1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
27
28 //===----------------------------------------------------------------------===//
29 // CallSite Class
30 //===----------------------------------------------------------------------===//
31
getCallee() const32 User::op_iterator CallSite::getCallee() const {
33 Instruction *II(getInstruction());
34 return isCall()
35 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
37 }
38
39 //===----------------------------------------------------------------------===//
40 // TerminatorInst Class
41 //===----------------------------------------------------------------------===//
42
43 // Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst()44 TerminatorInst::~TerminatorInst() {
45 }
46
47 //===----------------------------------------------------------------------===//
48 // UnaryInstruction Class
49 //===----------------------------------------------------------------------===//
50
51 // Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction()52 UnaryInstruction::~UnaryInstruction() {
53 }
54
55 //===----------------------------------------------------------------------===//
56 // SelectInst Class
57 //===----------------------------------------------------------------------===//
58
59 /// areInvalidOperands - Return a string if the specified operands are invalid
60 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62 if (Op1->getType() != Op2->getType())
63 return "both values to select must have same type";
64
65 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66 // Vector select.
67 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68 return "vector select condition element type must be i1";
69 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70 if (ET == 0)
71 return "selected values for vector select must be vectors";
72 if (ET->getNumElements() != VT->getNumElements())
73 return "vector select requires selected vectors to have "
74 "the same vector length as select condition";
75 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76 return "select condition must be i1 or <n x i1>";
77 }
78 return 0;
79 }
80
81
82 //===----------------------------------------------------------------------===//
83 // PHINode Class
84 //===----------------------------------------------------------------------===//
85
PHINode(const PHINode & PN)86 PHINode::PHINode(const PHINode &PN)
87 : Instruction(PN.getType(), Instruction::PHI,
88 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89 ReservedSpace(PN.getNumOperands()) {
90 std::copy(PN.op_begin(), PN.op_end(), op_begin());
91 std::copy(PN.block_begin(), PN.block_end(), block_begin());
92 SubclassOptionalData = PN.SubclassOptionalData;
93 }
94
~PHINode()95 PHINode::~PHINode() {
96 dropHungoffUses();
97 }
98
allocHungoffUses(unsigned N) const99 Use *PHINode::allocHungoffUses(unsigned N) const {
100 // Allocate the array of Uses of the incoming values, followed by a pointer
101 // (with bottom bit set) to the User, followed by the array of pointers to
102 // the incoming basic blocks.
103 size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
104 + N * sizeof(BasicBlock*);
105 Use *Begin = static_cast<Use*>(::operator new(size));
106 Use *End = Begin + N;
107 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
108 return Use::initTags(Begin, End);
109 }
110
111 // removeIncomingValue - Remove an incoming value. This is useful if a
112 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114 Value *Removed = getIncomingValue(Idx);
115
116 // Move everything after this operand down.
117 //
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123
124 // Nuke the last value.
125 Op<-1>().set(0);
126 --NumOperands;
127
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
132 eraseFromParent();
133 }
134 return Removed;
135 }
136
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation. This grows the number of ops by 1.5
139 /// times.
140 ///
growOperands()141 void PHINode::growOperands() {
142 unsigned e = getNumOperands();
143 unsigned NumOps = e + e / 2;
144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
145
146 Use *OldOps = op_begin();
147 BasicBlock **OldBlocks = block_begin();
148
149 ReservedSpace = NumOps;
150 OperandList = allocHungoffUses(ReservedSpace);
151
152 std::copy(OldOps, OldOps + e, op_begin());
153 std::copy(OldBlocks, OldBlocks + e, block_begin());
154
155 Use::zap(OldOps, OldOps + e, true);
156 }
157
158 /// hasConstantValue - If the specified PHI node always merges together the same
159 /// value, return the value, otherwise return null.
hasConstantValue() const160 Value *PHINode::hasConstantValue() const {
161 // Exploit the fact that phi nodes always have at least one entry.
162 Value *ConstantValue = getIncomingValue(0);
163 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
164 if (getIncomingValue(i) != ConstantValue)
165 return 0; // Incoming values not all the same.
166 return ConstantValue;
167 }
168
169 //===----------------------------------------------------------------------===//
170 // LandingPadInst Implementation
171 //===----------------------------------------------------------------------===//
172
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)173 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
174 unsigned NumReservedValues, const Twine &NameStr,
175 Instruction *InsertBefore)
176 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
177 init(PersonalityFn, 1 + NumReservedValues, NameStr);
178 }
179
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181 unsigned NumReservedValues, const Twine &NameStr,
182 BasicBlock *InsertAtEnd)
183 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
184 init(PersonalityFn, 1 + NumReservedValues, NameStr);
185 }
186
LandingPadInst(const LandingPadInst & LP)187 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
188 : Instruction(LP.getType(), Instruction::LandingPad,
189 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
190 ReservedSpace(LP.getNumOperands()) {
191 Use *OL = OperandList, *InOL = LP.OperandList;
192 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
193 OL[I] = InOL[I];
194
195 setCleanup(LP.isCleanup());
196 }
197
~LandingPadInst()198 LandingPadInst::~LandingPadInst() {
199 dropHungoffUses();
200 }
201
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,Instruction * InsertBefore)202 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
203 unsigned NumReservedClauses,
204 const Twine &NameStr,
205 Instruction *InsertBefore) {
206 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
207 InsertBefore);
208 }
209
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,BasicBlock * InsertAtEnd)210 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
211 unsigned NumReservedClauses,
212 const Twine &NameStr,
213 BasicBlock *InsertAtEnd) {
214 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
215 InsertAtEnd);
216 }
217
init(Value * PersFn,unsigned NumReservedValues,const Twine & NameStr)218 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
219 const Twine &NameStr) {
220 ReservedSpace = NumReservedValues;
221 NumOperands = 1;
222 OperandList = allocHungoffUses(ReservedSpace);
223 OperandList[0] = PersFn;
224 setName(NameStr);
225 setCleanup(false);
226 }
227
228 /// growOperands - grow operands - This grows the operand list in response to a
229 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)230 void LandingPadInst::growOperands(unsigned Size) {
231 unsigned e = getNumOperands();
232 if (ReservedSpace >= e + Size) return;
233 ReservedSpace = (e + Size / 2) * 2;
234
235 Use *NewOps = allocHungoffUses(ReservedSpace);
236 Use *OldOps = OperandList;
237 for (unsigned i = 0; i != e; ++i)
238 NewOps[i] = OldOps[i];
239
240 OperandList = NewOps;
241 Use::zap(OldOps, OldOps + e, true);
242 }
243
addClause(Value * Val)244 void LandingPadInst::addClause(Value *Val) {
245 unsigned OpNo = getNumOperands();
246 growOperands(1);
247 assert(OpNo < ReservedSpace && "Growing didn't work!");
248 ++NumOperands;
249 OperandList[OpNo] = Val;
250 }
251
252 //===----------------------------------------------------------------------===//
253 // CallInst Implementation
254 //===----------------------------------------------------------------------===//
255
~CallInst()256 CallInst::~CallInst() {
257 }
258
init(Value * Func,ArrayRef<Value * > Args,const Twine & NameStr)259 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
260 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
261 Op<-1>() = Func;
262
263 #ifndef NDEBUG
264 FunctionType *FTy =
265 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
266
267 assert((Args.size() == FTy->getNumParams() ||
268 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
269 "Calling a function with bad signature!");
270
271 for (unsigned i = 0; i != Args.size(); ++i)
272 assert((i >= FTy->getNumParams() ||
273 FTy->getParamType(i) == Args[i]->getType()) &&
274 "Calling a function with a bad signature!");
275 #endif
276
277 std::copy(Args.begin(), Args.end(), op_begin());
278 setName(NameStr);
279 }
280
init(Value * Func,const Twine & NameStr)281 void CallInst::init(Value *Func, const Twine &NameStr) {
282 assert(NumOperands == 1 && "NumOperands not set up?");
283 Op<-1>() = Func;
284
285 #ifndef NDEBUG
286 FunctionType *FTy =
287 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
288
289 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
290 #endif
291
292 setName(NameStr);
293 }
294
CallInst(Value * Func,const Twine & Name,Instruction * InsertBefore)295 CallInst::CallInst(Value *Func, const Twine &Name,
296 Instruction *InsertBefore)
297 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
298 ->getElementType())->getReturnType(),
299 Instruction::Call,
300 OperandTraits<CallInst>::op_end(this) - 1,
301 1, InsertBefore) {
302 init(Func, Name);
303 }
304
CallInst(Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)305 CallInst::CallInst(Value *Func, const Twine &Name,
306 BasicBlock *InsertAtEnd)
307 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
308 ->getElementType())->getReturnType(),
309 Instruction::Call,
310 OperandTraits<CallInst>::op_end(this) - 1,
311 1, InsertAtEnd) {
312 init(Func, Name);
313 }
314
CallInst(const CallInst & CI)315 CallInst::CallInst(const CallInst &CI)
316 : Instruction(CI.getType(), Instruction::Call,
317 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
318 CI.getNumOperands()) {
319 setAttributes(CI.getAttributes());
320 setTailCall(CI.isTailCall());
321 setCallingConv(CI.getCallingConv());
322
323 std::copy(CI.op_begin(), CI.op_end(), op_begin());
324 SubclassOptionalData = CI.SubclassOptionalData;
325 }
326
addAttribute(unsigned i,Attributes attr)327 void CallInst::addAttribute(unsigned i, Attributes attr) {
328 AttrListPtr PAL = getAttributes();
329 PAL = PAL.addAttr(i, attr);
330 setAttributes(PAL);
331 }
332
removeAttribute(unsigned i,Attributes attr)333 void CallInst::removeAttribute(unsigned i, Attributes attr) {
334 AttrListPtr PAL = getAttributes();
335 PAL = PAL.removeAttr(i, attr);
336 setAttributes(PAL);
337 }
338
paramHasAttr(unsigned i,Attributes attr) const339 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
340 if (AttributeList.paramHasAttr(i, attr))
341 return true;
342 if (const Function *F = getCalledFunction())
343 return F->paramHasAttr(i, attr);
344 return false;
345 }
346
347 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)348 static bool IsConstantOne(Value *val) {
349 assert(val && "IsConstantOne does not work with NULL val");
350 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
351 }
352
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)353 static Instruction *createMalloc(Instruction *InsertBefore,
354 BasicBlock *InsertAtEnd, Type *IntPtrTy,
355 Type *AllocTy, Value *AllocSize,
356 Value *ArraySize, Function *MallocF,
357 const Twine &Name) {
358 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
359 "createMalloc needs either InsertBefore or InsertAtEnd");
360
361 // malloc(type) becomes:
362 // bitcast (i8* malloc(typeSize)) to type*
363 // malloc(type, arraySize) becomes:
364 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
365 if (!ArraySize)
366 ArraySize = ConstantInt::get(IntPtrTy, 1);
367 else if (ArraySize->getType() != IntPtrTy) {
368 if (InsertBefore)
369 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
370 "", InsertBefore);
371 else
372 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
373 "", InsertAtEnd);
374 }
375
376 if (!IsConstantOne(ArraySize)) {
377 if (IsConstantOne(AllocSize)) {
378 AllocSize = ArraySize; // Operand * 1 = Operand
379 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
380 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
381 false /*ZExt*/);
382 // Malloc arg is constant product of type size and array size
383 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
384 } else {
385 // Multiply type size by the array size...
386 if (InsertBefore)
387 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
388 "mallocsize", InsertBefore);
389 else
390 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
391 "mallocsize", InsertAtEnd);
392 }
393 }
394
395 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
396 // Create the call to Malloc.
397 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
398 Module* M = BB->getParent()->getParent();
399 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
400 Value *MallocFunc = MallocF;
401 if (!MallocFunc)
402 // prototype malloc as "void *malloc(size_t)"
403 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
404 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
405 CallInst *MCall = NULL;
406 Instruction *Result = NULL;
407 if (InsertBefore) {
408 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
409 Result = MCall;
410 if (Result->getType() != AllocPtrType)
411 // Create a cast instruction to convert to the right type...
412 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
413 } else {
414 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
415 Result = MCall;
416 if (Result->getType() != AllocPtrType) {
417 InsertAtEnd->getInstList().push_back(MCall);
418 // Create a cast instruction to convert to the right type...
419 Result = new BitCastInst(MCall, AllocPtrType, Name);
420 }
421 }
422 MCall->setTailCall();
423 if (Function *F = dyn_cast<Function>(MallocFunc)) {
424 MCall->setCallingConv(F->getCallingConv());
425 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
426 }
427 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
428
429 return Result;
430 }
431
432 /// CreateMalloc - Generate the IR for a call to malloc:
433 /// 1. Compute the malloc call's argument as the specified type's size,
434 /// possibly multiplied by the array size if the array size is not
435 /// constant 1.
436 /// 2. Call malloc with that argument.
437 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)438 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
439 Type *IntPtrTy, Type *AllocTy,
440 Value *AllocSize, Value *ArraySize,
441 Function * MallocF,
442 const Twine &Name) {
443 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
444 ArraySize, MallocF, Name);
445 }
446
447 /// CreateMalloc - Generate the IR for a call to malloc:
448 /// 1. Compute the malloc call's argument as the specified type's size,
449 /// possibly multiplied by the array size if the array size is not
450 /// constant 1.
451 /// 2. Call malloc with that argument.
452 /// 3. Bitcast the result of the malloc call to the specified type.
453 /// Note: This function does not add the bitcast to the basic block, that is the
454 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)455 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
456 Type *IntPtrTy, Type *AllocTy,
457 Value *AllocSize, Value *ArraySize,
458 Function *MallocF, const Twine &Name) {
459 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
460 ArraySize, MallocF, Name);
461 }
462
createFree(Value * Source,Instruction * InsertBefore,BasicBlock * InsertAtEnd)463 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
464 BasicBlock *InsertAtEnd) {
465 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
466 "createFree needs either InsertBefore or InsertAtEnd");
467 assert(Source->getType()->isPointerTy() &&
468 "Can not free something of nonpointer type!");
469
470 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
471 Module* M = BB->getParent()->getParent();
472
473 Type *VoidTy = Type::getVoidTy(M->getContext());
474 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
475 // prototype free as "void free(void*)"
476 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
477 CallInst* Result = NULL;
478 Value *PtrCast = Source;
479 if (InsertBefore) {
480 if (Source->getType() != IntPtrTy)
481 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
482 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
483 } else {
484 if (Source->getType() != IntPtrTy)
485 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
486 Result = CallInst::Create(FreeFunc, PtrCast, "");
487 }
488 Result->setTailCall();
489 if (Function *F = dyn_cast<Function>(FreeFunc))
490 Result->setCallingConv(F->getCallingConv());
491
492 return Result;
493 }
494
495 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)496 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
497 return createFree(Source, InsertBefore, NULL);
498 }
499
500 /// CreateFree - Generate the IR for a call to the builtin free function.
