• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkMatrix_DEFINED
11 #define SkMatrix_DEFINED
12 
13 #include "SkRect.h"
14 
15 class SkString;
16 
17 #ifdef SK_SCALAR_IS_FLOAT
18     typedef SkScalar SkPersp;
19     #define SkScalarToPersp(x) (x)
20     #define SkPerspToScalar(x) (x)
21 #else
22     typedef SkFract SkPersp;
23     #define SkScalarToPersp(x) SkFixedToFract(x)
24     #define SkPerspToScalar(x) SkFractToFixed(x)
25 #endif
26 
27 /** \class SkMatrix
28 
29     The SkMatrix class holds a 3x3 matrix for transforming coordinates.
30     SkMatrix does not have a constructor, so it must be explicitly initialized
31     using either reset() - to construct an identity matrix, or one of the set
32     functions (e.g. setTranslate, setRotate, etc.).
33 */
34 class SK_API SkMatrix {
35 public:
36     /** Enum of bit fields for the mask return by getType().
37         Use this to identify the complexity of the matrix.
38     */
39     enum TypeMask {
40         kIdentity_Mask      = 0,
41         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
42         kScale_Mask         = 0x02,  //!< set if the matrix has X or Y scale
43         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
44         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
45     };
46 
47     /** Returns a mask bitfield describing the types of transformations
48         that the matrix will perform. This information is used by routines
49         like mapPoints, to optimize its inner loops to only perform as much
50         arithmetic as is necessary.
51     */
getType()52     TypeMask getType() const {
53         if (fTypeMask & kUnknown_Mask) {
54             fTypeMask = this->computeTypeMask();
55         }
56         // only return the public masks
57         return (TypeMask)(fTypeMask & 0xF);
58     }
59 
60     /** Returns true if the matrix is identity.
61     */
isIdentity()62     bool isIdentity() const {
63         return this->getType() == 0;
64     }
65 
66     /** Returns true if will map a rectangle to another rectangle. This can be
67         true if the matrix is identity, scale-only, or rotates a multiple of
68         90 degrees.
69     */
rectStaysRect()70     bool rectStaysRect() const {
71         if (fTypeMask & kUnknown_Mask) {
72             fTypeMask = this->computeTypeMask();
73         }
74         return (fTypeMask & kRectStaysRect_Mask) != 0;
75     }
76     // alias for rectStaysRect()
preservesAxisAlignment()77     bool preservesAxisAlignment() const { return this->rectStaysRect(); }
78 
79     /**
80      *  Returns true if the matrix contains perspective elements.
81      */
hasPerspective()82     bool hasPerspective() const {
83         return SkToBool(this->getPerspectiveTypeMaskOnly() &
84                         kPerspective_Mask);
85     }
86 
87     enum {
88         kMScaleX,
89         kMSkewX,
90         kMTransX,
91         kMSkewY,
92         kMScaleY,
93         kMTransY,
94         kMPersp0,
95         kMPersp1,
96         kMPersp2
97     };
98 
99     /** Affine arrays are in column major order
100         because that's how PDF and XPS like it.
