1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the VMCore library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLVMContextImpl.h"
15 #include "llvm/Module.h"
16 #include <algorithm>
17 #include <cstdarg>
18 #include "llvm/ADT/SmallString.h"
19 using namespace llvm;
20
21 //===----------------------------------------------------------------------===//
22 // Type Class Implementation
23 //===----------------------------------------------------------------------===//
24
getPrimitiveType(LLVMContext & C,TypeID IDNumber)25 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
26 switch (IDNumber) {
27 case VoidTyID : return getVoidTy(C);
28 case HalfTyID : return getHalfTy(C);
29 case FloatTyID : return getFloatTy(C);
30 case DoubleTyID : return getDoubleTy(C);
31 case X86_FP80TyID : return getX86_FP80Ty(C);
32 case FP128TyID : return getFP128Ty(C);
33 case PPC_FP128TyID : return getPPC_FP128Ty(C);
34 case LabelTyID : return getLabelTy(C);
35 case MetadataTyID : return getMetadataTy(C);
36 case X86_MMXTyID : return getX86_MMXTy(C);
37 default:
38 return 0;
39 }
40 }
41
42 /// getScalarType - If this is a vector type, return the element type,
43 /// otherwise return this.
getScalarType()44 Type *Type::getScalarType() {
45 if (VectorType *VTy = dyn_cast<VectorType>(this))
46 return VTy->getElementType();
47 return this;
48 }
49
50 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
isIntegerTy(unsigned Bitwidth) const51 bool Type::isIntegerTy(unsigned Bitwidth) const {
52 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
53 }
54
55 /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
56 /// integer types.
57 ///
isIntOrIntVectorTy() const58 bool Type::isIntOrIntVectorTy() const {
59 if (isIntegerTy())
60 return true;
61 if (getTypeID() != Type::VectorTyID) return false;
62
63 return cast<VectorType>(this)->getElementType()->isIntegerTy();
64 }
65
66 /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP types.
67 ///
isFPOrFPVectorTy() const68 bool Type::isFPOrFPVectorTy() const {
69 if (getTypeID() == Type::HalfTyID || getTypeID() == Type::FloatTyID ||
70 getTypeID() == Type::DoubleTyID ||
71 getTypeID() == Type::FP128TyID || getTypeID() == Type::X86_FP80TyID ||
72 getTypeID() == Type::PPC_FP128TyID)
73 return true;
74 if (getTypeID() != Type::VectorTyID) return false;
75
76 return cast<VectorType>(this)->getElementType()->isFloatingPointTy();
77 }
78
79 // canLosslesslyBitCastTo - Return true if this type can be converted to
80 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
81 //
canLosslesslyBitCastTo(Type * Ty) const82 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
83 // Identity cast means no change so return true
84 if (this == Ty)
85 return true;
86
87 // They are not convertible unless they are at least first class types
88 if (!this->isFirstClassType() || !Ty->isFirstClassType())
89 return false;
90
91 // Vector -> Vector conversions are always lossless if the two vector types
92 // have the same size, otherwise not. Also, 64-bit vector types can be
93 // converted to x86mmx.
94 if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
95 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
96 return thisPTy->getBitWidth() == thatPTy->getBitWidth();
97 if (Ty->getTypeID() == Type::X86_MMXTyID &&
98 thisPTy->getBitWidth() == 64)
99 return true;
100 }
101
102 if (this->getTypeID() == Type::X86_MMXTyID)
103 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
104 if (thatPTy->getBitWidth() == 64)
105 return true;
106
107 // At this point we have only various mismatches of the first class types
108 // remaining and ptr->ptr. Just select the lossless conversions. Everything
109 // else is not lossless.
