1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Metadata.h"
20 #include "llvm/Module.h"
21 #include "llvm/Type.h"
22 #include "llvm/Value.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/DebugInfo.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 #include "llvm/ADT/Hashing.h"
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // MachineOperand Implementation
48 //===----------------------------------------------------------------------===//
49
50 /// AddRegOperandToRegInfo - Add this register operand to the specified
51 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
52 /// explicitly nulled out.
AddRegOperandToRegInfo(MachineRegisterInfo * RegInfo)53 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
54 assert(isReg() && "Can only add reg operand to use lists");
55
56 // If the reginfo pointer is null, just explicitly null out or next/prev
57 // pointers, to ensure they are not garbage.
58 if (RegInfo == 0) {
59 Contents.Reg.Prev = 0;
60 Contents.Reg.Next = 0;
61 return;
62 }
63
64 // Otherwise, add this operand to the head of the registers use/def list.
65 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
66
67 // For SSA values, we prefer to keep the definition at the start of the list.
68 // we do this by skipping over the definition if it is at the head of the
69 // list.
70 if (*Head && (*Head)->isDef())
71 Head = &(*Head)->Contents.Reg.Next;
72
73 Contents.Reg.Next = *Head;
74 if (Contents.Reg.Next) {
75 assert(getReg() == Contents.Reg.Next->getReg() &&
76 "Different regs on the same list!");
77 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
78 }
79
80 Contents.Reg.Prev = Head;
81 *Head = this;
82 }
83
84 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
85 /// MachineRegisterInfo it is linked with.
RemoveRegOperandFromRegInfo()86 void MachineOperand::RemoveRegOperandFromRegInfo() {
87 assert(isOnRegUseList() && "Reg operand is not on a use list");
88 // Unlink this from the doubly linked list of operands.
89 MachineOperand *NextOp = Contents.Reg.Next;
90 *Contents.Reg.Prev = NextOp;
91 if (NextOp) {
92 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
93 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
94 }
95 Contents.Reg.Prev = 0;
96 Contents.Reg.Next = 0;
97 }
98
setReg(unsigned Reg)99 void MachineOperand::setReg(unsigned Reg) {
100 if (getReg() == Reg) return; // No change.
101
102 // Otherwise, we have to change the register. If this operand is embedded
103 // into a machine function, we need to update the old and new register's
104 // use/def lists.
105 if (MachineInstr *MI = getParent())
106 if (MachineBasicBlock *MBB = MI->getParent())
107 if (MachineFunction *MF = MBB->getParent()) {
108 RemoveRegOperandFromRegInfo();
109 SmallContents.RegNo = Reg;
110 AddRegOperandToRegInfo(&MF->getRegInfo());
111 return;
112 }
113
114 // Otherwise, just change the register, no problem. :)
115 SmallContents.RegNo = Reg;
116 }
117
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)118 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
119 const TargetRegisterInfo &TRI) {
120 assert(TargetRegisterInfo::isVirtualRegister(Reg));
121 if (SubIdx && getSubReg())
122 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
123 setReg(Reg);
124 if (SubIdx)
125 setSubReg(SubIdx);
126 }
127
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)128 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
129 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
130 if (getSubReg()) {
131 Reg = TRI.getSubReg(Reg, getSubReg());
132 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
133 // That won't happen in legal code.
134 setSubReg(0);
135 }
136 setReg(Reg);
137 }
138
139 /// ChangeToImmediate - Replace this operand with a new immediate operand of
140 /// the specified value. If an operand is known to be an immediate already,
141 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)142 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
143 // If this operand is currently a register operand, and if this is in a
144 // function, deregister the operand from the register's use/def list.
145 if (isReg() && getParent() && getParent()->getParent() &&
146 getParent()->getParent()->getParent())
147 RemoveRegOperandFromRegInfo();
148
149 OpKind = MO_Immediate;
150 Contents.ImmVal = ImmVal;
151 }
152
153 /// ChangeToRegister - Replace this operand with a new register operand of
154 /// the specified value. If an operand is known to be an register already,
155 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)156 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
157 bool isKill, bool isDead, bool isUndef,
158 bool isDebug) {
159 // If this operand is already a register operand, use setReg to update the
160 // register's use/def lists.
161 if (isReg()) {
162 assert(!isEarlyClobber());
163 setReg(Reg);
164 } else {
165 // Otherwise, change this to a register and set the reg#.
166 OpKind = MO_Register;
167 SmallContents.RegNo = Reg;
168
169 // If this operand is embedded in a function, add the operand to the
170 // register's use/def list.
171 if (MachineInstr *MI = getParent())
172 if (MachineBasicBlock *MBB = MI->getParent())
173 if (MachineFunction *MF = MBB->getParent())
174 AddRegOperandToRegInfo(&MF->getRegInfo());
175 }
176
177 IsDef = isDef;
178 IsImp = isImp;
179 IsKill = isKill;
180 IsDead = isDead;
181 IsUndef = isUndef;
182 IsInternalRead = false;
183 IsEarlyClobber = false;
184 IsDebug = isDebug;
185 SubReg = 0;
186 }
187
188 /// isIdenticalTo - Return true if this operand is identical to the specified
189 /// operand.
isIdenticalTo(const MachineOperand & Other) const190 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
191 if (getType() != Other.getType() ||
192 getTargetFlags() != Other.getTargetFlags())
193 return false;
194
195 switch (getType()) {
196 case MachineOperand::MO_Register:
197 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
198 getSubReg() == Other.getSubReg();
199 case MachineOperand::MO_Immediate:
200 return getImm() == Other.getImm();
201 case MachineOperand::MO_CImmediate:
202 return getCImm() == Other.getCImm();
203 case MachineOperand::MO_FPImmediate:
204 return getFPImm() == Other.getFPImm();
205 case MachineOperand::MO_MachineBasicBlock:
206 return getMBB() == Other.getMBB();
207 case MachineOperand::MO_FrameIndex:
208 return getIndex() == Other.getIndex();
209 case MachineOperand::MO_ConstantPoolIndex:
210 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
211 case MachineOperand::MO_JumpTableIndex:
212 return getIndex() == Other.getIndex();
213 case MachineOperand::MO_GlobalAddress:
214 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
215 case MachineOperand::MO_ExternalSymbol:
216 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
217 getOffset() == Other.getOffset();
218 case MachineOperand::MO_BlockAddress:
219 return getBlockAddress() == Other.getBlockAddress();
220 case MO_RegisterMask:
221 return getRegMask() == Other.getRegMask();
222 case MachineOperand::MO_MCSymbol:
223 return getMCSymbol() == Other.getMCSymbol();
224 case MachineOperand::MO_Metadata:
225 return getMetadata() == Other.getMetadata();
226 }
227 llvm_unreachable("Invalid machine operand type");
228 }
229
230 /// print - Print the specified machine operand.
231 ///
print(raw_ostream & OS,const TargetMachine * TM) const232 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
233 // If the instruction is embedded into a basic block, we can find the
234 // target info for the instruction.