101      */
102     enum {
103         kAScaleX,
104         kASkewY,
105         kASkewX,
106         kAScaleY,
107         kATransX,
108         kATransY
109     };
110 
111     SkScalar operator[](int index) const {
112         SkASSERT((unsigned)index < 9);
113         return fMat[index];
114     }
115 
get(int index)116     SkScalar get(int index) const {
117         SkASSERT((unsigned)index < 9);
118         return fMat[index];
119     }
120 
getScaleX()121     SkScalar getScaleX() const { return fMat[kMScaleX]; }
getScaleY()122     SkScalar getScaleY() const { return fMat[kMScaleY]; }
getSkewY()123     SkScalar getSkewY() const { return fMat[kMSkewY]; }
getSkewX()124     SkScalar getSkewX() const { return fMat[kMSkewX]; }
getTranslateX()125     SkScalar getTranslateX() const { return fMat[kMTransX]; }
getTranslateY()126     SkScalar getTranslateY() const { return fMat[kMTransY]; }
getPerspX()127     SkPersp getPerspX() const { return fMat[kMPersp0]; }
getPerspY()128     SkPersp getPerspY() const { return fMat[kMPersp1]; }
129 
130     SkScalar& operator[](int index) {
131         SkASSERT((unsigned)index < 9);
132         this->setTypeMask(kUnknown_Mask);
133         return fMat[index];
134     }
135 
set(int index,SkScalar value)136     void set(int index, SkScalar value) {
137         SkASSERT((unsigned)index < 9);
138         fMat[index] = value;
139         this->setTypeMask(kUnknown_Mask);
140     }
141 
setScaleX(SkScalar v)142     void setScaleX(SkScalar v) { this->set(kMScaleX, v); }
setScaleY(SkScalar v)143     void setScaleY(SkScalar v) { this->set(kMScaleY, v); }
setSkewY(SkScalar v)144     void setSkewY(SkScalar v) { this->set(kMSkewY, v); }
setSkewX(SkScalar v)145     void setSkewX(SkScalar v) { this->set(kMSkewX, v); }
setTranslateX(SkScalar v)146     void setTranslateX(SkScalar v) { this->set(kMTransX, v); }
setTranslateY(SkScalar v)147     void setTranslateY(SkScalar v) { this->set(kMTransY, v); }
setPerspX(SkPersp v)148     void setPerspX(SkPersp v) { this->set(kMPersp0, v); }
setPerspY(SkPersp v)149     void setPerspY(SkPersp v) { this->set(kMPersp1, v); }
150 
setAll(SkScalar scaleX,SkScalar skewX,SkScalar transX,SkScalar skewY,SkScalar scaleY,SkScalar transY,SkPersp persp0,SkPersp persp1,SkPersp persp2)151     void setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
152                 SkScalar skewY, SkScalar scaleY, SkScalar transY,
153                 SkPersp persp0, SkPersp persp1, SkPersp persp2) {
154         fMat[kMScaleX] = scaleX;
155         fMat[kMSkewX]  = skewX;
156         fMat[kMTransX] = transX;
157         fMat[kMSkewY]  = skewY;
158         fMat[kMScaleY] = scaleY;
159         fMat[kMTransY] = transY;
160         fMat[kMPersp0] = persp0;
161         fMat[kMPersp1] = persp1;
162         fMat[kMPersp2] = persp2;
163         this->setTypeMask(kUnknown_Mask);
164     }
165 
166     /** Set the matrix to identity
167     */
168     void reset();
169     // alias for reset()
setIdentity()170     void setIdentity() { this->reset(); }
171 
172     /** Set the matrix to translate by (dx, dy).
173     */
174     void setTranslate(SkScalar dx, SkScalar dy);
175     /** Set the matrix to scale by sx and sy, with a pivot point at (px, py).
176         The pivot point is the coordinate that should remain unchanged by the
177         specified transformation.
178     */
179     void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
180     /** Set the matrix to scale by sx and sy.
181     */
182     void setScale(SkScalar sx, SkScalar sy);
183     /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't
184         touch the matrix if either divx or divy is zero.
185     */
186     bool setIDiv(int divx, int divy);
187     /** Set the matrix to rotate by the specified number of degrees, with a
188         pivot point at (px, py). The pivot point is the coordinate that should
189         remain unchanged by the specified transformation.
190     */
191     void setRotate(SkScalar degrees, SkScalar px, SkScalar py);
192     /** Set the matrix to rotate about (0,0) by the specified number of degrees.
193     */
194     void setRotate(SkScalar degrees);
195     /** Set the matrix to rotate by the specified sine and cosine values, with
196         a pivot point at (px, py). The pivot point is the coordinate that
197         should remain unchanged by the specified transformation.
198     */
199     void setSinCos(SkScalar sinValue, SkScalar cosValue,
200                    SkScalar px, SkScalar py);
201     /** Set the matrix to rotate by the specified sine and cosine values.
