• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------ CXXInheritance.cpp - C++ Inheritance ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides routines that help analyzing C++ inheritance hierarchies.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/RecordLayout.h"
15 #include "clang/AST/DeclCXX.h"
16 #include <algorithm>
17 #include <set>
18 
19 using namespace clang;
20 
21 /// \brief Computes the set of declarations referenced by these base
22 /// paths.
ComputeDeclsFound()23 void CXXBasePaths::ComputeDeclsFound() {
24   assert(NumDeclsFound == 0 && !DeclsFound &&
25          "Already computed the set of declarations");
26 
27   SmallVector<NamedDecl *, 8> Decls;
28   for (paths_iterator Path = begin(), PathEnd = end(); Path != PathEnd; ++Path)
29     Decls.push_back(*Path->Decls.first);
30 
31   // Eliminate duplicated decls.
32   llvm::array_pod_sort(Decls.begin(), Decls.end());
33   Decls.erase(std::unique(Decls.begin(), Decls.end()), Decls.end());
34 
35   NumDeclsFound = Decls.size();
36   DeclsFound = new NamedDecl * [NumDeclsFound];
37   std::copy(Decls.begin(), Decls.end(), DeclsFound);
38 }
39 
found_decls_begin()40 CXXBasePaths::decl_iterator CXXBasePaths::found_decls_begin() {
41   if (NumDeclsFound == 0)
42     ComputeDeclsFound();
43   return DeclsFound;
44 }
45 
found_decls_end()46 CXXBasePaths::decl_iterator CXXBasePaths::found_decls_end() {
47   if (NumDeclsFound == 0)
48     ComputeDeclsFound();
49   return DeclsFound + NumDeclsFound;
50 }
51 
52 /// isAmbiguous - Determines whether the set of paths provided is
53 /// ambiguous, i.e., there are two or more paths that refer to
54 /// different base class subobjects of the same type. BaseType must be
55 /// an unqualified, canonical class type.
isAmbiguous(CanQualType BaseType)56 bool CXXBasePaths::isAmbiguous(CanQualType BaseType) {
57   BaseType = BaseType.getUnqualifiedType();
58   std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType];
59   return Subobjects.second + (Subobjects.first? 1 : 0) > 1;
60 }
61 
62 /// clear - Clear out all prior path information.
clear()63 void CXXBasePaths::clear() {
64   Paths.clear();
65   ClassSubobjects.clear();
66   ScratchPath.clear();
67   DetectedVirtual = 0;
68 }
69 
70 /// @brief Swaps the contents of this CXXBasePaths structure with the
71 /// contents of Other.
swap(CXXBasePaths & Other)72 void CXXBasePaths::swap(CXXBasePaths &Other) {
73   std::swap(Origin, Other.Origin);
74   Paths.swap(Other.Paths);
75   ClassSubobjects.swap(Other.ClassSubobjects);
76   std::swap(FindAmbiguities, Other.FindAmbiguities);
77   std::swap(RecordPaths, Other.RecordPaths);
78   std::swap(DetectVirtual, Other.DetectVirtual);
79   std::swap(DetectedVirtual, Other.DetectedVirtual);
80 }
81 
isDerivedFrom(const CXXRecordDecl * Base) const82 bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base) const {
83   CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
84                      /*DetectVirtual=*/false);
85   return isDerivedFrom(Base, Paths);
86 }
87 
isDerivedFrom(const CXXRecordDecl * Base,CXXBasePaths & Paths) const88 bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base,
89                                   CXXBasePaths &Paths) const {
90   if (getCanonicalDecl() == Base->getCanonicalDecl())
91     return false;
92 
93   Paths.setOrigin(const_cast<CXXRecordDecl*>(this));
94   return lookupInBases(&FindBaseClass,
95                        const_cast<CXXRecordDecl*>(Base->getCanonicalDecl()),
96                        Paths);
97 }
98 
isVirtuallyDerivedFrom(CXXRecordDecl * Base) const99 bool CXXRecordDecl::isVirtuallyDerivedFrom(CXXRecordDecl *Base) const {
100   if (!getNumVBases())
101     return false;
102 
103   CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
104                      /*DetectVirtual=*/false);
105 
106   if (getCanonicalDecl() == Base->getCanonicalDecl())
107     return false;
108 
109   Paths.setOrigin(const_cast<CXXRecordDecl*>(this));
110   return lookupInBases(&FindVirtualBaseClass, Base->getCanonicalDecl(), Paths);
111 }
112 
BaseIsNot(const CXXRecordDecl * Base,void * OpaqueTarget)113 static bool BaseIsNot(const CXXRecordDecl *Base, void *OpaqueTarget) {
114   // OpaqueTarget is a CXXRecordDecl*.
