• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * Thread support.
19  */
20 #include "Dalvik.h"
21 #include "os/os.h"
22 
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <sys/time.h>
26 #include <sys/types.h>
27 #include <sys/resource.h>
28 #include <sys/mman.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <fcntl.h>
32 
33 #ifdef HAVE_ANDROID_OS
34 #include <dirent.h>
35 #endif
36 
37 #if defined(HAVE_PRCTL)
38 #include <sys/prctl.h>
39 #endif
40 
41 #if defined(WITH_SELF_VERIFICATION)
42 #include "interp/Jit.h"         // need for self verification
43 #endif
44 
45 
46 /* desktop Linux needs a little help with gettid() */
47 #if defined(HAVE_GETTID) && !defined(HAVE_ANDROID_OS)
48 #define __KERNEL__
49 # include <linux/unistd.h>
50 #ifdef _syscall0
51 _syscall0(pid_t,gettid)
52 #else
53 pid_t gettid() { return syscall(__NR_gettid);}
54 #endif
55 #undef __KERNEL__
56 #endif
57 
58 // Change this to enable logging on cgroup errors
59 #define ENABLE_CGROUP_ERR_LOGGING 0
60 
61 // change this to ALOGV/ALOGD to debug thread activity
62 #define LOG_THREAD  LOGVV
63 
64 /*
65 Notes on Threading
66 
67 All threads are native pthreads.  All threads, except the JDWP debugger
68 thread, are visible to code running in the VM and to the debugger.  (We
69 don't want the debugger to try to manipulate the thread that listens for
70 instructions from the debugger.)  Internal VM threads are in the "system"
71 ThreadGroup, all others are in the "main" ThreadGroup, per convention.
72 
73 The GC only runs when all threads have been suspended.  Threads are
74 expected to suspend themselves, using a "safe point" mechanism.  We check
75 for a suspend request at certain points in the main interpreter loop,
76 and on requests coming in from native code (e.g. all JNI functions).
77 Certain debugger events may inspire threads to self-suspend.
78 
79 Native methods must use JNI calls to modify object references to avoid
80 clashes with the GC.  JNI doesn't provide a way for native code to access
81 arrays of objects as such -- code must always get/set individual entries --
82 so it should be possible to fully control access through JNI.
83 
84 Internal native VM threads, such as the finalizer thread, must explicitly
85 check for suspension periodically.  In most cases they will be sound
86 asleep on a condition variable, and won't notice the suspension anyway.
87 
88 Threads may be suspended by the GC, debugger, or the SIGQUIT listener
89 thread.  The debugger may suspend or resume individual threads, while the
90 GC always suspends all threads.  Each thread has a "suspend count" that
91 is incremented on suspend requests and decremented on resume requests.
92 When the count is zero, the thread is runnable.  This allows us to fulfill
93 a debugger requirement: if the debugger suspends a thread, the thread is
94 not allowed to run again until the debugger resumes it (or disconnects,
95 in which case we must resume all debugger-suspended threads).
96 
97 Paused threads sleep on a condition variable, and are awoken en masse.
98 Certain "slow" VM operations, such as starting up a new thread, will be
99 done in a separate "VMWAIT" state, so that the rest of the VM doesn't
100 freeze up waiting for the operation to finish.  Threads must check for
101 pending suspension when leaving VMWAIT.
102 
103 Because threads suspend themselves while interpreting code or when native
104 code makes JNI calls, there is no risk of suspending while holding internal
105 VM locks.  All threads can enter a suspended (or native-code-only) state.
106 Also, we don't have to worry about object references existing solely
107 in hardware registers.
108 
109 We do, however, have to worry about objects that were allocated internally
110 and aren't yet visible to anything else in the VM.  If we allocate an
111 object, and then go to sleep on a mutex after changing to a non-RUNNING
112 state (e.g. while trying to allocate a second object), the first object
113 could be garbage-collected out from under us while we sleep.  To manage
114 this, we automatically add all allocated objects to an internal object
115 tracking list, and only remove them when we know we won't be suspended
116 before the object appears in the GC root set.
117 
118 The debugger may choose to suspend or resume a single thread, which can
119 lead to application-level deadlocks; this is expected behavior.  The VM
120 will only check for suspension of single threads when the debugger is
121 active (the java.lang.Thread calls for this are deprecated and hence are
122 not supported).  Resumption of a single thread is handled by decrementing
123 the thread's suspend count and sending a broadcast signal to the condition
124 variable.  (This will cause all threads to wake up and immediately go back
125 to sleep, which isn't tremendously efficient, but neither is having the
126 debugger attached.)
127 
128 The debugger is not allowed to resume threads suspended by the GC.  This
129 is trivially enforced by ignoring debugger requests while the GC is running
130 (the JDWP thread is suspended during GC).
131 
132 The VM maintains a Thread struct for every pthread known to the VM.  There
133 is a java/lang/Thread object associated with every Thread.  At present,
134 there is no safe way to go from a Thread object to a Thread struct except by
135 locking and scanning the list; this is necessary because the lifetimes of
136 the two are not closely coupled.  We may want to change this behavior,
137 though at present the only performance impact is on the debugger (see
138 threadObjToThread()).  See also notes about dvmDetachCurrentThread().
139 */
140 /*
141 Alternate implementation (signal-based):
142 
143 Threads run without safe points -- zero overhead.  The VM uses a signal
144 (e.g. pthread_kill(SIGUSR1)) to notify threads of suspension or resumption.
145 
146 The trouble with using signals to suspend threads is that it means a thread
147 can be in the middle of an operation when garbage collection starts.
148 To prevent some sticky situations, we have to introduce critical sections
149 to the VM code.
150 
151 Critical sections temporarily block suspension for a given thread.
152 The thread must move to a non-blocked state (and self-suspend) after
153 finishing its current task.  If the thread blocks on a resource held
154 by a suspended thread, we're hosed.
155 
156 One approach is to require that no blocking operations, notably
157 acquisition of mutexes, can be performed within a critical section.
158 This is too limiting.  For example, if thread A gets suspended while
159 holding the thread list lock, it will prevent the GC or debugger from
160 being able to safely access the thread list.  We need to wrap the critical
161 section around the entire operation (enter critical, get lock, do stuff,
162 release lock, exit critical).
163 
164 A better approach is to declare that certain resources can only be held
165 within critical sections.  A thread that enters a critical section and
166 then gets blocked on the thread list lock knows that the thread it is
167 waiting for is also in a critical section, and will release the lock
168 before suspending itself.  Eventually all threads will complete their
169 operations and self-suspend.  For this to work, the VM must:
170 
171  (1) Determine the set of resources that may be accessed from the GC or
172      debugger threads.  The mutexes guarding those go into the "critical
173      resource set" (CRS).
174  (2) Ensure that no resource in the CRS can be acquired outside of a
175      critical section.  This can be verified with an assert().
176  (3) Ensure that only resources in the CRS can be held while in a critical
177      section.  This is harder to enforce.
178 
179 If any of these conditions are not met, deadlock can ensue when grabbing
180 resources in the GC or debugger (#1) or waiting for threads to suspend
181 (#2,#3).  (You won't actually deadlock in the GC, because if the semantics
182 above are followed you don't need to lock anything in the GC.  The risk is
183 rather that the GC will access data structures in an intermediate state.)
184 
185 This approach requires more care and awareness in the VM than
186 safe-pointing.  Because the GC and debugger are fairly intrusive, there
187 really aren't any internal VM resources that aren't shared.  Thus, the
188 enter/exit critical calls can be added to internal mutex wrappers, which
189 makes it easy to get #1 and #2 right.
190 
191 An ordering should be established for all locks to avoid deadlocks.
192 
193 Monitor locks, which are also implemented with pthread calls, should not
194 cause any problems here.  Threads fighting over such locks will not be in
195 critical sections and can be suspended freely.
196 
197 This can get tricky if we ever need exclusive access to VM and non-VM
198 resources at the same time.  It's not clear if this is a real concern.
199 
200 There are (at least) two ways to handle the incoming signals:
201 
202  (a) Always accept signals.  If we're in a critical section, the signal
203      handler just returns without doing anything (the "suspend level"
204      should have been incremented before the signal was sent).  Otherwise,
205      if the "suspend level" is nonzero, we go to sleep.
206  (b) Block signals in critical sections.  This ensures that we can't be
207      interrupted in a critical section, but requires pthread_sigmask()
208      calls on entry and exit.
209 
210 This is a choice between blocking the message and blocking the messenger.
211 Because UNIX signals are unreliable (you can only know that you have been
212 signaled, not whether you were signaled once or 10 times), the choice is
213 not significant for correctness.  The choice depends on the efficiency
214 of pthread_sigmask() and the desire to actually block signals.  Either way,
215 it is best to ensure that there is only one indication of "blocked";
216 having two (i.e. block signals and set a flag, then only send a signal
217 if the flag isn't set) can lead to race conditions.
218 
219 The signal handler must take care to copy registers onto the stack (via
220 setjmp), so that stack scans find all references.  Because we have to scan
221 native stacks, "exact" GC is not possible with this approach.
222 
223 Some other concerns with flinging signals around:
224  - Odd interactions with some debuggers (e.g. gdb on the Mac)
225  - Restrictions on some standard library calls during GC (e.g. don't
226    use printf on stdout to print GC debug messages)
227 */
228 
229 #define kMaxThreadId        ((1 << 16) - 1)
230 #define kMainThreadId       1
231 
232 
233 static Thread* allocThread(int interpStackSize);
234 static bool prepareThread(Thread* thread);
235 static void setThreadSelf(Thread* thread);
236 static void unlinkThread(Thread* thread);
237 static void freeThread(Thread* thread);
238 static void assignThreadId(Thread* thread);
239 static bool createFakeEntryFrame(Thread* thread);
240 static bool createFakeRunFrame(Thread* thread);
241 static void* interpThreadStart(void* arg);
242 static void* internalThreadStart(void* arg);
243 static void threadExitUncaughtException(Thread* thread, Object* group);
244 static void threadExitCheck(void* arg);
245 static void waitForThreadSuspend(Thread* self, Thread* thread);
246 
247 /*
248  * Initialize thread list and main thread's environment.  We need to set
249  * up some basic stuff so that dvmThreadSelf() will work when we start
250  * loading classes (e.g. to check for exceptions).
251  */
dvmThreadStartup()252 bool dvmThreadStartup()
253 {
254     Thread* thread;
255 
256     /* allocate a TLS slot */
257     if (pthread_key_create(&gDvm.pthreadKeySelf, threadExitCheck) != 0) {
258         ALOGE("ERROR: pthread_key_create failed");
259         return false;
260     }
261 
262     /* test our pthread lib */
263     if (pthread_getspecific(gDvm.pthreadKeySelf) != NULL)
264         ALOGW("WARNING: newly-created pthread TLS slot is not NULL");
265 
266     /* prep thread-related locks and conditions */
267     dvmInitMutex(&gDvm.threadListLock);
268     pthread_cond_init(&gDvm.threadStartCond, NULL);
269     pthread_cond_init(&gDvm.vmExitCond, NULL);
270     dvmInitMutex(&gDvm._threadSuspendLock);
271     dvmInitMutex(&gDvm.threadSuspendCountLock);
272     pthread_cond_init(&gDvm.threadSuspendCountCond, NULL);
273 
274     /*
275      * Dedicated monitor for Thread.sleep().
276      * TODO: change this to an Object* so we don't have to expose this
277      * call, and we interact better with JDWP monitor calls.  Requires
278      * deferring the object creation to much later (e.g. final "main"
279      * thread prep) or until first use.
280      */
281     gDvm.threadSleepMon = dvmCreateMonitor(NULL);
282 
283     gDvm.threadIdMap = dvmAllocBitVector(kMaxThreadId, false);
284 
285     thread = allocThread(gDvm.mainThreadStackSize);
286     if (thread == NULL)
287         return false;
288 
289     /* switch mode for when we run initializers */
290     thread->status = THREAD_RUNNING;
291 
292     /*
293      * We need to assign the threadId early so we can lock/notify
294      * object monitors.  We'll set the "threadObj" field later.
295      */
296     prepareThread(thread);
297     gDvm.threadList = thread;
298 
299 #ifdef COUNT_PRECISE_METHODS
300     gDvm.preciseMethods = dvmPointerSetAlloc(200);
301 #endif
302 
303     return true;
304 }
305 
306 /*
307  * All threads should be stopped by now.  Clean up some thread globals.
308  */
dvmThreadShutdown()309 void dvmThreadShutdown()
310 {
311     if (gDvm.threadList != NULL) {
312         /*
313          * If we walk through the thread list and try to free the
314          * lingering thread structures (which should only be for daemon
315          * threads), the daemon threads may crash if they execute before
316          * the process dies.  Let them leak.
317          */
318         freeThread(gDvm.threadList);
319         gDvm.threadList = NULL;
320     }
321 
322     dvmFreeBitVector(gDvm.threadIdMap);
323 
324     dvmFreeMonitorList();
325 
326     pthread_key_delete(gDvm.pthreadKeySelf);
327 }
328 
329 
330 /*
331  * Grab the suspend count global lock.
332  */
lockThreadSuspendCount()333 static inline void lockThreadSuspendCount()
334 {
335     /*
336      * Don't try to change to VMWAIT here.  When we change back to RUNNING
337      * we have to check for a pending suspend, which results in grabbing
338      * this lock recursively.  Doesn't work with "fast" pthread mutexes.
339      *
340      * This lock is always held for very brief periods, so as long as
341      * mutex ordering is respected we shouldn't stall.
342      */
343     dvmLockMutex(&gDvm.threadSuspendCountLock);
344 }
345 
346 /*
347  * Release the suspend count global lock.
348  */
unlockThreadSuspendCount()349 static inline void unlockThreadSuspendCount()
350 {
351     dvmUnlockMutex(&gDvm.threadSuspendCountLock);
352 }
353 
354 /*
355  * Grab the thread list global lock.
356  *
357  * This is held while "suspend all" is trying to make everybody stop.  If
358  * the shutdown is in progress, and somebody tries to grab the lock, they'll
359  * have to wait for the GC to finish.  Therefore it's important that the
360  * thread not be in RUNNING mode.
361  *
362  * We don't have to check to see if we should be suspended once we have
363  * the lock.  Nobody can suspend all threads without holding the thread list
364  * lock while they do it, so by definition there isn't a GC in progress.
365  *
366  * This function deliberately avoids the use of dvmChangeStatus(),
367  * which could grab threadSuspendCountLock.  To avoid deadlock, threads
368  * are required to grab the thread list lock before the thread suspend
369  * count lock.  (See comment in DvmGlobals.)
370  *
371  * TODO: consider checking for suspend after acquiring the lock, and
372  * backing off if set.  As stated above, it can't happen during normal
373  * execution, but it *can* happen during shutdown when daemon threads
374  * are being suspended.
375  */
dvmLockThreadList(Thread * self)376 void dvmLockThreadList(Thread* self)
377 {
378     ThreadStatus oldStatus;
379 
380     if (self == NULL)       /* try to get it from TLS */
381         self = dvmThreadSelf();
382 
383     if (self != NULL) {
384         oldStatus = self->status;
385         self->status = THREAD_VMWAIT;
386     } else {
387         /* happens during VM shutdown */
388         oldStatus = THREAD_UNDEFINED;  // shut up gcc
389     }
390 
391     dvmLockMutex(&gDvm.threadListLock);
392 
393     if (self != NULL)
394         self->status = oldStatus;
395 }
396 
397 /*
398  * Try to lock the thread list.
399  *
400  * Returns "true" if we locked it.  This is a "fast" mutex, so if the
401  * current thread holds the lock this will fail.
402  */
dvmTryLockThreadList()403 bool dvmTryLockThreadList()
404 {
405     return (dvmTryLockMutex(&gDvm.threadListLock) == 0);
406 }
407 
408 /*
409  * Release the thread list global lock.
410  */
dvmUnlockThreadList()411 void dvmUnlockThreadList()
412 {
413     dvmUnlockMutex(&gDvm.threadListLock);
414 }
415 
416 /*
417  * Convert SuspendCause to a string.
418  */
getSuspendCauseStr(SuspendCause why)419 static const char* getSuspendCauseStr(SuspendCause why)
420 {
421     switch (why) {
422     case SUSPEND_NOT:               return "NOT?";
423     case SUSPEND_FOR_GC:            return "gc";
424     case SUSPEND_FOR_DEBUG:         return "debug";
425     case SUSPEND_FOR_DEBUG_EVENT:   return "debug-event";
426     case SUSPEND_FOR_STACK_DUMP:    return "stack-dump";
427     case SUSPEND_FOR_VERIFY:        return "verify";
428     case SUSPEND_FOR_HPROF:         return "hprof";
429 #if defined(WITH_JIT)
430     case SUSPEND_FOR_TBL_RESIZE:    return "table-resize";
431     case SUSPEND_FOR_IC_PATCH:      return "inline-cache-patch";
432     case SUSPEND_FOR_CC_RESET:      return "reset-code-cache";
433     case SUSPEND_FOR_REFRESH:       return "refresh jit status";
434 #endif
435     default:                        return "UNKNOWN";
436     }
437 }
438 
439 /*
440  * Grab the "thread suspend" lock.  This is required to prevent the
441  * GC and the debugger from simultaneously suspending all threads.
442  *
443  * If we fail to get the lock, somebody else is trying to suspend all
444  * threads -- including us.  If we go to sleep on the lock we'll deadlock
445  * the VM.  Loop until we get it or somebody puts us to sleep.
