• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_OBJECTS_H_
29 #define V8_OBJECTS_H_
30 
31 #include "allocation.h"
32 #include "builtins.h"
33 #include "list.h"
34 #include "property-details.h"
35 #include "smart-array-pointer.h"
36 #include "unicode-inl.h"
37 #if V8_TARGET_ARCH_ARM
38 #include "arm/constants-arm.h"
39 #elif V8_TARGET_ARCH_MIPS
40 #include "mips/constants-mips.h"
41 #endif
42 #include "v8checks.h"
43 
44 
45 //
46 // Most object types in the V8 JavaScript are described in this file.
47 //
48 // Inheritance hierarchy:
49 // - MaybeObject    (an object or a failure)
50 //   - Failure      (immediate for marking failed operation)
51 //   - Object
52 //     - Smi          (immediate small integer)
53 //     - HeapObject   (superclass for everything allocated in the heap)
54 //       - JSReceiver  (suitable for property access)
55 //         - JSObject
56 //           - JSArray
57 //           - JSSet
58 //           - JSMap
59 //           - JSWeakMap
60 //           - JSRegExp
61 //           - JSFunction
62 //           - GlobalObject
63 //             - JSGlobalObject
64 //             - JSBuiltinsObject
65 //           - JSGlobalProxy
66 //           - JSValue
67 //             - JSDate
68 //           - JSMessageObject
69 //         - JSProxy
70 //           - JSFunctionProxy
71 //       - FixedArrayBase
72 //         - ByteArray
73 //         - FixedArray
74 //           - DescriptorArray
75 //           - HashTable
76 //             - Dictionary
77 //             - SymbolTable
78 //             - CompilationCacheTable
79 //             - CodeCacheHashTable
80 //             - MapCache
81 //           - Context
82 //           - JSFunctionResultCache
83 //           - ScopeInfo
84 //         - FixedDoubleArray
85 //         - ExternalArray
86 //           - ExternalPixelArray
87 //           - ExternalByteArray
88 //           - ExternalUnsignedByteArray
89 //           - ExternalShortArray
90 //           - ExternalUnsignedShortArray
91 //           - ExternalIntArray
92 //           - ExternalUnsignedIntArray
93 //           - ExternalFloatArray
94 //       - String
95 //         - SeqString
96 //           - SeqAsciiString
97 //           - SeqTwoByteString
98 //         - SlicedString
99 //         - ConsString
100 //         - ExternalString
101 //           - ExternalAsciiString
102 //           - ExternalTwoByteString
103 //       - HeapNumber
104 //       - Code
105 //       - Map
106 //       - Oddball
107 //       - Foreign
108 //       - SharedFunctionInfo
109 //       - Struct
110 //         - AccessorInfo
111 //         - AccessorPair
112 //         - AccessCheckInfo
113 //         - InterceptorInfo
114 //         - CallHandlerInfo
115 //         - TemplateInfo
116 //           - FunctionTemplateInfo
117 //           - ObjectTemplateInfo
118 //         - Script
119 //         - SignatureInfo
120 //         - TypeSwitchInfo
121 //         - DebugInfo
122 //         - BreakPointInfo
123 //         - CodeCache
124 //
125 // Formats of Object*:
126 //  Smi:        [31 bit signed int] 0
127 //  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
128 //  Failure:    [30 bit signed int] 11
129 
130 namespace v8 {
131 namespace internal {
132 
133 enum ElementsKind {
134   // The "fast" kind for elements that only contain SMI values. Must be first
135   // to make it possible to efficiently check maps for this kind.
136   FAST_SMI_ONLY_ELEMENTS,
137 
138   // The "fast" kind for tagged values. Must be second to make it possible to
139   // efficiently check maps for this and the FAST_SMI_ONLY_ELEMENTS kind
140   // together at once.
141   FAST_ELEMENTS,
142 
143   // The "fast" kind for unwrapped, non-tagged double values.
144   FAST_DOUBLE_ELEMENTS,
145 
146   // The "slow" kind.
147   DICTIONARY_ELEMENTS,
148   NON_STRICT_ARGUMENTS_ELEMENTS,
149   // The "fast" kind for external arrays
150   EXTERNAL_BYTE_ELEMENTS,
151   EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
152   EXTERNAL_SHORT_ELEMENTS,
153   EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
154   EXTERNAL_INT_ELEMENTS,
155   EXTERNAL_UNSIGNED_INT_ELEMENTS,
156   EXTERNAL_FLOAT_ELEMENTS,
157   EXTERNAL_DOUBLE_ELEMENTS,
158   EXTERNAL_PIXEL_ELEMENTS,
159 
160   // Derived constants from ElementsKind
161   FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND = EXTERNAL_BYTE_ELEMENTS,
162   LAST_EXTERNAL_ARRAY_ELEMENTS_KIND = EXTERNAL_PIXEL_ELEMENTS,
163   FIRST_ELEMENTS_KIND = FAST_SMI_ONLY_ELEMENTS,
164   LAST_ELEMENTS_KIND = EXTERNAL_PIXEL_ELEMENTS
165 };
166 
167 enum CompareMapMode {
168   REQUIRE_EXACT_MAP,
169   ALLOW_ELEMENT_TRANSITION_MAPS
170 };
171 
172 enum KeyedAccessGrowMode {
173   DO_NOT_ALLOW_JSARRAY_GROWTH,
174   ALLOW_JSARRAY_GROWTH
175 };
176 
177 const int kElementsKindCount = LAST_ELEMENTS_KIND - FIRST_ELEMENTS_KIND + 1;
178 
179 void PrintElementsKind(FILE* out, ElementsKind kind);
180 
181 inline bool IsMoreGeneralElementsKindTransition(ElementsKind from_kind,
182                                                 ElementsKind to_kind);
183 
184 // Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
185 enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
186 
187 
188 // PropertyNormalizationMode is used to specify whether to keep
189 // inobject properties when normalizing properties of a JSObject.
190 enum PropertyNormalizationMode {
191   CLEAR_INOBJECT_PROPERTIES,
192   KEEP_INOBJECT_PROPERTIES
193 };
194 
195 
196 // NormalizedMapSharingMode is used to specify whether a map may be shared
197 // by different objects with normalized properties.
198 enum NormalizedMapSharingMode {
199   UNIQUE_NORMALIZED_MAP,
200   SHARED_NORMALIZED_MAP
201 };
202 
203 
204 // Indicates whether a get method should implicitly create the object looked up.
205 enum CreationFlag {
206   ALLOW_CREATION,
207   OMIT_CREATION
208 };
209 
210 
211 // Instance size sentinel for objects of variable size.
212 const int kVariableSizeSentinel = 0;
213 
214 
215 // All Maps have a field instance_type containing a InstanceType.
216 // It describes the type of the instances.
217 //
218 // As an example, a JavaScript object is a heap object and its map
219 // instance_type is JS_OBJECT_TYPE.
220 //
221 // The names of the string instance types are intended to systematically
222 // mirror their encoding in the instance_type field of the map.  The default
223 // encoding is considered TWO_BYTE.  It is not mentioned in the name.  ASCII
224 // encoding is mentioned explicitly in the name.  Likewise, the default
225 // representation is considered sequential.  It is not mentioned in the
226 // name.  The other representations (e.g. CONS, EXTERNAL) are explicitly
227 // mentioned.  Finally, the string is either a SYMBOL_TYPE (if it is a
228 // symbol) or a STRING_TYPE (if it is not a symbol).
229 //
230 // NOTE: The following things are some that depend on the string types having
231 // instance_types that are less than those of all other types:
232 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
233 // Object::IsString.
234 //
235 // NOTE: Everything following JS_VALUE_TYPE is considered a
236 // JSObject for GC purposes. The first four entries here have typeof
237 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
238 #define INSTANCE_TYPE_LIST_ALL(V)                                              \
239   V(SYMBOL_TYPE)                                                               \
240   V(ASCII_SYMBOL_TYPE)                                                         \
241   V(CONS_SYMBOL_TYPE)                                                          \
242   V(CONS_ASCII_SYMBOL_TYPE)                                                    \
243   V(EXTERNAL_SYMBOL_TYPE)                                                      \
244   V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE)                                      \
245   V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
246   V(SHORT_EXTERNAL_SYMBOL_TYPE)                                                \
247   V(SHORT_EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE)                                \
248   V(SHORT_EXTERNAL_ASCII_SYMBOL_TYPE)                                          \
249   V(STRING_TYPE)                                                               \
250   V(ASCII_STRING_TYPE)                                                         \
251   V(CONS_STRING_TYPE)                                                          \
252   V(CONS_ASCII_STRING_TYPE)                                                    \
253   V(SLICED_STRING_TYPE)                                                        \
254   V(EXTERNAL_STRING_TYPE)                                                      \
255   V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE)                                      \
256   V(EXTERNAL_ASCII_STRING_TYPE)                                                \
257   V(SHORT_EXTERNAL_STRING_TYPE)                                                \
258   V(SHORT_EXTERNAL_STRING_WITH_ASCII_DATA_TYPE)                                \
259   V(SHORT_EXTERNAL_ASCII_STRING_TYPE)                                          \
260   V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
261                                                                                \
262   V(MAP_TYPE)                                                                  \
263   V(CODE_TYPE)                                                                 \
264   V(ODDBALL_TYPE)                                                              \
265   V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
266                                                                                \
267   V(HEAP_NUMBER_TYPE)                                                          \
268   V(FOREIGN_TYPE)                                                              \
269   V(BYTE_ARRAY_TYPE)                                                           \
270   V(FREE_SPACE_TYPE)                                                           \
271   /* Note: the order of these external array */                                \
272   /* types is relied upon in */                                                \
273   /* Object::IsExternalArray(). */                                             \
274   V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
275   V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
276   V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
277   V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
278   V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
279   V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
280   V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
281   V(EXTERNAL_PIXEL_ARRAY_TYPE)                                                 \
282   V(FILLER_TYPE)                                                               \
283                                                                                \
284   V(ACCESSOR_INFO_TYPE)                                                        \
285   V(ACCESSOR_PAIR_TYPE)                                                        \
286   V(ACCESS_CHECK_INFO_TYPE)                                                    \
287   V(INTERCEPTOR_INFO_TYPE)                                                     \
288   V(CALL_HANDLER_INFO_TYPE)                                                    \
289   V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
290   V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
291   V(SIGNATURE_INFO_TYPE)                                                       \
292   V(TYPE_SWITCH_INFO_TYPE)                                                     \
293   V(SCRIPT_TYPE)                                                               \
294   V(CODE_CACHE_TYPE)                                                           \
295   V(POLYMORPHIC_CODE_CACHE_TYPE)                                               \
296   V(TYPE_FEEDBACK_INFO_TYPE)                                                   \
297   V(ALIASED_ARGUMENTS_ENTRY_TYPE)                                              \
298                                                                                \
299   V(FIXED_ARRAY_TYPE)                                                          \
300   V(FIXED_DOUBLE_ARRAY_TYPE)                                                   \
301   V(SHARED_FUNCTION_INFO_TYPE)                                                 \
302                                                                                \
303   V(JS_MESSAGE_OBJECT_TYPE)                                                    \
304                                                                                \
305   V(JS_VALUE_TYPE)                                                             \
306   V(JS_DATE_TYPE)                                                              \
307   V(JS_OBJECT_TYPE)                                                            \
308   V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
309   V(JS_GLOBAL_OBJECT_TYPE)                                                     \
310   V(JS_BUILTINS_OBJECT_TYPE)                                                   \
311   V(JS_GLOBAL_PROXY_TYPE)                                                      \
312   V(JS_ARRAY_TYPE)                                                             \
313   V(JS_PROXY_TYPE)                                                             \
314   V(JS_WEAK_MAP_TYPE)                                                          \
315   V(JS_REGEXP_TYPE)                                                            \
316                                                                                \
317   V(JS_FUNCTION_TYPE)                                                          \
318   V(JS_FUNCTION_PROXY_TYPE)                                                    \
319 
320 #ifdef ENABLE_DEBUGGER_SUPPORT
321 #define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
322   V(DEBUG_INFO_TYPE)                                                           \
323   V(BREAK_POINT_INFO_TYPE)
324 #else
325 #define INSTANCE_TYPE_LIST_DEBUGGER(V)
326 #endif
327 
328 #define INSTANCE_TYPE_LIST(V)                                                  \
329   INSTANCE_TYPE_LIST_ALL(V)                                                    \
330   INSTANCE_TYPE_LIST_DEBUGGER(V)
331 
332 
333 // Since string types are not consecutive, this macro is used to
334 // iterate over them.
335 #define STRING_TYPE_LIST(V)                                                    \
336   V(SYMBOL_TYPE,                                                               \
337     kVariableSizeSentinel,                                                     \
338     symbol,                                                                    \
339     Symbol)                                                                    \
340   V(ASCII_SYMBOL_TYPE,                                                         \
341     kVariableSizeSentinel,                                                     \
342     ascii_symbol,                                                              \
343     AsciiSymbol)                                                               \
344   V(CONS_SYMBOL_TYPE,                                                          \
345     ConsString::kSize,                                                         \
346     cons_symbol,                                                               \
347     ConsSymbol)                                                                \
348   V(CONS_ASCII_SYMBOL_TYPE,                                                    \
349     ConsString::kSize,                                                         \
350     cons_ascii_symbol,                                                         \
351     ConsAsciiSymbol)                                                           \
352   V(EXTERNAL_SYMBOL_TYPE,                                                      \
353     ExternalTwoByteString::kSize,                                              \
354     external_symbol,                                                           \
355     ExternalSymbol)                                                            \
356   V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE,                                      \
357     ExternalTwoByteString::kSize,                                              \
358     external_symbol_with_ascii_data,                                           \
359     ExternalSymbolWithAsciiData)                                               \
360   V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
361     ExternalAsciiString::kSize,                                                \
362     external_ascii_symbol,                                                     \
363     ExternalAsciiSymbol)                                                       \
364   V(SHORT_EXTERNAL_SYMBOL_TYPE,                                                \
365     ExternalTwoByteString::kShortSize,                                         \
366     short_external_symbol,                                                     \
367     ShortExternalSymbol)                                                       \
368   V(SHORT_EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE,                                \
369     ExternalTwoByteString::kShortSize,                                         \
370     short_external_symbol_with_ascii_data,                                     \
371     ShortExternalSymbolWithAsciiData)                                          \
372   V(SHORT_EXTERNAL_ASCII_SYMBOL_TYPE,                                          \
373     ExternalAsciiString::kShortSize,                                           \
374     short_external_ascii_symbol,                                               \
375     ShortExternalAsciiSymbol)                                                  \
376   V(STRING_TYPE,                                                               \
377     kVariableSizeSentinel,                                                     \
378     string,                                                                    \
379     String)                                                                    \
380   V(ASCII_STRING_TYPE,                                                         \
381     kVariableSizeSentinel,                                                     \
382     ascii_string,                                                              \
383     AsciiString)                                                               \
384   V(CONS_STRING_TYPE,                                                          \
385     ConsString::kSize,                                                         \
386     cons_string,                                                               \
387     ConsString)                                                                \
388   V(CONS_ASCII_STRING_TYPE,                                                    \
389     ConsString::kSize,                                                         \
390     cons_ascii_string,                                                         \
391     ConsAsciiString)                                                           \
392   V(SLICED_STRING_TYPE,                                                        \
393     SlicedString::kSize,                                                       \
394     sliced_string,                                                             \
395     SlicedString)                                                              \
396   V(SLICED_ASCII_STRING_TYPE,                                                  \
397     SlicedString::kSize,                                                       \
398     sliced_ascii_string,                                                       \
399     SlicedAsciiString)                                                         \
400   V(EXTERNAL_STRING_TYPE,                                                      \
401     ExternalTwoByteString::kSize,                                              \
402     external_string,                                                           \
403     ExternalString)                                                            \
404   V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE,                                      \
405     ExternalTwoByteString::kSize,                                              \
406     external_string_with_ascii_data,                                           \
407     ExternalStringWithAsciiData)                                               \
408   V(EXTERNAL_ASCII_STRING_TYPE,                                                \
409     ExternalAsciiString::kSize,                                                \
410     external_ascii_string,                                                     \
411     ExternalAsciiString)                                                       \
412   V(SHORT_EXTERNAL_STRING_TYPE,                                                \
413     ExternalTwoByteString::kShortSize,                                         \
414     short_external_string,                                                     \
415     ShortExternalString)                                                       \
416   V(SHORT_EXTERNAL_STRING_WITH_ASCII_DATA_TYPE,                                \
417     ExternalTwoByteString::kShortSize,                                         \
418     short_external_string_with_ascii_data,                                     \
419     ShortExternalStringWithAsciiData)                                          \
420   V(SHORT_EXTERNAL_ASCII_STRING_TYPE,                                          \
421     ExternalAsciiString::kShortSize,                                           \
422     short_external_ascii_string,                                               \
423     ShortExternalAsciiString)
424 
425 // A struct is a simple object a set of object-valued fields.  Including an
426 // object type in this causes the compiler to generate most of the boilerplate
427 // code for the class including allocation and garbage collection routines,
428 // casts and predicates.  All you need to define is the class, methods and
429 // object verification routines.  Easy, no?
430 //
431 // Note that for subtle reasons related to the ordering or numerical values of
432 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
433 // manually.
434 #define STRUCT_LIST_ALL(V)                                                     \
435   V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
436   V(ACCESSOR_PAIR, AccessorPair, accessor_pair)                                \
437   V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
438   V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
439   V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
440   V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
441   V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
442   V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
443   V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
444   V(SCRIPT, Script, script)                                                    \
445   V(CODE_CACHE, CodeCache, code_cache)                                         \
446   V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache)      \
447   V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info)                  \
448   V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry)
449 
450 #ifdef ENABLE_DEBUGGER_SUPPORT
451 #define STRUCT_LIST_DEBUGGER(V)                                                \
452   V(DEBUG_INFO, DebugInfo, debug_info)                                         \
453   V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
454 #else
455 #define STRUCT_LIST_DEBUGGER(V)
456 #endif
457 
458 #define STRUCT_LIST(V)                                                         \
459   STRUCT_LIST_ALL(V)                                                           \
460   STRUCT_LIST_DEBUGGER(V)
461 
462 // We use the full 8 bits of the instance_type field to encode heap object
463 // instance types.  The high-order bit (bit 7) is set if the object is not a
464 // string, and cleared if it is a string.
465 const uint32_t kIsNotStringMask = 0x80;
466 const uint32_t kStringTag = 0x0;
467 const uint32_t kNotStringTag = 0x80;
468 
469 // Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
470 // There are not enough types that the non-string types (with bit 7 set) can
471 // have bit 6 set too.
472 const uint32_t kIsSymbolMask = 0x40;
473 const uint32_t kNotSymbolTag = 0x0;
474 const uint32_t kSymbolTag = 0x40;
475 
476 // If bit 7 is clear then bit 2 indicates whether the string consists of
477 // two-byte characters or one-byte characters.
478 const uint32_t kStringEncodingMask = 0x4;
479 const uint32_t kTwoByteStringTag = 0x0;
480 const uint32_t kAsciiStringTag = 0x4;
481 
482 // If bit 7 is clear, the low-order 2 bits indicate the representation
483 // of the string.
484 const uint32_t kStringRepresentationMask = 0x03;
485 enum StringRepresentationTag {
486   kSeqStringTag = 0x0,
487   kConsStringTag = 0x1,
488   kExternalStringTag = 0x2,
489   kSlicedStringTag = 0x3
490 };
491 const uint32_t kIsIndirectStringMask = 0x1;
492 const uint32_t kIsIndirectStringTag = 0x1;
493 STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0);
494 STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0);
495 STATIC_ASSERT(
496     (kConsStringTag & kIsIndirectStringMask) == kIsIndirectStringTag);
497 STATIC_ASSERT(
498     (kSlicedStringTag & kIsIndirectStringMask) == kIsIndirectStringTag);
499 
500 // Use this mask to distinguish between cons and slice only after making
501 // sure that the string is one of the two (an indirect string).
502 const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
503 STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask) && kSlicedNotConsMask != 0);
504 
505 // If bit 7 is clear, then bit 3 indicates whether this two-byte
506 // string actually contains ASCII data.
507 const uint32_t kAsciiDataHintMask = 0x08;
508 const uint32_t kAsciiDataHintTag = 0x08;
509 
510 // If bit 7 is clear and string representation indicates an external string,
511 // then bit 4 indicates whether the data pointer is cached.
512 const uint32_t kShortExternalStringMask = 0x10;
513 const uint32_t kShortExternalStringTag = 0x10;
514 
515 
516 // A ConsString with an empty string as the right side is a candidate
517 // for being shortcut by the garbage collector unless it is a
518 // symbol. It's not common to have non-flat symbols, so we do not
519 // shortcut them thereby avoiding turning symbols into strings. See
520 // heap.cc and mark-compact.cc.
521 const uint32_t kShortcutTypeMask =
522     kIsNotStringMask |
523     kIsSymbolMask |
524     kStringRepresentationMask;
525 const uint32_t kShortcutTypeTag = kConsStringTag;
526 
527 
528 enum InstanceType {
529   // String types.
530   SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kSeqStringTag,
531   ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
532   CONS_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kConsStringTag,
533   CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
534   SHORT_EXTERNAL_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag |
535                                kExternalStringTag | kShortExternalStringTag,
536   SHORT_EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE =
537       kTwoByteStringTag | kSymbolTag | kExternalStringTag |
538       kAsciiDataHintTag | kShortExternalStringTag,
539   SHORT_EXTERNAL_ASCII_SYMBOL_TYPE = kAsciiStringTag | kExternalStringTag |
540                                      kSymbolTag | kShortExternalStringTag,
541   EXTERNAL_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kExternalStringTag,
542   EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE =
543       kTwoByteStringTag | kSymbolTag | kExternalStringTag | kAsciiDataHintTag,
544   EXTERNAL_ASCII_SYMBOL_TYPE =
545       kAsciiStringTag | kSymbolTag | kExternalStringTag,
546   STRING_TYPE = kTwoByteStringTag | kSeqStringTag,
547   ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
548   CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag,
549   CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
550   SLICED_STRING_TYPE = kTwoByteStringTag | kSlicedStringTag,
551   SLICED_ASCII_STRING_TYPE = kAsciiStringTag | kSlicedStringTag,
552   SHORT_EXTERNAL_STRING_TYPE =
553       kTwoByteStringTag | kExternalStringTag | kShortExternalStringTag,
554   SHORT_EXTERNAL_STRING_WITH_ASCII_DATA_TYPE =
555       kTwoByteStringTag | kExternalStringTag |
556       kAsciiDataHintTag | kShortExternalStringTag,
557   SHORT_EXTERNAL_ASCII_STRING_TYPE =
558       kAsciiStringTag | kExternalStringTag | kShortExternalStringTag,
559   EXTERNAL_STRING_TYPE = kTwoByteStringTag | kExternalStringTag,
560   EXTERNAL_STRING_WITH_ASCII_DATA_TYPE =
561       kTwoByteStringTag | kExternalStringTag | kAsciiDataHintTag,
562   // LAST_STRING_TYPE
563   EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
564   PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
565 
566   // Objects allocated in their own spaces (never in new space).
567   MAP_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE
568   CODE_TYPE,
569   ODDBALL_TYPE,
570   JS_GLOBAL_PROPERTY_CELL_TYPE,
571 
572   // "Data", objects that cannot contain non-map-word pointers to heap
573   // objects.
574   HEAP_NUMBER_TYPE,
575   FOREIGN_TYPE,
576   BYTE_ARRAY_TYPE,
577   FREE_SPACE_TYPE,
578   EXTERNAL_BYTE_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
579   EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
580   EXTERNAL_SHORT_ARRAY_TYPE,
581   EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
582   EXTERNAL_INT_ARRAY_TYPE,
583   EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
584   EXTERNAL_FLOAT_ARRAY_TYPE,
585   EXTERNAL_DOUBLE_ARRAY_TYPE,
586   EXTERNAL_PIXEL_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
587   FIXED_DOUBLE_ARRAY_TYPE,
588   FILLER_TYPE,  // LAST_DATA_TYPE
589 
590   // Structs.
591   ACCESSOR_INFO_TYPE,
592   ACCESSOR_PAIR_TYPE,
593   ACCESS_CHECK_INFO_TYPE,
594   INTERCEPTOR_INFO_TYPE,
595   CALL_HANDLER_INFO_TYPE,
596   FUNCTION_TEMPLATE_INFO_TYPE,
597   OBJECT_TEMPLATE_INFO_TYPE,
598   SIGNATURE_INFO_TYPE,
599   TYPE_SWITCH_INFO_TYPE,
600   SCRIPT_TYPE,
601   CODE_CACHE_TYPE,
602   POLYMORPHIC_CODE_CACHE_TYPE,
603   TYPE_FEEDBACK_INFO_TYPE,
604   ALIASED_ARGUMENTS_ENTRY_TYPE,
605   // The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT
606   // is defined. However as include/v8.h contain some of the instance type
607   // constants always having them avoids them getting different numbers
608   // depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not.
609   DEBUG_INFO_TYPE,
610   BREAK_POINT_INFO_TYPE,
611 
612   FIXED_ARRAY_TYPE,
613   SHARED_FUNCTION_INFO_TYPE,
614 
615   JS_MESSAGE_OBJECT_TYPE,
616 
617   // All the following types are subtypes of JSReceiver, which corresponds to
618   // objects in the JS sense. The first and the last type in this range are
619   // the two forms of function. This organization enables using the same
620   // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
621   // NONCALLABLE_JS_OBJECT range.
622   JS_FUNCTION_PROXY_TYPE,  // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
623   JS_PROXY_TYPE,  // LAST_JS_PROXY_TYPE
624 
625   JS_VALUE_TYPE,  // FIRST_JS_OBJECT_TYPE
626   JS_DATE_TYPE,
627   JS_OBJECT_TYPE,
628   JS_CONTEXT_EXTENSION_OBJECT_TYPE,
629   JS_GLOBAL_OBJECT_TYPE,
630   JS_BUILTINS_OBJECT_TYPE,
631   JS_GLOBAL_PROXY_TYPE,
632   JS_ARRAY_TYPE,
633   JS_SET_TYPE,
634   JS_MAP_TYPE,
635   JS_WEAK_MAP_TYPE,
636 
637   JS_REGEXP_TYPE,
638 
639   JS_FUNCTION_TYPE,  // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
640 
641   // Pseudo-types
642   FIRST_TYPE = 0x0,
643   LAST_TYPE = JS_FUNCTION_TYPE,
644   INVALID_TYPE = FIRST_TYPE - 1,
645   FIRST_NONSTRING_TYPE = MAP_TYPE,
646   // Boundaries for testing for an external array.
647   FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
648   LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_PIXEL_ARRAY_TYPE,
649   // Boundary for promotion to old data space/old pointer space.