110 if (this->isPointerTy())
111 return Ty->isPointerTy();
112 return false; // Other types have no identity values
113 }
114
isEmptyTy() const115 bool Type::isEmptyTy() const {
116 const ArrayType *ATy = dyn_cast<ArrayType>(this);
117 if (ATy) {
118 unsigned NumElements = ATy->getNumElements();
119 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
120 }
121
122 const StructType *STy = dyn_cast<StructType>(this);
123 if (STy) {
124 unsigned NumElements = STy->getNumElements();
125 for (unsigned i = 0; i < NumElements; ++i)
126 if (!STy->getElementType(i)->isEmptyTy())
127 return false;
128 return true;
129 }
130
131 return false;
132 }
133
getPrimitiveSizeInBits() const134 unsigned Type::getPrimitiveSizeInBits() const {
135 switch (getTypeID()) {
136 case Type::HalfTyID: return 16;
137 case Type::FloatTyID: return 32;
138 case Type::DoubleTyID: return 64;
139 case Type::X86_FP80TyID: return 80;
140 case Type::FP128TyID: return 128;
141 case Type::PPC_FP128TyID: return 128;
142 case Type::X86_MMXTyID: return 64;
143 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
144 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
145 default: return 0;
146 }
147 }
148
149 /// getScalarSizeInBits - If this is a vector type, return the
150 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
151 /// getPrimitiveSizeInBits value for this type.
getScalarSizeInBits()152 unsigned Type::getScalarSizeInBits() {
153 return getScalarType()->getPrimitiveSizeInBits();
154 }
155
156 /// getFPMantissaWidth - Return the width of the mantissa of this type. This
157 /// is only valid on floating point types. If the FP type does not
158 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
getFPMantissaWidth() const159 int Type::getFPMantissaWidth() const {
160 if (const VectorType *VTy = dyn_cast<VectorType>(this))
161 return VTy->getElementType()->getFPMantissaWidth();
162 assert(isFloatingPointTy() && "Not a floating point type!");
163 if (getTypeID() == HalfTyID) return 11;
164 if (getTypeID() == FloatTyID) return 24;
165 if (getTypeID() == DoubleTyID) return 53;
166 if (getTypeID() == X86_FP80TyID) return 64;
167 if (getTypeID() == FP128TyID) return 113;
168 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
169 return -1;
170 }
171
172 /// isSizedDerivedType - Derived types like structures and arrays are sized
173 /// iff all of the members of the type are sized as well. Since asking for
174 /// their size is relatively uncommon, move this operation out of line.
isSizedDerivedType() const175 bool Type::isSizedDerivedType() const {
176 if (this->isIntegerTy())
177 return true;
178
179 if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
180 return ATy->getElementType()->isSized();
181
182 if (const VectorType *VTy = dyn_cast<VectorType>(this))
183 return VTy->getElementType()->isSized();
184
185 if (!this->isStructTy())
186 return false;
187
188 return cast<StructType>(this)->isSized();
189 }
190
191 //===----------------------------------------------------------------------===//
192 // Subclass Helper Methods
193 //===----------------------------------------------------------------------===//
194
getIntegerBitWidth() const195 unsigned Type::getIntegerBitWidth() const {
196 return cast<IntegerType>(this)->getBitWidth();
197 }
198
isFunctionVarArg() const199 bool Type::isFunctionVarArg() const {
200 return cast<FunctionType>(this)->isVarArg();
201 }
202
getFunctionParamType(unsigned i) const203 Type *Type::getFunctionParamType(unsigned i) const {
204 return cast<FunctionType>(this)->getParamType(i);
205 }
206
getFunctionNumParams() const207 unsigned Type::getFunctionNumParams() const {
208 return cast<FunctionType>(this)->getNumParams();
209 }
210
getStructName() const211 StringRef Type::getStructName() const {
212 return cast<StructType>(this)->getName();
213 }
214
getStructNumElements() const215 unsigned Type::getStructNumElements() const {
216 return cast<StructType>(this)->getNumElements();
217 }
218
getStructElementType(unsigned N) const219 Type *Type::getStructElementType(unsigned N) const {
220 return cast<StructType>(this)->getElementType(N);
221 }
222
223
224
getSequentialElementType() const225 Type *Type::getSequentialElementType() const {
226 return cast<SequentialType>(this)->getElementType();