446  */
lockThreadSuspend(const char * who,SuspendCause why)447 static void lockThreadSuspend(const char* who, SuspendCause why)
448 {
449     const int kSpinSleepTime = 3*1000*1000;        /* 3s */
450     u8 startWhen = 0;       // init req'd to placate gcc
451     int sleepIter = 0;
452     int cc;
453 
454     do {
455         cc = dvmTryLockMutex(&gDvm._threadSuspendLock);
456         if (cc != 0) {
457             Thread* self = dvmThreadSelf();
458 
459             if (!dvmCheckSuspendPending(self)) {
460                 /*
461                  * Could be that a resume-all is in progress, and something
462                  * grabbed the CPU when the wakeup was broadcast.  The thread
463                  * performing the resume hasn't had a chance to release the
464                  * thread suspend lock.  (We release before the broadcast,
465                  * so this should be a narrow window.)
466                  *
467                  * Could be we hit the window as a suspend was started,
468                  * and the lock has been grabbed but the suspend counts
469                  * haven't been incremented yet.
470                  *
471                  * Could be an unusual JNI thread-attach thing.
472                  *
473                  * Could be the debugger telling us to resume at roughly
474                  * the same time we're posting an event.
475                  *
476                  * Could be two app threads both want to patch predicted
477                  * chaining cells around the same time.
478                  */
479                 ALOGI("threadid=%d ODD: want thread-suspend lock (%s:%s),"
480                      " it's held, no suspend pending",
481                     self->threadId, who, getSuspendCauseStr(why));
482             } else {
483                 /* we suspended; reset timeout */
484                 sleepIter = 0;
485             }
486 
487             /* give the lock-holder a chance to do some work */
488             if (sleepIter == 0)
489                 startWhen = dvmGetRelativeTimeUsec();
490             if (!dvmIterativeSleep(sleepIter++, kSpinSleepTime, startWhen)) {
491                 ALOGE("threadid=%d: couldn't get thread-suspend lock (%s:%s),"
492                      " bailing",
493                     self->threadId, who, getSuspendCauseStr(why));
494                 /* threads are not suspended, thread dump could crash */
495                 dvmDumpAllThreads(false);
496                 dvmAbort();
497             }
498         }
499     } while (cc != 0);
500     assert(cc == 0);
501 }
502 
503 /*
504  * Release the "thread suspend" lock.
505  */
unlockThreadSuspend()506 static inline void unlockThreadSuspend()
507 {
508     dvmUnlockMutex(&gDvm._threadSuspendLock);
509 }
510 
511 
512 /*
513  * Kill any daemon threads that still exist.  All of ours should be
514  * stopped, so these should be Thread objects or JNI-attached threads
515  * started by the application.  Actively-running threads are likely
516  * to crash the process if they continue to execute while the VM
517  * shuts down, so we really need to kill or suspend them.  (If we want
518  * the VM to restart within this process, we need to kill them, but that
519  * leaves open the possibility of orphaned resources.)
520  *
521  * Waiting for the thread to suspend may be unwise at this point, but
522  * if one of these is wedged in a critical section then we probably
523  * would've locked up on the last GC attempt.
524  *
525  * It's possible for this function to get called after a failed
526  * initialization, so be careful with assumptions about the environment.
527  *
528  * This will be called from whatever thread calls DestroyJavaVM, usually
529  * but not necessarily the main thread.  It's likely, but not guaranteed,
530  * that the current thread has already been cleaned up.
531  */
dvmSlayDaemons()532 void dvmSlayDaemons()
533 {
534     Thread* self = dvmThreadSelf();     // may be null
535     Thread* target;
536     int threadId = 0;
537     bool doWait = false;
538 
539     dvmLockThreadList(self);
540 
541     if (self != NULL)
542         threadId = self->threadId;
543 
544     target = gDvm.threadList;
545     while (target != NULL) {
546         if (target == self) {
547             target = target->next;
548             continue;
549         }
550 
551         if (!dvmGetFieldBoolean(target->threadObj,
552                 gDvm.offJavaLangThread_daemon))
553         {
554             /* should never happen; suspend it with the rest */
555             ALOGW("threadid=%d: non-daemon id=%d still running at shutdown?!",
556                 threadId, target->threadId);
557         }
558 
559         std::string threadName(dvmGetThreadName(target));
560         ALOGV("threadid=%d: suspending daemon id=%d name='%s'",
561                 threadId, target->threadId, threadName.c_str());
562 
563         /* mark as suspended */
564         lockThreadSuspendCount();
565         dvmAddToSuspendCounts(target, 1, 0);
566         unlockThreadSuspendCount();
567         doWait = true;
568 
569         target = target->next;
570     }
571 
572     //dvmDumpAllThreads(false);
573 
574     /*
575      * Unlock the thread list, relocking it later if necessary.  It's
576      * possible a thread is in VMWAIT after calling dvmLockThreadList,
577      * and that function *doesn't* check for pending suspend after
578      * acquiring the lock.  We want to let them finish their business
579      * and see the pending suspend before we continue here.
580      *
581      * There's no guarantee of mutex fairness, so this might not work.
582      * (The alternative is to have dvmLockThreadList check for suspend
583      * after acquiring the lock and back off, something we should consider.)
584      */
585     dvmUnlockThreadList();
586 
587     if (doWait) {
588         bool complained = false;
589 
590         usleep(200 * 1000);
591 
592         dvmLockThreadList(self);
593 
594         /*
595          * Sleep for a bit until the threads have suspended.  We're trying
596          * to exit, so don't wait for too long.
597          */
598         int i;
599         for (i = 0; i < 10; i++) {
600             bool allSuspended = true;
601 
602             target = gDvm.threadList;
603             while (target != NULL) {
604                 if (target == self) {
605                     target = target->next;
606                     continue;
607                 }
608 
609                 if (target->status == THREAD_RUNNING) {
610                     if (!complained)
611                         ALOGD("threadid=%d not ready yet", target->threadId);
612                     allSuspended = false;
613                     /* keep going so we log each running daemon once */
614                 }
615 
616                 target = target->next;
617             }
618 
619             if (allSuspended) {
620                 ALOGV("threadid=%d: all daemons have suspended", threadId);
621                 break;
622             } else {
623                 if (!complained) {
624                     complained = true;
625                     ALOGD("threadid=%d: waiting briefly for daemon suspension",
626                         threadId);
627                 }
628             }
629 
630             usleep(200 * 1000);
631         }
632         dvmUnlockThreadList();
633     }
634 
635 #if 0   /* bad things happen if they come out of JNI or "spuriously" wake up */
636     /*
637      * Abandon the threads and recover their resources.
638      */
639     target = gDvm.threadList;
640     while (target != NULL) {
641         Thread* nextTarget = target->next;
642         unlinkThread(target);
643         freeThread(target);
644         target = nextTarget;
645     }
646 #endif
647 
648     //dvmDumpAllThreads(true);
649 }
650 
651 
652 /*
653  * Finish preparing the parts of the Thread struct required to support
654  * JNI registration.
655  */
dvmPrepMainForJni(JNIEnv * pEnv)656 bool dvmPrepMainForJni(JNIEnv* pEnv)
657 {
658     Thread* self;
659 
660     /* main thread is always first in list at this point */
661     self = gDvm.threadList;
662     assert(self->threadId == kMainThreadId);
663 
664     /* create a "fake" JNI frame at the top of the main thread interp stack */
665     if (!createFakeEntryFrame(self))
666         return false;
667 
668     /* fill these in, since they weren't ready at dvmCreateJNIEnv time */
669     dvmSetJniEnvThreadId(pEnv, self);
670     dvmSetThreadJNIEnv(self, (JNIEnv*) pEnv);
671 
672     return true;
673 }
674 
675 
676 /*
677  * Finish preparing the main thread, allocating some objects to represent
678  * it.  As part of doing so, we finish initializing Thread and ThreadGroup.
679  * This will execute some interpreted code (e.g. class initializers).
680  */
dvmPrepMainThread()681 bool dvmPrepMainThread()
682 {
683     Thread* thread;
684     Object* groupObj;
685     Object* threadObj;
686     Object* vmThreadObj;
687     StringObject* threadNameStr;
688     Method* init;
689     JValue unused;
690 
691     ALOGV("+++ finishing prep on main VM thread");
692 
693     /* main thread is always first in list at this point */
694     thread = gDvm.threadList;
695     assert(thread->threadId == kMainThreadId);
696 
697     /*
698      * Make sure the classes are initialized.  We have to do this before
699      * we create an instance of them.
700      */
701     if (!dvmInitClass(gDvm.classJavaLangClass)) {
702         ALOGE("'Class' class failed to initialize");
703         return false;
704     }
705     if (!dvmInitClass(gDvm.classJavaLangThreadGroup) ||
706         !dvmInitClass(gDvm.classJavaLangThread) ||
707         !dvmInitClass(gDvm.classJavaLangVMThread))
708     {
709         ALOGE("thread classes failed to initialize");
710         return false;
711     }
712 
713     groupObj = dvmGetMainThreadGroup();
714     if (groupObj == NULL)
715         return false;
716 
717     /*
718      * Allocate and construct a Thread with the internal-creation
719      * constructor.
720      */
721     threadObj = dvmAllocObject(gDvm.classJavaLangThread, ALLOC_DEFAULT);
722     if (threadObj == NULL) {
723         ALOGE("unable to allocate main thread object");
724         return false;
725     }
726     dvmReleaseTrackedAlloc(threadObj, NULL);
727 
728     threadNameStr = dvmCreateStringFromCstr("main");
729     if (threadNameStr == NULL)
730         return false;
731     dvmReleaseTrackedAlloc((Object*)threadNameStr, NULL);
732 
733     init = dvmFindDirectMethodByDescriptor(gDvm.classJavaLangThread, "<init>",
734             "(Ljava/lang/ThreadGroup;Ljava/lang/String;IZ)V");
735     assert(init != NULL);
736     dvmCallMethod(thread, init, threadObj, &unused, groupObj, threadNameStr,
737         THREAD_NORM_PRIORITY, false);
738     if (dvmCheckException(thread)) {
739         ALOGE("exception thrown while constructing main thread object");
740         return false;
741     }
742 
743     /*
744      * Allocate and construct a VMThread.
745      */
746     vmThreadObj = dvmAllocObject(gDvm.classJavaLangVMThread, ALLOC_DEFAULT);
747     if (vmThreadObj == NULL) {
748         ALOGE("unable to allocate main vmthread object");
749         return false;
750     }
751     dvmReleaseTrackedAlloc(vmThreadObj, NULL);
752 
753     init = dvmFindDirectMethodByDescriptor(gDvm.classJavaLangVMThread, "<init>",
754             "(Ljava/lang/Thread;)V");
755     dvmCallMethod(thread, init, vmThreadObj, &unused, threadObj);
756     if (dvmCheckException(thread)) {
757         ALOGE("exception thrown while constructing main vmthread object");
758         return false;
759     }
760 
761     /* set the VMThread.vmData field to our Thread struct */
762     assert(gDvm.offJavaLangVMThread_vmData != 0);
763     dvmSetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData, (u4)thread);
764 
765     /*
766      * Stuff the VMThread back into the Thread.  From this point on, other
767      * Threads will see that this Thread is running (at least, they would,
768      * if there were any).
769      */
770     dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread,
771         vmThreadObj);
772 
773     thread->threadObj = threadObj;
774 
775     /*
776      * Set the "context class loader" field in the system class loader.
777      *
778      * Retrieving the system class loader will cause invocation of
779      * ClassLoader.getSystemClassLoader(), which could conceivably call
780      * Thread.currentThread(), so we want the Thread to be fully configured
781      * before we do this.
782      */
783     Object* systemLoader = dvmGetSystemClassLoader();
784     if (systemLoader == NULL) {
785         ALOGW("WARNING: system class loader is NULL (setting main ctxt)");
786         /* keep going? */
787     } else {
788         dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_contextClassLoader,
789             systemLoader);
790         dvmReleaseTrackedAlloc(systemLoader, NULL);
791     }
792 
793     /* include self in non-daemon threads (mainly for AttachCurrentThread) */
794     gDvm.nonDaemonThreadCount++;
795 
796     return true;
797 }
798 
799 
800 /*
801  * Alloc and initialize a Thread struct.
802  *
803  * Does not create any objects, just stuff on the system (malloc) heap.
804  */
allocThread(int interpStackSize)805 static Thread* allocThread(int interpStackSize)
806 {
807     Thread* thread;
808     u1* stackBottom;
809 
810     thread = (Thread*) calloc(1, sizeof(Thread));
811     if (thread == NULL)
812         return NULL;
813 
814     /* Check sizes and alignment */
815     assert((((uintptr_t)&thread->interpBreak.all) & 0x7) == 0);
816     assert(sizeof(thread->interpBreak) == sizeof(thread->interpBreak.all));
817 
818 
819 #if defined(WITH_SELF_VERIFICATION)
820     if (dvmSelfVerificationShadowSpaceAlloc(thread) == NULL)
821         return NULL;
822 #endif
823 
824     assert(interpStackSize >= kMinStackSize && interpStackSize <=kMaxStackSize);
825 
826     thread->status = THREAD_INITIALIZING;
827 
828     /*
829      * Allocate and initialize the interpreted code stack.  We essentially
830      * "lose" the alloc pointer, which points at the bottom of the stack,
831      * but we can get it back later because we know how big the stack is.
832      *
833      * The stack must be aligned on a 4-byte boundary.
834      */
835 #ifdef MALLOC_INTERP_STACK
836     stackBottom = (u1*) malloc(interpStackSize);
837     if (stackBottom == NULL) {
838 #if defined(WITH_SELF_VERIFICATION)
839         dvmSelfVerificationShadowSpaceFree(thread);
840 #endif
841         free(thread);
842         return NULL;
843     }
844     memset(stackBottom, 0xc5, interpStackSize);     // stop valgrind complaints
845 #else
846     stackBottom = (u1*) mmap(NULL, interpStackSize, PROT_READ | PROT_WRITE,
847         MAP_PRIVATE | MAP_ANON, -1, 0);
848     if (stackBottom == MAP_FAILED) {
849 #if defined(WITH_SELF_VERIFICATION)
850         dvmSelfVerificationShadowSpaceFree(thread);
851 #endif
852         free(thread);
853         return NULL;
854     }
855 #endif
856 
857     assert(((u4)stackBottom & 0x03) == 0); // looks like our malloc ensures this
858     thread->interpStackSize = interpStackSize;
859     thread->interpStackStart = stackBottom + interpStackSize;
860     thread->interpStackEnd = stackBottom + STACK_OVERFLOW_RESERVE;
861 
862 #ifndef DVM_NO_ASM_INTERP
863     thread->mainHandlerTable = dvmAsmInstructionStart;
864     thread->altHandlerTable = dvmAsmAltInstructionStart;
865     thread->interpBreak.ctl.curHandlerTable = thread->mainHandlerTable;
866 #endif
867 
868     /* give the thread code a chance to set things up */
869     dvmInitInterpStack(thread, interpStackSize);
870 
871     /* One-time setup for interpreter/JIT state */
872     dvmInitInterpreterState(thread);
873 
874     return thread;
875 }
876 
877 /*
878  * Get a meaningful thread ID.  At present this only has meaning under Linux,
879  * where getpid() and gettid() sometimes agree and sometimes don't depending
880  * on your thread model (try "export LD_ASSUME_KERNEL=2.4.19").
881  */
dvmGetSysThreadId()882 pid_t dvmGetSysThreadId()
883 {
884 #ifdef HAVE_GETTID
885     return gettid();
886 #else
887     return getpid();
888 #endif
889 }
890 
891 /*
892  * Finish initialization of a Thread struct.
893  *
894  * This must be called while executing in the new thread, but before the
895  * thread is added to the thread list.
896  *
897  * NOTE: The threadListLock must be held by the caller (needed for
898  * assignThreadId()).
899  */
prepareThread(Thread * thread)900 static bool prepareThread(Thread* thread)
901 {
902     assignThreadId(thread);
903     thread->handle = pthread_self();
904     thread->systemTid = dvmGetSysThreadId();
905 
906     //ALOGI("SYSTEM TID IS %d (pid is %d)", (int) thread->systemTid,
907     //    (int) getpid());
908     /*
909      * If we were called by dvmAttachCurrentThread, the self value is
910      * already correctly established as "thread".
911      */
912     setThreadSelf(thread);
913 
914     ALOGV("threadid=%d: interp stack at %p",
915         thread->threadId, thread->interpStackStart - thread->interpStackSize);
916 
917     /*
918      * Initialize invokeReq.
919      */
920     dvmInitMutex(&thread->invokeReq.lock);
921     pthread_cond_init(&thread->invokeReq.cv, NULL);
922 
923     /*
924      * Initialize our reference tracking tables.
925      *
926      * Most threads won't use jniMonitorRefTable, so we clear out the
927      * structure but don't call the init function (which allocs storage).
928      */
929     if (!thread->jniLocalRefTable.init(kJniLocalRefMin,
930             kJniLocalRefMax, kIndirectKindLocal)) {
931         return false;
932     }
933     if (!dvmInitReferenceTable(&thread->internalLocalRefTable,
934             kInternalRefDefault, kInternalRefMax))
935         return false;
936 
937     memset(&thread->jniMonitorRefTable, 0, sizeof(thread->jniMonitorRefTable));
938 
939     pthread_cond_init(&thread->waitCond, NULL);
940     dvmInitMutex(&thread->waitMutex);
941 
942     /* Initialize safepoint callback mechanism */
943     dvmInitMutex(&thread->callbackMutex);
944 
945     return true;
946 }
947 
948 /*
949  * Remove a thread from the internal list.
