• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the DeltaTree and related classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Rewrite/DeltaTree.h"
15 #include "clang/Basic/LLVM.h"
16 #include <cstring>
17 #include <cstdio>
18 using namespace clang;
19 
20 /// The DeltaTree class is a multiway search tree (BTree) structure with some
21 /// fancy features.  B-Trees are generally more memory and cache efficient
22 /// than binary trees, because they store multiple keys/values in each node.
23 ///
24 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
25 /// fast lookup by FileIndex.  However, an added (important) bonus is that it
26 /// can also efficiently tell us the full accumulated delta for a specific
27 /// file offset as well, without traversing the whole tree.
28 ///
29 /// The nodes of the tree are made up of instances of two classes:
30 /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
31 /// former and adds children pointers.  Each node knows the full delta of all
32 /// entries (recursively) contained inside of it, which allows us to get the
33 /// full delta implied by a whole subtree in constant time.
34 
35 namespace {
36   /// SourceDelta - As code in the original input buffer is added and deleted,
37   /// SourceDelta records are used to keep track of how the input SourceLocation
38   /// object is mapped into the output buffer.
39   struct SourceDelta {
40     unsigned FileLoc;
41     int Delta;
42 
get__anon0276b12b0111::SourceDelta43     static SourceDelta get(unsigned Loc, int D) {
44       SourceDelta Delta;
45       Delta.FileLoc = Loc;
46       Delta.Delta = D;
47       return Delta;
48     }
49   };
50 
51   /// DeltaTreeNode - The common part of all nodes.
52   ///
53   class DeltaTreeNode {
54   public:
55     struct InsertResult {
56       DeltaTreeNode *LHS, *RHS;
57       SourceDelta Split;
58     };
59 
60   private:
61     friend class DeltaTreeInteriorNode;
62 
63     /// WidthFactor - This controls the number of K/V slots held in the BTree:
64     /// how wide it is.  Each level of the BTree is guaranteed to have at least
65     /// WidthFactor-1 K/V pairs (except the root) and may have at most
66     /// 2*WidthFactor-1 K/V pairs.
67     enum { WidthFactor = 8 };
68 
69     /// Values - This tracks the SourceDelta's currently in this node.
70     ///
71     SourceDelta Values[2*WidthFactor-1];
72 
73     /// NumValuesUsed - This tracks the number of values this node currently
74     /// holds.
75     unsigned char NumValuesUsed;
76 
77     /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
78     /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
79     bool IsLeaf;
80 
81     /// FullDelta - This is the full delta of all the values in this node and
82     /// all children nodes.
83     int FullDelta;
84   public:
DeltaTreeNode(bool isLeaf=true)85     DeltaTreeNode(bool isLeaf = true)
86       : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
87 
isLeaf() const88     bool isLeaf() const { return IsLeaf; }
getFullDelta() const89     int getFullDelta() const { return FullDelta; }
isFull() const90     bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
91 
getNumValuesUsed() const92     unsigned getNumValuesUsed() const { return NumValuesUsed; }
getValue(unsigned i) const93     const SourceDelta &getValue(unsigned i) const {
94       assert(i < NumValuesUsed && "Invalid value #");
95       return Values[i];
96     }
getValue(unsigned i)97     SourceDelta &getValue(unsigned i) {
98       assert(i < NumValuesUsed && "Invalid value #");
99       return Values[i];
100     }
101 
102     /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
103     /// this node.  If insertion is easy, do it and return false.  Otherwise,
104     /// split the node, populate InsertRes with info about the split, and return
105     /// true.
106     bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
107 
108     void DoSplit(InsertResult &InsertRes);
109 
110 
111     /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
112     /// local walk over our contained deltas.
113     void RecomputeFullDeltaLocally();
114 
115     void Destroy();
116 
117     //static inline bool classof(const DeltaTreeNode *) { return true; }
118   };
119 } // end anonymous namespace
120 
121 namespace {
122   /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
123   /// This class tracks them.
