• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/ec/ecp_smpl.c */
2 /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3  * for the OpenSSL project.
4  * Includes code written by Bodo Moeller for the OpenSSL project.
5 */
6 /* ====================================================================
7  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  *
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  *
21  * 3. All advertising materials mentioning features or use of this
22  *    software must display the following acknowledgment:
23  *    "This product includes software developed by the OpenSSL Project
24  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25  *
26  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27  *    endorse or promote products derived from this software without
28  *    prior written permission. For written permission, please contact
29  *    openssl-core@openssl.org.
30  *
31  * 5. Products derived from this software may not be called "OpenSSL"
32  *    nor may "OpenSSL" appear in their names without prior written
33  *    permission of the OpenSSL Project.
34  *
35  * 6. Redistributions of any form whatsoever must retain the following
36  *    acknowledgment:
37  *    "This product includes software developed by the OpenSSL Project
38  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
44  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51  * OF THE POSSIBILITY OF SUCH DAMAGE.
52  * ====================================================================
53  *
54  * This product includes cryptographic software written by Eric Young
55  * (eay@cryptsoft.com).  This product includes software written by Tim
56  * Hudson (tjh@cryptsoft.com).
57  *
58  */
59 /* ====================================================================
60  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
61  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
62  * and contributed to the OpenSSL project.
63  */
64 
65 #include <openssl/err.h>
66 #include <openssl/symhacks.h>
67 
68 #ifdef OPENSSL_FIPS
69 #include <openssl/fips.h>
70 #endif
71 
72 #include "ec_lcl.h"
73 
EC_GFp_simple_method(void)74 const EC_METHOD *EC_GFp_simple_method(void)
75 	{
76 #ifdef OPENSSL_FIPS
77 	return fips_ec_gfp_simple_method();
78 #else
79 	static const EC_METHOD ret = {
80 		EC_FLAGS_DEFAULT_OCT,
81 		NID_X9_62_prime_field,
82 		ec_GFp_simple_group_init,
83 		ec_GFp_simple_group_finish,
84 		ec_GFp_simple_group_clear_finish,
85 		ec_GFp_simple_group_copy,
86 		ec_GFp_simple_group_set_curve,
87 		ec_GFp_simple_group_get_curve,
88 		ec_GFp_simple_group_get_degree,
89 		ec_GFp_simple_group_check_discriminant,
90 		ec_GFp_simple_point_init,
91 		ec_GFp_simple_point_finish,
92 		ec_GFp_simple_point_clear_finish,
93 		ec_GFp_simple_point_copy,
94 		ec_GFp_simple_point_set_to_infinity,
95 		ec_GFp_simple_set_Jprojective_coordinates_GFp,
96 		ec_GFp_simple_get_Jprojective_coordinates_GFp,
97 		ec_GFp_simple_point_set_affine_coordinates,
98 		ec_GFp_simple_point_get_affine_coordinates,
99 		0,0,0,
100 		ec_GFp_simple_add,
101 		ec_GFp_simple_dbl,
102 		ec_GFp_simple_invert,
103 		ec_GFp_simple_is_at_infinity,
104 		ec_GFp_simple_is_on_curve,
105 		ec_GFp_simple_cmp,
106 		ec_GFp_simple_make_affine,
107 		ec_GFp_simple_points_make_affine,
108 		0 /* mul */,
109 		0 /* precompute_mult */,
110 		0 /* have_precompute_mult */,
111 		ec_GFp_simple_field_mul,
112 		ec_GFp_simple_field_sqr,
113 		0 /* field_div */,
114 		0 /* field_encode */,
115 		0 /* field_decode */,
116 		0 /* field_set_to_one */ };
117 
118 	return &ret;
119 #endif
120 	}
121 
122 
123 /* Most method functions in this file are designed to work with
124  * non-trivial representations of field elements if necessary
125  * (see ecp_mont.c): while standard modular addition and subtraction
126  * are used, the field_mul and field_sqr methods will be used for
127  * multiplication, and field_encode and field_decode (if defined)
128  * will be used for converting between representations.
129 
130  * Functions ec_GFp_simple_points_make_affine() and
131  * ec_GFp_simple_point_get_affine_coordinates() specifically assume
132  * that if a non-trivial representation is used, it is a Montgomery
133  * representation (i.e. 'encoding' means multiplying by some factor R).