227 }
228
getArrayNumElements() const229 uint64_t Type::getArrayNumElements() const {
230 return cast<ArrayType>(this)->getNumElements();
231 }
232
getVectorNumElements() const233 unsigned Type::getVectorNumElements() const {
234 return cast<VectorType>(this)->getNumElements();
235 }
236
getPointerAddressSpace() const237 unsigned Type::getPointerAddressSpace() const {
238 return cast<PointerType>(this)->getAddressSpace();
239 }
240
241
242
243
244 //===----------------------------------------------------------------------===//
245 // Primitive 'Type' data
246 //===----------------------------------------------------------------------===//
247
getVoidTy(LLVMContext & C)248 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
getLabelTy(LLVMContext & C)249 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
getHalfTy(LLVMContext & C)250 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
getFloatTy(LLVMContext & C)251 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
getDoubleTy(LLVMContext & C)252 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
getMetadataTy(LLVMContext & C)253 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
getX86_FP80Ty(LLVMContext & C)254 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
getFP128Ty(LLVMContext & C)255 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
getPPC_FP128Ty(LLVMContext & C)256 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
getX86_MMXTy(LLVMContext & C)257 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
258
getInt1Ty(LLVMContext & C)259 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
getInt8Ty(LLVMContext & C)260 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
getInt16Ty(LLVMContext & C)261 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
getInt32Ty(LLVMContext & C)262 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
getInt64Ty(LLVMContext & C)263 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
264
getIntNTy(LLVMContext & C,unsigned N)265 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
266 return IntegerType::get(C, N);
267 }
268
getHalfPtrTy(LLVMContext & C,unsigned AS)269 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
270 return getHalfTy(C)->getPointerTo(AS);
271 }
272
getFloatPtrTy(LLVMContext & C,unsigned AS)273 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
274 return getFloatTy(C)->getPointerTo(AS);
275 }
276
getDoublePtrTy(LLVMContext & C,unsigned AS)277 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
278 return getDoubleTy(C)->getPointerTo(AS);
279 }
280
getX86_FP80PtrTy(LLVMContext & C,unsigned AS)281 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
282 return getX86_FP80Ty(C)->getPointerTo(AS);
283 }
284
getFP128PtrTy(LLVMContext & C,unsigned AS)285 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
286 return getFP128Ty(C)->getPointerTo(AS);
287 }
288
getPPC_FP128PtrTy(LLVMContext & C,unsigned AS)289 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
290 return getPPC_FP128Ty(C)->getPointerTo(AS);
291 }
292
getX86_MMXPtrTy(LLVMContext & C,unsigned AS)293 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
294 return getX86_MMXTy(C)->getPointerTo(AS);
295 }
296
getIntNPtrTy(LLVMContext & C,unsigned N,unsigned AS)297 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
298 return getIntNTy(C, N)->getPointerTo(AS);
299 }
300
getInt1PtrTy(LLVMContext & C,unsigned AS)301 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
302 return getInt1Ty(C)->getPointerTo(AS);
303 }
304
getInt8PtrTy(LLVMContext & C,unsigned AS)305 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
306 return getInt8Ty(C)->getPointerTo(AS);
307 }
308
getInt16PtrTy(LLVMContext & C,unsigned AS)309 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
310 return getInt16Ty(C)->getPointerTo(AS);
311 }
312
getInt32PtrTy(LLVMContext & C,unsigned AS)313 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
314 return getInt32Ty(C)->getPointerTo(AS);
315 }
316
getInt64PtrTy(LLVMContext & C,unsigned AS)317 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
318 return getInt64Ty(C)->getPointerTo(AS);
319 }
320
321
322 //===----------------------------------------------------------------------===//
323 // IntegerType Implementation