950  * Clear out the links to make it obvious that the thread is
951  * no longer on the list.  Caller must hold gDvm.threadListLock.
952  */
unlinkThread(Thread * thread)953 static void unlinkThread(Thread* thread)
954 {
955     LOG_THREAD("threadid=%d: removing from list", thread->threadId);
956     if (thread == gDvm.threadList) {
957         assert(thread->prev == NULL);
958         gDvm.threadList = thread->next;
959     } else {
960         assert(thread->prev != NULL);
961         thread->prev->next = thread->next;
962     }
963     if (thread->next != NULL)
964         thread->next->prev = thread->prev;
965     thread->prev = thread->next = NULL;
966 }
967 
968 /*
969  * Free a Thread struct, and all the stuff allocated within.
970  */
freeThread(Thread * thread)971 static void freeThread(Thread* thread)
972 {
973     if (thread == NULL)
974         return;
975 
976     /* thread->threadId is zero at this point */
977     LOGVV("threadid=%d: freeing", thread->threadId);
978 
979     if (thread->interpStackStart != NULL) {
980         u1* interpStackBottom;
981 
982         interpStackBottom = thread->interpStackStart;
983         interpStackBottom -= thread->interpStackSize;
984 #ifdef MALLOC_INTERP_STACK
985         free(interpStackBottom);
986 #else
987         if (munmap(interpStackBottom, thread->interpStackSize) != 0)
988             ALOGW("munmap(thread stack) failed");
989 #endif
990     }
991 
992     thread->jniLocalRefTable.destroy();
993     dvmClearReferenceTable(&thread->internalLocalRefTable);
994     if (&thread->jniMonitorRefTable.table != NULL)
995         dvmClearReferenceTable(&thread->jniMonitorRefTable);
996 
997 #if defined(WITH_SELF_VERIFICATION)
998     dvmSelfVerificationShadowSpaceFree(thread);
999 #endif
1000     free(thread);
1001 }
1002 
1003 /*
1004  * Like pthread_self(), but on a Thread*.
1005  */
dvmThreadSelf()1006 Thread* dvmThreadSelf()
1007 {
1008     return (Thread*) pthread_getspecific(gDvm.pthreadKeySelf);
1009 }
1010 
1011 /*
1012  * Explore our sense of self.  Stuffs the thread pointer into TLS.
1013  */
setThreadSelf(Thread * thread)1014 static void setThreadSelf(Thread* thread)
1015 {
1016     int cc;
1017 
1018     cc = pthread_setspecific(gDvm.pthreadKeySelf, thread);
1019     if (cc != 0) {
1020         /*
1021          * Sometimes this fails under Bionic with EINVAL during shutdown.
1022          * This can happen if the timing is just right, e.g. a thread
1023          * fails to attach during shutdown, but the "fail" path calls
1024          * here to ensure we clean up after ourselves.
1025          */
1026         if (thread != NULL) {
1027             ALOGE("pthread_setspecific(%p) failed, err=%d", thread, cc);
1028             dvmAbort();     /* the world is fundamentally hosed */
1029         }
1030     }
1031 }
1032 
1033 /*
1034  * This is associated with the pthreadKeySelf key.  It's called by the
1035  * pthread library when a thread is exiting and the "self" pointer in TLS
1036  * is non-NULL, meaning the VM hasn't had a chance to clean up.  In normal
1037  * operation this will not be called.
1038  *
1039  * This is mainly of use to ensure that we don't leak resources if, for
1040  * example, a thread attaches itself to us with AttachCurrentThread and
1041  * then exits without notifying the VM.
1042  *
1043  * We could do the detach here instead of aborting, but this will lead to
1044  * portability problems.  Other implementations do not do this check and
1045  * will simply be unaware that the thread has exited, leading to resource
1046  * leaks (and, if this is a non-daemon thread, an infinite hang when the
1047  * VM tries to shut down).
1048  *
1049  * Because some implementations may want to use the pthread destructor
1050  * to initiate the detach, and the ordering of destructors is not defined,
1051  * we want to iterate a couple of times to give those a chance to run.
1052  */
threadExitCheck(void * arg)1053 static void threadExitCheck(void* arg)
1054 {
1055     const int kMaxCount = 2;
1056 
1057     Thread* self = (Thread*) arg;
1058     assert(self != NULL);
1059 
1060     ALOGV("threadid=%d: threadExitCheck(%p) count=%d",
1061         self->threadId, arg, self->threadExitCheckCount);
1062 
1063     if (self->status == THREAD_ZOMBIE) {
1064         ALOGW("threadid=%d: Weird -- shouldn't be in threadExitCheck",
1065             self->threadId);
1066         return;
1067     }
1068 
1069     if (self->threadExitCheckCount < kMaxCount) {
1070         /*
1071          * Spin a couple of times to let other destructors fire.
1072          */
1073         ALOGD("threadid=%d: thread exiting, not yet detached (count=%d)",
1074             self->threadId, self->threadExitCheckCount);
1075         self->threadExitCheckCount++;
1076         int cc = pthread_setspecific(gDvm.pthreadKeySelf, self);
1077         if (cc != 0) {
1078             ALOGE("threadid=%d: unable to re-add thread to TLS",
1079                 self->threadId);
1080             dvmAbort();
1081         }
1082     } else {
1083         ALOGE("threadid=%d: native thread exited without detaching",
1084             self->threadId);
1085         dvmAbort();
1086     }
1087 }
1088 
1089 
1090 /*
1091  * Assign the threadId.  This needs to be a small integer so that our
1092  * "thin" locks fit in a small number of bits.
1093  *
1094  * We reserve zero for use as an invalid ID.
1095  *
1096  * This must be called with threadListLock held.
1097  */
assignThreadId(Thread * thread)1098 static void assignThreadId(Thread* thread)
1099 {
1100     /*
1101      * Find a small unique integer.  threadIdMap is a vector of
1102      * kMaxThreadId bits;  dvmAllocBit() returns the index of a
1103      * bit, meaning that it will always be < kMaxThreadId.
1104      */
1105     int num = dvmAllocBit(gDvm.threadIdMap);
1106     if (num < 0) {
1107         ALOGE("Ran out of thread IDs");
1108         dvmAbort();     // TODO: make this a non-fatal error result
1109     }
1110 
1111     thread->threadId = num + 1;
1112 
1113     assert(thread->threadId != 0);
1114 }
1115 
1116 /*
1117  * Give back the thread ID.
1118  */
releaseThreadId(Thread * thread)1119 static void releaseThreadId(Thread* thread)
1120 {
1121     assert(thread->threadId > 0);
1122     dvmClearBit(gDvm.threadIdMap, thread->threadId - 1);
1123     thread->threadId = 0;
1124 }
1125 
1126 
1127 /*
1128  * Add a stack frame that makes it look like the native code in the main
1129  * thread was originally invoked from interpreted code.  This gives us a
1130  * place to hang JNI local references.  The VM spec says (v2 5.2) that the
1131  * VM begins by executing "main" in a class, so in a way this brings us
1132  * closer to the spec.
1133  */
createFakeEntryFrame(Thread * thread)1134 static bool createFakeEntryFrame(Thread* thread)
1135 {
1136     /*
1137      * Because we are creating a frame that represents application code, we
1138      * want to stuff the application class loader into the method's class
1139      * loader field, even though we're using the system class loader to
1140      * load it.  This makes life easier over in JNI FindClass (though it
1141      * could bite us in other ways).
1142      *
1143      * Unfortunately this is occurring too early in the initialization,
1144      * of necessity coming before JNI is initialized, and we're not quite
1145      * ready to set up the application class loader.  Also, overwriting
1146      * the class' defining classloader pointer seems unwise.
1147      *
1148      * Instead, we save a pointer to the method and explicitly check for
1149      * it in FindClass.  The method is private so nobody else can call it.
1150      */
1151 
1152     assert(thread->threadId == kMainThreadId);      /* main thread only */
1153 
1154     if (!dvmPushJNIFrame(thread, gDvm.methDalvikSystemNativeStart_main))
1155         return false;
1156 
1157     /*
1158      * Null out the "String[] args" argument.
1159      */
1160     assert(gDvm.methDalvikSystemNativeStart_main->registersSize == 1);
1161     u4* framePtr = (u4*) thread->interpSave.curFrame;
1162     framePtr[0] = 0;
1163 
1164     return true;
1165 }
1166 
1167 
1168 /*
1169  * Add a stack frame that makes it look like the native thread has been
1170  * executing interpreted code.  This gives us a place to hang JNI local
1171  * references.
1172  */
createFakeRunFrame(Thread * thread)1173 static bool createFakeRunFrame(Thread* thread)
1174 {
1175     return dvmPushJNIFrame(thread, gDvm.methDalvikSystemNativeStart_run);
1176 }
1177 
1178 /*
1179  * Helper function to set the name of the current thread
1180  */
setThreadName(const char * threadName)1181 static void setThreadName(const char *threadName)
1182 {
1183     int hasAt = 0;
1184     int hasDot = 0;
1185     const char *s = threadName;
1186     while (*s) {
1187         if (*s == '.') hasDot = 1;
1188         else if (*s == '@') hasAt = 1;
1189         s++;
1190     }
1191     int len = s - threadName;
1192     if (len < 15 || hasAt || !hasDot) {
1193         s = threadName;
1194     } else {
1195         s = threadName + len - 15;
1196     }
1197 #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
1198     /* pthread_setname_np fails rather than truncating long strings */
1199     char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
1200     strncpy(buf, s, sizeof(buf)-1);
1201     buf[sizeof(buf)-1] = '\0';
1202     int err = pthread_setname_np(pthread_self(), buf);
1203     if (err != 0) {
1204         ALOGW("Unable to set the name of current thread to '%s': %s",
1205             buf, strerror(err));
1206     }
1207 #elif defined(HAVE_PRCTL)
1208     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
1209 #else
1210     ALOGD("No way to set current thread's name (%s)", s);
1211 #endif
1212 }
1213 
1214 /*
1215  * Create a thread as a result of java.lang.Thread.start().
1216  *
1217  * We do have to worry about some concurrency problems, e.g. programs
1218  * that try to call Thread.start() on the same object from multiple threads.
1219  * (This will fail for all but one, but we have to make sure that it succeeds
1220  * for exactly one.)
1221  *
1222  * Some of the complexity here arises from our desire to mimic the
1223  * Thread vs. VMThread class decomposition we inherited.  We've been given
1224  * a Thread, and now we need to create a VMThread and then populate both
1225  * objects.  We also need to create one of our internal Thread objects.
1226  *
1227  * Pass in a stack size of 0 to get the default.
1228  *
1229  * The "threadObj" reference must be pinned by the caller to prevent the GC
1230  * from moving it around (e.g. added to the tracked allocation list).
1231  */
dvmCreateInterpThread(Object * threadObj,int reqStackSize)1232 bool dvmCreateInterpThread(Object* threadObj, int reqStackSize)
1233 {
1234     assert(threadObj != NULL);
1235 
1236     Thread* self = dvmThreadSelf();
1237     int stackSize;
1238     if (reqStackSize == 0)
1239         stackSize = gDvm.stackSize;
1240     else if (reqStackSize < kMinStackSize)
1241         stackSize = kMinStackSize;
1242     else if (reqStackSize > kMaxStackSize)
1243         stackSize = kMaxStackSize;
1244     else
1245         stackSize = reqStackSize;
1246 
1247     pthread_attr_t threadAttr;
1248     pthread_attr_init(&threadAttr);
1249     pthread_attr_setdetachstate(&threadAttr, PTHREAD_CREATE_DETACHED);
1250 
1251     /*
1252      * To minimize the time spent in the critical section, we allocate the
1253      * vmThread object here.
1254      */
1255     Object* vmThreadObj = dvmAllocObject(gDvm.classJavaLangVMThread, ALLOC_DEFAULT);
1256     if (vmThreadObj == NULL)
1257         return false;
1258 
1259     Thread* newThread = allocThread(stackSize);
1260     if (newThread == NULL) {
1261         dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1262         return false;
1263     }
1264 
1265     newThread->threadObj = threadObj;
1266 
1267     assert(newThread->status == THREAD_INITIALIZING);
1268 
1269     /*
1270      * We need to lock out other threads while we test and set the
1271      * "vmThread" field in java.lang.Thread, because we use that to determine
1272      * if this thread has been started before.  We use the thread list lock
1273      * because it's handy and we're going to need to grab it again soon
1274      * anyway.
1275      */
1276     dvmLockThreadList(self);
1277 
1278     if (dvmGetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread) != NULL) {
1279         dvmUnlockThreadList();
1280         dvmThrowIllegalThreadStateException(
1281             "thread has already been started");
1282         freeThread(newThread);
1283         dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1284     }
1285 
1286     /*
1287      * There are actually three data structures: Thread (object), VMThread
1288      * (object), and Thread (C struct).  All of them point to at least one
1289      * other.
1290      *
1291      * As soon as "VMThread.vmData" is assigned, other threads can start
1292      * making calls into us (e.g. setPriority).
1293      */
1294     dvmSetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData, (u4)newThread);
1295     dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread, vmThreadObj);
1296 
1297     /*
1298      * Thread creation might take a while, so release the lock.
1299      */
1300     dvmUnlockThreadList();
1301 
1302     ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
1303     pthread_t threadHandle;
1304     int cc = pthread_create(&threadHandle, &threadAttr, interpThreadStart,
1305                             newThread);
1306     dvmChangeStatus(self, oldStatus);
1307 
1308     if (cc != 0) {
1309         /*
1310          * Failure generally indicates that we have exceeded system
1311          * resource limits.  VirtualMachineError is probably too severe,
1312          * so use OutOfMemoryError.
1313          */
1314         ALOGE("Thread creation failed (err=%s)", strerror(errno));
1315 
1316         dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread, NULL);
1317 
1318         dvmThrowOutOfMemoryError("thread creation failed");
1319         goto fail;
1320     }
1321 
1322     /*
1323      * We need to wait for the thread to start.  Otherwise, depending on
1324      * the whims of the OS scheduler, we could return and the code in our
1325      * thread could try to do operations on the new thread before it had
1326      * finished starting.
1327      *
1328      * The new thread will lock the thread list, change its state to
1329      * THREAD_STARTING, broadcast to gDvm.threadStartCond, and then sleep
1330      * on gDvm.threadStartCond (which uses the thread list lock).  This
1331      * thread (the parent) will either see that the thread is already ready
1332      * after we grab the thread list lock, or will be awakened from the
1333      * condition variable on the broadcast.
1334      *
1335      * We don't want to stall the rest of the VM while the new thread
1336      * starts, which can happen if the GC wakes up at the wrong moment.
1337      * So, we change our own status to VMWAIT, and self-suspend if
1338      * necessary after we finish adding the new thread.
1339      *
1340      *
1341      * We have to deal with an odd race with the GC/debugger suspension
1342      * mechanism when creating a new thread.  The information about whether
1343      * or not a thread should be suspended is contained entirely within
1344      * the Thread struct; this is usually cleaner to deal with than having
1345      * one or more globally-visible suspension flags.  The trouble is that
1346      * we could create the thread while the VM is trying to suspend all
1347      * threads.  The suspend-count won't be nonzero for the new thread,
1348      * so dvmChangeStatus(THREAD_RUNNING) won't cause a suspension.
1349      *
1350      * The easiest way to deal with this is to prevent the new thread from
1351      * running until the parent says it's okay.  This results in the
1352      * following (correct) sequence of events for a "badly timed" GC
1353      * (where '-' is us, 'o' is the child, and '+' is some other thread):
1354      *
1355      *  - call pthread_create()
1356      *  - lock thread list
1357      *  - put self into THREAD_VMWAIT so GC doesn't wait for us
1358      *  - sleep on condition var (mutex = thread list lock) until child starts
1359      *  + GC triggered by another thread
1360      *  + thread list locked; suspend counts updated; thread list unlocked
1361      *  + loop waiting for all runnable threads to suspend
1362      *  + success, start GC
1363      *  o child thread wakes, signals condition var to wake parent
1364      *  o child waits for parent ack on condition variable
1365      *  - we wake up, locking thread list
1366      *  - add child to thread list
1367      *  - unlock thread list
1368      *  - change our state back to THREAD_RUNNING; GC causes us to suspend
1369      *  + GC finishes; all threads in thread list are resumed
1370      *  - lock thread list
1371      *  - set child to THREAD_VMWAIT, and signal it to start
1372      *  - unlock thread list
1373      *  o child resumes
1374      *  o child changes state to THREAD_RUNNING
1375      *
1376      * The above shows the GC starting up during thread creation, but if
1377      * it starts anywhere after VMThread.create() is called it will
1378      * produce the same series of events.
1379      *
1380      * Once the child is in the thread list, it will be suspended and
1381      * resumed like any other thread.  In the above scenario the resume-all
1382      * code will try to resume the new thread, which was never actually
1383      * suspended, and try to decrement the child's thread suspend count to -1.
1384      * We can catch this in the resume-all code.
1385      *
1386      * Bouncing back and forth between threads like this adds a small amount
1387      * of scheduler overhead to thread startup.
1388      *
1389      * One alternative to having the child wait for the parent would be
1390      * to have the child inherit the parents' suspension count.  This
1391      * would work for a GC, since we can safely assume that the parent
1392      * thread didn't cause it, but we must only do so if the parent suspension
1393      * was caused by a suspend-all.  If the parent was being asked to
1394      * suspend singly by the debugger, the child should not inherit the value.