650   LAST_DATA_TYPE = FILLER_TYPE,
651   // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
652   // Note that there is no range for JSObject or JSProxy, since their subtypes
653   // are not continuous in this enum! The enum ranges instead reflect the
654   // external class names, where proxies are treated as either ordinary objects,
655   // or functions.
656   FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
657   LAST_JS_RECEIVER_TYPE = LAST_TYPE,
658   // Boundaries for testing the types represented as JSObject
659   FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
660   LAST_JS_OBJECT_TYPE = LAST_TYPE,
661   // Boundaries for testing the types represented as JSProxy
662   FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
663   LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
664   // Boundaries for testing whether the type is a JavaScript object.
665   FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
666   LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
667   // Boundaries for testing the types for which typeof is "object".
668   FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
669   LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
670   // Note that the types for which typeof is "function" are not continuous.
671   // Define this so that we can put assertions on discrete checks.
672   NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
673 };
674 
675 const int kExternalArrayTypeCount =
676     LAST_EXTERNAL_ARRAY_TYPE - FIRST_EXTERNAL_ARRAY_TYPE + 1;
677 
678 STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType);
679 STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
680 STATIC_CHECK(FOREIGN_TYPE == Internals::kForeignType);
681 
682 
683 enum CompareResult {
684   LESS      = -1,
685   EQUAL     =  0,
686   GREATER   =  1,
687 
688   NOT_EQUAL = GREATER
689 };
690 
691 
692 #define DECL_BOOLEAN_ACCESSORS(name)   \
693   inline bool name();                  \
694   inline void set_##name(bool value);  \
695 
696 
697 #define DECL_ACCESSORS(name, type)                                      \
698   inline type* name();                                                  \
699   inline void set_##name(type* value,                                   \
700                          WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
701 
702 
703 class DictionaryElementsAccessor;
704 class ElementsAccessor;
705 class FixedArrayBase;
706 class ObjectVisitor;
707 class StringStream;
708 class Failure;
709 
710 struct ValueInfo : public Malloced {
ValueInfoValueInfo711   ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
712   InstanceType type;
713   Object* ptr;
714   const char* str;
715   double number;
716 };
717 
718 
719 // A template-ized version of the IsXXX functions.
720 template <class C> static inline bool Is(Object* obj);
721 
722 
723 class MaybeObject BASE_EMBEDDED {
724  public:
725   inline bool IsFailure();
726   inline bool IsRetryAfterGC();
727   inline bool IsOutOfMemory();
728   inline bool IsException();
729   INLINE(bool IsTheHole());
ToObject(Object ** obj)730   inline bool ToObject(Object** obj) {
731     if (IsFailure()) return false;
732     *obj = reinterpret_cast<Object*>(this);
733     return true;
734   }
ToFailureUnchecked()735   inline Failure* ToFailureUnchecked() {
736     ASSERT(IsFailure());
737     return reinterpret_cast<Failure*>(this);
738   }
ToObjectUnchecked()739   inline Object* ToObjectUnchecked() {
740     ASSERT(!IsFailure());
741     return reinterpret_cast<Object*>(this);
742   }
ToObjectChecked()743   inline Object* ToObjectChecked() {
744     CHECK(!IsFailure());
745     return reinterpret_cast<Object*>(this);
746   }
747 
748   template<typename T>
To(T ** obj)749   inline bool To(T** obj) {
750     if (IsFailure()) return false;
751     *obj = T::cast(reinterpret_cast<Object*>(this));
752     return true;
753   }
754 
755 #ifdef OBJECT_PRINT
756   // Prints this object with details.
Print()757   inline void Print() {
758     Print(stdout);
759   }
PrintLn()760   inline void PrintLn() {
761     PrintLn(stdout);
762   }
763   void Print(FILE* out);
764   void PrintLn(FILE* out);
765 #endif
766 #ifdef DEBUG
767   // Verifies the object.
768   void Verify();
769 #endif
770 };
771 
772 
773 #define OBJECT_TYPE_LIST(V)                    \
774   V(Smi)                                       \
775   V(HeapObject)                                \
776   V(Number)                                    \
777 
778 #define HEAP_OBJECT_TYPE_LIST(V)               \
779   V(HeapNumber)                                \
780   V(String)                                    \
781   V(Symbol)                                    \
782   V(SeqString)                                 \
783   V(ExternalString)                            \
784   V(ConsString)                                \
785   V(SlicedString)                              \
786   V(ExternalTwoByteString)                     \
787   V(ExternalAsciiString)                       \
788   V(SeqTwoByteString)                          \
789   V(SeqAsciiString)                            \
790                                                \
791   V(ExternalArray)                             \
792   V(ExternalByteArray)                         \
793   V(ExternalUnsignedByteArray)                 \
794   V(ExternalShortArray)                        \
795   V(ExternalUnsignedShortArray)                \
796   V(ExternalIntArray)                          \
797   V(ExternalUnsignedIntArray)                  \
798   V(ExternalFloatArray)                        \
799   V(ExternalDoubleArray)                       \
800   V(ExternalPixelArray)                        \
801   V(ByteArray)                                 \
802   V(FreeSpace)                                 \
803   V(JSReceiver)                                \
804   V(JSObject)                                  \
805   V(JSContextExtensionObject)                  \
806   V(Map)                                       \
807   V(DescriptorArray)                           \
808   V(DeoptimizationInputData)                   \
809   V(DeoptimizationOutputData)                  \
810   V(TypeFeedbackCells)                         \
811   V(FixedArray)                                \
812   V(FixedDoubleArray)                          \
813   V(Context)                                   \
814   V(GlobalContext)                             \
815   V(ScopeInfo)                                 \
816   V(JSFunction)                                \
817   V(Code)                                      \
818   V(Oddball)                                   \
819   V(SharedFunctionInfo)                        \
820   V(JSValue)                                   \
821   V(JSDate)                                    \
822   V(JSMessageObject)                           \
823   V(StringWrapper)                             \
824   V(Foreign)                                   \
825   V(Boolean)                                   \
826   V(JSArray)                                   \
827   V(JSProxy)                                   \
828   V(JSFunctionProxy)                           \
829   V(JSSet)                                     \
830   V(JSMap)                                     \
831   V(JSWeakMap)                                 \
832   V(JSRegExp)                                  \
833   V(HashTable)                                 \
834   V(Dictionary)                                \
835   V(SymbolTable)                               \
836   V(JSFunctionResultCache)                     \
837   V(NormalizedMapCache)                        \
838   V(CompilationCacheTable)                     \
839   V(CodeCacheHashTable)                        \
840   V(PolymorphicCodeCacheHashTable)             \
841   V(MapCache)                                  \
842   V(Primitive)                                 \
843   V(GlobalObject)                              \
844   V(JSGlobalObject)                            \
845   V(JSBuiltinsObject)                          \
846   V(JSGlobalProxy)                             \
847   V(UndetectableObject)                        \
848   V(AccessCheckNeeded)                         \
849   V(JSGlobalPropertyCell)                      \
850 
851 
852 class JSReceiver;
853 
854 // Object is the abstract superclass for all classes in the
855 // object hierarchy.
856 // Object does not use any virtual functions to avoid the
857 // allocation of the C++ vtable.
858 // Since Smi and Failure are subclasses of Object no
859 // data members can be present in Object.
860 class Object : public MaybeObject {
861  public:
862   // Type testing.
IsObject()863   bool IsObject() { return true; }
864 
865 #define IS_TYPE_FUNCTION_DECL(type_)  inline bool Is##type_();
866   OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
867   HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
868 #undef IS_TYPE_FUNCTION_DECL
869 
870   inline bool IsFixedArrayBase();
871 
872   // Returns true if this object is an instance of the specified
873   // function template.
874   inline bool IsInstanceOf(FunctionTemplateInfo* type);
875 
876   inline bool IsStruct();
877 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
878   STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
879 #undef DECLARE_STRUCT_PREDICATE
880 
881   INLINE(bool IsSpecObject());
882   INLINE(bool IsSpecFunction());
883 
884   // Oddball testing.
885   INLINE(bool IsUndefined());
886   INLINE(bool IsNull());
887   INLINE(bool IsTheHole());  // Shadows MaybeObject's implementation.
888   INLINE(bool IsTrue());
889   INLINE(bool IsFalse());
890   inline bool IsArgumentsMarker();
891   inline bool NonFailureIsHeapObject();
892 
893   // Filler objects (fillers and free space objects).
894   inline bool IsFiller();
895 
896   // Extract the number.
897   inline double Number();
898   inline bool IsNaN();
899 
900   // Returns true if the object is of the correct type to be used as a
901   // implementation of a JSObject's elements.
902   inline bool HasValidElements();
903 
904   inline bool HasSpecificClassOf(String* name);
905 
906   MUST_USE_RESULT MaybeObject* ToObject();             // ECMA-262 9.9.
907   Object* ToBoolean();                                 // ECMA-262 9.2.
908 
909   // Convert to a JSObject if needed.
910   // global_context is used when creating wrapper object.
911   MUST_USE_RESULT MaybeObject* ToObject(Context* global_context);
912 
913   // Converts this to a Smi if possible.
914   // Failure is returned otherwise.
915   MUST_USE_RESULT inline MaybeObject* ToSmi();
916 
917   void Lookup(String* name, LookupResult* result);
918 
919   // Property access.
920   MUST_USE_RESULT inline MaybeObject* GetProperty(String* key);
921   MUST_USE_RESULT inline MaybeObject* GetProperty(
922       String* key,
923       PropertyAttributes* attributes);
924   MUST_USE_RESULT MaybeObject* GetPropertyWithReceiver(
925       Object* receiver,
926       String* key,
927       PropertyAttributes* attributes);
928 
929   static Handle<Object> GetProperty(Handle<Object> object,
930                                     Handle<Object> receiver,
931                                     LookupResult* result,
932                                     Handle<String> key,
933                                     PropertyAttributes* attributes);
934 
935   MUST_USE_RESULT MaybeObject* GetProperty(Object* receiver,
936                                            LookupResult* result,
937                                            String* key,
938                                            PropertyAttributes* attributes);
939 
940   MUST_USE_RESULT MaybeObject* GetPropertyWithDefinedGetter(Object* receiver,
941                                                             JSReceiver* getter);
942 
943   static Handle<Object> GetElement(Handle<Object> object, uint32_t index);
944   MUST_USE_RESULT inline MaybeObject* GetElement(uint32_t index);
945   // For use when we know that no exception can be thrown.
946   inline Object* GetElementNoExceptionThrown(uint32_t index);
947   MUST_USE_RESULT MaybeObject* GetElementWithReceiver(Object* receiver,
948                                                       uint32_t index);
949 
950   // Return the object's prototype (might be Heap::null_value()).
951   Object* GetPrototype();
952 
953   // Returns the permanent hash code associated with this object depending on
954   // the actual object type.  Might return a failure in case no hash was
955   // created yet or GC was caused by creation.
956   MUST_USE_RESULT MaybeObject* GetHash(CreationFlag flag);
957 
958   // Checks whether this object has the same value as the given one.  This
959   // function is implemented according to ES5, section 9.12 and can be used
960   // to implement the Harmony "egal" function.
961   bool SameValue(Object* other);
962 
963   // Tries to convert an object to an array index.  Returns true and sets
964   // the output parameter if it succeeds.
965   inline bool ToArrayIndex(uint32_t* index);
966 
967   // Returns true if this is a JSValue containing a string and the index is
968   // < the length of the string.  Used to implement [] on strings.
969   inline bool IsStringObjectWithCharacterAt(uint32_t index);
970 
971 #ifdef DEBUG
972   // Verify a pointer is a valid object pointer.
973   static void VerifyPointer(Object* p);
974 #endif
975 
976   // Prints this object without details.
ShortPrint()977   inline void ShortPrint() {
978     ShortPrint(stdout);
979   }
980   void ShortPrint(FILE* out);
981 
982   // Prints this object without details to a message accumulator.
983   void ShortPrint(StringStream* accumulator);
984 
985   // Casting: This cast is only needed to satisfy macros in objects-inl.h.
cast(Object * value)986   static Object* cast(Object* value) { return value; }
987 
988   // Layout description.
989   static const int kHeaderSize = 0;  // Object does not take up any space.
990 
991  private:
992   DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
993 };
994 
995 
996 // Smi represents integer Numbers that can be stored in 31 bits.
997 // Smis are immediate which means they are NOT allocated in the heap.
998 // The this pointer has the following format: [31 bit signed int] 0
999 // For long smis it has the following format:
1000 //     [32 bit signed int] [31 bits zero padding] 0
1001 // Smi stands for small integer.
1002 class Smi: public Object {
1003  public:
1004   // Returns the integer value.
1005   inline int value();
1006 
1007   // Convert a value to a Smi object.
1008   static inline Smi* FromInt(int value);
1009 
1010   static inline Smi* FromIntptr(intptr_t value);
1011 
1012   // Returns whether value can be represented in a Smi.
1013   static inline bool IsValid(intptr_t value);
1014 
1015   // Casting.
1016   static inline Smi* cast(Object* object);
1017 
1018   // Dispatched behavior.
SmiPrint()1019   inline void SmiPrint() {
1020     SmiPrint(stdout);
1021   }
1022   void SmiPrint(FILE* out);
1023   void SmiPrint(StringStream* accumulator);
1024 #ifdef DEBUG
1025   void SmiVerify();
1026 #endif
1027 
1028   static const int kMinValue =
1029       (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
1030   static const int kMaxValue = -(kMinValue + 1);
1031 
1032  private:
1033   DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
1034 };
1035 
1036 
1037 // Failure is used for reporting out of memory situations and
1038 // propagating exceptions through the runtime system.  Failure objects
1039 // are transient and cannot occur as part of the object graph.
1040 //
1041 // Failures are a single word, encoded as follows:
1042 // +-------------------------+---+--+--+
1043 // |.........unused..........|sss|tt|11|
1044 // +-------------------------+---+--+--+
1045 //                          7 6 4 32 10
1046 //
1047 //
1048 // The low two bits, 0-1, are the failure tag, 11.  The next two bits,
1049 // 2-3, are a failure type tag 'tt' with possible values:
1050 //   00 RETRY_AFTER_GC
1051 //   01 EXCEPTION
1052 //   10 INTERNAL_ERROR
1053 //   11 OUT_OF_MEMORY_EXCEPTION
1054 //
1055 // The next three bits, 4-6, are an allocation space tag 'sss'.  The
1056 // allocation space tag is 000 for all failure types except
1057 // RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
1058 // allocation spaces (the encoding is found in globals.h).
1059 
1060 // Failure type tag info.
1061 const int kFailureTypeTagSize = 2;
1062 const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
1063 
1064 class Failure: public MaybeObject {
1065  public:
1066   // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
1067   enum Type {
1068     RETRY_AFTER_GC = 0,
1069     EXCEPTION = 1,       // Returning this marker tells the real exception
1070                          // is in Isolate::pending_exception.
1071     INTERNAL_ERROR = 2,
1072     OUT_OF_MEMORY_EXCEPTION = 3
1073   };
1074 
1075   inline Type type() const;
1076 
1077   // Returns the space that needs to be collected for RetryAfterGC failures.
1078   inline AllocationSpace allocation_space() const;
1079 
1080   inline bool IsInternalError() const;
1081   inline bool IsOutOfMemoryException() const;
1082 
1083   static inline Failure* RetryAfterGC(AllocationSpace space);
1084   static inline Failure* RetryAfterGC();  // NEW_SPACE
1085   static inline Failure* Exception();
1086   static inline Failure* InternalError();
1087   static inline Failure* OutOfMemoryException();
1088   // Casting.
1089   static inline Failure* cast(MaybeObject* object);
1090 
1091   // Dispatched behavior.
FailurePrint()1092   inline void FailurePrint() {
1093     FailurePrint(stdout);
1094   }
1095   void FailurePrint(FILE* out);
1096   void FailurePrint(StringStream* accumulator);
1097 #ifdef DEBUG
1098   void FailureVerify();
1099 #endif
1100 
1101  private:
1102   inline intptr_t value() const;
1103   static inline Failure* Construct(Type type, intptr_t value = 0);
1104 
1105   DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
1106 };
1107 
1108 
1109 // Heap objects typically have a map pointer in their first word.  However,
1110 // during GC other data (e.g. mark bits, forwarding addresses) is sometimes
1111 // encoded in the first word.  The class MapWord is an abstraction of the
1112 // value in a heap object's first word.
1113 class MapWord BASE_EMBEDDED {
1114  public:
1115   // Normal state: the map word contains a map pointer.
1116 
1117   // Create a map word from a map pointer.
1118   static inline MapWord FromMap(Map* map);
1119 
1120   // View this map word as a map pointer.
1121   inline Map* ToMap();
1122 
1123 
1124   // Scavenge collection: the map word of live objects in the from space
1125   // contains a forwarding address (a heap object pointer in the to space).
1126 
1127   // True if this map word is a forwarding address for a scavenge
1128   // collection.  Only valid during a scavenge collection (specifically,
1129   // when all map words are heap object pointers, i.e. not during a full GC).
1130   inline bool IsForwardingAddress();
1131 
1132   // Create a map word from a forwarding address.
1133   static inline MapWord FromForwardingAddress(HeapObject* object);
1134 
1135   // View this map word as a forwarding address.
1136   inline HeapObject* ToForwardingAddress();
1137 
FromRawValue(uintptr_t value)1138   static inline MapWord FromRawValue(uintptr_t value) {
1139     return MapWord(value);
1140   }
1141 
ToRawValue()1142   inline uintptr_t ToRawValue() {
1143     return value_;
1144   }
1145 
1146  private:
1147   // HeapObject calls the private constructor and directly reads the value.
1148   friend class HeapObject;
1149 
MapWord(uintptr_t value)1150   explicit MapWord(uintptr_t value) : value_(value) {}
1151 
1152   uintptr_t value_;
1153 };
1154 
1155 
1156 // HeapObject is the superclass for all classes describing heap allocated
1157 // objects.
1158 class HeapObject: public Object {
1159  public:
1160   // [map]: Contains a map which contains the object's reflective
1161   // information.
1162   inline Map* map();
1163   inline void set_map(Map* value);
1164   // The no-write-barrier version.  This is OK if the object is white and in
1165   // new space, or if the value is an immortal immutable object, like the maps
1166   // of primitive (non-JS) objects like strings, heap numbers etc.
1167   inline void set_map_no_write_barrier(Map* value);
1168 
1169   // During garbage collection, the map word of a heap object does not
1170   // necessarily contain a map pointer.
1171   inline MapWord map_word();
1172   inline void set_map_word(MapWord map_word);
1173 
1174   // The Heap the object was allocated in. Used also to access Isolate.
1175   inline Heap* GetHeap();
1176 
1177   // Convenience method to get current isolate. This method can be
1178   // accessed only when its result is the same as
1179   // Isolate::Current(), it ASSERTs this. See also comment for GetHeap.
1180   inline Isolate* GetIsolate();
1181 
1182   // Converts an address to a HeapObject pointer.
1183   static inline HeapObject* FromAddress(Address address);
1184 
1185   // Returns the address of this HeapObject.
1186   inline Address address();
1187 
1188   // Iterates over pointers contained in the object (including the Map)
1189   void Iterate(ObjectVisitor* v);
1190 
1191   // Iterates over all pointers contained in the object except the
1192   // first map pointer.  The object type is given in the first
1193   // parameter. This function does not access the map pointer in the
1194   // object, and so is safe to call while the map pointer is modified.
1195   void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1196 
1197   // Returns the heap object's size in bytes
1198   inline int Size();
1199 
1200   // Given a heap object's map pointer, returns the heap size in bytes
1201   // Useful when the map pointer field is used for other purposes.
1202   // GC internal.
1203   inline int SizeFromMap(Map* map);
1204 
1205   // Returns the field at offset in obj, as a read/write Object* reference.
1206   // Does no checking, and is safe to use during GC, while maps are invalid.
1207   // Does not invoke write barrier, so should only be assigned to
1208   // during marking GC.
1209   static inline Object** RawField(HeapObject* obj, int offset);
1210 
1211   // Casting.
1212   static inline HeapObject* cast(Object* obj);
1213 
1214   // Return the write barrier mode for this. Callers of this function
1215   // must be able to present a reference to an AssertNoAllocation
1216   // object as a sign that they are not going to use this function
1217   // from code that allocates and thus invalidates the returned write
1218   // barrier mode.
1219   inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
1220 
1221   // Dispatched behavior.
1222   void HeapObjectShortPrint(StringStream* accumulator);
1223 #ifdef OBJECT_PRINT
HeapObjectPrint()1224   inline void HeapObjectPrint() {
1225     HeapObjectPrint(stdout);
1226   }
1227   void HeapObjectPrint(FILE* out);
1228   void PrintHeader(FILE* out, const char* id);
1229 #endif
1230 
1231 #ifdef DEBUG
1232   void HeapObjectVerify();
1233   inline void VerifyObjectField(int offset);
1234   inline void VerifySmiField(int offset);
1235 
1236   // Verify a pointer is a valid HeapObject pointer that points to object
1237   // areas in the heap.
1238   static void VerifyHeapPointer(Object* p);
1239 #endif
1240 
1241   // Layout description.
1242   // First field in a heap object is map.
1243   static const int kMapOffset = Object::kHeaderSize;
1244   static const int kHeaderSize = kMapOffset + kPointerSize;
1245 
1246   STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1247 
1248  protected:
1249   // helpers for calling an ObjectVisitor to iterate over pointers in the
1250   // half-open range [start, end) specified as integer offsets
1251   inline void IteratePointers(ObjectVisitor* v, int start, int end);
1252   // as above, for the single element at "offset"
1253   inline void IteratePointer(ObjectVisitor* v, int offset);
1254 
1255  private:
1256   DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1257 };
1258 
1259 
1260 #define SLOT_ADDR(obj, offset) \
1261   reinterpret_cast<Object**>((obj)->address() + offset)
1262 
1263 // This class describes a body of an object of a fixed size
1264 // in which all pointer fields are located in the [start_offset, end_offset)
1265 // interval.
1266 template<int start_offset, int end_offset, int size>
1267 class FixedBodyDescriptor {
1268  public:
1269   static const int kStartOffset = start_offset;
1270   static const int kEndOffset = end_offset;
1271   static const int kSize = size;
1272 
1273   static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1274 
1275   template<typename StaticVisitor>
IterateBody(HeapObject * obj)1276   static inline void IterateBody(HeapObject* obj) {
1277     StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
1278                                  SLOT_ADDR(obj, end_offset));
1279   }
1280 };
1281 
1282 
1283 // This class describes a body of an object of a variable size
1284 // in which all pointer fields are located in the [start_offset, object_size)
1285 // interval.
1286 template<int start_offset>
1287 class FlexibleBodyDescriptor {
1288  public:
1289   static const int kStartOffset = start_offset;
1290 
1291   static inline void IterateBody(HeapObject* obj,
1292                                  int object_size,
1293                                  ObjectVisitor* v);
1294 
1295   template<typename StaticVisitor>
IterateBody(HeapObject * obj,int object_size)1296   static inline void IterateBody(HeapObject* obj, int object_size) {
1297     StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
1298                                  SLOT_ADDR(obj, object_size));
1299   }
1300 };
1301 
1302 #undef SLOT_ADDR
1303 
1304 
1305 // The HeapNumber class describes heap allocated numbers that cannot be
1306 // represented in a Smi (small integer)
1307 class HeapNumber: public HeapObject {
1308  public:
1309   // [value]: number value.
1310   inline double value();
1311   inline void set_value(double value);
1312 
1313   // Casting.
1314   static inline HeapNumber* cast(Object* obj);
1315 
1316   // Dispatched behavior.
1317   Object* HeapNumberToBoolean();
HeapNumberPrint()1318   inline void HeapNumberPrint() {
1319     HeapNumberPrint(stdout);
1320   }
1321   void HeapNumberPrint(FILE* out);
1322   void HeapNumberPrint(StringStream* accumulator);
1323 #ifdef DEBUG
1324   void HeapNumberVerify();
1325 #endif
1326 
1327   inline int get_exponent();
1328   inline int get_sign();
1329 
1330   // Layout description.
1331   static const int kValueOffset = HeapObject::kHeaderSize;
1332   // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1333   // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1334   // little endian apart from non-EABI arm which is little endian with big
1335   // endian floating point word ordering!
1336   static const int kMantissaOffset = kValueOffset;
1337   static const int kExponentOffset = kValueOffset + 4;
1338 
1339   static const int kSize = kValueOffset + kDoubleSize;
1340   static const uint32_t kSignMask = 0x80000000u;
1341   static const uint32_t kExponentMask = 0x7ff00000u;
1342   static const uint32_t kMantissaMask = 0xfffffu;
1343   static const int kMantissaBits = 52;
1344   static const int kExponentBits = 11;
1345   static const int kExponentBias = 1023;
1346   static const int kExponentShift = 20;
1347   static const int kMantissaBitsInTopWord = 20;
1348   static const int kNonMantissaBitsInTopWord = 12;
1349 
1350  private:
1351   DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1352 };
1353 
1354 
1355 enum EnsureElementsMode {
1356   DONT_ALLOW_DOUBLE_ELEMENTS,
1357   ALLOW_COPIED_DOUBLE_ELEMENTS,
1358   ALLOW_CONVERTED_DOUBLE_ELEMENTS
1359 };
1360 
1361 
1362 // Indicates whether a property should be set or (re)defined.  Setting of a
1363 // property causes attributes to remain unchanged, writability to be checked
1364 // and callbacks to be called.  Defining of a property causes attributes to
1365 // be updated and callbacks to be overridden.
1366 enum SetPropertyMode {
1367   SET_PROPERTY,
1368   DEFINE_PROPERTY
1369 };
1370 
1371 
1372 // Indicator for one component of an AccessorPair.
1373 enum AccessorComponent {
1374   ACCESSOR_GETTER,
1375   ACCESSOR_SETTER
1376 };
1377 
1378 
1379 // JSReceiver includes types on which properties can be defined, i.e.,
1380 // JSObject and JSProxy.
1381 class JSReceiver: public HeapObject {
1382  public:
1383   enum DeleteMode {
1384     NORMAL_DELETION,
1385     STRICT_DELETION,
1386     FORCE_DELETION
1387   };
1388 
1389   // Casting.
1390   static inline JSReceiver* cast(Object* obj);
1391 
1392   static Handle<Object> SetProperty(Handle<JSReceiver> object,
1393                                     Handle<String> key,
1394                                     Handle<Object> value,
1395                                     PropertyAttributes attributes,
1396                                     StrictModeFlag strict_mode);
1397   // Can cause GC.
1398   MUST_USE_RESULT MaybeObject* SetProperty(String* key,
1399                                            Object* value,
1400                                            PropertyAttributes attributes,
1401                                            StrictModeFlag strict_mode);
1402   MUST_USE_RESULT MaybeObject* SetProperty(LookupResult* result,
1403                                            String* key,
1404                                            Object* value,
1405                                            PropertyAttributes attributes,
1406                                            StrictModeFlag strict_mode);
1407   MUST_USE_RESULT MaybeObject* SetPropertyWithDefinedSetter(JSReceiver* setter,
1408                                                             Object* value);
1409 
1410   MUST_USE_RESULT MaybeObject* DeleteProperty(String* name, DeleteMode mode);
1411   MUST_USE_RESULT MaybeObject* DeleteElement(uint32_t index, DeleteMode mode);
1412 
1413   // Set the index'th array element.