324 //===----------------------------------------------------------------------===//
325
get(LLVMContext & C,unsigned NumBits)326 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
327 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
328 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
329
330 // Check for the built-in integer types
331 switch (NumBits) {
332 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
333 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
334 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
335 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
336 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
337 default:
338 break;
339 }
340
341 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
342
343 if (Entry == 0)
344 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
345
346 return Entry;
347 }
348
isPowerOf2ByteWidth() const349 bool IntegerType::isPowerOf2ByteWidth() const {
350 unsigned BitWidth = getBitWidth();
351 return (BitWidth > 7) && isPowerOf2_32(BitWidth);
352 }
353
getMask() const354 APInt IntegerType::getMask() const {
355 return APInt::getAllOnesValue(getBitWidth());
356 }
357
358 //===----------------------------------------------------------------------===//
359 // FunctionType Implementation
360 //===----------------------------------------------------------------------===//
361
FunctionType(Type * Result,ArrayRef<Type * > Params,bool IsVarArgs)362 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
363 bool IsVarArgs)
364 : Type(Result->getContext(), FunctionTyID) {
365 Type **SubTys = reinterpret_cast<Type**>(this+1);
366 assert(isValidReturnType(Result) && "invalid return type for function");
367 setSubclassData(IsVarArgs);
368
369 SubTys[0] = const_cast<Type*>(Result);
370
371 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
372 assert(isValidArgumentType(Params[i]) &&
373 "Not a valid type for function argument!");
374 SubTys[i+1] = Params[i];
375 }
376
377 ContainedTys = SubTys;
378 NumContainedTys = Params.size() + 1; // + 1 for result type
379 }
380
381 // FunctionType::get - The factory function for the FunctionType class.
get(Type * ReturnType,ArrayRef<Type * > Params,bool isVarArg)382 FunctionType *FunctionType::get(Type *ReturnType,
383 ArrayRef<Type*> Params, bool isVarArg) {
384 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
385 FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
386 LLVMContextImpl::FunctionTypeMap::iterator I =
387 pImpl->FunctionTypes.find_as(Key);
388 FunctionType *FT;
389
390 if (I == pImpl->FunctionTypes.end()) {
391 FT = (FunctionType*) pImpl->TypeAllocator.
392 Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
393 AlignOf<FunctionType>::Alignment);
394 new (FT) FunctionType(ReturnType, Params, isVarArg);
395 pImpl->FunctionTypes[FT] = true;
396 } else {
397 FT = I->first;
398 }
399
400 return FT;
401 }
402
403
get(Type * Result,bool isVarArg)404 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
405 return get(Result, ArrayRef<Type *>(), isVarArg);
406 }
407
408
409 /// isValidReturnType - Return true if the specified type is valid as a return
410 /// type.
isValidReturnType(Type * RetTy)411 bool FunctionType::isValidReturnType(Type *RetTy) {
412 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
413 !RetTy->isMetadataTy();
414 }
415
416 /// isValidArgumentType - Return true if the specified type is valid as an
417 /// argument type.
isValidArgumentType(Type * ArgTy)418 bool FunctionType::isValidArgumentType(Type *ArgTy) {
419 return ArgTy->isFirstClassType();
420 }
421
422 //===----------------------------------------------------------------------===//
423 // StructType Implementation
424 //===----------------------------------------------------------------------===//
425
426 // Primitive Constructors.
427
get(LLVMContext & Context,ArrayRef<Type * > ETypes,bool isPacked)428 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
429 bool isPacked) {
430 LLVMContextImpl *pImpl = Context.pImpl;
431 AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
432 LLVMContextImpl::StructTypeMap::iterator I =
433 pImpl->AnonStructTypes.find_as(Key);
434 StructType *ST;
435
436 if (I == pImpl->AnonStructTypes.end()) {
437 // Value not found. Create a new type!
