• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 /*
17  * Garbage-collecting memory allocator.
18  */
19 #include "Dalvik.h"
20 #include "alloc/HeapBitmap.h"
21 #include "alloc/Verify.h"
22 #include "alloc/Heap.h"
23 #include "alloc/HeapInternal.h"
24 #include "alloc/DdmHeap.h"
25 #include "alloc/HeapSource.h"
26 #include "alloc/MarkSweep.h"
27 #include "os/os.h"
28 
29 #include <sys/time.h>
30 #include <sys/resource.h>
31 #include <limits.h>
32 #include <errno.h>
33 
34 static const GcSpec kGcForMallocSpec = {
35     true,  /* isPartial */
36     false,  /* isConcurrent */
37     true,  /* doPreserve */
38     "GC_FOR_ALLOC"
39 };
40 
41 const GcSpec *GC_FOR_MALLOC = &kGcForMallocSpec;
42 
43 static const GcSpec kGcConcurrentSpec  = {
44     true,  /* isPartial */
45     true,  /* isConcurrent */
46     true,  /* doPreserve */
47     "GC_CONCURRENT"
48 };
49 
50 const GcSpec *GC_CONCURRENT = &kGcConcurrentSpec;
51 
52 static const GcSpec kGcExplicitSpec = {
53     false,  /* isPartial */
54     true,  /* isConcurrent */
55     true,  /* doPreserve */
56     "GC_EXPLICIT"
57 };
58 
59 const GcSpec *GC_EXPLICIT = &kGcExplicitSpec;
60 
61 static const GcSpec kGcBeforeOomSpec = {
62     false,  /* isPartial */
63     false,  /* isConcurrent */
64     false,  /* doPreserve */
65     "GC_BEFORE_OOM"
66 };
67 
68 const GcSpec *GC_BEFORE_OOM = &kGcBeforeOomSpec;
69 
70 /*
71  * Initialize the GC heap.
72  *
73  * Returns true if successful, false otherwise.
74  */
dvmHeapStartup()75 bool dvmHeapStartup()
76 {
77     GcHeap *gcHeap;
78 
79     if (gDvm.heapGrowthLimit == 0) {
80         gDvm.heapGrowthLimit = gDvm.heapMaximumSize;
81     }
82 
83     gcHeap = dvmHeapSourceStartup(gDvm.heapStartingSize,
84                                   gDvm.heapMaximumSize,
85                                   gDvm.heapGrowthLimit);
86     if (gcHeap == NULL) {
87         return false;
88     }
89     gcHeap->ddmHpifWhen = 0;
90     gcHeap->ddmHpsgWhen = 0;
91     gcHeap->ddmHpsgWhat = 0;
92     gcHeap->ddmNhsgWhen = 0;
93     gcHeap->ddmNhsgWhat = 0;
94     gDvm.gcHeap = gcHeap;
95 
96     /* Set up the lists we'll use for cleared reference objects.
97      */
98     gcHeap->clearedReferences = NULL;
99 
100     if (!dvmCardTableStartup(gDvm.heapMaximumSize, gDvm.heapGrowthLimit)) {
101         LOGE_HEAP("card table startup failed.");
102         return false;
103     }
104 
105     return true;
106 }
107 
dvmHeapStartupAfterZygote()108 bool dvmHeapStartupAfterZygote()
109 {
110     return dvmHeapSourceStartupAfterZygote();
111 }
112 
dvmHeapShutdown()113 void dvmHeapShutdown()
114 {
115 //TODO: make sure we're locked
116     if (gDvm.gcHeap != NULL) {
117         dvmCardTableShutdown();
118         /* Destroy the heap.  Any outstanding pointers will point to
119          * unmapped memory (unless/until someone else maps it).  This
120          * frees gDvm.gcHeap as a side-effect.
121          */
122         dvmHeapSourceShutdown(&gDvm.gcHeap);
123     }
124 }
125 
126 /*
127  * Shutdown any threads internal to the heap.
128  */
dvmHeapThreadShutdown()129 void dvmHeapThreadShutdown()
130 {
131     dvmHeapSourceThreadShutdown();
132 }
133 
134 /*
135  * Grab the lock, but put ourselves into THREAD_VMWAIT if it looks like
136  * we're going to have to wait on the mutex.
