1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. A natural loop
12 // has exactly one entry-point, which is called the header. Note that natural
13 // loops may actually be several loops that share the same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function. For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks the make up the loop.
18 //
19 // It can calculate on the fly various bits of information, for example:
20 //
21 // * whether there is a preheader for the loop
22 // * the number of back edges to the header
23 // * whether or not a particular block branches out of the loop
24 // * the successor blocks of the loop
25 // * the loop depth
26 // * etc...
27 //
28 //===----------------------------------------------------------------------===//
29
30 #ifndef LLVM_ANALYSIS_LOOP_INFO_H
31 #define LLVM_ANALYSIS_LOOP_INFO_H
32
33 #include "llvm/Pass.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/DenseSet.h"
36 #include "llvm/ADT/DepthFirstIterator.h"
37 #include "llvm/ADT/GraphTraits.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Analysis/Dominators.h"
41 #include "llvm/Support/CFG.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <map>
45
46 namespace llvm {
47
48 template<typename T>
RemoveFromVector(std::vector<T * > & V,T * N)49 static void RemoveFromVector(std::vector<T*> &V, T *N) {
50 typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
51 assert(I != V.end() && "N is not in this list!");
52 V.erase(I);
53 }
54
55 class DominatorTree;
56 class LoopInfo;
57 class Loop;
58 class PHINode;
59 template<class N, class M> class LoopInfoBase;
60 template<class N, class M> class LoopBase;
61
62 //===----------------------------------------------------------------------===//
63 /// LoopBase class - Instances of this class are used to represent loops that
64 /// are detected in the flow graph
65 ///
66 template<class BlockT, class LoopT>
67 class LoopBase {
68 LoopT *ParentLoop;
69 // SubLoops - Loops contained entirely within this one.
70 std::vector<LoopT *> SubLoops;
71
72 // Blocks - The list of blocks in this loop. First entry is the header node.
73 std::vector<BlockT*> Blocks;
74
75 // DO NOT IMPLEMENT
76 LoopBase(const LoopBase<BlockT, LoopT> &);
77 // DO NOT IMPLEMENT
78 const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
79 public:
80 /// Loop ctor - This creates an empty loop.
LoopBase()81 LoopBase() : ParentLoop(0) {}
~LoopBase()82 ~LoopBase() {
83 for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
84 delete SubLoops[i];
85 }
86
87 /// getLoopDepth - Return the nesting level of this loop. An outer-most
88 /// loop has depth 1, for consistency with loop depth values used for basic
89 /// blocks, where depth 0 is used for blocks not inside any loops.
getLoopDepth()90 unsigned getLoopDepth() const {
91 unsigned D = 1;
92 for (const LoopT *CurLoop = ParentLoop; CurLoop;
93 CurLoop = CurLoop->ParentLoop)
94 ++D;
95 return D;
96 }
getHeader()97 BlockT *getHeader() const { return Blocks.front(); }
getParentLoop()98 LoopT *getParentLoop() const { return ParentLoop; }
99
100 /// contains - Return true if the specified loop is contained within in
101 /// this loop.
102 ///
contains(const LoopT * L)103 bool contains(const LoopT *L) const {
104 if (L == this) return true;
105 if (L == 0) return false;
106 return contains(L->getParentLoop());
107 }
108
109 /// contains - Return true if the specified basic block is in this loop.
110 ///
contains(const BlockT * BB)111 bool contains(const BlockT *BB) const {
112 return std::find(block_begin(), block_end(), BB) != block_end();
113 }
114
115 /// contains - Return true if the specified instruction is in this loop.
116 ///
117 template<class InstT>
contains(const InstT * Inst)118 bool contains(const InstT *Inst) const {
119 return contains(Inst->getParent());
120 }
121
122 /// iterator/begin/end - Return the loops contained entirely within this loop.
123 ///
getSubLoops()124 const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
125 typedef typename std::vector<LoopT *>::const_iterator iterator;
begin()126 iterator begin() const { return SubLoops.begin(); }
end()127 iterator end() const { return SubLoops.end(); }
empty()128 bool empty() const { return SubLoops.empty(); }
129
130 /// getBlocks - Get a list of the basic blocks which make up this loop.
131 ///
getBlocks()132 const std::vector<BlockT*> &getBlocks() const { return Blocks; }
133 typedef typename std::vector<BlockT*>::const_iterator block_iterator;
block_begin()134 block_iterator block_begin() const { return Blocks.begin(); }
block_end()135 block_iterator block_end() const { return Blocks.end(); }
136
137 /// getNumBlocks - Get the number of blocks in this loop in constant time.
getNumBlocks()138 unsigned getNumBlocks() const {
139 return Blocks.size();
140 }
141
142 /// isLoopExiting - True if terminator in the block can branch to another
143 /// block that is outside of the current loop.
