1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "Dalvik.h"
18
19 #include <fcntl.h>
20 #include <stdlib.h>
21 #include <unistd.h>
22 #include <pthread.h>
23 #include <time.h>
24 #include <errno.h>
25
26 /*
27 * Every Object has a monitor associated with it, but not every Object is
28 * actually locked. Even the ones that are locked do not need a
29 * full-fledged monitor until a) there is actual contention or b) wait()
30 * is called on the Object.
31 *
32 * For Dalvik, we have implemented a scheme similar to the one described
33 * in Bacon et al.'s "Thin locks: featherweight synchronization for Java"
34 * (ACM 1998). Things are even easier for us, though, because we have
35 * a full 32 bits to work with.
36 *
37 * The two states of an Object's lock are referred to as "thin" and
38 * "fat". A lock may transition from the "thin" state to the "fat"
39 * state and this transition is referred to as inflation. Once a lock
40 * has been inflated it remains in the "fat" state indefinitely.
41 *
42 * The lock value itself is stored in Object.lock. The LSB of the
43 * lock encodes its state. When cleared, the lock is in the "thin"
44 * state and its bits are formatted as follows:
45 *
46 * [31 ---- 19] [18 ---- 3] [2 ---- 1] [0]
47 * lock count thread id hash state 0
48 *
49 * When set, the lock is in the "fat" state and its bits are formatted
50 * as follows:
51 *
52 * [31 ---- 3] [2 ---- 1] [0]
53 * pointer hash state 1
54 *
55 * For an in-depth description of the mechanics of thin-vs-fat locking,
56 * read the paper referred to above.
57 */
58
59 /*
60 * Monitors provide:
61 * - mutually exclusive access to resources
62 * - a way for multiple threads to wait for notification
63 *
64 * In effect, they fill the role of both mutexes and condition variables.
65 *
66 * Only one thread can own the monitor at any time. There may be several
67 * threads waiting on it (the wait call unlocks it). One or more waiting
68 * threads may be getting interrupted or notified at any given time.
69 *
70 * TODO: the various members of monitor are not SMP-safe.
71 */
72 struct Monitor {
73 Thread* owner; /* which thread currently owns the lock? */
74 int lockCount; /* owner's recursive lock depth */
75 Object* obj; /* what object are we part of [debug only] */
76
77 Thread* waitSet; /* threads currently waiting on this monitor */
78
79 pthread_mutex_t lock;
80
81 Monitor* next;
82
83 /*
84 * Who last acquired this monitor, when lock sampling is enabled.
85 * Even when enabled, ownerMethod may be NULL.
86 */
87 const Method* ownerMethod;
88 u4 ownerPc;
89 };
90
91
92 /*
93 * Create and initialize a monitor.
94 */
dvmCreateMonitor(Object * obj)95 Monitor* dvmCreateMonitor(Object* obj)
96 {
97 Monitor* mon;
98
99 mon = (Monitor*) calloc(1, sizeof(Monitor));
100 if (mon == NULL) {
101 ALOGE("Unable to allocate monitor");
102 dvmAbort();
103 }
104 if (((u4)mon & 7) != 0) {
105 ALOGE("Misaligned monitor: %p", mon);
106 dvmAbort();
107 }
108 mon->obj = obj;
109 dvmInitMutex(&mon->lock);
110
111 /* replace the head of the list with the new monitor */
112 do {
113 mon->next = gDvm.monitorList;
114 } while (android_atomic_release_cas((int32_t)mon->next, (int32_t)mon,
115 (int32_t*)(void*)&gDvm.monitorList) != 0);
116
117 return mon;
118 }
119
120 /*
121 * Free the monitor list. Only used when shutting the VM down.
122 */
dvmFreeMonitorList()123 void dvmFreeMonitorList()
124 {
125 Monitor* mon;
126 Monitor* nextMon;
127
128 mon = gDvm.monitorList;
129 while (mon != NULL) {
130 nextMon = mon->next;
131 free(mon);
132 mon = nextMon;
133 }
134 }
135
136 /*
137 * Get the object that a monitor is part of.
138 */
dvmGetMonitorObject(Monitor * mon)139 Object* dvmGetMonitorObject(Monitor* mon)
140 {
141 if (mon == NULL)
142 return NULL;
143 else
144 return mon->obj;
145 }
146
147 /*
148 * Returns the thread id of the thread owning the given lock.
149 */
lockOwner(Object * obj)150 static u4 lockOwner(Object* obj)
151 {
152 Thread *owner;
153 u4 lock;
154
155 assert(obj != NULL);
156 /*
157 * Since we're reading the lock value multiple times, latch it so
158 * that it doesn't change out from under us if we get preempted.
159 */
160 lock = obj->lock;
161 if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
162 return LW_LOCK_OWNER(lock);
163 } else {
164 owner = LW_MONITOR(lock)->owner;
165 return owner ? owner->threadId : 0;
166 }
167 }
168
169 /*
170 * Get the thread that holds the lock on the specified object. The
171 * object may be unlocked, thin-locked, or fat-locked.
172 *
173 * The caller must lock the thread list before calling here.
174 */
dvmGetObjectLockHolder(Object * obj)175 Thread* dvmGetObjectLockHolder(Object* obj)
176 {
177 u4 threadId = lockOwner(obj);
178
179 if (threadId == 0)
180 return NULL;
181 return dvmGetThreadByThreadId(threadId);
182 }
183
184 /*
185 * Checks whether the given thread holds the given
186 * objects's lock.
187 */
dvmHoldsLock(Thread * thread,Object * obj)188 bool dvmHoldsLock(Thread* thread, Object* obj)
189 {
190 if (thread == NULL || obj == NULL) {
191 return false;
192 } else {
193 return thread->threadId == lockOwner(obj);
194 }
195 }
196
197 /*
198 * Free the monitor associated with an object and make the object's lock
199 * thin again. This is called during garbage collection.