1414   // Can cause GC, or return failure if GC is required.
1415   MUST_USE_RESULT MaybeObject* SetElement(uint32_t index,
1416                                           Object* value,
1417                                           PropertyAttributes attributes,
1418                                           StrictModeFlag strict_mode,
1419                                           bool check_prototype);
1420 
1421   // Tests for the fast common case for property enumeration.
1422   bool IsSimpleEnum();
1423 
1424   // Returns the class name ([[Class]] property in the specification).
1425   String* class_name();
1426 
1427   // Returns the constructor name (the name (possibly, inferred name) of the
1428   // function that was used to instantiate the object).
1429   String* constructor_name();
1430 
1431   inline PropertyAttributes GetPropertyAttribute(String* name);
1432   PropertyAttributes GetPropertyAttributeWithReceiver(JSReceiver* receiver,
1433                                                       String* name);
1434   PropertyAttributes GetLocalPropertyAttribute(String* name);
1435 
1436   // Can cause a GC.
1437   inline bool HasProperty(String* name);
1438   inline bool HasLocalProperty(String* name);
1439   inline bool HasElement(uint32_t index);
1440 
1441   // Return the object's prototype (might be Heap::null_value()).
1442   inline Object* GetPrototype();
1443 
1444   // Set the object's prototype (only JSReceiver and null are allowed).
1445   MUST_USE_RESULT MaybeObject* SetPrototype(Object* value,
1446                                             bool skip_hidden_prototypes);
1447 
1448   // Retrieves a permanent object identity hash code. The undefined value might
1449   // be returned in case no hash was created yet and OMIT_CREATION was used.
1450   inline MUST_USE_RESULT MaybeObject* GetIdentityHash(CreationFlag flag);
1451 
1452   // Lookup a property.  If found, the result is valid and has
1453   // detailed information.
1454   void LocalLookup(String* name, LookupResult* result);
1455   void Lookup(String* name, LookupResult* result);
1456 
1457  protected:
1458   Smi* GenerateIdentityHash();
1459 
1460  private:
1461   PropertyAttributes GetPropertyAttribute(JSReceiver* receiver,
1462                                           LookupResult* result,
1463                                           String* name,
1464                                           bool continue_search);
1465 
1466   DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
1467 };
1468 
1469 // The JSObject describes real heap allocated JavaScript objects with
1470 // properties.
1471 // Note that the map of JSObject changes during execution to enable inline
1472 // caching.
1473 class JSObject: public JSReceiver {
1474  public:
1475   // [properties]: Backing storage for properties.
1476   // properties is a FixedArray in the fast case and a Dictionary in the
1477   // slow case.
1478   DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1479   inline void initialize_properties();
1480   inline bool HasFastProperties();
1481   inline StringDictionary* property_dictionary();  // Gets slow properties.
1482 
1483   // [elements]: The elements (properties with names that are integers).
1484   //
1485   // Elements can be in two general modes: fast and slow. Each mode
1486   // corrensponds to a set of object representations of elements that
1487   // have something in common.
1488   //
1489   // In the fast mode elements is a FixedArray and so each element can
1490   // be quickly accessed. This fact is used in the generated code. The
1491   // elements array can have one of three maps in this mode:
1492   // fixed_array_map, non_strict_arguments_elements_map or
1493   // fixed_cow_array_map (for copy-on-write arrays). In the latter case
1494   // the elements array may be shared by a few objects and so before
1495   // writing to any element the array must be copied. Use
1496   // EnsureWritableFastElements in this case.
1497   //
1498   // In the slow mode the elements is either a NumberDictionary, an
1499   // ExternalArray, or a FixedArray parameter map for a (non-strict)
1500   // arguments object.
1501   DECL_ACCESSORS(elements, FixedArrayBase)
1502   inline void initialize_elements();
1503   MUST_USE_RESULT inline MaybeObject* ResetElements();
1504   inline ElementsKind GetElementsKind();
1505   inline ElementsAccessor* GetElementsAccessor();
1506   inline bool HasFastSmiOnlyElements();
1507   inline bool HasFastElements();
1508   // Returns if an object has either FAST_ELEMENT or FAST_SMI_ONLY_ELEMENT
1509   // elements.  TODO(danno): Rename HasFastTypeElements to HasFastElements() and
1510   // HasFastElements to HasFastObjectElements.
1511   inline bool HasFastTypeElements();
1512   inline bool HasFastDoubleElements();
1513   inline bool HasNonStrictArgumentsElements();
1514   inline bool HasDictionaryElements();
1515   inline bool HasExternalPixelElements();
1516   inline bool HasExternalArrayElements();
1517   inline bool HasExternalByteElements();
1518   inline bool HasExternalUnsignedByteElements();
1519   inline bool HasExternalShortElements();
1520   inline bool HasExternalUnsignedShortElements();
1521   inline bool HasExternalIntElements();
1522   inline bool HasExternalUnsignedIntElements();
1523   inline bool HasExternalFloatElements();
1524   inline bool HasExternalDoubleElements();
1525   bool HasFastArgumentsElements();
1526   bool HasDictionaryArgumentsElements();
1527   inline SeededNumberDictionary* element_dictionary();  // Gets slow elements.
1528 
1529   inline void set_map_and_elements(
1530       Map* map,
1531       FixedArrayBase* value,
1532       WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1533 
1534   // Requires: HasFastElements().
1535   MUST_USE_RESULT inline MaybeObject* EnsureWritableFastElements();
1536 
1537   // Collects elements starting at index 0.
1538   // Undefined values are placed after non-undefined values.
1539   // Returns the number of non-undefined values.
1540   MUST_USE_RESULT MaybeObject* PrepareElementsForSort(uint32_t limit);
1541   // As PrepareElementsForSort, but only on objects where elements is
1542   // a dictionary, and it will stay a dictionary.
1543   MUST_USE_RESULT MaybeObject* PrepareSlowElementsForSort(uint32_t limit);
1544 
1545   MUST_USE_RESULT MaybeObject* GetPropertyWithCallback(Object* receiver,
1546                                                        Object* structure,
1547                                                        String* name);
1548 
1549   // Can cause GC.
1550   MUST_USE_RESULT MaybeObject* SetPropertyForResult(LookupResult* result,
1551                                            String* key,
1552                                            Object* value,
1553                                            PropertyAttributes attributes,
1554                                            StrictModeFlag strict_mode);
1555   MUST_USE_RESULT MaybeObject* SetPropertyWithFailedAccessCheck(
1556       LookupResult* result,
1557       String* name,
1558       Object* value,
1559       bool check_prototype,
1560       StrictModeFlag strict_mode);
1561   MUST_USE_RESULT MaybeObject* SetPropertyWithCallback(
1562       Object* structure,
1563       String* name,
1564       Object* value,
1565       JSObject* holder,
1566       StrictModeFlag strict_mode);
1567   MUST_USE_RESULT MaybeObject* SetPropertyWithInterceptor(
1568       String* name,
1569       Object* value,
1570       PropertyAttributes attributes,
1571       StrictModeFlag strict_mode);
1572   MUST_USE_RESULT MaybeObject* SetPropertyPostInterceptor(
1573       String* name,
1574       Object* value,
1575       PropertyAttributes attributes,
1576       StrictModeFlag strict_mode);
1577 
1578   static Handle<Object> SetLocalPropertyIgnoreAttributes(
1579       Handle<JSObject> object,
1580       Handle<String> key,
1581       Handle<Object> value,
1582       PropertyAttributes attributes);
1583 
1584   // Can cause GC.
1585   MUST_USE_RESULT MaybeObject* SetLocalPropertyIgnoreAttributes(
1586       String* key,
1587       Object* value,
1588       PropertyAttributes attributes);
1589 
1590   // Retrieve a value in a normalized object given a lookup result.
1591   // Handles the special representation of JS global objects.
1592   Object* GetNormalizedProperty(LookupResult* result);
1593 
1594   // Sets the property value in a normalized object given a lookup result.
1595   // Handles the special representation of JS global objects.
1596   Object* SetNormalizedProperty(LookupResult* result, Object* value);
1597 
1598   // Sets the property value in a normalized object given (key, value, details).
1599   // Handles the special representation of JS global objects.
1600   static Handle<Object> SetNormalizedProperty(Handle<JSObject> object,
1601                                               Handle<String> key,
1602                                               Handle<Object> value,
1603                                               PropertyDetails details);
1604 
1605   MUST_USE_RESULT MaybeObject* SetNormalizedProperty(String* name,
1606                                                      Object* value,
1607                                                      PropertyDetails details);
1608 
1609   // Deletes the named property in a normalized object.
1610   MUST_USE_RESULT MaybeObject* DeleteNormalizedProperty(String* name,
1611                                                         DeleteMode mode);
1612 
1613   // Retrieve interceptors.
1614   InterceptorInfo* GetNamedInterceptor();
1615   InterceptorInfo* GetIndexedInterceptor();
1616 
1617   // Used from JSReceiver.
1618   PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1619                                                          String* name,
1620                                                          bool continue_search);
1621   PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1622                                                          String* name,
1623                                                          bool continue_search);
1624   PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1625       Object* receiver,
1626       LookupResult* result,
1627       String* name,
1628       bool continue_search);
1629 
1630   static void DefineAccessor(Handle<JSObject> object,
1631                              Handle<String> name,
1632                              Handle<Object> getter,
1633                              Handle<Object> setter,
1634                              PropertyAttributes attributes);
1635   MUST_USE_RESULT MaybeObject* DefineAccessor(String* name,
1636                                               Object* getter,
1637                                               Object* setter,
1638                                               PropertyAttributes attributes);
1639   Object* LookupAccessor(String* name, AccessorComponent component);
1640 
1641   MUST_USE_RESULT MaybeObject* DefineAccessor(AccessorInfo* info);
1642 
1643   // Used from Object::GetProperty().
1644   MUST_USE_RESULT MaybeObject* GetPropertyWithFailedAccessCheck(
1645       Object* receiver,
1646       LookupResult* result,
1647       String* name,
1648       PropertyAttributes* attributes);
1649   MUST_USE_RESULT MaybeObject* GetPropertyWithInterceptor(
1650       JSReceiver* receiver,
1651       String* name,
1652       PropertyAttributes* attributes);
1653   MUST_USE_RESULT MaybeObject* GetPropertyPostInterceptor(
1654       JSReceiver* receiver,
1655       String* name,
1656       PropertyAttributes* attributes);
1657   MUST_USE_RESULT MaybeObject* GetLocalPropertyPostInterceptor(
1658       JSReceiver* receiver,
1659       String* name,
1660       PropertyAttributes* attributes);
1661 
1662   // Returns true if this is an instance of an api function and has
1663   // been modified since it was created.  May give false positives.
1664   bool IsDirty();
1665 
1666   // If the receiver is a JSGlobalProxy this method will return its prototype,
1667   // otherwise the result is the receiver itself.
1668   inline Object* BypassGlobalProxy();
1669 
1670   // Accessors for hidden properties object.
1671   //
1672   // Hidden properties are not local properties of the object itself.
1673   // Instead they are stored in an auxiliary structure kept as a local
1674   // property with a special name Heap::hidden_symbol(). But if the
1675   // receiver is a JSGlobalProxy then the auxiliary object is a property
1676   // of its prototype, and if it's a detached proxy, then you can't have
1677   // hidden properties.
1678 
1679   // Sets a hidden property on this object. Returns this object if successful,
1680   // undefined if called on a detached proxy.
1681   static Handle<Object> SetHiddenProperty(Handle<JSObject> obj,
1682                                           Handle<String> key,
1683                                           Handle<Object> value);
1684   // Returns a failure if a GC is required.
1685   MUST_USE_RESULT MaybeObject* SetHiddenProperty(String* key, Object* value);
1686   // Gets the value of a hidden property with the given key. Returns undefined
1687   // if the property doesn't exist (or if called on a detached proxy),
1688   // otherwise returns the value set for the key.
1689   Object* GetHiddenProperty(String* key);
1690   // Deletes a hidden property. Deleting a non-existing property is
1691   // considered successful.
1692   void DeleteHiddenProperty(String* key);
1693   // Returns true if the object has a property with the hidden symbol as name.
1694   bool HasHiddenProperties();
1695 
1696   static int GetIdentityHash(Handle<JSObject> obj);
1697   MUST_USE_RESULT MaybeObject* GetIdentityHash(CreationFlag flag);
1698   MUST_USE_RESULT MaybeObject* SetIdentityHash(Object* hash, CreationFlag flag);
1699 
1700   static Handle<Object> DeleteProperty(Handle<JSObject> obj,
1701                                        Handle<String> name);
1702   MUST_USE_RESULT MaybeObject* DeleteProperty(String* name, DeleteMode mode);
1703 
1704   static Handle<Object> DeleteElement(Handle<JSObject> obj, uint32_t index);
1705   MUST_USE_RESULT MaybeObject* DeleteElement(uint32_t index, DeleteMode mode);
1706 
1707   inline void ValidateSmiOnlyElements();
1708 
1709   // Makes sure that this object can contain HeapObject as elements.
1710   MUST_USE_RESULT inline MaybeObject* EnsureCanContainHeapObjectElements();
1711 
1712   // Makes sure that this object can contain the specified elements.
1713   MUST_USE_RESULT inline MaybeObject* EnsureCanContainElements(
1714       Object** elements,
1715       uint32_t count,
1716       EnsureElementsMode mode);
1717   MUST_USE_RESULT inline MaybeObject* EnsureCanContainElements(
1718       FixedArrayBase* elements,
1719       EnsureElementsMode mode);
1720   MUST_USE_RESULT MaybeObject* EnsureCanContainElements(
1721       Arguments* arguments,
1722       uint32_t first_arg,
1723       uint32_t arg_count,
1724       EnsureElementsMode mode);
1725 
1726   // Do we want to keep the elements in fast case when increasing the
1727   // capacity?
1728   bool ShouldConvertToSlowElements(int new_capacity);
1729   // Returns true if the backing storage for the slow-case elements of
1730   // this object takes up nearly as much space as a fast-case backing
1731   // storage would.  In that case the JSObject should have fast
1732   // elements.
1733   bool ShouldConvertToFastElements();
1734   // Returns true if the elements of JSObject contains only values that can be
1735   // represented in a FixedDoubleArray and has at least one value that can only
1736   // be represented as a double and not a Smi.
1737   bool ShouldConvertToFastDoubleElements(bool* has_smi_only_elements);
1738 
1739   // Tells whether the index'th element is present.
1740   bool HasElementWithReceiver(JSReceiver* receiver, uint32_t index);
1741 
1742   // Computes the new capacity when expanding the elements of a JSObject.
NewElementsCapacity(int old_capacity)1743   static int NewElementsCapacity(int old_capacity) {
1744     // (old_capacity + 50%) + 16
1745     return old_capacity + (old_capacity >> 1) + 16;
1746   }
1747 
1748   // Tells whether the index'th element is present and how it is stored.
1749   enum LocalElementType {
1750     // There is no element with given index.
1751     UNDEFINED_ELEMENT,
1752 
1753     // Element with given index is handled by interceptor.
1754     INTERCEPTED_ELEMENT,
1755 
1756     // Element with given index is character in string.
1757     STRING_CHARACTER_ELEMENT,
1758 
1759     // Element with given index is stored in fast backing store.
1760     FAST_ELEMENT,
1761 
1762     // Element with given index is stored in slow backing store.
1763     DICTIONARY_ELEMENT
1764   };
1765 
1766   LocalElementType HasLocalElement(uint32_t index);
1767 
1768   bool HasElementWithInterceptor(JSReceiver* receiver, uint32_t index);
1769 
1770   MUST_USE_RESULT MaybeObject* SetFastElement(uint32_t index,
1771                                               Object* value,
1772                                               StrictModeFlag strict_mode,
1773                                               bool check_prototype);
1774 
1775   MUST_USE_RESULT MaybeObject* SetDictionaryElement(
1776       uint32_t index,
1777       Object* value,
1778       PropertyAttributes attributes,
1779       StrictModeFlag strict_mode,
1780       bool check_prototype,
1781       SetPropertyMode set_mode = SET_PROPERTY);
1782 
1783   MUST_USE_RESULT MaybeObject* SetFastDoubleElement(
1784       uint32_t index,
1785       Object* value,
1786       StrictModeFlag strict_mode,
1787       bool check_prototype = true);
1788 
1789   static Handle<Object> SetOwnElement(Handle<JSObject> object,
1790                                       uint32_t index,
1791                                       Handle<Object> value,
1792                                       StrictModeFlag strict_mode);
1793 
1794   // Empty handle is returned if the element cannot be set to the given value.
1795   static MUST_USE_RESULT Handle<Object> SetElement(
1796       Handle<JSObject> object,
1797       uint32_t index,
1798       Handle<Object> value,
1799       PropertyAttributes attr,
1800       StrictModeFlag strict_mode,
1801       SetPropertyMode set_mode = SET_PROPERTY);
1802 
1803   // A Failure object is returned if GC is needed.
1804   MUST_USE_RESULT MaybeObject* SetElement(
1805       uint32_t index,
1806       Object* value,
1807       PropertyAttributes attributes,
1808       StrictModeFlag strict_mode,
1809       bool check_prototype = true,
1810       SetPropertyMode set_mode = SET_PROPERTY);
1811 
1812   // Returns the index'th element.
1813   // The undefined object if index is out of bounds.
1814   MUST_USE_RESULT MaybeObject* GetElementWithInterceptor(Object* receiver,
1815                                                          uint32_t index);
1816 
1817   enum SetFastElementsCapacityMode {
1818     kAllowSmiOnlyElements,
1819     kForceSmiOnlyElements,
1820     kDontAllowSmiOnlyElements
1821   };
1822 
1823   // Replace the elements' backing store with fast elements of the given
1824   // capacity.  Update the length for JSArrays.  Returns the new backing
1825   // store.
1826   MUST_USE_RESULT MaybeObject* SetFastElementsCapacityAndLength(
1827       int capacity,
1828       int length,
1829       SetFastElementsCapacityMode set_capacity_mode);
1830   MUST_USE_RESULT MaybeObject* SetFastDoubleElementsCapacityAndLength(
1831       int capacity,
1832       int length);
1833 
1834   // Lookup interceptors are used for handling properties controlled by host
1835   // objects.
1836   inline bool HasNamedInterceptor();
1837   inline bool HasIndexedInterceptor();
1838 
1839   // Support functions for v8 api (needed for correct interceptor behavior).
1840   bool HasRealNamedProperty(String* key);
1841   bool HasRealElementProperty(uint32_t index);
1842   bool HasRealNamedCallbackProperty(String* key);
1843 
1844   // Get the header size for a JSObject.  Used to compute the index of
1845   // internal fields as well as the number of internal fields.
1846   inline int GetHeaderSize();
1847 
1848   inline int GetInternalFieldCount();
1849   inline int GetInternalFieldOffset(int index);
1850   inline Object* GetInternalField(int index);
1851   inline void SetInternalField(int index, Object* value);
1852   inline void SetInternalField(int index, Smi* value);
1853 
1854   // The following lookup functions skip interceptors.
1855   void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1856   void LookupRealNamedProperty(String* name, LookupResult* result);
1857   void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1858   void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1859   MUST_USE_RESULT MaybeObject* SetElementWithCallbackSetterInPrototypes(
1860       uint32_t index, Object* value, bool* found, StrictModeFlag strict_mode);
1861   void LookupCallback(String* name, LookupResult* result);
1862 
1863   // Returns the number of properties on this object filtering out properties
1864   // with the specified attributes (ignoring interceptors).
1865   int NumberOfLocalProperties(PropertyAttributes filter = NONE);
1866   // Fill in details for properties into storage starting at the specified
1867   // index.
1868   void GetLocalPropertyNames(FixedArray* storage, int index);
1869 
1870   // Returns the number of properties on this object filtering out properties
1871   // with the specified attributes (ignoring interceptors).
1872   int NumberOfLocalElements(PropertyAttributes filter);
1873   // Returns the number of enumerable elements (ignoring interceptors).
1874   int NumberOfEnumElements();
1875   // Returns the number of elements on this object filtering out elements
1876   // with the specified attributes (ignoring interceptors).
1877   int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1878   // Count and fill in the enumerable elements into storage.
1879   // (storage->length() == NumberOfEnumElements()).
1880   // If storage is NULL, will count the elements without adding
1881   // them to any storage.
1882   // Returns the number of enumerable elements.
1883   int GetEnumElementKeys(FixedArray* storage);
1884 
1885   // Add a property to a fast-case object using a map transition to
1886   // new_map.
1887   MUST_USE_RESULT MaybeObject* AddFastPropertyUsingMap(Map* new_map,
1888                                                        String* name,
1889                                                        Object* value);
1890 
1891   // Add a constant function property to a fast-case object.
1892   // This leaves a CONSTANT_TRANSITION in the old map, and
1893   // if it is called on a second object with this map, a
1894   // normal property is added instead, with a map transition.
1895   // This avoids the creation of many maps with the same constant
1896   // function, all orphaned.
1897   MUST_USE_RESULT MaybeObject* AddConstantFunctionProperty(
1898       String* name,
1899       JSFunction* function,
1900       PropertyAttributes attributes);
1901 
1902   MUST_USE_RESULT MaybeObject* ReplaceSlowProperty(
1903       String* name,
1904       Object* value,
1905       PropertyAttributes attributes);
1906 
1907   // Returns a new map with all transitions dropped from the object's current
1908   // map and the ElementsKind set.
1909   static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
1910                                               ElementsKind to_kind);
1911   inline MUST_USE_RESULT MaybeObject* GetElementsTransitionMap(
1912       Isolate* isolate,
1913       ElementsKind elements_kind);
1914   MUST_USE_RESULT MaybeObject* GetElementsTransitionMapSlow(
1915       ElementsKind elements_kind);
1916 
1917   static Handle<Object> TransitionElementsKind(Handle<JSObject> object,
1918                                                ElementsKind to_kind);
1919 
1920   MUST_USE_RESULT MaybeObject* TransitionElementsKind(ElementsKind to_kind);
1921 
1922   // Converts a descriptor of any other type to a real field,
1923   // backed by the properties array.  Descriptors of visible
1924   // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1925   // Converts the descriptor on the original object's map to a
1926   // map transition, and the the new field is on the object's new map.
1927   MUST_USE_RESULT MaybeObject* ConvertDescriptorToFieldAndMapTransition(
1928       String* name,
1929       Object* new_value,
1930       PropertyAttributes attributes);
1931 
1932   // Converts a descriptor of any other type to a real field,
1933   // backed by the properties array.  Descriptors of visible
1934   // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1935   MUST_USE_RESULT MaybeObject* ConvertDescriptorToField(
1936       String* name,
1937       Object* new_value,
1938       PropertyAttributes attributes);
1939 
1940   // Add a property to a fast-case object.
1941   MUST_USE_RESULT MaybeObject* AddFastProperty(String* name,
1942                                                Object* value,
1943                                                PropertyAttributes attributes);
1944 
1945   // Add a property to a slow-case object.
1946   MUST_USE_RESULT MaybeObject* AddSlowProperty(String* name,
1947                                                Object* value,
1948                                                PropertyAttributes attributes);
1949 
1950   // Add a property to an object.
1951   MUST_USE_RESULT MaybeObject* AddProperty(String* name,
1952                                            Object* value,
1953                                            PropertyAttributes attributes,
1954                                            StrictModeFlag strict_mode);
1955 
1956   // Convert the object to use the canonical dictionary
1957   // representation. If the object is expected to have additional properties
1958   // added this number can be indicated to have the backing store allocated to
1959   // an initial capacity for holding these properties.
1960   static void NormalizeProperties(Handle<JSObject> object,
1961                                   PropertyNormalizationMode mode,
1962                                   int expected_additional_properties);
1963 
1964   MUST_USE_RESULT MaybeObject* NormalizeProperties(
1965       PropertyNormalizationMode mode,
1966       int expected_additional_properties);
1967 
1968   // Convert and update the elements backing store to be a
1969   // SeededNumberDictionary dictionary.  Returns the backing after conversion.
1970   static Handle<SeededNumberDictionary> NormalizeElements(
1971       Handle<JSObject> object);
1972 
1973   MUST_USE_RESULT MaybeObject* NormalizeElements();
1974 
1975   static void UpdateMapCodeCache(Handle<JSObject> object,
1976                                  Handle<String> name,
1977                                  Handle<Code> code);
1978 
1979   MUST_USE_RESULT MaybeObject* UpdateMapCodeCache(String* name, Code* code);
1980 
1981   // Transform slow named properties to fast variants.
1982   // Returns failure if allocation failed.
1983   static void TransformToFastProperties(Handle<JSObject> object,
1984                                         int unused_property_fields);
1985 
1986   MUST_USE_RESULT MaybeObject* TransformToFastProperties(
1987       int unused_property_fields);
1988 
1989   // Access fast-case object properties at index.
1990   inline Object* FastPropertyAt(int index);
1991   inline Object* FastPropertyAtPut(int index, Object* value);
1992 
1993   // Access to in object properties.
1994   inline int GetInObjectPropertyOffset(int index);
1995   inline Object* InObjectPropertyAt(int index);
1996   inline Object* InObjectPropertyAtPut(int index,
1997                                        Object* value,
1998                                        WriteBarrierMode mode
1999                                        = UPDATE_WRITE_BARRIER);
2000 
2001   // Initializes the body after properties slot, properties slot is
2002   // initialized by set_properties.  Fill the pre-allocated fields with
2003   // pre_allocated_value and the rest with filler_value.
2004   // Note: this call does not update write barrier, the caller is responsible
2005   // to ensure that |filler_value| can be collected without WB here.
2006   inline void InitializeBody(Map* map,
2007                              Object* pre_allocated_value,
2008                              Object* filler_value);
2009 
2010   // Check whether this object references another object
2011   bool ReferencesObject(Object* obj);
2012 
2013   // Casting.
2014   static inline JSObject* cast(Object* obj);
2015 
2016   // Disalow further properties to be added to the object.
2017   static Handle<Object> PreventExtensions(Handle<JSObject> object);
2018   MUST_USE_RESULT MaybeObject* PreventExtensions();
2019 
2020 
2021   // Dispatched behavior.