144 ///
isLoopExiting(const BlockT * BB)145 bool isLoopExiting(const BlockT *BB) const {
146 typedef GraphTraits<BlockT*> BlockTraits;
147 for (typename BlockTraits::ChildIteratorType SI =
148 BlockTraits::child_begin(const_cast<BlockT*>(BB)),
149 SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
150 if (!contains(*SI))
151 return true;
152 }
153 return false;
154 }
155
156 /// getNumBackEdges - Calculate the number of back edges to the loop header
157 ///
getNumBackEdges()158 unsigned getNumBackEdges() const {
159 unsigned NumBackEdges = 0;
160 BlockT *H = getHeader();
161
162 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
163 for (typename InvBlockTraits::ChildIteratorType I =
164 InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
165 E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
166 if (contains(*I))
167 ++NumBackEdges;
168
169 return NumBackEdges;
170 }
171
172 //===--------------------------------------------------------------------===//
173 // APIs for simple analysis of the loop.
174 //
175 // Note that all of these methods can fail on general loops (ie, there may not
176 // be a preheader, etc). For best success, the loop simplification and
177 // induction variable canonicalization pass should be used to normalize loops
178 // for easy analysis. These methods assume canonical loops.
179
180 /// getExitingBlocks - Return all blocks inside the loop that have successors
181 /// outside of the loop. These are the blocks _inside of the current loop_
182 /// which branch out. The returned list is always unique.
183 ///
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)184 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
185 // Sort the blocks vector so that we can use binary search to do quick
186 // lookups.
187 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
188 std::sort(LoopBBs.begin(), LoopBBs.end());
189
190 typedef GraphTraits<BlockT*> BlockTraits;
191 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
192 for (typename BlockTraits::ChildIteratorType I =
193 BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
194 I != E; ++I)
195 if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
196 // Not in current loop? It must be an exit block.
197 ExitingBlocks.push_back(*BI);
198 break;
199 }
200 }
201
202 /// getExitingBlock - If getExitingBlocks would return exactly one block,
203 /// return that block. Otherwise return null.
getExitingBlock()204 BlockT *getExitingBlock() const {
205 SmallVector<BlockT*, 8> ExitingBlocks;
206 getExitingBlocks(ExitingBlocks);
207 if (ExitingBlocks.size() == 1)
208 return ExitingBlocks[0];
209 return 0;
210 }
211
212 /// getExitBlocks - Return all of the successor blocks of this loop. These
213 /// are the blocks _outside of the current loop_ which are branched to.
214 ///
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)215 void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
216 // Sort the blocks vector so that we can use binary search to do quick
217 // lookups.
218 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
219 std::sort(LoopBBs.begin(), LoopBBs.end());
220
221 typedef GraphTraits<BlockT*> BlockTraits;
222 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
223 for (typename BlockTraits::ChildIteratorType I =
224 BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
225 I != E; ++I)
226 if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
227 // Not in current loop? It must be an exit block.
228 ExitBlocks.push_back(*I);
229 }
230
231 /// getExitBlock - If getExitBlocks would return exactly one block,
232 /// return that block. Otherwise return null.
getExitBlock()233 BlockT *getExitBlock() const {
234 SmallVector<BlockT*, 8> ExitBlocks;
235 getExitBlocks(ExitBlocks);
236 if (ExitBlocks.size() == 1)
237 return ExitBlocks[0];
238 return 0;
239 }
240
241 /// Edge type.
242 typedef std::pair<BlockT*, BlockT*> Edge;
243
244 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
245 template <typename EdgeT>
getExitEdges(SmallVectorImpl<EdgeT> & ExitEdges)246 void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
247 // Sort the blocks vector so that we can use binary search to do quick
248 // lookups.
249 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
250 array_pod_sort(LoopBBs.begin(), LoopBBs.end());
251
252 typedef GraphTraits<BlockT*> BlockTraits;
253 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
254 for (typename BlockTraits::ChildIteratorType I =
255 BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
256 I != E; ++I)
257 if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
258 // Not in current loop? It must be an exit block.
259 ExitEdges.push_back(EdgeT(*BI, *I));
260 }
261
262 /// getLoopPreheader - If there is a preheader for this loop, return it. A
263 /// loop has a preheader if there is only one edge to the header of the loop
264 /// from outside of the loop. If this is the case, the block branching to the
265 /// header of the loop is the preheader node.
266 ///
267 /// This method returns null if there is no preheader for the loop.
268 ///
getLoopPreheader()269 BlockT *getLoopPreheader() const {
270 // Keep track of nodes outside the loop branching to the header...
271 BlockT *Out = getLoopPredecessor();
272 if (!Out) return 0;
273
274 // Make sure there is only one exit out of the preheader.
275 typedef GraphTraits<BlockT*> BlockTraits;
276 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
277 ++SI;
278 if (SI != BlockTraits::child_end(Out))
279 return 0; // Multiple exits from the block, must not be a preheader.
280
281 // The predecessor has exactly one successor, so it is a preheader.
282 return Out;
283 }
284
285 /// getLoopPredecessor - If the given loop's header has exactly one unique
286 /// predecessor outside the loop, return it. Otherwise return null.
287 /// This is less strict that the loop "preheader" concept, which requires
288 /// the predecessor to have exactly one successor.
289 ///
getLoopPredecessor()290 BlockT *getLoopPredecessor() const {
291 // Keep track of nodes outside the loop branching to the header...
292 BlockT *Out = 0;
293
294 // Loop over the predecessors of the header node...