1395      *
1396      * We could also have a global "new thread suspend count" that gets
1397      * picked up by new threads before changing state to THREAD_RUNNING.
1398      * This would be protected by the thread list lock and set by a
1399      * suspend-all.
1400      */
1401     dvmLockThreadList(self);
1402     assert(self->status == THREAD_RUNNING);
1403     self->status = THREAD_VMWAIT;
1404     while (newThread->status != THREAD_STARTING)
1405         pthread_cond_wait(&gDvm.threadStartCond, &gDvm.threadListLock);
1406 
1407     LOG_THREAD("threadid=%d: adding to list", newThread->threadId);
1408     newThread->next = gDvm.threadList->next;
1409     if (newThread->next != NULL)
1410         newThread->next->prev = newThread;
1411     newThread->prev = gDvm.threadList;
1412     gDvm.threadList->next = newThread;
1413 
1414     /* Add any existing global modes to the interpBreak control */
1415     dvmInitializeInterpBreak(newThread);
1416 
1417     if (!dvmGetFieldBoolean(threadObj, gDvm.offJavaLangThread_daemon))
1418         gDvm.nonDaemonThreadCount++;        // guarded by thread list lock
1419 
1420     dvmUnlockThreadList();
1421 
1422     /* change status back to RUNNING, self-suspending if necessary */
1423     dvmChangeStatus(self, THREAD_RUNNING);
1424 
1425     /*
1426      * Tell the new thread to start.
1427      *
1428      * We must hold the thread list lock before messing with another thread.
1429      * In the general case we would also need to verify that newThread was
1430      * still in the thread list, but in our case the thread has not started
1431      * executing user code and therefore has not had a chance to exit.
1432      *
1433      * We move it to VMWAIT, and it then shifts itself to RUNNING, which
1434      * comes with a suspend-pending check.
1435      */
1436     dvmLockThreadList(self);
1437 
1438     assert(newThread->status == THREAD_STARTING);
1439     newThread->status = THREAD_VMWAIT;
1440     pthread_cond_broadcast(&gDvm.threadStartCond);
1441 
1442     dvmUnlockThreadList();
1443 
1444     dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1445     return true;
1446 
1447 fail:
1448     freeThread(newThread);
1449     dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1450     return false;
1451 }
1452 
1453 /*
1454  * pthread entry function for threads started from interpreted code.
1455  */
interpThreadStart(void * arg)1456 static void* interpThreadStart(void* arg)
1457 {
1458     Thread* self = (Thread*) arg;
1459 
1460     std::string threadName(dvmGetThreadName(self));
1461     setThreadName(threadName.c_str());
1462 
1463     /*
1464      * Finish initializing the Thread struct.
1465      */
1466     dvmLockThreadList(self);
1467     prepareThread(self);
1468 
1469     LOG_THREAD("threadid=%d: created from interp", self->threadId);
1470 
1471     /*
1472      * Change our status and wake our parent, who will add us to the
1473      * thread list and advance our state to VMWAIT.
1474      */
1475     self->status = THREAD_STARTING;
1476     pthread_cond_broadcast(&gDvm.threadStartCond);
1477 
1478     /*
1479      * Wait until the parent says we can go.  Assuming there wasn't a
1480      * suspend pending, this will happen immediately.  When it completes,
1481      * we're full-fledged citizens of the VM.
1482      *
1483      * We have to use THREAD_VMWAIT here rather than THREAD_RUNNING
1484      * because the pthread_cond_wait below needs to reacquire a lock that
1485      * suspend-all is also interested in.  If we get unlucky, the parent could
1486      * change us to THREAD_RUNNING, then a GC could start before we get
1487      * signaled, and suspend-all will grab the thread list lock and then
1488      * wait for us to suspend.  We'll be in the tail end of pthread_cond_wait
1489      * trying to get the lock.
1490      */
1491     while (self->status != THREAD_VMWAIT)
1492         pthread_cond_wait(&gDvm.threadStartCond, &gDvm.threadListLock);
1493 
1494     dvmUnlockThreadList();
1495 
1496     /*
1497      * Add a JNI context.
1498      */
1499     self->jniEnv = dvmCreateJNIEnv(self);
1500 
1501     /*
1502      * Change our state so the GC will wait for us from now on.  If a GC is
1503      * in progress this call will suspend us.
1504      */
1505     dvmChangeStatus(self, THREAD_RUNNING);
1506 
1507     /*
1508      * Notify the debugger & DDM.  The debugger notification may cause
1509      * us to suspend ourselves (and others).  The thread state may change
1510      * to VMWAIT briefly if network packets are sent.
1511      */
1512     if (gDvm.debuggerConnected)
1513         dvmDbgPostThreadStart(self);
1514 
1515     /*
1516      * Set the system thread priority according to the Thread object's
1517      * priority level.  We don't usually need to do this, because both the
1518      * Thread object and system thread priorities inherit from parents.  The
1519      * tricky case is when somebody creates a Thread object, calls
1520      * setPriority(), and then starts the thread.  We could manage this with
1521      * a "needs priority update" flag to avoid the redundant call.
1522      */
1523     int priority = dvmGetFieldInt(self->threadObj,
1524                         gDvm.offJavaLangThread_priority);
1525     dvmChangeThreadPriority(self, priority);
1526 
1527     /*
1528      * Execute the "run" method.
1529      *
1530      * At this point our stack is empty, so somebody who comes looking for
1531      * stack traces right now won't have much to look at.  This is normal.
1532      */
1533     Method* run = self->threadObj->clazz->vtable[gDvm.voffJavaLangThread_run];
1534     JValue unused;
1535 
1536     ALOGV("threadid=%d: calling run()", self->threadId);
1537     assert(strcmp(run->name, "run") == 0);
1538     dvmCallMethod(self, run, self->threadObj, &unused);
1539     ALOGV("threadid=%d: exiting", self->threadId);
1540 
1541     /*
1542      * Remove the thread from various lists, report its death, and free
1543      * its resources.
1544      */
1545     dvmDetachCurrentThread();
1546 
1547     return NULL;
1548 }
1549 
1550 /*
1551  * The current thread is exiting with an uncaught exception.  The
1552  * Java programming language allows the application to provide a
1553  * thread-exit-uncaught-exception handler for the VM, for a specific
1554  * Thread, and for all threads in a ThreadGroup.
1555  *
1556  * Version 1.5 added the per-thread handler.  We need to call
1557  * "uncaughtException" in the handler object, which is either the
1558  * ThreadGroup object or the Thread-specific handler.
1559  *
1560  * This should only be called when an exception is pending.  Before
1561  * returning, the exception will be cleared.
1562  */
threadExitUncaughtException(Thread * self,Object * group)1563 static void threadExitUncaughtException(Thread* self, Object* group)
1564 {
1565     Object* exception;
1566     Object* handlerObj;
1567     Method* uncaughtHandler;
1568 
1569     ALOGW("threadid=%d: thread exiting with uncaught exception (group=%p)",
1570         self->threadId, group);
1571     assert(group != NULL);
1572 
1573     /*
1574      * Get a pointer to the exception, then clear out the one in the
1575      * thread.  We don't want to have it set when executing interpreted code.
1576      */
1577     exception = dvmGetException(self);
1578     assert(exception != NULL);
1579     dvmAddTrackedAlloc(exception, self);
1580     dvmClearException(self);
1581 
1582     /*
1583      * Get the Thread's "uncaughtHandler" object.  Use it if non-NULL;
1584      * else use "group" (which is an instance of UncaughtExceptionHandler).
1585      * The ThreadGroup will handle it directly or call the default
1586      * uncaught exception handler.
1587      */
1588     handlerObj = dvmGetFieldObject(self->threadObj,
1589             gDvm.offJavaLangThread_uncaughtHandler);
1590     if (handlerObj == NULL)
1591         handlerObj = group;
1592 
1593     /*
1594      * Find the "uncaughtException" method in this object.  The method
1595      * was declared in the Thread.UncaughtExceptionHandler interface.
1596      */
1597     uncaughtHandler = dvmFindVirtualMethodHierByDescriptor(handlerObj->clazz,
1598             "uncaughtException", "(Ljava/lang/Thread;Ljava/lang/Throwable;)V");
1599 
1600     if (uncaughtHandler != NULL) {
1601         //ALOGI("+++ calling %s.uncaughtException",
1602         //     handlerObj->clazz->descriptor);
1603         JValue unused;
1604         dvmCallMethod(self, uncaughtHandler, handlerObj, &unused,
1605             self->threadObj, exception);
1606     } else {
1607         /* should be impossible, but handle it anyway */
1608         ALOGW("WARNING: no 'uncaughtException' method in class %s",
1609             handlerObj->clazz->descriptor);
1610         dvmSetException(self, exception);
1611         dvmLogExceptionStackTrace();
1612     }
1613 
1614     /* if the uncaught handler threw, clear it */
1615     dvmClearException(self);
1616 
1617     dvmReleaseTrackedAlloc(exception, self);
1618 
1619     /* Remove this thread's suspendCount from global suspendCount sum */
1620     lockThreadSuspendCount();
1621     dvmAddToSuspendCounts(self, -self->suspendCount, 0);
1622     unlockThreadSuspendCount();
1623 }
1624 
1625 
1626 /*
1627  * Create an internal VM thread, for things like JDWP and finalizers.
1628  *
1629  * The easiest way to do this is create a new thread and then use the
1630  * JNI AttachCurrentThread implementation.
1631  *
1632  * This does not return until after the new thread has begun executing.
1633  */
dvmCreateInternalThread(pthread_t * pHandle,const char * name,InternalThreadStart func,void * funcArg)1634 bool dvmCreateInternalThread(pthread_t* pHandle, const char* name,
1635     InternalThreadStart func, void* funcArg)
1636 {
1637     InternalStartArgs* pArgs;
1638     Object* systemGroup;
1639     pthread_attr_t threadAttr;
1640     volatile Thread* newThread = NULL;
1641     volatile int createStatus = 0;
1642 
1643     systemGroup = dvmGetSystemThreadGroup();
1644     if (systemGroup == NULL)
1645         return false;
1646 
1647     pArgs = (InternalStartArgs*) malloc(sizeof(*pArgs));
1648     pArgs->func = func;
1649     pArgs->funcArg = funcArg;
1650     pArgs->name = strdup(name);     // storage will be owned by new thread
1651     pArgs->group = systemGroup;
1652     pArgs->isDaemon = true;
1653     pArgs->pThread = &newThread;
1654     pArgs->pCreateStatus = &createStatus;
1655 
1656     pthread_attr_init(&threadAttr);
1657     //pthread_attr_setdetachstate(&threadAttr, PTHREAD_CREATE_DETACHED);
1658 
1659     if (pthread_create(pHandle, &threadAttr, internalThreadStart,
1660             pArgs) != 0)
1661     {
1662         ALOGE("internal thread creation failed");
1663         free(pArgs->name);
1664         free(pArgs);
1665         return false;
1666     }
1667 
1668     /*
1669      * Wait for the child to start.  This gives us an opportunity to make
1670      * sure that the thread started correctly, and allows our caller to
1671      * assume that the thread has started running.
1672      *
1673      * Because we aren't holding a lock across the thread creation, it's
1674      * possible that the child will already have completed its
1675      * initialization.  Because the child only adjusts "createStatus" while
1676      * holding the thread list lock, the initial condition on the "while"
1677      * loop will correctly avoid the wait if this occurs.
1678      *
1679      * It's also possible that we'll have to wait for the thread to finish
1680      * being created, and as part of allocating a Thread object it might
1681      * need to initiate a GC.  We switch to VMWAIT while we pause.
1682      */
1683     Thread* self = dvmThreadSelf();
1684     ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
1685     dvmLockThreadList(self);
1686     while (createStatus == 0)
1687         pthread_cond_wait(&gDvm.threadStartCond, &gDvm.threadListLock);
1688 
1689     if (newThread == NULL) {
1690         ALOGW("internal thread create failed (createStatus=%d)", createStatus);
1691         assert(createStatus < 0);
1692         /* don't free pArgs -- if pthread_create succeeded, child owns it */
1693         dvmUnlockThreadList();
1694         dvmChangeStatus(self, oldStatus);
1695         return false;
1696     }
1697 
1698     /* thread could be in any state now (except early init states) */
1699     //assert(newThread->status == THREAD_RUNNING);
1700 
1701     dvmUnlockThreadList();
1702     dvmChangeStatus(self, oldStatus);
1703 
1704     return true;
1705 }
1706 
1707 /*
1708  * pthread entry function for internally-created threads.
1709  *
1710  * We are expected to free "arg" and its contents.  If we're a daemon
1711  * thread, and we get cancelled abruptly when the VM shuts down, the
1712  * storage won't be freed.  If this becomes a concern we can make a copy
1713  * on the stack.
1714  */
internalThreadStart(void * arg)1715 static void* internalThreadStart(void* arg)
1716 {
1717     InternalStartArgs* pArgs = (InternalStartArgs*) arg;
1718     JavaVMAttachArgs jniArgs;
1719 
1720     jniArgs.version = JNI_VERSION_1_2;
1721     jniArgs.name = pArgs->name;
1722     jniArgs.group = reinterpret_cast<jobject>(pArgs->group);
1723 
1724     setThreadName(pArgs->name);
1725 
1726     /* use local jniArgs as stack top */
1727     if (dvmAttachCurrentThread(&jniArgs, pArgs->isDaemon)) {
1728         /*
1729          * Tell the parent of our success.
1730          *
1731          * threadListLock is the mutex for threadStartCond.
1732          */
1733         dvmLockThreadList(dvmThreadSelf());
1734         *pArgs->pCreateStatus = 1;
1735         *pArgs->pThread = dvmThreadSelf();
1736         pthread_cond_broadcast(&gDvm.threadStartCond);
1737         dvmUnlockThreadList();
1738 
1739         LOG_THREAD("threadid=%d: internal '%s'",
1740             dvmThreadSelf()->threadId, pArgs->name);
1741 
1742         /* execute */
1743         (*pArgs->func)(pArgs->funcArg);
1744 
1745         /* detach ourselves */
1746         dvmDetachCurrentThread();
1747     } else {
1748         /*
1749          * Tell the parent of our failure.  We don't have a Thread struct,
1750          * so we can't be suspended, so we don't need to enter a critical
1751          * section.
1752          */
1753         dvmLockThreadList(dvmThreadSelf());
1754         *pArgs->pCreateStatus = -1;
1755         assert(*pArgs->pThread == NULL);
1756         pthread_cond_broadcast(&gDvm.threadStartCond);
1757         dvmUnlockThreadList();
1758 
1759         assert(*pArgs->pThread == NULL);
1760     }
1761 
1762     free(pArgs->name);
1763     free(pArgs);
1764     return NULL;
1765 }
1766 
1767 /*
1768  * Attach the current thread to the VM.
1769  *
1770  * Used for internally-created threads and JNI's AttachCurrentThread.
1771  */
dvmAttachCurrentThread(const JavaVMAttachArgs * pArgs,bool isDaemon)1772 bool dvmAttachCurrentThread(const JavaVMAttachArgs* pArgs, bool isDaemon)
1773 {
1774     Thread* self = NULL;
1775     Object* threadObj = NULL;
1776     Object* vmThreadObj = NULL;
1777     StringObject* threadNameStr = NULL;
1778     Method* init;
1779     bool ok, ret;
1780 
1781     /* allocate thread struct, and establish a basic sense of self */
1782     self = allocThread(gDvm.stackSize);
1783     if (self == NULL)
1784         goto fail;
1785     setThreadSelf(self);
1786 
1787     /*
1788      * Finish our thread prep.  We need to do this before adding ourselves
1789      * to the thread list or invoking any interpreted code.  prepareThread()
1790      * requires that we hold the thread list lock.
1791      */
1792     dvmLockThreadList(self);
1793     ok = prepareThread(self);
1794     dvmUnlockThreadList();
1795     if (!ok)
1796         goto fail;
1797 
1798     self->jniEnv = dvmCreateJNIEnv(self);
1799     if (self->jniEnv == NULL)
1800         goto fail;
1801 
1802     /*
1803      * Create a "fake" JNI frame at the top of the main thread interp stack.
1804      * It isn't really necessary for the internal threads, but it gives
1805      * the debugger something to show.  It is essential for the JNI-attached
1806      * threads.
1807      */
1808     if (!createFakeRunFrame(self))
1809         goto fail;
1810 
1811     /*
1812      * The native side of the thread is ready; add it to the list.  Once
1813      * it's on the list the thread is visible to the JDWP code and the GC.
1814      */
1815     LOG_THREAD("threadid=%d: adding to list (attached)", self->threadId);
1816 
1817     dvmLockThreadList(self);
1818 
1819     self->next = gDvm.threadList->next;
1820     if (self->next != NULL)
1821         self->next->prev = self;
1822     self->prev = gDvm.threadList;
1823     gDvm.threadList->next = self;
1824     if (!isDaemon)
1825         gDvm.nonDaemonThreadCount++;
1826 
1827     dvmUnlockThreadList();
1828 
1829     /*
1830      * Switch state from initializing to running.
1831      *
1832      * It's possible that a GC began right before we added ourselves
1833      * to the thread list, and is still going.  That means our thread
1834      * suspend count won't reflect the fact that we should be suspended.
1835      * To deal with this, we transition to VMWAIT, pulse the heap lock,
1836      * and then advance to RUNNING.  That will ensure that we stall until
1837      * the GC completes.