200 */
freeMonitor(Monitor * mon)201 static void freeMonitor(Monitor *mon)
202 {
203 assert(mon != NULL);
204 assert(mon->obj != NULL);
205 assert(LW_SHAPE(mon->obj->lock) == LW_SHAPE_FAT);
206
207 /* This lock is associated with an object
208 * that's being swept. The only possible way
209 * anyone could be holding this lock would be
210 * if some JNI code locked but didn't unlock
211 * the object, in which case we've got some bad
212 * native code somewhere.
213 */
214 assert(pthread_mutex_trylock(&mon->lock) == 0);
215 assert(pthread_mutex_unlock(&mon->lock) == 0);
216 dvmDestroyMutex(&mon->lock);
217 free(mon);
218 }
219
220 /*
221 * Frees monitor objects belonging to unmarked objects.
222 */
dvmSweepMonitorList(Monitor ** mon,int (* isUnmarkedObject)(void *))223 void dvmSweepMonitorList(Monitor** mon, int (*isUnmarkedObject)(void*))
224 {
225 Monitor handle;
226 Monitor *prev, *curr;
227 Object *obj;
228
229 assert(mon != NULL);
230 assert(isUnmarkedObject != NULL);
231 prev = &handle;
232 prev->next = curr = *mon;
233 while (curr != NULL) {
234 obj = curr->obj;
235 if (obj != NULL && (*isUnmarkedObject)(obj) != 0) {
236 prev->next = curr->next;
237 freeMonitor(curr);
238 curr = prev->next;
239 } else {
240 prev = curr;
241 curr = curr->next;
242 }
243 }
244 *mon = handle.next;
245 }
246
logWriteInt(char * dst,int value)247 static char *logWriteInt(char *dst, int value)
248 {
249 *dst++ = EVENT_TYPE_INT;
250 set4LE((u1 *)dst, value);
251 return dst + 4;
252 }
253
logWriteString(char * dst,const char * value,size_t len)254 static char *logWriteString(char *dst, const char *value, size_t len)
255 {
256 *dst++ = EVENT_TYPE_STRING;
257 len = len < 32 ? len : 32;
258 set4LE((u1 *)dst, len);
259 dst += 4;
260 memcpy(dst, value, len);
261 return dst + len;
262 }
263
264 #define EVENT_LOG_TAG_dvm_lock_sample 20003
265
logContentionEvent(Thread * self,u4 waitMs,u4 samplePercent,const char * ownerFileName,u4 ownerLineNumber)266 static void logContentionEvent(Thread *self, u4 waitMs, u4 samplePercent,
267 const char *ownerFileName, u4 ownerLineNumber)
268 {
269 const StackSaveArea *saveArea;
270 const Method *meth;
271 u4 relativePc;
272 char eventBuffer[174];
273 const char *fileName;
274 char procName[33];
275 char *cp;
276 size_t len;
277 int fd;
278
279 saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
280 meth = saveArea->method;
281 cp = eventBuffer;
282
283 /* Emit the event list length, 1 byte. */
284 *cp++ = 9;
285
286 /* Emit the process name, <= 37 bytes. */
287 fd = open("/proc/self/cmdline", O_RDONLY);
288 memset(procName, 0, sizeof(procName));
289 read(fd, procName, sizeof(procName) - 1);
290 close(fd);
291 len = strlen(procName);
292 cp = logWriteString(cp, procName, len);
293
294 /* Emit the sensitive thread ("main thread") status, 5 bytes. */
295 bool isSensitive = false;
296 if (gDvm.isSensitiveThreadHook != NULL) {
297 isSensitive = gDvm.isSensitiveThreadHook();
298 }
299 cp = logWriteInt(cp, isSensitive);
300
301 /* Emit self thread name string, <= 37 bytes. */
302 std::string selfName = dvmGetThreadName(self);
303 cp = logWriteString(cp, selfName.c_str(), selfName.size());
304
305 /* Emit the wait time, 5 bytes. */
306 cp = logWriteInt(cp, waitMs);
307
308 /* Emit the source code file name, <= 37 bytes. */
309 fileName = dvmGetMethodSourceFile(meth);
310 if (fileName == NULL) fileName = "";
311 cp = logWriteString(cp, fileName, strlen(fileName));
312
313 /* Emit the source code line number, 5 bytes. */
314 relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
315 cp = logWriteInt(cp, dvmLineNumFromPC(meth, relativePc));
316
317 /* Emit the lock owner source code file name, <= 37 bytes. */
318 if (ownerFileName == NULL) {
319 ownerFileName = "";
320 } else if (strcmp(fileName, ownerFileName) == 0) {
321 /* Common case, so save on log space. */
322 ownerFileName = "-";
323 }
324 cp = logWriteString(cp, ownerFileName, strlen(ownerFileName));
325
326 /* Emit the source code line number, 5 bytes. */
327 cp = logWriteInt(cp, ownerLineNumber);
328
329 /* Emit the sample percentage, 5 bytes. */
330 cp = logWriteInt(cp, samplePercent);
331
332 assert((size_t)(cp - eventBuffer) <= sizeof(eventBuffer));
333 android_btWriteLog(EVENT_LOG_TAG_dvm_lock_sample,
334 EVENT_TYPE_LIST,
335 eventBuffer,
336 (size_t)(cp - eventBuffer));
337 }
338
339 /*
340 * Lock a monitor.