438 ST = new (Context.pImpl->TypeAllocator) StructType(Context);
439 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
440 ST->setBody(ETypes, isPacked);
441 Context.pImpl->AnonStructTypes[ST] = true;
442 } else {
443 ST = I->first;
444 }
445
446 return ST;
447 }
448
setBody(ArrayRef<Type * > Elements,bool isPacked)449 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
450 assert(isOpaque() && "Struct body already set!");
451
452 setSubclassData(getSubclassData() | SCDB_HasBody);
453 if (isPacked)
454 setSubclassData(getSubclassData() | SCDB_Packed);
455
456 unsigned NumElements = Elements.size();
457 Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
458 memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
459
460 ContainedTys = Elts;
461 NumContainedTys = NumElements;
462 }
463
setName(StringRef Name)464 void StructType::setName(StringRef Name) {
465 if (Name == getName()) return;
466
467 // If this struct already had a name, remove its symbol table entry.
468 if (SymbolTableEntry) {
469 getContext().pImpl->NamedStructTypes.erase(getName());
470 SymbolTableEntry = 0;
471 }
472
473 // If this is just removing the name, we're done.
474 if (Name.empty())
475 return;
476
477 // Look up the entry for the name.
478 StringMapEntry<StructType*> *Entry =
479 &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
480
481 // While we have a name collision, try a random rename.
482 if (Entry->getValue()) {
483 SmallString<64> TempStr(Name);
484 TempStr.push_back('.');
485 raw_svector_ostream TmpStream(TempStr);
486 unsigned NameSize = Name.size();
487
488 do {
489 TempStr.resize(NameSize + 1);
490 TmpStream.resync();
491 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
492
493 Entry = &getContext().pImpl->
494 NamedStructTypes.GetOrCreateValue(TmpStream.str());
495 } while (Entry->getValue());
496 }
497
498 // Okay, we found an entry that isn't used. It's us!
499 Entry->setValue(this);
500
501 SymbolTableEntry = Entry;
502 }
503
504 //===----------------------------------------------------------------------===//
505 // StructType Helper functions.
506
create(LLVMContext & Context,StringRef Name)507 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
508 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
509 if (!Name.empty())
510 ST->setName(Name);
511 return ST;
512 }
513
get(LLVMContext & Context,bool isPacked)514 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
515 return get(Context, llvm::ArrayRef<Type*>(), isPacked);
516 }
517
get(Type * type,...)518 StructType *StructType::get(Type *type, ...) {
519 assert(type != 0 && "Cannot create a struct type with no elements with this");
520 LLVMContext &Ctx = type->getContext();
521 va_list ap;
522 SmallVector<llvm::Type*, 8> StructFields;
523 va_start(ap, type);
524 while (type) {
525 StructFields.push_back(type);
526 type = va_arg(ap, llvm::Type*);
527 }
528 return llvm::StructType::get(Ctx, StructFields);
529 }
530
create(LLVMContext & Context,ArrayRef<Type * > Elements,StringRef Name,bool isPacked)531 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
532 StringRef Name, bool isPacked) {
533 StructType *ST = create(Context, Name);
534 ST->setBody(Elements, isPacked);
535 return ST;
536 }
537
create(LLVMContext & Context,ArrayRef<Type * > Elements)538 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
539 return create(Context, Elements, StringRef());
540 }
541
create(LLVMContext & Context)542 StructType *StructType::create(LLVMContext &Context) {
543 return create(Context, StringRef());
544 }
545
546
create(ArrayRef<Type * > Elements,StringRef Name,bool isPacked)547 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
548 bool isPacked) {
549 assert(!Elements.empty() &&
550 "This method may not be invoked with an empty list");
551 return create(Elements[0]->getContext(), Elements, Name, isPacked);
552 }
553
create(ArrayRef<Type * > Elements)554 StructType *StructType::create(ArrayRef<Type*> Elements) {
555 assert(!Elements.empty() &&
556 "This method may not be invoked with an empty list");
557 return create(Elements[0]->getContext(), Elements, StringRef());
558 }
559
create(StringRef Name,Type * type,...)560 StructType *StructType::create(StringRef Name, Type *type, ...) {
561 assert(type != 0 && "Cannot create a struct type with no elements with this");
562 LLVMContext &Ctx = type->getContext();
563 va_list ap;
564 SmallVector<llvm::Type*, 8> StructFields;
565 va_start(ap, type);
566 while (type) {
567 StructFields.push_back(type);
568 type = va_arg(ap, llvm::Type*);
569 }
570 return llvm::StructType::create(Ctx, StructFields, Name);
571 }
572
isSized() const573 bool StructType::isSized() const {
574 if ((getSubclassData() & SCDB_IsSized) != 0)
575 return true;
576 if (isOpaque())
577 return false;
578
579 // Okay, our struct is sized if all of the elements are, but if one of the
580 // elements is opaque, the struct isn't sized *yet*, but may become sized in
581 // the future, so just bail out without caching.