1838      *
1839      * Once we're in RUNNING, we're like any other thread in the VM (except
1840      * for the lack of an initialized threadObj).  We're then free to
1841      * allocate and initialize objects.
1842      */
1843     assert(self->status == THREAD_INITIALIZING);
1844     dvmChangeStatus(self, THREAD_VMWAIT);
1845     dvmLockMutex(&gDvm.gcHeapLock);
1846     dvmUnlockMutex(&gDvm.gcHeapLock);
1847     dvmChangeStatus(self, THREAD_RUNNING);
1848 
1849     /*
1850      * Create Thread and VMThread objects.
1851      */
1852     threadObj = dvmAllocObject(gDvm.classJavaLangThread, ALLOC_DEFAULT);
1853     vmThreadObj = dvmAllocObject(gDvm.classJavaLangVMThread, ALLOC_DEFAULT);
1854     if (threadObj == NULL || vmThreadObj == NULL)
1855         goto fail_unlink;
1856 
1857     /*
1858      * This makes threadObj visible to the GC.  We still have it in the
1859      * tracked allocation table, so it can't move around on us.
1860      */
1861     self->threadObj = threadObj;
1862     dvmSetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData, (u4)self);
1863 
1864     /*
1865      * Create a string for the thread name.
1866      */
1867     if (pArgs->name != NULL) {
1868         threadNameStr = dvmCreateStringFromCstr(pArgs->name);
1869         if (threadNameStr == NULL) {
1870             assert(dvmCheckException(dvmThreadSelf()));
1871             goto fail_unlink;
1872         }
1873     }
1874 
1875     init = dvmFindDirectMethodByDescriptor(gDvm.classJavaLangThread, "<init>",
1876             "(Ljava/lang/ThreadGroup;Ljava/lang/String;IZ)V");
1877     if (init == NULL) {
1878         assert(dvmCheckException(self));
1879         goto fail_unlink;
1880     }
1881 
1882     /*
1883      * Now we're ready to run some interpreted code.
1884      *
1885      * We need to construct the Thread object and set the VMThread field.
1886      * Setting VMThread tells interpreted code that we're alive.
1887      *
1888      * Call the (group, name, priority, daemon) constructor on the Thread.
1889      * This sets the thread's name and adds it to the specified group, and
1890      * provides values for priority and daemon (which are normally inherited
1891      * from the current thread).
1892      */
1893     JValue unused;
1894     dvmCallMethod(self, init, threadObj, &unused, (Object*)pArgs->group,
1895             threadNameStr, os_getThreadPriorityFromSystem(), isDaemon);
1896     if (dvmCheckException(self)) {
1897         ALOGE("exception thrown while constructing attached thread object");
1898         goto fail_unlink;
1899     }
1900 
1901     /*
1902      * Set the VMThread field, which tells interpreted code that we're alive.
1903      *
1904      * The risk of a thread start collision here is very low; somebody
1905      * would have to be deliberately polling the ThreadGroup list and
1906      * trying to start threads against anything it sees, which would
1907      * generally cause problems for all thread creation.  However, for
1908      * correctness we test "vmThread" before setting it.
1909      *
1910      * TODO: this still has a race, it's just smaller.  Not sure this is
1911      * worth putting effort into fixing.  Need to hold a lock while
1912      * fiddling with the field, or maybe initialize the Thread object in a
1913      * way that ensures another thread can't call start() on it.
1914      */
1915     if (dvmGetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread) != NULL) {
1916         ALOGW("WOW: thread start hijack");
1917         dvmThrowIllegalThreadStateException(
1918             "thread has already been started");
1919         /* We don't want to free anything associated with the thread
1920          * because someone is obviously interested in it.  Just let
1921          * it go and hope it will clean itself up when its finished.
1922          * This case should never happen anyway.
1923          *
1924          * Since we're letting it live, we need to finish setting it up.
1925          * We just have to let the caller know that the intended operation
1926          * has failed.
1927          *
1928          * [ This seems strange -- stepping on the vmThread object that's
1929          * already present seems like a bad idea.  TODO: figure this out. ]
1930          */
1931         ret = false;
1932     } else {
1933         ret = true;
1934     }
1935     dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread, vmThreadObj);
1936 
1937     /* we can now safely un-pin these */
1938     dvmReleaseTrackedAlloc(threadObj, self);
1939     dvmReleaseTrackedAlloc(vmThreadObj, self);
1940     dvmReleaseTrackedAlloc((Object*)threadNameStr, self);
1941 
1942     LOG_THREAD("threadid=%d: attached from native, name=%s",
1943         self->threadId, pArgs->name);
1944 
1945     /* tell the debugger & DDM */
1946     if (gDvm.debuggerConnected)
1947         dvmDbgPostThreadStart(self);
1948 
1949     return ret;
1950 
1951 fail_unlink:
1952     dvmLockThreadList(self);
1953     unlinkThread(self);
1954     if (!isDaemon)
1955         gDvm.nonDaemonThreadCount--;
1956     dvmUnlockThreadList();
1957     /* fall through to "fail" */
1958 fail:
1959     dvmReleaseTrackedAlloc(threadObj, self);
1960     dvmReleaseTrackedAlloc(vmThreadObj, self);
1961     dvmReleaseTrackedAlloc((Object*)threadNameStr, self);
1962     if (self != NULL) {
1963         if (self->jniEnv != NULL) {
1964             dvmDestroyJNIEnv(self->jniEnv);
1965             self->jniEnv = NULL;
1966         }
1967         freeThread(self);
1968     }
1969     setThreadSelf(NULL);
1970     return false;
1971 }
1972 
1973 /*
1974  * Detach the thread from the various data structures, notify other threads
1975  * that are waiting to "join" it, and free up all heap-allocated storage.
1976  *
1977  * Used for all threads.
1978  *
1979  * When we get here the interpreted stack should be empty.  The JNI 1.6 spec
1980  * requires us to enforce this for the DetachCurrentThread call, probably
1981  * because it also says that DetachCurrentThread causes all monitors
1982  * associated with the thread to be released.  (Because the stack is empty,
1983  * we only have to worry about explicit JNI calls to MonitorEnter.)
1984  *
1985  * THOUGHT:
1986  * We might want to avoid freeing our internal Thread structure until the
1987  * associated Thread/VMThread objects get GCed.  Our Thread is impossible to
1988  * get to once the thread shuts down, but there is a small possibility of
1989  * an operation starting in another thread before this thread halts, and
1990  * finishing much later (perhaps the thread got stalled by a weird OS bug).
1991  * We don't want something like Thread.isInterrupted() crawling through
1992  * freed storage.  Can do with a Thread finalizer, or by creating a
1993  * dedicated ThreadObject class for java/lang/Thread and moving all of our
1994  * state into that.
1995  */
dvmDetachCurrentThread()1996 void dvmDetachCurrentThread()
1997 {
1998     Thread* self = dvmThreadSelf();
1999     Object* vmThread;
2000     Object* group;
2001 
2002     /*
2003      * Make sure we're not detaching a thread that's still running.  (This
2004      * could happen with an explicit JNI detach call.)
2005      *
2006      * A thread created by interpreted code will finish with a depth of
2007      * zero, while a JNI-attached thread will have the synthetic "stack
2008      * starter" native method at the top.
2009      */
2010     int curDepth = dvmComputeExactFrameDepth(self->interpSave.curFrame);
2011     if (curDepth != 0) {
2012         bool topIsNative = false;
2013 
2014         if (curDepth == 1) {
2015             /* not expecting a lingering break frame; just look at curFrame */
2016             assert(!dvmIsBreakFrame((u4*)self->interpSave.curFrame));
2017             StackSaveArea* ssa = SAVEAREA_FROM_FP(self->interpSave.curFrame);
2018             if (dvmIsNativeMethod(ssa->method))
2019                 topIsNative = true;
2020         }
2021 
2022         if (!topIsNative) {
2023             ALOGE("ERROR: detaching thread with interp frames (count=%d)",
2024                 curDepth);
2025             dvmDumpThread(self, false);
2026             dvmAbort();
2027         }
2028     }
2029 
2030     group = dvmGetFieldObject(self->threadObj, gDvm.offJavaLangThread_group);
2031     LOG_THREAD("threadid=%d: detach (group=%p)", self->threadId, group);
2032 
2033     /*
2034      * Release any held monitors.  Since there are no interpreted stack
2035      * frames, the only thing left are the monitors held by JNI MonitorEnter
2036      * calls.
2037      */
2038     dvmReleaseJniMonitors(self);
2039 
2040     /*
2041      * Do some thread-exit uncaught exception processing if necessary.
2042      */
2043     if (dvmCheckException(self))
2044         threadExitUncaughtException(self, group);
2045 
2046     /*
2047      * Remove the thread from the thread group.
2048      */
2049     if (group != NULL) {
2050         Method* removeThread =
2051             group->clazz->vtable[gDvm.voffJavaLangThreadGroup_removeThread];
2052         JValue unused;
2053         dvmCallMethod(self, removeThread, group, &unused, self->threadObj);
2054     }
2055 
2056     /*
2057      * Clear the vmThread reference in the Thread object.  Interpreted code
2058      * will now see that this Thread is not running.  As this may be the
2059      * only reference to the VMThread object that the VM knows about, we
2060      * have to create an internal reference to it first.
2061      */
2062     vmThread = dvmGetFieldObject(self->threadObj,
2063                     gDvm.offJavaLangThread_vmThread);
2064     dvmAddTrackedAlloc(vmThread, self);
2065     dvmSetFieldObject(self->threadObj, gDvm.offJavaLangThread_vmThread, NULL);
2066 
2067     /* clear out our struct Thread pointer, since it's going away */
2068     dvmSetFieldObject(vmThread, gDvm.offJavaLangVMThread_vmData, NULL);
2069 
2070     /*
2071      * Tell the debugger & DDM.  This may cause the current thread or all
2072      * threads to suspend.
2073      *
2074      * The JDWP spec is somewhat vague about when this happens, other than
2075      * that it's issued by the dying thread, which may still appear in
2076      * an "all threads" listing.
2077      */
2078     if (gDvm.debuggerConnected)
2079         dvmDbgPostThreadDeath(self);
2080 
2081     /*
2082      * Thread.join() is implemented as an Object.wait() on the VMThread
2083      * object.  Signal anyone who is waiting.
2084      */
2085     dvmLockObject(self, vmThread);
2086     dvmObjectNotifyAll(self, vmThread);
2087     dvmUnlockObject(self, vmThread);
2088 
2089     dvmReleaseTrackedAlloc(vmThread, self);
2090     vmThread = NULL;
2091 
2092     /*
2093      * We're done manipulating objects, so it's okay if the GC runs in
2094      * parallel with us from here out.  It's important to do this if
2095      * profiling is enabled, since we can wait indefinitely.
2096      */
2097     volatile void* raw = reinterpret_cast<volatile void*>(&self->status);
2098     volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
2099     android_atomic_release_store(THREAD_VMWAIT, addr);
2100 
2101     /*
2102      * If we're doing method trace profiling, we don't want threads to exit,
2103      * because if they do we'll end up reusing thread IDs.  This complicates
2104      * analysis and makes it impossible to have reasonable output in the
2105      * "threads" section of the "key" file.
2106      *
2107      * We need to do this after Thread.join() completes, or other threads
2108      * could get wedged.  Since self->threadObj is still valid, the Thread
2109      * object will not get GCed even though we're no longer in the ThreadGroup
2110      * list (which is important since the profiling thread needs to get
2111      * the thread's name).
2112      */
2113     MethodTraceState* traceState = &gDvm.methodTrace;
2114 
2115     dvmLockMutex(&traceState->startStopLock);
2116     if (traceState->traceEnabled) {
2117         ALOGI("threadid=%d: waiting for method trace to finish",
2118             self->threadId);
2119         while (traceState->traceEnabled) {
2120             dvmWaitCond(&traceState->threadExitCond,
2121                         &traceState->startStopLock);
2122         }
2123     }
2124     dvmUnlockMutex(&traceState->startStopLock);
2125 
2126     dvmLockThreadList(self);
2127 
2128     /*
2129      * Lose the JNI context.
2130      */
2131     dvmDestroyJNIEnv(self->jniEnv);
2132     self->jniEnv = NULL;
2133 
2134     self->status = THREAD_ZOMBIE;
2135 
2136     /*
2137      * Remove ourselves from the internal thread list.
2138      */
2139     unlinkThread(self);
2140 
2141     /*
2142      * If we're the last one standing, signal anybody waiting in
2143      * DestroyJavaVM that it's okay to exit.
2144      */
2145     if (!dvmGetFieldBoolean(self->threadObj, gDvm.offJavaLangThread_daemon)) {
2146         gDvm.nonDaemonThreadCount--;        // guarded by thread list lock
2147 
2148         if (gDvm.nonDaemonThreadCount == 0) {
2149             int cc;
2150 
2151             ALOGV("threadid=%d: last non-daemon thread", self->threadId);
2152             //dvmDumpAllThreads(false);
2153             // cond var guarded by threadListLock, which we already hold
2154             cc = pthread_cond_signal(&gDvm.vmExitCond);
2155             assert(cc == 0);
2156         }
2157     }
2158 
2159     ALOGV("threadid=%d: bye!", self->threadId);
2160     releaseThreadId(self);
2161     dvmUnlockThreadList();
2162 
2163     setThreadSelf(NULL);
2164 
2165     freeThread(self);
2166 }
2167 
2168 
2169 /*
2170  * Suspend a single thread.  Do not use to suspend yourself.
2171  *
2172  * This is used primarily for debugger/DDMS activity.  Does not return
2173  * until the thread has suspended or is in a "safe" state (e.g. executing
2174  * native code outside the VM).
2175  *
2176  * The thread list lock should be held before calling here -- it's not
2177  * entirely safe to hang on to a Thread* from another thread otherwise.
2178  * (We'd need to grab it here anyway to avoid clashing with a suspend-all.)
2179  */
dvmSuspendThread(Thread * thread)2180 void dvmSuspendThread(Thread* thread)
2181 {
2182     assert(thread != NULL);
2183     assert(thread != dvmThreadSelf());
2184     //assert(thread->handle != dvmJdwpGetDebugThread(gDvm.jdwpState));
2185 
2186     lockThreadSuspendCount();
2187     dvmAddToSuspendCounts(thread, 1, 1);
2188 
2189     LOG_THREAD("threadid=%d: suspend++, now=%d",
2190         thread->threadId, thread->suspendCount);
2191     unlockThreadSuspendCount();
2192 
2193     waitForThreadSuspend(dvmThreadSelf(), thread);
2194 }
2195 
2196 /*
2197  * Reduce the suspend count of a thread.  If it hits zero, tell it to
2198  * resume.
2199  *
2200  * Used primarily for debugger/DDMS activity.  The thread in question
2201  * might have been suspended singly or as part of a suspend-all operation.
2202  *
2203  * The thread list lock should be held before calling here -- it's not
2204  * entirely safe to hang on to a Thread* from another thread otherwise.
2205  * (We'd need to grab it here anyway to avoid clashing with a suspend-all.)
2206  */
dvmResumeThread(Thread * thread)2207 void dvmResumeThread(Thread* thread)
2208 {
2209     assert(thread != NULL);
2210     assert(thread != dvmThreadSelf());
2211     //assert(thread->handle != dvmJdwpGetDebugThread(gDvm.jdwpState));
2212 
2213     lockThreadSuspendCount();
2214     if (thread->suspendCount > 0) {
2215         dvmAddToSuspendCounts(thread, -1, -1);
2216     } else {
2217         LOG_THREAD("threadid=%d:  suspendCount already zero",
2218             thread->threadId);
2219     }
2220 
2221     LOG_THREAD("threadid=%d: suspend--, now=%d",
2222         thread->threadId, thread->suspendCount);
2223 
2224     if (thread->suspendCount == 0) {
2225         dvmBroadcastCond(&gDvm.threadSuspendCountCond);
2226     }
2227 
2228     unlockThreadSuspendCount();
2229 }
2230 
2231 /*
2232  * Suspend yourself, as a result of debugger activity.
2233  */
dvmSuspendSelf(bool jdwpActivity)2234 void dvmSuspendSelf(bool jdwpActivity)
2235 {
2236     Thread* self = dvmThreadSelf();
2237 
2238     /* debugger thread must not suspend itself due to debugger activity! */
2239     assert(gDvm.jdwpState != NULL);
2240     if (self->handle == dvmJdwpGetDebugThread(gDvm.jdwpState)) {
2241         assert(false);
2242         return;
2243     }
2244 
2245     /*
2246      * Collisions with other suspends aren't really interesting.  We want
2247      * to ensure that we're the only one fiddling with the suspend count
2248      * though.
2249      */
2250     lockThreadSuspendCount();
2251     dvmAddToSuspendCounts(self, 1, 1);
2252 
2253     /*
2254      * Suspend ourselves.
2255      */
2256     assert(self->suspendCount > 0);
2257     self->status = THREAD_SUSPENDED;
2258     LOG_THREAD("threadid=%d: self-suspending (dbg)", self->threadId);
2259 
2260     /*
2261      * Tell JDWP that we've completed suspension.  The JDWP thread can't
2262      * tell us to resume before we're fully asleep because we hold the
2263      * suspend count lock.
2264      *
2265      * If we got here via waitForDebugger(), don't do this part.
