• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "mcexpr"
11 #include "llvm/MC/MCExpr.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringSwitch.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCObjectWriter.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24 
25 namespace {
26 namespace stats {
27 STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
28 }
29 }
30 
print(raw_ostream & OS) const31 void MCExpr::print(raw_ostream &OS) const {
32   switch (getKind()) {
33   case MCExpr::Target:
34     return cast<MCTargetExpr>(this)->PrintImpl(OS);
35   case MCExpr::Constant:
36     OS << cast<MCConstantExpr>(*this).getValue();
37     return;
38 
39   case MCExpr::SymbolRef: {
40     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
41     const MCSymbol &Sym = SRE.getSymbol();
42     // Parenthesize names that start with $ so that they don't look like
43     // absolute names.
44     bool UseParens = Sym.getName()[0] == '$';
45 
46     if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_HA16 ||
47         SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_LO16) {
48       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
49       UseParens = true;
50     }
51 
52     if (UseParens)
53       OS << '(' << Sym << ')';
54     else
55       OS << Sym;
56 
57     if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT ||
58         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD ||
59         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT ||
60         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF ||
61         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF ||
62         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF ||
63         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TARGET1)
64       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
65     else if (SRE.getKind() != MCSymbolRefExpr::VK_None &&
66              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_HA16 &&
67              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_LO16)
68       OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
69 
70     return;
71   }
72 
73   case MCExpr::Unary: {
74     const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
75     switch (UE.getOpcode()) {
76     case MCUnaryExpr::LNot:  OS << '!'; break;
77     case MCUnaryExpr::Minus: OS << '-'; break;
78     case MCUnaryExpr::Not:   OS << '~'; break;
79     case MCUnaryExpr::Plus:  OS << '+'; break;
80     }
81     OS << *UE.getSubExpr();
82     return;
83   }
84 
85   case MCExpr::Binary: {
86     const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
87 
88     // Only print parens around the LHS if it is non-trivial.
89     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
90       OS << *BE.getLHS();
91     } else {
92       OS << '(' << *BE.getLHS() << ')';
93     }
94 
95     switch (BE.getOpcode()) {
96     case MCBinaryExpr::Add:
97       // Print "X-42" instead of "X+-42".
98       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
99         if (RHSC->getValue() < 0) {
100           OS << RHSC->getValue();
101           return;
102         }
103       }
104 
105       OS <<  '+';
106       break;
107     case MCBinaryExpr::And:  OS <<  '&'; break;
108     case MCBinaryExpr::Div:  OS <<  '/'; break;
109     case MCBinaryExpr::EQ:   OS << "=="; break;
110     case MCBinaryExpr::GT:   OS <<  '>'; break;
111     case MCBinaryExpr::GTE:  OS << ">="; break;
112     case MCBinaryExpr::LAnd: OS << "&&"; break;
113     case MCBinaryExpr::LOr:  OS << "||"; break;
114     case MCBinaryExpr::LT:   OS <<  '<'; break;
115     case MCBinaryExpr::LTE:  OS << "<="; break;
116     case MCBinaryExpr::Mod:  OS <<  '%'; break;
117     case MCBinaryExpr::Mul:  OS <<  '*'; break;
118     case MCBinaryExpr::NE:   OS << "!="; break;
119     case MCBinaryExpr::Or:   OS <<  '|'; break;
120     case MCBinaryExpr::Shl:  OS << "<<"; break;
121     case MCBinaryExpr::Shr:  OS << ">>"; break;
122     case MCBinaryExpr::Sub:  OS <<  '-'; break;
123     case MCBinaryExpr::Xor:  OS <<  '^'; break;
124     }
125 
126     // Only print parens around the LHS if it is non-trivial.