115   return Base->getCanonicalDecl() != (const CXXRecordDecl*) OpaqueTarget;
116 }
117 
isProvablyNotDerivedFrom(const CXXRecordDecl * Base) const118 bool CXXRecordDecl::isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const {
119   return forallBases(BaseIsNot, (void*) Base->getCanonicalDecl());
120 }
121 
forallBases(ForallBasesCallback * BaseMatches,void * OpaqueData,bool AllowShortCircuit) const122 bool CXXRecordDecl::forallBases(ForallBasesCallback *BaseMatches,
123                                 void *OpaqueData,
124                                 bool AllowShortCircuit) const {
125   SmallVector<const CXXRecordDecl*, 8> Queue;
126 
127   const CXXRecordDecl *Record = this;
128   bool AllMatches = true;
129   while (true) {
130     for (CXXRecordDecl::base_class_const_iterator
131            I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
132       const RecordType *Ty = I->getType()->getAs<RecordType>();
133       if (!Ty) {
134         if (AllowShortCircuit) return false;
135         AllMatches = false;
136         continue;
137       }
138 
139       CXXRecordDecl *Base =
140             cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition());
141       if (!Base) {
142         if (AllowShortCircuit) return false;
143         AllMatches = false;
144         continue;
145       }
146 
147       Queue.push_back(Base);
148       if (!BaseMatches(Base, OpaqueData)) {
149         if (AllowShortCircuit) return false;
150         AllMatches = false;
151         continue;
152       }
153     }
154 
155     if (Queue.empty()) break;
156     Record = Queue.back(); // not actually a queue.
157     Queue.pop_back();
158   }
159 
160   return AllMatches;
161 }
162 
lookupInBases(ASTContext & Context,const CXXRecordDecl * Record,CXXRecordDecl::BaseMatchesCallback * BaseMatches,void * UserData)163 bool CXXBasePaths::lookupInBases(ASTContext &Context,
164                                  const CXXRecordDecl *Record,
165                                CXXRecordDecl::BaseMatchesCallback *BaseMatches,
166                                  void *UserData) {
167   bool FoundPath = false;
168 
169   // The access of the path down to this record.
170   AccessSpecifier AccessToHere = ScratchPath.Access;
171   bool IsFirstStep = ScratchPath.empty();
172 
173   for (CXXRecordDecl::base_class_const_iterator BaseSpec = Record->bases_begin(),
174          BaseSpecEnd = Record->bases_end();
175        BaseSpec != BaseSpecEnd;
176        ++BaseSpec) {
177     // Find the record of the base class subobjects for this type.
178     QualType BaseType = Context.getCanonicalType(BaseSpec->getType())
179                                                           .getUnqualifiedType();
180 
181     // C++ [temp.dep]p3:
182     //   In the definition of a class template or a member of a class template,
183     //   if a base class of the class template depends on a template-parameter,
184     //   the base class scope is not examined during unqualified name lookup
185     //   either at the point of definition of the class template or member or
186     //   during an instantiation of the class tem- plate or member.
187     if (BaseType->isDependentType())
188       continue;
189 
190     // Determine whether we need to visit this base class at all,
191     // updating the count of subobjects appropriately.
192     std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType];
193     bool VisitBase = true;
194     bool SetVirtual = false;
195     if (BaseSpec->isVirtual()) {
196       VisitBase = !Subobjects.first;
197       Subobjects.first = true;
198       if (isDetectingVirtual() && DetectedVirtual == 0) {
199         // If this is the first virtual we find, remember it. If it turns out
200         // there is no base path here, we'll reset it later.