134  */
135 
136 
ec_GFp_simple_group_init(EC_GROUP * group)137 int ec_GFp_simple_group_init(EC_GROUP *group)
138 	{
139 	BN_init(&group->field);
140 	BN_init(&group->a);
141 	BN_init(&group->b);
142 	group->a_is_minus3 = 0;
143 	return 1;
144 	}
145 
146 
ec_GFp_simple_group_finish(EC_GROUP * group)147 void ec_GFp_simple_group_finish(EC_GROUP *group)
148 	{
149 	BN_free(&group->field);
150 	BN_free(&group->a);
151 	BN_free(&group->b);
152 	}
153 
154 
ec_GFp_simple_group_clear_finish(EC_GROUP * group)155 void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
156 	{
157 	BN_clear_free(&group->field);
158 	BN_clear_free(&group->a);
159 	BN_clear_free(&group->b);
160 	}
161 
162 
ec_GFp_simple_group_copy(EC_GROUP * dest,const EC_GROUP * src)163 int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
164 	{
165 	if (!BN_copy(&dest->field, &src->field)) return 0;
166 	if (!BN_copy(&dest->a, &src->a)) return 0;
167 	if (!BN_copy(&dest->b, &src->b)) return 0;
168 
169 	dest->a_is_minus3 = src->a_is_minus3;
170 
171 	return 1;
172 	}
173 
174 
ec_GFp_simple_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)175 int ec_GFp_simple_group_set_curve(EC_GROUP *group,
176 	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
177 	{
178 	int ret = 0;
179 	BN_CTX *new_ctx = NULL;
180 	BIGNUM *tmp_a;
181 
182 	/* p must be a prime > 3 */
183 	if (BN_num_bits(p) <= 2 || !BN_is_odd(p))
184 		{
185 		ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
186 		return 0;
187 		}
188 
189 	if (ctx == NULL)
190 		{
191 		ctx = new_ctx = BN_CTX_new();
192 		if (ctx == NULL)
193 			return 0;
194 		}
195 
196 	BN_CTX_start(ctx);
197 	tmp_a = BN_CTX_get(ctx);
198 	if (tmp_a == NULL) goto err;
199 
200 	/* group->field */
201 	if (!BN_copy(&group->field, p)) goto err;
202 	BN_set_negative(&group->field, 0);
203 
204 	/* group->a */
205 	if (!BN_nnmod(tmp_a, a, p, ctx)) goto err;
206 	if (group->meth->field_encode)
207 		{ if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; }
208 	else
209 		if (!BN_copy(&group->a, tmp_a)) goto err;
210 
211 	/* group->b */
212 	if (!BN_nnmod(&group->b, b, p, ctx)) goto err;
213 	if (group->meth->field_encode)
214 		if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err;
215 
216 	/* group->a_is_minus3 */
217 	if (!BN_add_word(tmp_a, 3)) goto err;
218 	group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
219 
220 	ret = 1;
221 
222  err:
223 	BN_CTX_end(ctx);
224 	if (new_ctx != NULL)
225 		BN_CTX_free(new_ctx);
226 	return ret;
227 	}
228 
229 
ec_GFp_simple_group_get_curve(const EC_GROUP * group,BIGNUM * p,BIGNUM * a,BIGNUM * b,BN_CTX * ctx)230 int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
231 	{
232 	int ret = 0;
233 	BN_CTX *new_ctx = NULL;
234 
235 	if (p != NULL)
236 		{
237 		if (!BN_copy(p, &group->field)) return 0;
238 		}
239 
240 	if (a != NULL || b != NULL)
241 		{
242 		if (group->meth->field_decode)
243 			{
244 			if (ctx == NULL)
245 				{
246 				ctx = new_ctx = BN_CTX_new();
247 				if (ctx == NULL)
248 					return 0;
249 				}
250 			if (a != NULL)
251 				{
252 				if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
253 				}
254 			if (b != NULL)
255 				{
256 				if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
257 				}
258 			}
259 		else
260 			{
261 			if (a != NULL)
262 				{
263 				if (!BN_copy(a, &group->a)) goto err;
264 				}
265 			if (b != NULL)
266 				{
267 				if (!BN_copy(b, &group->b)) goto err;
268 				}
269 			}
270 		}
271 
272 	ret = 1;
273 
274  err:
275 	if (new_ctx)
276 		BN_CTX_free(new_ctx);
277 	return ret;
278 	}
279 
280 
ec_GFp_simple_group_get_degree(const EC_GROUP * group)281 int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
282 	{
283 	return BN_num_bits(&group->field);
284 	}
285 
286 
ec_GFp_simple_group_check_discriminant(const EC_GROUP * group,BN_CTX * ctx)287 int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
288 	{
289 	int ret = 0;
290 	BIGNUM *a,*b,*order,*tmp_1,*tmp_2;
291 	const BIGNUM *p = &group->field;
292 	BN_CTX *new_ctx = NULL;
293 
294 	if (ctx == NULL)
295 		{
296 		ctx = new_ctx = BN_CTX_new();
297 		if (ctx == NULL)
298 			{
299 			ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
300 			goto err;
301 			}
302 		}
303 	BN_CTX_start(ctx);
304 	a = BN_CTX_get(ctx);
305 	b = BN_CTX_get(ctx);
306 	tmp_1 = BN_CTX_get(ctx);
307 	tmp_2 = BN_CTX_get(ctx);
308 	order = BN_CTX_get(ctx);
309 	if (order == NULL) goto err;
310 
311 	if (group->meth->field_decode)
312 		{
313 		if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
314 		if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
315 		}
316 	else
317 		{
318 		if (!BN_copy(a, &group->a)) goto err;
319 		if (!BN_copy(b, &group->b)) goto err;
320 		}