295 BlockT *Header = getHeader();
296 typedef GraphTraits<BlockT*> BlockTraits;
297 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
298 for (typename InvBlockTraits::ChildIteratorType PI =
299 InvBlockTraits::child_begin(Header),
300 PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
301 typename InvBlockTraits::NodeType *N = *PI;
302 if (!contains(N)) { // If the block is not in the loop...
303 if (Out && Out != N)
304 return 0; // Multiple predecessors outside the loop
305 Out = N;
306 }
307 }
308
309 // Make sure there is only one exit out of the preheader.
310 assert(Out && "Header of loop has no predecessors from outside loop?");
311 return Out;
312 }
313
314 /// getLoopLatch - If there is a single latch block for this loop, return it.
315 /// A latch block is a block that contains a branch back to the header.
getLoopLatch()316 BlockT *getLoopLatch() const {
317 BlockT *Header = getHeader();
318 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
319 typename InvBlockTraits::ChildIteratorType PI =
320 InvBlockTraits::child_begin(Header);
321 typename InvBlockTraits::ChildIteratorType PE =
322 InvBlockTraits::child_end(Header);
323 BlockT *Latch = 0;
324 for (; PI != PE; ++PI) {
325 typename InvBlockTraits::NodeType *N = *PI;
326 if (contains(N)) {
327 if (Latch) return 0;
328 Latch = N;
329 }
330 }
331
332 return Latch;
333 }
334
335 //===--------------------------------------------------------------------===//
336 // APIs for updating loop information after changing the CFG
337 //
338
339 /// addBasicBlockToLoop - This method is used by other analyses to update loop
340 /// information. NewBB is set to be a new member of the current loop.
341 /// Because of this, it is added as a member of all parent loops, and is added
342 /// to the specified LoopInfo object as being in the current basic block. It
343 /// is not valid to replace the loop header with this method.
344 ///
345 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
346
347 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
348 /// the OldChild entry in our children list with NewChild, and updates the
349 /// parent pointer of OldChild to be null and the NewChild to be this loop.
350 /// This updates the loop depth of the new child.
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)351 void replaceChildLoopWith(LoopT *OldChild,
352 LoopT *NewChild) {
353 assert(OldChild->ParentLoop == this && "This loop is already broken!");
354 assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
355 typename std::vector<LoopT *>::iterator I =
356 std::find(SubLoops.begin(), SubLoops.end(), OldChild);
357 assert(I != SubLoops.end() && "OldChild not in loop!");
358 *I = NewChild;
359 OldChild->ParentLoop = 0;
360 NewChild->ParentLoop = static_cast<LoopT *>(this);
361 }
362
363 /// addChildLoop - Add the specified loop to be a child of this loop. This
364 /// updates the loop depth of the new child.
365 ///
addChildLoop(LoopT * NewChild)366 void addChildLoop(LoopT *NewChild) {
367 assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
368 NewChild->ParentLoop = static_cast<LoopT *>(this);
369 SubLoops.push_back(NewChild);
370 }
371
372 /// removeChildLoop - This removes the specified child from being a subloop of
373 /// this loop. The loop is not deleted, as it will presumably be inserted
374 /// into another loop.
removeChildLoop(iterator I)375 LoopT *removeChildLoop(iterator I) {
376 assert(I != SubLoops.end() && "Cannot remove end iterator!");
377 LoopT *Child = *I;
378 assert(Child->ParentLoop == this && "Child is not a child of this loop!");
379 SubLoops.erase(SubLoops.begin()+(I-begin()));
380 Child->ParentLoop = 0;
381 return Child;
382 }
383
384 /// addBlockEntry - This adds a basic block directly to the basic block list.
385 /// This should only be used by transformations that create new loops. Other
386 /// transformations should use addBasicBlockToLoop.
addBlockEntry(BlockT * BB)387 void addBlockEntry(BlockT *BB) {
388 Blocks.push_back(BB);
389 }
390
391 /// moveToHeader - This method is used to move BB (which must be part of this
392 /// loop) to be the loop header of the loop (the block that dominates all
393 /// others).
moveToHeader(BlockT * BB)394 void moveToHeader(BlockT *BB) {
395 if (Blocks[0] == BB) return;
396 for (unsigned i = 0; ; ++i) {
397 assert(i != Blocks.size() && "Loop does not contain BB!");
398 if (Blocks[i] == BB) {
399 Blocks[i] = Blocks[0];
400 Blocks[0] = BB;
401 return;
402 }
403 }
404 }
405
406 /// removeBlockFromLoop - This removes the specified basic block from the
407 /// current loop, updating the Blocks as appropriate. This does not update
408 /// the mapping in the LoopInfo class.
removeBlockFromLoop(BlockT * BB)409 void removeBlockFromLoop(BlockT *BB) {
410 RemoveFromVector(Blocks, BB);
411 }
412
413 /// verifyLoop - Verify loop structure
verifyLoop()414 void verifyLoop() const {
415 #ifndef NDEBUG
416 assert(!Blocks.empty() && "Loop header is missing");
417
418 // Setup for using a depth-first iterator to visit every block in the loop.