137  */
dvmLockHeap()138 bool dvmLockHeap()
139 {
140     if (dvmTryLockMutex(&gDvm.gcHeapLock) != 0) {
141         Thread *self;
142         ThreadStatus oldStatus;
143 
144         self = dvmThreadSelf();
145         oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
146         dvmLockMutex(&gDvm.gcHeapLock);
147         dvmChangeStatus(self, oldStatus);
148     }
149 
150     return true;
151 }
152 
dvmUnlockHeap()153 void dvmUnlockHeap()
154 {
155     dvmUnlockMutex(&gDvm.gcHeapLock);
156 }
157 
158 /* Do a full garbage collection, which may grow the
159  * heap as a side-effect if the live set is large.
160  */
gcForMalloc(bool clearSoftReferences)161 static void gcForMalloc(bool clearSoftReferences)
162 {
163     if (gDvm.allocProf.enabled) {
164         Thread* self = dvmThreadSelf();
165         gDvm.allocProf.gcCount++;
166         if (self != NULL) {
167             self->allocProf.gcCount++;
168         }
169     }
170     /* This may adjust the soft limit as a side-effect.
171      */
172     const GcSpec *spec = clearSoftReferences ? GC_BEFORE_OOM : GC_FOR_MALLOC;
173     dvmCollectGarbageInternal(spec);
174 }
175 
176 /* Try as hard as possible to allocate some memory.
177  */
tryMalloc(size_t size)178 static void *tryMalloc(size_t size)
179 {
180     void *ptr;
181 
182     /* Don't try too hard if there's no way the allocation is
183      * going to succeed.  We have to collect SoftReferences before
184      * throwing an OOME, though.
185      */
186     if (size >= gDvm.heapGrowthLimit) {
187         ALOGW("%zd byte allocation exceeds the %zd byte maximum heap size",
188              size, gDvm.heapGrowthLimit);
189         ptr = NULL;
190         goto collect_soft_refs;
191     }
192 
193 //TODO: figure out better heuristics
194 //    There will be a lot of churn if someone allocates a bunch of
195 //    big objects in a row, and we hit the frag case each time.
196 //    A full GC for each.
197 //    Maybe we grow the heap in bigger leaps
198 //    Maybe we skip the GC if the size is large and we did one recently
199 //      (number of allocations ago) (watch for thread effects)
200 //    DeflateTest allocs a bunch of ~128k buffers w/in 0-5 allocs of each other
201 //      (or, at least, there are only 0-5 objects swept each time)
202 
203     ptr = dvmHeapSourceAlloc(size);
204     if (ptr != NULL) {
205         return ptr;
206     }
207 
208     /*
209      * The allocation failed.  If the GC is running, block until it
210      * completes and retry.
211      */
212     if (gDvm.gcHeap->gcRunning) {
213         /*
214          * The GC is concurrently tracing the heap.  Release the heap
215          * lock, wait for the GC to complete, and retrying allocating.
216          */
217         dvmWaitForConcurrentGcToComplete();
218         ptr = dvmHeapSourceAlloc(size);
219         if (ptr != NULL) {
220             return ptr;
221         }
222     }
223     /*
224      * Another failure.  Our thread was starved or there may be too
225      * many live objects.  Try a foreground GC.  This will have no
226      * effect if the concurrent GC is already running.
227      */
228     gcForMalloc(false);
229     ptr = dvmHeapSourceAlloc(size);
230     if (ptr != NULL) {
231         return ptr;
232     }
233 
234     /* Even that didn't work;  this is an exceptional state.
235      * Try harder, growing the heap if necessary.
236      */
237     ptr = dvmHeapSourceAllocAndGrow(size);
238     if (ptr != NULL) {
239         size_t newHeapSize;
240 
241         newHeapSize = dvmHeapSourceGetIdealFootprint();
242 //TODO: may want to grow a little bit more so that the amount of free
243 //      space is equal to the old free space + the utilization slop for
244 //      the new allocation.
245         LOGI_HEAP("Grow heap (frag case) to "
246                 "%zu.%03zuMB for %zu-byte allocation",
247                 FRACTIONAL_MB(newHeapSize), size);
248         return ptr;
249     }
250 
251     /* Most allocations should have succeeded by now, so the heap
252      * is really full, really fragmented, or the requested size is
253      * really big.  Do another GC, collecting SoftReferences this
254      * time.  The VM spec requires that all SoftReferences have
255      * been collected and cleared before throwing an OOME.