235 if (!TM)
236 if (const MachineInstr *MI = getParent())
237 if (const MachineBasicBlock *MBB = MI->getParent())
238 if (const MachineFunction *MF = MBB->getParent())
239 TM = &MF->getTarget();
240 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
241
242 switch (getType()) {
243 case MachineOperand::MO_Register:
244 OS << PrintReg(getReg(), TRI, getSubReg());
245
246 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
247 isInternalRead() || isEarlyClobber()) {
248 OS << '<';
249 bool NeedComma = false;
250 if (isDef()) {
251 if (NeedComma) OS << ',';
252 if (isEarlyClobber())
253 OS << "earlyclobber,";
254 if (isImplicit())
255 OS << "imp-";
256 OS << "def";
257 NeedComma = true;
258 } else if (isImplicit()) {
259 OS << "imp-use";
260 NeedComma = true;
261 }
262
263 if (isKill() || isDead() || isUndef() || isInternalRead()) {
264 if (NeedComma) OS << ',';
265 NeedComma = false;
266 if (isKill()) {
267 OS << "kill";
268 NeedComma = true;
269 }
270 if (isDead()) {
271 OS << "dead";
272 NeedComma = true;
273 }
274 if (isUndef()) {
275 if (NeedComma) OS << ',';
276 OS << "undef";
277 NeedComma = true;
278 }
279 if (isInternalRead()) {
280 if (NeedComma) OS << ',';
281 OS << "internal";
282 NeedComma = true;
283 }
284 }
285 OS << '>';
286 }
287 break;
288 case MachineOperand::MO_Immediate:
289 OS << getImm();
290 break;
291 case MachineOperand::MO_CImmediate:
292 getCImm()->getValue().print(OS, false);
293 break;
294 case MachineOperand::MO_FPImmediate:
295 if (getFPImm()->getType()->isFloatTy())
296 OS << getFPImm()->getValueAPF().convertToFloat();
297 else
298 OS << getFPImm()->getValueAPF().convertToDouble();
299 break;
300 case MachineOperand::MO_MachineBasicBlock:
301 OS << "<BB#" << getMBB()->getNumber() << ">";
302 break;
303 case MachineOperand::MO_FrameIndex:
304 OS << "<fi#" << getIndex() << '>';
305 break;
306 case MachineOperand::MO_ConstantPoolIndex:
307 OS << "<cp#" << getIndex();
308 if (getOffset()) OS << "+" << getOffset();
309 OS << '>';
310 break;
311 case MachineOperand::MO_JumpTableIndex:
312 OS << "<jt#" << getIndex() << '>';
313 break;
314 case MachineOperand::MO_GlobalAddress:
315 OS << "<ga:";
316 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
317 if (getOffset()) OS << "+" << getOffset();
318 OS << '>';
319 break;
320 case MachineOperand::MO_ExternalSymbol:
321 OS << "<es:" << getSymbolName();
322 if (getOffset()) OS << "+" << getOffset();
323 OS << '>';
324 break;
325 case MachineOperand::MO_BlockAddress:
326 OS << '<';
327 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
328 OS << '>';
329 break;
330 case MachineOperand::MO_RegisterMask:
331 OS << "<regmask>";
332 break;
333 case MachineOperand::MO_Metadata:
334 OS << '<';
335 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
336 OS << '>';
337 break;
338 case MachineOperand::MO_MCSymbol:
339 OS << "<MCSym=" << *getMCSymbol() << '>';
340 break;
341 }
342
343 if (unsigned TF = getTargetFlags())
344 OS << "[TF=" << TF << ']';
345 }
346
347 //===----------------------------------------------------------------------===//
348 // MachineMemOperand Implementation
349 //===----------------------------------------------------------------------===//
350
351 /// getAddrSpace - Return the LLVM IR address space number that this pointer
352 /// points into.
getAddrSpace() const353 unsigned MachinePointerInfo::getAddrSpace() const {
354 if (V == 0) return 0;
355 return cast<PointerType>(V->getType())->getAddressSpace();
356 }
357
358 /// getConstantPool - Return a MachinePointerInfo record that refers to the
359 /// constant pool.
getConstantPool()360 MachinePointerInfo MachinePointerInfo::getConstantPool() {
361 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
362 }
363
364 /// getFixedStack - Return a MachinePointerInfo record that refers to the
365 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)366 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
367 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
368 }
369
getJumpTable()370 MachinePointerInfo MachinePointerInfo::getJumpTable() {
371 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
372 }
373
getGOT()374 MachinePointerInfo MachinePointerInfo::getGOT() {
375 return MachinePointerInfo(PseudoSourceValue::getGOT());
376 }
377
getStack(int64_t Offset)378 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
379 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
380 }
381
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const MDNode * TBAAInfo,const MDNode * Ranges)382 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
383 uint64_t s, unsigned int a,
384 const MDNode *TBAAInfo,
385 const MDNode *Ranges)
386 : PtrInfo(ptrinfo), Size(s),
387 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
388 TBAAInfo(TBAAInfo), Ranges(Ranges) {
389 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
390 "invalid pointer value");
391 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
392 assert((isLoad() || isStore()) && "Not a load/store!");
393 }
394
395 /// Profile - Gather unique data for the object.
396 ///
Profile(FoldingSetNodeID & ID) const397 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
398 ID.AddInteger(getOffset());
399 ID.AddInteger(Size);
400 ID.AddPointer(getValue());
401 ID.AddInteger(Flags);
402 }
403
refineAlignment(const MachineMemOperand * MMO)404 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
405 // The Value and Offset may differ due to CSE. But the flags and size
406 // should be the same.
407 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
408 assert(MMO->getSize() == getSize() && "Size mismatch!");
409
410 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
411 // Update the alignment value.
412 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
413 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
414 // Also update the base and offset, because the new alignment may
415 // not be applicable with the old ones.
416 PtrInfo = MMO->PtrInfo;
417 }
418 }
419
420 /// getAlignment - Return the minimum known alignment in bytes of the
421 /// actual memory reference.
getAlignment() const422 uint64_t MachineMemOperand::getAlignment() const {
423 return MinAlign(getBaseAlignment(), getOffset());
424 }
425
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)426 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
427 assert((MMO.isLoad() || MMO.isStore()) &&
428 "SV has to be a load, store or both.");
429
430 if (MMO.isVolatile())
431 OS << "Volatile ";
432
433 if (MMO.isLoad())
434 OS << "LD";
435 if (MMO.isStore())
436 OS << "ST";
437 OS << MMO.getSize();
438
439 // Print the address information.
440 OS << "[";
441 if (!MMO.getValue())
442 OS << "<unknown>";
443 else
444 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
445
446 // If the alignment of the memory reference itself differs from the alignment
447 // of the base pointer, print the base alignment explicitly, next to the base
448 // pointer.
449 if (MMO.getBaseAlignment() != MMO.getAlignment())
450 OS << "(align=" << MMO.getBaseAlignment() << ")";
451
452 if (MMO.getOffset() != 0)
453 OS << "+" << MMO.getOffset();
454 OS << "]";
455
456 // Print the alignment of the reference.
457 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
458 MMO.getBaseAlignment() != MMO.getSize())
459 OS << "(align=" << MMO.getAlignment() << ")";
460
461 // Print TBAA info.
462 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
463 OS << "(tbaa=";
464 if (TBAAInfo->getNumOperands() > 0)
465 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
466 else
467 OS << "<unknown>";
468 OS << ")";
469 }
470
471 // Print nontemporal info.
472 if (MMO.isNonTemporal())
473 OS << "(nontemporal)";
474
475 return OS;
476 }
477
478 //===----------------------------------------------------------------------===//
479 // MachineInstr Implementation
480 //===----------------------------------------------------------------------===//
481
482 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
483 /// MCID NULL and no operands.
MachineInstr()484 MachineInstr::MachineInstr()
485 : MCID(0), Flags(0), AsmPrinterFlags(0),
486 NumMemRefs(0), MemRefs(0),
487 Parent(0) {
488 // Make sure that we get added to a machine basicblock
489 LeakDetector::addGarbageObject(this);
490 }
491
addImplicitDefUseOperands()492 void MachineInstr::addImplicitDefUseOperands() {
493 if (MCID->ImplicitDefs)
494 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
495 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
496 if (MCID->ImplicitUses)
497 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
498 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
499 }
500
501 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
502 /// implicit operands. It reserves space for the number of operands specified by
503 /// the MCInstrDesc.