419 SmallVector<BlockT*, 8> ExitBBs;
420 getExitBlocks(ExitBBs);
421 llvm::SmallPtrSet<BlockT*, 8> VisitSet;
422 VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
423 df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
424 BI = df_ext_begin(getHeader(), VisitSet),
425 BE = df_ext_end(getHeader(), VisitSet);
426
427 // Keep track of the number of BBs visited.
428 unsigned NumVisited = 0;
429
430 // Sort the blocks vector so that we can use binary search to do quick
431 // lookups.
432 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
433 std::sort(LoopBBs.begin(), LoopBBs.end());
434
435 // Check the individual blocks.
436 for ( ; BI != BE; ++BI) {
437 BlockT *BB = *BI;
438 bool HasInsideLoopSuccs = false;
439 bool HasInsideLoopPreds = false;
440 SmallVector<BlockT *, 2> OutsideLoopPreds;
441
442 typedef GraphTraits<BlockT*> BlockTraits;
443 for (typename BlockTraits::ChildIteratorType SI =
444 BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
445 SI != SE; ++SI)
446 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
447 HasInsideLoopSuccs = true;
448 break;
449 }
450 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
451 for (typename InvBlockTraits::ChildIteratorType PI =
452 InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
453 PI != PE; ++PI) {
454 BlockT *N = *PI;
455 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
456 HasInsideLoopPreds = true;
457 else
458 OutsideLoopPreds.push_back(N);
459 }
460
461 if (BB == getHeader()) {
462 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
463 } else if (!OutsideLoopPreds.empty()) {
464 // A non-header loop shouldn't be reachable from outside the loop,
465 // though it is permitted if the predecessor is not itself actually
466 // reachable.
467 BlockT *EntryBB = BB->getParent()->begin();
468 for (df_iterator<BlockT *> NI = df_begin(EntryBB),
469 NE = df_end(EntryBB); NI != NE; ++NI)
470 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
471 assert(*NI != OutsideLoopPreds[i] &&
472 "Loop has multiple entry points!");
473 }
474 assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
475 assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
476 assert(BB != getHeader()->getParent()->begin() &&
477 "Loop contains function entry block!");
478
479 NumVisited++;
480 }
481
482 assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
483
484 // Check the subloops.
485 for (iterator I = begin(), E = end(); I != E; ++I)
486 // Each block in each subloop should be contained within this loop.
487 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
488 BI != BE; ++BI) {
489 assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
490 "Loop does not contain all the blocks of a subloop!");
491 }
492
493 // Check the parent loop pointer.
494 if (ParentLoop) {
495 assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
496 ParentLoop->end() &&
497 "Loop is not a subloop of its parent!");
498 }
499 #endif
500 }
501
502 /// verifyLoop - Verify loop structure of this loop and all nested loops.
verifyLoopNest(DenseSet<const LoopT * > * Loops)503 void verifyLoopNest(DenseSet<const LoopT*> *Loops) const {
504 Loops->insert(static_cast<const LoopT *>(this));
505 // Verify this loop.
506 verifyLoop();
507 // Verify the subloops.
508 for (iterator I = begin(), E = end(); I != E; ++I)
509 (*I)->verifyLoopNest(Loops);
510 }
511
512 void print(raw_ostream &OS, unsigned Depth = 0) const {
513 OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
514 << " containing: ";
515
516 for (unsigned i = 0; i < getBlocks().size(); ++i) {
517 if (i) OS << ",";
518 BlockT *BB = getBlocks()[i];
519 WriteAsOperand(OS, BB, false);
520 if (BB == getHeader()) OS << "<header>";
521 if (BB == getLoopLatch()) OS << "<latch>";
522 if (isLoopExiting(BB)) OS << "<exiting>";
523 }
524 OS << "\n";
525
526 for (iterator I = begin(), E = end(); I != E; ++I)
527 (*I)->print(OS, Depth+2);
528 }
529
530 protected:
531 friend class LoopInfoBase<BlockT, LoopT>;
LoopBase(BlockT * BB)532 explicit LoopBase(BlockT *BB) : ParentLoop(0) {
533 Blocks.push_back(BB);
534 }
535 };
536
537 template<class BlockT, class LoopT>
538 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
539 Loop.print(OS);
540 return OS;
541 }
542
543 class Loop : public LoopBase<BasicBlock, Loop> {
544 public:
Loop()545 Loop() {}
546
547 /// isLoopInvariant - Return true if the specified value is loop invariant
548 ///
549 bool isLoopInvariant(Value *V) const;
550
551 /// hasLoopInvariantOperands - Return true if all the operands of the
552 /// specified instruction are loop invariant.
553 bool hasLoopInvariantOperands(Instruction *I) const;
554
555 /// makeLoopInvariant - If the given value is an instruction inside of the
556 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
557 /// Return true if the value after any hoisting is loop invariant. This
558 /// function can be used as a slightly more aggressive replacement for
559 /// isLoopInvariant.
560 ///
561 /// If InsertPt is specified, it is the point to hoist instructions to.
562 /// If null, the terminator of the loop preheader is used.