501 /// Note: This function does not add the call to the basic block, that is the
502 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)503 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
504 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
505 assert(FreeCall && "CreateFree did not create a CallInst");
506 return FreeCall;
507 }
508
509 //===----------------------------------------------------------------------===//
510 // InvokeInst Implementation
511 //===----------------------------------------------------------------------===//
512
init(Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,ArrayRef<Value * > Args,const Twine & NameStr)513 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
514 ArrayRef<Value *> Args, const Twine &NameStr) {
515 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
516 Op<-3>() = Fn;
517 Op<-2>() = IfNormal;
518 Op<-1>() = IfException;
519
520 #ifndef NDEBUG
521 FunctionType *FTy =
522 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
523
524 assert(((Args.size() == FTy->getNumParams()) ||
525 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
526 "Invoking a function with bad signature");
527
528 for (unsigned i = 0, e = Args.size(); i != e; i++)
529 assert((i >= FTy->getNumParams() ||
530 FTy->getParamType(i) == Args[i]->getType()) &&
531 "Invoking a function with a bad signature!");
532 #endif
533
534 std::copy(Args.begin(), Args.end(), op_begin());
535 setName(NameStr);
536 }
537
InvokeInst(const InvokeInst & II)538 InvokeInst::InvokeInst(const InvokeInst &II)
539 : TerminatorInst(II.getType(), Instruction::Invoke,
540 OperandTraits<InvokeInst>::op_end(this)
541 - II.getNumOperands(),
542 II.getNumOperands()) {
543 setAttributes(II.getAttributes());
544 setCallingConv(II.getCallingConv());
545 std::copy(II.op_begin(), II.op_end(), op_begin());
546 SubclassOptionalData = II.SubclassOptionalData;
547 }
548
getSuccessorV(unsigned idx) const549 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
550 return getSuccessor(idx);
551 }
getNumSuccessorsV() const552 unsigned InvokeInst::getNumSuccessorsV() const {
553 return getNumSuccessors();
554 }
setSuccessorV(unsigned idx,BasicBlock * B)555 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
556 return setSuccessor(idx, B);
557 }
558
paramHasAttr(unsigned i,Attributes attr) const559 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
560 if (AttributeList.paramHasAttr(i, attr))
561 return true;
562 if (const Function *F = getCalledFunction())
563 return F->paramHasAttr(i, attr);
564 return false;
565 }
566
addAttribute(unsigned i,Attributes attr)567 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
568 AttrListPtr PAL = getAttributes();
569 PAL = PAL.addAttr(i, attr);
570 setAttributes(PAL);
571 }
572
removeAttribute(unsigned i,Attributes attr)573 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
574 AttrListPtr PAL = getAttributes();
575 PAL = PAL.removeAttr(i, attr);
576 setAttributes(PAL);
577 }
578
getLandingPadInst() const579 LandingPadInst *InvokeInst::getLandingPadInst() const {
580 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
581 }
582
583 //===----------------------------------------------------------------------===//
584 // ReturnInst Implementation
585 //===----------------------------------------------------------------------===//
586
ReturnInst(const ReturnInst & RI)587 ReturnInst::ReturnInst(const ReturnInst &RI)
588 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
589 OperandTraits<ReturnInst>::op_end(this) -
590 RI.getNumOperands(),
591 RI.getNumOperands()) {
592 if (RI.getNumOperands())
593 Op<0>() = RI.Op<0>();
594 SubclassOptionalData = RI.SubclassOptionalData;
595 }
596
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)597 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
598 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
599 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
600 InsertBefore) {
601 if (retVal)
602 Op<0>() = retVal;
603 }
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)604 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
605 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
606 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
607 InsertAtEnd) {
608 if (retVal)
609 Op<0>() = retVal;
610 }
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)611 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
612 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
613 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
614 }
615
getNumSuccessorsV() const616 unsigned ReturnInst::getNumSuccessorsV() const {
617 return getNumSuccessors();
618 }
619
620 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
621 /// emit the vtable for the class in this translation unit.
setSuccessorV(unsigned idx,BasicBlock * NewSucc)622 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
623 llvm_unreachable("ReturnInst has no successors!");
624 }
625
getSuccessorV(unsigned idx) const626 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
627 llvm_unreachable("ReturnInst has no successors!");
628 }
629
~ReturnInst()630 ReturnInst::~ReturnInst() {
631 }
632
633 //===----------------------------------------------------------------------===//
634 // ResumeInst Implementation
635 //===----------------------------------------------------------------------===//
636
ResumeInst(const ResumeInst & RI)637 ResumeInst::ResumeInst(const ResumeInst &RI)
638 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
639 OperandTraits<ResumeInst>::op_begin(this), 1) {
640 Op<0>() = RI.Op<0>();
641 }
642
ResumeInst(Value * Exn,Instruction * InsertBefore)643 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
644 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
645 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
646 Op<0>() = Exn;
647 }
648
ResumeInst(Value * Exn,BasicBlock * InsertAtEnd)649 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
650 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
651 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
652 Op<0>() = Exn;
653 }
654
getNumSuccessorsV() const655 unsigned ResumeInst::getNumSuccessorsV() const {
656 return getNumSuccessors();
657 }
658
setSuccessorV(unsigned idx,BasicBlock * NewSucc)659 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
660 llvm_unreachable("ResumeInst has no successors!");
661 }
662
getSuccessorV(unsigned idx) const663 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
664 llvm_unreachable("ResumeInst has no successors!");
665 }
666
667 //===----------------------------------------------------------------------===//
668 // UnreachableInst Implementation
669 //===----------------------------------------------------------------------===//
670
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)671 UnreachableInst::UnreachableInst(LLVMContext &Context,
672 Instruction *InsertBefore)
673 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
674 0, 0, InsertBefore) {
675 }
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)676 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
677 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
678 0, 0, InsertAtEnd) {
679 }
680
getNumSuccessorsV() const681 unsigned UnreachableInst::getNumSuccessorsV() const {
682 return getNumSuccessors();
683 }
684
setSuccessorV(unsigned idx,BasicBlock * NewSucc)685 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
686 llvm_unreachable("UnreachableInst has no successors!");
687 }
688
getSuccessorV(unsigned idx) const689 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
690 llvm_unreachable("UnreachableInst has no successors!");
691 }
692
693 //===----------------------------------------------------------------------===//
694 // BranchInst Implementation
695 //===----------------------------------------------------------------------===//
696
AssertOK()697 void BranchInst::AssertOK() {
698 if (isConditional())
699 assert(getCondition()->getType()->isIntegerTy(1) &&
700 "May only branch on boolean predicates!");
701 }
702
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)703 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
704 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
705 OperandTraits<BranchInst>::op_end(this) - 1,
706 1, InsertBefore) {
707 assert(IfTrue != 0 && "Branch destination may not be null!");
708 Op<-1>() = IfTrue;
709 }
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)710 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
711 Instruction *InsertBefore)
712 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
713 OperandTraits<BranchInst>::op_end(this) - 3,
714 3, InsertBefore) {
715 Op<-1>() = IfTrue;
716 Op<-2>() = IfFalse;
717 Op<-3>() = Cond;
718 #ifndef NDEBUG
719 AssertOK();
720 #endif
721 }
722
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)723 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
724 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
725 OperandTraits<BranchInst>::op_end(this) - 1,
726 1, InsertAtEnd) {
727 assert(IfTrue != 0 && "Branch destination may not be null!");
728 Op<-1>() = IfTrue;
729 }
730
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)731 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
732 BasicBlock *InsertAtEnd)
733 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
734 OperandTraits<BranchInst>::op_end(this) - 3,
735 3, InsertAtEnd) {
736 Op<-1>() = IfTrue;
737 Op<-2>() = IfFalse;
738 Op<-3>() = Cond;
739 #ifndef NDEBUG
740 AssertOK();
741 #endif
742 }
743
744
BranchInst(const BranchInst & BI)745 BranchInst::BranchInst(const BranchInst &BI) :
746 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
747 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
748 BI.getNumOperands()) {
749 Op<-1>() = BI.Op<-1>();
750 if (BI.getNumOperands() != 1) {
751 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
752 Op<-3>() = BI.Op<-3>();
753 Op<-2>() = BI.Op<-2>();
754 }
755 SubclassOptionalData = BI.SubclassOptionalData;
756 }
757
swapSuccessors()758 void BranchInst::swapSuccessors() {
759 assert(isConditional() &&
760 "Cannot swap successors of an unconditional branch");
761 Op<-1>().swap(Op<-2>());
762
763 // Update profile metadata if present and it matches our structural
764 // expectations.
765 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
766 if (!ProfileData || ProfileData->getNumOperands() != 3)
767 return;
768
769 // The first operand is the name. Fetch them backwards and build a new one.
770 Value *Ops[] = {
771 ProfileData->getOperand(0),
772 ProfileData->getOperand(2),
773 ProfileData->getOperand(1)
774 };
775 setMetadata(LLVMContext::MD_prof,
776 MDNode::get(ProfileData->getContext(), Ops));
777 }
778
getSuccessorV(unsigned idx) const779 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
780 return getSuccessor(idx);
781 }
getNumSuccessorsV() const782 unsigned BranchInst::getNumSuccessorsV() const {
783 return getNumSuccessors();
784 }
setSuccessorV(unsigned idx,BasicBlock * B)785 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
786 setSuccessor(idx, B);
787 }
788
789
790 //===----------------------------------------------------------------------===//
791 // AllocaInst Implementation
792 //===----------------------------------------------------------------------===//
793
getAISize(LLVMContext & Context,Value * Amt)794 static Value *getAISize(LLVMContext &Context, Value *Amt) {
795 if (!Amt)
796 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
797 else {
798 assert(!isa<BasicBlock>(Amt) &&
799 "Passed basic block into allocation size parameter! Use other ctor");
800 assert(Amt->getType()->isIntegerTy() &&
801 "Allocation array size is not an integer!");
802 }
803 return Amt;
804 }
805
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)806 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
807 const Twine &Name, Instruction *InsertBefore)
808 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
809 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
810 setAlignment(0);
811 assert(!Ty->isVoidTy() && "Cannot allocate void!");
812 setName(Name);
813 }
814
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)815 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
816 const Twine &Name, BasicBlock *InsertAtEnd)
817 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
818 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
819 setAlignment(0);
820 assert(!Ty->isVoidTy() && "Cannot allocate void!");
821 setName(Name);
822 }
823
AllocaInst(Type * Ty,const Twine & Name,Instruction * InsertBefore)824 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
825 Instruction *InsertBefore)
826 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
827 getAISize(Ty->getContext(), 0), InsertBefore) {
828 setAlignment(0);
829 assert(!Ty->isVoidTy() && "Cannot allocate void!");
830 setName(Name);
831 }
832
AllocaInst(Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)833 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
834 BasicBlock *InsertAtEnd)
835 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
836 getAISize(Ty->getContext(), 0), InsertAtEnd) {
837 setAlignment(0);
838 assert(!Ty->isVoidTy() && "Cannot allocate void!");
839 setName(Name);
840 }
841
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,Instruction * InsertBefore)842 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
843 const Twine &Name, Instruction *InsertBefore)
844 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
845 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
846 setAlignment(Align);
847 assert(!Ty->isVoidTy() && "Cannot allocate void!");
848 setName(Name);
849 }
850
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,BasicBlock * InsertAtEnd)851 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
852 const Twine &Name, BasicBlock *InsertAtEnd)
853 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
854 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
855 setAlignment(Align);
856 assert(!Ty->isVoidTy() && "Cannot allocate void!");
857 setName(Name);
858 }
859
860 // Out of line virtual method, so the vtable, etc has a home.
~AllocaInst()861 AllocaInst::~AllocaInst() {
862 }
863
setAlignment(unsigned Align)864 void AllocaInst::setAlignment(unsigned Align) {
865 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
866 assert(Align <= MaximumAlignment &&
867 "Alignment is greater than MaximumAlignment!");
868 setInstructionSubclassData(Log2_32(Align) + 1);
869 assert(getAlignment() == Align && "Alignment representation error!");
870 }
871
isArrayAllocation() const872 bool AllocaInst::isArrayAllocation() const {
873 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
874 return !CI->isOne();
875 return true;
876 }
877
getAllocatedType() const878 Type *AllocaInst::getAllocatedType() const {
879 return getType()->getElementType();
880 }
881
882 /// isStaticAlloca - Return true if this alloca is in the entry block of the
883 /// function and is a constant size. If so, the code generator will fold it
884 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const885 bool AllocaInst::isStaticAlloca() const {
886 // Must be constant size.
887 if (!isa<ConstantInt>(getArraySize())) return false;
888
889 // Must be in the entry block.