MachineInstr(const MCInstrDesc & tid,bool NoImp)504 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
505 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
506 NumMemRefs(0), MemRefs(0), Parent(0) {
507 unsigned NumImplicitOps = 0;
508 if (!NoImp)
509 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
510 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
511 if (!NoImp)
512 addImplicitDefUseOperands();
513 // Make sure that we get added to a machine basicblock
514 LeakDetector::addGarbageObject(this);
515 }
516
517 /// MachineInstr ctor - As above, but with a DebugLoc.
MachineInstr(const MCInstrDesc & tid,const DebugLoc dl,bool NoImp)518 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
519 bool NoImp)
520 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
521 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
522 unsigned NumImplicitOps = 0;
523 if (!NoImp)
524 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
525 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
526 if (!NoImp)
527 addImplicitDefUseOperands();
528 // Make sure that we get added to a machine basicblock
529 LeakDetector::addGarbageObject(this);
530 }
531
532 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
533 /// that the MachineInstr is created and added to the end of the specified
534 /// basic block.
MachineInstr(MachineBasicBlock * MBB,const MCInstrDesc & tid)535 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
536 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
537 NumMemRefs(0), MemRefs(0), Parent(0) {
538 assert(MBB && "Cannot use inserting ctor with null basic block!");
539 unsigned NumImplicitOps =
540 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
541 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
542 addImplicitDefUseOperands();
543 // Make sure that we get added to a machine basicblock
544 LeakDetector::addGarbageObject(this);
545 MBB->push_back(this); // Add instruction to end of basic block!
546 }
547
548 /// MachineInstr ctor - As above, but with a DebugLoc.
549 ///
MachineInstr(MachineBasicBlock * MBB,const DebugLoc dl,const MCInstrDesc & tid)550 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
551 const MCInstrDesc &tid)
552 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
553 NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
554 assert(MBB && "Cannot use inserting ctor with null basic block!");
555 unsigned NumImplicitOps =
556 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
557 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
558 addImplicitDefUseOperands();
559 // Make sure that we get added to a machine basicblock
560 LeakDetector::addGarbageObject(this);
561 MBB->push_back(this); // Add instruction to end of basic block!
562 }
563
564 /// MachineInstr ctor - Copies MachineInstr arg exactly
565 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)566 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
567 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
568 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
569 Parent(0), debugLoc(MI.getDebugLoc()) {
570 Operands.reserve(MI.getNumOperands());
571
572 // Add operands
573 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
574 addOperand(MI.getOperand(i));
575
576 // Copy all the flags.
577 Flags = MI.Flags;
578
579 // Set parent to null.
580 Parent = 0;
581
582 LeakDetector::addGarbageObject(this);
583 }
584
~MachineInstr()585 MachineInstr::~MachineInstr() {
586 LeakDetector::removeGarbageObject(this);
587 #ifndef NDEBUG
588 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
589 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
590 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
591 "Reg operand def/use list corrupted");
592 }
593 #endif
594 }
595
596 /// getRegInfo - If this instruction is embedded into a MachineFunction,
597 /// return the MachineRegisterInfo object for the current function, otherwise
598 /// return null.
getRegInfo()599 MachineRegisterInfo *MachineInstr::getRegInfo() {
600 if (MachineBasicBlock *MBB = getParent())
601 return &MBB->getParent()->getRegInfo();
602 return 0;
603 }
604
605 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
606 /// this instruction from their respective use lists. This requires that the
607 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists()608 void MachineInstr::RemoveRegOperandsFromUseLists() {
609 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
610 if (Operands[i].isReg())
611 Operands[i].RemoveRegOperandFromRegInfo();
612 }
613 }
614
615 /// AddRegOperandsToUseLists - Add all of the register operands in
616 /// this instruction from their respective use lists. This requires that the
617 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & RegInfo)618 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
619 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
620 if (Operands[i].isReg())
621 Operands[i].AddRegOperandToRegInfo(&RegInfo);
622 }
623 }
624
625
626 /// addOperand - Add the specified operand to the instruction. If it is an
627 /// implicit operand, it is added to the end of the operand list. If it is
628 /// an explicit operand it is added at the end of the explicit operand list
629 /// (before the first implicit operand).
addOperand(const MachineOperand & Op)630 void MachineInstr::addOperand(const MachineOperand &Op) {
631 assert(MCID && "Cannot add operands before providing an instr descriptor");
632 bool isImpReg = Op.isReg() && Op.isImplicit();
633 MachineRegisterInfo *RegInfo = getRegInfo();
634
635 // If the Operands backing store is reallocated, all register operands must
636 // be removed and re-added to RegInfo. It is storing pointers to operands.
637 bool Reallocate = RegInfo &&
638 !Operands.empty() && Operands.size() == Operands.capacity();
639
640 // Find the insert location for the new operand. Implicit registers go at
641 // the end, everything goes before the implicit regs.
642 unsigned OpNo = Operands.size();
643
644 // Remove all the implicit operands from RegInfo if they need to be shifted.
645 // FIXME: Allow mixed explicit and implicit operands on inline asm.
646 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
647 // implicit-defs, but they must not be moved around. See the FIXME in
648 // InstrEmitter.cpp.
649 if (!isImpReg && !isInlineAsm()) {
650 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
651 --OpNo;
652 if (RegInfo)
653 Operands[OpNo].RemoveRegOperandFromRegInfo();
654 }
655 }
656
657 // OpNo now points as the desired insertion point. Unless this is a variadic
658 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
659 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
660 "Trying to add an operand to a machine instr that is already done!");
661
662 // All operands from OpNo have been removed from RegInfo. If the Operands
663 // backing store needs to be reallocated, we also need to remove any other
664 // register operands.
665 if (Reallocate)
666 for (unsigned i = 0; i != OpNo; ++i)
667 if (Operands[i].isReg())
668 Operands[i].RemoveRegOperandFromRegInfo();
669
670 // Insert the new operand at OpNo.
671 Operands.insert(Operands.begin() + OpNo, Op);
672 Operands[OpNo].ParentMI = this;
673
674 // The Operands backing store has now been reallocated, so we can re-add the
675 // operands before OpNo.
676 if (Reallocate)
677 for (unsigned i = 0; i != OpNo; ++i)
678 if (Operands[i].isReg())
679 Operands[i].AddRegOperandToRegInfo(RegInfo);
680
681 // When adding a register operand, tell RegInfo about it.
682 if (Operands[OpNo].isReg()) {
683 // Add the new operand to RegInfo, even when RegInfo is NULL.
684 // This will initialize the linked list pointers.
685 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
686 // If the register operand is flagged as early, mark the operand as such.
687 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
688 Operands[OpNo].setIsEarlyClobber(true);
689 }
690
691 // Re-add all the implicit ops.
692 if (RegInfo) {
693 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
694 assert(Operands[i].isReg() && "Should only be an implicit reg!");
695 Operands[i].AddRegOperandToRegInfo(RegInfo);
696 }
697 }
698 }
699
700 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
701 /// fewer operand than it started with.
702 ///
RemoveOperand(unsigned OpNo)703 void MachineInstr::RemoveOperand(unsigned OpNo) {
704 assert(OpNo < Operands.size() && "Invalid operand number");
705
706 // Special case removing the last one.
707 if (OpNo == Operands.size()-1) {
708 // If needed, remove from the reg def/use list.
709 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
710 Operands.back().RemoveRegOperandFromRegInfo();
711
712 Operands.pop_back();
713 return;
714 }
715
716 // Otherwise, we are removing an interior operand. If we have reginfo to
717 // update, remove all operands that will be shifted down from their reg lists,
718 // move everything down, then re-add them.