321 
322 	/* check the discriminant:
323 	 * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
324          * 0 =< a, b < p */
325 	if (BN_is_zero(a))
326 		{
327 		if (BN_is_zero(b)) goto err;
328 		}
329 	else if (!BN_is_zero(b))
330 		{
331 		if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err;
332 		if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err;
333 		if (!BN_lshift(tmp_1, tmp_2, 2)) goto err;
334 		/* tmp_1 = 4*a^3 */
335 
336 		if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err;
337 		if (!BN_mul_word(tmp_2, 27)) goto err;
338 		/* tmp_2 = 27*b^2 */
339 
340 		if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err;
341 		if (BN_is_zero(a)) goto err;
342 		}
343 	ret = 1;
344 
345 err:
346 	if (ctx != NULL)
347 		BN_CTX_end(ctx);
348 	if (new_ctx != NULL)
349 		BN_CTX_free(new_ctx);
350 	return ret;
351 	}
352 
353 
ec_GFp_simple_point_init(EC_POINT * point)354 int ec_GFp_simple_point_init(EC_POINT *point)
355 	{
356 	BN_init(&point->X);
357 	BN_init(&point->Y);
358 	BN_init(&point->Z);
359 	point->Z_is_one = 0;
360 
361 	return 1;
362 	}
363 
364 
ec_GFp_simple_point_finish(EC_POINT * point)365 void ec_GFp_simple_point_finish(EC_POINT *point)
366 	{
367 	BN_free(&point->X);
368 	BN_free(&point->Y);
369 	BN_free(&point->Z);
370 	}
371 
372 
ec_GFp_simple_point_clear_finish(EC_POINT * point)373 void ec_GFp_simple_point_clear_finish(EC_POINT *point)
374 	{
375 	BN_clear_free(&point->X);
376 	BN_clear_free(&point->Y);
377 	BN_clear_free(&point->Z);
378 	point->Z_is_one = 0;
379 	}
380 
381 
ec_GFp_simple_point_copy(EC_POINT * dest,const EC_POINT * src)382 int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
383 	{
384 	if (!BN_copy(&dest->X, &src->X)) return 0;
385 	if (!BN_copy(&dest->Y, &src->Y)) return 0;
386 	if (!BN_copy(&dest->Z, &src->Z)) return 0;
387 	dest->Z_is_one = src->Z_is_one;
388 
389 	return 1;
390 	}
391 
392 
ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group,EC_POINT * point)393 int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
394 	{
395 	point->Z_is_one = 0;
396 	BN_zero(&point->Z);
397 	return 1;
398 	}
399 
400 
ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group,EC_POINT * point,const BIGNUM * x,const BIGNUM * y,const BIGNUM * z,BN_CTX * ctx)401 int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
402 	const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx)
403 	{
404 	BN_CTX *new_ctx = NULL;
405 	int ret = 0;
406 
407 	if (ctx == NULL)
408 		{
409 		ctx = new_ctx = BN_CTX_new();
410 		if (ctx == NULL)
411 			return 0;
412 		}
413 
414 	if (x != NULL)
415 		{
416 		if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err;
417 		if (group->meth->field_encode)
418 			{
419 			if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err;
420 			}
421 		}
422 
423 	if (y != NULL)
424 		{
425 		if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err;
426 		if (group->meth->field_encode)
427 			{
428 			if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err;
429 			}
430 		}
431 
432 	if (z != NULL)
433 		{
434 		int Z_is_one;
435 
436 		if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err;
437 		Z_is_one = BN_is_one(&point->Z);
438 		if (group->meth->field_encode)
439 			{
440 			if (Z_is_one && (group->meth->field_set_to_one != 0))
441 				{
442 				if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err;
443 				}
444 			else
445 				{
446 				if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err;
447 				}
448 			}
449 		point->Z_is_one = Z_is_one;
450 		}
451 
452 	ret = 1;
453 
454  err:
455 	if (new_ctx != NULL)
456 		BN_CTX_free(new_ctx);
457 	return ret;
458 	}
459 
460 
ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BIGNUM * z,BN_CTX * ctx)461 int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point,
462 	BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx)
463 	{
464 	BN_CTX *new_ctx = NULL;
465 	int ret = 0;
466 
467 	if (group->meth->field_decode != 0)
468 		{
469 		if (ctx == NULL)
470 			{
471 			ctx = new_ctx = BN_CTX_new();
472 			if (ctx == NULL)
473 				return 0;
474 			}
475 
476 		if (x != NULL)
477 			{
478 			if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
479 			}
480 		if (y != NULL)
481 			{
482 			if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
483 			}
484 		if (z != NULL)
485 			{
486 			if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err;
487 			}
488 		}
489 	else
490 		{
491 		if (x != NULL)
492 			{
493 			if (!BN_copy(x, &point->X)) goto err;
494 			}
495 		if (y != NULL)
496 			{
497 			if (!BN_copy(y, &point->Y)) goto err;
498 			}
499 		if (z != NULL)
500 			{
501 			if (!BN_copy(z, &point->Z)) goto err;
502 			}
503 		}
504 
505 	ret = 1;
506 
507  err:
508 	if (new_ctx != NULL)
509 		BN_CTX_free(new_ctx);
510 	return ret;
511 	}
512 
513 
ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group,EC_POINT * point,const BIGNUM * x,const BIGNUM * y,BN_CTX * ctx)514 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
515 	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
516 	{
517 	if (x == NULL || y == NULL)
518 		{
519 		/* unlike for projective coordinates, we do not tolerate this */
520 		ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
521 		return 0;
522 		}
523 
524 	return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx);
525 	}
526 
527 
ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)528 int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
529 	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
530 	{
531 	BN_CTX *new_ctx = NULL;
532 	BIGNUM *Z, *Z_1, *Z_2, *Z_3;
533 	const BIGNUM *Z_;
534 	int ret = 0;
535 
536 	if (EC_POINT_is_at_infinity(group, point))
537 		{
538 		ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
539 		return 0;
540 		}
541 
542 	if (ctx == NULL)
543 		{
544 		ctx = new_ctx = BN_CTX_new();
545 		if (ctx == NULL)
546 			return 0;
547 		}
548 
549 	BN_CTX_start(ctx);
550 	Z = BN_CTX_get(ctx);
551 	Z_1 = BN_CTX_get(ctx);
552 	Z_2 = BN_CTX_get(ctx);
553 	Z_3 = BN_CTX_get(ctx);
554 	if (Z_3 == NULL) goto err;
555 
556 	/* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
557 
558 	if (group->meth->field_decode)
559 		{
560 		if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err;
561 		Z_ = Z;
562 		}
563 	else
564 		{
565 		Z_ = &point->Z;
566 		}
567 
568 	if (BN_is_one(Z_))
569 		{
570 		if (group->meth->field_decode)
571 			{
572 			if (x != NULL)
573 				{
574 				if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
575 				}
576 			if (y != NULL)
577 				{
578 				if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
579 				}
580 			}
581 		else
582 			{
583 			if (x != NULL)
584 				{
585 				if (!BN_copy(x, &point->X)) goto err;
586 				}
587 			if (y != NULL)
588 				{
589 				if (!BN_copy(y, &point->Y)) goto err;
590 				}
591 			}
592 		}
593 	else
594 		{
595 		if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx))
596 			{
597 			ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB);
598 			goto err;
599 			}
600 
601 		if (group->meth->field_encode == 0)
602 			{
603 			/* field_sqr works on standard representation */
604 			if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err;
605 			}
606 		else
607 			{
608 			if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err;
609 			}
610 
611 		if (x != NULL)
612 			{
613 			/* in the Montgomery case, field_mul will cancel out Montgomery factor in X: */
614 			if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err;
615 			}
616 
617 		if (y != NULL)
618 			{
619 			if (group->meth->field_encode == 0)
620 				{
621 				/* field_mul works on standard representation */
622 				if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err;
623 				}
624 			else
625 				{
626 				if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err;
627 				}
628 
629 			/* in the Montgomery case, field_mul will cancel out Montgomery factor in Y: */
630 			if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err;
631 			}
632 		}
633 
634 	ret = 1;
635 
636  err:
637 	BN_CTX_end(ctx);
638 	if (new_ctx != NULL)
639 		BN_CTX_free(new_ctx);
640 	return ret;
641 	}
642 
ec_GFp_simple_add(const EC_GROUP * group,EC_POINT * r,const EC_POINT * a,const EC_POINT * b,BN_CTX * ctx)643 int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
644 	{
645 	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
646 	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
647 	const BIGNUM *p;
648 	BN_CTX *new_ctx = NULL;
649 	BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
650 	int ret = 0;
651 
652 	if (a == b)
653 		return EC_POINT_dbl(group, r, a, ctx);
654 	if (EC_POINT_is_at_infinity(group, a))
655 		return EC_POINT_copy(r, b);
656 	if (EC_POINT_is_at_infinity(group, b))
657 		return EC_POINT_copy(r, a);
658 
659 	field_mul = group->meth->field_mul;
660 	field_sqr = group->meth->field_sqr;
661 	p = &group->field;
662 
663 	if (ctx == NULL)
664 		{
665 		ctx = new_ctx = BN_CTX_new();
666 		if (ctx == NULL)
667 			return 0;
668 		}
669 
670 	BN_CTX_start(ctx);
671 	n0 = BN_CTX_get(ctx);
672 	n1 = BN_CTX_get(ctx);
673 	n2 = BN_CTX_get(ctx);
674 	n3 = BN_CTX_get(ctx);
675 	n4 = BN_CTX_get(ctx);
676 	n5 = BN_CTX_get(ctx);
677 	n6 = BN_CTX_get(ctx);
678 	if (n6 == NULL) goto end;
679 
680 	/* Note that in this function we must not read components of 'a' or 'b'
681 	 * once we have written the corresponding components of 'r'.
682 	 * ('r' might be one of 'a' or 'b'.)