124   class DeltaTreeInteriorNode : public DeltaTreeNode {
125     DeltaTreeNode *Children[2*WidthFactor];
~DeltaTreeInteriorNode()126     ~DeltaTreeInteriorNode() {
127       for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
128         Children[i]->Destroy();
129     }
130     friend class DeltaTreeNode;
131   public:
DeltaTreeInteriorNode()132     DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
133 
DeltaTreeInteriorNode(const InsertResult & IR)134     DeltaTreeInteriorNode(const InsertResult &IR)
135       : DeltaTreeNode(false /*nonleaf*/) {
136       Children[0] = IR.LHS;
137       Children[1] = IR.RHS;
138       Values[0] = IR.Split;
139       FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
140       NumValuesUsed = 1;
141     }
142 
getChild(unsigned i) const143     const DeltaTreeNode *getChild(unsigned i) const {
144       assert(i < getNumValuesUsed()+1 && "Invalid child");
145       return Children[i];
146     }
getChild(unsigned i)147     DeltaTreeNode *getChild(unsigned i) {
148       assert(i < getNumValuesUsed()+1 && "Invalid child");
149       return Children[i];
150     }
151 
152   //static inline bool classof(const DeltaTreeInteriorNode *) { return true; }
classof(const DeltaTreeNode * N)153     static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
154   };
155 }
156 
157 
158 /// Destroy - A 'virtual' destructor.
Destroy()159 void DeltaTreeNode::Destroy() {
160   if (isLeaf())
161     delete this;
162   else
163     delete cast<DeltaTreeInteriorNode>(this);
164 }
165 
166 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
167 /// local walk over our contained deltas.
RecomputeFullDeltaLocally()168 void DeltaTreeNode::RecomputeFullDeltaLocally() {
169   int NewFullDelta = 0;
170   for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
171     NewFullDelta += Values[i].Delta;
172   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
173     for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
174       NewFullDelta += IN->getChild(i)->getFullDelta();
175   FullDelta = NewFullDelta;
176 }
177 
178 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
179 /// this node.  If insertion is easy, do it and return false.  Otherwise,
180 /// split the node, populate InsertRes with info about the split, and return
181 /// true.
DoInsertion(unsigned FileIndex,int Delta,InsertResult * InsertRes)182 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
183                                 InsertResult *InsertRes) {
184   // Maintain full delta for this node.
185   FullDelta += Delta;
186 
187   // Find the insertion point, the first delta whose index is >= FileIndex.
188   unsigned i = 0, e = getNumValuesUsed();
189   while (i != e && FileIndex > getValue(i).FileLoc)
190     ++i;
191 
192   // If we found an a record for exactly this file index, just merge this
193   // value into the pre-existing record and finish early.
194   if (i != e && getValue(i).FileLoc == FileIndex) {
195     // NOTE: Delta could drop to zero here.  This means that the delta entry is
196     // useless and could be removed.  Supporting erases is more complex than
197     // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
198     // the tree.
199     Values[i].Delta += Delta;
200     return false;
201   }
202 
203   // Otherwise, we found an insertion point, and we know that the value at the
204   // specified index is > FileIndex.  Handle the leaf case first.
205   if (isLeaf()) {
206     if (!isFull()) {
207       // For an insertion into a non-full leaf node, just insert the value in
208       // its sorted position.  This requires moving later values over.
209       if (i != e)
210         memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
211       Values[i] = SourceDelta::get(FileIndex, Delta);
212       ++NumValuesUsed;
213       return false;
214     }
215 
216     // Otherwise, if this is leaf is full, split the node at its median, insert
217     // the value into one of the children, and return the result.
218     assert(InsertRes && "No result location specified");
219     DoSplit(*InsertRes);
220 
221     if (InsertRes->Split.FileLoc > FileIndex)
222       InsertRes->LHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
223     else
224       InsertRes->RHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
225     return true;
226   }
227 
228   // Otherwise, this is an interior node.  Send the request down the tree.
229   DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
230   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
231     return false; // If there was space in the child, just return.
232 
233   // Okay, this split the subtree, producing a new value and two children to
234   // insert here.  If this node is non-full, we can just insert it directly.