341 */
lockMonitor(Thread * self,Monitor * mon)342 static void lockMonitor(Thread* self, Monitor* mon)
343 {
344 ThreadStatus oldStatus;
345 u4 waitThreshold, samplePercent;
346 u8 waitStart, waitEnd, waitMs;
347
348 if (mon->owner == self) {
349 mon->lockCount++;
350 return;
351 }
352 if (dvmTryLockMutex(&mon->lock) != 0) {
353 oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
354 waitThreshold = gDvm.lockProfThreshold;
355 if (waitThreshold) {
356 waitStart = dvmGetRelativeTimeUsec();
357 }
358
359 const Method* currentOwnerMethod = mon->ownerMethod;
360 u4 currentOwnerPc = mon->ownerPc;
361
362 dvmLockMutex(&mon->lock);
363 if (waitThreshold) {
364 waitEnd = dvmGetRelativeTimeUsec();
365 }
366 dvmChangeStatus(self, oldStatus);
367 if (waitThreshold) {
368 waitMs = (waitEnd - waitStart) / 1000;
369 if (waitMs >= waitThreshold) {
370 samplePercent = 100;
371 } else {
372 samplePercent = 100 * waitMs / waitThreshold;
373 }
374 if (samplePercent != 0 && ((u4)rand() % 100 < samplePercent)) {
375 const char* currentOwnerFileName = "no_method";
376 u4 currentOwnerLineNumber = 0;
377 if (currentOwnerMethod != NULL) {
378 currentOwnerFileName = dvmGetMethodSourceFile(currentOwnerMethod);
379 if (currentOwnerFileName == NULL) {
380 currentOwnerFileName = "no_method_file";
381 }
382 currentOwnerLineNumber = dvmLineNumFromPC(currentOwnerMethod, currentOwnerPc);
383 }
384 logContentionEvent(self, waitMs, samplePercent,
385 currentOwnerFileName, currentOwnerLineNumber);
386 }
387 }
388 }
389 mon->owner = self;
390 assert(mon->lockCount == 0);
391
392 // When debugging, save the current monitor holder for future
393 // acquisition failures to use in sampled logging.
394 if (gDvm.lockProfThreshold > 0) {
395 mon->ownerMethod = NULL;
396 mon->ownerPc = 0;
397 if (self->interpSave.curFrame == NULL) {
398 return;
399 }
400 const StackSaveArea* saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
401 if (saveArea == NULL) {
402 return;
403 }
404 mon->ownerMethod = saveArea->method;
405 mon->ownerPc = (saveArea->xtra.currentPc - saveArea->method->insns);
406 }
407 }
408
409 /*
410 * Try to lock a monitor.
411 *
412 * Returns "true" on success.
413 */
414 #ifdef WITH_COPYING_GC
tryLockMonitor(Thread * self,Monitor * mon)415 static bool tryLockMonitor(Thread* self, Monitor* mon)
416 {
417 if (mon->owner == self) {
418 mon->lockCount++;
419 return true;
420 } else {
421 if (dvmTryLockMutex(&mon->lock) == 0) {
422 mon->owner = self;
423 assert(mon->lockCount == 0);
424 return true;
425 } else {
426 return false;
427 }
428 }
429 }
430 #endif
431
432 /*
433 * Unlock a monitor.
434 *
435 * Returns true if the unlock succeeded.
436 * If the unlock failed, an exception will be pending.
437 */
unlockMonitor(Thread * self,Monitor * mon)438 static bool unlockMonitor(Thread* self, Monitor* mon)
439 {
440 assert(self != NULL);
441 assert(mon != NULL);
442 if (mon->owner == self) {
443 /*
444 * We own the monitor, so nobody else can be in here.
445 */
446 if (mon->lockCount == 0) {
447 mon->owner = NULL;
448 mon->ownerMethod = NULL;
449 mon->ownerPc = 0;
450 dvmUnlockMutex(&mon->lock);
451 } else {
452 mon->lockCount--;
453 }
454 } else {
455 /*
456 * We don't own this, so we're not allowed to unlock it.
457 * The JNI spec says that we should throw IllegalMonitorStateException
458 * in this case.
459 */
460 dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
461 return false;
462 }
463 return true;
464 }
465
466 /*
467 * Checks the wait set for circular structure. Returns 0 if the list
468 * is not circular. Otherwise, returns 1. Used only by asserts.
469 */
470 #ifndef NDEBUG
waitSetCheck(Monitor * mon)471 static int waitSetCheck(Monitor *mon)
472 {
473 Thread *fast, *slow;
474 size_t n;
475
476 assert(mon != NULL);
477 fast = slow = mon->waitSet;
478 n = 0;
479 for (;;) {
480 if (fast == NULL) return 0;
481 if (fast->waitNext == NULL) return 0;
482 if (fast == slow && n > 0) return 1;
483 n += 2;
484 fast = fast->waitNext->waitNext;
485 slow = slow->waitNext;
486 }
487 }
488 #endif
489
490 /*
491 * Links a thread into a monitor's wait set. The monitor lock must be
492 * held by the caller of this routine.
493 */
waitSetAppend(Monitor * mon,Thread * thread)494 static void waitSetAppend(Monitor *mon, Thread *thread)
495 {
496 Thread *elt;
497
498 assert(mon != NULL);
499 assert(mon->owner == dvmThreadSelf());
500 assert(thread != NULL);
501 assert(thread->waitNext == NULL);
502 assert(waitSetCheck(mon) == 0);
503 if (mon->waitSet == NULL) {
504 mon->waitSet = thread;
505 return;
506 }
507 elt = mon->waitSet;
508 while (elt->waitNext != NULL) {
509 elt = elt->waitNext;
510 }
511 elt->waitNext = thread;
512 }
513
514 /*
515 * Unlinks a thread from a monitor's wait set. The monitor lock must
516 * be held by the caller of this routine.
517 */
waitSetRemove(Monitor * mon,Thread * thread)518 static void waitSetRemove(Monitor *mon, Thread *thread)
519 {
520 Thread *elt;
521
522 assert(mon != NULL);
523 assert(mon->owner == dvmThreadSelf());
524 assert(thread != NULL);
525 assert(waitSetCheck(mon) == 0);
526 if (mon->waitSet == NULL) {
527 return;
528 }
529 if (mon->waitSet == thread) {
530 mon->waitSet = thread->waitNext;
531 thread->waitNext = NULL;
532 return;
533 }
534 elt = mon->waitSet;
535 while (elt->waitNext != NULL) {
536 if (elt->waitNext == thread) {
537 elt->waitNext = thread->waitNext;
538 thread->waitNext = NULL;
539 return;
540 }
541 elt = elt->waitNext;
542 }
543 }
544
545 /*
546 * Converts the given relative waiting time into an absolute time.
