• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef _ANDROIDFW_INPUT_TRANSPORT_H
18 #define _ANDROIDFW_INPUT_TRANSPORT_H
19 
20 /**
21  * Native input transport.
22  *
23  * The InputChannel provides a mechanism for exchanging InputMessage structures across processes.
24  *
25  * The InputPublisher and InputConsumer each handle one end-point of an input channel.
26  * The InputPublisher is used by the input dispatcher to send events to the application.
27  * The InputConsumer is used by the application to receive events from the input dispatcher.
28  */
29 
30 #include <androidfw/Input.h>
31 #include <utils/Errors.h>
32 #include <utils/Timers.h>
33 #include <utils/RefBase.h>
34 #include <utils/String8.h>
35 #include <utils/Vector.h>
36 #include <utils/BitSet.h>
37 
38 namespace android {
39 
40 /*
41  * Intermediate representation used to send input events and related signals.
42  */
43 struct InputMessage {
44     enum {
45         TYPE_KEY = 1,
46         TYPE_MOTION = 2,
47         TYPE_FINISHED = 3,
48     };
49 
50     struct Header {
51         uint32_t type;
52         uint32_t padding; // 8 byte alignment for the body that follows
53     } header;
54 
55     union Body {
56         struct Key {
57             uint32_t seq;
58             nsecs_t eventTime;
59             int32_t deviceId;
60             int32_t source;
61             int32_t action;
62             int32_t flags;
63             int32_t keyCode;
64             int32_t scanCode;
65             int32_t metaState;
66             int32_t repeatCount;
67             nsecs_t downTime;
68 
sizeInputMessage::Body::Key69             inline size_t size() const {
70                 return sizeof(Key);
71             }
72         } key;
73 
74         struct Motion {
75             uint32_t seq;
76             nsecs_t eventTime;
77             int32_t deviceId;
78             int32_t source;
79             int32_t action;
80             int32_t flags;
81             int32_t metaState;
82             int32_t buttonState;
83             int32_t edgeFlags;
84             nsecs_t downTime;
85             float xOffset;
86             float yOffset;
87             float xPrecision;
88             float yPrecision;
89             size_t pointerCount;
90             struct Pointer {
91                 PointerProperties properties;
92                 PointerCoords coords;
93             } pointers[MAX_POINTERS];
94 
getActionIdInputMessage::Body::Motion95             int32_t getActionId() const {
96                 uint32_t index = (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
97                         >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
98                 return pointers[index].properties.id;
99             }
100 
sizeInputMessage::Body::Motion101             inline size_t size() const {
102                 return sizeof(Motion) - sizeof(Pointer) * MAX_POINTERS
103                         + sizeof(Pointer) * pointerCount;
104             }
105         } motion;
106 
107         struct Finished {
108             uint32_t seq;
109             bool handled;
110 
sizeInputMessage::Body::Finished111             inline size_t size() const {
112                 return sizeof(Finished);
113             }
114         } finished;
115     } body;
116 
117     bool isValid(size_t actualSize) const;
118     size_t size() const;
119 };
120 
121 /*
122  * An input channel consists of a local unix domain socket used to send and receive
123  * input messages across processes.  Each channel has a descriptive name for debugging purposes.
124  *
125  * Each endpoint has its own InputChannel object that specifies its file descriptor.
126  *
127  * The input channel is closed when all references to it are released.
128  */
129 class InputChannel : public RefBase {
130 protected:
131     virtual ~InputChannel();
132 
133 public:
134     InputChannel(const String8& name, int fd);
135 
136     /* Creates a pair of input channels.
137      *
138      * Returns OK on success.
139      */
140     static status_t openInputChannelPair(const String8& name,
141             sp<InputChannel>& outServerChannel, sp<InputChannel>& outClientChannel);
142 
getName()143     inline String8 getName() const { return mName; }
getFd()144     inline int getFd() const { return mFd; }
145 
146     /* Sends a message to the other endpoint.
147      *
148      * If the channel is full then the message is guaranteed not to have been sent at all.
149      * Try again after the consumer has sent a finished signal indicating that it has
150      * consumed some of the pending messages from the channel.
151      *
152      * Returns OK on success.
153      * Returns WOULD_BLOCK if the channel is full.
154      * Returns DEAD_OBJECT if the channel's peer has been closed.
155      * Other errors probably indicate that the channel is broken.
156      */
157     status_t sendMessage(const InputMessage* msg);
158 
159     /* Receives a message sent by the other endpoint.
160      *
161      * If there is no message present, try again after poll() indicates that the fd
162      * is readable.
163      *
164      * Returns OK on success.
165      * Returns WOULD_BLOCK if there is no message present.
166      * Returns DEAD_OBJECT if the channel's peer has been closed.
167      * Other errors probably indicate that the channel is broken.
168      */
169     status_t receiveMessage(InputMessage* msg);
170 
171 private:
172     String8 mName;
173     int mFd;
174 };
175 
176 /*
177  * Publishes input events to an input channel.