890 const BasicBlock *Parent = getParent();
891 return Parent == &Parent->getParent()->front();
892 }
893
894 //===----------------------------------------------------------------------===//
895 // LoadInst Implementation
896 //===----------------------------------------------------------------------===//
897
AssertOK()898 void LoadInst::AssertOK() {
899 assert(getOperand(0)->getType()->isPointerTy() &&
900 "Ptr must have pointer type.");
901 assert(!(isAtomic() && getAlignment() == 0) &&
902 "Alignment required for atomic load");
903 }
904
LoadInst(Value * Ptr,const Twine & Name,Instruction * InsertBef)905 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
906 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
907 Load, Ptr, InsertBef) {
908 setVolatile(false);
909 setAlignment(0);
910 setAtomic(NotAtomic);
911 AssertOK();
912 setName(Name);
913 }
914
LoadInst(Value * Ptr,const Twine & Name,BasicBlock * InsertAE)915 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
916 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
917 Load, Ptr, InsertAE) {
918 setVolatile(false);
919 setAlignment(0);
920 setAtomic(NotAtomic);
921 AssertOK();
922 setName(Name);
923 }
924
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)925 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
926 Instruction *InsertBef)
927 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
928 Load, Ptr, InsertBef) {
929 setVolatile(isVolatile);
930 setAlignment(0);
931 setAtomic(NotAtomic);
932 AssertOK();
933 setName(Name);
934 }
935
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)936 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
937 BasicBlock *InsertAE)
938 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
939 Load, Ptr, InsertAE) {
940 setVolatile(isVolatile);
941 setAlignment(0);
942 setAtomic(NotAtomic);
943 AssertOK();
944 setName(Name);
945 }
946
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,Instruction * InsertBef)947 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
948 unsigned Align, Instruction *InsertBef)
949 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
950 Load, Ptr, InsertBef) {
951 setVolatile(isVolatile);
952 setAlignment(Align);
953 setAtomic(NotAtomic);
954 AssertOK();
955 setName(Name);
956 }
957
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,BasicBlock * InsertAE)958 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
959 unsigned Align, BasicBlock *InsertAE)
960 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
961 Load, Ptr, InsertAE) {
962 setVolatile(isVolatile);
963 setAlignment(Align);
964 setAtomic(NotAtomic);
965 AssertOK();
966 setName(Name);
967 }
968
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBef)969 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
970 unsigned Align, AtomicOrdering Order,
971 SynchronizationScope SynchScope,
972 Instruction *InsertBef)
973 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
974 Load, Ptr, InsertBef) {
975 setVolatile(isVolatile);
976 setAlignment(Align);
977 setAtomic(Order, SynchScope);
978 AssertOK();
979 setName(Name);
980 }
981
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAE)982 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
983 unsigned Align, AtomicOrdering Order,
984 SynchronizationScope SynchScope,
985 BasicBlock *InsertAE)
986 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
987 Load, Ptr, InsertAE) {
988 setVolatile(isVolatile);
989 setAlignment(Align);
990 setAtomic(Order, SynchScope);
991 AssertOK();
992 setName(Name);
993 }
994
LoadInst(Value * Ptr,const char * Name,Instruction * InsertBef)995 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
996 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
997 Load, Ptr, InsertBef) {
998 setVolatile(false);
999 setAlignment(0);
1000 setAtomic(NotAtomic);
1001 AssertOK();
1002 if (Name && Name[0]) setName(Name);
1003 }
1004
LoadInst(Value * Ptr,const char * Name,BasicBlock * InsertAE)1005 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1006 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1007 Load, Ptr, InsertAE) {
1008 setVolatile(false);
1009 setAlignment(0);
1010 setAtomic(NotAtomic);
1011 AssertOK();
1012 if (Name && Name[0]) setName(Name);
1013 }
1014
LoadInst(Value * Ptr,const char * Name,bool isVolatile,Instruction * InsertBef)1015 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1016 Instruction *InsertBef)
1017 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1018 Load, Ptr, InsertBef) {
1019 setVolatile(isVolatile);
1020 setAlignment(0);
1021 setAtomic(NotAtomic);
1022 AssertOK();
1023 if (Name && Name[0]) setName(Name);
1024 }
1025
LoadInst(Value * Ptr,const char * Name,bool isVolatile,BasicBlock * InsertAE)1026 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1027 BasicBlock *InsertAE)
1028 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1029 Load, Ptr, InsertAE) {
1030 setVolatile(isVolatile);
1031 setAlignment(0);
1032 setAtomic(NotAtomic);
1033 AssertOK();
1034 if (Name && Name[0]) setName(Name);
1035 }
1036
setAlignment(unsigned Align)1037 void LoadInst::setAlignment(unsigned Align) {
1038 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1039 assert(Align <= MaximumAlignment &&
1040 "Alignment is greater than MaximumAlignment!");
1041 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1042 ((Log2_32(Align)+1)<<1));
1043 assert(getAlignment() == Align && "Alignment representation error!");
1044 }
1045
1046 //===----------------------------------------------------------------------===//
1047 // StoreInst Implementation
1048 //===----------------------------------------------------------------------===//
1049
AssertOK()1050 void StoreInst::AssertOK() {
1051 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1052 assert(getOperand(1)->getType()->isPointerTy() &&
1053 "Ptr must have pointer type!");
1054 assert(getOperand(0)->getType() ==
1055 cast<PointerType>(getOperand(1)->getType())->getElementType()
1056 && "Ptr must be a pointer to Val type!");
1057 assert(!(isAtomic() && getAlignment() == 0) &&
1058 "Alignment required for atomic load");
1059 }
1060
1061
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1062 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1063 : Instruction(Type::getVoidTy(val->getContext()), Store,
1064 OperandTraits<StoreInst>::op_begin(this),
1065 OperandTraits<StoreInst>::operands(this),
1066 InsertBefore) {
1067 Op<0>() = val;
1068 Op<1>() = addr;
1069 setVolatile(false);
1070 setAlignment(0);
1071 setAtomic(NotAtomic);
1072 AssertOK();
1073 }
1074
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1075 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1076 : Instruction(Type::getVoidTy(val->getContext()), Store,
1077 OperandTraits<StoreInst>::op_begin(this),
1078 OperandTraits<StoreInst>::operands(this),
1079 InsertAtEnd) {
1080 Op<0>() = val;
1081 Op<1>() = addr;
1082 setVolatile(false);
1083 setAlignment(0);
1084 setAtomic(NotAtomic);
1085 AssertOK();
1086 }
1087
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1088 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1089 Instruction *InsertBefore)
1090 : Instruction(Type::getVoidTy(val->getContext()), Store,
1091 OperandTraits<StoreInst>::op_begin(this),
1092 OperandTraits<StoreInst>::operands(this),
1093 InsertBefore) {
1094 Op<0>() = val;
1095 Op<1>() = addr;
1096 setVolatile(isVolatile);
1097 setAlignment(0);
1098 setAtomic(NotAtomic);
1099 AssertOK();
1100 }
1101
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,Instruction * InsertBefore)1102 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1103 unsigned Align, Instruction *InsertBefore)
1104 : Instruction(Type::getVoidTy(val->getContext()), Store,
1105 OperandTraits<StoreInst>::op_begin(this),
1106 OperandTraits<StoreInst>::operands(this),
1107 InsertBefore) {
1108 Op<0>() = val;
1109 Op<1>() = addr;
1110 setVolatile(isVolatile);
1111 setAlignment(Align);
1112 setAtomic(NotAtomic);
1113 AssertOK();
1114 }
1115
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBefore)1116 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1117 unsigned Align, AtomicOrdering Order,
1118 SynchronizationScope SynchScope,
1119 Instruction *InsertBefore)
1120 : Instruction(Type::getVoidTy(val->getContext()), Store,
1121 OperandTraits<StoreInst>::op_begin(this),
1122 OperandTraits<StoreInst>::operands(this),
1123 InsertBefore) {
1124 Op<0>() = val;
1125 Op<1>() = addr;
1126 setVolatile(isVolatile);
1127 setAlignment(Align);
1128 setAtomic(Order, SynchScope);
1129 AssertOK();
1130 }
1131
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1132 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1133 BasicBlock *InsertAtEnd)
1134 : Instruction(Type::getVoidTy(val->getContext()), Store,
1135 OperandTraits<StoreInst>::op_begin(this),
1136 OperandTraits<StoreInst>::operands(this),
1137 InsertAtEnd) {
1138 Op<0>() = val;
1139 Op<1>() = addr;
1140 setVolatile(isVolatile);
1141 setAlignment(0);
1142 setAtomic(NotAtomic);
1143 AssertOK();
1144 }
1145
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,BasicBlock * InsertAtEnd)1146 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1147 unsigned Align, BasicBlock *InsertAtEnd)
1148 : Instruction(Type::getVoidTy(val->getContext()), Store,
1149 OperandTraits<StoreInst>::op_begin(this),
1150 OperandTraits<StoreInst>::operands(this),
1151 InsertAtEnd) {
1152 Op<0>() = val;
1153 Op<1>() = addr;
1154 setVolatile(isVolatile);
1155 setAlignment(Align);
1156 setAtomic(NotAtomic);
1157 AssertOK();
1158 }
1159
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1160 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1161 unsigned Align, AtomicOrdering Order,
1162 SynchronizationScope SynchScope,
1163 BasicBlock *InsertAtEnd)
1164 : Instruction(Type::getVoidTy(val->getContext()), Store,
1165 OperandTraits<StoreInst>::op_begin(this),
1166 OperandTraits<StoreInst>::operands(this),
1167 InsertAtEnd) {
1168 Op<0>() = val;
1169 Op<1>() = addr;
1170 setVolatile(isVolatile);
1171 setAlignment(Align);
1172 setAtomic(Order, SynchScope);
1173 AssertOK();
1174 }
1175
setAlignment(unsigned Align)1176 void StoreInst::setAlignment(unsigned Align) {
1177 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1178 assert(Align <= MaximumAlignment &&
1179 "Alignment is greater than MaximumAlignment!");
1180 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1181 ((Log2_32(Align)+1) << 1));
1182 assert(getAlignment() == Align && "Alignment representation error!");
1183 }
1184
1185 //===----------------------------------------------------------------------===//
1186 // AtomicCmpXchgInst Implementation
1187 //===----------------------------------------------------------------------===//
1188
Init(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope)1189 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1190 AtomicOrdering Ordering,
1191 SynchronizationScope SynchScope) {
1192 Op<0>() = Ptr;
1193 Op<1>() = Cmp;
1194 Op<2>() = NewVal;
1195 setOrdering(Ordering);
1196 setSynchScope(SynchScope);
1197
1198 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1199 "All operands must be non-null!");
1200 assert(getOperand(0)->getType()->isPointerTy() &&
1201 "Ptr must have pointer type!");
1202 assert(getOperand(1)->getType() ==
1203 cast<PointerType>(getOperand(0)->getType())->getElementType()
1204 && "Ptr must be a pointer to Cmp type!");
1205 assert(getOperand(2)->getType() ==
1206 cast<PointerType>(getOperand(0)->getType())->getElementType()
1207 && "Ptr must be a pointer to NewVal type!");
1208 assert(Ordering != NotAtomic &&
1209 "AtomicCmpXchg instructions must be atomic!");
1210 }
1211
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1212 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1213 AtomicOrdering Ordering,
1214 SynchronizationScope SynchScope,
1215 Instruction *InsertBefore)
1216 : Instruction(Cmp->getType(), AtomicCmpXchg,
1217 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1218 OperandTraits<AtomicCmpXchgInst>::operands(this),
1219 InsertBefore) {
1220 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1221 }
1222
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1223 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1224 AtomicOrdering Ordering,
1225 SynchronizationScope SynchScope,
1226 BasicBlock *InsertAtEnd)
1227 : Instruction(Cmp->getType(), AtomicCmpXchg,
1228 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1229 OperandTraits<AtomicCmpXchgInst>::operands(this),
1230 InsertAtEnd) {
1231 Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1232 }
1233
1234 //===----------------------------------------------------------------------===//
1235 // AtomicRMWInst Implementation
1236 //===----------------------------------------------------------------------===//
1237
Init(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope)1238 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1239 AtomicOrdering Ordering,
1240 SynchronizationScope SynchScope) {
1241 Op<0>() = Ptr;
1242 Op<1>() = Val;
1243 setOperation(Operation);
1244 setOrdering(Ordering);
1245 setSynchScope(SynchScope);
1246
1247 assert(getOperand(0) && getOperand(1) &&
1248 "All operands must be non-null!");
1249 assert(getOperand(0)->getType()->isPointerTy() &&
1250 "Ptr must have pointer type!");
1251 assert(getOperand(1)->getType() ==
1252 cast<PointerType>(getOperand(0)->getType())->getElementType()
1253 && "Ptr must be a pointer to Val type!");
1254 assert(Ordering != NotAtomic &&
1255 "AtomicRMW instructions must be atomic!");
1256 }
1257
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1258 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1259 AtomicOrdering Ordering,
1260 SynchronizationScope SynchScope,
1261 Instruction *InsertBefore)
1262 : Instruction(Val->getType(), AtomicRMW,
1263 OperandTraits<AtomicRMWInst>::op_begin(this),
1264 OperandTraits<AtomicRMWInst>::operands(this),
1265 InsertBefore) {
1266 Init(Operation, Ptr, Val, Ordering, SynchScope);
1267 }
1268
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1269 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1270 AtomicOrdering Ordering,
1271 SynchronizationScope SynchScope,
1272 BasicBlock *InsertAtEnd)
1273 : Instruction(Val->getType(), AtomicRMW,
1274 OperandTraits<AtomicRMWInst>::op_begin(this),
1275 OperandTraits<AtomicRMWInst>::operands(this),
1276 InsertAtEnd) {
1277 Init(Operation, Ptr, Val, Ordering, SynchScope);
1278 }
1279
1280 //===----------------------------------------------------------------------===//
1281 // FenceInst Implementation
1282 //===----------------------------------------------------------------------===//
1283
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1284 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1285 SynchronizationScope SynchScope,
1286 Instruction *InsertBefore)
1287 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1288 setOrdering(Ordering);
1289 setSynchScope(SynchScope);
1290 }
1291
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1292 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1293 SynchronizationScope SynchScope,
1294 BasicBlock *InsertAtEnd)
1295 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1296 setOrdering(Ordering);
1297 setSynchScope(SynchScope);
1298 }
1299
1300 //===----------------------------------------------------------------------===//
1301 // GetElementPtrInst Implementation
1302 //===----------------------------------------------------------------------===//
1303
init(Value * Ptr,ArrayRef<Value * > IdxList,const Twine & Name)1304 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1305 const Twine &Name) {
1306 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1307 OperandList[0] = Ptr;
1308 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1309 setName(Name);
1310 }
1311
GetElementPtrInst(const GetElementPtrInst & GEPI)1312 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1313 : Instruction(GEPI.getType(), GetElementPtr,
1314 OperandTraits<GetElementPtrInst>::op_end(this)
1315 - GEPI.getNumOperands(),
1316 GEPI.getNumOperands()) {
1317 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1318 SubclassOptionalData = GEPI.SubclassOptionalData;
1319 }
1320
1321 /// getIndexedType - Returns the type of the element that would be accessed with
1322 /// a gep instruction with the specified parameters.
1323 ///
1324 /// The Idxs pointer should point to a continuous piece of memory containing the
1325 /// indices, either as Value* or uint64_t.
1326 ///
1327 /// A null type is returned if the indices are invalid for the specified
1328 /// pointer type.