547 */
absoluteTime(s8 msec,s4 nsec,struct timespec * ts)548 static void absoluteTime(s8 msec, s4 nsec, struct timespec *ts)
549 {
550 s8 endSec;
551
552 #ifdef HAVE_TIMEDWAIT_MONOTONIC
553 clock_gettime(CLOCK_MONOTONIC, ts);
554 #else
555 {
556 struct timeval tv;
557 gettimeofday(&tv, NULL);
558 ts->tv_sec = tv.tv_sec;
559 ts->tv_nsec = tv.tv_usec * 1000;
560 }
561 #endif
562 endSec = ts->tv_sec + msec / 1000;
563 if (endSec >= 0x7fffffff) {
564 ALOGV("NOTE: end time exceeds epoch");
565 endSec = 0x7ffffffe;
566 }
567 ts->tv_sec = endSec;
568 ts->tv_nsec = (ts->tv_nsec + (msec % 1000) * 1000000) + nsec;
569
570 /* catch rollover */
571 if (ts->tv_nsec >= 1000000000L) {
572 ts->tv_sec++;
573 ts->tv_nsec -= 1000000000L;
574 }
575 }
576
dvmRelativeCondWait(pthread_cond_t * cond,pthread_mutex_t * mutex,s8 msec,s4 nsec)577 int dvmRelativeCondWait(pthread_cond_t* cond, pthread_mutex_t* mutex,
578 s8 msec, s4 nsec)
579 {
580 int ret;
581 struct timespec ts;
582 absoluteTime(msec, nsec, &ts);
583 #if defined(HAVE_TIMEDWAIT_MONOTONIC)
584 ret = pthread_cond_timedwait_monotonic(cond, mutex, &ts);
585 #else
586 ret = pthread_cond_timedwait(cond, mutex, &ts);
587 #endif
588 assert(ret == 0 || ret == ETIMEDOUT);
589 return ret;
590 }
591
592 /*
593 * Wait on a monitor until timeout, interrupt, or notification. Used for
594 * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
595 *
596 * If another thread calls Thread.interrupt(), we throw InterruptedException
597 * and return immediately if one of the following are true:
598 * - blocked in wait(), wait(long), or wait(long, int) methods of Object
599 * - blocked in join(), join(long), or join(long, int) methods of Thread
600 * - blocked in sleep(long), or sleep(long, int) methods of Thread
601 * Otherwise, we set the "interrupted" flag.
602 *
603 * Checks to make sure that "nsec" is in the range 0-999999
604 * (i.e. fractions of a millisecond) and throws the appropriate
605 * exception if it isn't.
606 *
607 * The spec allows "spurious wakeups", and recommends that all code using
608 * Object.wait() do so in a loop. This appears to derive from concerns
609 * about pthread_cond_wait() on multiprocessor systems. Some commentary
610 * on the web casts doubt on whether these can/should occur.
611 *
612 * Since we're allowed to wake up "early", we clamp extremely long durations
613 * to return at the end of the 32-bit time epoch.
614 */
waitMonitor(Thread * self,Monitor * mon,s8 msec,s4 nsec,bool interruptShouldThrow)615 static void waitMonitor(Thread* self, Monitor* mon, s8 msec, s4 nsec,
616 bool interruptShouldThrow)
617 {
618 struct timespec ts;
619 bool wasInterrupted = false;
620 bool timed;
621 int ret;
622
623 assert(self != NULL);
624 assert(mon != NULL);
625
626 /* Make sure that we hold the lock. */
627 if (mon->owner != self) {
628 dvmThrowIllegalMonitorStateException(
629 "object not locked by thread before wait()");
630 return;
631 }
632
633 /*
634 * Enforce the timeout range.
635 */
636 if (msec < 0 || nsec < 0 || nsec > 999999) {
637 dvmThrowIllegalArgumentException("timeout arguments out of range");
638 return;
639 }
640
641 /*
642 * Compute absolute wakeup time, if necessary.
643 */
644 if (msec == 0 && nsec == 0) {
645 timed = false;
646 } else {
647 absoluteTime(msec, nsec, &ts);
648 timed = true;
649 }
650
651 /*
652 * Add ourselves to the set of threads waiting on this monitor, and
653 * release our hold. We need to let it go even if we're a few levels
654 * deep in a recursive lock, and we need to restore that later.
655 *
656 * We append to the wait set ahead of clearing the count and owner
657 * fields so the subroutine can check that the calling thread owns
658 * the monitor. Aside from that, the order of member updates is
659 * not order sensitive as we hold the pthread mutex.
660 */
661 waitSetAppend(mon, self);
662 int prevLockCount = mon->lockCount;
663 mon->lockCount = 0;
664 mon->owner = NULL;
665
666 const Method* savedMethod = mon->ownerMethod;
667 u4 savedPc = mon->ownerPc;
668 mon->ownerMethod = NULL;
669 mon->ownerPc = 0;
670
671 /*
672 * Update thread status. If the GC wakes up, it'll ignore us, knowing
673 * that we won't touch any references in this state, and we'll check
674 * our suspend mode before we transition out.
675 */
676 if (timed)
677 dvmChangeStatus(self, THREAD_TIMED_WAIT);
678 else
679 dvmChangeStatus(self, THREAD_WAIT);
680
681 dvmLockMutex(&self->waitMutex);
682
683 /*
684 * Set waitMonitor to the monitor object we will be waiting on.