563 ///
564 bool makeLoopInvariant(Value *V, bool &Changed,
565 Instruction *InsertPt = 0) const;
566
567 /// makeLoopInvariant - If the given instruction is inside of the
568 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
569 /// Return true if the instruction after any hoisting is loop invariant. This
570 /// function can be used as a slightly more aggressive replacement for
571 /// isLoopInvariant.
572 ///
573 /// If InsertPt is specified, it is the point to hoist instructions to.
574 /// If null, the terminator of the loop preheader is used.
575 ///
576 bool makeLoopInvariant(Instruction *I, bool &Changed,
577 Instruction *InsertPt = 0) const;
578
579 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
580 /// induction variable: an integer recurrence that starts at 0 and increments
581 /// by one each time through the loop. If so, return the phi node that
582 /// corresponds to it.
583 ///
584 /// The IndVarSimplify pass transforms loops to have a canonical induction
585 /// variable.
586 ///
587 PHINode *getCanonicalInductionVariable() const;
588
589 /// isLCSSAForm - Return true if the Loop is in LCSSA form
590 bool isLCSSAForm(DominatorTree &DT) const;
591
592 /// isLoopSimplifyForm - Return true if the Loop is in the form that
593 /// the LoopSimplify form transforms loops to, which is sometimes called
594 /// normal form.
595 bool isLoopSimplifyForm() const;
596
597 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
598 bool isSafeToClone() const;
599
600 /// hasDedicatedExits - Return true if no exit block for the loop
601 /// has a predecessor that is outside the loop.
602 bool hasDedicatedExits() const;
603
604 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
605 /// These are the blocks _outside of the current loop_ which are branched to.
606 /// This assumes that loop exits are in canonical form.
607 ///
608 void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
609
610 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
611 /// block, return that block. Otherwise return null.
612 BasicBlock *getUniqueExitBlock() const;
613
614 void dump() const;
615
616 private:
617 friend class LoopInfoBase<BasicBlock, Loop>;
Loop(BasicBlock * BB)618 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
619 };
620
621 //===----------------------------------------------------------------------===//
622 /// LoopInfo - This class builds and contains all of the top level loop
623 /// structures in the specified function.
624 ///
625
626 template<class BlockT, class LoopT>
627 class LoopInfoBase {
628 // BBMap - Mapping of basic blocks to the inner most loop they occur in
629 DenseMap<BlockT *, LoopT *> BBMap;
630 std::vector<LoopT *> TopLevelLoops;
631 friend class LoopBase<BlockT, LoopT>;
632 friend class LoopInfo;
633
634 void operator=(const LoopInfoBase &); // do not implement
635 LoopInfoBase(const LoopInfo &); // do not implement
636 public:
LoopInfoBase()637 LoopInfoBase() { }
~LoopInfoBase()638 ~LoopInfoBase() { releaseMemory(); }
639
releaseMemory()640 void releaseMemory() {
641 for (typename std::vector<LoopT *>::iterator I =
642 TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
643 delete *I; // Delete all of the loops...
644
645 BBMap.clear(); // Reset internal state of analysis
646 TopLevelLoops.clear();
647 }
648
649 /// iterator/begin/end - The interface to the top-level loops in the current
650 /// function.
651 ///
652 typedef typename std::vector<LoopT *>::const_iterator iterator;
begin()653 iterator begin() const { return TopLevelLoops.begin(); }
end()654 iterator end() const { return TopLevelLoops.end(); }
empty()655 bool empty() const { return TopLevelLoops.empty(); }
656
657 /// getLoopFor - Return the inner most loop that BB lives in. If a basic
658 /// block is in no loop (for example the entry node), null is returned.
659 ///
getLoopFor(const BlockT * BB)660 LoopT *getLoopFor(const BlockT *BB) const {
661 return BBMap.lookup(const_cast<BlockT*>(BB));
662 }
663
664 /// operator[] - same as getLoopFor...
665 ///
666 const LoopT *operator[](const BlockT *BB) const {
667 return getLoopFor(BB);
668 }
669
670 /// getLoopDepth - Return the loop nesting level of the specified block. A
671 /// depth of 0 means the block is not inside any loop.
672 ///
getLoopDepth(const BlockT * BB)673 unsigned getLoopDepth(const BlockT *BB) const {
674 const LoopT *L = getLoopFor(BB);
675 return L ? L->getLoopDepth() : 0;
676 }
677
678 // isLoopHeader - True if the block is a loop header node
isLoopHeader(BlockT * BB)679 bool isLoopHeader(BlockT *BB) const {
680 const LoopT *L = getLoopFor(BB);
681 return L && L->getHeader() == BB;
682 }
683
684 /// removeLoop - This removes the specified top-level loop from this loop info
685 /// object. The loop is not deleted, as it will presumably be inserted into
686 /// another loop.
removeLoop(iterator I)687 LoopT *removeLoop(iterator I) {
688 assert(I != end() && "Cannot remove end iterator!");
689 LoopT *L = *I;
690 assert(L->getParentLoop() == 0 && "Not a top-level loop!");
691 TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
692 return L;
693 }
694
695 /// changeLoopFor - Change the top-level loop that contains BB to the
696 /// specified loop. This should be used by transformations that restructure
697 /// the loop hierarchy tree.