201         DetectedVirtual = BaseType->getAs<RecordType>();
202         SetVirtual = true;
203       }
204     } else
205       ++Subobjects.second;
206 
207     if (isRecordingPaths()) {
208       // Add this base specifier to the current path.
209       CXXBasePathElement Element;
210       Element.Base = &*BaseSpec;
211       Element.Class = Record;
212       if (BaseSpec->isVirtual())
213         Element.SubobjectNumber = 0;
214       else
215         Element.SubobjectNumber = Subobjects.second;
216       ScratchPath.push_back(Element);
217 
218       // Calculate the "top-down" access to this base class.
219       // The spec actually describes this bottom-up, but top-down is
220       // equivalent because the definition works out as follows:
221       // 1. Write down the access along each step in the inheritance
222       //    chain, followed by the access of the decl itself.
223       //    For example, in
224       //      class A { public: int foo; };
225       //      class B : protected A {};
226       //      class C : public B {};
227       //      class D : private C {};
228       //    we would write:
229       //      private public protected public
230       // 2. If 'private' appears anywhere except far-left, access is denied.
231       // 3. Otherwise, overall access is determined by the most restrictive
232       //    access in the sequence.
233       if (IsFirstStep)
234         ScratchPath.Access = BaseSpec->getAccessSpecifier();
235       else
236         ScratchPath.Access = CXXRecordDecl::MergeAccess(AccessToHere,
237                                                  BaseSpec->getAccessSpecifier());
238     }
239 
240     // Track whether there's a path involving this specific base.
241     bool FoundPathThroughBase = false;
242 
243     if (BaseMatches(BaseSpec, ScratchPath, UserData)) {
244       // We've found a path that terminates at this base.
245       FoundPath = FoundPathThroughBase = true;
246       if (isRecordingPaths()) {
247         // We have a path. Make a copy of it before moving on.
248         Paths.push_back(ScratchPath);
249       } else if (!isFindingAmbiguities()) {
250         // We found a path and we don't care about ambiguities;
251         // return immediately.
252         return FoundPath;
253       }
254     } else if (VisitBase) {
255       CXXRecordDecl *BaseRecord
256         = cast<CXXRecordDecl>(BaseSpec->getType()->getAs<RecordType>()
257                                 ->getDecl());
258       if (lookupInBases(Context, BaseRecord, BaseMatches, UserData)) {
259         // C++ [class.member.lookup]p2:
260         //   A member name f in one sub-object B hides a member name f in
261         //   a sub-object A if A is a base class sub-object of B. Any
262         //   declarations that are so hidden are eliminated from
263         //   consideration.
264 
265         // There is a path to a base class that meets the criteria. If we're
266         // not collecting paths or finding ambiguities, we're done.
267         FoundPath = FoundPathThroughBase = true;
268         if (!isFindingAmbiguities())
269           return FoundPath;
270       }
271     }
272 
273     // Pop this base specifier off the current path (if we're
274     // collecting paths).
275     if (isRecordingPaths()) {
276       ScratchPath.pop_back();
277     }
278 
279     // If we set a virtual earlier, and this isn't a path, forget it again.
280     if (SetVirtual && !FoundPathThroughBase) {
281       DetectedVirtual = 0;
282     }
283   }
284 
285   // Reset the scratch path access.
286   ScratchPath.Access = AccessToHere;
287 
288   return FoundPath;
289 }
290 
lookupInBases(BaseMatchesCallback * BaseMatches,void * UserData,CXXBasePaths & Paths) const291 bool CXXRecordDecl::lookupInBases(BaseMatchesCallback *BaseMatches,
292                                   void *UserData,
293                                   CXXBasePaths &Paths) const {
294   // If we didn't find anything, report that.
295   if (!Paths.lookupInBases(getASTContext(), this, BaseMatches, UserData))
296     return false;
297 
298   // If we're not recording paths or we won't ever find ambiguities,
299   // we're done.