685 * When waitMonitor is non-NULL a notifying or interrupting thread
686 * must signal the thread's waitCond to wake it up.
687 */
688 assert(self->waitMonitor == NULL);
689 self->waitMonitor = mon;
690
691 /*
692 * Handle the case where the thread was interrupted before we called
693 * wait().
694 */
695 if (self->interrupted) {
696 wasInterrupted = true;
697 self->waitMonitor = NULL;
698 dvmUnlockMutex(&self->waitMutex);
699 goto done;
700 }
701
702 /*
703 * Release the monitor lock and wait for a notification or
704 * a timeout to occur.
705 */
706 dvmUnlockMutex(&mon->lock);
707
708 if (!timed) {
709 ret = pthread_cond_wait(&self->waitCond, &self->waitMutex);
710 assert(ret == 0);
711 } else {
712 #ifdef HAVE_TIMEDWAIT_MONOTONIC
713 ret = pthread_cond_timedwait_monotonic(&self->waitCond, &self->waitMutex, &ts);
714 #else
715 ret = pthread_cond_timedwait(&self->waitCond, &self->waitMutex, &ts);
716 #endif
717 assert(ret == 0 || ret == ETIMEDOUT);
718 }
719 if (self->interrupted) {
720 wasInterrupted = true;
721 }
722
723 self->interrupted = false;
724 self->waitMonitor = NULL;
725
726 dvmUnlockMutex(&self->waitMutex);
727
728 /* Reacquire the monitor lock. */
729 lockMonitor(self, mon);
730
731 done:
732 /*
733 * We remove our thread from wait set after restoring the count
734 * and owner fields so the subroutine can check that the calling
735 * thread owns the monitor. Aside from that, the order of member
736 * updates is not order sensitive as we hold the pthread mutex.
737 */
738 mon->owner = self;
739 mon->lockCount = prevLockCount;
740 mon->ownerMethod = savedMethod;
741 mon->ownerPc = savedPc;
742 waitSetRemove(mon, self);
743
744 /* set self->status back to THREAD_RUNNING, and self-suspend if needed */
745 dvmChangeStatus(self, THREAD_RUNNING);
746
747 if (wasInterrupted) {
748 /*
749 * We were interrupted while waiting, or somebody interrupted an
750 * un-interruptible thread earlier and we're bailing out immediately.
751 *
752 * The doc sayeth: "The interrupted status of the current thread is
753 * cleared when this exception is thrown."
754 */
755 self->interrupted = false;
756 if (interruptShouldThrow) {
757 dvmThrowInterruptedException(NULL);
758 }
759 }
760 }
761
762 /*
763 * Notify one thread waiting on this monitor.
764 */
notifyMonitor(Thread * self,Monitor * mon)765 static void notifyMonitor(Thread* self, Monitor* mon)
766 {
767 Thread* thread;
768
769 assert(self != NULL);
770 assert(mon != NULL);
771
772 /* Make sure that we hold the lock. */
773 if (mon->owner != self) {
774 dvmThrowIllegalMonitorStateException(
775 "object not locked by thread before notify()");
776 return;
777 }
778 /* Signal the first waiting thread in the wait set. */
779 while (mon->waitSet != NULL) {
780 thread = mon->waitSet;
781 mon->waitSet = thread->waitNext;
782 thread->waitNext = NULL;
783 dvmLockMutex(&thread->waitMutex);
784 /* Check to see if the thread is still waiting. */
785 if (thread->waitMonitor != NULL) {
786 pthread_cond_signal(&thread->waitCond);
787 dvmUnlockMutex(&thread->waitMutex);
788 return;
789 }
790 dvmUnlockMutex(&thread->waitMutex);
791 }
792 }
793
794 /*
795 * Notify all threads waiting on this monitor.
796 */
notifyAllMonitor(Thread * self,Monitor * mon)797 static void notifyAllMonitor(Thread* self, Monitor* mon)
798 {
799 Thread* thread;
800
801 assert(self != NULL);
802 assert(mon != NULL);
803
804 /* Make sure that we hold the lock. */
805 if (mon->owner != self) {
806 dvmThrowIllegalMonitorStateException(
807 "object not locked by thread before notifyAll()");
808 return;
809 }
810 /* Signal all threads in the wait set. */
811 while (mon->waitSet != NULL) {
812 thread = mon->waitSet;
813 mon->waitSet = thread->waitNext;
814 thread->waitNext = NULL;
815 dvmLockMutex(&thread->waitMutex);
816 /* Check to see if the thread is still waiting. */
817 if (thread->waitMonitor != NULL) {
818 pthread_cond_signal(&thread->waitCond);
819 }
820 dvmUnlockMutex(&thread->waitMutex);
821 }
822 }
823
824 /*
825 * Changes the shape of a monitor from thin to fat, preserving the
826 * internal lock state. The calling thread must own the lock.
827 */
inflateMonitor(Thread * self,Object * obj)828 static void inflateMonitor(Thread *self, Object *obj)
829 {
830 Monitor *mon;
831 u4 thin;
832
833 assert(self != NULL);
834 assert(obj != NULL);
835 assert(LW_SHAPE(obj->lock) == LW_SHAPE_THIN);
836 assert(LW_LOCK_OWNER(obj->lock) == self->threadId);
837 /* Allocate and acquire a new monitor. */
838 mon = dvmCreateMonitor(obj);
839 lockMonitor(self, mon);
840 /* Propagate the lock state. */
841 thin = obj->lock;
842 mon->lockCount = LW_LOCK_COUNT(thin);
843 thin &= LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT;
844 thin |= (u4)mon | LW_SHAPE_FAT;
845 /* Publish the updated lock word. */
846 android_atomic_release_store(thin, (int32_t *)&obj->lock);
847 }
848
849 /*
850 * Implements monitorenter for "synchronized" stuff.
851 *
852 * This does not fail or throw an exception (unless deadlock prediction
853 * is enabled and set to "err" mode).