582 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
583 if (!(*I)->isSized())
584 return false;
585
586 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
587 // we find a sized type, as types can only move from opaque to sized, not the
588 // other way.
589 const_cast<StructType*>(this)->setSubclassData(
590 getSubclassData() | SCDB_IsSized);
591 return true;
592 }
593
getName() const594 StringRef StructType::getName() const {
595 assert(!isLiteral() && "Literal structs never have names");
596 if (SymbolTableEntry == 0) return StringRef();
597
598 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
599 }
600
setBody(Type * type,...)601 void StructType::setBody(Type *type, ...) {
602 assert(type != 0 && "Cannot create a struct type with no elements with this");
603 va_list ap;
604 SmallVector<llvm::Type*, 8> StructFields;
605 va_start(ap, type);
606 while (type) {
607 StructFields.push_back(type);
608 type = va_arg(ap, llvm::Type*);
609 }
610 setBody(StructFields);
611 }
612
isValidElementType(Type * ElemTy)613 bool StructType::isValidElementType(Type *ElemTy) {
614 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
615 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
616 }
617
618 /// isLayoutIdentical - Return true if this is layout identical to the
619 /// specified struct.
isLayoutIdentical(StructType * Other) const620 bool StructType::isLayoutIdentical(StructType *Other) const {
621 if (this == Other) return true;
622
623 if (isPacked() != Other->isPacked() ||
624 getNumElements() != Other->getNumElements())
625 return false;
626
627 return std::equal(element_begin(), element_end(), Other->element_begin());
628 }
629
630
631 /// getTypeByName - Return the type with the specified name, or null if there
632 /// is none by that name.
getTypeByName(StringRef Name) const633 StructType *Module::getTypeByName(StringRef Name) const {
634 StringMap<StructType*>::iterator I =
635 getContext().pImpl->NamedStructTypes.find(Name);
636 if (I != getContext().pImpl->NamedStructTypes.end())
637 return I->second;
638 return 0;
639 }
640
641
642 //===----------------------------------------------------------------------===//
643 // CompositeType Implementation
644 //===----------------------------------------------------------------------===//
645
getTypeAtIndex(const Value * V)646 Type *CompositeType::getTypeAtIndex(const Value *V) {
647 if (StructType *STy = dyn_cast<StructType>(this)) {
648 unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
649 assert(indexValid(Idx) && "Invalid structure index!");
650 return STy->getElementType(Idx);
651 }
652
653 return cast<SequentialType>(this)->getElementType();
654 }
getTypeAtIndex(unsigned Idx)655 Type *CompositeType::getTypeAtIndex(unsigned Idx) {
656 if (StructType *STy = dyn_cast<StructType>(this)) {
657 assert(indexValid(Idx) && "Invalid structure index!");
658 return STy->getElementType(Idx);
659 }
660
661 return cast<SequentialType>(this)->getElementType();
662 }
indexValid(const Value * V) const663 bool CompositeType::indexValid(const Value *V) const {
664 if (const StructType *STy = dyn_cast<StructType>(this)) {
665 // Structure indexes require 32-bit integer constants.