683 	 */
684 
685 	/* n1, n2 */
686 	if (b->Z_is_one)
687 		{
688 		if (!BN_copy(n1, &a->X)) goto end;
689 		if (!BN_copy(n2, &a->Y)) goto end;
690 		/* n1 = X_a */
691 		/* n2 = Y_a */
692 		}
693 	else
694 		{
695 		if (!field_sqr(group, n0, &b->Z, ctx)) goto end;
696 		if (!field_mul(group, n1, &a->X, n0, ctx)) goto end;
697 		/* n1 = X_a * Z_b^2 */
698 
699 		if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end;
700 		if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end;
701 		/* n2 = Y_a * Z_b^3 */
702 		}
703 
704 	/* n3, n4 */
705 	if (a->Z_is_one)
706 		{
707 		if (!BN_copy(n3, &b->X)) goto end;
708 		if (!BN_copy(n4, &b->Y)) goto end;
709 		/* n3 = X_b */
710 		/* n4 = Y_b */
711 		}
712 	else
713 		{
714 		if (!field_sqr(group, n0, &a->Z, ctx)) goto end;
715 		if (!field_mul(group, n3, &b->X, n0, ctx)) goto end;
716 		/* n3 = X_b * Z_a^2 */
717 
718 		if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end;
719 		if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end;
720 		/* n4 = Y_b * Z_a^3 */
721 		}
722 
723 	/* n5, n6 */
724 	if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end;
725 	if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end;
726 	/* n5 = n1 - n3 */
727 	/* n6 = n2 - n4 */
728 
729 	if (BN_is_zero(n5))
730 		{
731 		if (BN_is_zero(n6))
732 			{
733 			/* a is the same point as b */
734 			BN_CTX_end(ctx);
735 			ret = EC_POINT_dbl(group, r, a, ctx);
736 			ctx = NULL;
737 			goto end;
738 			}
739 		else
740 			{
741 			/* a is the inverse of b */
742 			BN_zero(&r->Z);
743 			r->Z_is_one = 0;
744 			ret = 1;
745 			goto end;
746 			}
747 		}
748 
749 	/* 'n7', 'n8' */
750 	if (!BN_mod_add_quick(n1, n1, n3, p)) goto end;
751 	if (!BN_mod_add_quick(n2, n2, n4, p)) goto end;
752 	/* 'n7' = n1 + n3 */
753 	/* 'n8' = n2 + n4 */
754 
755 	/* Z_r */
756 	if (a->Z_is_one && b->Z_is_one)
757 		{
758 		if (!BN_copy(&r->Z, n5)) goto end;
759 		}
760 	else
761 		{
762 		if (a->Z_is_one)
763 			{ if (!BN_copy(n0, &b->Z)) goto end; }
764 		else if (b->Z_is_one)
765 			{ if (!BN_copy(n0, &a->Z)) goto end; }
766 		else
767 			{ if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; }
768 		if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end;
769 		}
770 	r->Z_is_one = 0;
771 	/* Z_r = Z_a * Z_b * n5 */
772 
773 	/* X_r */
774 	if (!field_sqr(group, n0, n6, ctx)) goto end;
775 	if (!field_sqr(group, n4, n5, ctx)) goto end;
776 	if (!field_mul(group, n3, n1, n4, ctx)) goto end;
777 	if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end;
778 	/* X_r = n6^2 - n5^2 * 'n7' */
779 
780 	/* 'n9' */
781 	if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end;
782 	if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end;
783 	/* n9 = n5^2 * 'n7' - 2 * X_r */
784 
785 	/* Y_r */
786 	if (!field_mul(group, n0, n0, n6, ctx)) goto end;
787 	if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */
788 	if (!field_mul(group, n1, n2, n5, ctx)) goto end;
789 	if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end;
790 	if (BN_is_odd(n0))
791 		if (!BN_add(n0, n0, p)) goto end;
792 	/* now  0 <= n0 < 2*p,  and n0 is even */
793 	if (!BN_rshift1(&r->Y, n0)) goto end;
794 	/* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
795 
796 	ret = 1;
797 
798  end:
799 	if (ctx) /* otherwise we already called BN_CTX_end */
800 		BN_CTX_end(ctx);
801 	if (new_ctx != NULL)
802 		BN_CTX_free(new_ctx);
803 	return ret;
804 	}
805 
806 
ec_GFp_simple_dbl(const EC_GROUP * group,EC_POINT * r,const EC_POINT * a,BN_CTX * ctx)807 int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
808 	{
809 	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
810 	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
811 	const BIGNUM *p;
812 	BN_CTX *new_ctx = NULL;
813 	BIGNUM *n0, *n1, *n2, *n3;
814 	int ret = 0;
815 
816 	if (EC_POINT_is_at_infinity(group, a))
817 		{
818 		BN_zero(&r->Z);
819 		r->Z_is_one = 0;
820 		return 1;
821 		}
822 
823 	field_mul = group->meth->field_mul;
824 	field_sqr = group->meth->field_sqr;
825 	p = &group->field;
826 
827 	if (ctx == NULL)
828 		{
829 		ctx = new_ctx = BN_CTX_new();
830 		if (ctx == NULL)
831 			return 0;
832 		}
833 
834 	BN_CTX_start(ctx);
835 	n0 = BN_CTX_get(ctx);
836 	n1 = BN_CTX_get(ctx);
837 	n2 = BN_CTX_get(ctx);
838 	n3 = BN_CTX_get(ctx);
839 	if (n3 == NULL) goto err;
840 
841 	/* Note that in this function we must not read components of 'a'
842 	 * once we have written the corresponding components of 'r'.
843 	 * ('r' might the same as 'a'.)