202     */
203     void setSinCos(SkScalar sinValue, SkScalar cosValue);
204     /** Set the matrix to skew by sx and sy, with a pivot point at (px, py).
205         The pivot point is the coordinate that should remain unchanged by the
206         specified transformation.
207     */
208     void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
209     /** Set the matrix to skew by sx and sy.
210     */
211     void setSkew(SkScalar kx, SkScalar ky);
212     /** Set the matrix to the concatenation of the two specified matrices,
213         returning true if the the result can be represented. Either of the
214         two matrices may also be the target matrix. *this = a * b;
215     */
216     bool setConcat(const SkMatrix& a, const SkMatrix& b);
217 
218     /** Preconcats the matrix with the specified translation.
219         M' = M * T(dx, dy)
220     */
221     bool preTranslate(SkScalar dx, SkScalar dy);
222     /** Preconcats the matrix with the specified scale.
223         M' = M * S(sx, sy, px, py)
224     */
225     bool preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
226     /** Preconcats the matrix with the specified scale.
227         M' = M * S(sx, sy)
228     */
229     bool preScale(SkScalar sx, SkScalar sy);
230     /** Preconcats the matrix with the specified rotation.
231         M' = M * R(degrees, px, py)
232     */
233     bool preRotate(SkScalar degrees, SkScalar px, SkScalar py);
234     /** Preconcats the matrix with the specified rotation.
235         M' = M * R(degrees)
236     */
237     bool preRotate(SkScalar degrees);
238     /** Preconcats the matrix with the specified skew.
239         M' = M * K(kx, ky, px, py)
240     */
241     bool preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
242     /** Preconcats the matrix with the specified skew.
243         M' = M * K(kx, ky)
244     */
245     bool preSkew(SkScalar kx, SkScalar ky);
246     /** Preconcats the matrix with the specified matrix.
247         M' = M * other
248     */
249     bool preConcat(const SkMatrix& other);
250 
251     /** Postconcats the matrix with the specified translation.
252         M' = T(dx, dy) * M
253     */
254     bool postTranslate(SkScalar dx, SkScalar dy);
255     /** Postconcats the matrix with the specified scale.
256         M' = S(sx, sy, px, py) * M
257     */
258     bool postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
259     /** Postconcats the matrix with the specified scale.
260         M' = S(sx, sy) * M
261     */
262     bool postScale(SkScalar sx, SkScalar sy);
263     /** Postconcats the matrix by dividing it by the specified integers.
264         M' = S(1/divx, 1/divy, 0, 0) * M
265     */
266     bool postIDiv(int divx, int divy);
267     /** Postconcats the matrix with the specified rotation.
268         M' = R(degrees, px, py) * M
269     */
270     bool postRotate(SkScalar degrees, SkScalar px, SkScalar py);
271     /** Postconcats the matrix with the specified rotation.
272         M' = R(degrees) * M
273     */
274     bool postRotate(SkScalar degrees);
275     /** Postconcats the matrix with the specified skew.
276         M' = K(kx, ky, px, py) * M
277     */
278     bool postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
279     /** Postconcats the matrix with the specified skew.
280         M' = K(kx, ky) * M
281     */
282     bool postSkew(SkScalar kx, SkScalar ky);
283     /** Postconcats the matrix with the specified matrix.
284         M' = other * M
285     */
286     bool postConcat(const SkMatrix& other);
287 
288     enum ScaleToFit {
289         /**
290          * Scale in X and Y independently, so that src matches dst exactly.
291          * This may change the aspect ratio of the src.
292          */
293         kFill_ScaleToFit,
294         /**
295          * Compute a scale that will maintain the original src aspect ratio,
296          * but will also ensure that src fits entirely inside dst. At least one
297          * axis (X or Y) will fit exactly. kStart aligns the result to the
298          * left and top edges of dst.
299          */
300         kStart_ScaleToFit,
301         /**
302          * Compute a scale that will maintain the original src aspect ratio,
303          * but will also ensure that src fits entirely inside dst. At least one
304          * axis (X or Y) will fit exactly. The result is centered inside dst.