2022   void JSObjectShortPrint(StringStream* accumulator);
2023 #ifdef OBJECT_PRINT
JSObjectPrint()2024   inline void JSObjectPrint() {
2025     JSObjectPrint(stdout);
2026   }
2027   void JSObjectPrint(FILE* out);
2028 #endif
2029 #ifdef DEBUG
2030   void JSObjectVerify();
2031 #endif
2032 #ifdef OBJECT_PRINT
PrintProperties()2033   inline void PrintProperties() {
2034     PrintProperties(stdout);
2035   }
2036   void PrintProperties(FILE* out);
2037 
PrintElements()2038   inline void PrintElements() {
2039     PrintElements(stdout);
2040   }
2041   void PrintElements(FILE* out);
2042 #endif
2043 
2044   void PrintElementsTransition(
2045       FILE* file, ElementsKind from_kind, FixedArrayBase* from_elements,
2046       ElementsKind to_kind, FixedArrayBase* to_elements);
2047 
2048 #ifdef DEBUG
2049   // Structure for collecting spill information about JSObjects.
2050   class SpillInformation {
2051    public:
2052     void Clear();
2053     void Print();
2054     int number_of_objects_;
2055     int number_of_objects_with_fast_properties_;
2056     int number_of_objects_with_fast_elements_;
2057     int number_of_fast_used_fields_;
2058     int number_of_fast_unused_fields_;
2059     int number_of_slow_used_properties_;
2060     int number_of_slow_unused_properties_;
2061     int number_of_fast_used_elements_;
2062     int number_of_fast_unused_elements_;
2063     int number_of_slow_used_elements_;
2064     int number_of_slow_unused_elements_;
2065   };
2066 
2067   void IncrementSpillStatistics(SpillInformation* info);
2068 #endif
2069   Object* SlowReverseLookup(Object* value);
2070 
2071   // Maximal number of fast properties for the JSObject. Used to
2072   // restrict the number of map transitions to avoid an explosion in
2073   // the number of maps for objects used as dictionaries.
2074   inline int MaxFastProperties();
2075 
2076   // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
2077   // Also maximal value of JSArray's length property.
2078   static const uint32_t kMaxElementCount = 0xffffffffu;
2079 
2080   // Constants for heuristics controlling conversion of fast elements
2081   // to slow elements.
2082 
2083   // Maximal gap that can be introduced by adding an element beyond
2084   // the current elements length.
2085   static const uint32_t kMaxGap = 1024;
2086 
2087   // Maximal length of fast elements array that won't be checked for
2088   // being dense enough on expansion.
2089   static const int kMaxUncheckedFastElementsLength = 5000;
2090 
2091   // Same as above but for old arrays. This limit is more strict. We
2092   // don't want to be wasteful with long lived objects.
2093   static const int kMaxUncheckedOldFastElementsLength = 500;
2094 
2095   static const int kInitialMaxFastElementArray = 100000;
2096   static const int kMaxFastProperties = 12;
2097   static const int kMaxInstanceSize = 255 * kPointerSize;
2098   // When extending the backing storage for property values, we increase
2099   // its size by more than the 1 entry necessary, so sequentially adding fields
2100   // to the same object requires fewer allocations and copies.
2101   static const int kFieldsAdded = 3;
2102 
2103   // Layout description.
2104   static const int kPropertiesOffset = HeapObject::kHeaderSize;
2105   static const int kElementsOffset = kPropertiesOffset + kPointerSize;
2106   static const int kHeaderSize = kElementsOffset + kPointerSize;
2107 
2108   STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
2109 
2110   class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
2111    public:
2112     static inline int SizeOf(Map* map, HeapObject* object);
2113   };
2114 
2115  private:
2116   friend class DictionaryElementsAccessor;
2117 
2118   MUST_USE_RESULT MaybeObject* GetElementWithCallback(Object* receiver,
2119                                                       Object* structure,
2120                                                       uint32_t index,
2121                                                       Object* holder);
2122   MUST_USE_RESULT MaybeObject* SetElementWithCallback(
2123       Object* structure,
2124       uint32_t index,
2125       Object* value,
2126       JSObject* holder,
2127       StrictModeFlag strict_mode);
2128   MUST_USE_RESULT MaybeObject* SetElementWithInterceptor(
2129       uint32_t index,
2130       Object* value,
2131       PropertyAttributes attributes,
2132       StrictModeFlag strict_mode,
2133       bool check_prototype,
2134       SetPropertyMode set_mode);
2135   MUST_USE_RESULT MaybeObject* SetElementWithoutInterceptor(
2136       uint32_t index,
2137       Object* value,
2138       PropertyAttributes attributes,
2139       StrictModeFlag strict_mode,
2140       bool check_prototype,
2141       SetPropertyMode set_mode);
2142 
2143   // Searches the prototype chain for a callback setter and sets the property
2144   // with the setter if it finds one. The '*found' flag indicates whether
2145   // a setter was found or not.
2146   // This function can cause GC and can return a failure result with
2147   // '*found==true'.
2148   MUST_USE_RESULT MaybeObject* SetPropertyWithCallbackSetterInPrototypes(
2149       String* name,
2150       Object* value,
2151       PropertyAttributes attributes,
2152       bool* found,
2153       StrictModeFlag strict_mode);
2154 
2155   MUST_USE_RESULT MaybeObject* DeletePropertyPostInterceptor(String* name,
2156                                                              DeleteMode mode);
2157   MUST_USE_RESULT MaybeObject* DeletePropertyWithInterceptor(String* name);
2158 
2159   MUST_USE_RESULT MaybeObject* DeleteElementWithInterceptor(uint32_t index);
2160 
2161   MUST_USE_RESULT MaybeObject* DeleteFastElement(uint32_t index);
2162   MUST_USE_RESULT MaybeObject* DeleteDictionaryElement(uint32_t index,
2163                                                        DeleteMode mode);
2164 
2165   bool ReferencesObjectFromElements(FixedArray* elements,
2166                                     ElementsKind kind,
2167                                     Object* object);
2168 
2169   // Returns true if most of the elements backing storage is used.
2170   bool HasDenseElements();
2171 
2172   // Gets the current elements capacity and the number of used elements.
2173   void GetElementsCapacityAndUsage(int* capacity, int* used);
2174 
2175   bool CanSetCallback(String* name);
2176   MUST_USE_RESULT MaybeObject* SetElementCallback(
2177       uint32_t index,
2178       Object* structure,
2179       PropertyAttributes attributes);
2180   MUST_USE_RESULT MaybeObject* SetPropertyCallback(
2181       String* name,
2182       Object* structure,
2183       PropertyAttributes attributes);
2184   MUST_USE_RESULT MaybeObject* DefineElementAccessor(
2185       uint32_t index,
2186       Object* getter,
2187       Object* setter,
2188       PropertyAttributes attributes);
2189   MUST_USE_RESULT MaybeObject* DefinePropertyAccessor(
2190       String* name,
2191       Object* getter,
2192       Object* setter,
2193       PropertyAttributes attributes);
2194   void LookupInDescriptor(String* name, LookupResult* result);
2195 
2196   // Returns the hidden properties backing store object, currently
2197   // a StringDictionary, stored on this object.
2198   // If no hidden properties object has been put on this object,
2199   // return undefined, unless create_if_absent is true, in which case
2200   // a new dictionary is created, added to this object, and returned.
2201   MUST_USE_RESULT MaybeObject* GetHiddenPropertiesDictionary(
2202       bool create_if_absent);
2203   // Updates the existing hidden properties dictionary.
2204   MUST_USE_RESULT MaybeObject* SetHiddenPropertiesDictionary(
2205       StringDictionary* dictionary);
2206 
2207   DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
2208 };
2209 
2210 
2211 // Common superclass for FixedArrays that allow implementations to share
2212 // common accessors and some code paths.
2213 class FixedArrayBase: public HeapObject {
2214  public:
2215   // [length]: length of the array.
2216   inline int length();
2217   inline void set_length(int value);
2218 
2219   inline static FixedArrayBase* cast(Object* object);
2220 
2221   // Layout description.
2222   // Length is smi tagged when it is stored.
2223   static const int kLengthOffset = HeapObject::kHeaderSize;
2224   static const int kHeaderSize = kLengthOffset + kPointerSize;
2225 };
2226 
2227 
2228 class FixedDoubleArray;
2229 
2230 // FixedArray describes fixed-sized arrays with element type Object*.
2231 class FixedArray: public FixedArrayBase {
2232  public:
2233   // Setter and getter for elements.
2234   inline Object* get(int index);
2235   // Setter that uses write barrier.
2236   inline void set(int index, Object* value);
2237   inline bool is_the_hole(int index);
2238 
2239   // Setter that doesn't need write barrier).
2240   inline void set(int index, Smi* value);
2241   // Setter with explicit barrier mode.
2242   inline void set(int index, Object* value, WriteBarrierMode mode);
2243 
2244   // Setters for frequently used oddballs located in old space.
2245   inline void set_undefined(int index);
2246   // TODO(isolates): duplicate.
2247   inline void set_undefined(Heap* heap, int index);
2248   inline void set_null(int index);
2249   // TODO(isolates): duplicate.
2250   inline void set_null(Heap* heap, int index);
2251   inline void set_the_hole(int index);
2252 
2253   // Setters with less debug checks for the GC to use.
2254   inline void set_unchecked(int index, Smi* value);
2255   inline void set_null_unchecked(Heap* heap, int index);
2256   inline void set_unchecked(Heap* heap, int index, Object* value,
2257                             WriteBarrierMode mode);
2258 
2259   // Gives access to raw memory which stores the array's data.
2260   inline Object** data_start();
2261 
2262   inline Object** GetFirstElementAddress();
2263   inline bool ContainsOnlySmisOrHoles();
2264 
2265   // Copy operations.
2266   MUST_USE_RESULT inline MaybeObject* Copy();
2267   MUST_USE_RESULT MaybeObject* CopySize(int new_length);
2268 
2269   // Add the elements of a JSArray to this FixedArray.
2270   MUST_USE_RESULT MaybeObject* AddKeysFromJSArray(JSArray* array);
2271 
2272   // Compute the union of this and other.
2273   MUST_USE_RESULT MaybeObject* UnionOfKeys(FixedArray* other);
2274 
2275   // Copy a sub array from the receiver to dest.
2276   void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
2277 
2278   // Garbage collection support.
SizeFor(int length)2279   static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
2280 
2281   // Code Generation support.
OffsetOfElementAt(int index)2282   static int OffsetOfElementAt(int index) { return SizeFor(index); }
2283 
2284   // Casting.
2285   static inline FixedArray* cast(Object* obj);
2286 
2287   // Maximal allowed size, in bytes, of a single FixedArray.
2288   // Prevents overflowing size computations, as well as extreme memory
2289   // consumption.
2290   static const int kMaxSize = 128 * MB * kPointerSize;
2291   // Maximally allowed length of a FixedArray.
2292   static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
2293 
2294   // Dispatched behavior.
2295 #ifdef OBJECT_PRINT
FixedArrayPrint()2296   inline void FixedArrayPrint() {
2297     FixedArrayPrint(stdout);
2298   }
2299   void FixedArrayPrint(FILE* out);
2300 #endif
2301 #ifdef DEBUG
2302   void FixedArrayVerify();
2303   // Checks if two FixedArrays have identical contents.
2304   bool IsEqualTo(FixedArray* other);
2305 #endif
2306 
2307   // Swap two elements in a pair of arrays.  If this array and the
2308   // numbers array are the same object, the elements are only swapped
2309   // once.
2310   void SwapPairs(FixedArray* numbers, int i, int j);
2311 
2312   // Sort prefix of this array and the numbers array as pairs wrt. the
2313   // numbers.  If the numbers array and the this array are the same
2314   // object, the prefix of this array is sorted.
2315   void SortPairs(FixedArray* numbers, uint32_t len);
2316 
2317   class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
2318    public:
SizeOf(Map * map,HeapObject * object)2319     static inline int SizeOf(Map* map, HeapObject* object) {
2320       return SizeFor(reinterpret_cast<FixedArray*>(object)->length());
2321     }
2322   };
2323 
2324  protected:
2325   // Set operation on FixedArray without using write barriers. Can
2326   // only be used for storing old space objects or smis.
2327   static inline void NoWriteBarrierSet(FixedArray* array,
2328                                        int index,
2329                                        Object* value);
2330 
2331   // Set operation on FixedArray without incremental write barrier. Can
2332   // only be used if the object is guaranteed to be white (whiteness witness
2333   // is present).
2334   static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
2335                                                   int index,
2336                                                   Object* value);
2337 
2338  private:
2339   DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
2340 };
2341 
2342 
2343 // FixedDoubleArray describes fixed-sized arrays with element type double.
2344 class FixedDoubleArray: public FixedArrayBase {
2345  public:
2346   // Setter and getter for elements.
2347   inline double get_scalar(int index);
2348   inline int64_t get_representation(int index);
2349   MUST_USE_RESULT inline MaybeObject* get(int index);
2350   inline void set(int index, double value);
2351   inline void set_the_hole(int index);
2352 
2353   // Checking for the hole.
2354   inline bool is_the_hole(int index);
2355 
2356   // Copy operations
2357   MUST_USE_RESULT inline MaybeObject* Copy();
2358 
2359   // Garbage collection support.
SizeFor(int length)2360   inline static int SizeFor(int length) {
2361     return kHeaderSize + length * kDoubleSize;
2362   }
2363 
2364   // Code Generation support.
OffsetOfElementAt(int index)2365   static int OffsetOfElementAt(int index) { return SizeFor(index); }
2366 
2367   inline static bool is_the_hole_nan(double value);
2368   inline static double hole_nan_as_double();
2369   inline static double canonical_not_the_hole_nan_as_double();
2370 
2371   // Casting.
2372   static inline FixedDoubleArray* cast(Object* obj);
2373 
2374   // Maximal allowed size, in bytes, of a single FixedDoubleArray.
2375   // Prevents overflowing size computations, as well as extreme memory
2376   // consumption.
2377   static const int kMaxSize = 512 * MB;
2378   // Maximally allowed length of a FixedArray.
2379   static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
2380 
2381   // Dispatched behavior.
2382 #ifdef OBJECT_PRINT
FixedDoubleArrayPrint()2383   inline void FixedDoubleArrayPrint() {
2384     FixedDoubleArrayPrint(stdout);
2385   }
2386   void FixedDoubleArrayPrint(FILE* out);
2387 #endif
2388 
2389 #ifdef DEBUG
2390   void FixedDoubleArrayVerify();
2391 #endif
2392 
2393  private:
2394   DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
2395 };
2396 
2397 
2398 class IncrementalMarking;
2399 
2400 
2401 // DescriptorArrays are fixed arrays used to hold instance descriptors.
2402 // The format of the these objects is:
2403 // TODO(1399): It should be possible to make room for bit_field3 in the map
2404 //             without overloading the instance descriptors field in the map
2405 //             (and storing it in the DescriptorArray when the map has one).
2406 //   [0]: storage for bit_field3 for Map owning this object (Smi)
2407 //   [1]: point to a fixed array with (value, detail) pairs.
2408 //   [2]: next enumeration index (Smi), or pointer to small fixed array:
2409 //          [0]: next enumeration index (Smi)
2410 //          [1]: pointer to fixed array with enum cache
2411 //   [3]: first key
2412 //   [length() - 1]: last key
2413 //
2414 class DescriptorArray: public FixedArray {
2415  public:
2416   // Returns true for both shared empty_descriptor_array and for smis, which the
2417   // map uses to encode additional bit fields when the descriptor array is not
2418   // yet used.
2419   inline bool IsEmpty();
2420 
2421   // Returns the number of descriptors in the array.
number_of_descriptors()2422   int number_of_descriptors() {
2423     ASSERT(length() > kFirstIndex || IsEmpty());
2424     int len = length();
2425     return len <= kFirstIndex ? 0 : len - kFirstIndex;
2426   }
2427 
NextEnumerationIndex()2428   int NextEnumerationIndex() {
2429     if (IsEmpty()) return PropertyDetails::kInitialIndex;
2430     Object* obj = get(kEnumerationIndexIndex);
2431     if (obj->IsSmi()) {
2432       return Smi::cast(obj)->value();
2433     } else {
2434       Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
2435       return Smi::cast(index)->value();
2436     }
2437   }
2438 
2439   // Set next enumeration index and flush any enum cache.
SetNextEnumerationIndex(int value)2440   void SetNextEnumerationIndex(int value) {
2441     if (!IsEmpty()) {
2442       set(kEnumerationIndexIndex, Smi::FromInt(value));
2443     }
2444   }
HasEnumCache()2445   bool HasEnumCache() {
2446     return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
2447   }
2448 
GetEnumCache()2449   Object* GetEnumCache() {
2450     ASSERT(HasEnumCache());
2451     FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
2452     return bridge->get(kEnumCacheBridgeCacheIndex);
2453   }
2454 
2455   // TODO(1399): It should be possible to make room for bit_field3 in the map
2456   //             without overloading the instance descriptors field in the map
2457   //             (and storing it in the DescriptorArray when the map has one).
2458   inline int bit_field3_storage();
2459   inline void set_bit_field3_storage(int value);
2460 
2461   // Initialize or change the enum cache,
2462   // using the supplied storage for the small "bridge".
2463   void SetEnumCache(FixedArray* bridge_storage,
2464                     FixedArray* new_cache,
2465                     Object* new_index_cache);
2466 
2467   // Accessors for fetching instance descriptor at descriptor number.
2468   inline String* GetKey(int descriptor_number);
2469   inline Object* GetValue(int descriptor_number);
2470   inline Smi* GetDetails(int descriptor_number);
2471   inline PropertyType GetType(int descriptor_number);
2472   inline int GetFieldIndex(int descriptor_number);
2473   inline JSFunction* GetConstantFunction(int descriptor_number);
2474   inline Object* GetCallbacksObject(int descriptor_number);
2475   inline AccessorDescriptor* GetCallbacks(int descriptor_number);
2476   inline bool IsProperty(int descriptor_number);
2477   inline bool IsTransitionOnly(int descriptor_number);
2478   inline bool IsNullDescriptor(int descriptor_number);
2479   inline bool IsDontEnum(int descriptor_number);
2480 
2481   class WhitenessWitness {
2482    public:
2483     inline explicit WhitenessWitness(DescriptorArray* array);
2484     inline ~WhitenessWitness();
2485 
2486    private:
2487     IncrementalMarking* marking_;
2488   };
2489 
2490   // Accessor for complete descriptor.
2491   inline void Get(int descriptor_number, Descriptor* desc);
2492   inline void Set(int descriptor_number,
2493                   Descriptor* desc,
2494                   const WhitenessWitness&);
2495 
2496   // Transfer a complete descriptor from the src descriptor array to the dst
2497   // one, dropping map transitions in CALLBACKS.
2498   static void CopyFrom(Handle<DescriptorArray> dst,
2499                        int dst_index,
2500                        Handle<DescriptorArray> src,
2501                        int src_index,
2502                        const WhitenessWitness& witness);
2503 
2504   // Transfer a complete descriptor from the src descriptor array to this
2505   // descriptor array, dropping map transitions in CALLBACKS.
2506   MUST_USE_RESULT MaybeObject* CopyFrom(int dst_index,
2507                                         DescriptorArray* src,
2508                                         int src_index,
2509                                         const WhitenessWitness&);
2510 
2511   // Copy the descriptor array, insert a new descriptor and optionally
2512   // remove map transitions.  If the descriptor is already present, it is
2513   // replaced.  If a replaced descriptor is a real property (not a transition
2514   // or null), its enumeration index is kept as is.
2515   // If adding a real property, map transitions must be removed.  If adding
2516   // a transition, they must not be removed.  All null descriptors are removed.
2517   MUST_USE_RESULT MaybeObject* CopyInsert(Descriptor* descriptor,
2518                                           TransitionFlag transition_flag);
2519 
2520   // Return a copy of the array with all transitions and null descriptors
2521   // removed. Return a Failure object in case of an allocation failure.
2522   MUST_USE_RESULT MaybeObject* RemoveTransitions();
2523 
2524   // Sort the instance descriptors by the hash codes of their keys.
2525   // Does not check for duplicates.
2526   void SortUnchecked(const WhitenessWitness&);
2527 
2528   // Sort the instance descriptors by the hash codes of their keys.
2529   // Checks the result for duplicates.
2530   void Sort(const WhitenessWitness&);
2531 
2532   // Search the instance descriptors for given name.
2533   inline int Search(String* name);
2534 
2535   // As the above, but uses DescriptorLookupCache and updates it when
2536   // necessary.
2537   inline int SearchWithCache(String* name);
2538 
2539   // Tells whether the name is present int the array.
Contains(String * name)2540   bool Contains(String* name) { return kNotFound != Search(name); }
2541 
2542   // Perform a binary search in the instance descriptors represented
2543   // by this fixed array.  low and high are descriptor indices.  If there
2544   // are three instance descriptors in this array it should be called
2545   // with low=0 and high=2.
2546   int BinarySearch(String* name, int low, int high);
2547 
2548   // Perform a linear search in the instance descriptors represented
2549   // by this fixed array.  len is the number of descriptor indices that are
2550   // valid.  Does not require the descriptors to be sorted.
2551   int LinearSearch(String* name, int len);
2552 
2553   // Allocates a DescriptorArray, but returns the singleton
2554   // empty descriptor array object if number_of_descriptors is 0.
2555   MUST_USE_RESULT static MaybeObject* Allocate(int number_of_descriptors);
2556 
2557   // Casting.
2558   static inline DescriptorArray* cast(Object* obj);
2559 
2560   // Constant for denoting key was not found.
2561   static const int kNotFound = -1;
2562 
2563   static const int kBitField3StorageIndex = 0;
2564   static const int kContentArrayIndex = 1;
2565   static const int kEnumerationIndexIndex = 2;
2566   static const int kFirstIndex = 3;
2567 
2568   // The length of the "bridge" to the enum cache.
2569   static const int kEnumCacheBridgeLength = 3;
2570   static const int kEnumCacheBridgeEnumIndex = 0;
2571   static const int kEnumCacheBridgeCacheIndex = 1;
2572   static const int kEnumCacheBridgeIndicesCacheIndex = 2;
2573 
2574   // Layout description.
2575   static const int kBitField3StorageOffset = FixedArray::kHeaderSize;
2576   static const int kContentArrayOffset = kBitField3StorageOffset + kPointerSize;
2577   static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
2578   static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
2579 
2580   // Layout description for the bridge array.
2581   static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
2582   static const int kEnumCacheBridgeCacheOffset =
2583     kEnumCacheBridgeEnumOffset + kPointerSize;
2584 
2585 #ifdef OBJECT_PRINT
2586   // Print all the descriptors.
PrintDescriptors()2587   inline void PrintDescriptors() {
2588     PrintDescriptors(stdout);
2589   }
2590   void PrintDescriptors(FILE* out);
2591 #endif
2592 
2593 #ifdef DEBUG
2594   // Is the descriptor array sorted and without duplicates?
2595   bool IsSortedNoDuplicates();
2596 
2597   // Are two DescriptorArrays equal?
2598   bool IsEqualTo(DescriptorArray* other);
2599 #endif
2600 
2601   // The maximum number of descriptors we want in a descriptor array (should
2602   // fit in a page).
2603   static const int kMaxNumberOfDescriptors = 1024 + 512;
2604 
2605  private:
2606   // An entry in a DescriptorArray, represented as an (array, index) pair.
2607   class Entry {
2608    public:
Entry(DescriptorArray * descs,int index)2609     inline explicit Entry(DescriptorArray* descs, int index) :
2610         descs_(descs), index_(index) { }
2611 
type()2612     inline PropertyType type() { return descs_->GetType(index_); }
GetCallbackObject()2613     inline Object* GetCallbackObject() { return descs_->GetValue(index_); }
2614 
2615    private:
2616     DescriptorArray* descs_;
2617     int index_;
2618   };
2619 
2620   // Conversion from descriptor number to array indices.
ToKeyIndex(int descriptor_number)2621   static int ToKeyIndex(int descriptor_number) {
2622     return descriptor_number+kFirstIndex;
2623   }
2624 
ToDetailsIndex(int descriptor_number)2625   static int ToDetailsIndex(int descriptor_number) {
2626     return (descriptor_number << 1) + 1;
2627   }
2628 
ToValueIndex(int descriptor_number)2629   static int ToValueIndex(int descriptor_number) {
2630     return descriptor_number << 1;
2631   }
2632 
is_null_descriptor(int descriptor_number)2633   bool is_null_descriptor(int descriptor_number) {
2634     return PropertyDetails(GetDetails(descriptor_number)).type() ==
2635         NULL_DESCRIPTOR;
2636   }
2637   // Swap operation on FixedArray without using write barriers.
2638   static inline void NoIncrementalWriteBarrierSwap(
2639       FixedArray* array, int first, int second);
2640 
2641   // Swap descriptor first and second.
2642   inline void NoIncrementalWriteBarrierSwapDescriptors(
2643       int first, int second);
2644 
GetContentArray()2645   FixedArray* GetContentArray() {
2646     return FixedArray::cast(get(kContentArrayIndex));
2647   }
2648   DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2649 };
2650 
2651 
2652 // HashTable is a subclass of FixedArray that implements a hash table
2653 // that uses open addressing and quadratic probing.
2654 //
2655 // In order for the quadratic probing to work, elements that have not
2656 // yet been used and elements that have been deleted are
2657 // distinguished.  Probing continues when deleted elements are
2658 // encountered and stops when unused elements are encountered.
2659 //
2660 // - Elements with key == undefined have not been used yet.
2661 // - Elements with key == the_hole have been deleted.
2662 //
2663 // The hash table class is parameterized with a Shape and a Key.
2664 // Shape must be a class with the following interface:
2665 //   class ExampleShape {
2666 //    public:
2667 //      // Tells whether key matches other.
2668 //     static bool IsMatch(Key key, Object* other);
2669 //     // Returns the hash value for key.
2670 //     static uint32_t Hash(Key key);
2671 //     // Returns the hash value for object.
2672 //     static uint32_t HashForObject(Key key, Object* object);
2673 //     // Convert key to an object.
2674 //     static inline Object* AsObject(Key key);
2675 //     // The prefix size indicates number of elements in the beginning
2676 //     // of the backing storage.
2677 //     static const int kPrefixSize = ..;
2678 //     // The Element size indicates number of elements per entry.
2679 //     static const int kEntrySize = ..;
2680 //   };
2681 // The prefix size indicates an amount of memory in the
2682 // beginning of the backing storage that can be used for non-element
2683 // information by subclasses.
2684 
2685 template<typename Key>
2686 class BaseShape {
2687  public:
2688   static const bool UsesSeed = false;
Hash(Key key)2689   static uint32_t Hash(Key key) { return 0; }
SeededHash(Key key,uint32_t seed)2690   static uint32_t SeededHash(Key key, uint32_t seed) {
2691     ASSERT(UsesSeed);
2692     return Hash(key);
2693   }
HashForObject(Key key,Object * object)2694   static uint32_t HashForObject(Key key, Object* object) { return 0; }
SeededHashForObject(Key key,uint32_t seed,Object * object)2695   static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
2696     ASSERT(UsesSeed);
2697     return HashForObject(key, object);
2698   }
2699 };
2700 
2701 template<typename Shape, typename Key>
2702 class HashTable: public FixedArray {
2703  public:
2704   // Wrapper methods
Hash(Key key)2705   inline uint32_t Hash(Key key) {
2706     if (Shape::UsesSeed) {
2707       return Shape::SeededHash(key,
2708           GetHeap()->HashSeed());
2709     } else {
2710       return Shape::Hash(key);
2711     }
2712   }
2713 
HashForObject(Key key,Object * object)2714   inline uint32_t HashForObject(Key key, Object* object) {
2715     if (Shape::UsesSeed) {
2716       return Shape::SeededHashForObject(key,
2717           GetHeap()->HashSeed(), object);
2718     } else {
2719       return Shape::HashForObject(key, object);
2720     }
2721   }
2722 
2723   // Returns the number of elements in the hash table.
