• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the Type class.  For more "Type"
11 // stuff, look in DerivedTypes.h.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TYPE_H
16 #define LLVM_TYPE_H
17 
18 #include "llvm/Support/Casting.h"
19 #include "llvm/Support/DataTypes.h"
20 
21 namespace llvm {
22 
23 class PointerType;
24 class IntegerType;
25 class raw_ostream;
26 class Module;
27 class LLVMContext;
28 class LLVMContextImpl;
29 class StringRef;
30 template<class GraphType> struct GraphTraits;
31 
32 /// The instances of the Type class are immutable: once they are created,
33 /// they are never changed.  Also note that only one instance of a particular
34 /// type is ever created.  Thus seeing if two types are equal is a matter of
35 /// doing a trivial pointer comparison. To enforce that no two equal instances
36 /// are created, Type instances can only be created via static factory methods
37 /// in class Type and in derived classes.  Once allocated, Types are never
38 /// free'd.
39 ///
40 class Type {
41 public:
42   //===--------------------------------------------------------------------===//
43   /// Definitions of all of the base types for the Type system.  Based on this
44   /// value, you can cast to a class defined in DerivedTypes.h.
45   /// Note: If you add an element to this, you need to add an element to the
46   /// Type::getPrimitiveType function, or else things will break!
47   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
48   ///
49   enum TypeID {
50     // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
51     VoidTyID = 0,    ///<  0: type with no size
52     HalfTyID,        ///<  1: 16-bit floating point type
53     FloatTyID,       ///<  2: 32-bit floating point type
54     DoubleTyID,      ///<  3: 64-bit floating point type
55     X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
56     FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
57     PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
58     LabelTyID,       ///<  7: Labels
59     MetadataTyID,    ///<  8: Metadata
60     X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
61 
62     // Derived types... see DerivedTypes.h file.
63     // Make sure FirstDerivedTyID stays up to date!
64     IntegerTyID,     ///< 10: Arbitrary bit width integers
65     FunctionTyID,    ///< 11: Functions
66     StructTyID,      ///< 12: Structures
67     ArrayTyID,       ///< 13: Arrays
68     PointerTyID,     ///< 14: Pointers
69     VectorTyID,      ///< 15: SIMD 'packed' format, or other vector type
70 
71     NumTypeIDs,                         // Must remain as last defined ID
72     LastPrimitiveTyID = X86_MMXTyID,
73     FirstDerivedTyID = IntegerTyID
74   };
75 
76 private:
77   /// Context - This refers to the LLVMContext in which this type was uniqued.
78   LLVMContext &Context;
79 
80   // Due to Ubuntu GCC bug 910363:
81   // https://bugs.launchpad.net/ubuntu/+source/gcc-4.5/+bug/910363
82   // Bitpack ID and SubclassData manually.
83   // Note: TypeID : low 8 bit; SubclassData : high 24 bit.
84   uint32_t IDAndSubclassData;
85 
86 protected:
87   friend class LLVMContextImpl;
Type(LLVMContext & C,TypeID tid)88   explicit Type(LLVMContext &C, TypeID tid)
89     : Context(C), IDAndSubclassData(0),
90       NumContainedTys(0), ContainedTys(0) {
91     setTypeID(tid);
92   }
~Type()93   ~Type() {}
94 
setTypeID(TypeID ID)95   void setTypeID(TypeID ID) {
96     IDAndSubclassData = (ID & 0xFF) | (IDAndSubclassData & 0xFFFFFF00);
97     assert(getTypeID() == ID && "TypeID data too large for field");
98   }
99 
getSubclassData()100   unsigned getSubclassData() const { return IDAndSubclassData >> 8; }
101 
setSubclassData(unsigned val)102   void setSubclassData(unsigned val) {
103     IDAndSubclassData = (IDAndSubclassData & 0xFF) | (val << 8);
104     // Ensure we don't have any accidental truncation.
105     assert(getSubclassData() == val && "Subclass data too large for field");
106   }
107 
108   /// NumContainedTys - Keeps track of how many Type*'s there are in the
109   /// ContainedTys list.
110   unsigned NumContainedTys;
111 
112   /// ContainedTys - A pointer to the array of Types contained by this Type.