305          */
306         kCenter_ScaleToFit,
307         /**
308          * Compute a scale that will maintain the original src aspect ratio,
309          * but will also ensure that src fits entirely inside dst. At least one
310          * axis (X or Y) will fit exactly. kEnd aligns the result to the
311          * right and bottom edges of dst.
312          */
313         kEnd_ScaleToFit
314     };
315 
316     /** Set the matrix to the scale and translate values that map the source
317         rectangle to the destination rectangle, returning true if the the result
318         can be represented.
319         @param src the source rectangle to map from.
320         @param dst the destination rectangle to map to.
321         @param stf the ScaleToFit option
322         @return true if the matrix can be represented by the rectangle mapping.
323     */
324     bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
325 
326     /** Set the matrix such that the specified src points would map to the
327         specified dst points. count must be within [0..4].
328         @param src  The array of src points
329         @param dst  The array of dst points
330         @param count The number of points to use for the transformation
331         @return true if the matrix was set to the specified transformation
332     */
333     bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
334 
335     /** If this matrix can be inverted, return true and if inverse is not null,
336         set inverse to be the inverse of this matrix. If this matrix cannot be
337         inverted, ignore inverse and return false
338     */
339     bool invert(SkMatrix* inverse) const;
340 
341     /** Fills the passed array with affine identity values
342         in column major order.
343         @param affine  The array to fill with affine identity values.
344         Must not be NULL.
345     */
346     static void SetAffineIdentity(SkScalar affine[6]);
347 
348     /** Fills the passed array with the affine values in column major order.
349         If the matrix is a perspective transform, returns false
350         and does not change the passed array.
351         @param affine  The array to fill with affine values. Ignored if NULL.
352     */
353     bool asAffine(SkScalar affine[6]) const;
354 
355     /** Apply this matrix to the array of points specified by src, and write
356         the transformed points into the array of points specified by dst.
357         dst[] = M * src[]
358         @param dst  Where the transformed coordinates are written. It must
359                     contain at least count entries
360         @param src  The original coordinates that are to be transformed. It
361                     must contain at least count entries
362         @param count The number of points in src to read, and then transform
363                      into dst.
364     */
365     void mapPoints(SkPoint dst[], const SkPoint src[], int count) const;
366 
367     /** Apply this matrix to the array of points, overwriting it with the
368         transformed values.
369         dst[] = M * pts[]
370         @param pts  The points to be transformed. It must contain at least
371                     count entries
372         @param count The number of points in pts.
373     */
mapPoints(SkPoint pts[],int count)374     void mapPoints(SkPoint pts[], int count) const {
375         this->mapPoints(pts, pts, count);
376     }
377 
378     /** Like mapPoints but with custom byte stride between the points. Stride
379      *  should be a multiple of sizeof(SkScalar).
380      */
mapPointsWithStride(SkPoint pts[],size_t stride,int count)381     void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const {
382         SkASSERT(stride >= sizeof(SkPoint));
383         SkASSERT(0 == stride % sizeof(SkScalar));
384         for (int i = 0; i < count; ++i) {
385             this->mapPoints(pts, pts, 1);
386             pts = (SkPoint*)((intptr_t)pts + stride);
387         }
388     }
389 
390     /** Like mapPoints but with custom byte stride between the points.
391     */
mapPointsWithStride(SkPoint dst[],SkPoint src[],size_t stride,int count)392     void mapPointsWithStride(SkPoint dst[], SkPoint src[],
393                              size_t stride, int count) const {
394         SkASSERT(stride >= sizeof(SkPoint));
395         SkASSERT(0 == stride % sizeof(SkScalar));
396         for (int i = 0; i < count; ++i) {
397             this->mapPoints(dst, src, 1);
398             src = (SkPoint*)((intptr_t)src + stride);
399             dst = (SkPoint*)((intptr_t)dst + stride);
400         }
401     }
402 
mapXY(SkScalar x,SkScalar y,SkPoint * result)403     void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
404         SkASSERT(result);
405         this->getMapXYProc()(*this, x, y, result);
406     }
407 
408     /** Apply this matrix to the array of vectors specified by src, and write
409         the transformed vectors into the array of vectors specified by dst.