719 MachineRegisterInfo *RegInfo = getRegInfo();
720 if (RegInfo) {
721 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
722 if (Operands[i].isReg())
723 Operands[i].RemoveRegOperandFromRegInfo();
724 }
725 }
726
727 Operands.erase(Operands.begin()+OpNo);
728
729 if (RegInfo) {
730 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
731 if (Operands[i].isReg())
732 Operands[i].AddRegOperandToRegInfo(RegInfo);
733 }
734 }
735 }
736
737 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
738 /// This function should be used only occasionally. The setMemRefs function
739 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)740 void MachineInstr::addMemOperand(MachineFunction &MF,
741 MachineMemOperand *MO) {
742 mmo_iterator OldMemRefs = MemRefs;
743 uint16_t OldNumMemRefs = NumMemRefs;
744
745 uint16_t NewNum = NumMemRefs + 1;
746 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
747
748 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
749 NewMemRefs[NewNum - 1] = MO;
750
751 MemRefs = NewMemRefs;
752 NumMemRefs = NewNum;
753 }
754
hasPropertyInBundle(unsigned Mask,QueryType Type) const755 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
756 const MachineBasicBlock *MBB = getParent();
757 MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
758 while (MII != MBB->end() && MII->isInsideBundle()) {
759 if (MII->getDesc().getFlags() & Mask) {
760 if (Type == AnyInBundle)
761 return true;
762 } else {
763 if (Type == AllInBundle)
764 return false;
765 }
766 ++MII;
767 }
768
769 return Type == AllInBundle;
770 }
771
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const772 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
773 MICheckType Check) const {
774 // If opcodes or number of operands are not the same then the two
775 // instructions are obviously not identical.
776 if (Other->getOpcode() != getOpcode() ||
777 Other->getNumOperands() != getNumOperands())
778 return false;
779
780 if (isBundle()) {
781 // Both instructions are bundles, compare MIs inside the bundle.
782 MachineBasicBlock::const_instr_iterator I1 = *this;
783 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
784 MachineBasicBlock::const_instr_iterator I2 = *Other;
785 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
786 while (++I1 != E1 && I1->isInsideBundle()) {
787 ++I2;
788 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
789 return false;
790 }
791 }
792
793 // Check operands to make sure they match.
794 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
795 const MachineOperand &MO = getOperand(i);
796 const MachineOperand &OMO = Other->getOperand(i);
797 if (!MO.isReg()) {
798 if (!MO.isIdenticalTo(OMO))
799 return false;
800 continue;
801 }
802
803 // Clients may or may not want to ignore defs when testing for equality.
804 // For example, machine CSE pass only cares about finding common
805 // subexpressions, so it's safe to ignore virtual register defs.
806 if (MO.isDef()) {
807 if (Check == IgnoreDefs)
808 continue;
809 else if (Check == IgnoreVRegDefs) {
810 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
811 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
812 if (MO.getReg() != OMO.getReg())
813 return false;
814 } else {
815 if (!MO.isIdenticalTo(OMO))
816 return false;
817 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
818 return false;
819 }
820 } else {
821 if (!MO.isIdenticalTo(OMO))
822 return false;
823 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
824 return false;
825 }
826 }
827 // If DebugLoc does not match then two dbg.values are not identical.
828 if (isDebugValue())
829 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
830 && getDebugLoc() != Other->getDebugLoc())
831 return false;
832 return true;
833 }
834
835 /// removeFromParent - This method unlinks 'this' from the containing basic
836 /// block, and returns it, but does not delete it.
removeFromParent()837 MachineInstr *MachineInstr::removeFromParent() {
838 assert(getParent() && "Not embedded in a basic block!");
839
840 // If it's a bundle then remove the MIs inside the bundle as well.
841 if (isBundle()) {
842 MachineBasicBlock *MBB = getParent();
843 MachineBasicBlock::instr_iterator MII = *this; ++MII;
844 MachineBasicBlock::instr_iterator E = MBB->instr_end();
845 while (MII != E && MII->isInsideBundle()) {
846 MachineInstr *MI = &*MII;
847 ++MII;
848 MBB->remove(MI);
849 }
850 }
851 getParent()->remove(this);
852 return this;
853 }
854
855
856 /// eraseFromParent - This method unlinks 'this' from the containing basic
857 /// block, and deletes it.
eraseFromParent()858 void MachineInstr::eraseFromParent() {
859 assert(getParent() && "Not embedded in a basic block!");
860 // If it's a bundle then remove the MIs inside the bundle as well.
861 if (isBundle()) {
862 MachineBasicBlock *MBB = getParent();
863 MachineBasicBlock::instr_iterator MII = *this; ++MII;
864 MachineBasicBlock::instr_iterator E = MBB->instr_end();
865 while (MII != E && MII->isInsideBundle()) {
866 MachineInstr *MI = &*MII;
867 ++MII;
868 MBB->erase(MI);
869 }
870 }
871 getParent()->erase(this);
872 }
873
874
875 /// getNumExplicitOperands - Returns the number of non-implicit operands.
876 ///
getNumExplicitOperands() const877 unsigned MachineInstr::getNumExplicitOperands() const {
878 unsigned NumOperands = MCID->getNumOperands();
879 if (!MCID->isVariadic())
880 return NumOperands;
881
882 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
883 const MachineOperand &MO = getOperand(i);
884 if (!MO.isReg() || !MO.isImplicit())
885 NumOperands++;
886 }
887 return NumOperands;
888 }
889
890 /// isBundled - Return true if this instruction part of a bundle. This is true
891 /// if either itself or its following instruction is marked "InsideBundle".
isBundled() const892 bool MachineInstr::isBundled() const {
893 if (isInsideBundle())
894 return true;
895 MachineBasicBlock::const_instr_iterator nextMI = this;
896 ++nextMI;
897 return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
898 }
899
isStackAligningInlineAsm() const900 bool MachineInstr::isStackAligningInlineAsm() const {
901 if (isInlineAsm()) {
902 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
903 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
904 return true;
905 }
906 return false;
907 }
908
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const909 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
910 unsigned *GroupNo) const {
911 assert(isInlineAsm() && "Expected an inline asm instruction");
912 assert(OpIdx < getNumOperands() && "OpIdx out of range");
913
914 // Ignore queries about the initial operands.
915 if (OpIdx < InlineAsm::MIOp_FirstOperand)
916 return -1;
917
918 unsigned Group = 0;
919 unsigned NumOps;
920 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
921 i += NumOps) {
922 const MachineOperand &FlagMO = getOperand(i);
923 // If we reach the implicit register operands, stop looking.
924 if (!FlagMO.isImm())
925 return -1;
926 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
927 if (i + NumOps > OpIdx) {
928 if (GroupNo)
929 *GroupNo = Group;
930 return i;
931 }
932 ++Group;
933 }
934 return -1;
935 }
936
937 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const938 MachineInstr::getRegClassConstraint(unsigned OpIdx,
939 const TargetInstrInfo *TII,
940 const TargetRegisterInfo *TRI) const {
941 // Most opcodes have fixed constraints in their MCInstrDesc.
942 if (!isInlineAsm())
943 return TII->getRegClass(getDesc(), OpIdx, TRI);
944
945 if (!getOperand(OpIdx).isReg())
946 return NULL;
947
948 // For tied uses on inline asm, get the constraint from the def.
949 unsigned DefIdx;
950 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
951 OpIdx = DefIdx;
952
953 // Inline asm stores register class constraints in the flag word.
954 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
955 if (FlagIdx < 0)
956 return NULL;
957
958 unsigned Flag = getOperand(FlagIdx).getImm();
959 unsigned RCID;
960 if (InlineAsm::hasRegClassConstraint(Flag, RCID))
961 return TRI->getRegClass(RCID);
962
963 // Assume that all registers in a memory operand are pointers.