changeLoopFor(BlockT * BB,LoopT * L)698 void changeLoopFor(BlockT *BB, LoopT *L) {
699 if (!L) {
700 BBMap.erase(BB);
701 return;
702 }
703 BBMap[BB] = L;
704 }
705
706 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
707 /// list with the indicated loop.
changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)708 void changeTopLevelLoop(LoopT *OldLoop,
709 LoopT *NewLoop) {
710 typename std::vector<LoopT *>::iterator I =
711 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
712 assert(I != TopLevelLoops.end() && "Old loop not at top level!");
713 *I = NewLoop;
714 assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
715 "Loops already embedded into a subloop!");
716 }
717
718 /// addTopLevelLoop - This adds the specified loop to the collection of
719 /// top-level loops.
addTopLevelLoop(LoopT * New)720 void addTopLevelLoop(LoopT *New) {
721 assert(New->getParentLoop() == 0 && "Loop already in subloop!");
722 TopLevelLoops.push_back(New);
723 }
724
725 /// removeBlock - This method completely removes BB from all data structures,
726 /// including all of the Loop objects it is nested in and our mapping from
727 /// BasicBlocks to loops.
removeBlock(BlockT * BB)728 void removeBlock(BlockT *BB) {
729 typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
730 if (I != BBMap.end()) {
731 for (LoopT *L = I->second; L; L = L->getParentLoop())
732 L->removeBlockFromLoop(BB);
733
734 BBMap.erase(I);
735 }
736 }
737
738 // Internals
739
isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)740 static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
741 const LoopT *ParentLoop) {
742 if (SubLoop == 0) return true;
743 if (SubLoop == ParentLoop) return false;
744 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
745 }
746
Calculate(DominatorTreeBase<BlockT> & DT)747 void Calculate(DominatorTreeBase<BlockT> &DT) {
748 BlockT *RootNode = DT.getRootNode()->getBlock();
749
750 for (df_iterator<BlockT*> NI = df_begin(RootNode),
751 NE = df_end(RootNode); NI != NE; ++NI)
752 if (LoopT *L = ConsiderForLoop(*NI, DT))
753 TopLevelLoops.push_back(L);
754 }
755
ConsiderForLoop(BlockT * BB,DominatorTreeBase<BlockT> & DT)756 LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
757 if (BBMap.count(BB)) return 0; // Haven't processed this node?
758
759 std::vector<BlockT *> TodoStack;
760
761 // Scan the predecessors of BB, checking to see if BB dominates any of
762 // them. This identifies backedges which target this node...
763 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
764 for (typename InvBlockTraits::ChildIteratorType I =
765 InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
766 I != E; ++I) {
767 typename InvBlockTraits::NodeType *N = *I;
768 // If BB dominates its predecessor...
769 if (DT.dominates(BB, N) && DT.isReachableFromEntry(N))
770 TodoStack.push_back(N);
771 }
772
773 if (TodoStack.empty()) return 0; // No backedges to this block...
774
775 // Create a new loop to represent this basic block...
776 LoopT *L = new LoopT(BB);
777 BBMap[BB] = L;
778
779 while (!TodoStack.empty()) { // Process all the nodes in the loop
780 BlockT *X = TodoStack.back();
781 TodoStack.pop_back();
782
783 if (!L->contains(X) && // As of yet unprocessed??
784 DT.isReachableFromEntry(X)) {
785 // Check to see if this block already belongs to a loop. If this occurs
786 // then we have a case where a loop that is supposed to be a child of
787 // the current loop was processed before the current loop. When this
788 // occurs, this child loop gets added to a part of the current loop,
789 // making it a sibling to the current loop. We have to reparent this
790 // loop.
791 if (LoopT *SubLoop =
792 const_cast<LoopT *>(getLoopFor(X)))
793 if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
794 // Remove the subloop from its current parent...
795 assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
796 LoopT *SLP = SubLoop->ParentLoop; // SubLoopParent
797 typename std::vector<LoopT *>::iterator I =
798 std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
799 assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
800 SLP->SubLoops.erase(I); // Remove from parent...
801
802 // Add the subloop to THIS loop...
803 SubLoop->ParentLoop = L;
804 L->SubLoops.push_back(SubLoop);
805 }
806
807 // Normal case, add the block to our loop...
808 L->Blocks.push_back(X);
809
810 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
811
812 // Add all of the predecessors of X to the end of the work stack...
813 TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
814 InvBlockTraits::child_end(X));
815 }
816 }
817
818 // If there are any loops nested within this loop, create them now!
819 for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
820 E = L->Blocks.end(); I != E; ++I)
821 if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
822 L->SubLoops.push_back(NewLoop);
823 NewLoop->ParentLoop = L;
824 }
825
826 // Add the basic blocks that comprise this loop to the BBMap so that this
827 // loop can be found for them.
828 //
829 for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
830 E = L->Blocks.end(); I != E; ++I)
831 BBMap.insert(std::make_pair(*I, L));
832
833 // Now that we have a list of all of the child loops of this loop, check to
834 // see if any of them should actually be nested inside of each other. We
835 // can accidentally pull loops our of their parents, so we must make sure to
836 // organize the loop nests correctly now.