2266      */
2267     if (jdwpActivity) {
2268         //ALOGI("threadid=%d: clearing wait-for-event (my handle=%08x)",
2269         //    self->threadId, (int) self->handle);
2270         dvmJdwpClearWaitForEventThread(gDvm.jdwpState);
2271     }
2272 
2273     while (self->suspendCount != 0) {
2274         dvmWaitCond(&gDvm.threadSuspendCountCond,
2275                     &gDvm.threadSuspendCountLock);
2276         if (self->suspendCount != 0) {
2277             /*
2278              * The condition was signaled but we're still suspended.  This
2279              * can happen if the debugger lets go while a SIGQUIT thread
2280              * dump event is pending (assuming SignalCatcher was resumed for
2281              * just long enough to try to grab the thread-suspend lock).
2282              */
2283             ALOGD("threadid=%d: still suspended after undo (sc=%d dc=%d)",
2284                 self->threadId, self->suspendCount, self->dbgSuspendCount);
2285         }
2286     }
2287     assert(self->suspendCount == 0 && self->dbgSuspendCount == 0);
2288     self->status = THREAD_RUNNING;
2289     LOG_THREAD("threadid=%d: self-reviving (dbg), status=%d",
2290         self->threadId, self->status);
2291 
2292     unlockThreadSuspendCount();
2293 }
2294 
2295 /*
2296  * Dump the state of the current thread and that of another thread that
2297  * we think is wedged.
2298  */
dumpWedgedThread(Thread * thread)2299 static void dumpWedgedThread(Thread* thread)
2300 {
2301     dvmDumpThread(dvmThreadSelf(), false);
2302     dvmPrintNativeBackTrace();
2303 
2304     // dumping a running thread is risky, but could be useful
2305     dvmDumpThread(thread, true);
2306 
2307     // stop now and get a core dump
2308     //abort();
2309 }
2310 
2311 /*
2312  * If the thread is running at below-normal priority, temporarily elevate
2313  * it to "normal".
2314  *
2315  * Returns zero if no changes were made.  Otherwise, returns bit flags
2316  * indicating what was changed, storing the previous values in the
2317  * provided locations.
2318  */
dvmRaiseThreadPriorityIfNeeded(Thread * thread,int * pSavedThreadPrio,SchedPolicy * pSavedThreadPolicy)2319 int dvmRaiseThreadPriorityIfNeeded(Thread* thread, int* pSavedThreadPrio,
2320     SchedPolicy* pSavedThreadPolicy)
2321 {
2322     errno = 0;
2323     *pSavedThreadPrio = getpriority(PRIO_PROCESS, thread->systemTid);
2324     if (errno != 0) {
2325         ALOGW("Unable to get priority for threadid=%d sysTid=%d",
2326             thread->threadId, thread->systemTid);
2327         return 0;
2328     }
2329     if (get_sched_policy(thread->systemTid, pSavedThreadPolicy) != 0) {
2330         ALOGW("Unable to get policy for threadid=%d sysTid=%d",
2331             thread->threadId, thread->systemTid);
2332         return 0;
2333     }
2334 
2335     int changeFlags = 0;
2336 
2337     /*
2338      * Change the priority if we're in the background group.
2339      */
2340     if (*pSavedThreadPolicy == SP_BACKGROUND) {
2341         if (set_sched_policy(thread->systemTid, SP_FOREGROUND) != 0) {
2342             ALOGW("Couldn't set fg policy on tid %d", thread->systemTid);
2343         } else {
2344             changeFlags |= kChangedPolicy;
2345             ALOGD("Temporarily moving tid %d to fg (was %d)",
2346                 thread->systemTid, *pSavedThreadPolicy);
2347         }
2348     }
2349 
2350     /*
2351      * getpriority() returns the "nice" value, so larger numbers indicate
2352      * lower priority, with 0 being normal.
2353      */
2354     if (*pSavedThreadPrio > 0) {
2355         const int kHigher = 0;
2356         if (setpriority(PRIO_PROCESS, thread->systemTid, kHigher) != 0) {
2357             ALOGW("Couldn't raise priority on tid %d to %d",
2358                 thread->systemTid, kHigher);
2359         } else {
2360             changeFlags |= kChangedPriority;
2361             ALOGD("Temporarily raised priority on tid %d (%d -> %d)",
2362                 thread->systemTid, *pSavedThreadPrio, kHigher);
2363         }
2364     }
2365 
2366     return changeFlags;
2367 }
2368 
2369 /*
2370  * Reset the priority values for the thread in question.
2371  */
dvmResetThreadPriority(Thread * thread,int changeFlags,int savedThreadPrio,SchedPolicy savedThreadPolicy)2372 void dvmResetThreadPriority(Thread* thread, int changeFlags,
2373     int savedThreadPrio, SchedPolicy savedThreadPolicy)
2374 {
2375     if ((changeFlags & kChangedPolicy) != 0) {
2376         if (set_sched_policy(thread->systemTid, savedThreadPolicy) != 0) {
2377             ALOGW("NOTE: couldn't reset tid %d to (%d)",
2378                 thread->systemTid, savedThreadPolicy);
2379         } else {
2380             ALOGD("Restored policy of %d to %d",
2381                 thread->systemTid, savedThreadPolicy);
2382         }
2383     }
2384 
2385     if ((changeFlags & kChangedPriority) != 0) {
2386         if (setpriority(PRIO_PROCESS, thread->systemTid, savedThreadPrio) != 0)
2387         {
2388             ALOGW("NOTE: couldn't reset priority on thread %d to %d",
2389                 thread->systemTid, savedThreadPrio);
2390         } else {
2391             ALOGD("Restored priority on %d to %d",
2392                 thread->systemTid, savedThreadPrio);
2393         }
2394     }
2395 }
2396 
2397 /*
2398  * Wait for another thread to see the pending suspension and stop running.
2399  * It can either suspend itself or go into a non-running state such as
2400  * VMWAIT or NATIVE in which it cannot interact with the GC.
2401  *
2402  * If we're running at a higher priority, sched_yield() may not do anything,
2403  * so we need to sleep for "long enough" to guarantee that the other
2404  * thread has a chance to finish what it's doing.  Sleeping for too short
2405  * a period (e.g. less than the resolution of the sleep clock) might cause
2406  * the scheduler to return immediately, so we want to start with a
2407  * "reasonable" value and expand.
2408  *
2409  * This does not return until the other thread has stopped running.
2410  * Eventually we time out and the VM aborts.
2411  *
2412  * This does not try to detect the situation where two threads are
2413  * waiting for each other to suspend.  In normal use this is part of a
2414  * suspend-all, which implies that the suspend-all lock is held, or as
2415  * part of a debugger action in which the JDWP thread is always the one
2416  * doing the suspending.  (We may need to re-evaluate this now that
2417  * getThreadStackTrace is implemented as suspend-snapshot-resume.)
2418  *
2419  * TODO: track basic stats about time required to suspend VM.
2420  */
2421 #define FIRST_SLEEP (250*1000)    /* 0.25s */
2422 #define MORE_SLEEP  (750*1000)    /* 0.75s */
waitForThreadSuspend(Thread * self,Thread * thread)2423 static void waitForThreadSuspend(Thread* self, Thread* thread)
2424 {
2425     const int kMaxRetries = 10;
2426     int spinSleepTime = FIRST_SLEEP;
2427     bool complained = false;
2428     int priChangeFlags = 0;
2429     int savedThreadPrio = -500;
2430     SchedPolicy savedThreadPolicy = SP_FOREGROUND;
2431 
2432     int sleepIter = 0;
2433     int retryCount = 0;
2434     u8 startWhen = 0;       // init req'd to placate gcc
2435     u8 firstStartWhen = 0;
2436 
2437     while (thread->status == THREAD_RUNNING) {
2438         if (sleepIter == 0) {           // get current time on first iteration
2439             startWhen = dvmGetRelativeTimeUsec();
2440             if (firstStartWhen == 0)    // first iteration of first attempt
2441                 firstStartWhen = startWhen;
2442 
2443             /*
2444              * After waiting for a bit, check to see if the target thread is
2445              * running at a reduced priority.  If so, bump it up temporarily
2446              * to give it more CPU time.
2447              */
2448             if (retryCount == 2) {
2449                 assert(thread->systemTid != 0);
2450                 priChangeFlags = dvmRaiseThreadPriorityIfNeeded(thread,
2451                     &savedThreadPrio, &savedThreadPolicy);
2452             }
2453         }
2454 
2455 #if defined (WITH_JIT)
2456         /*
2457          * If we're still waiting after the first timeout, unchain all
2458          * translations iff:
2459          *   1) There are new chains formed since the last unchain
2460          *   2) The top VM frame of the running thread is running JIT'ed code
2461          */
2462         if (gDvmJit.pJitEntryTable && retryCount > 0 &&
2463             gDvmJit.hasNewChain && thread->inJitCodeCache) {
2464             ALOGD("JIT unchain all for threadid=%d", thread->threadId);
2465             dvmJitUnchainAll();
2466         }
2467 #endif
2468 
2469         /*
2470          * Sleep briefly.  The iterative sleep call returns false if we've
2471          * exceeded the total time limit for this round of sleeping.
2472          */
2473         if (!dvmIterativeSleep(sleepIter++, spinSleepTime, startWhen)) {
2474             if (spinSleepTime != FIRST_SLEEP) {
2475                 ALOGW("threadid=%d: spin on suspend #%d threadid=%d (pcf=%d)",
2476                     self->threadId, retryCount,
2477                     thread->threadId, priChangeFlags);
2478                 if (retryCount > 1) {
2479                     /* stack trace logging is slow; skip on first iter */
2480                     dumpWedgedThread(thread);
2481                 }
2482                 complained = true;
2483             }
2484 
2485             // keep going; could be slow due to valgrind
2486             sleepIter = 0;
2487             spinSleepTime = MORE_SLEEP;
2488 
2489             if (retryCount++ == kMaxRetries) {
2490                 ALOGE("Fatal spin-on-suspend, dumping threads");
2491                 dvmDumpAllThreads(false);
2492 
2493                 /* log this after -- long traces will scroll off log */
2494                 ALOGE("threadid=%d: stuck on threadid=%d, giving up",
2495                     self->threadId, thread->threadId);
2496 
2497                 /* try to get a debuggerd dump from the spinning thread */
2498                 dvmNukeThread(thread);
2499                 /* abort the VM */
2500                 dvmAbort();
2501             }
2502         }
2503     }
2504 
2505     if (complained) {
2506         ALOGW("threadid=%d: spin on suspend resolved in %lld msec",
2507             self->threadId,
2508             (dvmGetRelativeTimeUsec() - firstStartWhen) / 1000);
2509         //dvmDumpThread(thread, false);   /* suspended, so dump is safe */
2510     }
2511     if (priChangeFlags != 0) {
2512         dvmResetThreadPriority(thread, priChangeFlags, savedThreadPrio,
2513             savedThreadPolicy);
2514     }
2515 }
2516 
2517 /*
2518  * Suspend all threads except the current one.  This is used by the GC,
2519  * the debugger, and by any thread that hits a "suspend all threads"
2520  * debugger event (e.g. breakpoint or exception).
2521  *
2522  * If thread N hits a "suspend all threads" breakpoint, we don't want it
2523  * to suspend the JDWP thread.  For the GC, we do, because the debugger can
2524  * create objects and even execute arbitrary code.  The "why" argument
2525  * allows the caller to say why the suspension is taking place.
2526  *
2527  * This can be called when a global suspend has already happened, due to
2528  * various debugger gymnastics, so keeping an "everybody is suspended" flag
2529  * doesn't work.
2530  *
2531  * DO NOT grab any locks before calling here.  We grab & release the thread
2532  * lock and suspend lock here (and we're not using recursive threads), and
2533  * we might have to self-suspend if somebody else beats us here.
2534  *
2535  * We know the current thread is in the thread list, because we attach the
2536  * thread before doing anything that could cause VM suspension (like object
2537  * allocation).
2538  */
dvmSuspendAllThreads(SuspendCause why)2539 void dvmSuspendAllThreads(SuspendCause why)
2540 {
2541     Thread* self = dvmThreadSelf();
2542     Thread* thread;
2543 
2544     assert(why != 0);
2545 
2546     /*
2547      * Start by grabbing the thread suspend lock.  If we can't get it, most
2548      * likely somebody else is in the process of performing a suspend or
2549      * resume, so lockThreadSuspend() will cause us to self-suspend.
2550      *
2551      * We keep the lock until all other threads are suspended.
2552      */
2553     lockThreadSuspend("susp-all", why);
2554 
2555     LOG_THREAD("threadid=%d: SuspendAll starting", self->threadId);
2556 
2557     /*
2558      * This is possible if the current thread was in VMWAIT mode when a
2559      * suspend-all happened, and then decided to do its own suspend-all.
2560      * This can happen when a couple of threads have simultaneous events
2561      * of interest to the debugger.
2562      */
2563     //assert(self->suspendCount == 0);
2564 
2565     /*
2566      * Increment everybody's suspend count (except our own).
2567      */
2568     dvmLockThreadList(self);
2569 
2570     lockThreadSuspendCount();
2571     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2572         if (thread == self)
2573             continue;
2574 
2575         /* debugger events don't suspend JDWP thread */
2576         if ((why == SUSPEND_FOR_DEBUG || why == SUSPEND_FOR_DEBUG_EVENT) &&
2577             thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState))
2578             continue;
2579 
2580         dvmAddToSuspendCounts(thread, 1,
2581                               (why == SUSPEND_FOR_DEBUG ||
2582                               why == SUSPEND_FOR_DEBUG_EVENT)
2583                               ? 1 : 0);
2584     }
2585     unlockThreadSuspendCount();
2586 
2587     /*
2588      * Wait for everybody in THREAD_RUNNING state to stop.  Other states
2589      * indicate the code is either running natively or sleeping quietly.
2590      * Any attempt to transition back to THREAD_RUNNING will cause a check
2591      * for suspension, so it should be impossible for anything to execute
2592      * interpreted code or modify objects (assuming native code plays nicely).
2593      *
2594      * It's also okay if the thread transitions to a non-RUNNING state.
2595      *
2596      * Note we released the threadSuspendCountLock before getting here,
2597      * so if another thread is fiddling with its suspend count (perhaps
2598      * self-suspending for the debugger) it won't block while we're waiting
2599      * in here.
2600      */
2601     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2602         if (thread == self)
2603             continue;
2604 
2605         /* debugger events don't suspend JDWP thread */
2606         if ((why == SUSPEND_FOR_DEBUG || why == SUSPEND_FOR_DEBUG_EVENT) &&
2607             thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState))
2608             continue;
2609 
2610         /* wait for the other thread to see the pending suspend */
2611         waitForThreadSuspend(self, thread);
2612 
2613         LOG_THREAD("threadid=%d:   threadid=%d status=%d sc=%d dc=%d",
2614             self->threadId, thread->threadId, thread->status,
2615             thread->suspendCount, thread->dbgSuspendCount);
2616     }
2617 
2618     dvmUnlockThreadList();
2619     unlockThreadSuspend();
2620 
2621     LOG_THREAD("threadid=%d: SuspendAll complete", self->threadId);
2622 }
2623 
2624 /*
2625  * Resume all threads that are currently suspended.
2626  *
2627  * The "why" must match with the previous suspend.
2628  */
dvmResumeAllThreads(SuspendCause why)2629 void dvmResumeAllThreads(SuspendCause why)
2630 {
2631     Thread* self = dvmThreadSelf();
2632     Thread* thread;
2633     int cc;
2634 
2635     lockThreadSuspend("res-all", why);  /* one suspend/resume at a time */
2636     LOG_THREAD("threadid=%d: ResumeAll starting", self->threadId);
2637 
2638     /*
2639      * Decrement the suspend counts for all threads.  No need for atomic
2640      * writes, since nobody should be moving until we decrement the count.
2641      * We do need to hold the thread list because of JNI attaches.
2642      */
2643     dvmLockThreadList(self);
2644     lockThreadSuspendCount();
2645     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2646         if (thread == self)
2647             continue;
2648 
2649         /* debugger events don't suspend JDWP thread */
2650         if ((why == SUSPEND_FOR_DEBUG || why == SUSPEND_FOR_DEBUG_EVENT) &&
2651             thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState))
2652         {
2653             continue;
2654         }
2655 
2656         if (thread->suspendCount > 0) {
2657             dvmAddToSuspendCounts(thread, -1,
2658                                   (why == SUSPEND_FOR_DEBUG ||
2659                                   why == SUSPEND_FOR_DEBUG_EVENT)
2660                                   ? -1 : 0);
2661         } else {
2662             LOG_THREAD("threadid=%d:  suspendCount already zero",
2663                 thread->threadId);
2664         }
2665     }
2666     unlockThreadSuspendCount();
2667     dvmUnlockThreadList();
2668 
2669     /*
2670      * In some ways it makes sense to continue to hold the thread-suspend
2671      * lock while we issue the wakeup broadcast.  It allows us to complete
2672      * one operation before moving on to the next, which simplifies the
2673      * thread activity debug traces.
2674      *
2675      * This approach caused us some difficulty under Linux, because the
2676      * condition variable broadcast not only made the threads runnable,
2677      * but actually caused them to execute, and it was a while before
2678      * the thread performing the wakeup had an opportunity to release the
2679      * thread-suspend lock.
2680      *
2681      * This is a problem because, when a thread tries to acquire that
2682      * lock, it times out after 3 seconds.  If at some point the thread
2683      * is told to suspend, the clock resets; but since the VM is still
2684      * theoretically mid-resume, there's no suspend pending.  If, for
2685      * example, the GC was waking threads up while the SIGQUIT handler
2686      * was trying to acquire the lock, we would occasionally time out on
2687      * a busy system and SignalCatcher would abort.