127     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
128       OS << *BE.getRHS();
129     } else {
130       OS << '(' << *BE.getRHS() << ')';
131     }
132     return;
133   }
134   }
135 
136   llvm_unreachable("Invalid expression kind!");
137 }
138 
dump() const139 void MCExpr::dump() const {
140   print(dbgs());
141   dbgs() << '\n';
142 }
143 
144 /* *** */
145 
Create(Opcode Opc,const MCExpr * LHS,const MCExpr * RHS,MCContext & Ctx)146 const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
147                                          const MCExpr *RHS, MCContext &Ctx) {
148   return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
149 }
150 
Create(Opcode Opc,const MCExpr * Expr,MCContext & Ctx)151 const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
152                                        MCContext &Ctx) {
153   return new (Ctx) MCUnaryExpr(Opc, Expr);
154 }
155 
Create(int64_t Value,MCContext & Ctx)156 const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
157   return new (Ctx) MCConstantExpr(Value);
158 }
159 
160 /* *** */
161 
Create(const MCSymbol * Sym,VariantKind Kind,MCContext & Ctx)162 const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
163                                                VariantKind Kind,
164                                                MCContext &Ctx) {
165   return new (Ctx) MCSymbolRefExpr(Sym, Kind);
166 }
167 
Create(StringRef Name,VariantKind Kind,MCContext & Ctx)168 const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind,
169                                                MCContext &Ctx) {
170   return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx);
171 }
172 
getVariantKindName(VariantKind Kind)173 StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
174   switch (Kind) {
175   case VK_Invalid: return "<<invalid>>";
176   case VK_None: return "<<none>>";
177 
178   case VK_GOT: return "GOT";
179   case VK_GOTOFF: return "GOTOFF";
180   case VK_GOTPCREL: return "GOTPCREL";
181   case VK_GOTTPOFF: return "GOTTPOFF";
182   case VK_INDNTPOFF: return "INDNTPOFF";
183   case VK_NTPOFF: return "NTPOFF";
184   case VK_GOTNTPOFF: return "GOTNTPOFF";
185   case VK_PLT: return "PLT";
186   case VK_TLSGD: return "TLSGD";
187   case VK_TLSLD: return "TLSLD";
188   case VK_TLSLDM: return "TLSLDM";
189   case VK_TPOFF: return "TPOFF";
190   case VK_DTPOFF: return "DTPOFF";
191   case VK_TLVP: return "TLVP";
192   case VK_SECREL: return "SECREL";
193   case VK_ARM_PLT: return "(PLT)";
194   case VK_ARM_GOT: return "(GOT)";
195   case VK_ARM_GOTOFF: return "(GOTOFF)";
196   case VK_ARM_TPOFF: return "(tpoff)";
197   case VK_ARM_GOTTPOFF: return "(gottpoff)";
198   case VK_ARM_TLSGD: return "(tlsgd)";
199   case VK_ARM_TARGET1: return "(target1)";
200   case VK_PPC_TOC: return "toc";
201   case VK_PPC_DARWIN_HA16: return "ha16";
202   case VK_PPC_DARWIN_LO16: return "lo16";
203   case VK_PPC_GAS_HA16: return "ha";
204   case VK_PPC_GAS_LO16: return "l";
205   case VK_Mips_GPREL: return "GPREL";
206   case VK_Mips_GOT_CALL: return "GOT_CALL";
207   case VK_Mips_GOT16: return "GOT16";
208   case VK_Mips_GOT: return "GOT";
209   case VK_Mips_ABS_HI: return "ABS_HI";
210   case VK_Mips_ABS_LO: return "ABS_LO";
211   case VK_Mips_TLSGD: return "TLSGD";
212   case VK_Mips_TLSLDM: return "TLSLDM";
213   case VK_Mips_DTPREL_HI: return "DTPREL_HI";
214   case VK_Mips_DTPREL_LO: return "DTPREL_LO";
215   case VK_Mips_GOTTPREL: return "GOTTPREL";
216   case VK_Mips_TPREL_HI: return "TPREL_HI";
217   case VK_Mips_TPREL_LO: return "TPREL_LO";
218   case VK_Mips_GPOFF_HI: return "GPOFF_HI";
219   case VK_Mips_GPOFF_LO: return "GPOFF_LO";
220   case VK_Mips_GOT_DISP: return "GOT_DISP";
221   case VK_Mips_GOT_PAGE: return "GOT_PAGE";
222   case VK_Mips_GOT_OFST: return "GOT_OFST";
223   }
224   llvm_unreachable("Invalid variant kind");
225 }
226 
227 MCSymbolRefExpr::VariantKind
getVariantKindForName(StringRef Name)228 MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
229   return StringSwitch<VariantKind>(Name)
230     .Case("GOT", VK_GOT)
231     .Case("got", VK_GOT)
232     .Case("GOTOFF", VK_GOTOFF)
233     .Case("gotoff", VK_GOTOFF)
234     .Case("GOTPCREL", VK_GOTPCREL)
235     .Case("gotpcrel", VK_GOTPCREL)
236     .Case("GOTTPOFF", VK_GOTTPOFF)
237     .Case("gottpoff", VK_GOTTPOFF)
238     .Case("INDNTPOFF", VK_INDNTPOFF)
239     .Case("indntpoff", VK_INDNTPOFF)
240     .Case("NTPOFF", VK_NTPOFF)
241     .Case("ntpoff", VK_NTPOFF)
242     .Case("GOTNTPOFF", VK_GOTNTPOFF)
243     .Case("gotntpoff", VK_GOTNTPOFF)
244     .Case("PLT", VK_PLT)