NumberOfElements()2724   int NumberOfElements() {
2725     return Smi::cast(get(kNumberOfElementsIndex))->value();
2726   }
2727 
2728   // Returns the number of deleted elements in the hash table.
NumberOfDeletedElements()2729   int NumberOfDeletedElements() {
2730     return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
2731   }
2732 
2733   // Returns the capacity of the hash table.
Capacity()2734   int Capacity() {
2735     return Smi::cast(get(kCapacityIndex))->value();
2736   }
2737 
2738   // ElementAdded should be called whenever an element is added to a
2739   // hash table.
ElementAdded()2740   void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
2741 
2742   // ElementRemoved should be called whenever an element is removed from
2743   // a hash table.
ElementRemoved()2744   void ElementRemoved() {
2745     SetNumberOfElements(NumberOfElements() - 1);
2746     SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
2747   }
ElementsRemoved(int n)2748   void ElementsRemoved(int n) {
2749     SetNumberOfElements(NumberOfElements() - n);
2750     SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
2751   }
2752 
2753   // Returns a new HashTable object. Might return Failure.
2754   MUST_USE_RESULT static MaybeObject* Allocate(
2755       int at_least_space_for,
2756       PretenureFlag pretenure = NOT_TENURED);
2757 
2758   // Computes the required capacity for a table holding the given
2759   // number of elements. May be more than HashTable::kMaxCapacity.
2760   static int ComputeCapacity(int at_least_space_for);
2761 
2762   // Returns the key at entry.
KeyAt(int entry)2763   Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
2764 
2765   // Tells whether k is a real key.  The hole and undefined are not allowed
2766   // as keys and can be used to indicate missing or deleted elements.
IsKey(Object * k)2767   bool IsKey(Object* k) {
2768     return !k->IsTheHole() && !k->IsUndefined();
2769   }
2770 
2771   // Garbage collection support.
2772   void IteratePrefix(ObjectVisitor* visitor);
2773   void IterateElements(ObjectVisitor* visitor);
2774 
2775   // Casting.
2776   static inline HashTable* cast(Object* obj);
2777 
2778   // Compute the probe offset (quadratic probing).
INLINE(static uint32_t GetProbeOffset (uint32_t n))2779   INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2780     return (n + n * n) >> 1;
2781   }
2782 
2783   static const int kNumberOfElementsIndex = 0;
2784   static const int kNumberOfDeletedElementsIndex = 1;
2785   static const int kCapacityIndex = 2;
2786   static const int kPrefixStartIndex = 3;
2787   static const int kElementsStartIndex =
2788       kPrefixStartIndex + Shape::kPrefixSize;
2789   static const int kEntrySize = Shape::kEntrySize;
2790   static const int kElementsStartOffset =
2791       kHeaderSize + kElementsStartIndex * kPointerSize;
2792   static const int kCapacityOffset =
2793       kHeaderSize + kCapacityIndex * kPointerSize;
2794 
2795   // Constant used for denoting a absent entry.
2796   static const int kNotFound = -1;
2797 
2798   // Maximal capacity of HashTable. Based on maximal length of underlying
2799   // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
2800   // cannot overflow.
2801   static const int kMaxCapacity =
2802       (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
2803 
2804   // Find entry for key otherwise return kNotFound.
2805   inline int FindEntry(Key key);
2806   int FindEntry(Isolate* isolate, Key key);
2807 
2808  protected:
2809   // Find the entry at which to insert element with the given key that
2810   // has the given hash value.
2811   uint32_t FindInsertionEntry(uint32_t hash);
2812 
2813   // Returns the index for an entry (of the key)
EntryToIndex(int entry)2814   static inline int EntryToIndex(int entry) {
2815     return (entry * kEntrySize) + kElementsStartIndex;
2816   }
2817 
2818   // Update the number of elements in the hash table.
SetNumberOfElements(int nof)2819   void SetNumberOfElements(int nof) {
2820     set(kNumberOfElementsIndex, Smi::FromInt(nof));
2821   }
2822 
2823   // Update the number of deleted elements in the hash table.
SetNumberOfDeletedElements(int nod)2824   void SetNumberOfDeletedElements(int nod) {
2825     set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
2826   }
2827 
2828   // Sets the capacity of the hash table.
SetCapacity(int capacity)2829   void SetCapacity(int capacity) {
2830     // To scale a computed hash code to fit within the hash table, we
2831     // use bit-wise AND with a mask, so the capacity must be positive
2832     // and non-zero.
2833     ASSERT(capacity > 0);
2834     ASSERT(capacity <= kMaxCapacity);
2835     set(kCapacityIndex, Smi::FromInt(capacity));
2836   }
2837 
2838 
2839   // Returns probe entry.
GetProbe(uint32_t hash,uint32_t number,uint32_t size)2840   static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2841     ASSERT(IsPowerOf2(size));
2842     return (hash + GetProbeOffset(number)) & (size - 1);
2843   }
2844 
FirstProbe(uint32_t hash,uint32_t size)2845   static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2846     return hash & (size - 1);
2847   }
2848 
NextProbe(uint32_t last,uint32_t number,uint32_t size)2849   static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2850     return (last + number) & (size - 1);
2851   }
2852 
2853   // Rehashes this hash-table into the new table.
2854   MUST_USE_RESULT MaybeObject* Rehash(HashTable* new_table, Key key);
2855 
2856   // Attempt to shrink hash table after removal of key.
2857   MUST_USE_RESULT MaybeObject* Shrink(Key key);
2858 
2859   // Ensure enough space for n additional elements.
2860   MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
2861 };
2862 
2863 
2864 // HashTableKey is an abstract superclass for virtual key behavior.
2865 class HashTableKey {
2866  public:
2867   // Returns whether the other object matches this key.
2868   virtual bool IsMatch(Object* other) = 0;
2869   // Returns the hash value for this key.
2870   virtual uint32_t Hash() = 0;
2871   // Returns the hash value for object.
2872   virtual uint32_t HashForObject(Object* key) = 0;
2873   // Returns the key object for storing into the hash table.
2874   // If allocations fails a failure object is returned.
2875   MUST_USE_RESULT virtual MaybeObject* AsObject() = 0;
2876   // Required.
~HashTableKey()2877   virtual ~HashTableKey() {}
2878 };
2879 
2880 
2881 class SymbolTableShape : public BaseShape<HashTableKey*> {
2882  public:
IsMatch(HashTableKey * key,Object * value)2883   static inline bool IsMatch(HashTableKey* key, Object* value) {
2884     return key->IsMatch(value);
2885   }
Hash(HashTableKey * key)2886   static inline uint32_t Hash(HashTableKey* key) {
2887     return key->Hash();
2888   }
HashForObject(HashTableKey * key,Object * object)2889   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
2890     return key->HashForObject(object);
2891   }
AsObject(HashTableKey * key)2892   MUST_USE_RESULT static inline MaybeObject* AsObject(HashTableKey* key) {
2893     return key->AsObject();
2894   }
2895 
2896   static const int kPrefixSize = 0;
2897   static const int kEntrySize = 1;
2898 };
2899 
2900 class SeqAsciiString;
2901 
2902 // SymbolTable.
2903 //
2904 // No special elements in the prefix and the element size is 1
2905 // because only the symbol itself (the key) needs to be stored.
2906 class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2907  public:
2908   // Find symbol in the symbol table.  If it is not there yet, it is
2909   // added.  The return value is the symbol table which might have
2910   // been enlarged.  If the return value is not a failure, the symbol
2911   // pointer *s is set to the symbol found.
2912   MUST_USE_RESULT MaybeObject* LookupSymbol(Vector<const char> str, Object** s);
2913   MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(Vector<const char> str,
2914                                                  Object** s);
2915   MUST_USE_RESULT MaybeObject* LookupSubStringAsciiSymbol(
2916       Handle<SeqAsciiString> str,
2917       int from,
2918       int length,
2919       Object** s);
2920   MUST_USE_RESULT MaybeObject* LookupTwoByteSymbol(Vector<const uc16> str,
2921                                                    Object** s);
2922   MUST_USE_RESULT MaybeObject* LookupString(String* key, Object** s);
2923 
2924   // Looks up a symbol that is equal to the given string and returns
2925   // true if it is found, assigning the symbol to the given output
2926   // parameter.
2927   bool LookupSymbolIfExists(String* str, String** symbol);
2928   bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
2929 
2930   // Casting.
2931   static inline SymbolTable* cast(Object* obj);
2932 
2933  private:
2934   MUST_USE_RESULT MaybeObject* LookupKey(HashTableKey* key, Object** s);
2935 
2936   DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2937 };
2938 
2939 
2940 class MapCacheShape : public BaseShape<HashTableKey*> {
2941  public:
IsMatch(HashTableKey * key,Object * value)2942   static inline bool IsMatch(HashTableKey* key, Object* value) {
2943     return key->IsMatch(value);
2944   }
Hash(HashTableKey * key)2945   static inline uint32_t Hash(HashTableKey* key) {
2946     return key->Hash();
2947   }
2948 
HashForObject(HashTableKey * key,Object * object)2949   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
2950     return key->HashForObject(object);
2951   }
2952 
AsObject(HashTableKey * key)2953   MUST_USE_RESULT static inline MaybeObject* AsObject(HashTableKey* key) {
2954     return key->AsObject();
2955   }
2956 
2957   static const int kPrefixSize = 0;
2958   static const int kEntrySize = 2;
2959 };
2960 
2961 
2962 // MapCache.
2963 //
2964 // Maps keys that are a fixed array of symbols to a map.
2965 // Used for canonicalize maps for object literals.
2966 class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2967  public:
2968   // Find cached value for a string key, otherwise return null.
2969   Object* Lookup(FixedArray* key);
2970   MUST_USE_RESULT MaybeObject* Put(FixedArray* key, Map* value);
2971   static inline MapCache* cast(Object* obj);
2972 
2973  private:
2974   DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2975 };
2976 
2977 
2978 template <typename Shape, typename Key>
2979 class Dictionary: public HashTable<Shape, Key> {
2980  public:
cast(Object * obj)2981   static inline Dictionary<Shape, Key>* cast(Object* obj) {
2982     return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2983   }
2984 
2985   // Returns the value at entry.
ValueAt(int entry)2986   Object* ValueAt(int entry) {
2987     return this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 1);
2988   }
2989 
2990   // Set the value for entry.
ValueAtPut(int entry,Object * value)2991   void ValueAtPut(int entry, Object* value) {
2992     this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 1, value);
2993   }
2994 
2995   // Returns the property details for the property at entry.
DetailsAt(int entry)2996   PropertyDetails DetailsAt(int entry) {
2997     ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2998     return PropertyDetails(
2999         Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
3000   }
3001 
3002   // Set the details for entry.
DetailsAtPut(int entry,PropertyDetails value)3003   void DetailsAtPut(int entry, PropertyDetails value) {
3004     this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
3005   }
3006 
3007   // Sorting support
3008   void CopyValuesTo(FixedArray* elements);
3009 
3010   // Delete a property from the dictionary.
3011   Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
3012 
3013   // Attempt to shrink the dictionary after deletion of key.
3014   MUST_USE_RESULT MaybeObject* Shrink(Key key);
3015 
3016   // Returns the number of elements in the dictionary filtering out properties
3017   // with the specified attributes.
3018   int NumberOfElementsFilterAttributes(PropertyAttributes filter);
3019 
3020   // Returns the number of enumerable elements in the dictionary.
3021   int NumberOfEnumElements();
3022 
3023   enum SortMode { UNSORTED, SORTED };
3024   // Copies keys to preallocated fixed array.
3025   void CopyKeysTo(FixedArray* storage,
3026                   PropertyAttributes filter,
3027                   SortMode sort_mode);
3028   // Fill in details for properties into storage.
3029   void CopyKeysTo(FixedArray* storage, int index, SortMode sort_mode);
3030 
3031   // Accessors for next enumeration index.
SetNextEnumerationIndex(int index)3032   void SetNextEnumerationIndex(int index) {
3033     this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
3034   }
3035 
NextEnumerationIndex()3036   int NextEnumerationIndex() {
3037     return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
3038   }
3039 
3040   // Returns a new array for dictionary usage. Might return Failure.
3041   MUST_USE_RESULT static MaybeObject* Allocate(int at_least_space_for);
3042 
3043   // Ensure enough space for n additional elements.
3044   MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
3045 
3046 #ifdef OBJECT_PRINT
Print()3047   inline void Print() {
3048     Print(stdout);
3049   }
3050   void Print(FILE* out);
3051 #endif
3052   // Returns the key (slow).
3053   Object* SlowReverseLookup(Object* value);
3054 
3055   // Sets the entry to (key, value) pair.
3056   inline void SetEntry(int entry,
3057                        Object* key,
3058                        Object* value);
3059   inline void SetEntry(int entry,
3060                        Object* key,
3061                        Object* value,
3062                        PropertyDetails details);
3063 
3064   MUST_USE_RESULT MaybeObject* Add(Key key,
3065                                    Object* value,
3066                                    PropertyDetails details);
3067 
3068  protected:
3069   // Generic at put operation.
3070   MUST_USE_RESULT MaybeObject* AtPut(Key key, Object* value);
3071 
3072   // Add entry to dictionary.
3073   MUST_USE_RESULT MaybeObject* AddEntry(Key key,
3074                                         Object* value,
3075                                         PropertyDetails details,
3076                                         uint32_t hash);
3077 
3078   // Generate new enumeration indices to avoid enumeration index overflow.
3079   MUST_USE_RESULT MaybeObject* GenerateNewEnumerationIndices();
3080   static const int kMaxNumberKeyIndex =
3081       HashTable<Shape, Key>::kPrefixStartIndex;
3082   static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
3083 };
3084 
3085 
3086 class StringDictionaryShape : public BaseShape<String*> {
3087  public:
3088   static inline bool IsMatch(String* key, Object* other);
3089   static inline uint32_t Hash(String* key);
3090   static inline uint32_t HashForObject(String* key, Object* object);
3091   MUST_USE_RESULT static inline MaybeObject* AsObject(String* key);
3092   static const int kPrefixSize = 2;
3093   static const int kEntrySize = 3;
3094   static const bool kIsEnumerable = true;
3095 };
3096 
3097 
3098 class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
3099  public:
cast(Object * obj)3100   static inline StringDictionary* cast(Object* obj) {
3101     ASSERT(obj->IsDictionary());
3102     return reinterpret_cast<StringDictionary*>(obj);
3103   }
3104 
3105   // Copies enumerable keys to preallocated fixed array.
3106   void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
3107 
3108   // For transforming properties of a JSObject.
3109   MUST_USE_RESULT MaybeObject* TransformPropertiesToFastFor(
3110       JSObject* obj,
3111       int unused_property_fields);
3112 
3113   // Find entry for key, otherwise return kNotFound. Optimized version of
3114   // HashTable::FindEntry.
3115   int FindEntry(String* key);
3116 
3117   bool ContainsTransition(int entry);
3118 };
3119 
3120 
3121 class NumberDictionaryShape : public BaseShape<uint32_t> {
3122  public:
3123   static inline bool IsMatch(uint32_t key, Object* other);
3124   MUST_USE_RESULT static inline MaybeObject* AsObject(uint32_t key);
3125   static const int kEntrySize = 3;
3126   static const bool kIsEnumerable = false;
3127 };
3128 
3129 
3130 class SeededNumberDictionaryShape : public NumberDictionaryShape {
3131  public:
3132   static const bool UsesSeed = true;
3133   static const int kPrefixSize = 2;
3134 
3135   static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
3136   static inline uint32_t SeededHashForObject(uint32_t key,
3137                                              uint32_t seed,
3138                                              Object* object);
3139 };
3140 
3141 
3142 class UnseededNumberDictionaryShape : public NumberDictionaryShape {
3143  public:
3144   static const int kPrefixSize = 0;
3145 
3146   static inline uint32_t Hash(uint32_t key);
3147   static inline uint32_t HashForObject(uint32_t key, Object* object);
3148 };
3149 
3150 
3151 class SeededNumberDictionary
3152     : public Dictionary<SeededNumberDictionaryShape, uint32_t> {
3153  public:
cast(Object * obj)3154   static SeededNumberDictionary* cast(Object* obj) {
3155     ASSERT(obj->IsDictionary());
3156     return reinterpret_cast<SeededNumberDictionary*>(obj);
3157   }
3158 
3159   // Type specific at put (default NONE attributes is used when adding).
3160   MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
3161   MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key,
3162                                               Object* value,
3163                                               PropertyDetails details);
3164 
3165   // Set an existing entry or add a new one if needed.
3166   // Return the updated dictionary.
3167   MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
3168       Handle<SeededNumberDictionary> dictionary,
3169       uint32_t index,
3170       Handle<Object> value,
3171       PropertyDetails details);
3172 
3173   MUST_USE_RESULT MaybeObject* Set(uint32_t key,
3174                                    Object* value,
3175                                    PropertyDetails details);
3176 
3177   void UpdateMaxNumberKey(uint32_t key);
3178 
3179   // If slow elements are required we will never go back to fast-case
3180   // for the elements kept in this dictionary.  We require slow
3181   // elements if an element has been added at an index larger than
3182   // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
3183   // when defining a getter or setter with a number key.
3184   inline bool requires_slow_elements();
3185   inline void set_requires_slow_elements();
3186 
3187   // Get the value of the max number key that has been added to this
3188   // dictionary.  max_number_key can only be called if
3189   // requires_slow_elements returns false.
3190   inline uint32_t max_number_key();
3191 
3192   // Bit masks.
3193   static const int kRequiresSlowElementsMask = 1;
3194   static const int kRequiresSlowElementsTagSize = 1;
3195   static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
3196 };
3197 
3198 
3199 class UnseededNumberDictionary
3200     : public Dictionary<UnseededNumberDictionaryShape, uint32_t> {
3201  public:
cast(Object * obj)3202   static UnseededNumberDictionary* cast(Object* obj) {
3203     ASSERT(obj->IsDictionary());
3204     return reinterpret_cast<UnseededNumberDictionary*>(obj);
3205   }
3206 
3207   // Type specific at put (default NONE attributes is used when adding).
3208   MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
3209   MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key, Object* value);
3210 
3211   // Set an existing entry or add a new one if needed.
3212   // Return the updated dictionary.
3213   MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
3214       Handle<UnseededNumberDictionary> dictionary,
3215       uint32_t index,
3216       Handle<Object> value);
3217 
3218   MUST_USE_RESULT MaybeObject* Set(uint32_t key, Object* value);
3219 };
3220 
3221 
3222 template <int entrysize>
3223 class ObjectHashTableShape : public BaseShape<Object*> {
3224  public:
3225   static inline bool IsMatch(Object* key, Object* other);
3226   static inline uint32_t Hash(Object* key);
3227   static inline uint32_t HashForObject(Object* key, Object* object);
3228   MUST_USE_RESULT static inline MaybeObject* AsObject(Object* key);
3229   static const int kPrefixSize = 0;
3230   static const int kEntrySize = entrysize;
3231 };
3232 
3233 
3234 // ObjectHashSet holds keys that are arbitrary objects by using the identity
3235 // hash of the key for hashing purposes.
3236 class ObjectHashSet: public HashTable<ObjectHashTableShape<1>, Object*> {
3237  public:
cast(Object * obj)3238   static inline ObjectHashSet* cast(Object* obj) {
3239     ASSERT(obj->IsHashTable());
3240     return reinterpret_cast<ObjectHashSet*>(obj);
3241   }
3242 
3243   // Looks up whether the given key is part of this hash set.
3244   bool Contains(Object* key);
3245 
3246   // Adds the given key to this hash set.
3247   MUST_USE_RESULT MaybeObject* Add(Object* key);
3248 
3249   // Removes the given key from this hash set.
3250   MUST_USE_RESULT MaybeObject* Remove(Object* key);
3251 };
3252 
3253 
3254 // ObjectHashTable maps keys that are arbitrary objects to object values by
3255 // using the identity hash of the key for hashing purposes.
3256 class ObjectHashTable: public HashTable<ObjectHashTableShape<2>, Object*> {
3257  public:
cast(Object * obj)3258   static inline ObjectHashTable* cast(Object* obj) {
3259     ASSERT(obj->IsHashTable());
3260     return reinterpret_cast<ObjectHashTable*>(obj);
3261   }
3262 
3263   // Looks up the value associated with the given key. The undefined value is
3264   // returned in case the key is not present.
3265   Object* Lookup(Object* key);
3266 
3267   // Adds (or overwrites) the value associated with the given key. Mapping a
3268   // key to the undefined value causes removal of the whole entry.
3269   MUST_USE_RESULT MaybeObject* Put(Object* key, Object* value);
3270 
3271  private:
3272   friend class MarkCompactCollector;
3273 
3274   void AddEntry(int entry, Object* key, Object* value);
3275   void RemoveEntry(int entry);
3276 
3277   // Returns the index to the value of an entry.
EntryToValueIndex(int entry)3278   static inline int EntryToValueIndex(int entry) {
3279     return EntryToIndex(entry) + 1;
3280   }
3281 };
3282 
3283 
3284 // JSFunctionResultCache caches results of some JSFunction invocation.
3285 // It is a fixed array with fixed structure:
3286 //   [0]: factory function
3287 //   [1]: finger index
3288 //   [2]: current cache size
3289 //   [3]: dummy field.
3290 // The rest of array are key/value pairs.
3291 class JSFunctionResultCache: public FixedArray {
3292  public:
3293   static const int kFactoryIndex = 0;
3294   static const int kFingerIndex = kFactoryIndex + 1;
3295   static const int kCacheSizeIndex = kFingerIndex + 1;
3296   static const int kDummyIndex = kCacheSizeIndex + 1;
3297   static const int kEntriesIndex = kDummyIndex + 1;
3298 
3299   static const int kEntrySize = 2;  // key + value
3300 
3301   static const int kFactoryOffset = kHeaderSize;
3302   static const int kFingerOffset = kFactoryOffset + kPointerSize;
3303   static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
3304 
3305   inline void MakeZeroSize();
3306   inline void Clear();
3307 
3308   inline int size();
3309   inline void set_size(int size);
3310   inline int finger_index();
3311   inline void set_finger_index(int finger_index);
3312 
3313   // Casting
3314   static inline JSFunctionResultCache* cast(Object* obj);
3315 
3316 #ifdef DEBUG
3317   void JSFunctionResultCacheVerify();
3318 #endif
3319 };
3320 
3321 
3322 // ScopeInfo represents information about different scopes of a source
3323 // program  and the allocation of the scope's variables. Scope information
3324 // is stored in a compressed form in ScopeInfo objects and is used
3325 // at runtime (stack dumps, deoptimization, etc.).
3326 
3327 // This object provides quick access to scope info details for runtime
3328 // routines.
3329 class ScopeInfo : public FixedArray {
3330  public:
3331   static inline ScopeInfo* cast(Object* object);
3332 
3333   // Return the type of this scope.
3334   ScopeType Type();
3335 
3336   // Does this scope call eval?
3337   bool CallsEval();
3338 
3339   // Return the language mode of this scope.
3340   LanguageMode language_mode();
3341 
3342   // Does this scope make a non-strict eval call?
CallsNonStrictEval()3343   bool CallsNonStrictEval() {
3344     return CallsEval() && (language_mode() == CLASSIC_MODE);
3345   }
3346 
3347   // Return the total number of locals allocated on the stack and in the
3348   // context. This includes the parameters that are allocated in the context.
3349   int LocalCount();
3350 
3351   // Return the number of stack slots for code. This number consists of two
3352   // parts:
3353   //  1. One stack slot per stack allocated local.
3354   //  2. One stack slot for the function name if it is stack allocated.
3355   int StackSlotCount();
3356 
3357   // Return the number of context slots for code if a context is allocated. This
3358   // number consists of three parts:
3359   //  1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
3360   //  2. One context slot per context allocated local.
3361   //  3. One context slot for the function name if it is context allocated.
3362   // Parameters allocated in the context count as context allocated locals. If
3363   // no contexts are allocated for this scope ContextLength returns 0.
3364   int ContextLength();
3365 
3366   // Is this scope the scope of a named function expression?
3367   bool HasFunctionName();
3368 
3369   // Return if this has context allocated locals.
3370   bool HasHeapAllocatedLocals();
3371 
3372   // Return if contexts are allocated for this scope.
3373   bool HasContext();
3374 
3375   // Return the function_name if present.
3376   String* FunctionName();
3377 
3378   // Return the name of the given parameter.
3379   String* ParameterName(int var);
3380 
3381   // Return the name of the given local.
3382   String* LocalName(int var);
3383 
3384   // Return the name of the given stack local.
3385   String* StackLocalName(int var);
3386 
3387   // Return the name of the given context local.
3388   String* ContextLocalName(int var);
3389 
3390   // Return the mode of the given context local.
3391   VariableMode ContextLocalMode(int var);
3392 
3393   // Return the initialization flag of the given context local.
3394   InitializationFlag ContextLocalInitFlag(int var);
3395 
3396   // Lookup support for serialized scope info. Returns the
3397   // the stack slot index for a given slot name if the slot is
3398   // present; otherwise returns a value < 0. The name must be a symbol
3399   // (canonicalized).
3400   int StackSlotIndex(String* name);
3401 
3402   // Lookup support for serialized scope info. Returns the
3403   // context slot index for a given slot name if the slot is present; otherwise
3404   // returns a value < 0. The name must be a symbol (canonicalized).
3405   // If the slot is present and mode != NULL, sets *mode to the corresponding
3406   // mode for that variable.
3407   int ContextSlotIndex(String* name,
3408                        VariableMode* mode,
3409                        InitializationFlag* init_flag);
3410 
3411   // Lookup support for serialized scope info. Returns the
3412   // parameter index for a given parameter name if the parameter is present;
3413   // otherwise returns a value < 0. The name must be a symbol (canonicalized).
3414   int ParameterIndex(String* name);
3415 
3416   // Lookup support for serialized scope info. Returns the
3417   // function context slot index if the function name is present (named
3418   // function expressions, only), otherwise returns a value < 0. The name
3419   // must be a symbol (canonicalized).
3420   int FunctionContextSlotIndex(String* name, VariableMode* mode);
3421 
3422   static Handle<ScopeInfo> Create(Scope* scope);
3423 
3424   // Serializes empty scope info.