844 	 */
845 
846 	/* n1 */
847 	if (a->Z_is_one)
848 		{
849 		if (!field_sqr(group, n0, &a->X, ctx)) goto err;
850 		if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
851 		if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
852 		if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err;
853 		/* n1 = 3 * X_a^2 + a_curve */
854 		}
855 	else if (group->a_is_minus3)
856 		{
857 		if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
858 		if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err;
859 		if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err;
860 		if (!field_mul(group, n1, n0, n2, ctx)) goto err;
861 		if (!BN_mod_lshift1_quick(n0, n1, p)) goto err;
862 		if (!BN_mod_add_quick(n1, n0, n1, p)) goto err;
863 		/* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
864 		 *    = 3 * X_a^2 - 3 * Z_a^4 */
865 		}
866 	else
867 		{
868 		if (!field_sqr(group, n0, &a->X, ctx)) goto err;
869 		if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
870 		if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
871 		if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
872 		if (!field_sqr(group, n1, n1, ctx)) goto err;
873 		if (!field_mul(group, n1, n1, &group->a, ctx)) goto err;
874 		if (!BN_mod_add_quick(n1, n1, n0, p)) goto err;
875 		/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
876 		}
877 
878 	/* Z_r */
879 	if (a->Z_is_one)
880 		{
881 		if (!BN_copy(n0, &a->Y)) goto err;
882 		}
883 	else
884 		{
885 		if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err;
886 		}
887 	if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err;
888 	r->Z_is_one = 0;
889 	/* Z_r = 2 * Y_a * Z_a */
890 
891 	/* n2 */
892 	if (!field_sqr(group, n3, &a->Y, ctx)) goto err;
893 	if (!field_mul(group, n2, &a->X, n3, ctx)) goto err;
894 	if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err;
895 	/* n2 = 4 * X_a * Y_a^2 */
896 
897 	/* X_r */
898 	if (!BN_mod_lshift1_quick(n0, n2, p)) goto err;
899 	if (!field_sqr(group, &r->X, n1, ctx)) goto err;
900 	if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err;
901 	/* X_r = n1^2 - 2 * n2 */
902 
903 	/* n3 */
904 	if (!field_sqr(group, n0, n3, ctx)) goto err;
905 	if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err;
906 	/* n3 = 8 * Y_a^4 */
907 
908 	/* Y_r */
909 	if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err;
910 	if (!field_mul(group, n0, n1, n0, ctx)) goto err;
911 	if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err;
912 	/* Y_r = n1 * (n2 - X_r) - n3 */
913 
914 	ret = 1;
915 
916  err:
917 	BN_CTX_end(ctx);
918 	if (new_ctx != NULL)
919 		BN_CTX_free(new_ctx);
920 	return ret;
921 	}
922 
923 
ec_GFp_simple_invert(const EC_GROUP * group,EC_POINT * point,BN_CTX * ctx)924 int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
925 	{
926 	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
927 		/* point is its own inverse */
928 		return 1;
929 
930 	return BN_usub(&point->Y, &group->field, &point->Y);
931 	}
932 
933 
ec_GFp_simple_is_at_infinity(const EC_GROUP * group,const EC_POINT * point)934 int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
935 	{
936 	return BN_is_zero(&point->Z);
937 	}
938 
939 
ec_GFp_simple_is_on_curve(const EC_GROUP * group,const EC_POINT * point,BN_CTX * ctx)940 int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
941 	{
942 	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
943 	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
944 	const BIGNUM *p;
945 	BN_CTX *new_ctx = NULL;
946 	BIGNUM *rh, *tmp, *Z4, *Z6;
947 	int ret = -1;
948 
949 	if (EC_POINT_is_at_infinity(group, point))
950 		return 1;
951 
952 	field_mul = group->meth->field_mul;
953 	field_sqr = group->meth->field_sqr;
954 	p = &group->field;
955 
956 	if (ctx == NULL)
957 		{
958 		ctx = new_ctx = BN_CTX_new();
959 		if (ctx == NULL)
960 			return -1;
961 		}
962 
963 	BN_CTX_start(ctx);
964 	rh = BN_CTX_get(ctx);
965 	tmp = BN_CTX_get(ctx);
966 	Z4 = BN_CTX_get(ctx);
967 	Z6 = BN_CTX_get(ctx);
968 	if (Z6 == NULL) goto err;
969 
970 	/* We have a curve defined by a Weierstrass equation
971 	 *      y^2 = x^3 + a*x + b.
972 	 * The point to consider is given in Jacobian projective coordinates
973 	 * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
974 	 * Substituting this and multiplying by  Z^6  transforms the above equation into
975 	 *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
976 	 * To test this, we add up the right-hand side in 'rh'.