2688      *
2689      * We now perform the unlock before the wakeup broadcast.  The next
2690      * suspend can't actually start until the broadcast completes and
2691      * returns, because we're holding the thread-suspend-count lock, but the
2692      * suspending thread is now able to make progress and we avoid the abort.
2693      *
2694      * (Technically there is a narrow window between when we release
2695      * the thread-suspend lock and grab the thread-suspend-count lock.
2696      * This could cause us to send a broadcast to threads with nonzero
2697      * suspend counts, but this is expected and they'll all just fall
2698      * right back to sleep.  It's probably safe to grab the suspend-count
2699      * lock before releasing thread-suspend, since we're still following
2700      * the correct order of acquisition, but it feels weird.)
2701      */
2702 
2703     LOG_THREAD("threadid=%d: ResumeAll waking others", self->threadId);
2704     unlockThreadSuspend();
2705 
2706     /*
2707      * Broadcast a notification to all suspended threads, some or all of
2708      * which may choose to wake up.  No need to wait for them.
2709      */
2710     lockThreadSuspendCount();
2711     cc = pthread_cond_broadcast(&gDvm.threadSuspendCountCond);
2712     assert(cc == 0);
2713     unlockThreadSuspendCount();
2714 
2715     LOG_THREAD("threadid=%d: ResumeAll complete", self->threadId);
2716 }
2717 
2718 /*
2719  * Undo any debugger suspensions.  This is called when the debugger
2720  * disconnects.
2721  */
dvmUndoDebuggerSuspensions()2722 void dvmUndoDebuggerSuspensions()
2723 {
2724     Thread* self = dvmThreadSelf();
2725     Thread* thread;
2726     int cc;
2727 
2728     lockThreadSuspend("undo", SUSPEND_FOR_DEBUG);
2729     LOG_THREAD("threadid=%d: UndoDebuggerSusp starting", self->threadId);
2730 
2731     /*
2732      * Decrement the suspend counts for all threads.  No need for atomic
2733      * writes, since nobody should be moving until we decrement the count.
2734      * We do need to hold the thread list because of JNI attaches.
2735      */
2736     dvmLockThreadList(self);
2737     lockThreadSuspendCount();
2738     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2739         if (thread == self)
2740             continue;
2741 
2742         /* debugger events don't suspend JDWP thread */
2743         if (thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState)) {
2744             assert(thread->dbgSuspendCount == 0);
2745             continue;
2746         }
2747 
2748         assert(thread->suspendCount >= thread->dbgSuspendCount);
2749         dvmAddToSuspendCounts(thread, -thread->dbgSuspendCount,
2750                               -thread->dbgSuspendCount);
2751     }
2752     unlockThreadSuspendCount();
2753     dvmUnlockThreadList();
2754 
2755     /*
2756      * Broadcast a notification to all suspended threads, some or all of
2757      * which may choose to wake up.  No need to wait for them.
2758      */
2759     lockThreadSuspendCount();
2760     cc = pthread_cond_broadcast(&gDvm.threadSuspendCountCond);
2761     assert(cc == 0);
2762     unlockThreadSuspendCount();
2763 
2764     unlockThreadSuspend();
2765 
2766     LOG_THREAD("threadid=%d: UndoDebuggerSusp complete", self->threadId);
2767 }
2768 
2769 /*
2770  * Determine if a thread is suspended.
2771  *
2772  * As with all operations on foreign threads, the caller should hold
2773  * the thread list lock before calling.
2774  *
2775  * If the thread is suspending or waking, these fields could be changing
2776  * out from under us (or the thread could change state right after we
2777  * examine it), making this generally unreliable.  This is chiefly
2778  * intended for use by the debugger.
2779  */
dvmIsSuspended(const Thread * thread)2780 bool dvmIsSuspended(const Thread* thread)
2781 {
2782     /*
2783      * The thread could be:
2784      *  (1) Running happily.  status is RUNNING, suspendCount is zero.
2785      *      Return "false".
2786      *  (2) Pending suspend.  status is RUNNING, suspendCount is nonzero.
2787      *      Return "false".
2788      *  (3) Suspended.  suspendCount is nonzero, and status is !RUNNING.
2789      *      Return "true".
2790      *  (4) Waking up.  suspendCount is zero, status is SUSPENDED
2791      *      Return "false" (since it could change out from under us, unless
2792      *      we hold suspendCountLock).
2793      */
2794 
2795     return (thread->suspendCount != 0 &&
2796             thread->status != THREAD_RUNNING);
2797 }
2798 
2799 /*
2800  * Wait until another thread self-suspends.  This is specifically for
2801  * synchronization between the JDWP thread and a thread that has decided
2802  * to suspend itself after sending an event to the debugger.
2803  *
2804  * Threads that encounter "suspend all" events work as well -- the thread
2805  * in question suspends everybody else and then itself.
2806  *
2807  * We can't hold a thread lock here or in the caller, because we could
2808  * get here just before the to-be-waited-for-thread issues a "suspend all".
2809  * There's an opportunity for badness if the thread we're waiting for exits
2810  * and gets cleaned up, but since the thread in question is processing a
2811  * debugger event, that's not really a possibility.  (To avoid deadlock,
2812  * it's important that we not be in THREAD_RUNNING while we wait.)
2813  */
dvmWaitForSuspend(Thread * thread)2814 void dvmWaitForSuspend(Thread* thread)
2815 {
2816     Thread* self = dvmThreadSelf();
2817 
2818     LOG_THREAD("threadid=%d: waiting for threadid=%d to sleep",
2819         self->threadId, thread->threadId);
2820 
2821     assert(thread->handle != dvmJdwpGetDebugThread(gDvm.jdwpState));
2822     assert(thread != self);
2823     assert(self->status != THREAD_RUNNING);
2824 
2825     waitForThreadSuspend(self, thread);
2826 
2827     LOG_THREAD("threadid=%d: threadid=%d is now asleep",
2828         self->threadId, thread->threadId);
2829 }
2830 
2831 /*
2832  * Check to see if we need to suspend ourselves.  If so, go to sleep on
2833  * a condition variable.
2834  *
2835  * Returns "true" if we suspended ourselves.
2836  */
fullSuspendCheck(Thread * self)2837 static bool fullSuspendCheck(Thread* self)
2838 {
2839     assert(self != NULL);
2840     assert(self->suspendCount >= 0);
2841 
2842     /*
2843      * Grab gDvm.threadSuspendCountLock.  This gives us exclusive write
2844      * access to self->suspendCount.
2845      */
2846     lockThreadSuspendCount();   /* grab gDvm.threadSuspendCountLock */
2847 
2848     bool needSuspend = (self->suspendCount != 0);
2849     if (needSuspend) {
2850         LOG_THREAD("threadid=%d: self-suspending", self->threadId);
2851         ThreadStatus oldStatus = self->status;      /* should be RUNNING */
2852         self->status = THREAD_SUSPENDED;
2853 
2854         while (self->suspendCount != 0) {
2855             /*
2856              * Wait for wakeup signal, releasing lock.  The act of releasing
2857              * and re-acquiring the lock provides the memory barriers we
2858              * need for correct behavior on SMP.
2859              */
2860             dvmWaitCond(&gDvm.threadSuspendCountCond,
2861                     &gDvm.threadSuspendCountLock);
2862         }
2863         assert(self->suspendCount == 0 && self->dbgSuspendCount == 0);
2864         self->status = oldStatus;
2865         LOG_THREAD("threadid=%d: self-reviving, status=%d",
2866             self->threadId, self->status);
2867     }
2868 
2869     unlockThreadSuspendCount();
2870 
2871     return needSuspend;
2872 }
2873 
2874 /*
2875  * Check to see if a suspend is pending.  If so, suspend the current
2876  * thread, and return "true" after we have been resumed.
2877  */
dvmCheckSuspendPending(Thread * self)2878 bool dvmCheckSuspendPending(Thread* self)
2879 {
2880     assert(self != NULL);
2881     if (self->suspendCount == 0) {
2882         return false;
2883     } else {
2884         return fullSuspendCheck(self);
2885     }
2886 }
2887 
2888 /*
2889  * Update our status.
2890  *
2891  * The "self" argument, which may be NULL, is accepted as an optimization.
2892  *
2893  * Returns the old status.
2894  */
dvmChangeStatus(Thread * self,ThreadStatus newStatus)2895 ThreadStatus dvmChangeStatus(Thread* self, ThreadStatus newStatus)
2896 {
2897     ThreadStatus oldStatus;
2898 
2899     if (self == NULL)
2900         self = dvmThreadSelf();
2901 
2902     LOGVV("threadid=%d: (status %d -> %d)",
2903         self->threadId, self->status, newStatus);
2904 
2905     oldStatus = self->status;
2906     if (oldStatus == newStatus)
2907         return oldStatus;
2908 
2909     if (newStatus == THREAD_RUNNING) {
2910         /*
2911          * Change our status to THREAD_RUNNING.  The transition requires
2912          * that we check for pending suspension, because the VM considers
2913          * us to be "asleep" in all other states, and another thread could
2914          * be performing a GC now.
2915          *
2916          * The order of operations is very significant here.  One way to
2917          * do this wrong is:
2918          *
2919          *   GCing thread                   Our thread (in NATIVE)
2920          *   ------------                   ----------------------
2921          *                                  check suspend count (== 0)
2922          *   dvmSuspendAllThreads()
2923          *   grab suspend-count lock
2924          *   increment all suspend counts
2925          *   release suspend-count lock
2926          *   check thread state (== NATIVE)
2927          *   all are suspended, begin GC
2928          *                                  set state to RUNNING
2929          *                                  (continue executing)
2930          *
2931          * We can correct this by grabbing the suspend-count lock and
2932          * performing both of our operations (check suspend count, set
2933          * state) while holding it, now we need to grab a mutex on every
2934          * transition to RUNNING.
2935          *
2936          * What we do instead is change the order of operations so that
2937          * the transition to RUNNING happens first.  If we then detect
2938          * that the suspend count is nonzero, we switch to SUSPENDED.
2939          *
2940          * Appropriate compiler and memory barriers are required to ensure
2941          * that the operations are observed in the expected order.
2942          *
2943          * This does create a small window of opportunity where a GC in
2944          * progress could observe what appears to be a running thread (if
2945          * it happens to look between when we set to RUNNING and when we
2946          * switch to SUSPENDED).  At worst this only affects assertions
2947          * and thread logging.  (We could work around it with some sort
2948          * of intermediate "pre-running" state that is generally treated
2949          * as equivalent to running, but that doesn't seem worthwhile.)
2950          *
2951          * We can also solve this by combining the "status" and "suspend
2952          * count" fields into a single 32-bit value.  This trades the
2953          * store/load barrier on transition to RUNNING for an atomic RMW
2954          * op on all transitions and all suspend count updates (also, all
2955          * accesses to status or the thread count require bit-fiddling).
2956          * It also eliminates the brief transition through RUNNING when
2957          * the thread is supposed to be suspended.  This is possibly faster
2958          * on SMP and slightly more correct, but less convenient.
2959          */
2960         volatile void* raw = reinterpret_cast<volatile void*>(&self->status);
2961         volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
2962         android_atomic_acquire_store(newStatus, addr);
2963         if (self->suspendCount != 0) {
2964             fullSuspendCheck(self);
2965         }
2966     } else {
2967         /*
2968          * Not changing to THREAD_RUNNING.  No additional work required.
2969          *
2970          * We use a releasing store to ensure that, if we were RUNNING,
2971          * any updates we previously made to objects on the managed heap
2972          * will be observed before the state change.
2973          */
2974         assert(newStatus != THREAD_SUSPENDED);
2975         volatile void* raw = reinterpret_cast<volatile void*>(&self->status);
2976         volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
2977         android_atomic_release_store(newStatus, addr);
2978     }
2979 
2980     return oldStatus;
2981 }
2982 
2983 /*
2984  * Get a statically defined thread group from a field in the ThreadGroup
2985  * Class object.  Expected arguments are "mMain" and "mSystem".
2986  */
getStaticThreadGroup(const char * fieldName)2987 static Object* getStaticThreadGroup(const char* fieldName)
2988 {
2989     StaticField* groupField;
2990     Object* groupObj;
2991 
2992     groupField = dvmFindStaticField(gDvm.classJavaLangThreadGroup,
2993         fieldName, "Ljava/lang/ThreadGroup;");
2994     if (groupField == NULL) {
2995         ALOGE("java.lang.ThreadGroup does not have an '%s' field", fieldName);
2996         dvmThrowInternalError("bad definition for ThreadGroup");
2997         return NULL;
2998     }
2999     groupObj = dvmGetStaticFieldObject(groupField);
3000     if (groupObj == NULL) {
3001         ALOGE("java.lang.ThreadGroup.%s not initialized", fieldName);
3002         dvmThrowInternalError(NULL);
3003         return NULL;
3004     }
3005 
3006     return groupObj;
3007 }
dvmGetSystemThreadGroup()3008 Object* dvmGetSystemThreadGroup()
3009 {
3010     return getStaticThreadGroup("mSystem");
3011 }
dvmGetMainThreadGroup()3012 Object* dvmGetMainThreadGroup()
3013 {
3014     return getStaticThreadGroup("mMain");
3015 }
3016 
3017 /*
3018  * Given a VMThread object, return the associated Thread*.
3019  *
3020  * NOTE: if the thread detaches, the struct Thread will disappear, and
3021  * we will be touching invalid data.  For safety, lock the thread list
3022  * before calling this.
3023  */
dvmGetThreadFromThreadObject(Object * vmThreadObj)3024 Thread* dvmGetThreadFromThreadObject(Object* vmThreadObj)
3025 {
3026     int vmData;
3027 
3028     vmData = dvmGetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData);
3029 
3030     if (false) {
3031         Thread* thread = gDvm.threadList;
3032         while (thread != NULL) {
3033             if ((Thread*)vmData == thread)
3034                 break;
3035 
3036             thread = thread->next;
3037         }
3038 
3039         if (thread == NULL) {
3040             ALOGW("WARNING: vmThreadObj=%p has thread=%p, not in thread list",
3041                 vmThreadObj, (Thread*)vmData);
3042             vmData = 0;
3043         }
3044     }
3045 
3046     return (Thread*) vmData;
3047 }
3048 
3049 /*
3050  * Given a pthread handle, return the associated Thread*.
3051  * Caller must hold the thread list lock.
3052  *
3053  * Returns NULL if the thread was not found.
3054  */
dvmGetThreadByHandle(pthread_t handle)3055 Thread* dvmGetThreadByHandle(pthread_t handle)
3056 {
3057     Thread* thread;
3058     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
3059         if (thread->handle == handle)
3060             break;
3061     }
3062     return thread;
3063 }
3064 
3065 /*
3066  * Given a threadId, return the associated Thread*.
3067  * Caller must hold the thread list lock.
3068  *
3069  * Returns NULL if the thread was not found.
3070  */
dvmGetThreadByThreadId(u4 threadId)3071 Thread* dvmGetThreadByThreadId(u4 threadId)
3072 {
3073     Thread* thread;
3074     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
3075         if (thread->threadId == threadId)
3076             break;
3077     }
3078     return thread;
3079 }
3080 
dvmChangeThreadPriority(Thread * thread,int newPriority)3081 void dvmChangeThreadPriority(Thread* thread, int newPriority)
3082 {
3083     os_changeThreadPriority(thread, newPriority);
3084 }
3085 
3086 /*
3087  * Return true if the thread is on gDvm.threadList.
3088  * Caller should not hold gDvm.threadListLock.
3089  */
dvmIsOnThreadList(const Thread * thread)3090 bool dvmIsOnThreadList(const Thread* thread)
3091 {
3092     bool ret = false;
3093 
3094     dvmLockThreadList(NULL);
3095     if (thread == gDvm.threadList) {
3096         ret = true;
3097     } else {
3098         ret = thread->prev != NULL || thread->next != NULL;
3099     }
3100     dvmUnlockThreadList();
3101 
3102     return ret;
3103 }
3104 
3105 /*
3106  * Dump a thread to the log file -- just calls dvmDumpThreadEx() with an
3107  * output target.
3108  */
dvmDumpThread(Thread * thread,bool isRunning)3109 void dvmDumpThread(Thread* thread, bool isRunning)
3110 {
3111     DebugOutputTarget target;
3112 
3113     dvmCreateLogOutputTarget(&target, ANDROID_LOG_INFO, LOG_TAG);
3114     dvmDumpThreadEx(&target, thread, isRunning);
3115 }
3116 
3117 /*
3118  * Try to get the scheduler group.
3119  *
3120  * The data from /proc/<pid>/cgroup looks (something) like:
3121  *  2:cpu:/bg_non_interactive
3122  *  1:cpuacct:/
3123  *
3124  * We return the part on the "cpu" line after the '/', which will be an
3125  * empty string for the default cgroup.  If the string is longer than
3126  * "bufLen", the string will be truncated.
3127  *
3128  * On error, -1 is returned, and an error description will be stored in
3129  * the buffer.