235   if (!isFull()) {
236     // Now that we have two nodes and a new element, insert the perclated value
237     // into ourself by moving all the later values/children down, then inserting
238     // the new one.
239     if (i != e)
240       memmove(&IN->Children[i+2], &IN->Children[i+1],
241               (e-i)*sizeof(IN->Children[0]));
242     IN->Children[i] = InsertRes->LHS;
243     IN->Children[i+1] = InsertRes->RHS;
244 
245     if (e != i)
246       memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
247     Values[i] = InsertRes->Split;
248     ++NumValuesUsed;
249     return false;
250   }
251 
252   // Finally, if this interior node was full and a node is percolated up, split
253   // ourself and return that up the chain.  Start by saving all our info to
254   // avoid having the split clobber it.
255   IN->Children[i] = InsertRes->LHS;
256   DeltaTreeNode *SubRHS = InsertRes->RHS;
257   SourceDelta SubSplit = InsertRes->Split;
258 
259   // Do the split.
260   DoSplit(*InsertRes);
261 
262   // Figure out where to insert SubRHS/NewSplit.
263   DeltaTreeInteriorNode *InsertSide;
264   if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
265     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
266   else
267     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
268 
269   // We now have a non-empty interior node 'InsertSide' to insert
270   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
271 
272   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
273   i = 0; e = InsertSide->getNumValuesUsed();
274   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
275     ++i;
276 
277   // Now we know that i is the place to insert the split value into.  Insert it
278   // and the child right after it.
279   if (i != e)
280     memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
281             (e-i)*sizeof(IN->Children[0]));
282   InsertSide->Children[i+1] = SubRHS;
283 
284   if (e != i)
285     memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
286             (e-i)*sizeof(Values[0]));
287   InsertSide->Values[i] = SubSplit;
288   ++InsertSide->NumValuesUsed;
289   InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
290   return true;
291 }
292 
293 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
294 /// into two subtrees each with "WidthFactor-1" values and a pivot value.
295 /// Return the pieces in InsertRes.
DoSplit(InsertResult & InsertRes)296 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
297   assert(isFull() && "Why split a non-full node?");
298 
299   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
300   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
301   // node), propagate one value up, and move the last 'WidthFactor-1' values
302   // into the RHS child.
303 
304   // Create the new child node.
305   DeltaTreeNode *NewNode;
306   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
307     // If this is an interior node, also move over 'WidthFactor' children
308     // into the new node.
309     DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
310     memcpy(&New->Children[0], &IN->Children[WidthFactor],
311            WidthFactor*sizeof(IN->Children[0]));
312     NewNode = New;
313   } else {
314     // Just create the new leaf node.
315     NewNode = new DeltaTreeNode();
316   }
317 
318   // Move over the last 'WidthFactor-1' values from here to NewNode.
319   memcpy(&NewNode->Values[0], &Values[WidthFactor],
320          (WidthFactor-1)*sizeof(Values[0]));
321 
322   // Decrease the number of values in the two nodes.
323   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
324 
325   // Recompute the two nodes' full delta.
326   NewNode->RecomputeFullDeltaLocally();
327   RecomputeFullDeltaLocally();
328 
329   InsertRes.LHS = this;
330   InsertRes.RHS = NewNode;
331   InsertRes.Split = Values[WidthFactor-1];
332 }
333 
334 
335 
336 //===----------------------------------------------------------------------===//
337 //                        DeltaTree Implementation
338 //===----------------------------------------------------------------------===//
339 
340 //#define VERIFY_TREE
341 
342 #ifdef VERIFY_TREE
343 /// VerifyTree - Walk the btree performing assertions on various properties to
344 /// verify consistency.  This is useful for debugging new changes to the tree.
VerifyTree(const DeltaTreeNode * N)345 static void VerifyTree(const DeltaTreeNode *N) {
346   const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
347   if (IN == 0) {
348     // Verify leaves, just ensure that FullDelta matches up and the elements
349     // are in proper order.