977 	 */
978 
979 	/* rh := X^2 */
980 	if (!field_sqr(group, rh, &point->X, ctx)) goto err;
981 
982 	if (!point->Z_is_one)
983 		{
984 		if (!field_sqr(group, tmp, &point->Z, ctx)) goto err;
985 		if (!field_sqr(group, Z4, tmp, ctx)) goto err;
986 		if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err;
987 
988 		/* rh := (rh + a*Z^4)*X */
989 		if (group->a_is_minus3)
990 			{
991 			if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err;
992 			if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err;
993 			if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err;
994 			if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
995 			}
996 		else
997 			{
998 			if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err;
999 			if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
1000 			if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
1001 			}
1002 
1003 		/* rh := rh + b*Z^6 */
1004 		if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err;
1005 		if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
1006 		}
1007 	else
1008 		{
1009 		/* point->Z_is_one */
1010 
1011 		/* rh := (rh + a)*X */
1012 		if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err;
1013 		if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
1014 		/* rh := rh + b */
1015 		if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err;
1016 		}
1017 
1018 	/* 'lh' := Y^2 */
1019 	if (!field_sqr(group, tmp, &point->Y, ctx)) goto err;
1020 
1021 	ret = (0 == BN_ucmp(tmp, rh));
1022 
1023  err:
1024 	BN_CTX_end(ctx);
1025 	if (new_ctx != NULL)
1026 		BN_CTX_free(new_ctx);
1027 	return ret;
1028 	}
1029 
1030 
ec_GFp_simple_cmp(const EC_GROUP * group,const EC_POINT * a,const EC_POINT * b,BN_CTX * ctx)1031 int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
1032 	{
1033 	/* return values:
1034 	 *  -1   error
1035 	 *   0   equal (in affine coordinates)
1036 	 *   1   not equal
1037 	 */
1038 
1039 	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
1040 	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1041 	BN_CTX *new_ctx = NULL;
1042 	BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1043 	const BIGNUM *tmp1_, *tmp2_;
1044 	int ret = -1;
1045 
1046 	if (EC_POINT_is_at_infinity(group, a))
1047 		{
1048 		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1049 		}
1050 
1051 	if (EC_POINT_is_at_infinity(group, b))
1052 		return 1;
1053 
1054 	if (a->Z_is_one && b->Z_is_one)
1055 		{
1056 		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
1057 		}
1058 
1059 	field_mul = group->meth->field_mul;
1060 	field_sqr = group->meth->field_sqr;
1061 
1062 	if (ctx == NULL)
1063 		{
1064 		ctx = new_ctx = BN_CTX_new();
1065 		if (ctx == NULL)
1066 			return -1;
1067 		}
1068 
1069 	BN_CTX_start(ctx);
1070 	tmp1 = BN_CTX_get(ctx);
1071 	tmp2 = BN_CTX_get(ctx);
1072 	Za23 = BN_CTX_get(ctx);
1073 	Zb23 = BN_CTX_get(ctx);
1074 	if (Zb23 == NULL) goto end;
1075 
1076 	/* We have to decide whether
1077 	 *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1078 	 * or equivalently, whether
1079 	 *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1080 	 */
1081 
1082 	if (!b->Z_is_one)
1083 		{
1084 		if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end;
1085 		if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end;
1086 		tmp1_ = tmp1;
1087 		}
1088 	else
1089 		tmp1_ = &a->X;
1090 	if (!a->Z_is_one)
1091 		{
1092 		if (!field_sqr(group, Za23, &a->Z, ctx)) goto end;
1093 		if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end;
1094 		tmp2_ = tmp2;
1095 		}
1096 	else
1097 		tmp2_ = &b->X;
1098 
1099 	/* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1100 	if (BN_cmp(tmp1_, tmp2_) != 0)
1101 		{
1102 		ret = 1; /* points differ */
1103 		goto end;
1104 		}
1105 
1106 
1107 	if (!b->Z_is_one)
1108 		{
1109 		if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end;
1110 		if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end;
1111 		/* tmp1_ = tmp1 */
1112 		}
1113 	else
1114 		tmp1_ = &a->Y;
1115 	if (!a->Z_is_one)
1116 		{
1117 		if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end;
1118 		if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end;
1119 		/* tmp2_ = tmp2 */
1120 		}
1121 	else
1122 		tmp2_ = &b->Y;
1123 
1124 	/* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1125 	if (BN_cmp(tmp1_, tmp2_) != 0)
1126 		{
1127 		ret = 1; /* points differ */
1128 		goto end;
1129 		}
1130 
1131 	/* points are equal */
1132 	ret = 0;
1133 
1134  end:
1135 	BN_CTX_end(ctx);
1136 	if (new_ctx != NULL)
1137 		BN_CTX_free(new_ctx);
1138 	return ret;
1139 	}
1140 
1141 
ec_GFp_simple_make_affine(const EC_GROUP * group,EC_POINT * point,BN_CTX * ctx)1142 int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
1143 	{
1144 	BN_CTX *new_ctx = NULL;
1145 	BIGNUM *x, *y;
1146 	int ret = 0;
1147 
1148 	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1149 		return 1;
1150 
1151 	if (ctx == NULL)
1152 		{
1153 		ctx = new_ctx = BN_CTX_new();
1154 		if (ctx == NULL)
1155 			return 0;
1156 		}
1157 
1158 	BN_CTX_start(ctx);
1159 	x = BN_CTX_get(ctx);
1160 	y = BN_CTX_get(ctx);
1161 	if (y == NULL) goto err;
1162 
1163 	if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
1164 	if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
1165 	if (!point->Z_is_one)
1166 		{
1167 		ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
1168 		goto err;
1169 		}
1170 
1171 	ret = 1;
1172 
1173  err:
1174 	BN_CTX_end(ctx);
1175 	if (new_ctx != NULL)
1176 		BN_CTX_free(new_ctx);
1177 	return ret;
1178 	}
1179 
1180 
ec_GFp_simple_points_make_affine(const EC_GROUP * group,size_t num,EC_POINT * points[],BN_CTX * ctx)1181 int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
1182 	{
1183 	BN_CTX *new_ctx = NULL;
1184 	BIGNUM *tmp0, *tmp1;
1185 	size_t pow2 = 0;
1186 	BIGNUM **heap = NULL;
1187 	size_t i;
1188 	int ret = 0;
1189 
1190 	if (num == 0)
1191 		return 1;
1192 
1193 	if (ctx == NULL)
1194 		{
1195 		ctx = new_ctx = BN_CTX_new();
1196 		if (ctx == NULL)
1197 			return 0;
1198 		}
1199 
1200 	BN_CTX_start(ctx);
1201 	tmp0 = BN_CTX_get(ctx);
1202 	tmp1 = BN_CTX_get(ctx);
1203 	if (tmp0  == NULL || tmp1 == NULL) goto err;
1204 
1205 	/* Before converting the individual points, compute inverses of all Z values.