854 */
dvmLockObject(Thread * self,Object * obj)855 void dvmLockObject(Thread* self, Object *obj)
856 {
857 volatile u4 *thinp;
858 ThreadStatus oldStatus;
859 struct timespec tm;
860 long sleepDelayNs;
861 long minSleepDelayNs = 1000000; /* 1 millisecond */
862 long maxSleepDelayNs = 1000000000; /* 1 second */
863 u4 thin, newThin, threadId;
864
865 assert(self != NULL);
866 assert(obj != NULL);
867 threadId = self->threadId;
868 thinp = &obj->lock;
869 retry:
870 thin = *thinp;
871 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
872 /*
873 * The lock is a thin lock. The owner field is used to
874 * determine the acquire method, ordered by cost.
875 */
876 if (LW_LOCK_OWNER(thin) == threadId) {
877 /*
878 * The calling thread owns the lock. Increment the
879 * value of the recursion count field.
880 */
881 obj->lock += 1 << LW_LOCK_COUNT_SHIFT;
882 if (LW_LOCK_COUNT(obj->lock) == LW_LOCK_COUNT_MASK) {
883 /*
884 * The reacquisition limit has been reached. Inflate
885 * the lock so the next acquire will not overflow the
886 * recursion count field.
887 */
888 inflateMonitor(self, obj);
889 }
890 } else if (LW_LOCK_OWNER(thin) == 0) {
891 /*
892 * The lock is unowned. Install the thread id of the
893 * calling thread into the owner field. This is the
894 * common case. In performance critical code the JIT
895 * will have tried this before calling out to the VM.
896 */
897 newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
898 if (android_atomic_acquire_cas(thin, newThin,
899 (int32_t*)thinp) != 0) {
900 /*
901 * The acquire failed. Try again.
902 */
903 goto retry;
904 }
905 } else {
906 ALOGV("(%d) spin on lock %p: %#x (%#x) %#x",
907 threadId, &obj->lock, 0, *thinp, thin);
908 /*
909 * The lock is owned by another thread. Notify the VM
910 * that we are about to wait.
911 */
912 oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
913 /*
914 * Spin until the thin lock is released or inflated.
915 */
916 sleepDelayNs = 0;
917 for (;;) {
918 thin = *thinp;
919 /*
920 * Check the shape of the lock word. Another thread
921 * may have inflated the lock while we were waiting.
922 */
923 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
924 if (LW_LOCK_OWNER(thin) == 0) {
925 /*
926 * The lock has been released. Install the
927 * thread id of the calling thread into the
928 * owner field.
929 */
930 newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
931 if (android_atomic_acquire_cas(thin, newThin,
932 (int32_t *)thinp) == 0) {
933 /*
934 * The acquire succeed. Break out of the
935 * loop and proceed to inflate the lock.
936 */
937 break;
938 }
939 } else {
940 /*
941 * The lock has not been released. Yield so
942 * the owning thread can run.
943 */
944 if (sleepDelayNs == 0) {
945 sched_yield();
946 sleepDelayNs = minSleepDelayNs;
947 } else {
948 tm.tv_sec = 0;
949 tm.tv_nsec = sleepDelayNs;
950 nanosleep(&tm, NULL);
951 /*
952 * Prepare the next delay value. Wrap to
953 * avoid once a second polls for eternity.
954 */
955 if (sleepDelayNs < maxSleepDelayNs / 2) {
956 sleepDelayNs *= 2;
957 } else {
958 sleepDelayNs = minSleepDelayNs;
959 }
960 }
961 }
962 } else {
963 /*
964 * The thin lock was inflated by another thread.
965 * Let the VM know we are no longer waiting and
966 * try again.
967 */
968 ALOGV("(%d) lock %p surprise-fattened",
969 threadId, &obj->lock);
970 dvmChangeStatus(self, oldStatus);
971 goto retry;
972 }
973 }
974 ALOGV("(%d) spin on lock done %p: %#x (%#x) %#x",
975 threadId, &obj->lock, 0, *thinp, thin);
976 /*
977 * We have acquired the thin lock. Let the VM know that
978 * we are no longer waiting.
979 */
980 dvmChangeStatus(self, oldStatus);
981 /*
982 * Fatten the lock.
983 */
984 inflateMonitor(self, obj);
985 ALOGV("(%d) lock %p fattened", threadId, &obj->lock);
986 }
987 } else {
988 /*
989 * The lock is a fat lock.
990 */
991 assert(LW_MONITOR(obj->lock) != NULL);
992 lockMonitor(self, LW_MONITOR(obj->lock));
993 }
994 }
995
996 /*
997 * Implements monitorexit for "synchronized" stuff.
998 *
999 * On failure, throws an exception and returns "false".
1000 */
dvmUnlockObject(Thread * self,Object * obj)1001 bool dvmUnlockObject(Thread* self, Object *obj)
1002 {
1003 u4 thin;
1004
1005 assert(self != NULL);
1006 assert(self->status == THREAD_RUNNING);
1007 assert(obj != NULL);
1008 /*
1009 * Cache the lock word as its value can change while we are
1010 * examining its state.
1011 */
1012 thin = *(volatile u4 *)&obj->lock;
1013 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1014 /*
1015 * The lock is thin. We must ensure that the lock is owned
1016 * by the given thread before unlocking it.
1017 */
1018 if (LW_LOCK_OWNER(thin) == self->threadId) {
1019 /*
1020 * We are the lock owner. It is safe to update the lock
1021 * without CAS as lock ownership guards the lock itself.
1022 */
1023 if (LW_LOCK_COUNT(thin) == 0) {
1024 /*
1025 * The lock was not recursively acquired, the common
1026 * case. Unlock by clearing all bits except for the
1027 * hash state.
1028 */
1029 thin &= (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT);
1030 android_atomic_release_store(thin, (int32_t*)&obj->lock);
1031 } else {
1032 /*
1033 * The object was recursively acquired. Decrement the
1034 * lock recursion count field.