964 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
965 return TRI->getPointerRegClass();
966
967 return NULL;
968 }
969
970 /// getBundleSize - Return the number of instructions inside the MI bundle.
getBundleSize() const971 unsigned MachineInstr::getBundleSize() const {
972 assert(isBundle() && "Expecting a bundle");
973
974 MachineBasicBlock::const_instr_iterator I = *this;
975 unsigned Size = 0;
976 while ((++I)->isInsideBundle()) {
977 ++Size;
978 }
979 assert(Size > 1 && "Malformed bundle");
980
981 return Size;
982 }
983
984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
985 /// the specific register or -1 if it is not found. It further tightens
986 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const987 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
988 const TargetRegisterInfo *TRI) const {
989 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
990 const MachineOperand &MO = getOperand(i);
991 if (!MO.isReg() || !MO.isUse())
992 continue;
993 unsigned MOReg = MO.getReg();
994 if (!MOReg)
995 continue;
996 if (MOReg == Reg ||
997 (TRI &&
998 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
999 TargetRegisterInfo::isPhysicalRegister(Reg) &&
1000 TRI->isSubRegister(MOReg, Reg)))
1001 if (!isKill || MO.isKill())
1002 return i;
1003 }
1004 return -1;
1005 }
1006
1007 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1008 /// indicating if this instruction reads or writes Reg. This also considers
1009 /// partial defines.
1010 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1011 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1012 SmallVectorImpl<unsigned> *Ops) const {
1013 bool PartDef = false; // Partial redefine.
1014 bool FullDef = false; // Full define.
1015 bool Use = false;
1016
1017 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1018 const MachineOperand &MO = getOperand(i);
1019 if (!MO.isReg() || MO.getReg() != Reg)
1020 continue;
1021 if (Ops)
1022 Ops->push_back(i);
1023 if (MO.isUse())
1024 Use |= !MO.isUndef();
1025 else if (MO.getSubReg() && !MO.isUndef())
1026 // A partial <def,undef> doesn't count as reading the register.
1027 PartDef = true;
1028 else
1029 FullDef = true;
1030 }
1031 // A partial redefine uses Reg unless there is also a full define.
1032 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1033 }
1034
1035 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1036 /// the specified register or -1 if it is not found. If isDead is true, defs
1037 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1038 /// also checks if there is a def of a super-register.
1039 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1040 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1041 const TargetRegisterInfo *TRI) const {
1042 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1043 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1044 const MachineOperand &MO = getOperand(i);
1045 // Accept regmask operands when Overlap is set.
1046 // Ignore them when looking for a specific def operand (Overlap == false).
1047 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1048 return i;
1049 if (!MO.isReg() || !MO.isDef())
1050 continue;
1051 unsigned MOReg = MO.getReg();
1052 bool Found = (MOReg == Reg);
1053 if (!Found && TRI && isPhys &&
1054 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1055 if (Overlap)
1056 Found = TRI->regsOverlap(MOReg, Reg);
1057 else
1058 Found = TRI->isSubRegister(MOReg, Reg);
1059 }
1060 if (Found && (!isDead || MO.isDead()))
1061 return i;
1062 }
1063 return -1;
1064 }
1065
1066 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1067 /// operand list that is used to represent the predicate. It returns -1 if
1068 /// none is found.
findFirstPredOperandIdx() const1069 int MachineInstr::findFirstPredOperandIdx() const {
1070 // Don't call MCID.findFirstPredOperandIdx() because this variant
1071 // is sometimes called on an instruction that's not yet complete, and
1072 // so the number of operands is less than the MCID indicates. In
1073 // particular, the PTX target does this.
1074 const MCInstrDesc &MCID = getDesc();
1075 if (MCID.isPredicable()) {
1076 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1077 if (MCID.OpInfo[i].isPredicate())
1078 return i;
1079 }
1080
1081 return -1;
1082 }
1083
1084 /// isRegTiedToUseOperand - Given the index of a register def operand,
1085 /// check if the register def is tied to a source operand, due to either
1086 /// two-address elimination or inline assembly constraints. Returns the
1087 /// first tied use operand index by reference is UseOpIdx is not null.
1088 bool MachineInstr::
isRegTiedToUseOperand(unsigned DefOpIdx,unsigned * UseOpIdx) const1089 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
1090 if (isInlineAsm()) {
1091 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
1092 const MachineOperand &MO = getOperand(DefOpIdx);
1093 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
1094 return false;
1095 // Determine the actual operand index that corresponds to this index.
1096 unsigned DefNo = 0;
1097 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
1098 if (FlagIdx < 0)
1099 return false;
1100
1101 // Which part of the group is DefOpIdx?
1102 unsigned DefPart = DefOpIdx - (FlagIdx + 1);
1103
1104 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
1105 i != e; ++i) {
1106 const MachineOperand &FMO = getOperand(i);
1107 if (!FMO.isImm())
1108 continue;
1109 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
1110 continue;
1111 unsigned Idx;
1112 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
1113 Idx == DefNo) {
1114 if (UseOpIdx)
1115 *UseOpIdx = (unsigned)i + 1 + DefPart;
1116 return true;
1117 }
1118 }
1119 return false;
1120 }
1121
1122 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1123 const MCInstrDesc &MCID = getDesc();
1124 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1125 const MachineOperand &MO = getOperand(i);
1126 if (MO.isReg() && MO.isUse() &&
1127 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1128 if (UseOpIdx)
1129 *UseOpIdx = (unsigned)i;
1130 return true;
1131 }
1132 }
1133 return false;
1134 }
1135
1136 /// isRegTiedToDefOperand - Return true if the operand of the specified index
1137 /// is a register use and it is tied to an def operand. It also returns the def
1138 /// operand index by reference.
1139 bool MachineInstr::
isRegTiedToDefOperand(unsigned UseOpIdx,unsigned * DefOpIdx) const1140 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1141 if (isInlineAsm()) {
1142 const MachineOperand &MO = getOperand(UseOpIdx);
1143 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1144 return false;
1145
1146 // Find the flag operand corresponding to UseOpIdx
1147 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
1148 if (FlagIdx < 0)
1149 return false;
1150
1151 const MachineOperand &UFMO = getOperand(FlagIdx);
1152 unsigned DefNo;
1153 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1154 if (!DefOpIdx)
1155 return true;
1156
1157 unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1158 // Remember to adjust the index. First operand is asm string, second is
1159 // the HasSideEffects and AlignStack bits, then there is a flag for each.
1160 while (DefNo) {
1161 const MachineOperand &FMO = getOperand(DefIdx);
1162 assert(FMO.isImm());
1163 // Skip over this def.
1164 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1165 --DefNo;
1166 }
1167 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1168 return true;
1169 }
1170 return false;
1171 }
1172
1173 const MCInstrDesc &MCID = getDesc();
1174 if (UseOpIdx >= MCID.getNumOperands())
1175 return false;
1176 const MachineOperand &MO = getOperand(UseOpIdx);
1177 if (!MO.isReg() || !MO.isUse())
1178 return false;
1179 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1180 if (DefIdx == -1)
1181 return false;
1182 if (DefOpIdx)
1183 *DefOpIdx = (unsigned)DefIdx;
1184 return true;
1185 }
1186
1187 /// clearKillInfo - Clears kill flags on all operands.
1188 ///
clearKillInfo()1189 void MachineInstr::clearKillInfo() {
1190 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1191 MachineOperand &MO = getOperand(i);
1192 if (MO.isReg() && MO.isUse())
1193 MO.setIsKill(false);
1194 }
1195 }
1196
1197 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1198 ///
copyKillDeadInfo(const MachineInstr * MI)1199 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1200 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1201 const MachineOperand &MO = MI->getOperand(i);
1202 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1203 continue;
1204 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1205 MachineOperand &MOp = getOperand(j);
1206 if (!MOp.isIdenticalTo(MO))
1207 continue;
1208 if (MO.isKill())
1209 MOp.setIsKill();
1210 else
1211 MOp.setIsDead();
1212 break;
1213 }
1214 }
1215 }
1216
1217 /// copyPredicates - Copies predicate operand(s) from MI.
copyPredicates(const MachineInstr * MI)1218 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1219 assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1220
1221 const MCInstrDesc &MCID = MI->getDesc();
1222 if (!MCID.isPredicable())
1223 return;
1224 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1225 if (MCID.OpInfo[i].isPredicate()) {
1226 // Predicated operands must be last operands.