1329 ///
1330 template <typename IndexTy>
getIndexedTypeInternal(Type * Ptr,ArrayRef<IndexTy> IdxList)1331 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1332 if (Ptr->isVectorTy()) {
1333 assert(IdxList.size() == 1 &&
1334 "GEP with vector pointers must have a single index");
1335 PointerType *PTy = dyn_cast<PointerType>(
1336 cast<VectorType>(Ptr)->getElementType());
1337 assert(PTy && "Gep with invalid vector pointer found");
1338 return PTy->getElementType();
1339 }
1340
1341 PointerType *PTy = dyn_cast<PointerType>(Ptr);
1342 if (!PTy) return 0; // Type isn't a pointer type!
1343 Type *Agg = PTy->getElementType();
1344
1345 // Handle the special case of the empty set index set, which is always valid.
1346 if (IdxList.empty())
1347 return Agg;
1348
1349 // If there is at least one index, the top level type must be sized, otherwise
1350 // it cannot be 'stepped over'.
1351 if (!Agg->isSized())
1352 return 0;
1353
1354 unsigned CurIdx = 1;
1355 for (; CurIdx != IdxList.size(); ++CurIdx) {
1356 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1357 if (!CT || CT->isPointerTy()) return 0;
1358 IndexTy Index = IdxList[CurIdx];
1359 if (!CT->indexValid(Index)) return 0;
1360 Agg = CT->getTypeAtIndex(Index);
1361 }
1362 return CurIdx == IdxList.size() ? Agg : 0;
1363 }
1364
getIndexedType(Type * Ptr,ArrayRef<Value * > IdxList)1365 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1366 return getIndexedTypeInternal(Ptr, IdxList);
1367 }
1368
getIndexedType(Type * Ptr,ArrayRef<Constant * > IdxList)1369 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1370 ArrayRef<Constant *> IdxList) {
1371 return getIndexedTypeInternal(Ptr, IdxList);
1372 }
1373
getIndexedType(Type * Ptr,ArrayRef<uint64_t> IdxList)1374 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1375 return getIndexedTypeInternal(Ptr, IdxList);
1376 }
1377
getAddressSpace(Value * Ptr)1378 unsigned GetElementPtrInst::getAddressSpace(Value *Ptr) {
1379 Type *Ty = Ptr->getType();
1380
1381 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1382 Ty = VTy->getElementType();
1383
1384 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1385 return PTy->getAddressSpace();
1386
1387 llvm_unreachable("Invalid GEP pointer type");
1388 }
1389
1390 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1391 /// zeros. If so, the result pointer and the first operand have the same
1392 /// value, just potentially different types.
hasAllZeroIndices() const1393 bool GetElementPtrInst::hasAllZeroIndices() const {
1394 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1395 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1396 if (!CI->isZero()) return false;
1397 } else {
1398 return false;
1399 }
1400 }
1401 return true;
1402 }
1403
1404 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1405 /// constant integers. If so, the result pointer and the first operand have
1406 /// a constant offset between them.
hasAllConstantIndices() const1407 bool GetElementPtrInst::hasAllConstantIndices() const {
1408 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1409 if (!isa<ConstantInt>(getOperand(i)))
1410 return false;
1411 }
1412 return true;
1413 }
1414
setIsInBounds(bool B)1415 void GetElementPtrInst::setIsInBounds(bool B) {
1416 cast<GEPOperator>(this)->setIsInBounds(B);
1417 }
1418
isInBounds() const1419 bool GetElementPtrInst::isInBounds() const {
1420 return cast<GEPOperator>(this)->isInBounds();
1421 }
1422
1423 //===----------------------------------------------------------------------===//
1424 // ExtractElementInst Implementation
1425 //===----------------------------------------------------------------------===//
1426
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1427 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1428 const Twine &Name,
1429 Instruction *InsertBef)
1430 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1431 ExtractElement,
1432 OperandTraits<ExtractElementInst>::op_begin(this),
1433 2, InsertBef) {
1434 assert(isValidOperands(Val, Index) &&
1435 "Invalid extractelement instruction operands!");
1436 Op<0>() = Val;
1437 Op<1>() = Index;
1438 setName(Name);
1439 }
1440
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1441 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1442 const Twine &Name,
1443 BasicBlock *InsertAE)
1444 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1445 ExtractElement,
1446 OperandTraits<ExtractElementInst>::op_begin(this),
1447 2, InsertAE) {
1448 assert(isValidOperands(Val, Index) &&
1449 "Invalid extractelement instruction operands!");
1450
1451 Op<0>() = Val;
1452 Op<1>() = Index;
1453 setName(Name);
1454 }
1455
1456
isValidOperands(const Value * Val,const Value * Index)1457 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1458 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1459 return false;
1460 return true;
1461 }
1462
1463
1464 //===----------------------------------------------------------------------===//
1465 // InsertElementInst Implementation
1466 //===----------------------------------------------------------------------===//
1467
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1468 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1469 const Twine &Name,
1470 Instruction *InsertBef)
1471 : Instruction(Vec->getType(), InsertElement,
1472 OperandTraits<InsertElementInst>::op_begin(this),
1473 3, InsertBef) {
1474 assert(isValidOperands(Vec, Elt, Index) &&
1475 "Invalid insertelement instruction operands!");
1476 Op<0>() = Vec;
1477 Op<1>() = Elt;
1478 Op<2>() = Index;
1479 setName(Name);
1480 }
1481
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1482 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1483 const Twine &Name,
1484 BasicBlock *InsertAE)
1485 : Instruction(Vec->getType(), InsertElement,
1486 OperandTraits<InsertElementInst>::op_begin(this),
1487 3, InsertAE) {
1488 assert(isValidOperands(Vec, Elt, Index) &&
1489 "Invalid insertelement instruction operands!");
1490
1491 Op<0>() = Vec;
1492 Op<1>() = Elt;
1493 Op<2>() = Index;
1494 setName(Name);
1495 }
1496
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1497 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1498 const Value *Index) {
1499 if (!Vec->getType()->isVectorTy())
1500 return false; // First operand of insertelement must be vector type.
1501
1502 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1503 return false;// Second operand of insertelement must be vector element type.
1504
1505 if (!Index->getType()->isIntegerTy(32))
1506 return false; // Third operand of insertelement must be i32.
1507 return true;
1508 }
1509
1510
1511 //===----------------------------------------------------------------------===//
1512 // ShuffleVectorInst Implementation
1513 //===----------------------------------------------------------------------===//
1514
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1515 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1516 const Twine &Name,
1517 Instruction *InsertBefore)
1518 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1519 cast<VectorType>(Mask->getType())->getNumElements()),
1520 ShuffleVector,
1521 OperandTraits<ShuffleVectorInst>::op_begin(this),
1522 OperandTraits<ShuffleVectorInst>::operands(this),
1523 InsertBefore) {
1524 assert(isValidOperands(V1, V2, Mask) &&
1525 "Invalid shuffle vector instruction operands!");
1526 Op<0>() = V1;
1527 Op<1>() = V2;
1528 Op<2>() = Mask;
1529 setName(Name);
1530 }
1531
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1532 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1533 const Twine &Name,
1534 BasicBlock *InsertAtEnd)
1535 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1536 cast<VectorType>(Mask->getType())->getNumElements()),
1537 ShuffleVector,
1538 OperandTraits<ShuffleVectorInst>::op_begin(this),
1539 OperandTraits<ShuffleVectorInst>::operands(this),
1540 InsertAtEnd) {
1541 assert(isValidOperands(V1, V2, Mask) &&
1542 "Invalid shuffle vector instruction operands!");
1543
1544 Op<0>() = V1;
1545 Op<1>() = V2;
1546 Op<2>() = Mask;
1547 setName(Name);
1548 }
1549
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1550 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1551 const Value *Mask) {
1552 // V1 and V2 must be vectors of the same type.
1553 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1554 return false;
1555
1556 // Mask must be vector of i32.
1557 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1558 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1559 return false;
1560
1561 // Check to see if Mask is valid.
1562 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1563 return true;
1564
1565 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1566 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1567 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1568 if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1569 if (CI->uge(V1Size*2))
1570 return false;
1571 } else if (!isa<UndefValue>(MV->getOperand(i))) {
1572 return false;
1573 }
1574 }
1575 return true;
1576 }
1577
1578 if (const ConstantDataSequential *CDS =
1579 dyn_cast<ConstantDataSequential>(Mask)) {
1580 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1581 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1582 if (CDS->getElementAsInteger(i) >= V1Size*2)
1583 return false;
1584 return true;
1585 }
1586
1587 // The bitcode reader can create a place holder for a forward reference
1588 // used as the shuffle mask. When this occurs, the shuffle mask will
1589 // fall into this case and fail. To avoid this error, do this bit of
1590 // ugliness to allow such a mask pass.
1591 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1592 if (CE->getOpcode() == Instruction::UserOp1)
1593 return true;
1594
1595 return false;
1596 }
1597
1598 /// getMaskValue - Return the index from the shuffle mask for the specified
1599 /// output result. This is either -1 if the element is undef or a number less
1600 /// than 2*numelements.
getMaskValue(Constant * Mask,unsigned i)1601 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1602 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1603 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1604 return CDS->getElementAsInteger(i);
1605 Constant *C = Mask->getAggregateElement(i);
1606 if (isa<UndefValue>(C))
1607 return -1;
1608 return cast<ConstantInt>(C)->getZExtValue();
1609 }
1610
1611 /// getShuffleMask - Return the full mask for this instruction, where each
1612 /// element is the element number and undef's are returned as -1.
getShuffleMask(Constant * Mask,SmallVectorImpl<int> & Result)1613 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1614 SmallVectorImpl<int> &Result) {
1615 unsigned NumElts = Mask->getType()->getVectorNumElements();
1616
1617 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1618 for (unsigned i = 0; i != NumElts; ++i)
1619 Result.push_back(CDS->getElementAsInteger(i));
1620 return;
1621 }
1622 for (unsigned i = 0; i != NumElts; ++i) {
1623 Constant *C = Mask->getAggregateElement(i);
1624 Result.push_back(isa<UndefValue>(C) ? -1 :
1625 cast<ConstantInt>(C)->getZExtValue());
1626 }
1627 }
1628
1629
1630 //===----------------------------------------------------------------------===//
1631 // InsertValueInst Class
1632 //===----------------------------------------------------------------------===//
1633
init(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Twine & Name)1634 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1635 const Twine &Name) {
1636 assert(NumOperands == 2 && "NumOperands not initialized?");
1637
1638 // There's no fundamental reason why we require at least one index
1639 // (other than weirdness with &*IdxBegin being invalid; see
1640 // getelementptr's init routine for example). But there's no
1641 // present need to support it.
1642 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1643
1644 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1645 Val->getType() && "Inserted value must match indexed type!");
1646 Op<0>() = Agg;
1647 Op<1>() = Val;
1648
1649 Indices.append(Idxs.begin(), Idxs.end());
1650 setName(Name);
1651 }
1652
InsertValueInst(const InsertValueInst & IVI)1653 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1654 : Instruction(IVI.getType(), InsertValue,
1655 OperandTraits<InsertValueInst>::op_begin(this), 2),
1656 Indices(IVI.Indices) {
1657 Op<0>() = IVI.getOperand(0);
1658 Op<1>() = IVI.getOperand(1);
1659 SubclassOptionalData = IVI.SubclassOptionalData;
1660 }
1661
1662 //===----------------------------------------------------------------------===//
1663 // ExtractValueInst Class
1664 //===----------------------------------------------------------------------===//
1665
init(ArrayRef<unsigned> Idxs,const Twine & Name)1666 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1667 assert(NumOperands == 1 && "NumOperands not initialized?");
1668
1669 // There's no fundamental reason why we require at least one index.
1670 // But there's no present need to support it.
1671 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1672
1673 Indices.append(Idxs.begin(), Idxs.end());
1674 setName(Name);
1675 }
1676
ExtractValueInst(const ExtractValueInst & EVI)1677 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1678 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1679 Indices(EVI.Indices) {
1680 SubclassOptionalData = EVI.SubclassOptionalData;
1681 }
1682
1683 // getIndexedType - Returns the type of the element that would be extracted
1684 // with an extractvalue instruction with the specified parameters.
1685 //
1686 // A null type is returned if the indices are invalid for the specified
1687 // pointer type.
1688 //
getIndexedType(Type * Agg,ArrayRef<unsigned> Idxs)1689 Type *ExtractValueInst::getIndexedType(Type *Agg,
1690 ArrayRef<unsigned> Idxs) {
1691 for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1692 unsigned Index = Idxs[CurIdx];
1693 // We can't use CompositeType::indexValid(Index) here.
1694 // indexValid() always returns true for arrays because getelementptr allows
1695 // out-of-bounds indices. Since we don't allow those for extractvalue and
1696 // insertvalue we need to check array indexing manually.
1697 // Since the only other types we can index into are struct types it's just
1698 // as easy to check those manually as well.
1699 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1700 if (Index >= AT->getNumElements())
1701 return 0;
1702 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1703 if (Index >= ST->getNumElements())
1704 return 0;
1705 } else {
1706 // Not a valid type to index into.
1707 return 0;
1708 }
1709
1710 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1711 }
1712 return const_cast<Type*>(Agg);
1713 }
1714
1715 //===----------------------------------------------------------------------===//
1716 // BinaryOperator Class
1717 //===----------------------------------------------------------------------===//
1718
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,Instruction * InsertBefore)1719 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1720 Type *Ty, const Twine &Name,
1721 Instruction *InsertBefore)
1722 : Instruction(Ty, iType,
1723 OperandTraits<BinaryOperator>::op_begin(this),
1724 OperandTraits<BinaryOperator>::operands(this),
1725 InsertBefore) {
1726 Op<0>() = S1;
1727 Op<1>() = S2;
1728 init(iType);
1729 setName(Name);
1730 }
1731
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1732 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1733 Type *Ty, const Twine &Name,
1734 BasicBlock *InsertAtEnd)
1735 : Instruction(Ty, iType,
1736 OperandTraits<BinaryOperator>::op_begin(this),
1737 OperandTraits<BinaryOperator>::operands(this),
1738 InsertAtEnd) {
1739 Op<0>() = S1;
1740 Op<1>() = S2;
1741 init(iType);
1742 setName(Name);
1743 }
1744
1745
init(BinaryOps iType)1746 void BinaryOperator::init(BinaryOps iType) {
1747 Value *LHS = getOperand(0), *RHS = getOperand(1);
1748 (void)LHS; (void)RHS; // Silence warnings.