256      */
257 //TODO: wait for the finalizers from the previous GC to finish
258 collect_soft_refs:
259     LOGI_HEAP("Forcing collection of SoftReferences for %zu-byte allocation",
260             size);
261     gcForMalloc(true);
262     ptr = dvmHeapSourceAllocAndGrow(size);
263     if (ptr != NULL) {
264         return ptr;
265     }
266 //TODO: maybe wait for finalizers and try one last time
267 
268     LOGE_HEAP("Out of memory on a %zd-byte allocation.", size);
269 //TODO: tell the HeapSource to dump its state
270     dvmDumpThread(dvmThreadSelf(), false);
271 
272     return NULL;
273 }
274 
275 /* Throw an OutOfMemoryError if there's a thread to attach it to.
276  * Avoid recursing.
277  *
278  * The caller must not be holding the heap lock, or else the allocations
279  * in dvmThrowException() will deadlock.
280  */
throwOOME()281 static void throwOOME()
282 {
283     Thread *self;
284 
285     if ((self = dvmThreadSelf()) != NULL) {
286         /* If the current (failing) dvmMalloc() happened as part of thread
287          * creation/attachment before the thread became part of the root set,
288          * we can't rely on the thread-local trackedAlloc table, so
289          * we can't keep track of a real allocated OOME object.  But, since
290          * the thread is in the process of being created, it won't have
291          * a useful stack anyway, so we may as well make things easier
292          * by throwing the (stackless) pre-built OOME.
293          */
294         if (dvmIsOnThreadList(self) && !self->throwingOOME) {
295             /* Let ourselves know that we tried to throw an OOM
296              * error in the normal way in case we run out of
297              * memory trying to allocate it inside dvmThrowException().
298              */
299             self->throwingOOME = true;
300 
301             /* Don't include a description string;
302              * one fewer allocation.
303              */
304             dvmThrowOutOfMemoryError(NULL);
305         } else {
306             /*
307              * This thread has already tried to throw an OutOfMemoryError,
308              * which probably means that we're running out of memory
309              * while recursively trying to throw.
310              *
311              * To avoid any more allocation attempts, "throw" a pre-built
312              * OutOfMemoryError object (which won't have a useful stack trace).
313              *
314              * Note that since this call can't possibly allocate anything,
315              * we don't care about the state of self->throwingOOME
316              * (which will usually already be set).
317              */
318             dvmSetException(self, gDvm.outOfMemoryObj);
319         }
320         /* We're done with the possible recursion.
321          */
322         self->throwingOOME = false;
323     }
324 }
325 
326 /*
327  * Allocate storage on the GC heap.  We guarantee 8-byte alignment.
328  *
329  * The new storage is zeroed out.
330  *
331  * Note that, in rare cases, this could get called while a GC is in
332  * progress.  If a non-VM thread tries to attach itself through JNI,
333  * it will need to allocate some objects.  If this becomes annoying to
334  * deal with, we can block it at the source, but holding the allocation
335  * mutex should be enough.
336  *
337  * In rare circumstances (JNI AttachCurrentThread) we can be called
338  * from a non-VM thread.
339  *
340  * Use ALLOC_DONT_TRACK when we either don't want to track an allocation
341  * (because it's being done for the interpreter "new" operation and will
342  * be part of the root set immediately) or we can't (because this allocation
343  * is for a brand new thread).
344  *
345  * Returns NULL and throws an exception on failure.
346  *
347  * TODO: don't do a GC if the debugger thinks all threads are suspended
348  */
dvmMalloc(size_t size,int flags)349 void* dvmMalloc(size_t size, int flags)
350 {
351     void *ptr;
352 
353     dvmLockHeap();
354 
355     /* Try as hard as possible to allocate some memory.
356      */
357     ptr = tryMalloc(size);
358     if (ptr != NULL) {
359         /* We've got the memory.
360          */
361         if (gDvm.allocProf.enabled) {
362             Thread* self = dvmThreadSelf();
363             gDvm.allocProf.allocCount++;
364             gDvm.allocProf.allocSize += size;
365             if (self != NULL) {
366                 self->allocProf.allocCount++;
367                 self->allocProf.allocSize += size;
368             }
369         }
370     } else {
371         /* The allocation failed.