1227 addOperand(MI->getOperand(i));
1228 }
1229 }
1230 }
1231
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1232 void MachineInstr::substituteRegister(unsigned FromReg,
1233 unsigned ToReg,
1234 unsigned SubIdx,
1235 const TargetRegisterInfo &RegInfo) {
1236 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1237 if (SubIdx)
1238 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1239 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1240 MachineOperand &MO = getOperand(i);
1241 if (!MO.isReg() || MO.getReg() != FromReg)
1242 continue;
1243 MO.substPhysReg(ToReg, RegInfo);
1244 }
1245 } else {
1246 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1247 MachineOperand &MO = getOperand(i);
1248 if (!MO.isReg() || MO.getReg() != FromReg)
1249 continue;
1250 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1251 }
1252 }
1253 }
1254
1255 /// isSafeToMove - Return true if it is safe to move this instruction. If
1256 /// SawStore is set to true, it means that there is a store (or call) between
1257 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1258 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1259 AliasAnalysis *AA,
1260 bool &SawStore) const {
1261 // Ignore stuff that we obviously can't move.
1262 if (mayStore() || isCall()) {
1263 SawStore = true;
1264 return false;
1265 }
1266
1267 if (isLabel() || isDebugValue() ||
1268 isTerminator() || hasUnmodeledSideEffects())
1269 return false;
1270
1271 // See if this instruction does a load. If so, we have to guarantee that the
1272 // loaded value doesn't change between the load and the its intended
1273 // destination. The check for isInvariantLoad gives the targe the chance to
1274 // classify the load as always returning a constant, e.g. a constant pool
1275 // load.
1276 if (mayLoad() && !isInvariantLoad(AA))
1277 // Otherwise, this is a real load. If there is a store between the load and
1278 // end of block, or if the load is volatile, we can't move it.
1279 return !SawStore && !hasVolatileMemoryRef();
1280
1281 return true;
1282 }
1283
1284 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1285 /// instruction which defined the specified register instead of copying it.
isSafeToReMat(const TargetInstrInfo * TII,AliasAnalysis * AA,unsigned DstReg) const1286 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1287 AliasAnalysis *AA,
1288 unsigned DstReg) const {
1289 bool SawStore = false;
1290 if (!TII->isTriviallyReMaterializable(this, AA) ||
1291 !isSafeToMove(TII, AA, SawStore))
1292 return false;
1293 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1294 const MachineOperand &MO = getOperand(i);
1295 if (!MO.isReg())
1296 continue;
1297 // FIXME: For now, do not remat any instruction with register operands.
1298 // Later on, we can loosen the restriction is the register operands have
1299 // not been modified between the def and use. Note, this is different from
1300 // MachineSink because the code is no longer in two-address form (at least
1301 // partially).
1302 if (MO.isUse())
1303 return false;
1304 else if (!MO.isDead() && MO.getReg() != DstReg)
1305 return false;
1306 }
1307 return true;
1308 }
1309
1310 /// hasVolatileMemoryRef - Return true if this instruction may have a
1311 /// volatile memory reference, or if the information describing the
1312 /// memory reference is not available. Return false if it is known to
1313 /// have no volatile memory references.
hasVolatileMemoryRef() const1314 bool MachineInstr::hasVolatileMemoryRef() const {
1315 // An instruction known never to access memory won't have a volatile access.
1316 if (!mayStore() &&
1317 !mayLoad() &&
1318 !isCall() &&
1319 !hasUnmodeledSideEffects())
1320 return false;
1321
1322 // Otherwise, if the instruction has no memory reference information,
1323 // conservatively assume it wasn't preserved.
1324 if (memoperands_empty())
1325 return true;
1326
1327 // Check the memory reference information for volatile references.
1328 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1329 if ((*I)->isVolatile())
1330 return true;
1331
1332 return false;
1333 }
1334
1335 /// isInvariantLoad - Return true if this instruction is loading from a
1336 /// location whose value is invariant across the function. For example,
1337 /// loading a value from the constant pool or from the argument area
1338 /// of a function if it does not change. This should only return true of
1339 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1340 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1341 // If the instruction doesn't load at all, it isn't an invariant load.
1342 if (!mayLoad())
1343 return false;
1344
1345 // If the instruction has lost its memoperands, conservatively assume that
1346 // it may not be an invariant load.
1347 if (memoperands_empty())
1348 return false;
1349
1350 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1351
1352 for (mmo_iterator I = memoperands_begin(),
1353 E = memoperands_end(); I != E; ++I) {
1354 if ((*I)->isVolatile()) return false;
1355 if ((*I)->isStore()) return false;
1356 if ((*I)->isInvariant()) return true;
1357
1358 if (const Value *V = (*I)->getValue()) {
1359 // A load from a constant PseudoSourceValue is invariant.
1360 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1361 if (PSV->isConstant(MFI))
1362 continue;
1363 // If we have an AliasAnalysis, ask it whether the memory is constant.
1364 if (AA && AA->pointsToConstantMemory(
1365 AliasAnalysis::Location(V, (*I)->getSize(),
1366 (*I)->getTBAAInfo())))
1367 continue;
1368 }
1369
1370 // Otherwise assume conservatively.
1371 return false;
1372 }
1373
1374 // Everything checks out.
1375 return true;
1376 }
1377
1378 /// isConstantValuePHI - If the specified instruction is a PHI that always
1379 /// merges together the same virtual register, return the register, otherwise
1380 /// return 0.
isConstantValuePHI() const1381 unsigned MachineInstr::isConstantValuePHI() const {
1382 if (!isPHI())
1383 return 0;
1384 assert(getNumOperands() >= 3 &&
1385 "It's illegal to have a PHI without source operands");
1386
1387 unsigned Reg = getOperand(1).getReg();
1388 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1389 if (getOperand(i).getReg() != Reg)
1390 return 0;
1391 return Reg;
1392 }
1393
hasUnmodeledSideEffects() const1394 bool MachineInstr::hasUnmodeledSideEffects() const {
1395 if (hasProperty(MCID::UnmodeledSideEffects))
1396 return true;
1397 if (isInlineAsm()) {
1398 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1399 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1400 return true;
1401 }
1402
1403 return false;
1404 }
1405
1406 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1407 ///
allDefsAreDead() const1408 bool MachineInstr::allDefsAreDead() const {
1409 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1410 const MachineOperand &MO = getOperand(i);
1411 if (!MO.isReg() || MO.isUse())
1412 continue;
1413 if (!MO.isDead())
1414 return false;
1415 }
1416 return true;
1417 }
1418
1419 /// copyImplicitOps - Copy implicit register operands from specified
1420 /// instruction to this instruction.
copyImplicitOps(const MachineInstr * MI)1421 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1422 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1423 i != e; ++i) {
1424 const MachineOperand &MO = MI->getOperand(i);
1425 if (MO.isReg() && MO.isImplicit())
1426 addOperand(MO);
1427 }
1428 }
1429
dump() const1430 void MachineInstr::dump() const {
1431 dbgs() << " " << *this;
1432 }
1433
printDebugLoc(DebugLoc DL,const MachineFunction * MF,raw_ostream & CommentOS)1434 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1435 raw_ostream &CommentOS) {
1436 const LLVMContext &Ctx = MF->getFunction()->getContext();
1437 if (!DL.isUnknown()) { // Print source line info.
1438 DIScope Scope(DL.getScope(Ctx));
1439 // Omit the directory, because it's likely to be long and uninteresting.