245     .Case("plt", VK_PLT)
246     .Case("TLSGD", VK_TLSGD)
247     .Case("tlsgd", VK_TLSGD)
248     .Case("TLSLD", VK_TLSLD)
249     .Case("tlsld", VK_TLSLD)
250     .Case("TLSLDM", VK_TLSLDM)
251     .Case("tlsldm", VK_TLSLDM)
252     .Case("TPOFF", VK_TPOFF)
253     .Case("tpoff", VK_TPOFF)
254     .Case("DTPOFF", VK_DTPOFF)
255     .Case("dtpoff", VK_DTPOFF)
256     .Case("TLVP", VK_TLVP)
257     .Case("tlvp", VK_TLVP)
258     .Default(VK_Invalid);
259 }
260 
261 /* *** */
262 
Anchor()263 void MCTargetExpr::Anchor() {}
264 
265 /* *** */
266 
EvaluateAsAbsolute(int64_t & Res) const267 bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const {
268   return EvaluateAsAbsolute(Res, 0, 0, 0);
269 }
270 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout) const271 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
272                                 const MCAsmLayout &Layout) const {
273   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, 0);
274 }
275 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout,const SectionAddrMap & Addrs) const276 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
277                                 const MCAsmLayout &Layout,
278                                 const SectionAddrMap &Addrs) const {
279   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs);
280 }
281 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler & Asm) const282 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
283   return EvaluateAsAbsolute(Res, &Asm, 0, 0);
284 }
285 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs) const286 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
287                                 const MCAsmLayout *Layout,
288                                 const SectionAddrMap *Addrs) const {
289   MCValue Value;
290 
291   // Fast path constants.
292   if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
293     Res = CE->getValue();
294     return true;
295   }
296 
297   // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
298   // absolutize differences across sections and that is what the MachO writer
299   // uses Addrs for.
300   bool IsRelocatable =
301     EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, /*InSet*/ Addrs);
302 
303   // Record the current value.
304   Res = Value.getConstant();
305 
306   return IsRelocatable && Value.isAbsolute();
307 }
308 
309 /// \brief Helper method for \see EvaluateSymbolAdd().
AttemptToFoldSymbolOffsetDifference(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCSymbolRefExpr * & A,const MCSymbolRefExpr * & B,int64_t & Addend)310 static void AttemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
311                                                 const MCAsmLayout *Layout,
312                                                 const SectionAddrMap *Addrs,
313                                                 bool InSet,
314                                                 const MCSymbolRefExpr *&A,
315                                                 const MCSymbolRefExpr *&B,
316                                                 int64_t &Addend) {
317   if (!A || !B)
318     return;
319 
320   const MCSymbol &SA = A->getSymbol();
321   const MCSymbol &SB = B->getSymbol();
322 
323   if (SA.isUndefined() || SB.isUndefined())
324     return;
325 
326   if (!Asm->getWriter().IsSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
327     return;
328 
329   MCSymbolData &AD = Asm->getSymbolData(SA);
330   MCSymbolData &BD = Asm->getSymbolData(SB);
331 
332   if (AD.getFragment() == BD.getFragment()) {
333     Addend += (AD.getOffset() - BD.getOffset());
334 
335     // Pointers to Thumb symbols need to have their low-bit set to allow
336     // for interworking.
337     if (Asm->isThumbFunc(&SA))
338       Addend |= 1;
339 
340     // Clear the symbol expr pointers to indicate we have folded these
341     // operands.
342     A = B = 0;
343     return;
344   }
345 
346   if (!Layout)
347     return;
348 
349   const MCSectionData &SecA = *AD.getFragment()->getParent();
350   const MCSectionData &SecB = *BD.getFragment()->getParent();
351 
352   if ((&SecA != &SecB) && !Addrs)
353     return;
354 
355   // Eagerly evaluate.
356   Addend += (Layout->getSymbolOffset(&Asm->getSymbolData(A->getSymbol())) -
357              Layout->getSymbolOffset(&Asm->getSymbolData(B->getSymbol())));
358   if (Addrs && (&SecA != &SecB))
359     Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
360 
361   // Pointers to Thumb symbols need to have their low-bit set to allow
362   // for interworking.