113   /// For example, this includes the arguments of a function type, the elements
114   /// of a structure, the pointee of a pointer, the element type of an array,
115   /// etc.  This pointer may be 0 for types that don't contain other types
116   /// (Integer, Double, Float).
117   Type * const *ContainedTys;
118 
119 public:
120   void print(raw_ostream &O) const;
121   void dump() const;
122 
123   /// getContext - Return the LLVMContext in which this type was uniqued.
getContext()124   LLVMContext &getContext() const { return Context; }
125 
126   //===--------------------------------------------------------------------===//
127   // Accessors for working with types.
128   //
129 
130   /// getTypeID - Return the type id for the type.  This will return one
131   /// of the TypeID enum elements defined above.
132   ///
getTypeID()133   TypeID getTypeID() const { return (TypeID)(IDAndSubclassData & 0xFF); }
134 
135   /// isVoidTy - Return true if this is 'void'.
isVoidTy()136   bool isVoidTy() const { return getTypeID() == VoidTyID; }
137 
138   /// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
isHalfTy()139   bool isHalfTy() const { return getTypeID() == HalfTyID; }
140 
141   /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
isFloatTy()142   bool isFloatTy() const { return getTypeID() == FloatTyID; }
143 
144   /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
isDoubleTy()145   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
146 
147   /// isX86_FP80Ty - Return true if this is x86 long double.
isX86_FP80Ty()148   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
149 
150   /// isFP128Ty - Return true if this is 'fp128'.
isFP128Ty()151   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
152 
153   /// isPPC_FP128Ty - Return true if this is powerpc long double.
isPPC_FP128Ty()154   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
155 
156   /// isFloatingPointTy - Return true if this is one of the five floating point
157   /// types
isFloatingPointTy()158   bool isFloatingPointTy() const {
159     return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
160            getTypeID() == DoubleTyID ||
161            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
162            getTypeID() == PPC_FP128TyID;
163   }
164 
165   /// isX86_MMXTy - Return true if this is X86 MMX.
isX86_MMXTy()166   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
167 
168   /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
169   ///
170   bool isFPOrFPVectorTy() const;
171 
172   /// isLabelTy - Return true if this is 'label'.
isLabelTy()173   bool isLabelTy() const { return getTypeID() == LabelTyID; }
174 
175   /// isMetadataTy - Return true if this is 'metadata'.
isMetadataTy()176   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
177 
178   /// isIntegerTy - True if this is an instance of IntegerType.
179   ///
isIntegerTy()180   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
181 
182   /// isIntegerTy - Return true if this is an IntegerType of the given width.
183   bool isIntegerTy(unsigned Bitwidth) const;
184 
185   /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
186   /// integer types.
187   ///
188   bool isIntOrIntVectorTy() const;
189 
190   /// isFunctionTy - True if this is an instance of FunctionType.
191   ///
isFunctionTy()192   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
193 
194   /// isStructTy - True if this is an instance of StructType.
195   ///
isStructTy()196   bool isStructTy() const { return getTypeID() == StructTyID; }
197 
198   /// isArrayTy - True if this is an instance of ArrayType.
199   ///
isArrayTy()200   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
201 
202   /// isPointerTy - True if this is an instance of PointerType.
203   ///
isPointerTy()204   bool isPointerTy() const { return getTypeID() == PointerTyID; }
205 
206   /// isVectorTy - True if this is an instance of VectorType.
207   ///
isVectorTy()208   bool isVectorTy() const { return getTypeID() == VectorTyID; }
209 
210   /// canLosslesslyBitCastTo - Return true if this type could be converted
211   /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
212   /// are valid for types of the same size only where no re-interpretation of
213   /// the bits is done.
214   /// @brief Determine if this type could be losslessly bitcast to Ty
215   bool canLosslesslyBitCastTo(Type *Ty) const;
216 
217   /// isEmptyTy - Return true if this type is empty, that is, it has no
218   /// elements or all its elements are empty.