300   if (!Paths.isRecordingPaths() || !Paths.isFindingAmbiguities())
301     return true;
302 
303   // C++ [class.member.lookup]p6:
304   //   When virtual base classes are used, a hidden declaration can be
305   //   reached along a path through the sub-object lattice that does
306   //   not pass through the hiding declaration. This is not an
307   //   ambiguity. The identical use with nonvirtual base classes is an
308   //   ambiguity; in that case there is no unique instance of the name
309   //   that hides all the others.
310   //
311   // FIXME: This is an O(N^2) algorithm, but DPG doesn't see an easy
312   // way to make it any faster.
313   for (CXXBasePaths::paths_iterator P = Paths.begin(), PEnd = Paths.end();
314        P != PEnd; /* increment in loop */) {
315     bool Hidden = false;
316 
317     for (CXXBasePath::iterator PE = P->begin(), PEEnd = P->end();
318          PE != PEEnd && !Hidden; ++PE) {
319       if (PE->Base->isVirtual()) {
320         CXXRecordDecl *VBase = 0;
321         if (const RecordType *Record = PE->Base->getType()->getAs<RecordType>())
322           VBase = cast<CXXRecordDecl>(Record->getDecl());
323         if (!VBase)
324           break;
325 
326         // The declaration(s) we found along this path were found in a
327         // subobject of a virtual base. Check whether this virtual
328         // base is a subobject of any other path; if so, then the
329         // declaration in this path are hidden by that patch.
330         for (CXXBasePaths::paths_iterator HidingP = Paths.begin(),
331                                        HidingPEnd = Paths.end();
332              HidingP != HidingPEnd;
333              ++HidingP) {
334           CXXRecordDecl *HidingClass = 0;
335           if (const RecordType *Record
336                        = HidingP->back().Base->getType()->getAs<RecordType>())
337             HidingClass = cast<CXXRecordDecl>(Record->getDecl());
338           if (!HidingClass)
339             break;
340 
341           if (HidingClass->isVirtuallyDerivedFrom(VBase)) {
342             Hidden = true;
343             break;
344           }
345         }
346       }
347     }
348 
349     if (Hidden)
350       P = Paths.Paths.erase(P);
351     else
352       ++P;
353   }
354 
355   return true;
356 }
357 
FindBaseClass(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * BaseRecord)358 bool CXXRecordDecl::FindBaseClass(const CXXBaseSpecifier *Specifier,
359                                   CXXBasePath &Path,
360                                   void *BaseRecord) {
361   assert(((Decl *)BaseRecord)->getCanonicalDecl() == BaseRecord &&
362          "User data for FindBaseClass is not canonical!");
363   return Specifier->getType()->getAs<RecordType>()->getDecl()
364            ->getCanonicalDecl() == BaseRecord;
365 }
366 
FindVirtualBaseClass(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * BaseRecord)367 bool CXXRecordDecl::FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
368                                          CXXBasePath &Path,
369                                          void *BaseRecord) {
370   assert(((Decl *)BaseRecord)->getCanonicalDecl() == BaseRecord &&
371          "User data for FindBaseClass is not canonical!");
372   return Specifier->isVirtual() &&
373          Specifier->getType()->getAs<RecordType>()->getDecl()
374            ->getCanonicalDecl() == BaseRecord;
375 }
376 
FindTagMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)377 bool CXXRecordDecl::FindTagMember(const CXXBaseSpecifier *Specifier,
378                                   CXXBasePath &Path,
379                                   void *Name) {
380   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
381 
382   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
383   for (Path.Decls = BaseRecord->lookup(N);
384        Path.Decls.first != Path.Decls.second;
385        ++Path.Decls.first) {
386     if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag))
387       return true;
388   }
389 
390   return false;
391 }
392 
FindOrdinaryMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)393 bool CXXRecordDecl::FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
394                                        CXXBasePath &Path,
395                                        void *Name) {
396   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
397 
398   const unsigned IDNS = IDNS_Ordinary | IDNS_Tag | IDNS_Member;
399   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
400   for (Path.Decls = BaseRecord->lookup(N);
401        Path.Decls.first != Path.Decls.second;
402        ++Path.Decls.first) {
403     if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS))
404       return true;
405   }
406 
407   return false;
408 }
409 
410 bool CXXRecordDecl::
FindNestedNameSpecifierMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)411 FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
412                               CXXBasePath &Path,
413                               void *Name) {
414   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
415 
416   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
417   for (Path.Decls = BaseRecord->lookup(N);
418        Path.Decls.first != Path.Decls.second;
419        ++Path.Decls.first) {
420     // FIXME: Refactor the "is it a nested-name-specifier?" check
421     if (isa<TypedefNameDecl>(*Path.Decls.first) ||
422         (*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag))
423       return true;
424   }
425 
426   return false;
427 }
428 
add(unsigned OverriddenSubobject,UniqueVirtualMethod Overriding)429 void OverridingMethods::add(unsigned OverriddenSubobject,
430                             UniqueVirtualMethod Overriding) {
431   SmallVector<UniqueVirtualMethod, 4> &SubobjectOverrides
432     = Overrides[OverriddenSubobject];
433   if (std::find(SubobjectOverrides.begin(), SubobjectOverrides.end(),
434                 Overriding) == SubobjectOverrides.end())
435     SubobjectOverrides.push_back(Overriding);
436 }
437 
add(const OverridingMethods & Other)438 void OverridingMethods::add(const OverridingMethods &Other) {
439   for (const_iterator I = Other.begin(), IE = Other.end(); I != IE; ++I) {
440     for (overriding_const_iterator M = I->second.begin(),
441                                 MEnd = I->second.end();
442          M != MEnd;
443          ++M)
444       add(I->first, *M);
445   }
446 }
447 
replaceAll(UniqueVirtualMethod Overriding)448 void OverridingMethods::replaceAll(UniqueVirtualMethod Overriding) {
449   for (iterator I = begin(), IEnd = end(); I != IEnd; ++I) {
450     I->second.clear();
451     I->second.push_back(Overriding);
452   }
453 }
454 
455 
456 namespace {
457   class FinalOverriderCollector {
458     /// \brief The number of subobjects of a given class type that
459     /// occur within the class hierarchy.
460     llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCount;
461 
462     /// \brief Overriders for each virtual base subobject.
463     llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *> VirtualOverriders;
464 
465     CXXFinalOverriderMap FinalOverriders;
466 
467   public:
468     ~FinalOverriderCollector();
469 
470     void Collect(const CXXRecordDecl *RD, bool VirtualBase,
471                  const CXXRecordDecl *InVirtualSubobject,
472                  CXXFinalOverriderMap &Overriders);
473   };
474 }
475 
Collect(const CXXRecordDecl * RD,bool VirtualBase,const CXXRecordDecl * InVirtualSubobject,CXXFinalOverriderMap & Overriders)476 void FinalOverriderCollector::Collect(const CXXRecordDecl *RD,
477                                       bool VirtualBase,
478                                       const CXXRecordDecl *InVirtualSubobject,
479                                       CXXFinalOverriderMap &Overriders) {
480   unsigned SubobjectNumber = 0;
481   if (!VirtualBase)
482     SubobjectNumber
483       = ++SubobjectCount[cast<CXXRecordDecl>(RD->getCanonicalDecl())];
484 
485   for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
486          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
487     if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
488       const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
489       if (!BaseDecl->isPolymorphic())
490         continue;
491 
492       if (Overriders.empty() && !Base->isVirtual()) {
493         // There are no other overriders of virtual member functions,
494         // so let the base class fill in our overriders for us.
495         Collect(BaseDecl, false, InVirtualSubobject, Overriders);
496         continue;
497       }
498 
499       // Collect all of the overridders from the base class subobject
500       // and merge them into the set of overridders for this class.
501       // For virtual base classes, populate or use the cached virtual
502       // overrides so that we do not walk the virtual base class (and
503       // its base classes) more than once.
504       CXXFinalOverriderMap ComputedBaseOverriders;
505       CXXFinalOverriderMap *BaseOverriders = &ComputedBaseOverriders;
506       if (Base->isVirtual()) {
507         CXXFinalOverriderMap *&MyVirtualOverriders = VirtualOverriders[BaseDecl];
508         if (!MyVirtualOverriders) {
509           MyVirtualOverriders = new CXXFinalOverriderMap;
510           Collect(BaseDecl, true, BaseDecl, *MyVirtualOverriders);
511         }
512 
513         BaseOverriders = MyVirtualOverriders;
514       } else
515         Collect(BaseDecl, false, InVirtualSubobject, ComputedBaseOverriders);
516 
517       // Merge the overriders from this base class into our own set of
518       // overriders.