1206 	 * Modular inversion is rather slow, but luckily we can do with a single
1207 	 * explicit inversion, plus about 3 multiplications per input value.
1208 	 */
1209 
1210 	pow2 = 1;
1211 	while (num > pow2)
1212 		pow2 <<= 1;
1213 	/* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
1214 	 * We need twice that. */
1215 	pow2 <<= 1;
1216 
1217 	heap = OPENSSL_malloc(pow2 * sizeof heap[0]);
1218 	if (heap == NULL) goto err;
1219 
1220 	/* The array is used as a binary tree, exactly as in heapsort:
1221 	 *
1222 	 *                               heap[1]
1223 	 *                 heap[2]                     heap[3]
1224 	 *          heap[4]       heap[5]       heap[6]       heap[7]
1225 	 *   heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
1226 	 *
1227 	 * We put the Z's in the last line;
1228 	 * then we set each other node to the product of its two child-nodes (where
1229 	 * empty or 0 entries are treated as ones);
1230 	 * then we invert heap[1];
1231 	 * then we invert each other node by replacing it by the product of its
1232 	 * parent (after inversion) and its sibling (before inversion).
1233 	 */
1234 	heap[0] = NULL;
1235 	for (i = pow2/2 - 1; i > 0; i--)
1236 		heap[i] = NULL;
1237 	for (i = 0; i < num; i++)
1238 		heap[pow2/2 + i] = &points[i]->Z;
1239 	for (i = pow2/2 + num; i < pow2; i++)
1240 		heap[i] = NULL;
1241 
1242 	/* set each node to the product of its children */
1243 	for (i = pow2/2 - 1; i > 0; i--)
1244 		{
1245 		heap[i] = BN_new();
1246 		if (heap[i] == NULL) goto err;
1247 
1248 		if (heap[2*i] != NULL)
1249 			{
1250 			if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1]))
1251 				{
1252 				if (!BN_copy(heap[i], heap[2*i])) goto err;
1253 				}
1254 			else
1255 				{
1256 				if (BN_is_zero(heap[2*i]))
1257 					{
1258 					if (!BN_copy(heap[i], heap[2*i + 1])) goto err;
1259 					}
1260 				else
1261 					{
1262 					if (!group->meth->field_mul(group, heap[i],
1263 						heap[2*i], heap[2*i + 1], ctx)) goto err;
1264 					}
1265 				}
1266 			}
1267 		}
1268 
1269 	/* invert heap[1] */
1270 	if (!BN_is_zero(heap[1]))
1271 		{
1272 		if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx))
1273 			{
1274 			ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
1275 			goto err;
1276 			}
1277 		}
1278 	if (group->meth->field_encode != 0)
1279 		{
1280 		/* in the Montgomery case, we just turned  R*H  (representing H)
1281 		 * into  1/(R*H),  but we need  R*(1/H)  (representing 1/H);
1282 		 * i.e. we have need to multiply by the Montgomery factor twice */
1283 		if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
1284 		if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
1285 		}
1286 
1287 	/* set other heap[i]'s to their inverses */
1288 	for (i = 2; i < pow2/2 + num; i += 2)
1289 		{
1290 		/* i is even */
1291 		if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1]))
1292 			{
1293 			if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err;
1294 			if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err;
1295 			if (!BN_copy(heap[i], tmp0)) goto err;
1296 			if (!BN_copy(heap[i + 1], tmp1)) goto err;
1297 			}
1298 		else
1299 			{
1300 			if (!BN_copy(heap[i], heap[i/2])) goto err;
1301 			}
1302 		}
1303 
1304 	/* we have replaced all non-zero Z's by their inverses, now fix up all the points */
1305 	for (i = 0; i < num; i++)
1306 		{
1307 		EC_POINT *p = points[i];
1308 
1309 		if (!BN_is_zero(&p->Z))
1310 			{
1311 			/* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1312 
1313 			if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err;
1314 			if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err;
1315 
1316 			if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err;
1317 			if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err;
1318 
1319 			if (group->meth->field_set_to_one != 0)
1320 				{
1321 				if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err;
1322 				}
1323 			else
1324 				{
1325 				if (!BN_one(&p->Z)) goto err;
1326 				}
1327 			p->Z_is_one = 1;
1328 			}
1329 		}
1330 
1331 	ret = 1;
1332 
1333  err:
1334 	BN_CTX_end(ctx);
1335 	if (new_ctx != NULL)
1336 		BN_CTX_free(new_ctx);
1337 	if (heap != NULL)
1338 		{
1339 		/* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
1340 		for (i = pow2/2 - 1; i > 0; i--)
1341 			{
1342 			if (heap[i] != NULL)
1343 				BN_clear_free(heap[i]);
1344 			}
1345 		OPENSSL_free(heap);
1346 		}
1347 	return ret;
1348 	}
1349 
1350 
ec_GFp_simple_field_mul(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)1351 int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1352 	{
1353 	return BN_mod_mul(r, a, b, &group->field, ctx);
1354 	}
1355 
1356 
ec_GFp_simple_field_sqr(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)1357 int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
1358 	{
1359 	return BN_mod_sqr(r, a, &group->field, ctx);
1360 	}
1361