372          */
373 
374         if (gDvm.allocProf.enabled) {
375             Thread* self = dvmThreadSelf();
376             gDvm.allocProf.failedAllocCount++;
377             gDvm.allocProf.failedAllocSize += size;
378             if (self != NULL) {
379                 self->allocProf.failedAllocCount++;
380                 self->allocProf.failedAllocSize += size;
381             }
382         }
383     }
384 
385     dvmUnlockHeap();
386 
387     if (ptr != NULL) {
388         /*
389          * If caller hasn't asked us not to track it, add it to the
390          * internal tracking list.
391          */
392         if ((flags & ALLOC_DONT_TRACK) == 0) {
393             dvmAddTrackedAlloc((Object*)ptr, NULL);
394         }
395     } else {
396         /*
397          * The allocation failed; throw an OutOfMemoryError.
398          */
399         throwOOME();
400     }
401 
402     return ptr;
403 }
404 
405 /*
406  * Returns true iff <obj> points to a valid allocated object.
407  */
dvmIsValidObject(const Object * obj)408 bool dvmIsValidObject(const Object* obj)
409 {
410     /* Don't bother if it's NULL or not 8-byte aligned.
411      */
412     if (obj != NULL && ((uintptr_t)obj & (8-1)) == 0) {
413         /* Even if the heap isn't locked, this shouldn't return
414          * any false negatives.  The only mutation that could
415          * be happening is allocation, which means that another
416          * thread could be in the middle of a read-modify-write
417          * to add a new bit for a new object.  However, that
418          * RMW will have completed by the time any other thread
419          * could possibly see the new pointer, so there is no
420          * danger of dvmIsValidObject() being called on a valid
421          * pointer whose bit isn't set.
422          *
423          * Freeing will only happen during the sweep phase, which
424          * only happens while the heap is locked.
425          */
426         return dvmHeapSourceContains(obj);
427     }
428     return false;
429 }
430 
dvmObjectSizeInHeap(const Object * obj)431 size_t dvmObjectSizeInHeap(const Object *obj)
432 {
433     return dvmHeapSourceChunkSize(obj);
434 }
435 
verifyRootsAndHeap()436 static void verifyRootsAndHeap()
437 {
438     dvmVerifyRoots();
439     dvmVerifyBitmap(dvmHeapSourceGetLiveBits());
440 }
441 
442 /*
443  * Initiate garbage collection.
444  *
445  * NOTES:
446  * - If we don't hold gDvm.threadListLock, it's possible for a thread to
447  *   be added to the thread list while we work.  The thread should NOT
448  *   start executing, so this is only interesting when we start chasing
449  *   thread stacks.  (Before we do so, grab the lock.)
450  *
451  * We are not allowed to GC when the debugger has suspended the VM, which
452  * is awkward because debugger requests can cause allocations.  The easiest
453  * way to enforce this is to refuse to GC on an allocation made by the
454  * JDWP thread -- we have to expand the heap or fail.
455  */
dvmCollectGarbageInternal(const GcSpec * spec)456 void dvmCollectGarbageInternal(const GcSpec* spec)
457 {
458     GcHeap *gcHeap = gDvm.gcHeap;
459     u4 gcEnd = 0;
460     u4 rootStart = 0 , rootEnd = 0;
461     u4 dirtyStart = 0, dirtyEnd = 0;
462     size_t numObjectsFreed, numBytesFreed;
463     size_t currAllocated, currFootprint;
464     size_t percentFree;
465     int oldThreadPriority = INT_MAX;
466 
467     /* The heap lock must be held.
468      */
469 
470     if (gcHeap->gcRunning) {
471         LOGW_HEAP("Attempted recursive GC");
472         return;
473     }
474 
475     gcHeap->gcRunning = true;
476 
477     rootStart = dvmGetRelativeTimeMsec();
478     dvmSuspendAllThreads(SUSPEND_FOR_GC);
479 
480     /*
481      * If we are not marking concurrently raise the priority of the
482      * thread performing the garbage collection.
483      */
484     if (!spec->isConcurrent) {
485         oldThreadPriority = os_raiseThreadPriority();
486     }
487     if (gDvm.preVerify) {
488         LOGV_HEAP("Verifying roots and heap before GC");
489         verifyRootsAndHeap();
490     }
491 
492     dvmMethodTraceGCBegin();
493 
494     /* Set up the marking context.
495      */
496     if (!dvmHeapBeginMarkStep(spec->isPartial)) {
497         LOGE_HEAP("dvmHeapBeginMarkStep failed; aborting");
498         dvmAbort();
499     }
500 
501     /* Mark the set of objects that are strongly reachable from the roots.