3130  */
getSchedulerGroup(int tid,char * buf,size_t bufLen)3131 static int getSchedulerGroup(int tid, char* buf, size_t bufLen)
3132 {
3133 #ifdef HAVE_ANDROID_OS
3134     char pathBuf[32];
3135     char lineBuf[256];
3136     FILE *fp;
3137 
3138     snprintf(pathBuf, sizeof(pathBuf), "/proc/%d/cgroup", tid);
3139     if ((fp = fopen(pathBuf, "r")) == NULL) {
3140         snprintf(buf, bufLen, "[fopen-error:%d]", errno);
3141         return -1;
3142     }
3143 
3144     while (fgets(lineBuf, sizeof(lineBuf) -1, fp) != NULL) {
3145         char* subsys;
3146         char* grp;
3147         size_t len;
3148 
3149         /* Junk the first field */
3150         subsys = strchr(lineBuf, ':');
3151         if (subsys == NULL) {
3152             goto out_bad_data;
3153         }
3154 
3155         if (strncmp(subsys, ":cpu:", 5) != 0) {
3156             /* Not the subsys we're looking for */
3157             continue;
3158         }
3159 
3160         grp = strchr(subsys, '/');
3161         if (grp == NULL) {
3162             goto out_bad_data;
3163         }
3164         grp++; /* Drop the leading '/' */
3165 
3166         len = strlen(grp);
3167         grp[len-1] = '\0'; /* Drop the trailing '\n' */
3168 
3169         if (bufLen <= len) {
3170             len = bufLen - 1;
3171         }
3172         strncpy(buf, grp, len);
3173         buf[len] = '\0';
3174         fclose(fp);
3175         return 0;
3176     }
3177 
3178     snprintf(buf, bufLen, "[no-cpu-subsys]");
3179     fclose(fp);
3180     return -1;
3181 
3182 out_bad_data:
3183     ALOGE("Bad cgroup data {%s}", lineBuf);
3184     snprintf(buf, bufLen, "[data-parse-failed]");
3185     fclose(fp);
3186     return -1;
3187 
3188 #else
3189     snprintf(buf, bufLen, "[n/a]");
3190     return -1;
3191 #endif
3192 }
3193 
3194 /*
3195  * Convert ThreadStatus to a string.
3196  */
dvmGetThreadStatusStr(ThreadStatus status)3197 const char* dvmGetThreadStatusStr(ThreadStatus status)
3198 {
3199     switch (status) {
3200     case THREAD_ZOMBIE:         return "ZOMBIE";
3201     case THREAD_RUNNING:        return "RUNNABLE";
3202     case THREAD_TIMED_WAIT:     return "TIMED_WAIT";
3203     case THREAD_MONITOR:        return "MONITOR";
3204     case THREAD_WAIT:           return "WAIT";
3205     case THREAD_INITIALIZING:   return "INITIALIZING";
3206     case THREAD_STARTING:       return "STARTING";
3207     case THREAD_NATIVE:         return "NATIVE";
3208     case THREAD_VMWAIT:         return "VMWAIT";
3209     case THREAD_SUSPENDED:      return "SUSPENDED";
3210     default:                    return "UNKNOWN";
3211     }
3212 }
3213 
dumpSchedStat(const DebugOutputTarget * target,pid_t tid)3214 static void dumpSchedStat(const DebugOutputTarget* target, pid_t tid) {
3215 #ifdef HAVE_ANDROID_OS
3216     /* get some bits from /proc/self/stat */
3217     ProcStatData procStatData;
3218     if (!dvmGetThreadStats(&procStatData, tid)) {
3219         /* failed, use zeroed values */
3220         memset(&procStatData, 0, sizeof(procStatData));
3221     }
3222 
3223     /* grab the scheduler stats for this thread */
3224     char schedstatBuf[64];
3225     snprintf(schedstatBuf, sizeof(schedstatBuf), "/proc/self/task/%d/schedstat", tid);
3226     int schedstatFd = open(schedstatBuf, O_RDONLY);
3227     strcpy(schedstatBuf, "0 0 0");          /* show this if open/read fails */
3228     if (schedstatFd >= 0) {
3229         ssize_t bytes;
3230         bytes = read(schedstatFd, schedstatBuf, sizeof(schedstatBuf) - 1);
3231         close(schedstatFd);
3232         if (bytes >= 1) {
3233             schedstatBuf[bytes - 1] = '\0';   /* remove trailing newline */
3234         }
3235     }
3236 
3237     /* show what we got */
3238     dvmPrintDebugMessage(target,
3239         "  | schedstat=( %s ) utm=%lu stm=%lu core=%d\n",
3240         schedstatBuf, procStatData.utime, procStatData.stime,
3241         procStatData.processor);
3242 #endif
3243 }
3244 
3245 struct SchedulerStats {
3246     int policy;
3247     int priority;
3248     char group[32];
3249 };
3250 
3251 /*
3252  * Get scheduler statistics.
3253  */
getSchedulerStats(SchedulerStats * stats,pid_t tid)3254 static void getSchedulerStats(SchedulerStats* stats, pid_t tid) {
3255     struct sched_param sp;
3256     if (pthread_getschedparam(pthread_self(), &stats->policy, &sp) != 0) {
3257         ALOGW("Warning: pthread_getschedparam failed");
3258         stats->policy = -1;
3259         stats->priority = -1;
3260     } else {
3261         stats->priority = sp.sched_priority;
3262     }
3263     if (getSchedulerGroup(tid, stats->group, sizeof(stats->group)) == 0 &&
3264             stats->group[0] == '\0') {
3265         strcpy(stats->group, "default");
3266     }
3267 }
3268 
3269 /*
3270  * Print information about the specified thread.
3271  *
3272  * Works best when the thread in question is "self" or has been suspended.
3273  * When dumping a separate thread that's still running, set "isRunning" to
3274  * use a more cautious thread dump function.
3275  */
dvmDumpThreadEx(const DebugOutputTarget * target,Thread * thread,bool isRunning)3276 void dvmDumpThreadEx(const DebugOutputTarget* target, Thread* thread,
3277     bool isRunning)
3278 {
3279     Object* threadObj;
3280     Object* groupObj;
3281     StringObject* nameStr;
3282     char* threadName = NULL;
3283     char* groupName = NULL;
3284     bool isDaemon;
3285     int priority;               // java.lang.Thread priority
3286 
3287     /*
3288      * Get the java.lang.Thread object.  This function gets called from
3289      * some weird debug contexts, so it's possible that there's a GC in
3290      * progress on some other thread.  To decrease the chances of the
3291      * thread object being moved out from under us, we add the reference
3292      * to the tracked allocation list, which pins it in place.
3293      *
3294      * If threadObj is NULL, the thread is still in the process of being
3295      * attached to the VM, and there's really nothing interesting to
3296      * say about it yet.
3297      */
3298     threadObj = thread->threadObj;
3299     if (threadObj == NULL) {
3300         ALOGI("Can't dump thread %d: threadObj not set", thread->threadId);
3301         return;
3302     }
3303     dvmAddTrackedAlloc(threadObj, NULL);
3304 
3305     nameStr = (StringObject*) dvmGetFieldObject(threadObj,
3306                 gDvm.offJavaLangThread_name);
3307     threadName = dvmCreateCstrFromString(nameStr);
3308 
3309     priority = dvmGetFieldInt(threadObj, gDvm.offJavaLangThread_priority);
3310     isDaemon = dvmGetFieldBoolean(threadObj, gDvm.offJavaLangThread_daemon);
3311 
3312     /* a null value for group is not expected, but deal with it anyway */
3313     groupObj = (Object*) dvmGetFieldObject(threadObj,
3314                 gDvm.offJavaLangThread_group);
3315     if (groupObj != NULL) {
3316         nameStr = (StringObject*)
3317             dvmGetFieldObject(groupObj, gDvm.offJavaLangThreadGroup_name);
3318         groupName = dvmCreateCstrFromString(nameStr);
3319     }
3320     if (groupName == NULL)
3321         groupName = strdup("(null; initializing?)");
3322 
3323     SchedulerStats schedStats;
3324     getSchedulerStats(&schedStats, thread->systemTid);
3325 
3326     dvmPrintDebugMessage(target,
3327         "\"%s\"%s prio=%d tid=%d %s%s\n",
3328         threadName, isDaemon ? " daemon" : "",
3329         priority, thread->threadId, dvmGetThreadStatusStr(thread->status),
3330 #if defined(WITH_JIT)
3331         thread->inJitCodeCache ? " JIT" : ""
3332 #else
3333         ""
3334 #endif
3335         );
3336     dvmPrintDebugMessage(target,
3337         "  | group=\"%s\" sCount=%d dsCount=%d obj=%p self=%p\n",
3338         groupName, thread->suspendCount, thread->dbgSuspendCount,
3339         thread->threadObj, thread);
3340     dvmPrintDebugMessage(target,
3341         "  | sysTid=%d nice=%d sched=%d/%d cgrp=%s handle=%d\n",
3342         thread->systemTid, getpriority(PRIO_PROCESS, thread->systemTid),
3343         schedStats.policy, schedStats.priority, schedStats.group, (int)thread->handle);
3344 
3345     dumpSchedStat(target, thread->systemTid);
3346 
3347     /* grab the native stack, if possible */
3348     if (thread->status == THREAD_NATIVE || thread->status == THREAD_VMWAIT) {
3349         dvmDumpNativeStack(target, thread->systemTid);
3350     }
3351 
3352     if (isRunning)
3353         dvmDumpRunningThreadStack(target, thread);
3354     else
3355         dvmDumpThreadStack(target, thread);
3356 
3357     dvmPrintDebugMessage(target, "\n");
3358 
3359     dvmReleaseTrackedAlloc(threadObj, NULL);
3360     free(threadName);
3361     free(groupName);
3362 }
3363 
dvmGetThreadName(Thread * thread)3364 std::string dvmGetThreadName(Thread* thread) {
3365     if (thread->threadObj == NULL) {
3366         ALOGW("threadObj is NULL, name not available");
3367         return "-unknown-";
3368     }
3369 
3370     StringObject* nameObj = (StringObject*)
3371         dvmGetFieldObject(thread->threadObj, gDvm.offJavaLangThread_name);
3372     char* name = dvmCreateCstrFromString(nameObj);
3373     std::string result(name);
3374     free(name);
3375     return result;
3376 }
3377 
3378 #ifdef HAVE_ANDROID_OS
3379 /*
3380  * Dumps information about a non-Dalvik thread.
3381  */
dumpNativeThread(const DebugOutputTarget * target,pid_t tid)3382 static void dumpNativeThread(const DebugOutputTarget* target, pid_t tid) {
3383     char path[64];
3384     snprintf(path, sizeof(path), "/proc/%d/comm", tid);
3385 
3386     int fd = open(path, O_RDONLY);
3387     char name[64];
3388     ssize_t n = 0;
3389     if (fd >= 0) {
3390         n = read(fd, name, sizeof(name) - 1);
3391         close(fd);
3392     }
3393     if (n > 0 && name[n - 1] == '\n') {
3394         n -= 1;
3395     }
3396     if (n <= 0) {
3397         strcpy(name, "<no name>");
3398     } else {
3399         name[n] = '\0';
3400     }
3401 
3402     SchedulerStats schedStats;
3403     getSchedulerStats(&schedStats, tid);
3404 
3405     dvmPrintDebugMessage(target,
3406         "\"%s\" sysTid=%d nice=%d sched=%d/%d cgrp=%s\n",
3407         name, tid, getpriority(PRIO_PROCESS, tid),
3408         schedStats.policy, schedStats.priority, schedStats.group);
3409     dumpSchedStat(target, tid);
3410     // Temporarily disabled collecting native stacks from non-Dalvik
3411     // threads because sometimes they misbehave.
3412     //dvmDumpNativeStack(target, tid);
3413 
3414     dvmPrintDebugMessage(target, "\n");
3415 }
3416 
3417 /*
3418  * Returns true if the specified tid is a Dalvik thread.
3419  * Assumes the thread list lock is held.
3420  */
isDalvikThread(pid_t tid)3421 static bool isDalvikThread(pid_t tid) {
3422     for (Thread* thread = gDvm.threadList; thread != NULL; thread = thread->next) {
3423         if (thread->systemTid == tid) {
3424             return true;
3425         }
3426     }
3427     return false;
3428 }
3429 #endif
3430 
3431 /*
3432  * Dump all threads to the log file -- just calls dvmDumpAllThreadsEx() with
3433  * an output target.
3434  */
dvmDumpAllThreads(bool grabLock)3435 void dvmDumpAllThreads(bool grabLock)
3436 {
3437     DebugOutputTarget target;
3438 
3439     dvmCreateLogOutputTarget(&target, ANDROID_LOG_INFO, LOG_TAG);
3440     dvmDumpAllThreadsEx(&target, grabLock);
3441 }
3442 
3443 /*
3444  * Print information about all known threads.  Assumes they have been
3445  * suspended (or are in a non-interpreting state, e.g. WAIT or NATIVE).
3446  *
3447  * If "grabLock" is true, we grab the thread lock list.  This is important
3448  * to do unless the caller already holds the lock.
3449  */
dvmDumpAllThreadsEx(const DebugOutputTarget * target,bool grabLock)3450 void dvmDumpAllThreadsEx(const DebugOutputTarget* target, bool grabLock)
3451 {
3452     Thread* thread;
3453 
3454     dvmPrintDebugMessage(target, "DALVIK THREADS:\n");
3455 
3456 #ifdef HAVE_ANDROID_OS
3457     dvmPrintDebugMessage(target,
3458         "(mutexes: tll=%x tsl=%x tscl=%x ghl=%x)\n\n",
3459         gDvm.threadListLock.value,
3460         gDvm._threadSuspendLock.value,
3461         gDvm.threadSuspendCountLock.value,
3462         gDvm.gcHeapLock.value);
3463 #endif
3464 
3465     if (grabLock)
3466         dvmLockThreadList(dvmThreadSelf());
3467 
3468     thread = gDvm.threadList;
3469     while (thread != NULL) {
3470         dvmDumpThreadEx(target, thread, false);
3471 
3472         /* verify link */
3473         assert(thread->next == NULL || thread->next->prev == thread);
3474 
3475         thread = thread->next;
3476     }
3477 
3478 #ifdef HAVE_ANDROID_OS
3479     char path[64];
3480     snprintf(path, sizeof(path), "/proc/%d/task", getpid());
3481 
3482     DIR* d = opendir(path);
3483     if (d) {
3484         dirent de;
3485         dirent* result;
3486         bool first = true;
3487         while (!readdir_r(d, &de, &result) && result) {
3488             char* end;
3489             pid_t tid = strtol(de.d_name, &end, 10);
3490             if (!*end && !isDalvikThread(tid)) {
3491                 if (first) {
3492                     dvmPrintDebugMessage(target, "NATIVE THREADS:\n");
3493                     first = false;
3494                 }
3495                 dumpNativeThread(target, tid);
3496             }
3497         }
3498         closedir(d);
3499     }
3500 #endif
3501 
3502     if (grabLock)
3503         dvmUnlockThreadList();
3504 }
3505 
3506 /*
3507  * Nuke the target thread from orbit.
3508  *
3509  * The idea is to send a "crash" signal to the target thread so that
3510  * debuggerd will take notice and dump an appropriate stack trace.
3511  * Because of the way debuggerd works, we have to throw the same signal
3512  * at it twice.
3513  *
3514  * This does not necessarily cause the entire process to stop, but once a
3515  * thread has been nuked the rest of the system is likely to be unstable.
3516  * This returns so that some limited set of additional operations may be
3517  * performed, but it's advisable (and expected) to call dvmAbort soon.
3518  * (This is NOT a way to simply cancel a thread.)
3519  */
dvmNukeThread(Thread * thread)3520 void dvmNukeThread(Thread* thread)
3521 {
3522     int killResult;
3523 
3524     /* suppress the heapworker watchdog to assist anyone using a debugger */
3525     gDvm.nativeDebuggerActive = true;
3526 
3527     /*
3528      * Send the signals, separated by a brief interval to allow debuggerd
3529      * to work its magic.  An uncommon signal like SIGFPE or SIGSTKFLT
3530      * can be used instead of SIGSEGV to avoid making it look like the
3531      * code actually crashed at the current point of execution.
3532      *
3533      * (Observed behavior: with SIGFPE, debuggerd will dump the target
3534      * thread and then the thread that calls dvmAbort.  With SIGSEGV,
3535      * you don't get the second stack trace; possibly something in the
3536      * kernel decides that a signal has already been sent and it's time
3537      * to just kill the process.  The position in the current thread is
3538      * generally known, so the second dump is not useful.)
3539      *
3540      * The target thread can continue to execute between the two signals.
3541      * (The first just causes debuggerd to attach to it.)
3542      */
3543     ALOGD("threadid=%d: sending two SIGSTKFLTs to threadid=%d (tid=%d) to"
3544          " cause debuggerd dump",
3545         dvmThreadSelf()->threadId, thread->threadId, thread->systemTid);
3546     killResult = pthread_kill(thread->handle, SIGSTKFLT);
3547     if (killResult != 0) {
3548         ALOGD("NOTE: pthread_kill #1 failed: %s", strerror(killResult));
3549     }
3550     usleep(2 * 1000 * 1000);    // TODO: timed-wait until debuggerd attaches
3551     killResult = pthread_kill(thread->handle, SIGSTKFLT);
3552     if (killResult != 0) {
3553         ALOGD("NOTE: pthread_kill #2 failed: %s", strerror(killResult));
3554     }
3555     ALOGD("Sent, pausing to let debuggerd run");
3556     usleep(8 * 1000 * 1000);    // TODO: timed-wait until debuggerd finishes
3557 
3558     /* ignore SIGSEGV so the eventual dmvAbort() doesn't notify debuggerd */
3559     signal(SIGSEGV, SIG_IGN);
3560     ALOGD("Continuing");
3561 }
3562