519       for (CXXFinalOverriderMap::iterator OM = BaseOverriders->begin(),
520                                OMEnd = BaseOverriders->end();
521            OM != OMEnd;
522            ++OM) {
523         const CXXMethodDecl *CanonOM
524           = cast<CXXMethodDecl>(OM->first->getCanonicalDecl());
525         Overriders[CanonOM].add(OM->second);
526       }
527     }
528   }
529 
530   for (CXXRecordDecl::method_iterator M = RD->method_begin(),
531                                    MEnd = RD->method_end();
532        M != MEnd;
533        ++M) {
534     // We only care about virtual methods.
535     if (!M->isVirtual())
536       continue;
537 
538     CXXMethodDecl *CanonM = cast<CXXMethodDecl>(M->getCanonicalDecl());
539 
540     if (CanonM->begin_overridden_methods()
541                                        == CanonM->end_overridden_methods()) {
542       // This is a new virtual function that does not override any
543       // other virtual function. Add it to the map of virtual
544       // functions for which we are tracking overridders.
545 
546       // C++ [class.virtual]p2:
547       //   For convenience we say that any virtual function overrides itself.
548       Overriders[CanonM].add(SubobjectNumber,
549                              UniqueVirtualMethod(CanonM, SubobjectNumber,
550                                                  InVirtualSubobject));
551       continue;
552     }
553 
554     // This virtual method overrides other virtual methods, so it does
555     // not add any new slots into the set of overriders. Instead, we
556     // replace entries in the set of overriders with the new
557     // overrider. To do so, we dig down to the original virtual
558     // functions using data recursion and update all of the methods it
559     // overrides.
560     typedef std::pair<CXXMethodDecl::method_iterator,
561                       CXXMethodDecl::method_iterator> OverriddenMethods;
562     SmallVector<OverriddenMethods, 4> Stack;
563     Stack.push_back(std::make_pair(CanonM->begin_overridden_methods(),
564                                    CanonM->end_overridden_methods()));
565     while (!Stack.empty()) {
566       OverriddenMethods OverMethods = Stack.back();
567       Stack.pop_back();
568 
569       for (; OverMethods.first != OverMethods.second; ++OverMethods.first) {
570         const CXXMethodDecl *CanonOM
571           = cast<CXXMethodDecl>((*OverMethods.first)->getCanonicalDecl());
572 
573         // C++ [class.virtual]p2:
574         //   A virtual member function C::vf of a class object S is
575         //   a final overrider unless the most derived class (1.8)
576         //   of which S is a base class subobject (if any) declares
577         //   or inherits another member function that overrides vf.
578         //
579         // Treating this object like the most derived class, we
580         // replace any overrides from base classes with this
581         // overriding virtual function.
582         Overriders[CanonOM].replaceAll(
583                                UniqueVirtualMethod(CanonM, SubobjectNumber,
584                                                    InVirtualSubobject));
585 
586         if (CanonOM->begin_overridden_methods()
587                                        == CanonOM->end_overridden_methods())
588           continue;
589 
590         // Continue recursion to the methods that this virtual method
591         // overrides.
592         Stack.push_back(std::make_pair(CanonOM->begin_overridden_methods(),
593                                        CanonOM->end_overridden_methods()));
594       }
595     }
596 
597     // C++ [class.virtual]p2:
598     //   For convenience we say that any virtual function overrides itself.
599     Overriders[CanonM].add(SubobjectNumber,
600                            UniqueVirtualMethod(CanonM, SubobjectNumber,
601                                                InVirtualSubobject));
602   }
603 }
604 
~FinalOverriderCollector()605 FinalOverriderCollector::~FinalOverriderCollector() {
606   for (llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *>::iterator
607          VO = VirtualOverriders.begin(), VOEnd = VirtualOverriders.end();
608        VO != VOEnd;
609        ++VO)
610     delete VO->second;
611 }
612 
613 void
getFinalOverriders(CXXFinalOverriderMap & FinalOverriders) const614 CXXRecordDecl::getFinalOverriders(CXXFinalOverriderMap &FinalOverriders) const {
615   FinalOverriderCollector Collector;
616   Collector.Collect(this, false, 0, FinalOverriders);
617 
618   // Weed out any final overriders that come from virtual base class
619   // subobjects that were hidden by other subobjects along any path.