1440 if (Scope.Verify())
1441 CommentOS << Scope.getFilename();
1442 else
1443 CommentOS << "<unknown>";
1444 CommentOS << ':' << DL.getLine();
1445 if (DL.getCol() != 0)
1446 CommentOS << ':' << DL.getCol();
1447 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1448 if (!InlinedAtDL.isUnknown()) {
1449 CommentOS << " @[ ";
1450 printDebugLoc(InlinedAtDL, MF, CommentOS);
1451 CommentOS << " ]";
1452 }
1453 }
1454 }
1455
print(raw_ostream & OS,const TargetMachine * TM) const1456 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1457 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1458 const MachineFunction *MF = 0;
1459 const MachineRegisterInfo *MRI = 0;
1460 if (const MachineBasicBlock *MBB = getParent()) {
1461 MF = MBB->getParent();
1462 if (!TM && MF)
1463 TM = &MF->getTarget();
1464 if (MF)
1465 MRI = &MF->getRegInfo();
1466 }
1467
1468 // Save a list of virtual registers.
1469 SmallVector<unsigned, 8> VirtRegs;
1470
1471 // Print explicitly defined operands on the left of an assignment syntax.
1472 unsigned StartOp = 0, e = getNumOperands();
1473 for (; StartOp < e && getOperand(StartOp).isReg() &&
1474 getOperand(StartOp).isDef() &&
1475 !getOperand(StartOp).isImplicit();
1476 ++StartOp) {
1477 if (StartOp != 0) OS << ", ";
1478 getOperand(StartOp).print(OS, TM);
1479 unsigned Reg = getOperand(StartOp).getReg();
1480 if (TargetRegisterInfo::isVirtualRegister(Reg))
1481 VirtRegs.push_back(Reg);
1482 }
1483
1484 if (StartOp != 0)
1485 OS << " = ";
1486
1487 // Print the opcode name.
1488 if (TM && TM->getInstrInfo())
1489 OS << TM->getInstrInfo()->getName(getOpcode());
1490 else
1491 OS << "UNKNOWN";
1492
1493 // Print the rest of the operands.
1494 bool OmittedAnyCallClobbers = false;
1495 bool FirstOp = true;
1496 unsigned AsmDescOp = ~0u;
1497 unsigned AsmOpCount = 0;
1498
1499 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1500 // Print asm string.
1501 OS << " ";
1502 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1503
1504 // Print HasSideEffects, IsAlignStack
1505 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1506 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1507 OS << " [sideeffect]";
1508 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1509 OS << " [alignstack]";
1510
1511 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1512 FirstOp = false;
1513 }
1514
1515
1516 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1517 const MachineOperand &MO = getOperand(i);
1518
1519 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1520 VirtRegs.push_back(MO.getReg());
1521
1522 // Omit call-clobbered registers which aren't used anywhere. This makes
1523 // call instructions much less noisy on targets where calls clobber lots
1524 // of registers. Don't rely on MO.isDead() because we may be called before
1525 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1526 if (MF && isCall() &&
1527 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1528 unsigned Reg = MO.getReg();
1529 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1530 const MachineRegisterInfo &MRI = MF->getRegInfo();
1531 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1532 bool HasAliasLive = false;
1533 for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1534 unsigned AliasReg = *Alias; ++Alias)
1535 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1536 HasAliasLive = true;
1537 break;
1538 }
1539 if (!HasAliasLive) {
1540 OmittedAnyCallClobbers = true;
1541 continue;
1542 }
1543 }
1544 }
1545 }
1546
1547 if (FirstOp) FirstOp = false; else OS << ",";
1548 OS << " ";
1549 if (i < getDesc().NumOperands) {
1550 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1551 if (MCOI.isPredicate())
1552 OS << "pred:";
1553 if (MCOI.isOptionalDef())
1554 OS << "opt:";
1555 }
1556 if (isDebugValue() && MO.isMetadata()) {
1557 // Pretty print DBG_VALUE instructions.
1558 const MDNode *MD = MO.getMetadata();
1559 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1560 OS << "!\"" << MDS->getString() << '\"';
1561 else
1562 MO.print(OS, TM);
1563 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1564 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1565 } else if (i == AsmDescOp && MO.isImm()) {
1566 // Pretty print the inline asm operand descriptor.
1567 OS << '$' << AsmOpCount++;
1568 unsigned Flag = MO.getImm();
1569 switch (InlineAsm::getKind(Flag)) {
1570 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1571 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1572 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1573 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1574 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1575 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1576 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1577 }
1578
1579 unsigned RCID = 0;
1580 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1581 if (TM)
1582 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1583 else
1584 OS << ":RC" << RCID;
1585 }
1586
1587 unsigned TiedTo = 0;
1588 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1589 OS << " tiedto:$" << TiedTo;
1590
1591 OS << ']';
1592
1593 // Compute the index of the next operand descriptor.
1594 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1595 } else
1596 MO.print(OS, TM);
1597 }
1598
1599 // Briefly indicate whether any call clobbers were omitted.
1600 if (OmittedAnyCallClobbers) {
1601 if (!FirstOp) OS << ",";
1602 OS << " ...";
1603 }
1604
1605 bool HaveSemi = false;
1606 if (Flags) {
1607 if (!HaveSemi) OS << ";"; HaveSemi = true;
1608 OS << " flags: ";
1609
1610 if (Flags & FrameSetup)
1611 OS << "FrameSetup";
1612 }
1613
1614 if (!memoperands_empty()) {
1615 if (!HaveSemi) OS << ";"; HaveSemi = true;
1616
1617 OS << " mem:";
1618 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1619 i != e; ++i) {
1620 OS << **i;
1621 if (llvm::next(i) != e)
1622 OS << " ";
1623 }
1624 }
1625
1626 // Print the regclass of any virtual registers encountered.
1627 if (MRI && !VirtRegs.empty()) {
1628 if (!HaveSemi) OS << ";"; HaveSemi = true;
1629 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1630 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1631 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1632 for (unsigned j = i+1; j != VirtRegs.size();) {
1633 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1634 ++j;
1635 continue;
1636 }
1637 if (VirtRegs[i] != VirtRegs[j])
1638 OS << "," << PrintReg(VirtRegs[j]);
1639 VirtRegs.erase(VirtRegs.begin()+j);
1640 }
1641 }
1642 }
1643
1644 // Print debug location information.
1645 if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1646 if (!HaveSemi) OS << ";"; HaveSemi = true;
1647 DIVariable DV(getOperand(e - 1).getMetadata());
1648 OS << " line no:" << DV.getLineNumber();
1649 if (MDNode *InlinedAt = DV.getInlinedAt()) {
1650 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1651 if (!InlinedAtDL.isUnknown()) {
1652 OS << " inlined @[ ";
1653 printDebugLoc(InlinedAtDL, MF, OS);
1654 OS << " ]";
1655 }
1656 }
1657 } else if (!debugLoc.isUnknown() && MF) {
1658 if (!HaveSemi) OS << ";"; HaveSemi = true;
1659 OS << " dbg:";
1660 printDebugLoc(debugLoc, MF, OS);
1661 }
1662
1663 OS << '\n';
1664 }
1665
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1666 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1667 const TargetRegisterInfo *RegInfo,
1668 bool AddIfNotFound) {
1669 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1670 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1671 bool Found = false;
1672 SmallVector<unsigned,4> DeadOps;
1673 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1674 MachineOperand &MO = getOperand(i);
1675 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1676 continue;
1677 unsigned Reg = MO.getReg();
1678 if (!Reg)
1679 continue;
1680
1681 if (Reg == IncomingReg) {
1682 if (!Found) {
1683 if (MO.isKill())
1684 // The register is already marked kill.
1685 return true;
1686 if (isPhysReg && isRegTiedToDefOperand(i))
1687 // Two-address uses of physregs must not be marked kill.
