     /**
1924      * A handler for rejected tasks that runs the rejected task
1925      * directly in the calling thread of the {@code execute} method,
1926      * unless the executor has been shut down, in which case the task
1927      * is discarded.
1928      */
1929     public static class CallerRunsPolicy implements RejectedExecutionHandler {
1930         /**
1931          * Creates a {@code CallerRunsPolicy}.
1932          */
CallerRunsPolicy()1933         public CallerRunsPolicy() { }
1934 
1935         /**
1936          * Executes task r in the caller's thread, unless the executor
1937          * has been shut down, in which case the task is discarded.
1938          *
1939          * @param r the runnable task requested to be executed
1940          * @param e the executor attempting to execute this task
1941          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)1942         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1943             if (!e.isShutdown()) {
1944                 r.run();
1945             }
1946         }
1947     }
1948 
1949     /**
1950      * A handler for rejected tasks that throws a
1951      * {@code RejectedExecutionException}.
1952      */
1953     public static class AbortPolicy implements RejectedExecutionHandler {
1954         /**
1955          * Creates an {@code AbortPolicy}.
1956          */
AbortPolicy()1957         public AbortPolicy() { }
1958 
1959         /**
1960          * Always throws RejectedExecutionException.
1961          *
1962          * @param r the runnable task requested to be executed
1963          * @param e the executor attempting to execute this task
1964          * @throws RejectedExecutionException always.
1965          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)1966         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1967             throw new RejectedExecutionException("Task " + r.toString() +
1968                                                  " rejected from " +
1969                                                  e.toString());
1970         }
1971     }
1972 
1973     /**
1974      * A handler for rejected tasks that silently discards the
1975      * rejected task.
1976      */
1977     public static class DiscardPolicy implements RejectedExecutionHandler {
1978         /**
1979          * Creates a {@code DiscardPolicy}.
1980          */
DiscardPolicy()1981         public DiscardPolicy() { }
1982 
1983         /**
1984          * Does nothing, which has the effect of discarding task r.
1985          *
1986          * @param r the runnable task requested to be executed
1987          * @param e the executor attempting to execute this task
1988          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)1989         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1990         }
1991     }
1992 
1993     /**
1994      * A handler for rejected tasks that discards the oldest unhandled
1995      * request and then retries {@code execute}, unless the executor
1996      * is shut down, in which case the task is discarded.
1997      */
1998     public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1999         /**
2000          * Creates a {@code DiscardOldestPolicy} for the given executor.
2001          */
DiscardOldestPolicy()2002         public DiscardOldestPolicy() { }
2003 
2004         /**
2005          * Obtains and ignores the next task that the executor
2006          * would otherwise execute, if one is immediately available,
2007          * and then retries execution of task r, unless the executor
2008          * is shut down, in which case task r is instead discarded.
2009          *
2010          * @param r the runnable task requested to be executed
2011          * @param e the executor attempting to execute this task
2012          */
rejectedExecution(Runnable r, ThreadPoolExecutor e)2013         public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2014             if (!e.isShutdown()) {
2015                 e.getQueue().poll();
2016                 e.execute(r);
2017             }
2018         }
2019     }
2020 }
2021