3425   static ScopeInfo* Empty();
3426 
3427 #ifdef DEBUG
3428   void Print();
3429 #endif
3430 
3431   // The layout of the static part of a ScopeInfo is as follows. Each entry is
3432   // numeric and occupies one array slot.
3433   // 1. A set of properties of the scope
3434   // 2. The number of parameters. This only applies to function scopes. For
3435   //    non-function scopes this is 0.
3436   // 3. The number of non-parameter variables allocated on the stack.
3437   // 4. The number of non-parameter and parameter variables allocated in the
3438   //    context.
3439 #define FOR_EACH_NUMERIC_FIELD(V)          \
3440   V(Flags)                                 \
3441   V(ParameterCount)                        \
3442   V(StackLocalCount)                       \
3443   V(ContextLocalCount)
3444 
3445 #define FIELD_ACCESSORS(name)                            \
3446   void Set##name(int value) {                            \
3447     set(k##name, Smi::FromInt(value));                   \
3448   }                                                      \
3449   int name() {                                           \
3450     if (length() > 0) {                                  \
3451       return Smi::cast(get(k##name))->value();           \
3452     } else {                                             \
3453       return 0;                                          \
3454     }                                                    \
3455   }
3456   FOR_EACH_NUMERIC_FIELD(FIELD_ACCESSORS)
3457 #undef FIELD_ACCESSORS
3458 
3459  private:
3460   enum {
3461 #define DECL_INDEX(name) k##name,
3462   FOR_EACH_NUMERIC_FIELD(DECL_INDEX)
3463 #undef DECL_INDEX
3464 #undef FOR_EACH_NUMERIC_FIELD
3465   kVariablePartIndex
3466   };
3467 
3468   // The layout of the variable part of a ScopeInfo is as follows:
3469   // 1. ParameterEntries:
3470   //    This part stores the names of the parameters for function scopes. One
3471   //    slot is used per parameter, so in total this part occupies
3472   //    ParameterCount() slots in the array. For other scopes than function
3473   //    scopes ParameterCount() is 0.
3474   // 2. StackLocalEntries:
3475   //    Contains the names of local variables that are allocated on the stack,
3476   //    in increasing order of the stack slot index. One slot is used per stack
3477   //    local, so in total this part occupies StackLocalCount() slots in the
3478   //    array.
3479   // 3. ContextLocalNameEntries:
3480   //    Contains the names of local variables and parameters that are allocated
3481   //    in the context. They are stored in increasing order of the context slot
3482   //    index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
3483   //    context local, so in total this part occupies ContextLocalCount() slots
3484   //    in the array.
3485   // 4. ContextLocalInfoEntries:
3486   //    Contains the variable modes and initialization flags corresponding to
3487   //    the context locals in ContextLocalNameEntries. One slot is used per
3488   //    context local, so in total this part occupies ContextLocalCount()
3489   //    slots in the array.
3490   // 5. FunctionNameEntryIndex:
3491   //    If the scope belongs to a named function expression this part contains
3492   //    information about the function variable. It always occupies two array
3493   //    slots:  a. The name of the function variable.
3494   //            b. The context or stack slot index for the variable.
3495   int ParameterEntriesIndex();
3496   int StackLocalEntriesIndex();
3497   int ContextLocalNameEntriesIndex();
3498   int ContextLocalInfoEntriesIndex();
3499   int FunctionNameEntryIndex();
3500 
3501   // Location of the function variable for named function expressions.
3502   enum FunctionVariableInfo {
3503     NONE,     // No function name present.
3504     STACK,    // Function
3505     CONTEXT,
3506     UNUSED
3507   };
3508 
3509   // Properties of scopes.
3510   class TypeField:             public BitField<ScopeType,            0, 3> {};
3511   class CallsEvalField:        public BitField<bool,                 3, 1> {};
3512   class LanguageModeField:     public BitField<LanguageMode,         4, 2> {};
3513   class FunctionVariableField: public BitField<FunctionVariableInfo, 6, 2> {};
3514   class FunctionVariableMode:  public BitField<VariableMode,         8, 3> {};
3515 
3516   // BitFields representing the encoded information for context locals in the
3517   // ContextLocalInfoEntries part.
3518   class ContextLocalMode:      public BitField<VariableMode,         0, 3> {};
3519   class ContextLocalInitFlag:  public BitField<InitializationFlag,   3, 1> {};
3520 };
3521 
3522 
3523 // The cache for maps used by normalized (dictionary mode) objects.
3524 // Such maps do not have property descriptors, so a typical program
3525 // needs very limited number of distinct normalized maps.
3526 class NormalizedMapCache: public FixedArray {
3527  public:
3528   static const int kEntries = 64;
3529 
3530   MUST_USE_RESULT MaybeObject* Get(JSObject* object,
3531                                    PropertyNormalizationMode mode);
3532 
3533   void Clear();
3534 
3535   // Casting
3536   static inline NormalizedMapCache* cast(Object* obj);
3537 
3538 #ifdef DEBUG
3539   void NormalizedMapCacheVerify();
3540 #endif
3541 };
3542 
3543 
3544 // ByteArray represents fixed sized byte arrays.  Used for the relocation info
3545 // that is attached to code objects.
3546 class ByteArray: public FixedArrayBase {
3547  public:
Size()3548   inline int Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
3549 
3550   // Setter and getter.
3551   inline byte get(int index);
3552   inline void set(int index, byte value);
3553 
3554   // Treat contents as an int array.
3555   inline int get_int(int index);
3556 
SizeFor(int length)3557   static int SizeFor(int length) {
3558     return OBJECT_POINTER_ALIGN(kHeaderSize + length);
3559   }
3560   // We use byte arrays for free blocks in the heap.  Given a desired size in
3561   // bytes that is a multiple of the word size and big enough to hold a byte
3562   // array, this function returns the number of elements a byte array should
3563   // have.
LengthFor(int size_in_bytes)3564   static int LengthFor(int size_in_bytes) {
3565     ASSERT(IsAligned(size_in_bytes, kPointerSize));
3566     ASSERT(size_in_bytes >= kHeaderSize);
3567     return size_in_bytes - kHeaderSize;
3568   }
3569 
3570   // Returns data start address.
3571   inline Address GetDataStartAddress();
3572 
3573   // Returns a pointer to the ByteArray object for a given data start address.
3574   static inline ByteArray* FromDataStartAddress(Address address);
3575 
3576   // Casting.
3577   static inline ByteArray* cast(Object* obj);
3578 
3579   // Dispatched behavior.
ByteArraySize()3580   inline int ByteArraySize() {
3581     return SizeFor(this->length());
3582   }
3583 #ifdef OBJECT_PRINT
ByteArrayPrint()3584   inline void ByteArrayPrint() {
3585     ByteArrayPrint(stdout);
3586   }
3587   void ByteArrayPrint(FILE* out);
3588 #endif
3589 #ifdef DEBUG
3590   void ByteArrayVerify();
3591 #endif
3592 
3593   // Layout description.
3594   static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
3595 
3596   // Maximal memory consumption for a single ByteArray.
3597   static const int kMaxSize = 512 * MB;
3598   // Maximal length of a single ByteArray.
3599   static const int kMaxLength = kMaxSize - kHeaderSize;
3600 
3601  private:
3602   DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
3603 };
3604 
3605 
3606 // FreeSpace represents fixed sized areas of the heap that are not currently in
3607 // use.  Used by the heap and GC.
3608 class FreeSpace: public HeapObject {
3609  public:
3610   // [size]: size of the free space including the header.
3611   inline int size();
3612   inline void set_size(int value);
3613 
Size()3614   inline int Size() { return size(); }
3615 
3616   // Casting.
3617   static inline FreeSpace* cast(Object* obj);
3618 
3619 #ifdef OBJECT_PRINT
FreeSpacePrint()3620   inline void FreeSpacePrint() {
3621     FreeSpacePrint(stdout);
3622   }
3623   void FreeSpacePrint(FILE* out);
3624 #endif
3625 #ifdef DEBUG
3626   void FreeSpaceVerify();
3627 #endif
3628 
3629   // Layout description.
3630   // Size is smi tagged when it is stored.
3631   static const int kSizeOffset = HeapObject::kHeaderSize;
3632   static const int kHeaderSize = kSizeOffset + kPointerSize;
3633 
3634   static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
3635 
3636  private:
3637   DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
3638 };
3639 
3640 
3641 // An ExternalArray represents a fixed-size array of primitive values
3642 // which live outside the JavaScript heap. Its subclasses are used to
3643 // implement the CanvasArray types being defined in the WebGL
3644 // specification. As of this writing the first public draft is not yet
3645 // available, but Khronos members can access the draft at:
3646 //   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
3647 //
3648 // The semantics of these arrays differ from CanvasPixelArray.
3649 // Out-of-range values passed to the setter are converted via a C
3650 // cast, not clamping. Out-of-range indices cause exceptions to be
3651 // raised rather than being silently ignored.
3652 class ExternalArray: public FixedArrayBase {
3653  public:
is_the_hole(int index)3654   inline bool is_the_hole(int index) { return false; }
3655 
3656   // [external_pointer]: The pointer to the external memory area backing this
3657   // external array.
3658   DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
3659 
3660   // Casting.
3661   static inline ExternalArray* cast(Object* obj);
3662 
3663   // Maximal acceptable length for an external array.
3664   static const int kMaxLength = 0x3fffffff;
3665 
3666   // ExternalArray headers are not quadword aligned.
3667   static const int kExternalPointerOffset =
3668       POINTER_SIZE_ALIGN(FixedArrayBase::kLengthOffset + kPointerSize);
3669   static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
3670   static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
3671 
3672  private:
3673   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
3674 };
3675 
3676 
3677 // A ExternalPixelArray represents a fixed-size byte array with special
3678 // semantics used for implementing the CanvasPixelArray object. Please see the
3679 // specification at:
3680 
3681 // http://www.whatwg.org/specs/web-apps/current-work/
3682 //                      multipage/the-canvas-element.html#canvaspixelarray
3683 // In particular, write access clamps the value written to 0 or 255 if the
3684 // value written is outside this range.
3685 class ExternalPixelArray: public ExternalArray {
3686  public:
3687   inline uint8_t* external_pixel_pointer();
3688 
3689   // Setter and getter.
3690   inline uint8_t get_scalar(int index);
3691   MUST_USE_RESULT inline MaybeObject* get(int index);
3692   inline void set(int index, uint8_t value);
3693 
3694   // This accessor applies the correct conversion from Smi, HeapNumber and
3695   // undefined and clamps the converted value between 0 and 255.
3696   Object* SetValue(uint32_t index, Object* value);
3697 
3698   // Casting.
3699   static inline ExternalPixelArray* cast(Object* obj);
3700 
3701 #ifdef OBJECT_PRINT
ExternalPixelArrayPrint()3702   inline void ExternalPixelArrayPrint() {
3703     ExternalPixelArrayPrint(stdout);
3704   }
3705   void ExternalPixelArrayPrint(FILE* out);
3706 #endif
3707 #ifdef DEBUG
3708   void ExternalPixelArrayVerify();
3709 #endif  // DEBUG
3710 
3711  private:
3712   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalPixelArray);
3713 };
3714 
3715 
3716 class ExternalByteArray: public ExternalArray {
3717  public:
3718   // Setter and getter.
3719   inline int8_t get_scalar(int index);
3720   MUST_USE_RESULT inline MaybeObject* get(int index);
3721   inline void set(int index, int8_t value);
3722 
3723   // This accessor applies the correct conversion from Smi, HeapNumber
3724   // and undefined.
3725   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3726 
3727   // Casting.
3728   static inline ExternalByteArray* cast(Object* obj);
3729 
3730 #ifdef OBJECT_PRINT
ExternalByteArrayPrint()3731   inline void ExternalByteArrayPrint() {
3732     ExternalByteArrayPrint(stdout);
3733   }
3734   void ExternalByteArrayPrint(FILE* out);
3735 #endif
3736 #ifdef DEBUG
3737   void ExternalByteArrayVerify();
3738 #endif  // DEBUG
3739 
3740  private:
3741   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
3742 };
3743 
3744 
3745 class ExternalUnsignedByteArray: public ExternalArray {
3746  public:
3747   // Setter and getter.
3748   inline uint8_t get_scalar(int index);
3749   MUST_USE_RESULT inline MaybeObject* get(int index);
3750   inline void set(int index, uint8_t value);
3751 
3752   // This accessor applies the correct conversion from Smi, HeapNumber
3753   // and undefined.
3754   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3755 
3756   // Casting.
3757   static inline ExternalUnsignedByteArray* cast(Object* obj);
3758 
3759 #ifdef OBJECT_PRINT
ExternalUnsignedByteArrayPrint()3760   inline void ExternalUnsignedByteArrayPrint() {
3761     ExternalUnsignedByteArrayPrint(stdout);
3762   }
3763   void ExternalUnsignedByteArrayPrint(FILE* out);
3764 #endif
3765 #ifdef DEBUG
3766   void ExternalUnsignedByteArrayVerify();
3767 #endif  // DEBUG
3768 
3769  private:
3770   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
3771 };
3772 
3773 
3774 class ExternalShortArray: public ExternalArray {
3775  public:
3776   // Setter and getter.
3777   inline int16_t get_scalar(int index);
3778   MUST_USE_RESULT inline MaybeObject* get(int index);
3779   inline void set(int index, int16_t value);
3780 
3781   // This accessor applies the correct conversion from Smi, HeapNumber
3782   // and undefined.
3783   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3784 
3785   // Casting.
3786   static inline ExternalShortArray* cast(Object* obj);
3787 
3788 #ifdef OBJECT_PRINT
ExternalShortArrayPrint()3789   inline void ExternalShortArrayPrint() {
3790     ExternalShortArrayPrint(stdout);
3791   }
3792   void ExternalShortArrayPrint(FILE* out);
3793 #endif
3794 #ifdef DEBUG
3795   void ExternalShortArrayVerify();
3796 #endif  // DEBUG
3797 
3798  private:
3799   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
3800 };
3801 
3802 
3803 class ExternalUnsignedShortArray: public ExternalArray {
3804  public:
3805   // Setter and getter.
3806   inline uint16_t get_scalar(int index);
3807   MUST_USE_RESULT inline MaybeObject* get(int index);
3808   inline void set(int index, uint16_t value);
3809 
3810   // This accessor applies the correct conversion from Smi, HeapNumber
3811   // and undefined.
3812   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3813 
3814   // Casting.
3815   static inline ExternalUnsignedShortArray* cast(Object* obj);
3816 
3817 #ifdef OBJECT_PRINT
ExternalUnsignedShortArrayPrint()3818   inline void ExternalUnsignedShortArrayPrint() {
3819     ExternalUnsignedShortArrayPrint(stdout);
3820   }
3821   void ExternalUnsignedShortArrayPrint(FILE* out);
3822 #endif
3823 #ifdef DEBUG
3824   void ExternalUnsignedShortArrayVerify();
3825 #endif  // DEBUG
3826 
3827  private:
3828   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
3829 };
3830 
3831 
3832 class ExternalIntArray: public ExternalArray {
3833  public:
3834   // Setter and getter.
3835   inline int32_t get_scalar(int index);
3836   MUST_USE_RESULT inline MaybeObject* get(int index);
3837   inline void set(int index, int32_t value);
3838 
3839   // This accessor applies the correct conversion from Smi, HeapNumber
3840   // and undefined.
3841   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3842 
3843   // Casting.
3844   static inline ExternalIntArray* cast(Object* obj);
3845 
3846 #ifdef OBJECT_PRINT
ExternalIntArrayPrint()3847   inline void ExternalIntArrayPrint() {
3848     ExternalIntArrayPrint(stdout);
3849   }
3850   void ExternalIntArrayPrint(FILE* out);
3851 #endif
3852 #ifdef DEBUG
3853   void ExternalIntArrayVerify();
3854 #endif  // DEBUG
3855 
3856  private:
3857   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
3858 };
3859 
3860 
3861 class ExternalUnsignedIntArray: public ExternalArray {
3862  public:
3863   // Setter and getter.
3864   inline uint32_t get_scalar(int index);
3865   MUST_USE_RESULT inline MaybeObject* get(int index);
3866   inline void set(int index, uint32_t value);
3867 
3868   // This accessor applies the correct conversion from Smi, HeapNumber
3869   // and undefined.
3870   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3871 
3872   // Casting.
3873   static inline ExternalUnsignedIntArray* cast(Object* obj);
3874 
3875 #ifdef OBJECT_PRINT
ExternalUnsignedIntArrayPrint()3876   inline void ExternalUnsignedIntArrayPrint() {
3877     ExternalUnsignedIntArrayPrint(stdout);
3878   }
3879   void ExternalUnsignedIntArrayPrint(FILE* out);
3880 #endif
3881 #ifdef DEBUG
3882   void ExternalUnsignedIntArrayVerify();
3883 #endif  // DEBUG
3884 
3885  private:
3886   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
3887 };
3888 
3889 
3890 class ExternalFloatArray: public ExternalArray {
3891  public:
3892   // Setter and getter.
3893   inline float get_scalar(int index);
3894   MUST_USE_RESULT inline MaybeObject* get(int index);
3895   inline void set(int index, float value);
3896 
3897   // This accessor applies the correct conversion from Smi, HeapNumber
3898   // and undefined.
3899   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3900 
3901   // Casting.
3902   static inline ExternalFloatArray* cast(Object* obj);
3903 
3904 #ifdef OBJECT_PRINT
ExternalFloatArrayPrint()3905   inline void ExternalFloatArrayPrint() {
3906     ExternalFloatArrayPrint(stdout);
3907   }
3908   void ExternalFloatArrayPrint(FILE* out);
3909 #endif
3910 #ifdef DEBUG
3911   void ExternalFloatArrayVerify();
3912 #endif  // DEBUG
3913 
3914  private:
3915   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
3916 };
3917 
3918 
3919 class ExternalDoubleArray: public ExternalArray {
3920  public:
3921   // Setter and getter.
3922   inline double get_scalar(int index);
3923   MUST_USE_RESULT inline MaybeObject* get(int index);
3924   inline void set(int index, double value);
3925 
3926   // This accessor applies the correct conversion from Smi, HeapNumber
3927   // and undefined.
3928   MUST_USE_RESULT MaybeObject* SetValue(uint32_t index, Object* value);
3929 
3930   // Casting.
3931   static inline ExternalDoubleArray* cast(Object* obj);
3932 
3933 #ifdef OBJECT_PRINT
ExternalDoubleArrayPrint()3934   inline void ExternalDoubleArrayPrint() {
3935     ExternalDoubleArrayPrint(stdout);
3936   }
3937   void ExternalDoubleArrayPrint(FILE* out);
3938 #endif  // OBJECT_PRINT
3939 #ifdef DEBUG
3940   void ExternalDoubleArrayVerify();
3941 #endif  // DEBUG
3942 
3943  private:
3944   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalDoubleArray);
3945 };
3946 
3947 
3948 // DeoptimizationInputData is a fixed array used to hold the deoptimization
3949 // data for code generated by the Hydrogen/Lithium compiler.  It also
3950 // contains information about functions that were inlined.  If N different
3951 // functions were inlined then first N elements of the literal array will
3952 // contain these functions.
3953 //
3954 // It can be empty.
3955 class DeoptimizationInputData: public FixedArray {
3956  public:
3957   // Layout description.  Indices in the array.
3958   static const int kTranslationByteArrayIndex = 0;
3959   static const int kInlinedFunctionCountIndex = 1;
3960   static const int kLiteralArrayIndex = 2;
3961   static const int kOsrAstIdIndex = 3;
3962   static const int kOsrPcOffsetIndex = 4;
3963   static const int kFirstDeoptEntryIndex = 5;
3964 
3965   // Offsets of deopt entry elements relative to the start of the entry.
3966   static const int kAstIdOffset = 0;
3967   static const int kTranslationIndexOffset = 1;
3968   static const int kArgumentsStackHeightOffset = 2;
3969   static const int kPcOffset = 3;
3970   static const int kDeoptEntrySize = 4;
3971 
3972   // Simple element accessors.
3973 #define DEFINE_ELEMENT_ACCESSORS(name, type)      \
3974   type* name() {                                  \
3975     return type::cast(get(k##name##Index));       \
3976   }                                               \
3977   void Set##name(type* value) {                   \
3978     set(k##name##Index, value);                   \
3979   }
3980 
DEFINE_ELEMENT_ACCESSORS(TranslationByteArray,ByteArray)3981   DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
3982   DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
3983   DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
3984   DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
3985   DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
3986 
3987 #undef DEFINE_ELEMENT_ACCESSORS
3988 
3989   // Accessors for elements of the ith deoptimization entry.
3990 #define DEFINE_ENTRY_ACCESSORS(name, type)                       \
3991   type* name(int i) {                                            \
3992     return type::cast(get(IndexForEntry(i) + k##name##Offset));  \
3993   }                                                              \
3994   void Set##name(int i, type* value) {                           \
3995     set(IndexForEntry(i) + k##name##Offset, value);              \
3996   }
3997 
3998   DEFINE_ENTRY_ACCESSORS(AstId, Smi)
3999   DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
4000   DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
4001   DEFINE_ENTRY_ACCESSORS(Pc, Smi)
4002 
4003 #undef DEFINE_ENTRY_ACCESSORS
4004 
4005   int DeoptCount() {
4006     return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
4007   }
4008 
4009   // Allocates a DeoptimizationInputData.
4010   MUST_USE_RESULT static MaybeObject* Allocate(int deopt_entry_count,
4011                                                PretenureFlag pretenure);
4012 
4013   // Casting.
4014   static inline DeoptimizationInputData* cast(Object* obj);
4015 
4016 #ifdef ENABLE_DISASSEMBLER
4017   void DeoptimizationInputDataPrint(FILE* out);
4018 #endif
4019 
4020  private:
IndexForEntry(int i)4021   static int IndexForEntry(int i) {
4022     return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
4023   }
4024 
LengthFor(int entry_count)4025   static int LengthFor(int entry_count) {
4026     return IndexForEntry(entry_count);
4027   }
4028 };
4029 
4030 
4031 // DeoptimizationOutputData is a fixed array used to hold the deoptimization
4032 // data for code generated by the full compiler.
4033 // The format of the these objects is
4034 //   [i * 2]: Ast ID for ith deoptimization.
4035 //   [i * 2 + 1]: PC and state of ith deoptimization
4036 class DeoptimizationOutputData: public FixedArray {
4037  public:
DeoptPoints()4038   int DeoptPoints() { return length() / 2; }
AstId(int index)4039   Smi* AstId(int index) { return Smi::cast(get(index * 2)); }
SetAstId(int index,Smi * id)4040   void SetAstId(int index, Smi* id) { set(index * 2, id); }
PcAndState(int index)4041   Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
SetPcAndState(int index,Smi * offset)4042   void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }
4043 
LengthOfFixedArray(int deopt_points)4044   static int LengthOfFixedArray(int deopt_points) {
4045     return deopt_points * 2;
4046   }
4047 
4048   // Allocates a DeoptimizationOutputData.
4049   MUST_USE_RESULT static MaybeObject* Allocate(int number_of_deopt_points,
4050                                                PretenureFlag pretenure);
4051 
4052   // Casting.
4053   static inline DeoptimizationOutputData* cast(Object* obj);
4054 
4055 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4056   void DeoptimizationOutputDataPrint(FILE* out);
4057 #endif
4058 };
4059 
4060 
4061 // Forward declaration.
4062 class JSGlobalPropertyCell;
4063 
4064 // TypeFeedbackCells is a fixed array used to hold the association between
4065 // cache cells and AST ids for code generated by the full compiler.
4066 // The format of the these objects is
4067 //   [i * 2]: Global property cell of ith cache cell.
4068 //   [i * 2 + 1]: Ast ID for ith cache cell.
4069 class TypeFeedbackCells: public FixedArray {
4070  public:
CellCount()4071   int CellCount() { return length() / 2; }
LengthOfFixedArray(int cell_count)4072   static int LengthOfFixedArray(int cell_count) { return cell_count * 2; }
4073 
4074   // Accessors for AST ids associated with cache values.
4075   inline Smi* AstId(int index);
4076   inline void SetAstId(int index, Smi* id);
4077 
4078   // Accessors for global property cells holding the cache values.
4079   inline JSGlobalPropertyCell* Cell(int index);
4080   inline void SetCell(int index, JSGlobalPropertyCell* cell);
4081 
4082   // The object that indicates an uninitialized cache.
4083   static inline Handle<Object> UninitializedSentinel(Isolate* isolate);
4084 
4085   // The object that indicates a megamorphic state.
4086   static inline Handle<Object> MegamorphicSentinel(Isolate* isolate);
4087 
4088   // A raw version of the uninitialized sentinel that's safe to read during
4089   // garbage collection (e.g., for patching the cache).
4090   static inline Object* RawUninitializedSentinel(Heap* heap);
4091 
4092   // Casting.
4093   static inline TypeFeedbackCells* cast(Object* obj);
4094 
4095   static const int kForInFastCaseMarker = 0;
4096   static const int kForInSlowCaseMarker = 1;
4097 };
4098 
4099 
4100 // Forward declaration.
4101 class SafepointEntry;
4102 class TypeFeedbackInfo;
4103 
4104 // Code describes objects with on-the-fly generated machine code.
4105 class Code: public HeapObject {
4106  public:
4107   // Opaque data type for encapsulating code flags like kind, inline
4108   // cache state, and arguments count.
4109   // FLAGS_MIN_VALUE and FLAGS_MAX_VALUE are specified to ensure that
4110   // enumeration type has correct value range (see Issue 830 for more details).
4111   enum Flags {
4112     FLAGS_MIN_VALUE = kMinInt,
4113     FLAGS_MAX_VALUE = kMaxInt
4114   };
4115 
4116   enum Kind {
4117     FUNCTION,
4118     OPTIMIZED_FUNCTION,
4119     STUB,
4120     BUILTIN,
4121     LOAD_IC,
4122     KEYED_LOAD_IC,
4123     CALL_IC,
4124     KEYED_CALL_IC,
4125     STORE_IC,
4126     KEYED_STORE_IC,
4127     UNARY_OP_IC,
4128     BINARY_OP_IC,
4129     COMPARE_IC,
4130     TO_BOOLEAN_IC,
4131     // No more than 16 kinds. The value currently encoded in four bits in
4132     // Flags.
4133 
4134     // Pseudo-kinds.