1749 assert(LHS->getType() == RHS->getType() &&
1750 "Binary operator operand types must match!");
1751 #ifndef NDEBUG
1752 switch (iType) {
1753 case Add: case Sub:
1754 case Mul:
1755 assert(getType() == LHS->getType() &&
1756 "Arithmetic operation should return same type as operands!");
1757 assert(getType()->isIntOrIntVectorTy() &&
1758 "Tried to create an integer operation on a non-integer type!");
1759 break;
1760 case FAdd: case FSub:
1761 case FMul:
1762 assert(getType() == LHS->getType() &&
1763 "Arithmetic operation should return same type as operands!");
1764 assert(getType()->isFPOrFPVectorTy() &&
1765 "Tried to create a floating-point operation on a "
1766 "non-floating-point type!");
1767 break;
1768 case UDiv:
1769 case SDiv:
1770 assert(getType() == LHS->getType() &&
1771 "Arithmetic operation should return same type as operands!");
1772 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1773 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1774 "Incorrect operand type (not integer) for S/UDIV");
1775 break;
1776 case FDiv:
1777 assert(getType() == LHS->getType() &&
1778 "Arithmetic operation should return same type as operands!");
1779 assert(getType()->isFPOrFPVectorTy() &&
1780 "Incorrect operand type (not floating point) for FDIV");
1781 break;
1782 case URem:
1783 case SRem:
1784 assert(getType() == LHS->getType() &&
1785 "Arithmetic operation should return same type as operands!");
1786 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1787 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1788 "Incorrect operand type (not integer) for S/UREM");
1789 break;
1790 case FRem:
1791 assert(getType() == LHS->getType() &&
1792 "Arithmetic operation should return same type as operands!");
1793 assert(getType()->isFPOrFPVectorTy() &&
1794 "Incorrect operand type (not floating point) for FREM");
1795 break;
1796 case Shl:
1797 case LShr:
1798 case AShr:
1799 assert(getType() == LHS->getType() &&
1800 "Shift operation should return same type as operands!");
1801 assert((getType()->isIntegerTy() ||
1802 (getType()->isVectorTy() &&
1803 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1804 "Tried to create a shift operation on a non-integral type!");
1805 break;
1806 case And: case Or:
1807 case Xor:
1808 assert(getType() == LHS->getType() &&
1809 "Logical operation should return same type as operands!");
1810 assert((getType()->isIntegerTy() ||
1811 (getType()->isVectorTy() &&
1812 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1813 "Tried to create a logical operation on a non-integral type!");
1814 break;
1815 default:
1816 break;
1817 }
1818 #endif
1819 }
1820
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)1821 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1822 const Twine &Name,
1823 Instruction *InsertBefore) {
1824 assert(S1->getType() == S2->getType() &&
1825 "Cannot create binary operator with two operands of differing type!");
1826 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1827 }
1828
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)1829 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1830 const Twine &Name,
1831 BasicBlock *InsertAtEnd) {
1832 BinaryOperator *Res = Create(Op, S1, S2, Name);
1833 InsertAtEnd->getInstList().push_back(Res);
1834 return Res;
1835 }
1836
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1837 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1838 Instruction *InsertBefore) {
1839 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1840 return new BinaryOperator(Instruction::Sub,
1841 zero, Op,
1842 Op->getType(), Name, InsertBefore);
1843 }
1844
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1845 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1846 BasicBlock *InsertAtEnd) {
1847 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1848 return new BinaryOperator(Instruction::Sub,
1849 zero, Op,
1850 Op->getType(), Name, InsertAtEnd);
1851 }
1852
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1853 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1854 Instruction *InsertBefore) {
1855 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1856 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1857 }
1858
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1859 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1860 BasicBlock *InsertAtEnd) {
1861 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1862 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1863 }
1864
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1865 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1866 Instruction *InsertBefore) {
1867 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1868 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1869 }
1870
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1871 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1872 BasicBlock *InsertAtEnd) {
1873 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1874 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1875 }
1876
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1877 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1878 Instruction *InsertBefore) {
1879 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1880 return new BinaryOperator(Instruction::FSub, zero, Op,
1881 Op->getType(), Name, InsertBefore);
1882 }
1883
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1884 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1885 BasicBlock *InsertAtEnd) {
1886 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1887 return new BinaryOperator(Instruction::FSub, zero, Op,
1888 Op->getType(), Name, InsertAtEnd);
1889 }
1890
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)1891 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1892 Instruction *InsertBefore) {
1893 Constant *C = Constant::getAllOnesValue(Op->getType());
1894 return new BinaryOperator(Instruction::Xor, Op, C,
1895 Op->getType(), Name, InsertBefore);
1896 }
1897
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1898 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1899 BasicBlock *InsertAtEnd) {
1900 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1901 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1902 Op->getType(), Name, InsertAtEnd);
1903 }
1904
1905
1906 // isConstantAllOnes - Helper function for several functions below
isConstantAllOnes(const Value * V)1907 static inline bool isConstantAllOnes(const Value *V) {
1908 if (const Constant *C = dyn_cast<Constant>(V))
1909 return C->isAllOnesValue();
1910 return false;
1911 }
1912
isNeg(const Value * V)1913 bool BinaryOperator::isNeg(const Value *V) {
1914 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1915 if (Bop->getOpcode() == Instruction::Sub)
1916 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1917 return C->isNegativeZeroValue();
1918 return false;
1919 }
1920
isFNeg(const Value * V)1921 bool BinaryOperator::isFNeg(const Value *V) {
1922 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1923 if (Bop->getOpcode() == Instruction::FSub)
1924 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1925 return C->isNegativeZeroValue();
1926 return false;
1927 }
1928
isNot(const Value * V)1929 bool BinaryOperator::isNot(const Value *V) {
1930 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1931 return (Bop->getOpcode() == Instruction::Xor &&
1932 (isConstantAllOnes(Bop->getOperand(1)) ||
1933 isConstantAllOnes(Bop->getOperand(0))));
1934 return false;
1935 }
1936
getNegArgument(Value * BinOp)1937 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1938 return cast<BinaryOperator>(BinOp)->getOperand(1);
1939 }
1940
getNegArgument(const Value * BinOp)1941 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1942 return getNegArgument(const_cast<Value*>(BinOp));
1943 }
1944
getFNegArgument(Value * BinOp)1945 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1946 return cast<BinaryOperator>(BinOp)->getOperand(1);
1947 }
1948
getFNegArgument(const Value * BinOp)1949 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1950 return getFNegArgument(const_cast<Value*>(BinOp));
1951 }
1952
getNotArgument(Value * BinOp)1953 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1954 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1955 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1956 Value *Op0 = BO->getOperand(0);
1957 Value *Op1 = BO->getOperand(1);
1958 if (isConstantAllOnes(Op0)) return Op1;
1959
1960 assert(isConstantAllOnes(Op1));
1961 return Op0;
1962 }
1963
getNotArgument(const Value * BinOp)1964 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1965 return getNotArgument(const_cast<Value*>(BinOp));
1966 }
1967
1968
1969 // swapOperands - Exchange the two operands to this instruction. This
1970 // instruction is safe to use on any binary instruction and does not
1971 // modify the semantics of the instruction. If the instruction is
1972 // order dependent (SetLT f.e.) the opcode is changed.
1973 //
swapOperands()1974 bool BinaryOperator::swapOperands() {
1975 if (!isCommutative())
1976 return true; // Can't commute operands
1977 Op<0>().swap(Op<1>());
1978 return false;
1979 }
1980
setHasNoUnsignedWrap(bool b)1981 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1982 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1983 }
1984
setHasNoSignedWrap(bool b)1985 void BinaryOperator::setHasNoSignedWrap(bool b) {
1986 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1987 }
1988
setIsExact(bool b)1989 void BinaryOperator::setIsExact(bool b) {
1990 cast<PossiblyExactOperator>(this)->setIsExact(b);
1991 }
1992
hasNoUnsignedWrap() const1993 bool BinaryOperator::hasNoUnsignedWrap() const {
1994 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1995 }
1996
hasNoSignedWrap() const1997 bool BinaryOperator::hasNoSignedWrap() const {
1998 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1999 }
2000
isExact() const2001 bool BinaryOperator::isExact() const {
2002 return cast<PossiblyExactOperator>(this)->isExact();
2003 }
2004
2005 //===----------------------------------------------------------------------===//
2006 // FPMathOperator Class
2007 //===----------------------------------------------------------------------===//
2008
2009 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2010 /// An accuracy of 0.0 means that the operation should be performed with the
2011 /// default precision.
getFPAccuracy() const2012 float FPMathOperator::getFPAccuracy() const {
2013 const MDNode *MD =
2014 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2015 if (!MD)
2016 return 0.0;
2017 ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2018 return Accuracy->getValueAPF().convertToFloat();
2019 }
2020
2021
2022 //===----------------------------------------------------------------------===//
2023 // CastInst Class
2024 //===----------------------------------------------------------------------===//
2025
anchor()2026 void CastInst::anchor() {}
2027
2028 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const2029 bool CastInst::isIntegerCast() const {
2030 switch (getOpcode()) {
2031 default: return false;
2032 case Instruction::ZExt:
2033 case Instruction::SExt:
2034 case Instruction::Trunc:
2035 return true;
2036 case Instruction::BitCast:
2037 return getOperand(0)->getType()->isIntegerTy() &&
2038 getType()->isIntegerTy();
2039 }
2040 }
2041
isLosslessCast() const2042 bool CastInst::isLosslessCast() const {
2043 // Only BitCast can be lossless, exit fast if we're not BitCast
2044 if (getOpcode() != Instruction::BitCast)
2045 return false;
2046
2047 // Identity cast is always lossless
2048 Type* SrcTy = getOperand(0)->getType();
2049 Type* DstTy = getType();
2050 if (SrcTy == DstTy)
2051 return true;
2052
2053 // Pointer to pointer is always lossless.
2054 if (SrcTy->isPointerTy())
2055 return DstTy->isPointerTy();
2056 return false; // Other types have no identity values
2057 }
2058
2059 /// This function determines if the CastInst does not require any bits to be
2060 /// changed in order to effect the cast. Essentially, it identifies cases where
2061 /// no code gen is necessary for the cast, hence the name no-op cast. For
2062 /// example, the following are all no-op casts:
2063 /// # bitcast i32* %x to i8*
2064 /// # bitcast <2 x i32> %x to <4 x i16>
2065 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2066 /// @brief Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,Type * SrcTy,Type * DestTy,Type * IntPtrTy)2067 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2068 Type *SrcTy,
2069 Type *DestTy,
2070 Type *IntPtrTy) {
2071 switch (Opcode) {
2072 default: llvm_unreachable("Invalid CastOp");
2073 case Instruction::Trunc:
2074 case Instruction::ZExt:
2075 case Instruction::SExt:
2076 case Instruction::FPTrunc:
2077 case Instruction::FPExt:
2078 case Instruction::UIToFP:
2079 case Instruction::SIToFP:
2080 case Instruction::FPToUI:
2081 case Instruction::FPToSI:
2082 return false; // These always modify bits
2083 case Instruction::BitCast:
2084 return true; // BitCast never modifies bits.
2085 case Instruction::PtrToInt:
2086 return IntPtrTy->getScalarSizeInBits() ==
2087 DestTy->getScalarSizeInBits();
2088 case Instruction::IntToPtr:
2089 return IntPtrTy->getScalarSizeInBits() ==
2090 SrcTy->getScalarSizeInBits();
2091 }
2092 }
2093
2094 /// @brief Determine if a cast is a no-op.
isNoopCast(Type * IntPtrTy) const2095 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2096 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2097 }
2098
2099 /// This function determines if a pair of casts can be eliminated and what
2100 /// opcode should be used in the elimination. This assumes that there are two
2101 /// instructions like this:
2102 /// * %F = firstOpcode SrcTy %x to MidTy
2103 /// * %S = secondOpcode MidTy %F to DstTy
2104 /// The function returns a resultOpcode so these two casts can be replaced with:
2105 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2106 /// If no such cast is permited, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,Type * SrcTy,Type * MidTy,Type * DstTy,Type * IntPtrTy)2107 unsigned CastInst::isEliminableCastPair(
2108 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2109 Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) {
2110 // Define the 144 possibilities for these two cast instructions. The values
2111 // in this matrix determine what to do in a given situation and select the
2112 // case in the switch below. The rows correspond to firstOp, the columns
2113 // correspond to secondOp. In looking at the table below, keep in mind
2114 // the following cast properties:
2115 //
2116 // Size Compare Source Destination
2117 // Operator Src ? Size Type Sign Type Sign
2118 // -------- ------------ ------------------- ---------------------
2119 // TRUNC > Integer Any Integral Any
2120 // ZEXT < Integral Unsigned Integer Any
2121 // SEXT < Integral Signed Integer Any
2122 // FPTOUI n/a FloatPt n/a Integral Unsigned
2123 // FPTOSI n/a FloatPt n/a Integral Signed
2124 // UITOFP n/a Integral Unsigned FloatPt n/a
2125 // SITOFP n/a Integral Signed FloatPt n/a
2126 // FPTRUNC > FloatPt n/a FloatPt n/a
2127 // FPEXT < FloatPt n/a FloatPt n/a
2128 // PTRTOINT n/a Pointer n/a Integral Unsigned
2129 // INTTOPTR n/a Integral Unsigned Pointer n/a
2130 // BITCAST = FirstClass n/a FirstClass n/a
2131 //
2132 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2133 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2134 // into "fptoui double to i64", but this loses information about the range
2135 // of the produced value (we no longer know the top-part is all zeros).
2136 // Further this conversion is often much more expensive for typical hardware,
2137 // and causes issues when building libgcc. We disallow fptosi+sext for the
2138 // same reason.
2139 const unsigned numCastOps =
2140 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2141 static const uint8_t CastResults[numCastOps][numCastOps] = {
2142 // T F F U S F F P I B -+
2143 // R Z S P P I I T P 2 N T |
2144 // U E E 2 2 2 2 R E I T C +- secondOp
2145 // N X X U S F F N X N 2 V |
2146 // C T T I I P P C T T P T -+
2147 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
2148 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
2149 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
2150 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
2151 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
2152 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
2153 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
2154 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
2155 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
2156 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
2157 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
2158 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
2159 };
2160
2161 // If either of the casts are a bitcast from scalar to vector, disallow the
2162 // merging. However, bitcast of A->B->A are allowed.