502      */
503     LOGD_HEAP("Marking...");
504     dvmHeapMarkRootSet();
505 
506     /* dvmHeapScanMarkedObjects() will build the lists of known
507      * instances of the Reference classes.
508      */
509     assert(gcHeap->softReferences == NULL);
510     assert(gcHeap->weakReferences == NULL);
511     assert(gcHeap->finalizerReferences == NULL);
512     assert(gcHeap->phantomReferences == NULL);
513     assert(gcHeap->clearedReferences == NULL);
514 
515     if (spec->isConcurrent) {
516         /*
517          * Resume threads while tracing from the roots.  We unlock the
518          * heap to allow mutator threads to allocate from free space.
519          */
520         dvmClearCardTable();
521         dvmUnlockHeap();
522         dvmResumeAllThreads(SUSPEND_FOR_GC);
523         rootEnd = dvmGetRelativeTimeMsec();
524     }
525 
526     /* Recursively mark any objects that marked objects point to strongly.
527      * If we're not collecting soft references, soft-reachable
528      * objects will also be marked.
529      */
530     LOGD_HEAP("Recursing...");
531     dvmHeapScanMarkedObjects();
532 
533     if (spec->isConcurrent) {
534         /*
535          * Re-acquire the heap lock and perform the final thread
536          * suspension.
537          */
538         dirtyStart = dvmGetRelativeTimeMsec();
539         dvmLockHeap();
540         dvmSuspendAllThreads(SUSPEND_FOR_GC);
541         /*
542          * As no barrier intercepts root updates, we conservatively
543          * assume all roots may be gray and re-mark them.
544          */
545         dvmHeapReMarkRootSet();
546         /*
547          * With the exception of reference objects and weak interned
548          * strings, all gray objects should now be on dirty cards.
549          */
550         if (gDvm.verifyCardTable) {
551             dvmVerifyCardTable();
552         }
553         /*
554          * Recursively mark gray objects pointed to by the roots or by
555          * heap objects dirtied during the concurrent mark.
556          */
557         dvmHeapReScanMarkedObjects();
558     }
559 
560     /*
561      * All strongly-reachable objects have now been marked.  Process
562      * weakly-reachable objects discovered while tracing.
563      */
564     dvmHeapProcessReferences(&gcHeap->softReferences,
565                              spec->doPreserve == false,
566                              &gcHeap->weakReferences,
567                              &gcHeap->finalizerReferences,
568                              &gcHeap->phantomReferences);
569 
570 #if defined(WITH_JIT)
571     /*
572      * Patching a chaining cell is very cheap as it only updates 4 words. It's
573      * the overhead of stopping all threads and synchronizing the I/D cache
574      * that makes it expensive.
575      *
576      * Therefore we batch those work orders in a queue and go through them
577      * when threads are suspended for GC.
578      */
579     dvmCompilerPerformSafePointChecks();
580 #endif
581 
582     LOGD_HEAP("Sweeping...");
583 
584     dvmHeapSweepSystemWeaks();
585 
586     /*
587      * Live objects have a bit set in the mark bitmap, swap the mark
588      * and live bitmaps.  The sweep can proceed concurrently viewing
589      * the new live bitmap as the old mark bitmap, and vice versa.
590      */
591     dvmHeapSourceSwapBitmaps();
592 
593     if (gDvm.postVerify) {
594         LOGV_HEAP("Verifying roots and heap after GC");
595         verifyRootsAndHeap();
596     }
597 
598     if (spec->isConcurrent) {
599         dvmUnlockHeap();
600         dvmResumeAllThreads(SUSPEND_FOR_GC);
601         dirtyEnd = dvmGetRelativeTimeMsec();
602     }
603     dvmHeapSweepUnmarkedObjects(spec->isPartial, spec->isConcurrent,
604                                 &numObjectsFreed, &numBytesFreed);
605     LOGD_HEAP("Cleaning up...");
606     dvmHeapFinishMarkStep();
607     if (spec->isConcurrent) {
608         dvmLockHeap();
609     }
610 
611     LOGD_HEAP("Done.");
612 
613     /* Now's a good time to adjust the heap size, since
614      * we know what our utilization is.
615      *
616      * This doesn't actually resize any memory;
617      * it just lets the heap grow more when necessary.