178  */
179 class InputPublisher {
180 public:
181     /* Creates a publisher associated with an input channel. */
182     explicit InputPublisher(const sp<InputChannel>& channel);
183 
184     /* Destroys the publisher and releases its input channel. */
185     ~InputPublisher();
186 
187     /* Gets the underlying input channel. */
getChannel()188     inline sp<InputChannel> getChannel() { return mChannel; }
189 
190     /* Publishes a key event to the input channel.
191      *
192      * Returns OK on success.
193      * Returns WOULD_BLOCK if the channel is full.
194      * Returns DEAD_OBJECT if the channel's peer has been closed.
195      * Returns BAD_VALUE if seq is 0.
196      * Other errors probably indicate that the channel is broken.
197      */
198     status_t publishKeyEvent(
199             uint32_t seq,
200             int32_t deviceId,
201             int32_t source,
202             int32_t action,
203             int32_t flags,
204             int32_t keyCode,
205             int32_t scanCode,
206             int32_t metaState,
207             int32_t repeatCount,
208             nsecs_t downTime,
209             nsecs_t eventTime);
210 
211     /* Publishes a motion event to the input channel.
212      *
213      * Returns OK on success.
214      * Returns WOULD_BLOCK if the channel is full.
215      * Returns DEAD_OBJECT if the channel's peer has been closed.
216      * Returns BAD_VALUE if seq is 0 or if pointerCount is less than 1 or greater than MAX_POINTERS.
217      * Other errors probably indicate that the channel is broken.
218      */
219     status_t publishMotionEvent(
220             uint32_t seq,
221             int32_t deviceId,
222             int32_t source,
223             int32_t action,
224             int32_t flags,
225             int32_t edgeFlags,
226             int32_t metaState,
227             int32_t buttonState,
228             float xOffset,
229             float yOffset,
230             float xPrecision,
231             float yPrecision,
232             nsecs_t downTime,
233             nsecs_t eventTime,
234             size_t pointerCount,
235             const PointerProperties* pointerProperties,
236             const PointerCoords* pointerCoords);
237 
238     /* Receives the finished signal from the consumer in reply to the original dispatch signal.
239      * If a signal was received, returns the message sequence number,
240      * and whether the consumer handled the message.
241      *
242      * The returned sequence number is never 0 unless the operation failed.
243      *
244      * Returns OK on success.
245      * Returns WOULD_BLOCK if there is no signal present.
246      * Returns DEAD_OBJECT if the channel's peer has been closed.
247      * Other errors probably indicate that the channel is broken.
248      */
249     status_t receiveFinishedSignal(uint32_t* outSeq, bool* outHandled);
250 
251 private:
252     sp<InputChannel> mChannel;
253 };
254 
255 /*
256  * Consumes input events from an input channel.
257  */
258 class InputConsumer {
259 public:
260     /* Creates a consumer associated with an input channel. */
261     explicit InputConsumer(const sp<InputChannel>& channel);
262 
263     /* Destroys the consumer and releases its input channel. */
264     ~InputConsumer();
265 
266     /* Gets the underlying input channel. */
getChannel()267     inline sp<InputChannel> getChannel() { return mChannel; }
268 
269     /* Consumes an input event from the input channel and copies its contents into
270      * an InputEvent object created using the specified factory.
271      *
272      * Tries to combine a series of move events into larger batches whenever possible.
273      *
274      * If consumeBatches is false, then defers consuming pending batched events if it
275      * is possible for additional samples to be added to them later.  Call hasPendingBatch()
276      * to determine whether a pending batch is available to be consumed.
277      *
278      * If consumeBatches is true, then events are still batched but they are consumed
279      * immediately as soon as the input channel is exhausted.
280      *
281      * The frameTime parameter specifies the time when the current display frame started
282      * rendering in the CLOCK_MONOTONIC time base, or -1 if unknown.
283      *
284      * The returned sequence number is never 0 unless the operation failed.
285      *
286      * Returns OK on success.
287      * Returns WOULD_BLOCK if there is no event present.
288      * Returns DEAD_OBJECT if the channel's peer has been closed.
289      * Returns NO_MEMORY if the event could not be created.
290      * Other errors probably indicate that the channel is broken.
291      */
292     status_t consume(InputEventFactoryInterface* factory, bool consumeBatches,
293             nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
294 
295     /* Sends a finished signal to the publisher to inform it that the message
296      * with the specified sequence number has finished being process and whether
297      * the message was handled by the consumer.
298      *
299      * Returns OK on success.
300      * Returns BAD_VALUE if seq is 0.
301      * Other errors probably indicate that the channel is broken.
302      */
303     status_t sendFinishedSignal(uint32_t seq, bool handled);
304 
305     /* Returns true if there is a deferred event waiting.
306      *
307      * Should be called after calling consume() to determine whether the consumer
308      * has a deferred event to be processed.  Deferred events are somewhat special in
309      * that they have already been removed from the input channel.  If the input channel
310      * becomes empty, the client may need to do extra work to ensure that it processes
311      * the deferred event despite the fact that the input channel's file descriptor
312      * is not readable.