837 {
838 std::map<BlockT *, LoopT *> ContainingLoops;
839 for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
840 LoopT *Child = L->SubLoops[i];
841 assert(Child->getParentLoop() == L && "Not proper child loop?");
842
843 if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
844 // If there is already a loop which contains this loop, move this loop
845 // into the containing loop.
846 MoveSiblingLoopInto(Child, ContainingLoop);
847 --i; // The loop got removed from the SubLoops list.
848 } else {
849 // This is currently considered to be a top-level loop. Check to see
850 // if any of the contained blocks are loop headers for subloops we
851 // have already processed.
852 for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
853 LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
854 if (BlockLoop == 0) { // Child block not processed yet...
855 BlockLoop = Child;
856 } else if (BlockLoop != Child) {
857 LoopT *SubLoop = BlockLoop;
858 // Reparent all of the blocks which used to belong to BlockLoops
859 for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
860 ContainingLoops[SubLoop->Blocks[j]] = Child;
861
862 // There is already a loop which contains this block, that means
863 // that we should reparent the loop which the block is currently
864 // considered to belong to to be a child of this loop.
865 MoveSiblingLoopInto(SubLoop, Child);
866 --i; // We just shrunk the SubLoops list.
867 }
868 }
869 }
870 }
871 }
872
873 return L;
874 }
875
876 /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
877 /// of the NewParent Loop, instead of being a sibling of it.
MoveSiblingLoopInto(LoopT * NewChild,LoopT * NewParent)878 void MoveSiblingLoopInto(LoopT *NewChild,
879 LoopT *NewParent) {
880 LoopT *OldParent = NewChild->getParentLoop();
881 assert(OldParent && OldParent == NewParent->getParentLoop() &&
882 NewChild != NewParent && "Not sibling loops!");
883
884 // Remove NewChild from being a child of OldParent
885 typename std::vector<LoopT *>::iterator I =
886 std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
887 NewChild);
888 assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
889 OldParent->SubLoops.erase(I); // Remove from parent's subloops list
890 NewChild->ParentLoop = 0;
891
892 InsertLoopInto(NewChild, NewParent);
893 }
894
895 /// InsertLoopInto - This inserts loop L into the specified parent loop. If
896 /// the parent loop contains a loop which should contain L, the loop gets
897 /// inserted into L instead.
InsertLoopInto(LoopT * L,LoopT * Parent)898 void InsertLoopInto(LoopT *L, LoopT *Parent) {
899 BlockT *LHeader = L->getHeader();
900 assert(Parent->contains(LHeader) &&
901 "This loop should not be inserted here!");
902
903 // Check to see if it belongs in a child loop...
904 for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
905 i != e; ++i)
906 if (Parent->SubLoops[i]->contains(LHeader)) {
907 InsertLoopInto(L, Parent->SubLoops[i]);
908 return;
909 }
910
911 // If not, insert it here!
912 Parent->SubLoops.push_back(L);
913 L->ParentLoop = Parent;
914 }
915
916 // Debugging
917
print(raw_ostream & OS)918 void print(raw_ostream &OS) const {
919 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
920 TopLevelLoops[i]->print(OS);
921 #if 0
922 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
923 E = BBMap.end(); I != E; ++I)
924 OS << "BB '" << I->first->getName() << "' level = "
925 << I->second->getLoopDepth() << "\n";
926 #endif
927 }
928 };
929
930 class LoopInfo : public FunctionPass {
931 LoopInfoBase<BasicBlock, Loop> LI;
932 friend class LoopBase<BasicBlock, Loop>;
933
934 void operator=(const LoopInfo &); // do not implement
935 LoopInfo(const LoopInfo &); // do not implement
936 public:
937 static char ID; // Pass identification, replacement for typeid
938
LoopInfo()939 LoopInfo() : FunctionPass(ID) {
940 initializeLoopInfoPass(*PassRegistry::getPassRegistry());
941 }
942
getBase()943 LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
944
945 /// iterator/begin/end - The interface to the top-level loops in the current
946 /// function.
947 ///
948 typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
begin()949 inline iterator begin() const { return LI.begin(); }
end()950 inline iterator end() const { return LI.end(); }
empty()951 bool empty() const { return LI.empty(); }
952
953 /// getLoopFor - Return the inner most loop that BB lives in. If a basic
954 /// block is in no loop (for example the entry node), null is returned.
955 ///
getLoopFor(const BasicBlock * BB)956 inline Loop *getLoopFor(const BasicBlock *BB) const {
957 return LI.getLoopFor(BB);
958 }
959
960 /// operator[] - same as getLoopFor...
961 ///
962 inline const Loop *operator[](const BasicBlock *BB) const {
963 return LI.getLoopFor(BB);
964 }
965
966 /// getLoopDepth - Return the loop nesting level of the specified block. A
967 /// depth of 0 means the block is not inside any loop.