1035 */
1036 obj->lock -= 1 << LW_LOCK_COUNT_SHIFT;
1037 }
1038 } else {
1039 /*
1040 * We do not own the lock. The JVM spec requires that we
1041 * throw an exception in this case.
1042 */
1043 dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
1044 return false;
1045 }
1046 } else {
1047 /*
1048 * The lock is fat. We must check to see if unlockMonitor has
1049 * raised any exceptions before continuing.
1050 */
1051 assert(LW_MONITOR(obj->lock) != NULL);
1052 if (!unlockMonitor(self, LW_MONITOR(obj->lock))) {
1053 /*
1054 * An exception has been raised. Do not fall through.
1055 */
1056 return false;
1057 }
1058 }
1059 return true;
1060 }
1061
1062 /*
1063 * Object.wait(). Also called for class init.
1064 */
dvmObjectWait(Thread * self,Object * obj,s8 msec,s4 nsec,bool interruptShouldThrow)1065 void dvmObjectWait(Thread* self, Object *obj, s8 msec, s4 nsec,
1066 bool interruptShouldThrow)
1067 {
1068 Monitor* mon;
1069 u4 thin = *(volatile u4 *)&obj->lock;
1070
1071 /* If the lock is still thin, we need to fatten it.
1072 */
1073 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1074 /* Make sure that 'self' holds the lock.
1075 */
1076 if (LW_LOCK_OWNER(thin) != self->threadId) {
1077 dvmThrowIllegalMonitorStateException(
1078 "object not locked by thread before wait()");
1079 return;
1080 }
1081
1082 /* This thread holds the lock. We need to fatten the lock
1083 * so 'self' can block on it. Don't update the object lock
1084 * field yet, because 'self' needs to acquire the lock before
1085 * any other thread gets a chance.
1086 */
1087 inflateMonitor(self, obj);
1088 ALOGV("(%d) lock %p fattened by wait()", self->threadId, &obj->lock);
1089 }
1090 mon = LW_MONITOR(obj->lock);
1091 waitMonitor(self, mon, msec, nsec, interruptShouldThrow);
1092 }
1093
1094 /*
1095 * Object.notify().
1096 */
dvmObjectNotify(Thread * self,Object * obj)1097 void dvmObjectNotify(Thread* self, Object *obj)
1098 {
1099 u4 thin = *(volatile u4 *)&obj->lock;
1100
1101 /* If the lock is still thin, there aren't any waiters;
1102 * waiting on an object forces lock fattening.
1103 */
1104 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1105 /* Make sure that 'self' holds the lock.
1106 */
1107 if (LW_LOCK_OWNER(thin) != self->threadId) {
1108 dvmThrowIllegalMonitorStateException(
1109 "object not locked by thread before notify()");
1110 return;
1111 }
1112
1113 /* no-op; there are no waiters to notify.
1114 */
1115 } else {
1116 /* It's a fat lock.
1117 */
1118 notifyMonitor(self, LW_MONITOR(thin));
1119 }
1120 }
1121
1122 /*
1123 * Object.notifyAll().
1124 */
dvmObjectNotifyAll(Thread * self,Object * obj)1125 void dvmObjectNotifyAll(Thread* self, Object *obj)
1126 {
1127 u4 thin = *(volatile u4 *)&obj->lock;
1128
1129 /* If the lock is still thin, there aren't any waiters;
1130 * waiting on an object forces lock fattening.
1131 */
1132 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1133 /* Make sure that 'self' holds the lock.
1134 */
1135 if (LW_LOCK_OWNER(thin) != self->threadId) {
1136 dvmThrowIllegalMonitorStateException(
1137 "object not locked by thread before notifyAll()");
1138 return;
1139 }
1140
1141 /* no-op; there are no waiters to notify.
1142 */
1143 } else {
1144 /* It's a fat lock.
1145 */
1146 notifyAllMonitor(self, LW_MONITOR(thin));
1147 }
1148 }
1149
1150 /*
1151 * This implements java.lang.Thread.sleep(long msec, int nsec).
1152 *
1153 * The sleep is interruptible by other threads, which means we can't just
1154 * plop into an OS sleep call. (We probably could if we wanted to send
1155 * signals around and rely on EINTR, but that's inefficient and relies
1156 * on native code respecting our signal mask.)
1157 *
1158 * We have to do all of this stuff for Object.wait() as well, so it's
1159 * easiest to just sleep on a private Monitor.
1160 *
1161 * It appears that we want sleep(0,0) to go through the motions of sleeping
1162 * for a very short duration, rather than just returning.
1163 */
dvmThreadSleep(u8 msec,u4 nsec)1164 void dvmThreadSleep(u8 msec, u4 nsec)
1165 {
1166 Thread* self = dvmThreadSelf();
1167 Monitor* mon = gDvm.threadSleepMon;
1168
1169 /* sleep(0,0) wakes up immediately, wait(0,0) means wait forever; adjust */
1170 if (msec == 0 && nsec == 0)
1171 nsec++;
1172
1173 lockMonitor(self, mon);
1174 waitMonitor(self, mon, msec, nsec, true);
1175 unlockMonitor(self, mon);
1176 }
1177
1178 /*
1179 * Implement java.lang.Thread.interrupt().
1180 */
dvmThreadInterrupt(Thread * thread)1181 void dvmThreadInterrupt(Thread* thread)
1182 {
1183 assert(thread != NULL);
1184
1185 dvmLockMutex(&thread->waitMutex);
1186
1187 /*
1188 * If the interrupted flag is already set no additional action is
1189 * required.
1190 */
1191 if (thread->interrupted == true) {
1192 dvmUnlockMutex(&thread->waitMutex);
1193 return;
1194 }
1195
1196 /*
1197 * Raise the "interrupted" flag. This will cause it to bail early out
1198 * of the next wait() attempt, if it's not currently waiting on
1199 * something.