2163 bool isFirstBitcast = (firstOp == Instruction::BitCast);
2164 bool isSecondBitcast = (secondOp == Instruction::BitCast);
2165 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2166
2167 // Check if any of the bitcasts convert scalars<->vectors.
2168 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2169 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2170 // Unless we are bitcasing to the original type, disallow optimizations.
2171 if (!chainedBitcast) return 0;
2172
2173 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2174 [secondOp-Instruction::CastOpsBegin];
2175 switch (ElimCase) {
2176 case 0:
2177 // categorically disallowed
2178 return 0;
2179 case 1:
2180 // allowed, use first cast's opcode
2181 return firstOp;
2182 case 2:
2183 // allowed, use second cast's opcode
2184 return secondOp;
2185 case 3:
2186 // no-op cast in second op implies firstOp as long as the DestTy
2187 // is integer and we are not converting between a vector and a
2188 // non vector type.
2189 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2190 return firstOp;
2191 return 0;
2192 case 4:
2193 // no-op cast in second op implies firstOp as long as the DestTy
2194 // is floating point.
2195 if (DstTy->isFloatingPointTy())
2196 return firstOp;
2197 return 0;
2198 case 5:
2199 // no-op cast in first op implies secondOp as long as the SrcTy
2200 // is an integer.
2201 if (SrcTy->isIntegerTy())
2202 return secondOp;
2203 return 0;
2204 case 6:
2205 // no-op cast in first op implies secondOp as long as the SrcTy
2206 // is a floating point.
2207 if (SrcTy->isFloatingPointTy())
2208 return secondOp;
2209 return 0;
2210 case 7: {
2211 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2212 if (!IntPtrTy)
2213 return 0;
2214 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2215 unsigned MidSize = MidTy->getScalarSizeInBits();
2216 if (MidSize >= PtrSize)
2217 return Instruction::BitCast;
2218 return 0;
2219 }
2220 case 8: {
2221 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2222 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2223 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2224 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2225 unsigned DstSize = DstTy->getScalarSizeInBits();
2226 if (SrcSize == DstSize)
2227 return Instruction::BitCast;
2228 else if (SrcSize < DstSize)
2229 return firstOp;
2230 return secondOp;
2231 }
2232 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2233 return Instruction::ZExt;
2234 case 10:
2235 // fpext followed by ftrunc is allowed if the bit size returned to is
2236 // the same as the original, in which case its just a bitcast
2237 if (SrcTy == DstTy)
2238 return Instruction::BitCast;
2239 return 0; // If the types are not the same we can't eliminate it.
2240 case 11:
2241 // bitcast followed by ptrtoint is allowed as long as the bitcast
2242 // is a pointer to pointer cast.
2243 if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2244 return secondOp;
2245 return 0;
2246 case 12:
2247 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
2248 if (MidTy->isPointerTy() && DstTy->isPointerTy())
2249 return firstOp;
2250 return 0;
2251 case 13: {
2252 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2253 if (!IntPtrTy)
2254 return 0;
2255 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2256 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2257 unsigned DstSize = DstTy->getScalarSizeInBits();
2258 if (SrcSize <= PtrSize && SrcSize == DstSize)
2259 return Instruction::BitCast;
2260 return 0;
2261 }
2262 case 99:
2263 // cast combination can't happen (error in input). This is for all cases
2264 // where the MidTy is not the same for the two cast instructions.
2265 llvm_unreachable("Invalid Cast Combination");
2266 default:
2267 llvm_unreachable("Error in CastResults table!!!");
2268 }
2269 }
2270
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2271 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2272 const Twine &Name, Instruction *InsertBefore) {
2273 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2274 // Construct and return the appropriate CastInst subclass
2275 switch (op) {
2276 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2277 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2278 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2279 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2280 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2281 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2282 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2283 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2284 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2285 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2286 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2287 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2288 default: llvm_unreachable("Invalid opcode provided");
2289 }
2290 }
2291
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2292 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2293 const Twine &Name, BasicBlock *InsertAtEnd) {
2294 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2295 // Construct and return the appropriate CastInst subclass
2296 switch (op) {
2297 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2298 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2299 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2300 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2301 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2302 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2303 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2304 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2305 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2306 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2307 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2308 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2309 default: llvm_unreachable("Invalid opcode provided");
2310 }
2311 }
2312
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2313 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2314 const Twine &Name,
2315 Instruction *InsertBefore) {
2316 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2317 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2318 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2319 }
2320
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2321 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2322 const Twine &Name,
2323 BasicBlock *InsertAtEnd) {
2324 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2325 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2326 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2327 }
2328
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2329 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2330 const Twine &Name,
2331 Instruction *InsertBefore) {
2332 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2333 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2334 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2335 }
2336
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2337 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2338 const Twine &Name,
2339 BasicBlock *InsertAtEnd) {
2340 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2341 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2342 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2343 }
2344
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2345 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2346 const Twine &Name,
2347 Instruction *InsertBefore) {
2348 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2349 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2350 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2351 }
2352
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2353 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2354 const Twine &Name,
2355 BasicBlock *InsertAtEnd) {
2356 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2357 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2358 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2359 }
2360
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2361 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2362 const Twine &Name,
2363 BasicBlock *InsertAtEnd) {
2364 assert(S->getType()->isPointerTy() && "Invalid cast");
2365 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2366 "Invalid cast");
2367
2368 if (Ty->isIntegerTy())
2369 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2370 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2371 }
2372
2373 /// @brief Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2374 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2375 const Twine &Name,
2376 Instruction *InsertBefore) {
2377 assert(S->getType()->isPointerTy() && "Invalid cast");
2378 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2379 "Invalid cast");
2380
2381 if (Ty->isIntegerTy())
2382 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2383 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2384 }
2385
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2386 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2387 bool isSigned, const Twine &Name,
2388 Instruction *InsertBefore) {
2389 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2390 "Invalid integer cast");
2391 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2392 unsigned DstBits = Ty->getScalarSizeInBits();
2393 Instruction::CastOps opcode =
2394 (SrcBits == DstBits ? Instruction::BitCast :
2395 (SrcBits > DstBits ? Instruction::Trunc :
2396 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2397 return Create(opcode, C, Ty, Name, InsertBefore);
2398 }
2399
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2400 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2401 bool isSigned, const Twine &Name,
2402 BasicBlock *InsertAtEnd) {
2403 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2404 "Invalid cast");
2405 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2406 unsigned DstBits = Ty->getScalarSizeInBits();
2407 Instruction::CastOps opcode =
2408 (SrcBits == DstBits ? Instruction::BitCast :
2409 (SrcBits > DstBits ? Instruction::Trunc :
2410 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2411 return Create(opcode, C, Ty, Name, InsertAtEnd);
2412 }
2413
CreateFPCast(Value * C,Type * Ty,const Twine & Name,Instruction * InsertBefore)2414 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2415 const Twine &Name,
2416 Instruction *InsertBefore) {
2417 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2418 "Invalid cast");
2419 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2420 unsigned DstBits = Ty->getScalarSizeInBits();
2421 Instruction::CastOps opcode =
2422 (SrcBits == DstBits ? Instruction::BitCast :
2423 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2424 return Create(opcode, C, Ty, Name, InsertBefore);
2425 }
2426
CreateFPCast(Value * C,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2427 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2428 const Twine &Name,
2429 BasicBlock *InsertAtEnd) {
2430 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2431 "Invalid cast");
2432 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2433 unsigned DstBits = Ty->getScalarSizeInBits();
2434 Instruction::CastOps opcode =
2435 (SrcBits == DstBits ? Instruction::BitCast :
2436 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2437 return Create(opcode, C, Ty, Name, InsertAtEnd);
2438 }
2439
2440 // Check whether it is valid to call getCastOpcode for these types.
2441 // This routine must be kept in sync with getCastOpcode.
isCastable(Type * SrcTy,Type * DestTy)2442 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2443 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2444 return false;
2445
2446 if (SrcTy == DestTy)
2447 return true;
2448
2449 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2450 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2451 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2452 // An element by element cast. Valid if casting the elements is valid.
2453 SrcTy = SrcVecTy->getElementType();
2454 DestTy = DestVecTy->getElementType();
2455 }
2456
2457 // Get the bit sizes, we'll need these
2458 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2459 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2460
2461 // Run through the possibilities ...
2462 if (DestTy->isIntegerTy()) { // Casting to integral
2463 if (SrcTy->isIntegerTy()) { // Casting from integral
2464 return true;
2465 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2466 return true;
2467 } else if (SrcTy->isVectorTy()) { // Casting from vector
2468 return DestBits == SrcBits;
2469 } else { // Casting from something else
2470 return SrcTy->isPointerTy();
2471 }
2472 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2473 if (SrcTy->isIntegerTy()) { // Casting from integral
2474 return true;
2475 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2476 return true;
2477 } else if (SrcTy->isVectorTy()) { // Casting from vector
2478 return DestBits == SrcBits;
2479 } else { // Casting from something else
2480 return false;
2481 }
2482 } else if (DestTy->isVectorTy()) { // Casting to vector
2483 return DestBits == SrcBits;
2484 } else if (DestTy->isPointerTy()) { // Casting to pointer
2485 if (SrcTy->isPointerTy()) { // Casting from pointer
2486 return true;
2487 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2488 return true;
2489 } else { // Casting from something else
2490 return false;
2491 }
2492 } else if (DestTy->isX86_MMXTy()) {
2493 if (SrcTy->isVectorTy()) {
2494 return DestBits == SrcBits; // 64-bit vector to MMX
2495 } else {
2496 return false;
2497 }
2498 } else { // Casting to something else
2499 return false;
2500 }
2501 }
2502
2503 // Provide a way to get a "cast" where the cast opcode is inferred from the
2504 // types and size of the operand. This, basically, is a parallel of the
2505 // logic in the castIsValid function below. This axiom should hold:
2506 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2507 // should not assert in castIsValid. In other words, this produces a "correct"
2508 // casting opcode for the arguments passed to it.
2509 // This routine must be kept in sync with isCastable.
2510 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,Type * DestTy,bool DestIsSigned)2511 CastInst::getCastOpcode(
2512 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2513 Type *SrcTy = Src->getType();
2514
2515 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2516 "Only first class types are castable!");
2517
2518 if (SrcTy == DestTy)
2519 return BitCast;
2520
2521 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2522 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2523 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2524 // An element by element cast. Find the appropriate opcode based on the
2525 // element types.
2526 SrcTy = SrcVecTy->getElementType();
2527 DestTy = DestVecTy->getElementType();
2528 }
2529
2530 // Get the bit sizes, we'll need these
2531 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2532 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2533
2534 // Run through the possibilities ...
2535 if (DestTy->isIntegerTy()) { // Casting to integral
2536 if (SrcTy->isIntegerTy()) { // Casting from integral
2537 if (DestBits < SrcBits)
2538 return Trunc; // int -> smaller int
2539 else if (DestBits > SrcBits) { // its an extension
2540 if (SrcIsSigned)
2541 return SExt; // signed -> SEXT
2542 else
2543 return ZExt; // unsigned -> ZEXT
2544 } else {
2545 return BitCast; // Same size, No-op cast
2546 }
2547 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2548 if (DestIsSigned)
2549 return FPToSI; // FP -> sint
2550 else
2551 return FPToUI; // FP -> uint
2552 } else if (SrcTy->isVectorTy()) {
2553 assert(DestBits == SrcBits &&
2554 "Casting vector to integer of different width");
2555 return BitCast; // Same size, no-op cast
2556 } else {
2557 assert(SrcTy->isPointerTy() &&
2558 "Casting from a value that is not first-class type");
2559 return PtrToInt; // ptr -> int
2560 }
2561 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2562 if (SrcTy->isIntegerTy()) { // Casting from integral
2563 if (SrcIsSigned)
2564 return SIToFP; // sint -> FP
2565 else
2566 return UIToFP; // uint -> FP
2567 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2568 if (DestBits < SrcBits) {
2569 return FPTrunc; // FP -> smaller FP
2570 } else if (DestBits > SrcBits) {
2571 return FPExt; // FP -> larger FP
2572 } else {
2573 return BitCast; // same size, no-op cast
2574 }
2575 } else if (SrcTy->isVectorTy()) {
2576 assert(DestBits == SrcBits &&
2577 "Casting vector to floating point of different width");
2578 return BitCast; // same size, no-op cast
2579 }
2580 llvm_unreachable("Casting pointer or non-first class to float");
2581 } else if (DestTy->isVectorTy()) {
2582 assert(DestBits == SrcBits &&
2583 "Illegal cast to vector (wrong type or size)");
2584 return BitCast;
2585 } else if (DestTy->isPointerTy()) {
2586 if (SrcTy->isPointerTy()) {
2587 return BitCast; // ptr -> ptr
2588 } else if (SrcTy->isIntegerTy()) {
2589 return IntToPtr; // int -> ptr
2590 }
2591 llvm_unreachable("Casting pointer to other than pointer or int");
2592 } else if (DestTy->isX86_MMXTy()) {
2593 if (SrcTy->isVectorTy()) {
2594 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2595 return BitCast; // 64-bit vector to MMX
2596 }
2597 llvm_unreachable("Illegal cast to X86_MMX");
2598 }
2599 llvm_unreachable("Casting to type that is not first-class");
2600 }
2601
2602 //===----------------------------------------------------------------------===//
2603 // CastInst SubClass Constructors
2604 //===----------------------------------------------------------------------===//
2605
2606 /// Check that the construction parameters for a CastInst are correct. This
2607 /// could be broken out into the separate constructors but it is useful to have
2608 /// it in one place and to eliminate the redundant code for getting the sizes
2609 /// of the types involved.
2610 bool
castIsValid(Instruction::CastOps op,Value * S,Type * DstTy)2611 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2612
2613 // Check for type sanity on the arguments
2614 Type *SrcTy = S->getType();
2615 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2616 SrcTy->isAggregateType() || DstTy->isAggregateType())
2617 return false;
2618
2619 // Get the size of the types in bits, we'll need this later
2620 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2621 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2622
2623 // If these are vector types, get the lengths of the vectors (using zero for
2624 // scalar types means that checking that vector lengths match also checks that
2625 // scalars are not being converted to vectors or vectors to scalars).
2626 unsigned SrcLength = SrcTy->isVectorTy() ?