968 ///
getLoopDepth(const BasicBlock * BB)969 inline unsigned getLoopDepth(const BasicBlock *BB) const {
970 return LI.getLoopDepth(BB);
971 }
972
973 // isLoopHeader - True if the block is a loop header node
isLoopHeader(BasicBlock * BB)974 inline bool isLoopHeader(BasicBlock *BB) const {
975 return LI.isLoopHeader(BB);
976 }
977
978 /// runOnFunction - Calculate the natural loop information.
979 ///
980 virtual bool runOnFunction(Function &F);
981
982 virtual void verifyAnalysis() const;
983
releaseMemory()984 virtual void releaseMemory() { LI.releaseMemory(); }
985
986 virtual void print(raw_ostream &O, const Module* M = 0) const;
987
988 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
989
990 /// removeLoop - This removes the specified top-level loop from this loop info
991 /// object. The loop is not deleted, as it will presumably be inserted into
992 /// another loop.
removeLoop(iterator I)993 inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
994
995 /// changeLoopFor - Change the top-level loop that contains BB to the
996 /// specified loop. This should be used by transformations that restructure
997 /// the loop hierarchy tree.
changeLoopFor(BasicBlock * BB,Loop * L)998 inline void changeLoopFor(BasicBlock *BB, Loop *L) {
999 LI.changeLoopFor(BB, L);
1000 }
1001
1002 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1003 /// list with the indicated loop.
changeTopLevelLoop(Loop * OldLoop,Loop * NewLoop)1004 inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1005 LI.changeTopLevelLoop(OldLoop, NewLoop);
1006 }
1007
1008 /// addTopLevelLoop - This adds the specified loop to the collection of
1009 /// top-level loops.
addTopLevelLoop(Loop * New)1010 inline void addTopLevelLoop(Loop *New) {
1011 LI.addTopLevelLoop(New);
1012 }
1013
1014 /// removeBlock - This method completely removes BB from all data structures,
1015 /// including all of the Loop objects it is nested in and our mapping from
1016 /// BasicBlocks to loops.
removeBlock(BasicBlock * BB)1017 void removeBlock(BasicBlock *BB) {
1018 LI.removeBlock(BB);
1019 }
1020
1021 /// updateUnloop - Update LoopInfo after removing the last backedge from a
1022 /// loop--now the "unloop". This updates the loop forest and parent loops for
1023 /// each block so that Unloop is no longer referenced, but the caller must
1024 /// actually delete the Unloop object.
1025 void updateUnloop(Loop *Unloop);
1026
1027 /// replacementPreservesLCSSAForm - Returns true if replacing From with To
1028 /// everywhere is guaranteed to preserve LCSSA form.
replacementPreservesLCSSAForm(Instruction * From,Value * To)1029 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1030 // Preserving LCSSA form is only problematic if the replacing value is an
1031 // instruction.
1032 Instruction *I = dyn_cast<Instruction>(To);
1033 if (!I) return true;
1034 // If both instructions are defined in the same basic block then replacement
1035 // cannot break LCSSA form.
1036 if (I->getParent() == From->getParent())
1037 return true;
1038 // If the instruction is not defined in a loop then it can safely replace
1039 // anything.
1040 Loop *ToLoop = getLoopFor(I->getParent());
1041 if (!ToLoop) return true;
1042 // If the replacing instruction is defined in the same loop as the original
1043 // instruction, or in a loop that contains it as an inner loop, then using
1044 // it as a replacement will not break LCSSA form.
1045 return ToLoop->contains(getLoopFor(From->getParent()));
1046 }
1047 };
1048
1049
1050 // Allow clients to walk the list of nested loops...
1051 template <> struct GraphTraits<const Loop*> {
1052 typedef const Loop NodeType;
1053 typedef LoopInfo::iterator ChildIteratorType;
1054
1055 static NodeType *getEntryNode(const Loop *L) { return L; }
1056 static inline ChildIteratorType child_begin(NodeType *N) {
1057 return N->begin();
1058 }
1059 static inline ChildIteratorType child_end(NodeType *N) {
1060 return N->end();
1061 }
1062 };
1063
1064 template <> struct GraphTraits<Loop*> {
1065 typedef Loop NodeType;
1066 typedef LoopInfo::iterator ChildIteratorType;
1067
1068 static NodeType *getEntryNode(Loop *L) { return L; }
1069 static inline ChildIteratorType child_begin(NodeType *N) {
1070 return N->begin();
1071 }
1072 static inline ChildIteratorType child_end(NodeType *N) {
1073 return N->end();
1074 }
1075 };
1076
1077 template<class BlockT, class LoopT>
1078 void
1079 LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1080 LoopInfoBase<BlockT, LoopT> &LIB) {
1081 assert((Blocks.empty() || LIB[getHeader()] == this) &&
1082 "Incorrect LI specified for this loop!");
1083 assert(NewBB && "Cannot add a null basic block to the loop!");
1084 assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1085
1086 LoopT *L = static_cast<LoopT *>(this);
1087
1088 // Add the loop mapping to the LoopInfo object...
1089 LIB.BBMap[NewBB] = L;
1090
1091 // Add the basic block to this loop and all parent loops...
1092 while (L) {
1093 L->Blocks.push_back(NewBB);
1094 L = L->getParentLoop();
1095 }
1096 }
1097
1098 } // End llvm namespace
1099
1100 #endif
1101