1200 */
1201 thread->interrupted = true;
1202
1203 /*
1204 * Is the thread waiting?
1205 *
1206 * Note that fat vs. thin doesn't matter here; waitMonitor
1207 * is only set when a thread actually waits on a monitor,
1208 * which implies that the monitor has already been fattened.
1209 */
1210 if (thread->waitMonitor != NULL) {
1211 pthread_cond_signal(&thread->waitCond);
1212 }
1213
1214 dvmUnlockMutex(&thread->waitMutex);
1215 }
1216
1217 #ifndef WITH_COPYING_GC
dvmIdentityHashCode(Object * obj)1218 u4 dvmIdentityHashCode(Object *obj)
1219 {
1220 return (u4)obj;
1221 }
1222 #else
1223 /*
1224 * Returns the identity hash code of the given object.
1225 */
dvmIdentityHashCode(Object * obj)1226 u4 dvmIdentityHashCode(Object *obj)
1227 {
1228 Thread *self, *thread;
1229 volatile u4 *lw;
1230 size_t size;
1231 u4 lock, owner, hashState;
1232
1233 if (obj == NULL) {
1234 /*
1235 * Null is defined to have an identity hash code of 0.
1236 */
1237 return 0;
1238 }
1239 lw = &obj->lock;
1240 retry:
1241 hashState = LW_HASH_STATE(*lw);
1242 if (hashState == LW_HASH_STATE_HASHED) {
1243 /*
1244 * The object has been hashed but has not had its hash code
1245 * relocated by the garbage collector. Use the raw object
1246 * address.
1247 */
1248 return (u4)obj >> 3;
1249 } else if (hashState == LW_HASH_STATE_HASHED_AND_MOVED) {
1250 /*
1251 * The object has been hashed and its hash code has been
1252 * relocated by the collector. Use the value of the naturally
1253 * aligned word following the instance data.
1254 */
1255 assert(!dvmIsClassObject(obj));
1256 if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
1257 size = dvmArrayObjectSize((ArrayObject *)obj);
1258 size = (size + 2) & ~2;
1259 } else {
1260 size = obj->clazz->objectSize;
1261 }
1262 return *(u4 *)(((char *)obj) + size);
1263 } else if (hashState == LW_HASH_STATE_UNHASHED) {
1264 /*
1265 * The object has never been hashed. Change the hash state to
1266 * hashed and use the raw object address.
1267 */
1268 self = dvmThreadSelf();
1269 if (self->threadId == lockOwner(obj)) {
1270 /*
1271 * We already own the lock so we can update the hash state
1272 * directly.
1273 */
1274 *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1275 return (u4)obj >> 3;
1276 }
1277 /*
1278 * We do not own the lock. Try acquiring the lock. Should
1279 * this fail, we must suspend the owning thread.
1280 */
1281 if (LW_SHAPE(*lw) == LW_SHAPE_THIN) {
1282 /*
1283 * If the lock is thin assume it is unowned. We simulate
1284 * an acquire, update, and release with a single CAS.
1285 */
1286 lock = (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1287 if (android_atomic_acquire_cas(
1288 0,
1289 (int32_t)lock,
1290 (int32_t *)lw) == 0) {
1291 /*
1292 * A new lockword has been installed with a hash state
1293 * of hashed. Use the raw object address.
1294 */
1295 return (u4)obj >> 3;
1296 }
1297 } else {
1298 if (tryLockMonitor(self, LW_MONITOR(*lw))) {
1299 /*
1300 * The monitor lock has been acquired. Change the
1301 * hash state to hashed and use the raw object
1302 * address.
1303 */
1304 *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1305 unlockMonitor(self, LW_MONITOR(*lw));
1306 return (u4)obj >> 3;
1307 }
1308 }
1309 /*
1310 * At this point we have failed to acquire the lock. We must
1311 * identify the owning thread and suspend it.
1312 */
1313 dvmLockThreadList(self);
1314 /*
1315 * Cache the lock word as its value can change between
1316 * determining its shape and retrieving its owner.
1317 */
1318 lock = *lw;
1319 if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
1320 /*
1321 * Find the thread with the corresponding thread id.
1322 */
1323 owner = LW_LOCK_OWNER(lock);
1324 assert(owner != self->threadId);
1325 /*
1326 * If the lock has no owner do not bother scanning the
1327 * thread list and fall through to the failure handler.
1328 */
1329 thread = owner ? gDvm.threadList : NULL;
1330 while (thread != NULL) {
1331 if (thread->threadId == owner) {
1332 break;
1333 }
1334 thread = thread->next;
1335 }
1336 } else {
1337 thread = LW_MONITOR(lock)->owner;
1338 }
1339 /*
1340 * If thread is NULL the object has been released since the
1341 * thread list lock was acquired. Try again.
1342 */
1343 if (thread == NULL) {
1344 dvmUnlockThreadList();
1345 goto retry;
1346 }
1347 /*
1348 * Wait for the owning thread to suspend.
1349 */
1350 dvmSuspendThread(thread);
1351 if (dvmHoldsLock(thread, obj)) {
1352 /*
1353 * The owning thread has been suspended. We can safely
1354 * change the hash state to hashed.
1355 */
1356 *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1357 dvmResumeThread(thread);
1358 dvmUnlockThreadList();
1359 return (u4)obj >> 3;
1360 }
1361 /*
1362 * The wrong thread has been suspended. Try again.
1363 */
1364 dvmResumeThread(thread);
1365 dvmUnlockThreadList();
1366 goto retry;
1367 }
1368 ALOGE("object %p has an unknown hash state %#x", obj, hashState);
1369 dvmDumpThread(dvmThreadSelf(), false);
1370 dvmAbort();
1371 return 0; /* Quiet the compiler. */
1372 }
1373 #endif /* WITH_COPYING_GC */
1374