350     int FullDelta = 0;
351     for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
352       if (i)
353         assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
354       FullDelta += N->getValue(i).Delta;
355     }
356     assert(FullDelta == N->getFullDelta());
357     return;
358   }
359 
360   // Verify interior nodes: Ensure that FullDelta matches up and the
361   // elements are in proper order and the children are in proper order.
362   int FullDelta = 0;
363   for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
364     const SourceDelta &IVal = N->getValue(i);
365     const DeltaTreeNode *IChild = IN->getChild(i);
366     if (i)
367       assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
368     FullDelta += IVal.Delta;
369     FullDelta += IChild->getFullDelta();
370 
371     // The largest value in child #i should be smaller than FileLoc.
372     assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
373            IVal.FileLoc);
374 
375     // The smallest value in child #i+1 should be larger than FileLoc.
376     assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
377     VerifyTree(IChild);
378   }
379 
380   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
381 
382   assert(FullDelta == N->getFullDelta());
383 }
384 #endif  // VERIFY_TREE
385 
getRoot(void * Root)386 static DeltaTreeNode *getRoot(void *Root) {
387   return (DeltaTreeNode*)Root;
388 }
389 
DeltaTree()390 DeltaTree::DeltaTree() {
391   Root = new DeltaTreeNode();
392 }
DeltaTree(const DeltaTree & RHS)393 DeltaTree::DeltaTree(const DeltaTree &RHS) {
394   // Currently we only support copying when the RHS is empty.
395   assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
396          "Can only copy empty tree");
397   Root = new DeltaTreeNode();
398 }
399 
~DeltaTree()400 DeltaTree::~DeltaTree() {
401   getRoot(Root)->Destroy();
402 }
403 
404 /// getDeltaAt - Return the accumulated delta at the specified file offset.
405 /// This includes all insertions or delections that occurred *before* the
406 /// specified file index.
getDeltaAt(unsigned FileIndex) const407 int DeltaTree::getDeltaAt(unsigned FileIndex) const {
408   const DeltaTreeNode *Node = getRoot(Root);
409 
410   int Result = 0;
411 
412   // Walk down the tree.
413   while (1) {
414     // For all nodes, include any local deltas before the specified file
415     // index by summing them up directly.  Keep track of how many were
416     // included.
417     unsigned NumValsGreater = 0;
418     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
419          ++NumValsGreater) {
420       const SourceDelta &Val = Node->getValue(NumValsGreater);
421 
422       if (Val.FileLoc >= FileIndex)
423         break;
424       Result += Val.Delta;
425     }
426 
427     // If we have an interior node, include information about children and
428     // recurse.  Otherwise, if we have a leaf, we're done.
429     const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
430     if (!IN) return Result;
431 
432     // Include any children to the left of the values we skipped, all of
433     // their deltas should be included as well.
434     for (unsigned i = 0; i != NumValsGreater; ++i)
435       Result += IN->getChild(i)->getFullDelta();
436 
437     // If we found exactly the value we were looking for, break off the
438     // search early.  There is no need to search the RHS of the value for
439     // partial results.
440     if (NumValsGreater != Node->getNumValuesUsed() &&
441         Node->getValue(NumValsGreater).FileLoc == FileIndex)
442       return Result+IN->getChild(NumValsGreater)->getFullDelta();
443 
444     // Otherwise, traverse down the tree.  The selected subtree may be
445     // partially included in the range.
446     Node = IN->getChild(NumValsGreater);
447   }
448   // NOT REACHED.
449 }
450 
451 /// AddDelta - When a change is made that shifts around the text buffer,
452 /// this method is used to record that info.  It inserts a delta of 'Delta'
453 /// into the current DeltaTree at offset FileIndex.
AddDelta(unsigned FileIndex,int Delta)454 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
455   assert(Delta && "Adding a noop?");
456   DeltaTreeNode *MyRoot = getRoot(Root);
457 
458   DeltaTreeNode::InsertResult InsertRes;
459   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
460     Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
461   }
462 
463 #ifdef VERIFY_TREE
464   VerifyTree(MyRoot);
465 #endif
466 }
467 
468