2627 cast<VectorType>(SrcTy)->getNumElements() : 0;
2628 unsigned DstLength = DstTy->isVectorTy() ?
2629 cast<VectorType>(DstTy)->getNumElements() : 0;
2630
2631 // Switch on the opcode provided
2632 switch (op) {
2633 default: return false; // This is an input error
2634 case Instruction::Trunc:
2635 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2636 SrcLength == DstLength && SrcBitSize > DstBitSize;
2637 case Instruction::ZExt:
2638 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2639 SrcLength == DstLength && SrcBitSize < DstBitSize;
2640 case Instruction::SExt:
2641 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2642 SrcLength == DstLength && SrcBitSize < DstBitSize;
2643 case Instruction::FPTrunc:
2644 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2645 SrcLength == DstLength && SrcBitSize > DstBitSize;
2646 case Instruction::FPExt:
2647 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2648 SrcLength == DstLength && SrcBitSize < DstBitSize;
2649 case Instruction::UIToFP:
2650 case Instruction::SIToFP:
2651 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2652 SrcLength == DstLength;
2653 case Instruction::FPToUI:
2654 case Instruction::FPToSI:
2655 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2656 SrcLength == DstLength;
2657 case Instruction::PtrToInt:
2658 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2659 return false;
2660 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2661 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2662 return false;
2663 return SrcTy->getScalarType()->isPointerTy() &&
2664 DstTy->getScalarType()->isIntegerTy();
2665 case Instruction::IntToPtr:
2666 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2667 return false;
2668 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2669 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2670 return false;
2671 return SrcTy->getScalarType()->isIntegerTy() &&
2672 DstTy->getScalarType()->isPointerTy();
2673 case Instruction::BitCast:
2674 // BitCast implies a no-op cast of type only. No bits change.
2675 // However, you can't cast pointers to anything but pointers.
2676 if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2677 return false;
2678
2679 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2680 // these cases, the cast is okay if the source and destination bit widths
2681 // are identical.
2682 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2683 }
2684 }
2685
TruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2686 TruncInst::TruncInst(
2687 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2688 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2689 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2690 }
2691
TruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2692 TruncInst::TruncInst(
2693 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2694 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2695 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2696 }
2697
ZExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2698 ZExtInst::ZExtInst(
2699 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2700 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2701 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2702 }
2703
ZExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2704 ZExtInst::ZExtInst(
2705 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2706 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2707 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2708 }
SExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2709 SExtInst::SExtInst(
2710 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2711 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2712 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2713 }
2714
SExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2715 SExtInst::SExtInst(
2716 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2717 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2718 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2719 }
2720
FPTruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2721 FPTruncInst::FPTruncInst(
2722 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2723 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2724 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2725 }
2726
FPTruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2727 FPTruncInst::FPTruncInst(
2728 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2729 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2730 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2731 }
2732
FPExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2733 FPExtInst::FPExtInst(
2734 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2735 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2736 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2737 }
2738
FPExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2739 FPExtInst::FPExtInst(
2740 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2741 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2742 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2743 }
2744
UIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2745 UIToFPInst::UIToFPInst(
2746 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2747 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2748 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2749 }
2750
UIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2751 UIToFPInst::UIToFPInst(
2752 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2753 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2754 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2755 }
2756
SIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2757 SIToFPInst::SIToFPInst(
2758 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2759 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2760 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2761 }
2762
SIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2763 SIToFPInst::SIToFPInst(
2764 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2765 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2766 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2767 }
2768
FPToUIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2769 FPToUIInst::FPToUIInst(
2770 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2771 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2772 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2773 }
2774
FPToUIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2775 FPToUIInst::FPToUIInst(
2776 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2777 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2778 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2779 }
2780
FPToSIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2781 FPToSIInst::FPToSIInst(
2782 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2783 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2784 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2785 }
2786
FPToSIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2787 FPToSIInst::FPToSIInst(
2788 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2789 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2790 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2791 }
2792
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2793 PtrToIntInst::PtrToIntInst(
2794 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2795 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2796 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2797 }
2798
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2799 PtrToIntInst::PtrToIntInst(
2800 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2801 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2802 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2803 }
2804
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2805 IntToPtrInst::IntToPtrInst(
2806 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2807 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2808 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2809 }
2810
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2811 IntToPtrInst::IntToPtrInst(
2812 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2813 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2814 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2815 }
2816
BitCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2817 BitCastInst::BitCastInst(
2818 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2819 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2820 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2821 }
2822
BitCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2823 BitCastInst::BitCastInst(
2824 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2825 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2826 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2827 }
2828
2829 //===----------------------------------------------------------------------===//
2830 // CmpInst Classes
2831 //===----------------------------------------------------------------------===//
2832
Anchor() const2833 void CmpInst::Anchor() const {}
2834
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore)2835 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2836 Value *LHS, Value *RHS, const Twine &Name,
2837 Instruction *InsertBefore)
2838 : Instruction(ty, op,
2839 OperandTraits<CmpInst>::op_begin(this),
2840 OperandTraits<CmpInst>::operands(this),
2841 InsertBefore) {
2842 Op<0>() = LHS;
2843 Op<1>() = RHS;
2844 setPredicate((Predicate)predicate);
2845 setName(Name);
2846 }
2847
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)2848 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2849 Value *LHS, Value *RHS, const Twine &Name,
2850 BasicBlock *InsertAtEnd)
2851 : Instruction(ty, op,
2852 OperandTraits<CmpInst>::op_begin(this),
2853 OperandTraits<CmpInst>::operands(this),
2854 InsertAtEnd) {
2855 Op<0>() = LHS;
2856 Op<1>() = RHS;
2857 setPredicate((Predicate)predicate);
2858 setName(Name);
2859 }
2860
2861 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)2862 CmpInst::Create(OtherOps Op, unsigned short predicate,
2863 Value *S1, Value *S2,
2864 const Twine &Name, Instruction *InsertBefore) {
2865 if (Op == Instruction::ICmp) {
2866 if (InsertBefore)
2867 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2868 S1, S2, Name);
2869 else
2870 return new ICmpInst(CmpInst::Predicate(predicate),
2871 S1, S2, Name);
2872 }
2873
2874 if (InsertBefore)
2875 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2876 S1, S2, Name);
2877 else
2878 return new FCmpInst(CmpInst::Predicate(predicate),
2879 S1, S2, Name);
2880 }
2881
2882 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)2883 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2884 const Twine &Name, BasicBlock *InsertAtEnd) {
2885 if (Op == Instruction::ICmp) {
2886 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2887 S1, S2, Name);
2888 }
2889 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2890 S1, S2, Name);
2891 }
2892
swapOperands()2893 void CmpInst::swapOperands() {
2894 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2895 IC->swapOperands();
2896 else
2897 cast<FCmpInst>(this)->swapOperands();
2898 }
2899
isCommutative() const2900 bool CmpInst::isCommutative() const {
2901 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2902 return IC->isCommutative();
2903 return cast<FCmpInst>(this)->isCommutative();
2904 }
2905
isEquality() const2906 bool CmpInst::isEquality() const {
2907 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2908 return IC->isEquality();
2909 return cast<FCmpInst>(this)->isEquality();
2910 }
2911
2912
getInversePredicate(Predicate pred)2913 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2914 switch (pred) {
2915 default: llvm_unreachable("Unknown cmp predicate!");
2916 case ICMP_EQ: return ICMP_NE;
2917 case ICMP_NE: return ICMP_EQ;
2918 case ICMP_UGT: return ICMP_ULE;
2919 case ICMP_ULT: return ICMP_UGE;
2920 case ICMP_UGE: return ICMP_ULT;
2921 case ICMP_ULE: return ICMP_UGT;
2922 case ICMP_SGT: return ICMP_SLE;
2923 case ICMP_SLT: return ICMP_SGE;
2924 case ICMP_SGE: return ICMP_SLT;
2925 case ICMP_SLE: return ICMP_SGT;
2926
2927 case FCMP_OEQ: return FCMP_UNE;
2928 case FCMP_ONE: return FCMP_UEQ;
2929 case FCMP_OGT: return FCMP_ULE;
2930 case FCMP_OLT: return FCMP_UGE;
2931 case FCMP_OGE: return FCMP_ULT;
2932 case FCMP_OLE: return FCMP_UGT;
2933 case FCMP_UEQ: return FCMP_ONE;
2934 case FCMP_UNE: return FCMP_OEQ;
2935 case FCMP_UGT: return FCMP_OLE;
2936 case FCMP_ULT: return FCMP_OGE;
2937 case FCMP_UGE: return FCMP_OLT;
2938 case FCMP_ULE: return FCMP_OGT;
2939 case FCMP_ORD: return FCMP_UNO;
2940 case FCMP_UNO: return FCMP_ORD;
2941 case FCMP_TRUE: return FCMP_FALSE;
2942 case FCMP_FALSE: return FCMP_TRUE;
2943 }
2944 }
2945
getSignedPredicate(Predicate pred)2946 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2947 switch (pred) {
2948 default: llvm_unreachable("Unknown icmp predicate!");
2949 case ICMP_EQ: case ICMP_NE:
2950 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2951 return pred;
2952 case ICMP_UGT: return ICMP_SGT;
2953 case ICMP_ULT: return ICMP_SLT;
2954 case ICMP_UGE: return ICMP_SGE;
2955 case ICMP_ULE: return ICMP_SLE;
2956 }
2957 }
2958
getUnsignedPredicate(Predicate pred)2959 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2960 switch (pred) {
2961 default: llvm_unreachable("Unknown icmp predicate!");
2962 case ICMP_EQ: case ICMP_NE:
2963 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2964 return pred;
2965 case ICMP_SGT: return ICMP_UGT;
2966 case ICMP_SLT: return ICMP_ULT;
2967 case ICMP_SGE: return ICMP_UGE;
2968 case ICMP_SLE: return ICMP_ULE;
2969 }
2970 }
2971
2972 /// Initialize a set of values that all satisfy the condition with C.
2973 ///
2974 ConstantRange
makeConstantRange(Predicate pred,const APInt & C)2975 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2976 APInt Lower(C);
2977 APInt Upper(C);
2978 uint32_t BitWidth = C.getBitWidth();
2979 switch (pred) {
2980 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2981 case ICmpInst::ICMP_EQ: Upper++; break;
2982 case ICmpInst::ICMP_NE: Lower++; break;
2983 case ICmpInst::ICMP_ULT:
2984 Lower = APInt::getMinValue(BitWidth);
2985 // Check for an empty-set condition.
2986 if (Lower == Upper)
2987 return ConstantRange(BitWidth, /*isFullSet=*/false);
2988 break;
2989 case ICmpInst::ICMP_SLT:
2990 Lower = APInt::getSignedMinValue(BitWidth);
2991 // Check for an empty-set condition.
2992 if (Lower == Upper)
2993 return ConstantRange(BitWidth, /*isFullSet=*/false);
2994 break;
2995 case ICmpInst::ICMP_UGT:
2996 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2997 // Check for an empty-set condition.
2998 if (Lower == Upper)
2999 return ConstantRange(BitWidth, /*isFullSet=*/false);
3000 break;
3001 case ICmpInst::ICMP_SGT:
3002 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3003 // Check for an empty-set condition.
3004 if (Lower == Upper)
3005 return ConstantRange(BitWidth, /*isFullSet=*/false);
3006 break;
3007 case ICmpInst::ICMP_ULE:
3008 Lower = APInt::getMinValue(BitWidth); Upper++;
3009 // Check for a full-set condition.
3010 if (Lower == Upper)
3011 return ConstantRange(BitWidth, /*isFullSet=*/true);
3012 break;
3013 case ICmpInst::ICMP_SLE:
3014 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
3015 // Check for a full-set condition.
3016 if (Lower == Upper)
3017 return ConstantRange(BitWidth, /*isFullSet=*/true);
3018 break;
3019 case ICmpInst::ICMP_UGE:
3020 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3021 // Check for a full-set condition.
3022 if (Lower == Upper)
3023 return ConstantRange(BitWidth, /*isFullSet=*/true);
3024 break;
3025 case ICmpInst::ICMP_SGE:
3026 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3027 // Check for a full-set condition.