219   bool isEmptyTy() const;
220 
221   /// Here are some useful little methods to query what type derived types are
222   /// Note that all other types can just compare to see if this == Type::xxxTy;
223   ///
isPrimitiveType()224   bool isPrimitiveType() const { return getTypeID() <= LastPrimitiveTyID; }
isDerivedType()225   bool isDerivedType()   const { return getTypeID() >= FirstDerivedTyID; }
226 
227   /// isFirstClassType - Return true if the type is "first class", meaning it
228   /// is a valid type for a Value.
229   ///
isFirstClassType()230   bool isFirstClassType() const {
231     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
232   }
233 
234   /// isSingleValueType - Return true if the type is a valid type for a
235   /// register in codegen.  This includes all first-class types except struct
236   /// and array types.
237   ///
isSingleValueType()238   bool isSingleValueType() const {
239     return (getTypeID() != VoidTyID && isPrimitiveType()) ||
240             getTypeID() == IntegerTyID || getTypeID() == PointerTyID ||
241             getTypeID() == VectorTyID;
242   }
243 
244   /// isAggregateType - Return true if the type is an aggregate type. This
245   /// means it is valid as the first operand of an insertvalue or
246   /// extractvalue instruction. This includes struct and array types, but
247   /// does not include vector types.
248   ///
isAggregateType()249   bool isAggregateType() const {
250     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
251   }
252 
253   /// isSized - Return true if it makes sense to take the size of this type.  To
254   /// get the actual size for a particular target, it is reasonable to use the
255   /// TargetData subsystem to do this.
256   ///
isSized()257   bool isSized() const {
258     // If it's a primitive, it is always sized.
259     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
260         getTypeID() == PointerTyID ||
261         getTypeID() == X86_MMXTyID)
262       return true;
263     // If it is not something that can have a size (e.g. a function or label),
264     // it doesn't have a size.
265     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
266         getTypeID() != VectorTyID)
267       return false;
268     // Otherwise we have to try harder to decide.
269     return isSizedDerivedType();
270   }
271 
272   /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
273   /// primitive type.  These are fixed by LLVM and are not target dependent.
274   /// This will return zero if the type does not have a size or is not a
275   /// primitive type.
276   ///
277   /// Note that this may not reflect the size of memory allocated for an
278   /// instance of the type or the number of bytes that are written when an
279   /// instance of the type is stored to memory. The TargetData class provides
280   /// additional query functions to provide this information.
281   ///
282   unsigned getPrimitiveSizeInBits() const;
283 
284   /// getScalarSizeInBits - If this is a vector type, return the
285   /// getPrimitiveSizeInBits value for the element type. Otherwise return the
286   /// getPrimitiveSizeInBits value for this type.
287   unsigned getScalarSizeInBits();
288 
289   /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
290   /// is only valid on floating point types.  If the FP type does not
291   /// have a stable mantissa (e.g. ppc long double), this method returns -1.
292   int getFPMantissaWidth() const;
293 
294   /// getScalarType - If this is a vector type, return the element type,
295   /// otherwise return 'this'.
296   Type *getScalarType();
297 
298   //===--------------------------------------------------------------------===//
299   // Type Iteration support.
300   //
301   typedef Type * const *subtype_iterator;
subtype_begin()302   subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_end()303   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
304 
305   /// getContainedType - This method is used to implement the type iterator
306   /// (defined a the end of the file).  For derived types, this returns the
307   /// types 'contained' in the derived type.
308   ///
getContainedType(unsigned i)309   Type *getContainedType(unsigned i) const {
310     assert(i < NumContainedTys && "Index out of range!");
311     return ContainedTys[i];
312   }
313 
314   /// getNumContainedTypes - Return the number of types in the derived type.
315   ///
getNumContainedTypes()316   unsigned getNumContainedTypes() const { return NumContainedTys; }
317 
318   //===--------------------------------------------------------------------===//
319   // Helper methods corresponding to subclass methods.  This forces a cast to
320   // the specified subclass and calls its accessor.  "getVectorNumElements" (for
321   // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
322   // only intended to cover the core methods that are frequently used, helper
323   // methods should not be added here.