618      */
619     dvmHeapSourceGrowForUtilization();
620 
621     currAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
622     currFootprint = dvmHeapSourceGetValue(HS_FOOTPRINT, NULL, 0);
623 
624     dvmMethodTraceGCEnd();
625     LOGV_HEAP("GC finished");
626 
627     gcHeap->gcRunning = false;
628 
629     LOGV_HEAP("Resuming threads");
630 
631     if (spec->isConcurrent) {
632         /*
633          * Wake-up any threads that blocked after a failed allocation
634          * request.
635          */
636         dvmBroadcastCond(&gDvm.gcHeapCond);
637     }
638 
639     if (!spec->isConcurrent) {
640         dvmResumeAllThreads(SUSPEND_FOR_GC);
641         dirtyEnd = dvmGetRelativeTimeMsec();
642         /*
643          * Restore the original thread scheduling priority if it was
644          * changed at the start of the current garbage collection.
645          */
646         if (oldThreadPriority != INT_MAX) {
647             os_lowerThreadPriority(oldThreadPriority);
648         }
649     }
650 
651     /*
652      * Move queue of pending references back into Java.
653      */
654     dvmEnqueueClearedReferences(&gDvm.gcHeap->clearedReferences);
655 
656     gcEnd = dvmGetRelativeTimeMsec();
657     percentFree = 100 - (size_t)(100.0f * (float)currAllocated / currFootprint);
658     if (!spec->isConcurrent) {
659         u4 markSweepTime = dirtyEnd - rootStart;
660         u4 gcTime = gcEnd - rootStart;
661         bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
662         ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums, total %ums",
663              spec->reason,
664              isSmall ? "<" : "",
665              numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
666              percentFree,
667              currAllocated / 1024, currFootprint / 1024,
668              markSweepTime, gcTime);
669     } else {
670         u4 rootTime = rootEnd - rootStart;
671         u4 dirtyTime = dirtyEnd - dirtyStart;
672         u4 gcTime = gcEnd - rootStart;
673         bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
674         ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums+%ums, total %ums",
675              spec->reason,
676              isSmall ? "<" : "",
677              numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
678              percentFree,
679              currAllocated / 1024, currFootprint / 1024,
680              rootTime, dirtyTime, gcTime);
681     }
682     if (gcHeap->ddmHpifWhen != 0) {
683         LOGD_HEAP("Sending VM heap info to DDM");
684         dvmDdmSendHeapInfo(gcHeap->ddmHpifWhen, false);
685     }
686     if (gcHeap->ddmHpsgWhen != 0) {
687         LOGD_HEAP("Dumping VM heap to DDM");
688         dvmDdmSendHeapSegments(false, false);
689     }
690     if (gcHeap->ddmNhsgWhen != 0) {
691         LOGD_HEAP("Dumping native heap to DDM");
692         dvmDdmSendHeapSegments(false, true);
693     }
694 }
695 
696 /*
697  * If the concurrent GC is running, wait for it to finish.  The caller
698  * must hold the heap lock.
699  *
700  * Note: the second dvmChangeStatus() could stall if we were in RUNNING
701  * on entry, and some other thread has asked us to suspend.  In that
702  * case we will be suspended with the heap lock held, which can lead to
703  * deadlock if the other thread tries to do something with the managed heap.
704  * For example, the debugger might suspend us and then execute a method that
705  * allocates memory.  We can avoid this situation by releasing the lock
706  * before self-suspending.  (The developer can work around this specific
707  * situation by single-stepping the VM.  Alternatively, we could disable
708  * concurrent GC when the debugger is attached, but that might change
709  * behavior more than is desirable.)
710  *
711  * This should not be a problem in production, because any GC-related
712  * activity will grab the lock before issuing a suspend-all.  (We may briefly
713  * suspend when the GC thread calls dvmUnlockHeap before dvmResumeAllThreads,
714  * but there's no risk of deadlock.)
715  */
dvmWaitForConcurrentGcToComplete()716 void dvmWaitForConcurrentGcToComplete()
717 {
718     Thread *self = dvmThreadSelf();
719     assert(self != NULL);
720     u4 start = dvmGetRelativeTimeMsec();
721     while (gDvm.gcHeap->gcRunning) {
722         ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
723         dvmWaitCond(&gDvm.gcHeapCond, &gDvm.gcHeapLock);
724         dvmChangeStatus(self, oldStatus);
725     }
726     u4 end = dvmGetRelativeTimeMsec();
727     ALOGD("WAIT_FOR_CONCURRENT_GC blocked %ums", end - start);
728 }
729