4135     REGEXP = BUILTIN,
4136     FIRST_IC_KIND = LOAD_IC,
4137     LAST_IC_KIND = TO_BOOLEAN_IC
4138   };
4139 
4140   enum {
4141     NUMBER_OF_KINDS = LAST_IC_KIND + 1
4142   };
4143 
4144   typedef int ExtraICState;
4145 
4146   static const ExtraICState kNoExtraICState = 0;
4147 
4148 #ifdef ENABLE_DISASSEMBLER
4149   // Printing
4150   static const char* Kind2String(Kind kind);
4151   static const char* ICState2String(InlineCacheState state);
4152   static const char* PropertyType2String(PropertyType type);
4153   static void PrintExtraICState(FILE* out, Kind kind, ExtraICState extra);
Disassemble(const char * name)4154   inline void Disassemble(const char* name) {
4155     Disassemble(name, stdout);
4156   }
4157   void Disassemble(const char* name, FILE* out);
4158 #endif  // ENABLE_DISASSEMBLER
4159 
4160   // [instruction_size]: Size of the native instructions
4161   inline int instruction_size();
4162   inline void set_instruction_size(int value);
4163 
4164   // [relocation_info]: Code relocation information
4165   DECL_ACCESSORS(relocation_info, ByteArray)
4166   void InvalidateRelocation();
4167 
4168   // [handler_table]: Fixed array containing offsets of exception handlers.
4169   DECL_ACCESSORS(handler_table, FixedArray)
4170 
4171   // [deoptimization_data]: Array containing data for deopt.
4172   DECL_ACCESSORS(deoptimization_data, FixedArray)
4173 
4174   // [type_feedback_info]: Struct containing type feedback information.
4175   // Will contain either a TypeFeedbackInfo object, or undefined.
4176   DECL_ACCESSORS(type_feedback_info, Object)
4177 
4178   // [gc_metadata]: Field used to hold GC related metadata. The contents of this
4179   // field does not have to be traced during garbage collection since
4180   // it is only used by the garbage collector itself.
4181   DECL_ACCESSORS(gc_metadata, Object)
4182 
4183   // [ic_age]: Inline caching age: the value of the Heap::global_ic_age
4184   // at the moment when this object was created.
4185   inline void set_ic_age(int count);
4186   inline int ic_age();
4187 
4188   // Unchecked accessors to be used during GC.
4189   inline ByteArray* unchecked_relocation_info();
4190   inline FixedArray* unchecked_deoptimization_data();
4191 
4192   inline int relocation_size();
4193 
4194   // [flags]: Various code flags.
4195   inline Flags flags();
4196   inline void set_flags(Flags flags);
4197 
4198   // [flags]: Access to specific code flags.
4199   inline Kind kind();
4200   inline InlineCacheState ic_state();  // Only valid for IC stubs.
4201   inline ExtraICState extra_ic_state();  // Only valid for IC stubs.
4202   inline PropertyType type();  // Only valid for monomorphic IC stubs.
4203   inline int arguments_count();  // Only valid for call IC stubs.
4204 
4205   // Testers for IC stub kinds.
4206   inline bool is_inline_cache_stub();
is_load_stub()4207   inline bool is_load_stub() { return kind() == LOAD_IC; }
is_keyed_load_stub()4208   inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
is_store_stub()4209   inline bool is_store_stub() { return kind() == STORE_IC; }
is_keyed_store_stub()4210   inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
is_call_stub()4211   inline bool is_call_stub() { return kind() == CALL_IC; }
is_keyed_call_stub()4212   inline bool is_keyed_call_stub() { return kind() == KEYED_CALL_IC; }
is_unary_op_stub()4213   inline bool is_unary_op_stub() { return kind() == UNARY_OP_IC; }
is_binary_op_stub()4214   inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; }
is_compare_ic_stub()4215   inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
is_to_boolean_ic_stub()4216   inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; }
4217 
4218   // [major_key]: For kind STUB or BINARY_OP_IC, the major key.
4219   inline int major_key();
4220   inline void set_major_key(int value);
4221 
4222   // For stubs, tells whether they should always exist, so that they can be
4223   // called from other stubs.
4224   inline bool is_pregenerated();
4225   inline void set_is_pregenerated(bool value);
4226 
4227   // [optimizable]: For FUNCTION kind, tells if it is optimizable.
4228   inline bool optimizable();
4229   inline void set_optimizable(bool value);
4230 
4231   // [has_deoptimization_support]: For FUNCTION kind, tells if it has
4232   // deoptimization support.
4233   inline bool has_deoptimization_support();
4234   inline void set_has_deoptimization_support(bool value);
4235 
4236   // [has_debug_break_slots]: For FUNCTION kind, tells if it has
4237   // been compiled with debug break slots.
4238   inline bool has_debug_break_slots();
4239   inline void set_has_debug_break_slots(bool value);
4240 
4241   // [compiled_with_optimizing]: For FUNCTION kind, tells if it has
4242   // been compiled with IsOptimizing set to true.
4243   inline bool is_compiled_optimizable();
4244   inline void set_compiled_optimizable(bool value);
4245 
4246   // [has_self_optimization_header]: For FUNCTION kind, tells if it has
4247   // a self-optimization header.
4248   inline bool has_self_optimization_header();
4249   inline void set_self_optimization_header(bool value);
4250 
4251   // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
4252   // how long the function has been marked for OSR and therefore which
4253   // level of loop nesting we are willing to do on-stack replacement
4254   // for.
4255   inline void set_allow_osr_at_loop_nesting_level(int level);
4256   inline int allow_osr_at_loop_nesting_level();
4257 
4258   // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
4259   // the code object was seen on the stack with no IC patching going on.
4260   inline int profiler_ticks();
4261   inline void set_profiler_ticks(int ticks);
4262 
4263   // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
4264   // reserved in the code prologue.
4265   inline unsigned stack_slots();
4266   inline void set_stack_slots(unsigned slots);
4267 
4268   // [safepoint_table_start]: For kind OPTIMIZED_CODE, the offset in
4269   // the instruction stream where the safepoint table starts.
4270   inline unsigned safepoint_table_offset();
4271   inline void set_safepoint_table_offset(unsigned offset);
4272 
4273   // [stack_check_table_start]: For kind FUNCTION, the offset in the
4274   // instruction stream where the stack check table starts.
4275   inline unsigned stack_check_table_offset();
4276   inline void set_stack_check_table_offset(unsigned offset);
4277 
4278   // [check type]: For kind CALL_IC, tells how to check if the
4279   // receiver is valid for the given call.
4280   inline CheckType check_type();
4281   inline void set_check_type(CheckType value);
4282 
4283   // [type-recording unary op type]: For kind UNARY_OP_IC.
4284   inline byte unary_op_type();
4285   inline void set_unary_op_type(byte value);
4286 
4287   // [type-recording binary op type]: For kind BINARY_OP_IC.
4288   inline byte binary_op_type();
4289   inline void set_binary_op_type(byte value);
4290   inline byte binary_op_result_type();
4291   inline void set_binary_op_result_type(byte value);
4292 
4293   // [compare state]: For kind COMPARE_IC, tells what state the stub is in.
4294   inline byte compare_state();
4295   inline void set_compare_state(byte value);
4296 
4297   // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
4298   inline byte to_boolean_state();
4299   inline void set_to_boolean_state(byte value);
4300 
4301   // [has_function_cache]: For kind STUB tells whether there is a function
4302   // cache is passed to the stub.
4303   inline bool has_function_cache();
4304   inline void set_has_function_cache(bool flag);
4305 
4306   // Get the safepoint entry for the given pc.
4307   SafepointEntry GetSafepointEntry(Address pc);
4308 
4309   // Mark this code object as not having a stack check table.  Assumes kind
4310   // is FUNCTION.
4311   void SetNoStackCheckTable();
4312 
4313   // Find the first map in an IC stub.
4314   Map* FindFirstMap();
4315 
4316   class ExtraICStateStrictMode: public BitField<StrictModeFlag, 0, 1> {};
4317   class ExtraICStateKeyedAccessGrowMode:
4318       public BitField<KeyedAccessGrowMode, 1, 1> {};  // NOLINT
4319 
4320   static const int kExtraICStateGrowModeShift = 1;
4321 
GetStrictMode(ExtraICState extra_ic_state)4322   static inline StrictModeFlag GetStrictMode(ExtraICState extra_ic_state) {
4323     return ExtraICStateStrictMode::decode(extra_ic_state);
4324   }
4325 
GetKeyedAccessGrowMode(ExtraICState extra_ic_state)4326   static inline KeyedAccessGrowMode GetKeyedAccessGrowMode(
4327       ExtraICState extra_ic_state) {
4328     return ExtraICStateKeyedAccessGrowMode::decode(extra_ic_state);
4329   }
4330 
ComputeExtraICState(KeyedAccessGrowMode grow_mode,StrictModeFlag strict_mode)4331   static inline ExtraICState ComputeExtraICState(
4332       KeyedAccessGrowMode grow_mode,
4333       StrictModeFlag strict_mode) {
4334     return ExtraICStateKeyedAccessGrowMode::encode(grow_mode) |
4335         ExtraICStateStrictMode::encode(strict_mode);
4336   }
4337 
4338   // Flags operations.
4339   static inline Flags ComputeFlags(
4340       Kind kind,
4341       InlineCacheState ic_state = UNINITIALIZED,
4342       ExtraICState extra_ic_state = kNoExtraICState,
4343       PropertyType type = NORMAL,
4344       int argc = -1,
4345       InlineCacheHolderFlag holder = OWN_MAP);
4346 
4347   static inline Flags ComputeMonomorphicFlags(
4348       Kind kind,
4349       PropertyType type,
4350       ExtraICState extra_ic_state = kNoExtraICState,
4351       InlineCacheHolderFlag holder = OWN_MAP,
4352       int argc = -1);
4353 
4354   static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
4355   static inline PropertyType ExtractTypeFromFlags(Flags flags);
4356   static inline Kind ExtractKindFromFlags(Flags flags);
4357   static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
4358   static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
4359   static inline int ExtractArgumentsCountFromFlags(Flags flags);
4360 
4361   static inline Flags RemoveTypeFromFlags(Flags flags);
4362 
4363   // Convert a target address into a code object.
4364   static inline Code* GetCodeFromTargetAddress(Address address);
4365 
4366   // Convert an entry address into an object.
4367   static inline Object* GetObjectFromEntryAddress(Address location_of_address);
4368 
4369   // Returns the address of the first instruction.
4370   inline byte* instruction_start();
4371 
4372   // Returns the address right after the last instruction.
4373   inline byte* instruction_end();
4374 
4375   // Returns the size of the instructions, padding, and relocation information.
4376   inline int body_size();
4377 
4378   // Returns the address of the first relocation info (read backwards!).
4379   inline byte* relocation_start();
4380 
4381   // Code entry point.
4382   inline byte* entry();
4383 
4384   // Returns true if pc is inside this object's instructions.
4385   inline bool contains(byte* pc);
4386 
4387   // Relocate the code by delta bytes. Called to signal that this code
4388   // object has been moved by delta bytes.
4389   void Relocate(intptr_t delta);
4390 
4391   // Migrate code described by desc.
4392   void CopyFrom(const CodeDesc& desc);
4393 
4394   // Returns the object size for a given body (used for allocation).
SizeFor(int body_size)4395   static int SizeFor(int body_size) {
4396     ASSERT_SIZE_TAG_ALIGNED(body_size);
4397     return RoundUp(kHeaderSize + body_size, kCodeAlignment);
4398   }
4399 
4400   // Calculate the size of the code object to report for log events. This takes
4401   // the layout of the code object into account.
ExecutableSize()4402   int ExecutableSize() {
4403     // Check that the assumptions about the layout of the code object holds.
4404     ASSERT_EQ(static_cast<int>(instruction_start() - address()),
4405               Code::kHeaderSize);
4406     return instruction_size() + Code::kHeaderSize;
4407   }
4408 
4409   // Locating source position.
4410   int SourcePosition(Address pc);
4411   int SourceStatementPosition(Address pc);
4412 
4413   // Casting.
4414   static inline Code* cast(Object* obj);
4415 
4416   // Dispatched behavior.
CodeSize()4417   int CodeSize() { return SizeFor(body_size()); }
4418   inline void CodeIterateBody(ObjectVisitor* v);
4419 
4420   template<typename StaticVisitor>
4421   inline void CodeIterateBody(Heap* heap);
4422 #ifdef OBJECT_PRINT
CodePrint()4423   inline void CodePrint() {
4424     CodePrint(stdout);
4425   }
4426   void CodePrint(FILE* out);
4427 #endif
4428 #ifdef DEBUG
4429   void CodeVerify();
4430 #endif
4431   void ClearInlineCaches();
4432 
4433   // Max loop nesting marker used to postpose OSR. We don't take loop
4434   // nesting that is deeper than 5 levels into account.
4435   static const int kMaxLoopNestingMarker = 6;
4436 
4437   // Layout description.
4438   static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
4439   static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize;
4440   static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
4441   static const int kDeoptimizationDataOffset =
4442       kHandlerTableOffset + kPointerSize;
4443   static const int kTypeFeedbackInfoOffset =
4444       kDeoptimizationDataOffset + kPointerSize;
4445   static const int kGCMetadataOffset = kTypeFeedbackInfoOffset + kPointerSize;
4446   static const int kICAgeOffset =
4447       kGCMetadataOffset + kPointerSize;
4448   static const int kFlagsOffset = kICAgeOffset + kIntSize;
4449   static const int kKindSpecificFlagsOffset = kFlagsOffset + kIntSize;
4450   static const int kKindSpecificFlagsSize = 2 * kIntSize;
4451 
4452   static const int kHeaderPaddingStart = kKindSpecificFlagsOffset +
4453       kKindSpecificFlagsSize;
4454 
4455   // Add padding to align the instruction start following right after
4456   // the Code object header.
4457   static const int kHeaderSize =
4458       (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
4459 
4460   // Byte offsets within kKindSpecificFlagsOffset.
4461   static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset;
4462   static const int kOptimizableOffset = kKindSpecificFlagsOffset;
4463   static const int kStackSlotsOffset = kKindSpecificFlagsOffset;
4464   static const int kCheckTypeOffset = kKindSpecificFlagsOffset;
4465 
4466   static const int kUnaryOpTypeOffset = kStubMajorKeyOffset + 1;
4467   static const int kBinaryOpTypeOffset = kStubMajorKeyOffset + 1;
4468   static const int kCompareStateOffset = kStubMajorKeyOffset + 1;
4469   static const int kToBooleanTypeOffset = kStubMajorKeyOffset + 1;
4470   static const int kHasFunctionCacheOffset = kStubMajorKeyOffset + 1;
4471 
4472   static const int kFullCodeFlags = kOptimizableOffset + 1;
4473   class FullCodeFlagsHasDeoptimizationSupportField:
4474       public BitField<bool, 0, 1> {};  // NOLINT
4475   class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
4476   class FullCodeFlagsIsCompiledOptimizable: public BitField<bool, 2, 1> {};
4477   class FullCodeFlagsHasSelfOptimizationHeader: public BitField<bool, 3, 1> {};
4478 
4479   static const int kBinaryOpReturnTypeOffset = kBinaryOpTypeOffset + 1;
4480 
4481   static const int kAllowOSRAtLoopNestingLevelOffset = kFullCodeFlags + 1;
4482   static const int kProfilerTicksOffset = kAllowOSRAtLoopNestingLevelOffset + 1;
4483 
4484   static const int kSafepointTableOffsetOffset = kStackSlotsOffset + kIntSize;
4485   static const int kStackCheckTableOffsetOffset = kStackSlotsOffset + kIntSize;
4486 
4487   // Flags layout.  BitField<type, shift, size>.
4488   class ICStateField: public BitField<InlineCacheState, 0, 3> {};
4489   class TypeField: public BitField<PropertyType, 3, 4> {};
4490   class CacheHolderField: public BitField<InlineCacheHolderFlag, 7, 1> {};
4491   class KindField: public BitField<Kind, 8, 4> {};
4492   class ExtraICStateField: public BitField<ExtraICState, 12, 2> {};
4493   class IsPregeneratedField: public BitField<bool, 14, 1> {};
4494 
4495   // Signed field cannot be encoded using the BitField class.
4496   static const int kArgumentsCountShift = 15;
4497   static const int kArgumentsCountMask = ~((1 << kArgumentsCountShift) - 1);
4498 
4499   // This constant should be encodable in an ARM instruction.
4500   static const int kFlagsNotUsedInLookup =
4501       TypeField::kMask | CacheHolderField::kMask;
4502 
4503  private:
4504   DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
4505 };
4506 
4507 
4508 // All heap objects have a Map that describes their structure.
4509 //  A Map contains information about:
4510 //  - Size information about the object
4511 //  - How to iterate over an object (for garbage collection)
4512 class Map: public HeapObject {
4513  public:
4514   // Instance size.
4515   // Size in bytes or kVariableSizeSentinel if instances do not have
4516   // a fixed size.
4517   inline int instance_size();
4518   inline void set_instance_size(int value);
4519 
4520   // Count of properties allocated in the object.
4521   inline int inobject_properties();
4522   inline void set_inobject_properties(int value);
4523 
4524   // Count of property fields pre-allocated in the object when first allocated.
4525   inline int pre_allocated_property_fields();
4526   inline void set_pre_allocated_property_fields(int value);
4527 
4528   // Instance type.
4529   inline InstanceType instance_type();
4530   inline void set_instance_type(InstanceType value);
4531 
4532   // Tells how many unused property fields are available in the
4533   // instance (only used for JSObject in fast mode).
4534   inline int unused_property_fields();
4535   inline void set_unused_property_fields(int value);
4536 
4537   // Bit field.
4538   inline byte bit_field();
4539   inline void set_bit_field(byte value);
4540 
4541   // Bit field 2.
4542   inline byte bit_field2();
4543   inline void set_bit_field2(byte value);
4544 
4545   // Bit field 3.
4546   // TODO(1399): It should be possible to make room for bit_field3 in the map
4547   // without overloading the instance descriptors field (and storing it in the
4548   // DescriptorArray when the map has one).
4549   inline int bit_field3();
4550   inline void set_bit_field3(int value);
4551 
4552   // Tells whether the object in the prototype property will be used
4553   // for instances created from this function.  If the prototype
4554   // property is set to a value that is not a JSObject, the prototype
4555   // property will not be used to create instances of the function.
4556   // See ECMA-262, 13.2.2.
4557   inline void set_non_instance_prototype(bool value);
4558   inline bool has_non_instance_prototype();
4559 
4560   // Tells whether function has special prototype property. If not, prototype
4561   // property will not be created when accessed (will return undefined),
4562   // and construction from this function will not be allowed.
4563   inline void set_function_with_prototype(bool value);
4564   inline bool function_with_prototype();
4565 
4566   // Tells whether the instance with this map should be ignored by the
4567   // __proto__ accessor.
set_is_hidden_prototype()4568   inline void set_is_hidden_prototype() {
4569     set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
4570   }
4571 
is_hidden_prototype()4572   inline bool is_hidden_prototype() {
4573     return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
4574   }
4575 
4576   // Records and queries whether the instance has a named interceptor.
set_has_named_interceptor()4577   inline void set_has_named_interceptor() {
4578     set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
4579   }
4580 
has_named_interceptor()4581   inline bool has_named_interceptor() {
4582     return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
4583   }
4584 
4585   // Records and queries whether the instance has an indexed interceptor.
set_has_indexed_interceptor()4586   inline void set_has_indexed_interceptor() {
4587     set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
4588   }
4589 
has_indexed_interceptor()4590   inline bool has_indexed_interceptor() {
4591     return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
4592   }
4593 
4594   // Tells whether the instance is undetectable.
4595   // An undetectable object is a special class of JSObject: 'typeof' operator
4596   // returns undefined, ToBoolean returns false. Otherwise it behaves like
4597   // a normal JS object.  It is useful for implementing undetectable
4598   // document.all in Firefox & Safari.
4599   // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
set_is_undetectable()4600   inline void set_is_undetectable() {
4601     set_bit_field(bit_field() | (1 << kIsUndetectable));
4602   }
4603 
is_undetectable()4604   inline bool is_undetectable() {
4605     return ((1 << kIsUndetectable) & bit_field()) != 0;
4606   }
4607 
4608   // Tells whether the instance has a call-as-function handler.
set_has_instance_call_handler()4609   inline void set_has_instance_call_handler() {
4610     set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
4611   }
4612 
has_instance_call_handler()4613   inline bool has_instance_call_handler() {
4614     return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
4615   }
4616 
4617   inline void set_is_extensible(bool value);
4618   inline bool is_extensible();
4619 
set_elements_kind(ElementsKind elements_kind)4620   inline void set_elements_kind(ElementsKind elements_kind) {
4621     ASSERT(elements_kind < kElementsKindCount);
4622     ASSERT(kElementsKindCount <= (1 << kElementsKindBitCount));
4623     set_bit_field2((bit_field2() & ~kElementsKindMask) |
4624         (elements_kind << kElementsKindShift));
4625     ASSERT(this->elements_kind() == elements_kind);
4626   }
4627 
elements_kind()4628   inline ElementsKind elements_kind() {
4629     return static_cast<ElementsKind>(
4630         (bit_field2() & kElementsKindMask) >> kElementsKindShift);
4631   }
4632 
4633   // Tells whether the instance has fast elements that are only Smis.
has_fast_smi_only_elements()4634   inline bool has_fast_smi_only_elements() {
4635     return elements_kind() == FAST_SMI_ONLY_ELEMENTS;
4636   }
4637 
4638   // Tells whether the instance has fast elements.
has_fast_elements()4639   inline bool has_fast_elements() {
4640     return elements_kind() == FAST_ELEMENTS;
4641   }
4642 
has_fast_double_elements()4643   inline bool has_fast_double_elements() {
4644     return elements_kind() == FAST_DOUBLE_ELEMENTS;
4645   }
4646 
has_non_strict_arguments_elements()4647   inline bool has_non_strict_arguments_elements() {
4648     return elements_kind() == NON_STRICT_ARGUMENTS_ELEMENTS;
4649   }
4650 
has_external_array_elements()4651   inline bool has_external_array_elements() {
4652     ElementsKind kind(elements_kind());
4653     return kind >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
4654         kind <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND;
4655   }
4656 
has_dictionary_elements()4657   inline bool has_dictionary_elements() {
4658     return elements_kind() == DICTIONARY_ELEMENTS;
4659   }
4660 
has_slow_elements_kind()4661   inline bool has_slow_elements_kind() {
4662     return elements_kind() == DICTIONARY_ELEMENTS
4663         || elements_kind() == NON_STRICT_ARGUMENTS_ELEMENTS;
4664   }
4665 
4666   static bool IsValidElementsTransition(ElementsKind from_kind,
4667                                         ElementsKind to_kind);
4668 
4669   // Tells whether the map is attached to SharedFunctionInfo
4670   // (for inobject slack tracking).
4671   inline void set_attached_to_shared_function_info(bool value);
4672 
4673   inline bool attached_to_shared_function_info();
4674 
4675   // Tells whether the map is shared between objects that may have different
4676   // behavior. If true, the map should never be modified, instead a clone
4677   // should be created and modified.
4678   inline void set_is_shared(bool value);
4679 
4680   inline bool is_shared();
4681 
4682   // Tells whether the instance needs security checks when accessing its
4683   // properties.
4684   inline void set_is_access_check_needed(bool access_check_needed);
4685   inline bool is_access_check_needed();
4686 
4687   // [prototype]: implicit prototype object.
4688   DECL_ACCESSORS(prototype, Object)
4689 
4690   // [constructor]: points back to the function responsible for this map.
4691   DECL_ACCESSORS(constructor, Object)
4692 
4693   inline JSFunction* unchecked_constructor();
4694 
4695   // Should only be called by the code that initializes map to set initial valid
4696   // value of the instance descriptor member.
4697   inline void init_instance_descriptors();
4698 
4699   // [instance descriptors]: describes the object.
4700   DECL_ACCESSORS(instance_descriptors, DescriptorArray)
4701 
4702   // Sets the instance descriptor array for the map to be an empty descriptor
4703   // array.
4704   inline void clear_instance_descriptors();
4705 
4706   // [stub cache]: contains stubs compiled for this map.
4707   DECL_ACCESSORS(code_cache, Object)
4708 
4709   // [prototype transitions]: cache of prototype transitions.
4710   // Prototype transition is a transition that happens
4711   // when we change object's prototype to a new one.
4712   // Cache format:
4713   //    0: finger - index of the first free cell in the cache
4714   //    1 + 2 * i: prototype
4715   //    2 + 2 * i: target map
4716   DECL_ACCESSORS(prototype_transitions, FixedArray)
4717 
4718   inline FixedArray* unchecked_prototype_transitions();
4719 
4720   static const int kProtoTransitionHeaderSize = 1;
4721   static const int kProtoTransitionNumberOfEntriesOffset = 0;
4722   static const int kProtoTransitionElementsPerEntry = 2;
4723   static const int kProtoTransitionPrototypeOffset = 0;
4724   static const int kProtoTransitionMapOffset = 1;
4725 
NumberOfProtoTransitions()4726   inline int NumberOfProtoTransitions() {
4727     FixedArray* cache = prototype_transitions();
4728     if (cache->length() == 0) return 0;
4729     return
4730         Smi::cast(cache->get(kProtoTransitionNumberOfEntriesOffset))->value();
4731   }
4732 
SetNumberOfProtoTransitions(int value)4733   inline void SetNumberOfProtoTransitions(int value) {
4734     FixedArray* cache = prototype_transitions();
4735     ASSERT(cache->length() != 0);
4736     cache->set_unchecked(kProtoTransitionNumberOfEntriesOffset,
4737                          Smi::FromInt(value));
4738   }
4739 
4740   // Lookup in the map's instance descriptors and fill out the result
4741   // with the given holder if the name is found. The holder may be
4742   // NULL when this function is used from the compiler.
4743   void LookupInDescriptors(JSObject* holder,
4744                            String* name,
4745                            LookupResult* result);
4746 
4747   MUST_USE_RESULT MaybeObject* CopyDropDescriptors();
4748 
4749   MUST_USE_RESULT MaybeObject* CopyNormalized(PropertyNormalizationMode mode,
4750                                               NormalizedMapSharingMode sharing);
4751 
4752   // Returns a copy of the map, with all transitions dropped from the
4753   // instance descriptors.
4754   MUST_USE_RESULT MaybeObject* CopyDropTransitions();
4755 
4756   // Returns the property index for name (only valid for FAST MODE).
4757   int PropertyIndexFor(String* name);
4758 
4759   // Returns the next free property index (only valid for FAST MODE).
4760   int NextFreePropertyIndex();
4761 
4762   // Returns the number of properties described in instance_descriptors
4763   // filtering out properties with the specified attributes.
4764   int NumberOfDescribedProperties(PropertyAttributes filter = NONE);
4765 
4766   // Casting.
4767   static inline Map* cast(Object* obj);
4768 
4769   // Locate an accessor in the instance descriptor.
4770   AccessorDescriptor* FindAccessor(String* name);
4771 
4772   // Code cache operations.
4773 
4774   // Clears the code cache.
4775   inline void ClearCodeCache(Heap* heap);
4776 
4777   // Update code cache.
4778   static void UpdateCodeCache(Handle<Map> map,
4779                               Handle<String> name,
4780                               Handle<Code> code);
4781   MUST_USE_RESULT MaybeObject* UpdateCodeCache(String* name, Code* code);
4782 
4783   // Returns the found code or undefined if absent.