3028 if (Lower == Upper)
3029 return ConstantRange(BitWidth, /*isFullSet=*/true);
3030 break;
3031 }
3032 return ConstantRange(Lower, Upper);
3033 }
3034
getSwappedPredicate(Predicate pred)3035 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3036 switch (pred) {
3037 default: llvm_unreachable("Unknown cmp predicate!");
3038 case ICMP_EQ: case ICMP_NE:
3039 return pred;
3040 case ICMP_SGT: return ICMP_SLT;
3041 case ICMP_SLT: return ICMP_SGT;
3042 case ICMP_SGE: return ICMP_SLE;
3043 case ICMP_SLE: return ICMP_SGE;
3044 case ICMP_UGT: return ICMP_ULT;
3045 case ICMP_ULT: return ICMP_UGT;
3046 case ICMP_UGE: return ICMP_ULE;
3047 case ICMP_ULE: return ICMP_UGE;
3048
3049 case FCMP_FALSE: case FCMP_TRUE:
3050 case FCMP_OEQ: case FCMP_ONE:
3051 case FCMP_UEQ: case FCMP_UNE:
3052 case FCMP_ORD: case FCMP_UNO:
3053 return pred;
3054 case FCMP_OGT: return FCMP_OLT;
3055 case FCMP_OLT: return FCMP_OGT;
3056 case FCMP_OGE: return FCMP_OLE;
3057 case FCMP_OLE: return FCMP_OGE;
3058 case FCMP_UGT: return FCMP_ULT;
3059 case FCMP_ULT: return FCMP_UGT;
3060 case FCMP_UGE: return FCMP_ULE;
3061 case FCMP_ULE: return FCMP_UGE;
3062 }
3063 }
3064
isUnsigned(unsigned short predicate)3065 bool CmpInst::isUnsigned(unsigned short predicate) {
3066 switch (predicate) {
3067 default: return false;
3068 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3069 case ICmpInst::ICMP_UGE: return true;
3070 }
3071 }
3072
isSigned(unsigned short predicate)3073 bool CmpInst::isSigned(unsigned short predicate) {
3074 switch (predicate) {
3075 default: return false;
3076 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3077 case ICmpInst::ICMP_SGE: return true;
3078 }
3079 }
3080
isOrdered(unsigned short predicate)3081 bool CmpInst::isOrdered(unsigned short predicate) {
3082 switch (predicate) {
3083 default: return false;
3084 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3085 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3086 case FCmpInst::FCMP_ORD: return true;
3087 }
3088 }
3089
isUnordered(unsigned short predicate)3090 bool CmpInst::isUnordered(unsigned short predicate) {
3091 switch (predicate) {
3092 default: return false;
3093 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3094 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3095 case FCmpInst::FCMP_UNO: return true;
3096 }
3097 }
3098
isTrueWhenEqual(unsigned short predicate)3099 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3100 switch(predicate) {
3101 default: return false;
3102 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3103 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3104 }
3105 }
3106
isFalseWhenEqual(unsigned short predicate)3107 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3108 switch(predicate) {
3109 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3110 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3111 default: return false;
3112 }
3113 }
3114
3115
3116 //===----------------------------------------------------------------------===//
3117 // SwitchInst Implementation
3118 //===----------------------------------------------------------------------===//
3119
init(Value * Value,BasicBlock * Default,unsigned NumReserved)3120 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3121 assert(Value && Default && NumReserved);
3122 ReservedSpace = NumReserved;
3123 NumOperands = 2;
3124 OperandList = allocHungoffUses(ReservedSpace);
3125
3126 OperandList[0] = Value;
3127 OperandList[1] = Default;
3128 }
3129
3130 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3131 /// switch on and a default destination. The number of additional cases can
3132 /// be specified here to make memory allocation more efficient. This
3133 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)3134 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3135 Instruction *InsertBefore)
3136 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3137 0, 0, InsertBefore) {
3138 init(Value, Default, 2+NumCases*2);
3139 }
3140
3141 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3142 /// switch on and a default destination. The number of additional cases can
3143 /// be specified here to make memory allocation more efficient. This
3144 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3145 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3146 BasicBlock *InsertAtEnd)
3147 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3148 0, 0, InsertAtEnd) {
3149 init(Value, Default, 2+NumCases*2);
3150 }
3151
SwitchInst(const SwitchInst & SI)3152 SwitchInst::SwitchInst(const SwitchInst &SI)
3153 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3154 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3155 NumOperands = SI.getNumOperands();
3156 Use *OL = OperandList, *InOL = SI.OperandList;
3157 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3158 OL[i] = InOL[i];
3159 OL[i+1] = InOL[i+1];
3160 }
3161 SubclassOptionalData = SI.SubclassOptionalData;
3162 }
3163
~SwitchInst()3164 SwitchInst::~SwitchInst() {
3165 dropHungoffUses();
3166 }
3167
3168
3169 /// addCase - Add an entry to the switch instruction...
3170 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3171 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3172 unsigned NewCaseIdx = getNumCases();
3173 unsigned OpNo = NumOperands;
3174 if (OpNo+2 > ReservedSpace)
3175 growOperands(); // Get more space!
3176 // Initialize some new operands.
3177 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3178 NumOperands = OpNo+2;
3179 CaseIt Case(this, NewCaseIdx);
3180 Case.setValue(OnVal);
3181 Case.setSuccessor(Dest);
3182 }
3183
3184 /// removeCase - This method removes the specified case and its successor
3185 /// from the switch instruction.
removeCase(CaseIt i)3186 void SwitchInst::removeCase(CaseIt i) {
3187 unsigned idx = i.getCaseIndex();
3188
3189 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3190
3191 unsigned NumOps = getNumOperands();
3192 Use *OL = OperandList;
3193
3194 // Overwrite this case with the end of the list.
3195 if (2 + (idx + 1) * 2 != NumOps) {
3196 OL[2 + idx * 2] = OL[NumOps - 2];
3197 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3198 }
3199
3200 // Nuke the last value.
3201 OL[NumOps-2].set(0);
3202 OL[NumOps-2+1].set(0);
3203 NumOperands = NumOps-2;
3204 }
3205
3206 /// growOperands - grow operands - This grows the operand list in response
3207 /// to a push_back style of operation. This grows the number of ops by 3 times.
3208 ///
growOperands()3209 void SwitchInst::growOperands() {
3210 unsigned e = getNumOperands();
3211 unsigned NumOps = e*3;
3212
3213 ReservedSpace = NumOps;
3214 Use *NewOps = allocHungoffUses(NumOps);
3215 Use *OldOps = OperandList;
3216 for (unsigned i = 0; i != e; ++i) {
3217 NewOps[i] = OldOps[i];
3218 }
3219 OperandList = NewOps;
3220 Use::zap(OldOps, OldOps + e, true);
3221 }
3222
3223
getSuccessorV(unsigned idx) const3224 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3225 return getSuccessor(idx);
3226 }
getNumSuccessorsV() const3227 unsigned SwitchInst::getNumSuccessorsV() const {
3228 return getNumSuccessors();
3229 }
setSuccessorV(unsigned idx,BasicBlock * B)3230 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3231 setSuccessor(idx, B);
3232 }
3233
3234 //===----------------------------------------------------------------------===//
3235 // IndirectBrInst Implementation
3236 //===----------------------------------------------------------------------===//
3237
init(Value * Address,unsigned NumDests)3238 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3239 assert(Address && Address->getType()->isPointerTy() &&
3240 "Address of indirectbr must be a pointer");
3241 ReservedSpace = 1+NumDests;
3242 NumOperands = 1;
3243 OperandList = allocHungoffUses(ReservedSpace);
3244
3245 OperandList[0] = Address;
3246 }
3247
3248
3249 /// growOperands - grow operands - This grows the operand list in response
3250 /// to a push_back style of operation. This grows the number of ops by 2 times.
3251 ///
growOperands()3252 void IndirectBrInst::growOperands() {
3253 unsigned e = getNumOperands();
3254 unsigned NumOps = e*2;
3255
3256 ReservedSpace = NumOps;
3257 Use *NewOps = allocHungoffUses(NumOps);
3258 Use *OldOps = OperandList;
3259 for (unsigned i = 0; i != e; ++i)
3260 NewOps[i] = OldOps[i];
3261 OperandList = NewOps;
3262 Use::zap(OldOps, OldOps + e, true);
3263 }
3264
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)3265 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3266 Instruction *InsertBefore)
3267 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3268 0, 0, InsertBefore) {
3269 init(Address, NumCases);
3270 }
3271
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)3272 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3273 BasicBlock *InsertAtEnd)
3274 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3275 0, 0, InsertAtEnd) {
3276 init(Address, NumCases);
3277 }
3278
IndirectBrInst(const IndirectBrInst & IBI)3279 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3280 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3281 allocHungoffUses(IBI.getNumOperands()),
3282 IBI.getNumOperands()) {
3283 Use *OL = OperandList, *InOL = IBI.OperandList;
3284 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3285 OL[i] = InOL[i];
3286 SubclassOptionalData = IBI.SubclassOptionalData;
3287 }
3288
~IndirectBrInst()3289 IndirectBrInst::~IndirectBrInst() {
3290 dropHungoffUses();
3291 }
3292
3293 /// addDestination - Add a destination.
3294 ///
addDestination(BasicBlock * DestBB)3295 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3296 unsigned OpNo = NumOperands;
3297 if (OpNo+1 > ReservedSpace)
3298 growOperands(); // Get more space!
3299 // Initialize some new operands.
3300 assert(OpNo < ReservedSpace && "Growing didn't work!");
3301 NumOperands = OpNo+1;
3302 OperandList[OpNo] = DestBB;
3303 }
3304
3305 /// removeDestination - This method removes the specified successor from the
3306 /// indirectbr instruction.
removeDestination(unsigned idx)3307 void IndirectBrInst::removeDestination(unsigned idx) {
3308 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3309
3310 unsigned NumOps = getNumOperands();
3311 Use *OL = OperandList;
3312
3313 // Replace this value with the last one.
3314 OL[idx+1] = OL[NumOps-1];
3315
3316 // Nuke the last value.
3317 OL[NumOps-1].set(0);
3318 NumOperands = NumOps-1;
3319 }
3320
getSuccessorV(unsigned idx) const3321 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3322 return getSuccessor(idx);
3323 }
getNumSuccessorsV() const3324 unsigned IndirectBrInst::getNumSuccessorsV() const {
3325 return getNumSuccessors();
3326 }
setSuccessorV(unsigned idx,BasicBlock * B)3327 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3328 setSuccessor(idx, B);
3329 }
3330
3331 //===----------------------------------------------------------------------===//
3332 // clone_impl() implementations
3333 //===----------------------------------------------------------------------===//
3334
3335 // Define these methods here so vtables don't get emitted into every translation
3336 // unit that uses these classes.
3337
clone_impl() const3338 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3339 return new (getNumOperands()) GetElementPtrInst(*this);
3340 }
3341
clone_impl() const3342 BinaryOperator *BinaryOperator::clone_impl() const {
3343 return Create(getOpcode(), Op<0>(), Op<1>());
3344 }
3345
clone_impl() const3346 FCmpInst* FCmpInst::clone_impl() const {
3347 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3348 }
3349
clone_impl() const3350 ICmpInst* ICmpInst::clone_impl() const {
3351 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3352 }
3353
clone_impl() const3354 ExtractValueInst *ExtractValueInst::clone_impl() const {
3355 return new ExtractValueInst(*this);
3356 }
3357
clone_impl() const3358 InsertValueInst *InsertValueInst::clone_impl() const {
3359 return new InsertValueInst(*this);
3360 }
3361
clone_impl() const3362 AllocaInst *AllocaInst::clone_impl() const {
3363 return new AllocaInst(getAllocatedType(),
3364 (Value*)getOperand(0),
3365 getAlignment());
3366 }
3367
clone_impl() const3368 LoadInst *LoadInst::clone_impl() const {
3369 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3370 getAlignment(), getOrdering(), getSynchScope());
3371 }
3372
clone_impl() const3373 StoreInst *StoreInst::clone_impl() const {
3374 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3375 getAlignment(), getOrdering(), getSynchScope());
3376
3377 }
3378
clone_impl() const3379 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3380 AtomicCmpXchgInst *Result =
3381 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3382 getOrdering(), getSynchScope());
3383 Result->setVolatile(isVolatile());
3384 return Result;
3385 }
3386
clone_impl() const3387 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3388 AtomicRMWInst *Result =
3389 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3390 getOrdering(), getSynchScope());
3391 Result->setVolatile(isVolatile());
3392 return Result;
3393 }
3394
clone_impl() const3395 FenceInst *FenceInst::clone_impl() const {
3396 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3397 }
3398
clone_impl() const3399 TruncInst *TruncInst::clone_impl() const {
3400 return new TruncInst(getOperand(0), getType());
3401 }
3402
clone_impl() const3403 ZExtInst *ZExtInst::clone_impl() const {
3404 return new ZExtInst(getOperand(0), getType());
3405 }
3406
clone_impl() const3407 SExtInst *SExtInst::clone_impl() const {
3408 return new SExtInst(getOperand(0), getType());
3409 }
3410
clone_impl() const3411 FPTruncInst *FPTruncInst::clone_impl() const {
3412 return new FPTruncInst(getOperand(0), getType());
3413 }
3414
clone_impl() const3415 FPExtInst *FPExtInst::clone_impl() const {
3416 return new FPExtInst(getOperand(0), getType());
3417 }
3418
clone_impl() const3419 UIToFPInst *UIToFPInst::clone_impl() const {
3420 return new UIToFPInst(getOperand(0), getType());
3421 }
3422
clone_impl() const3423 SIToFPInst *SIToFPInst::clone_impl() const {
3424 return new SIToFPInst(getOperand(0), getType());
3425 }
3426
clone_impl() const3427 FPToUIInst *FPToUIInst::clone_impl() const {
3428 return new FPToUIInst(getOperand(0), getType());
3429 }
3430
clone_impl() const3431 FPToSIInst *FPToSIInst::clone_impl() const {
3432 return new FPToSIInst(getOperand(0), getType());
3433 }
3434
clone_impl() const3435 PtrToIntInst *PtrToIntInst::clone_impl() const {
3436 return new PtrToIntInst(getOperand(0), getType());
3437 }
3438
clone_impl() const3439 IntToPtrInst *IntToPtrInst::clone_impl() const {
3440 return new IntToPtrInst(getOperand(0), getType());
3441 }
3442
clone_impl() const3443 BitCastInst *BitCastInst::clone_impl() const {
3444 return new BitCastInst(getOperand(0), getType());
3445 }
3446
clone_impl() const3447 CallInst *CallInst::clone_impl() const {
3448 return new(getNumOperands()) CallInst(*this);
3449 }
3450
clone_impl() const3451 SelectInst *SelectInst::clone_impl() const {
3452 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3453 }
3454
clone_impl() const3455 VAArgInst *VAArgInst::clone_impl() const {
3456 return new VAArgInst(getOperand(0), getType());
3457 }
3458
clone_impl() const3459 ExtractElementInst *ExtractElementInst::clone_impl() const {
3460 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3461 }
3462
clone_impl() const3463 InsertElementInst *InsertElementInst::clone_impl() const {
3464 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3465 }
3466
clone_impl() const3467 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3468 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3469 }
3470
clone_impl() const3471 PHINode *PHINode::clone_impl() const {
3472 return new PHINode(*this);
3473 }
3474
clone_impl() const3475 LandingPadInst *LandingPadInst::clone_impl() const {
3476 return new LandingPadInst(*this);
3477 }
3478
clone_impl() const3479 ReturnInst *ReturnInst::clone_impl() const {
3480 return new(getNumOperands()) ReturnInst(*this);
3481 }
3482
clone_impl() const3483 BranchInst *BranchInst::clone_impl() const {
3484 return new(getNumOperands()) BranchInst(*this);
3485 }
3486
clone_impl() const3487 SwitchInst *SwitchInst::clone_impl() const {
3488 return new SwitchInst(*this);
3489 }
3490
clone_impl() const3491 IndirectBrInst *IndirectBrInst::clone_impl() const {
3492 return new IndirectBrInst(*this);
3493 }
3494
3495
clone_impl() const3496 InvokeInst *InvokeInst::clone_impl() const {
3497 return new(getNumOperands()) InvokeInst(*this);
3498 }
3499
clone_impl() const3500 ResumeInst *ResumeInst::clone_impl() const {
3501 return new(1) ResumeInst(*this);
3502 }
3503
clone_impl() const3504 UnreachableInst *UnreachableInst::clone_impl() const {
3505 LLVMContext &Context = getContext();
3506 return new UnreachableInst(Context);
3507 }
3508