410         This is similar to mapPoints, but ignores any translation in the matrix.
411         @param dst  Where the transformed coordinates are written. It must
412                     contain at least count entries
413         @param src  The original coordinates that are to be transformed. It
414                     must contain at least count entries
415         @param count The number of vectors in src to read, and then transform
416                      into dst.
417     */
418     void mapVectors(SkVector dst[], const SkVector src[], int count) const;
419 
420     /** Apply this matrix to the array of vectors specified by src, and write
421         the transformed vectors into the array of vectors specified by dst.
422         This is similar to mapPoints, but ignores any translation in the matrix.
423         @param vecs The vectors to be transformed. It must contain at least
424                     count entries
425         @param count The number of vectors in vecs.
426     */
mapVectors(SkVector vecs[],int count)427     void mapVectors(SkVector vecs[], int count) const {
428         this->mapVectors(vecs, vecs, count);
429     }
430 
431     /** Apply this matrix to the src rectangle, and write the transformed
432         rectangle into dst. This is accomplished by transforming the 4 corners
433         of src, and then setting dst to the bounds of those points.
434         @param dst  Where the transformed rectangle is written.
435         @param src  The original rectangle to be transformed.
436         @return the result of calling rectStaysRect()
437     */
438     bool mapRect(SkRect* dst, const SkRect& src) const;
439 
440     /** Apply this matrix to the rectangle, and write the transformed rectangle
441         back into it. This is accomplished by transforming the 4 corners of
442         rect, and then setting it to the bounds of those points
443         @param rect The rectangle to transform.
444         @return the result of calling rectStaysRect()
445     */
mapRect(SkRect * rect)446     bool mapRect(SkRect* rect) const {
447         return this->mapRect(rect, *rect);
448     }
449 
450     /** Return the mean radius of a circle after it has been mapped by
451         this matrix. NOTE: in perspective this value assumes the circle
452         has its center at the origin.
453     */
454     SkScalar mapRadius(SkScalar radius) const;
455 
456     typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
457                                  SkPoint* result);
458 
GetMapXYProc(TypeMask mask)459     static MapXYProc GetMapXYProc(TypeMask mask) {
460         SkASSERT((mask & ~kAllMasks) == 0);
461         return gMapXYProcs[mask & kAllMasks];
462     }
463 
getMapXYProc()464     MapXYProc getMapXYProc() const {
465         return GetMapXYProc(this->getType());
466     }
467 
468     typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
469                                   const SkPoint src[], int count);
470 
GetMapPtsProc(TypeMask mask)471     static MapPtsProc GetMapPtsProc(TypeMask mask) {
472         SkASSERT((mask & ~kAllMasks) == 0);
473         return gMapPtsProcs[mask & kAllMasks];
474     }
475 
getMapPtsProc()476     MapPtsProc getMapPtsProc() const {
477         return GetMapPtsProc(this->getType());
478     }
479 
480     /** If the matrix can be stepped in X (not complex perspective)
481         then return true and if step[XY] is not null, return the step[XY] value.
482         If it cannot, return false and ignore step.
483     */
484     bool fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const;
485 
486 #ifdef SK_SCALAR_IS_FIXED
487     friend bool operator==(const SkMatrix& a, const SkMatrix& b) {
488         return memcmp(a.fMat, b.fMat, sizeof(a.fMat)) == 0;
489     }
490 
491     friend bool operator!=(const SkMatrix& a, const SkMatrix& b) {
492         return memcmp(a.fMat, b.fMat, sizeof(a.fMat)) != 0;
493     }
494 #else
495     friend bool operator==(const SkMatrix& a, const SkMatrix& b);
496     friend bool operator!=(const SkMatrix& a, const SkMatrix& b) {
497         return !(a == b);
498     }
499 #endif
500 
501     enum {
502         // flatten/unflatten will never return a value larger than this
503         kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t)
504     };
505     // return the number of bytes written, whether or not buffer is null
506     uint32_t flatten(void* buffer) const;
507     // return the number of bytes read
508     uint32_t unflatten(const void* buffer);
509 
510     void dump() const;
511     void toDumpString(SkString*) const;
512 
513     /**
514      * Calculates the maximum stretching factor of the matrix. If the matrix has
515      * perspective -1 is returned.