363   if (Asm->isThumbFunc(&SA))
364     Addend |= 1;
365 
366   // Clear the symbol expr pointers to indicate we have folded these
367   // operands.
368   A = B = 0;
369 }
370 
371 /// \brief Evaluate the result of an add between (conceptually) two MCValues.
372 ///
373 /// This routine conceptually attempts to construct an MCValue:
374 ///   Result = (Result_A - Result_B + Result_Cst)
375 /// from two MCValue's LHS and RHS where
376 ///   Result = LHS + RHS
377 /// and
378 ///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
379 ///
380 /// This routine attempts to aggresively fold the operands such that the result
381 /// is representable in an MCValue, but may not always succeed.
382 ///
383 /// \returns True on success, false if the result is not representable in an
384 /// MCValue.
385 
386 /// NOTE: It is really important to have both the Asm and Layout arguments.
387 /// They might look redundant, but this function can be used before layout
388 /// is done (see the object streamer for example) and having the Asm argument
389 /// lets us avoid relaxations early.
EvaluateSymbolicAdd(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCValue & LHS,const MCSymbolRefExpr * RHS_A,const MCSymbolRefExpr * RHS_B,int64_t RHS_Cst,MCValue & Res)390 static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
391                                 const MCAsmLayout *Layout,
392                                 const SectionAddrMap *Addrs,
393                                 bool InSet,
394                                 const MCValue &LHS,const MCSymbolRefExpr *RHS_A,
395                                 const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst,
396                                 MCValue &Res) {
397   // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
398   // about dealing with modifiers. This will ultimately bite us, one day.
399   const MCSymbolRefExpr *LHS_A = LHS.getSymA();
400   const MCSymbolRefExpr *LHS_B = LHS.getSymB();
401   int64_t LHS_Cst = LHS.getConstant();
402 
403   // Fold the result constant immediately.
404   int64_t Result_Cst = LHS_Cst + RHS_Cst;
405 
406   assert((!Layout || Asm) &&
407          "Must have an assembler object if layout is given!");
408 
409   // If we have a layout, we can fold resolved differences.
410   if (Asm) {
411     // First, fold out any differences which are fully resolved. By
412     // reassociating terms in
413     //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
414     // we have the four possible differences:
415     //   (LHS_A - LHS_B),
416     //   (LHS_A - RHS_B),
417     //   (RHS_A - LHS_B),
418     //   (RHS_A - RHS_B).
419     // Since we are attempting to be as aggressive as possible about folding, we
420     // attempt to evaluate each possible alternative.
421     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
422                                         Result_Cst);
423     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
424                                         Result_Cst);
425     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
426                                         Result_Cst);
427     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
428                                         Result_Cst);
429   }
430 
431   // We can't represent the addition or subtraction of two symbols.
432   if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
433     return false;
434 
435   // At this point, we have at most one additive symbol and one subtractive
436   // symbol -- find them.
437   const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
438   const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
439 
440   // If we have a negated symbol, then we must have also have a non-negated
441   // symbol in order to encode the expression.
442   if (B && !A)
443     return false;
444 
445   Res = MCValue::get(A, B, Result_Cst);
446   return true;
447 }
448 
EvaluateAsRelocatable(MCValue & Res,const MCAsmLayout & Layout) const449 bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
450                                    const MCAsmLayout &Layout) const {
451   return EvaluateAsRelocatableImpl(Res, &Layout.getAssembler(), &Layout,
452                                    0, false);
453 }
454 
EvaluateAsRelocatableImpl(MCValue & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet) const455 bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
456                                        const MCAssembler *Asm,
457                                        const MCAsmLayout *Layout,
458                                        const SectionAddrMap *Addrs,
459                                        bool InSet) const {
460   ++stats::MCExprEvaluate;
461 
462   switch (getKind()) {
463   case Target:
464     return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);
465 
466   case Constant:
467     Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
468     return true;
469 
470   case SymbolRef: {
471     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
472     const MCSymbol &Sym = SRE->getSymbol();
473 
474     // Evaluate recursively if this is a variable.
475     if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
476       bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Asm,
477                                                                    Layout,
478                                                                    Addrs,
479                                                                    true);
480       // If we failed to simplify this to a constant, let the target
481       // handle it.