666 if (V->getType()->isIntegerTy(32))
667 if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
668 return CU->getZExtValue() < STy->getNumElements();
669 return false;
670 }
671
672 // Sequential types can be indexed by any integer.
673 return V->getType()->isIntegerTy();
674 }
675
indexValid(unsigned Idx) const676 bool CompositeType::indexValid(unsigned Idx) const {
677 if (const StructType *STy = dyn_cast<StructType>(this))
678 return Idx < STy->getNumElements();
679 // Sequential types can be indexed by any integer.
680 return true;
681 }
682
683
684 //===----------------------------------------------------------------------===//
685 // ArrayType Implementation
686 //===----------------------------------------------------------------------===//
687
ArrayType(Type * ElType,uint64_t NumEl)688 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
689 : SequentialType(ArrayTyID, ElType) {
690 NumElements = NumEl;
691 }
692
693
get(Type * elementType,uint64_t NumElements)694 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
695 Type *ElementType = const_cast<Type*>(elementType);
696 assert(isValidElementType(ElementType) && "Invalid type for array element!");
697
698 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
699 ArrayType *&Entry =
700 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
701
702 if (Entry == 0)
703 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
704 return Entry;
705 }
706
isValidElementType(Type * ElemTy)707 bool ArrayType::isValidElementType(Type *ElemTy) {
708 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
709 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
710 }
711
712 //===----------------------------------------------------------------------===//
713 // VectorType Implementation
714 //===----------------------------------------------------------------------===//
715
VectorType(Type * ElType,unsigned NumEl)716 VectorType::VectorType(Type *ElType, unsigned NumEl)
717 : SequentialType(VectorTyID, ElType) {
718 NumElements = NumEl;
719 }
720
get(Type * elementType,unsigned NumElements)721 VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
722 Type *ElementType = const_cast<Type*>(elementType);
723 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
724 assert(isValidElementType(ElementType) &&
725 "Elements of a VectorType must be a primitive type");
726
727 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
728 VectorType *&Entry = ElementType->getContext().pImpl
729 ->VectorTypes[std::make_pair(ElementType, NumElements)];
730
731 if (Entry == 0)
732 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
733 return Entry;
734 }
735
isValidElementType(Type * ElemTy)736 bool VectorType::isValidElementType(Type *ElemTy) {
737 if (PointerType *PTy = dyn_cast<PointerType>(ElemTy))
738 ElemTy = PTy->getElementType();
739 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy();
740 }
741
742 //===----------------------------------------------------------------------===//
743 // PointerType Implementation
744 //===----------------------------------------------------------------------===//
745
get(Type * EltTy,unsigned AddressSpace)746 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
747 assert(EltTy && "Can't get a pointer to <null> type!");
748 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
749
750 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
751
752 // Since AddressSpace #0 is the common case, we special case it.
753 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
754 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
755
756 if (Entry == 0)
757 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
758 return Entry;
759 }
760
761
PointerType(Type * E,unsigned AddrSpace)762 PointerType::PointerType(Type *E, unsigned AddrSpace)
763 : SequentialType(PointerTyID, E) {
764 #ifndef NDEBUG
765 const unsigned oldNCT = NumContainedTys;
766 #endif
767 setSubclassData(AddrSpace);
768 // Check for miscompile. PR11652.
769 assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
770 }
771
getPointerTo(unsigned addrs)772 PointerType *Type::getPointerTo(unsigned addrs) {
773 return PointerType::get(this, addrs);
774 }
775
isValidElementType(Type * ElemTy)776 bool PointerType::isValidElementType(Type *ElemTy) {
777 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
778 !ElemTy->isMetadataTy();
779 }
780