313      *
314      * One option is simply to call consume() in a loop until it returns WOULD_BLOCK.
315      * This guarantees that all deferred events will be processed.
316      *
317      * Alternately, the caller can call hasDeferredEvent() to determine whether there is
318      * a deferred event waiting and then ensure that its event loop wakes up at least
319      * one more time to consume the deferred event.
320      */
321     bool hasDeferredEvent() const;
322 
323     /* Returns true if there is a pending batch.
324      *
325      * Should be called after calling consume() with consumeBatches == false to determine
326      * whether consume() should be called again later on with consumeBatches == true.
327      */
328     bool hasPendingBatch() const;
329 
330 private:
331     // True if touch resampling is enabled.
332     const bool mResampleTouch;
333 
334     // The input channel.
335     sp<InputChannel> mChannel;
336 
337     // The current input message.
338     InputMessage mMsg;
339 
340     // True if mMsg contains a valid input message that was deferred from the previous
341     // call to consume and that still needs to be handled.
342     bool mMsgDeferred;
343 
344     // Batched motion events per device and source.
345     struct Batch {
346         Vector<InputMessage> samples;
347     };
348     Vector<Batch> mBatches;
349 
350     // Touch state per device and source, only for sources of class pointer.
351     struct History {
352         nsecs_t eventTime;
353         BitSet32 idBits;
354         int32_t idToIndex[MAX_POINTER_ID + 1];
355         PointerCoords pointers[MAX_POINTERS];
356 
initializeFromHistory357         void initializeFrom(const InputMessage* msg) {
358             eventTime = msg->body.motion.eventTime;
359             idBits.clear();
360             for (size_t i = 0; i < msg->body.motion.pointerCount; i++) {
361                 uint32_t id = msg->body.motion.pointers[i].properties.id;
362                 idBits.markBit(id);
363                 idToIndex[id] = i;
364                 pointers[i].copyFrom(msg->body.motion.pointers[i].coords);
365             }
366         }
367 
getPointerByIdHistory368         const PointerCoords& getPointerById(uint32_t id) const {
369             return pointers[idToIndex[id]];
370         }
371     };
372     struct TouchState {
373         int32_t deviceId;
374         int32_t source;
375         size_t historyCurrent;
376         size_t historySize;
377         History history[2];
378         History lastResample;
379 
initializeTouchState380         void initialize(int32_t deviceId, int32_t source) {
381             this->deviceId = deviceId;
382             this->source = source;
383             historyCurrent = 0;
384             historySize = 0;
385             lastResample.eventTime = 0;
386             lastResample.idBits.clear();
387         }
388 
addHistoryTouchState389         void addHistory(const InputMessage* msg) {
390             historyCurrent ^= 1;
391             if (historySize < 2) {
392                 historySize += 1;
393             }
394             history[historyCurrent].initializeFrom(msg);
395         }
396 
getHistoryTouchState397         const History* getHistory(size_t index) const {
398             return &history[(historyCurrent + index) & 1];
399         }
400     };
401     Vector<TouchState> mTouchStates;
402 
403     // Chain of batched sequence numbers.  When multiple input messages are combined into
404     // a batch, we append a record here that associates the last sequence number in the
405     // batch with the previous one.  When the finished signal is sent, we traverse the
406     // chain to individually finish all input messages that were part of the batch.
407     struct SeqChain {
408         uint32_t seq;   // sequence number of batched input message
409         uint32_t chain; // sequence number of previous batched input message
410     };
411     Vector<SeqChain> mSeqChains;
412 
413     status_t consumeBatch(InputEventFactoryInterface* factory,
414             nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
415     status_t consumeSamples(InputEventFactoryInterface* factory,
416             Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent);
417 
418     void updateTouchState(InputMessage* msg);
419     void rewriteMessage(const TouchState& state, InputMessage* msg);
420     void resampleTouchState(nsecs_t frameTime, MotionEvent* event,
421             const InputMessage *next);
422 
423     ssize_t findBatch(int32_t deviceId, int32_t source) const;
424     ssize_t findTouchState(int32_t deviceId, int32_t source) const;
425 
426     status_t sendUnchainedFinishedSignal(uint32_t seq, bool handled);
427 
428     static void initializeKeyEvent(KeyEvent* event, const InputMessage* msg);
429     static void initializeMotionEvent(MotionEvent* event, const InputMessage* msg);
430     static void addSample(MotionEvent* event, const InputMessage* msg);
431     static bool canAddSample(const Batch& batch, const InputMessage* msg);
432     static ssize_t findSampleNoLaterThan(const Batch& batch, nsecs_t time);
433     static bool shouldResampleTool(int32_t toolType);
434 
435     static bool isTouchResamplingEnabled();
436 };
437 
438 } // namespace android
439 
440 #endif // _ANDROIDFW_INPUT_TRANSPORT_H
441