516      *
517      * @return maximum strecthing factor
518      */
519     SkScalar getMaxStretch() const;
520 
521     /**
522      *  Return a reference to a const identity matrix
523      */
524     static const SkMatrix& I();
525 
526     /**
527      *  Return a reference to a const matrix that is "invalid", one that could
528      *  never be used.
529      */
530     static const SkMatrix& InvalidMatrix();
531 
532     /**
533      * Testing routine; the matrix's type cache should never need to be
534      * manually invalidated during normal use.
535      */
dirtyMatrixTypeCache()536     void dirtyMatrixTypeCache() {
537         this->setTypeMask(kUnknown_Mask);
538     }
539 
540 private:
541     enum {
542         /** Set if the matrix will map a rectangle to another rectangle. This
543             can be true if the matrix is scale-only, or rotates a multiple of
544             90 degrees. This bit is not set if the matrix is identity.
545 
546             This bit will be set on identity matrices
547         */
548         kRectStaysRect_Mask = 0x10,
549 
550         /** Set if the perspective bit is valid even though the rest of
551             the matrix is Unknown.
552         */
553         kOnlyPerspectiveValid_Mask = 0x40,
554 
555         kUnknown_Mask = 0x80,
556 
557         kORableMasks =  kTranslate_Mask |
558                         kScale_Mask |
559                         kAffine_Mask |
560                         kPerspective_Mask,
561 
562         kAllMasks = kTranslate_Mask |
563                     kScale_Mask |
564                     kAffine_Mask |
565                     kPerspective_Mask |
566                     kRectStaysRect_Mask
567     };
568 
569     SkScalar        fMat[9];
570     mutable uint8_t fTypeMask;
571 
572     uint8_t computeTypeMask() const;
573     uint8_t computePerspectiveTypeMask() const;
574 
setTypeMask(int mask)575     void setTypeMask(int mask) {
576         // allow kUnknown or a valid mask
577         SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
578                  ((kUnknown_Mask | kOnlyPerspectiveValid_Mask | kPerspective_Mask) & mask)
579                  == mask);
580         fTypeMask = SkToU8(mask);
581     }
582 
orTypeMask(int mask)583     void orTypeMask(int mask) {
584         SkASSERT((mask & kORableMasks) == mask);
585         fTypeMask = SkToU8(fTypeMask | mask);
586     }
587 
clearTypeMask(int mask)588     void clearTypeMask(int mask) {
589         // only allow a valid mask
590         SkASSERT((mask & kAllMasks) == mask);
591         fTypeMask &= ~mask;
592     }
593 
getPerspectiveTypeMaskOnly()594     TypeMask getPerspectiveTypeMaskOnly() const {
595         if ((fTypeMask & kUnknown_Mask) &&
596             !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
597             fTypeMask = this->computePerspectiveTypeMask();
598         }
599         return (TypeMask)(fTypeMask & 0xF);
600     }
601 
602     /** Returns true if we already know that the matrix is identity;
603         false otherwise.
604     */
isTriviallyIdentity()605     bool isTriviallyIdentity() const {
606         if (fTypeMask & kUnknown_Mask) {
607             return false;
608         }
609         return ((fTypeMask & 0xF) == 0);
610     }
611 
612     static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
613     static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
614     static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
615 
616     static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
617     static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
618     static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
619     static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
620     static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
621     static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
622     static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
623 
624     static const MapXYProc gMapXYProcs[];
625 
626     static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
627     static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
628     static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
629     static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
630                                int count);
631     static void Rot_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
632     static void RotTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
633                              int count);
634     static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
635 
636     static const MapPtsProc gMapPtsProcs[];
637 
638     friend class SkPerspIter;
639 };
640 
641 #endif
642