324 
325   unsigned getIntegerBitWidth() const;
326 
327   Type *getFunctionParamType(unsigned i) const;
328   unsigned getFunctionNumParams() const;
329   bool isFunctionVarArg() const;
330 
331   StringRef getStructName() const;
332   unsigned getStructNumElements() const;
333   Type *getStructElementType(unsigned N) const;
334 
335   Type *getSequentialElementType() const;
336 
337   uint64_t getArrayNumElements() const;
getArrayElementType()338   Type *getArrayElementType() const { return getSequentialElementType(); }
339 
340   unsigned getVectorNumElements() const;
getVectorElementType()341   Type *getVectorElementType() const { return getSequentialElementType(); }
342 
343   unsigned getPointerAddressSpace() const;
getPointerElementType()344   Type *getPointerElementType() const { return getSequentialElementType(); }
345 
346   //===--------------------------------------------------------------------===//
347   // Static members exported by the Type class itself.  Useful for getting
348   // instances of Type.
349   //
350 
351   /// getPrimitiveType - Return a type based on an identifier.
352   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
353 
354   //===--------------------------------------------------------------------===//
355   // These are the builtin types that are always available.
356   //
357   static Type *getVoidTy(LLVMContext &C);
358   static Type *getLabelTy(LLVMContext &C);
359   static Type *getHalfTy(LLVMContext &C);
360   static Type *getFloatTy(LLVMContext &C);
361   static Type *getDoubleTy(LLVMContext &C);
362   static Type *getMetadataTy(LLVMContext &C);
363   static Type *getX86_FP80Ty(LLVMContext &C);
364   static Type *getFP128Ty(LLVMContext &C);
365   static Type *getPPC_FP128Ty(LLVMContext &C);
366   static Type *getX86_MMXTy(LLVMContext &C);
367   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
368   static IntegerType *getInt1Ty(LLVMContext &C);
369   static IntegerType *getInt8Ty(LLVMContext &C);
370   static IntegerType *getInt16Ty(LLVMContext &C);
371   static IntegerType *getInt32Ty(LLVMContext &C);
372   static IntegerType *getInt64Ty(LLVMContext &C);
373 
374   //===--------------------------------------------------------------------===//
375   // Convenience methods for getting pointer types with one of the above builtin
376   // types as pointee.
377   //
378   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
379   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
380   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
381   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
382   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
383   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
384   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
385   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
386   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
387   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
388   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
389   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
390   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
391 
392   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Type *)393   static inline bool classof(const Type *) { return true; }
394 
395   /// getPointerTo - Return a pointer to the current type.  This is equivalent
396   /// to PointerType::get(Foo, AddrSpace).
397   PointerType *getPointerTo(unsigned AddrSpace = 0);
398 
399 private:
400   /// isSizedDerivedType - Derived types like structures and arrays are sized
401   /// iff all of the members of the type are sized as well.  Since asking for
402   /// their size is relatively uncommon, move this operation out of line.
403   bool isSizedDerivedType() const;
404 };
405 
406 // Printing of types.
407 static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
408   T.print(OS);
409   return OS;
410 }
411 
412 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
413 template <> struct isa_impl<PointerType, Type> {
414   static inline bool doit(const Type &Ty) {
415     return Ty.getTypeID() == Type::PointerTyID;
416   }
417 };
418 
419 
420 //===----------------------------------------------------------------------===//
421 // Provide specializations of GraphTraits to be able to treat a type as a
422 // graph of sub types.
423 
424 
425 template <> struct GraphTraits<Type*> {
426   typedef Type NodeType;
427   typedef Type::subtype_iterator ChildIteratorType;
428 
429   static inline NodeType *getEntryNode(Type *T) { return T; }
430   static inline ChildIteratorType child_begin(NodeType *N) {
431     return N->subtype_begin();
432   }
433   static inline ChildIteratorType child_end(NodeType *N) {
434     return N->subtype_end();
435   }
436 };
437 
438 template <> struct GraphTraits<const Type*> {
439   typedef const Type NodeType;
440   typedef Type::subtype_iterator ChildIteratorType;
441 
442   static inline NodeType *getEntryNode(NodeType *T) { return T; }
443   static inline ChildIteratorType child_begin(NodeType *N) {
444     return N->subtype_begin();
445   }
446   static inline ChildIteratorType child_end(NodeType *N) {
447     return N->subtype_end();
448   }
449 };
450 
451 } // End llvm namespace
452 
453 #endif
454