620   // This is the final-overrider variant of C++ [class.member.lookup]p10.
621   for (CXXFinalOverriderMap::iterator OM = FinalOverriders.begin(),
622                            OMEnd = FinalOverriders.end();
623        OM != OMEnd;
624        ++OM) {
625     for (OverridingMethods::iterator SO = OM->second.begin(),
626                                   SOEnd = OM->second.end();
627          SO != SOEnd;
628          ++SO) {
629       SmallVector<UniqueVirtualMethod, 4> &Overriding = SO->second;
630       if (Overriding.size() < 2)
631         continue;
632 
633       for (SmallVector<UniqueVirtualMethod, 4>::iterator
634              Pos = Overriding.begin(), PosEnd = Overriding.end();
635            Pos != PosEnd;
636            /* increment in loop */) {
637         if (!Pos->InVirtualSubobject) {
638           ++Pos;
639           continue;
640         }
641 
642         // We have an overriding method in a virtual base class
643         // subobject (or non-virtual base class subobject thereof);
644         // determine whether there exists an other overriding method
645         // in a base class subobject that hides the virtual base class
646         // subobject.
647         bool Hidden = false;
648         for (SmallVector<UniqueVirtualMethod, 4>::iterator
649                OP = Overriding.begin(), OPEnd = Overriding.end();
650              OP != OPEnd && !Hidden;
651              ++OP) {
652           if (Pos == OP)
653             continue;
654 
655           if (OP->Method->getParent()->isVirtuallyDerivedFrom(
656                          const_cast<CXXRecordDecl *>(Pos->InVirtualSubobject)))
657             Hidden = true;
658         }
659 
660         if (Hidden) {
661           // The current overriding function is hidden by another
662           // overriding function; remove this one.
663           Pos = Overriding.erase(Pos);
664           PosEnd = Overriding.end();
665         } else {
666           ++Pos;
667         }
668       }
669     }
670   }
671 }
672 
673 static void
AddIndirectPrimaryBases(const CXXRecordDecl * RD,ASTContext & Context,CXXIndirectPrimaryBaseSet & Bases)674 AddIndirectPrimaryBases(const CXXRecordDecl *RD, ASTContext &Context,
675                         CXXIndirectPrimaryBaseSet& Bases) {
676   // If the record has a virtual primary base class, add it to our set.
677   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
678   if (Layout.isPrimaryBaseVirtual())
679     Bases.insert(Layout.getPrimaryBase());
680 
681   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
682        E = RD->bases_end(); I != E; ++I) {
683     assert(!I->getType()->isDependentType() &&
684            "Cannot get indirect primary bases for class with dependent bases.");
685 
686     const CXXRecordDecl *BaseDecl =
687       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
688 
689     // Only bases with virtual bases participate in computing the
690     // indirect primary virtual base classes.
691     if (BaseDecl->getNumVBases())
692       AddIndirectPrimaryBases(BaseDecl, Context, Bases);
693   }
694 
695 }
696 
697 void
getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet & Bases) const698 CXXRecordDecl::getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const {
699   ASTContext &Context = getASTContext();
700 
701   if (!getNumVBases())
702     return;
703 
704   for (CXXRecordDecl::base_class_const_iterator I = bases_begin(),
705        E = bases_end(); I != E; ++I) {
706     assert(!I->getType()->isDependentType() &&
707            "Cannot get indirect primary bases for class with dependent bases.");
708 
709     const CXXRecordDecl *BaseDecl =
710       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
711 
712     // Only bases with virtual bases participate in computing the
713     // indirect primary virtual base classes.
714     if (BaseDecl->getNumVBases())
715       AddIndirectPrimaryBases(BaseDecl, Context, Bases);
716   }
717 }
718 
719