1688 return true;
1689 MO.setIsKill();
1690 Found = true;
1691 }
1692 } else if (hasAliases && MO.isKill() &&
1693 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1694 // A super-register kill already exists.
1695 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1696 return true;
1697 if (RegInfo->isSubRegister(IncomingReg, Reg))
1698 DeadOps.push_back(i);
1699 }
1700 }
1701
1702 // Trim unneeded kill operands.
1703 while (!DeadOps.empty()) {
1704 unsigned OpIdx = DeadOps.back();
1705 if (getOperand(OpIdx).isImplicit())
1706 RemoveOperand(OpIdx);
1707 else
1708 getOperand(OpIdx).setIsKill(false);
1709 DeadOps.pop_back();
1710 }
1711
1712 // If not found, this means an alias of one of the operands is killed. Add a
1713 // new implicit operand if required.
1714 if (!Found && AddIfNotFound) {
1715 addOperand(MachineOperand::CreateReg(IncomingReg,
1716 false /*IsDef*/,
1717 true /*IsImp*/,
1718 true /*IsKill*/));
1719 return true;
1720 }
1721 return Found;
1722 }
1723
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1724 void MachineInstr::clearRegisterKills(unsigned Reg,
1725 const TargetRegisterInfo *RegInfo) {
1726 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1727 RegInfo = 0;
1728 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1729 MachineOperand &MO = getOperand(i);
1730 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1731 continue;
1732 unsigned OpReg = MO.getReg();
1733 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1734 MO.setIsKill(false);
1735 }
1736 }
1737
addRegisterDead(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1738 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1739 const TargetRegisterInfo *RegInfo,
1740 bool AddIfNotFound) {
1741 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1742 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1743 bool Found = false;
1744 SmallVector<unsigned,4> DeadOps;
1745 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1746 MachineOperand &MO = getOperand(i);
1747 if (!MO.isReg() || !MO.isDef())
1748 continue;
1749 unsigned Reg = MO.getReg();
1750 if (!Reg)
1751 continue;
1752
1753 if (Reg == IncomingReg) {
1754 MO.setIsDead();
1755 Found = true;
1756 } else if (hasAliases && MO.isDead() &&
1757 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1758 // There exists a super-register that's marked dead.
1759 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1760 return true;
1761 if (RegInfo->getSubRegisters(IncomingReg) &&
1762 RegInfo->getSuperRegisters(Reg) &&
1763 RegInfo->isSubRegister(IncomingReg, Reg))
1764 DeadOps.push_back(i);
1765 }
1766 }
1767
1768 // Trim unneeded dead operands.
1769 while (!DeadOps.empty()) {
1770 unsigned OpIdx = DeadOps.back();
1771 if (getOperand(OpIdx).isImplicit())
1772 RemoveOperand(OpIdx);
1773 else
1774 getOperand(OpIdx).setIsDead(false);
1775 DeadOps.pop_back();
1776 }
1777
1778 // If not found, this means an alias of one of the operands is dead. Add a
1779 // new implicit operand if required.
1780 if (Found || !AddIfNotFound)
1781 return Found;
1782
1783 addOperand(MachineOperand::CreateReg(IncomingReg,
1784 true /*IsDef*/,
1785 true /*IsImp*/,
1786 false /*IsKill*/,
1787 true /*IsDead*/));
1788 return true;
1789 }
1790
addRegisterDefined(unsigned IncomingReg,const TargetRegisterInfo * RegInfo)1791 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1792 const TargetRegisterInfo *RegInfo) {
1793 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1794 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1795 if (MO)
1796 return;
1797 } else {
1798 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1799 const MachineOperand &MO = getOperand(i);
1800 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1801 MO.getSubReg() == 0)
1802 return;
1803 }
1804 }
1805 addOperand(MachineOperand::CreateReg(IncomingReg,
1806 true /*IsDef*/,
1807 true /*IsImp*/));
1808 }
1809
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1810 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1811 const TargetRegisterInfo &TRI) {
1812 bool HasRegMask = false;
1813 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1814 MachineOperand &MO = getOperand(i);
1815 if (MO.isRegMask()) {
1816 HasRegMask = true;
1817 continue;
1818 }
1819 if (!MO.isReg() || !MO.isDef()) continue;
1820 unsigned Reg = MO.getReg();
1821 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1822 bool Dead = true;
1823 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1824 I != E; ++I)
1825 if (TRI.regsOverlap(*I, Reg)) {
1826 Dead = false;
1827 break;
1828 }
1829 // If there are no uses, including partial uses, the def is dead.
1830 if (Dead) MO.setIsDead();
1831 }
1832
1833 // This is a call with a register mask operand.
1834 // Mask clobbers are always dead, so add defs for the non-dead defines.
1835 if (HasRegMask)
1836 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1837 I != E; ++I)
1838 addRegisterDefined(*I, &TRI);
1839 }
1840
1841 unsigned
getHashValue(const MachineInstr * const & MI)1842 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1843 // Build up a buffer of hash code components.
1844 //
1845 // FIXME: This is a total hack. We should have a hash_value overload for
1846 // MachineOperand, but currently that doesn't work because there are many
1847 // different ideas of "equality" and thus different sets of information that
1848 // contribute to the hash code. This one happens to want to take a specific
1849 // subset. And it's still not clear that this routine uses the *correct*
1850 // subset of information when computing the hash code. The goal is to use the
1851 // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to
1852 // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would
1853 // be very useful to factor the selection of relevant inputs out of the two
1854 // functions and into a common routine, but it's not clear how that can be
1855 // done.
1856 SmallVector<size_t, 8> HashComponents;
1857 HashComponents.reserve(MI->getNumOperands() + 1);
1858 HashComponents.push_back(MI->getOpcode());
1859 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1860 const MachineOperand &MO = MI->getOperand(i);
1861 switch (MO.getType()) {
1862 default: break;
1863 case MachineOperand::MO_Register:
1864 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1865 continue; // Skip virtual register defs.
1866 HashComponents.push_back(hash_combine(MO.getType(), MO.getReg()));
1867 break;
1868 case MachineOperand::MO_Immediate:
1869 HashComponents.push_back(hash_combine(MO.getType(), MO.getImm()));
1870 break;
1871 case MachineOperand::MO_FrameIndex:
1872 case MachineOperand::MO_ConstantPoolIndex:
1873 case MachineOperand::MO_JumpTableIndex:
1874 HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex()));
1875 break;
1876 case MachineOperand::MO_MachineBasicBlock:
1877 HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB()));
1878 break;
1879 case MachineOperand::MO_GlobalAddress:
1880 HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal()));
1881 break;
1882 case MachineOperand::MO_BlockAddress:
1883 HashComponents.push_back(hash_combine(MO.getType(),
1884 MO.getBlockAddress()));
1885 break;
1886 case MachineOperand::MO_MCSymbol:
1887 HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol()));
1888 break;
1889 }
1890 }
1891 return hash_combine_range(HashComponents.begin(), HashComponents.end());
1892 }
1893
emitError(StringRef Msg) const1894 void MachineInstr::emitError(StringRef Msg) const {
1895 // Find the source location cookie.
1896 unsigned LocCookie = 0;
1897 const MDNode *LocMD = 0;
1898 for (unsigned i = getNumOperands(); i != 0; --i) {
1899 if (getOperand(i-1).isMetadata() &&
1900 (LocMD = getOperand(i-1).getMetadata()) &&
1901 LocMD->getNumOperands() != 0) {
1902 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1903 LocCookie = CI->getZExtValue();
1904 break;
1905 }
1906 }
1907 }
1908
1909 if (const MachineBasicBlock *MBB = getParent())
1910 if (const MachineFunction *MF = MBB->getParent())
1911 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1912 report_fatal_error(Msg);
1913 }
1914