482       if (Ret && !Res.getSymA() && !Res.getSymB())
483         return true;
484     }
485 
486     Res = MCValue::get(SRE, 0, 0);
487     return true;
488   }
489 
490   case Unary: {
491     const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
492     MCValue Value;
493 
494     if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout,
495                                                       Addrs, InSet))
496       return false;
497 
498     switch (AUE->getOpcode()) {
499     case MCUnaryExpr::LNot:
500       if (!Value.isAbsolute())
501         return false;
502       Res = MCValue::get(!Value.getConstant());
503       break;
504     case MCUnaryExpr::Minus:
505       /// -(a - b + const) ==> (b - a - const)
506       if (Value.getSymA() && !Value.getSymB())
507         return false;
508       Res = MCValue::get(Value.getSymB(), Value.getSymA(),
509                          -Value.getConstant());
510       break;
511     case MCUnaryExpr::Not:
512       if (!Value.isAbsolute())
513         return false;
514       Res = MCValue::get(~Value.getConstant());
515       break;
516     case MCUnaryExpr::Plus:
517       Res = Value;
518       break;
519     }
520 
521     return true;
522   }
523 
524   case Binary: {
525     const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
526     MCValue LHSValue, RHSValue;
527 
528     if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout,
529                                                   Addrs, InSet) ||
530         !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout,
531                                                   Addrs, InSet))
532       return false;
533 
534     // We only support a few operations on non-constant expressions, handle
535     // those first.
536     if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
537       switch (ABE->getOpcode()) {
538       default:
539         return false;
540       case MCBinaryExpr::Sub:
541         // Negate RHS and add.
542         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
543                                    RHSValue.getSymB(), RHSValue.getSymA(),
544                                    -RHSValue.getConstant(),
545                                    Res);
546 
547       case MCBinaryExpr::Add:
548         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
549                                    RHSValue.getSymA(), RHSValue.getSymB(),
550                                    RHSValue.getConstant(),
551                                    Res);
552       }
553     }
554 
555     // FIXME: We need target hooks for the evaluation. It may be limited in
556     // width, and gas defines the result of comparisons and right shifts
557     // differently from Apple as.
558     int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
559     int64_t Result = 0;
560     switch (ABE->getOpcode()) {
561     case MCBinaryExpr::Add:  Result = LHS + RHS; break;
562     case MCBinaryExpr::And:  Result = LHS & RHS; break;
563     case MCBinaryExpr::Div:  Result = LHS / RHS; break;
564     case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
565     case MCBinaryExpr::GT:   Result = LHS > RHS; break;
566     case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
567     case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
568     case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
569     case MCBinaryExpr::LT:   Result = LHS < RHS; break;
570     case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
571     case MCBinaryExpr::Mod:  Result = LHS % RHS; break;
572     case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
573     case MCBinaryExpr::NE:   Result = LHS != RHS; break;
574     case MCBinaryExpr::Or:   Result = LHS | RHS; break;
575     case MCBinaryExpr::Shl:  Result = LHS << RHS; break;
576     case MCBinaryExpr::Shr:  Result = LHS >> RHS; break;
577     case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
578     case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
579     }
580 
581     Res = MCValue::get(Result);
582     return true;
583   }
584   }
585 
586   llvm_unreachable("Invalid assembly expression kind!");
587 }
588 
FindAssociatedSection() const589 const MCSection *MCExpr::FindAssociatedSection() const {
590   switch (getKind()) {
591   case Target:
592     // We never look through target specific expressions.
593     return cast<MCTargetExpr>(this)->FindAssociatedSection();
594 
595   case Constant:
596     return MCSymbol::AbsolutePseudoSection;
597 
598   case SymbolRef: {
599     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
600     const MCSymbol &Sym = SRE->getSymbol();
601 
602     if (Sym.isDefined())
603       return &Sym.getSection();
604 
605     return 0;
606   }
607 
608   case Unary:
609     return cast<MCUnaryExpr>(this)->getSubExpr()->FindAssociatedSection();
610 
611   case Binary: {
612     const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
613     const MCSection *LHS_S = BE->getLHS()->FindAssociatedSection();
614     const MCSection *RHS_S = BE->getRHS()->FindAssociatedSection();
615 
616     // If either section is absolute, return the other.
617     if (LHS_S == MCSymbol::AbsolutePseudoSection)
618       return RHS_S;
619     if (RHS_S == MCSymbol::AbsolutePseudoSection)
620       return LHS_S;
621 
622     // Otherwise, return the first non-null section.
623     return LHS_S ? LHS_S : RHS_S;
624   }
625   }
626 
627   llvm_unreachable("Invalid assembly expression kind!");
628 }
629