4784   Object* FindInCodeCache(String* name, Code::Flags flags);
4785 
4786   // Returns the non-negative index of the code object if it is in the
4787   // cache and -1 otherwise.
4788   int IndexInCodeCache(Object* name, Code* code);
4789 
4790   // Removes a code object from the code cache at the given index.
4791   void RemoveFromCodeCache(String* name, Code* code, int index);
4792 
4793   // For every transition in this map, makes the transition's
4794   // target's prototype pointer point back to this map.
4795   // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
4796   void CreateBackPointers();
4797 
4798   void CreateOneBackPointer(Object* transition_target);
4799 
4800   // Set all map transitions from this map to dead maps to null.
4801   // Also, restore the original prototype on the targets of these
4802   // transitions, so that we do not process this map again while
4803   // following back pointers.
4804   void ClearNonLiveTransitions(Heap* heap, Object* real_prototype);
4805 
4806   // Restore a possible back pointer in the prototype field of object.
4807   // Return true in that case and false otherwise. Set *keep_entry to
4808   // true when a live map transition has been found.
4809   bool RestoreOneBackPointer(Object* object,
4810                              Object* real_prototype,
4811                              bool* keep_entry);
4812 
4813   // Computes a hash value for this map, to be used in HashTables and such.
4814   int Hash();
4815 
4816   // Compares this map to another to see if they describe equivalent objects.
4817   // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
4818   // it had exactly zero inobject properties.
4819   // The "shared" flags of both this map and |other| are ignored.
4820   bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
4821 
4822   // Returns the contents of this map's descriptor array for the given string.
4823   // May return NULL. |safe_to_add_transition| is set to false and NULL
4824   // is returned if adding transitions is not allowed.
4825   Object* GetDescriptorContents(String* sentinel_name,
4826                                 bool* safe_to_add_transitions);
4827 
4828   // Returns the map that this map transitions to if its elements_kind
4829   // is changed to |elements_kind|, or NULL if no such map is cached yet.
4830   // |safe_to_add_transitions| is set to false if adding transitions is not
4831   // allowed.
4832   Map* LookupElementsTransitionMap(ElementsKind elements_kind,
4833                                    bool* safe_to_add_transition);
4834 
4835   // Adds an entry to this map's descriptor array for a transition to
4836   // |transitioned_map| when its elements_kind is changed to |elements_kind|.
4837   MUST_USE_RESULT MaybeObject* AddElementsTransition(
4838       ElementsKind elements_kind, Map* transitioned_map);
4839 
4840   // Returns the transitioned map for this map with the most generic
4841   // elements_kind that's found in |candidates|, or null handle if no match is
4842   // found at all.
4843   Handle<Map> FindTransitionedMap(MapHandleList* candidates);
4844   Map* FindTransitionedMap(MapList* candidates);
4845 
4846 
4847   // Dispatched behavior.
4848 #ifdef OBJECT_PRINT
MapPrint()4849   inline void MapPrint() {
4850     MapPrint(stdout);
4851   }
4852   void MapPrint(FILE* out);
4853 #endif
4854 #ifdef DEBUG
4855   void MapVerify();
4856   void SharedMapVerify();
4857 #endif
4858 
4859   inline int visitor_id();
4860   inline void set_visitor_id(int visitor_id);
4861 
4862   typedef void (*TraverseCallback)(Map* map, void* data);
4863 
4864   void TraverseTransitionTree(TraverseCallback callback, void* data);
4865 
4866   static const int kMaxCachedPrototypeTransitions = 256;
4867 
4868   Object* GetPrototypeTransition(Object* prototype);
4869 
4870   MUST_USE_RESULT MaybeObject* PutPrototypeTransition(Object* prototype,
4871                                                       Map* map);
4872 
4873   static const int kMaxPreAllocatedPropertyFields = 255;
4874 
4875   // Layout description.
4876   static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
4877   static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
4878   static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
4879   static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
4880   // Storage for instance descriptors is overloaded to also contain additional
4881   // map flags when unused (bit_field3). When the map has instance descriptors,
4882   // the flags are transferred to the instance descriptor array and accessed
4883   // through an extra indirection.
4884   // TODO(1399): It should be possible to make room for bit_field3 in the map
4885   // without overloading the instance descriptors field, but the map is
4886   // currently perfectly aligned to 32 bytes and extending it at all would
4887   // double its size.  After the increment GC work lands, this size restriction
4888   // could be loosened and bit_field3 moved directly back in the map.
4889   static const int kInstanceDescriptorsOrBitField3Offset =
4890       kConstructorOffset + kPointerSize;
4891   static const int kCodeCacheOffset =
4892       kInstanceDescriptorsOrBitField3Offset + kPointerSize;
4893   static const int kPrototypeTransitionsOffset =
4894       kCodeCacheOffset + kPointerSize;
4895   static const int kPadStart = kPrototypeTransitionsOffset + kPointerSize;
4896   static const int kSize = MAP_POINTER_ALIGN(kPadStart);
4897 
4898   // Layout of pointer fields. Heap iteration code relies on them
4899   // being continuously allocated.
4900   static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
4901   static const int kPointerFieldsEndOffset =
4902       Map::kPrototypeTransitionsOffset + kPointerSize;
4903 
4904   // Byte offsets within kInstanceSizesOffset.
4905   static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
4906   static const int kInObjectPropertiesByte = 1;
4907   static const int kInObjectPropertiesOffset =
4908       kInstanceSizesOffset + kInObjectPropertiesByte;
4909   static const int kPreAllocatedPropertyFieldsByte = 2;
4910   static const int kPreAllocatedPropertyFieldsOffset =
4911       kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
4912   static const int kVisitorIdByte = 3;
4913   static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
4914 
4915   // Byte offsets within kInstanceAttributesOffset attributes.
4916   static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
4917   static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
4918   static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
4919   static const int kBitField2Offset = kInstanceAttributesOffset + 3;
4920 
4921   STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
4922 
4923   // Bit positions for bit field.
4924   static const int kUnused = 0;  // To be used for marking recently used maps.
4925   static const int kHasNonInstancePrototype = 1;
4926   static const int kIsHiddenPrototype = 2;
4927   static const int kHasNamedInterceptor = 3;
4928   static const int kHasIndexedInterceptor = 4;
4929   static const int kIsUndetectable = 5;
4930   static const int kHasInstanceCallHandler = 6;
4931   static const int kIsAccessCheckNeeded = 7;
4932 
4933   // Bit positions for bit field 2
4934   static const int kIsExtensible = 0;
4935   static const int kFunctionWithPrototype = 1;
4936   static const int kStringWrapperSafeForDefaultValueOf = 2;
4937   static const int kAttachedToSharedFunctionInfo = 3;
4938   // No bits can be used after kElementsKindFirstBit, they are all reserved for
4939   // storing ElementKind.
4940   static const int kElementsKindShift = 4;
4941   static const int kElementsKindBitCount = 4;
4942 
4943   // Derived values from bit field 2
4944   static const int kElementsKindMask = (-1 << kElementsKindShift) &
4945       ((1 << (kElementsKindShift + kElementsKindBitCount)) - 1);
4946   static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
4947       (FAST_ELEMENTS + 1) << Map::kElementsKindShift) - 1;
4948   static const int8_t kMaximumBitField2FastSmiOnlyElementValue =
4949       static_cast<int8_t>((FAST_SMI_ONLY_ELEMENTS + 1) <<
4950                           Map::kElementsKindShift) - 1;
4951 
4952   // Bit positions for bit field 3
4953   static const int kIsShared = 0;
4954 
4955   // Layout of the default cache. It holds alternating name and code objects.
4956   static const int kCodeCacheEntrySize = 2;
4957   static const int kCodeCacheEntryNameOffset = 0;
4958   static const int kCodeCacheEntryCodeOffset = 1;
4959 
4960   typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
4961                               kPointerFieldsEndOffset,
4962                               kSize> BodyDescriptor;
4963 
4964  private:
4965   String* elements_transition_sentinel_name();
4966   DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
4967 };
4968 
4969 
4970 // An abstract superclass, a marker class really, for simple structure classes.
4971 // It doesn't carry much functionality but allows struct classes to be
4972 // identified in the type system.
4973 class Struct: public HeapObject {
4974  public:
4975   inline void InitializeBody(int object_size);
4976   static inline Struct* cast(Object* that);
4977 };
4978 
4979 
4980 // Script describes a script which has been added to the VM.
4981 class Script: public Struct {
4982  public:
4983   // Script types.
4984   enum Type {
4985     TYPE_NATIVE = 0,
4986     TYPE_EXTENSION = 1,
4987     TYPE_NORMAL = 2
4988   };
4989 
4990   // Script compilation types.
4991   enum CompilationType {
4992     COMPILATION_TYPE_HOST = 0,
4993     COMPILATION_TYPE_EVAL = 1
4994   };
4995 
4996   // Script compilation state.
4997   enum CompilationState {
4998     COMPILATION_STATE_INITIAL = 0,
4999     COMPILATION_STATE_COMPILED = 1
5000   };
5001 
5002   // [source]: the script source.
5003   DECL_ACCESSORS(source, Object)
5004 
5005   // [name]: the script name.
5006   DECL_ACCESSORS(name, Object)
5007 
5008   // [id]: the script id.
5009   DECL_ACCESSORS(id, Object)
5010 
5011   // [line_offset]: script line offset in resource from where it was extracted.
5012   DECL_ACCESSORS(line_offset, Smi)
5013 
5014   // [column_offset]: script column offset in resource from where it was
5015   // extracted.
5016   DECL_ACCESSORS(column_offset, Smi)
5017 
5018   // [data]: additional data associated with this script.
5019   DECL_ACCESSORS(data, Object)
5020 
5021   // [context_data]: context data for the context this script was compiled in.
5022   DECL_ACCESSORS(context_data, Object)
5023 
5024   // [wrapper]: the wrapper cache.
5025   DECL_ACCESSORS(wrapper, Foreign)
5026 
5027   // [type]: the script type.
5028   DECL_ACCESSORS(type, Smi)
5029 
5030   // [compilation]: how the the script was compiled.
5031   DECL_ACCESSORS(compilation_type, Smi)
5032 
5033   // [is_compiled]: determines whether the script has already been compiled.
5034   DECL_ACCESSORS(compilation_state, Smi)
5035 
5036   // [line_ends]: FixedArray of line ends positions.
5037   DECL_ACCESSORS(line_ends, Object)
5038 
5039   // [eval_from_shared]: for eval scripts the shared funcion info for the
5040   // function from which eval was called.
5041   DECL_ACCESSORS(eval_from_shared, Object)
5042 
5043   // [eval_from_instructions_offset]: the instruction offset in the code for the
5044   // function from which eval was called where eval was called.
5045   DECL_ACCESSORS(eval_from_instructions_offset, Smi)
5046 
5047   static inline Script* cast(Object* obj);
5048 
5049   // If script source is an external string, check that the underlying
5050   // resource is accessible. Otherwise, always return true.
5051   inline bool HasValidSource();
5052 
5053 #ifdef OBJECT_PRINT
ScriptPrint()5054   inline void ScriptPrint() {
5055     ScriptPrint(stdout);
5056   }
5057   void ScriptPrint(FILE* out);
5058 #endif
5059 #ifdef DEBUG
5060   void ScriptVerify();
5061 #endif
5062 
5063   static const int kSourceOffset = HeapObject::kHeaderSize;
5064   static const int kNameOffset = kSourceOffset + kPointerSize;
5065   static const int kLineOffsetOffset = kNameOffset + kPointerSize;
5066   static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
5067   static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
5068   static const int kContextOffset = kDataOffset + kPointerSize;
5069   static const int kWrapperOffset = kContextOffset + kPointerSize;
5070   static const int kTypeOffset = kWrapperOffset + kPointerSize;
5071   static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
5072   static const int kCompilationStateOffset =
5073       kCompilationTypeOffset + kPointerSize;
5074   static const int kLineEndsOffset = kCompilationStateOffset + kPointerSize;
5075   static const int kIdOffset = kLineEndsOffset + kPointerSize;
5076   static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
5077   static const int kEvalFrominstructionsOffsetOffset =
5078       kEvalFromSharedOffset + kPointerSize;
5079   static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
5080 
5081  private:
5082   DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
5083 };
5084 
5085 
5086 // List of builtin functions we want to identify to improve code
5087 // generation.
5088 //
5089 // Each entry has a name of a global object property holding an object
5090 // optionally followed by ".prototype", a name of a builtin function
5091 // on the object (the one the id is set for), and a label.
5092 //
5093 // Installation of ids for the selected builtin functions is handled
5094 // by the bootstrapper.
5095 //
5096 // NOTE: Order is important: math functions should be at the end of
5097 // the list and MathFloor should be the first math function.
5098 #define FUNCTIONS_WITH_ID_LIST(V)                   \
5099   V(Array.prototype, push, ArrayPush)               \
5100   V(Array.prototype, pop, ArrayPop)                 \
5101   V(Function.prototype, apply, FunctionApply)       \
5102   V(String.prototype, charCodeAt, StringCharCodeAt) \
5103   V(String.prototype, charAt, StringCharAt)         \
5104   V(String, fromCharCode, StringFromCharCode)       \
5105   V(Math, floor, MathFloor)                         \
5106   V(Math, round, MathRound)                         \
5107   V(Math, ceil, MathCeil)                           \
5108   V(Math, abs, MathAbs)                             \
5109   V(Math, log, MathLog)                             \
5110   V(Math, sin, MathSin)                             \
5111   V(Math, cos, MathCos)                             \
5112   V(Math, tan, MathTan)                             \
5113   V(Math, asin, MathASin)                           \
5114   V(Math, acos, MathACos)                           \
5115   V(Math, atan, MathATan)                           \
5116   V(Math, exp, MathExp)                             \
5117   V(Math, sqrt, MathSqrt)                           \
5118   V(Math, pow, MathPow)                             \
5119   V(Math, random, MathRandom)                       \
5120   V(Math, max, MathMax)                             \
5121   V(Math, min, MathMin)
5122 
5123 
5124 enum BuiltinFunctionId {
5125 #define DECLARE_FUNCTION_ID(ignored1, ignore2, name)    \
5126   k##name,
5127   FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
5128 #undef DECLARE_FUNCTION_ID
5129   // Fake id for a special case of Math.pow. Note, it continues the
5130   // list of math functions.
5131   kMathPowHalf,
5132   kFirstMathFunctionId = kMathFloor
5133 };
5134 
5135 
5136 // SharedFunctionInfo describes the JSFunction information that can be
5137 // shared by multiple instances of the function.
5138 class SharedFunctionInfo: public HeapObject {
5139  public:
5140   // [name]: Function name.
5141   DECL_ACCESSORS(name, Object)
5142 
5143   // [code]: Function code.
5144   DECL_ACCESSORS(code, Code)
5145 
5146   // [scope_info]: Scope info.
5147   DECL_ACCESSORS(scope_info, ScopeInfo)
5148 
5149   // [construct stub]: Code stub for constructing instances of this function.
5150   DECL_ACCESSORS(construct_stub, Code)
5151 
5152   inline Code* unchecked_code();
5153 
5154   // Returns if this function has been compiled to native code yet.
5155   inline bool is_compiled();
5156 
5157   // [length]: The function length - usually the number of declared parameters.
5158   // Use up to 2^30 parameters.
5159   inline int length();
5160   inline void set_length(int value);
5161 
5162   // [formal parameter count]: The declared number of parameters.
5163   inline int formal_parameter_count();
5164   inline void set_formal_parameter_count(int value);
5165 
5166   // Set the formal parameter count so the function code will be
5167   // called without using argument adaptor frames.
5168   inline void DontAdaptArguments();
5169 
5170   // [expected_nof_properties]: Expected number of properties for the function.
5171   inline int expected_nof_properties();
5172   inline void set_expected_nof_properties(int value);
5173 
5174   // Inobject slack tracking is the way to reclaim unused inobject space.
5175   //
5176   // The instance size is initially determined by adding some slack to
5177   // expected_nof_properties (to allow for a few extra properties added
5178   // after the constructor). There is no guarantee that the extra space
5179   // will not be wasted.
5180   //
5181   // Here is the algorithm to reclaim the unused inobject space:
5182   // - Detect the first constructor call for this SharedFunctionInfo.
5183   //   When it happens enter the "in progress" state: remember the
5184   //   constructor's initial_map and install a special construct stub that
5185   //   counts constructor calls.
5186   // - While the tracking is in progress create objects filled with
5187   //   one_pointer_filler_map instead of undefined_value. This way they can be
5188   //   resized quickly and safely.
5189   // - Once enough (kGenerousAllocationCount) objects have been created
5190   //   compute the 'slack' (traverse the map transition tree starting from the
5191   //   initial_map and find the lowest value of unused_property_fields).
5192   // - Traverse the transition tree again and decrease the instance size
5193   //   of every map. Existing objects will resize automatically (they are
5194   //   filled with one_pointer_filler_map). All further allocations will
5195   //   use the adjusted instance size.
5196   // - Decrease expected_nof_properties so that an allocations made from
5197   //   another context will use the adjusted instance size too.
5198   // - Exit "in progress" state by clearing the reference to the initial_map
5199   //   and setting the regular construct stub (generic or inline).
5200   //
5201   //  The above is the main event sequence. Some special cases are possible
5202   //  while the tracking is in progress:
5203   //
5204   // - GC occurs.
5205   //   Check if the initial_map is referenced by any live objects (except this
5206   //   SharedFunctionInfo). If it is, continue tracking as usual.
5207   //   If it is not, clear the reference and reset the tracking state. The
5208   //   tracking will be initiated again on the next constructor call.
5209   //
5210   // - The constructor is called from another context.
5211   //   Immediately complete the tracking, perform all the necessary changes
5212   //   to maps. This is  necessary because there is no efficient way to track
5213   //   multiple initial_maps.
5214   //   Proceed to create an object in the current context (with the adjusted
5215   //   size).
5216   //
5217   // - A different constructor function sharing the same SharedFunctionInfo is
5218   //   called in the same context. This could be another closure in the same
5219   //   context, or the first function could have been disposed.
5220   //   This is handled the same way as the previous case.
5221   //
5222   //  Important: inobject slack tracking is not attempted during the snapshot
5223   //  creation.
5224 
5225   static const int kGenerousAllocationCount = 8;
5226 
5227   // [construction_count]: Counter for constructor calls made during
5228   // the tracking phase.
5229   inline int construction_count();
5230   inline void set_construction_count(int value);
5231 
5232   // [initial_map]: initial map of the first function called as a constructor.
5233   // Saved for the duration of the tracking phase.
5234   // This is a weak link (GC resets it to undefined_value if no other live
5235   // object reference this map).
5236   DECL_ACCESSORS(initial_map, Object)
5237 
5238   // True if the initial_map is not undefined and the countdown stub is
5239   // installed.
5240   inline bool IsInobjectSlackTrackingInProgress();
5241 
5242   // Starts the tracking.
5243   // Stores the initial map and installs the countdown stub.
5244   // IsInobjectSlackTrackingInProgress is normally true after this call,
5245   // except when tracking have not been started (e.g. the map has no unused
5246   // properties or the snapshot is being built).
5247   void StartInobjectSlackTracking(Map* map);
5248 
5249   // Completes the tracking.
5250   // IsInobjectSlackTrackingInProgress is false after this call.
5251   void CompleteInobjectSlackTracking();
5252 
5253   // Clears the initial_map before the GC marking phase to ensure the reference
5254   // is weak. IsInobjectSlackTrackingInProgress is false after this call.
5255   void DetachInitialMap();
5256 
5257   // Restores the link to the initial map after the GC marking phase.
5258   // IsInobjectSlackTrackingInProgress is true after this call.
5259   void AttachInitialMap(Map* map);
5260 
5261   // False if there are definitely no live objects created from this function.
5262   // True if live objects _may_ exist (existence not guaranteed).
5263   // May go back from true to false after GC.
5264   DECL_BOOLEAN_ACCESSORS(live_objects_may_exist)
5265 
5266   // [instance class name]: class name for instances.
5267   DECL_ACCESSORS(instance_class_name, Object)
5268 
5269   // [function data]: This field holds some additional data for function.
5270   // Currently it either has FunctionTemplateInfo to make benefit the API
5271   // or Smi identifying a builtin function.
5272   // In the long run we don't want all functions to have this field but
5273   // we can fix that when we have a better model for storing hidden data
5274   // on objects.
5275   DECL_ACCESSORS(function_data, Object)
5276 
5277   inline bool IsApiFunction();
5278   inline FunctionTemplateInfo* get_api_func_data();
5279   inline bool HasBuiltinFunctionId();
5280   inline BuiltinFunctionId builtin_function_id();
5281 
5282   // [script info]: Script from which the function originates.
5283   DECL_ACCESSORS(script, Object)
5284 
5285   // [num_literals]: Number of literals used by this function.
5286   inline int num_literals();
5287   inline void set_num_literals(int value);
5288 
5289   // [start_position_and_type]: Field used to store both the source code
5290   // position, whether or not the function is a function expression,
5291   // and whether or not the function is a toplevel function. The two
5292   // least significants bit indicates whether the function is an
5293   // expression and the rest contains the source code position.
5294   inline int start_position_and_type();
5295   inline void set_start_position_and_type(int value);
5296 
5297   // [debug info]: Debug information.
5298   DECL_ACCESSORS(debug_info, Object)
5299 
5300   // [inferred name]: Name inferred from variable or property
5301   // assignment of this function. Used to facilitate debugging and
5302   // profiling of JavaScript code written in OO style, where almost
5303   // all functions are anonymous but are assigned to object
5304   // properties.
5305   DECL_ACCESSORS(inferred_name, String)
5306 
5307   // The function's name if it is non-empty, otherwise the inferred name.
5308   String* DebugName();
5309 
5310   // Position of the 'function' token in the script source.
5311   inline int function_token_position();
5312   inline void set_function_token_position(int function_token_position);
5313 
5314   // Position of this function in the script source.
5315   inline int start_position();
5316   inline void set_start_position(int start_position);
5317 
5318   // End position of this function in the script source.
5319   inline int end_position();
5320   inline void set_end_position(int end_position);
5321 
5322   // Is this function a function expression in the source code.
5323   DECL_BOOLEAN_ACCESSORS(is_expression)
5324 
5325   // Is this function a top-level function (scripts, evals).
5326   DECL_BOOLEAN_ACCESSORS(is_toplevel)
5327 
5328   // Bit field containing various information collected by the compiler to
5329   // drive optimization.
5330   inline int compiler_hints();
5331   inline void set_compiler_hints(int value);
5332 
5333   inline int ast_node_count();
5334   inline void set_ast_node_count(int count);
5335 
5336   // A counter used to determine when to stress the deoptimizer with a
5337   // deopt.
5338   inline int deopt_counter();
5339   inline void set_deopt_counter(int counter);
5340 
5341   // Inline cache age is used to infer whether the function survived a context
5342   // disposal or not. In the former case we reset the opt_count.
5343   inline int ic_age();
5344   inline void set_ic_age(int age);
5345 
5346   // Add information on assignments of the form this.x = ...;
5347   void SetThisPropertyAssignmentsInfo(
5348       bool has_only_simple_this_property_assignments,
5349       FixedArray* this_property_assignments);
5350 
5351   // Clear information on assignments of the form this.x = ...;
5352   void ClearThisPropertyAssignmentsInfo();
5353 
5354   // Indicate that this function only consists of assignments of the form
5355   // this.x = y; where y is either a constant or refers to an argument.
5356   inline bool has_only_simple_this_property_assignments();
5357 
5358   // Indicates if this function can be lazy compiled.
5359   // This is used to determine if we can safely flush code from a function
5360   // when doing GC if we expect that the function will no longer be used.
5361   DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
5362 
5363   // Indicates how many full GCs this function has survived with assigned
5364   // code object. Used to determine when it is relatively safe to flush
5365   // this code object and replace it with lazy compilation stub.
5366   // Age is reset when GC notices that the code object is referenced
5367   // from the stack or compilation cache.
5368   inline int code_age();
5369   inline void set_code_age(int age);
5370 
5371   // Indicates whether optimizations have been disabled for this
5372   // shared function info. If a function is repeatedly optimized or if
5373   // we cannot optimize the function we disable optimization to avoid
5374   // spending time attempting to optimize it again.
5375   DECL_BOOLEAN_ACCESSORS(optimization_disabled)
5376 
5377   // Indicates the language mode of the function's code as defined by the
5378   // current harmony drafts for the next ES language standard. Possible
5379   // values are:
5380   // 1. CLASSIC_MODE - Unrestricted syntax and semantics, same as in ES5.
5381   // 2. STRICT_MODE - Restricted syntax and semantics, same as in ES5.
5382   // 3. EXTENDED_MODE - Only available under the harmony flag, not part of ES5.
5383   inline LanguageMode language_mode();
5384   inline void set_language_mode(LanguageMode language_mode);
5385 
5386   // Indicates whether the language mode of this function is CLASSIC_MODE.
5387   inline bool is_classic_mode();
5388 
5389   // Indicates whether the language mode of this function is EXTENDED_MODE.
5390   inline bool is_extended_mode();
5391 
5392   // False if the function definitely does not allocate an arguments object.
5393   DECL_BOOLEAN_ACCESSORS(uses_arguments)
5394 
5395   // True if the function has any duplicated parameter names.
5396   DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
5397 
5398   // Indicates whether the function is a native function.
5399   // These needs special treatment in .call and .apply since
5400   // null passed as the receiver should not be translated to the
5401   // global object.
5402   DECL_BOOLEAN_ACCESSORS(native)
5403 
5404   // Indicates that the function was created by the Function function.
5405   // Though it's anonymous, toString should treat it as if it had the name
5406   // "anonymous".  We don't set the name itself so that the system does not
5407   // see a binding for it.
5408   DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
5409 
5410   // Indicates whether the function is a bound function created using
5411   // the bind function.
5412   DECL_BOOLEAN_ACCESSORS(bound)
5413 
5414   // Indicates that the function is anonymous (the name field can be set
5415   // through the API, which does not change this flag).
5416   DECL_BOOLEAN_ACCESSORS(is_anonymous)
5417 
5418   // Is this a function or top-level/eval code.
5419   DECL_BOOLEAN_ACCESSORS(is_function)
5420 
5421   // Indicates that the function cannot be optimized.
5422   DECL_BOOLEAN_ACCESSORS(dont_optimize)
5423 
5424   // Indicates that the function cannot be inlined.
5425   DECL_BOOLEAN_ACCESSORS(dont_inline)
5426 
5427   // Indicates whether or not the code in the shared function support
5428   // deoptimization.
5429   inline bool has_deoptimization_support();
5430 
5431   // Enable deoptimization support through recompiled code.
5432   void EnableDeoptimizationSupport(Code* recompiled);
5433 
5434   // Disable (further) attempted optimization of all functions sharing this
5435   // shared function info.
5436   void DisableOptimization();
5437 
5438   // Lookup the bailout ID and ASSERT that it exists in the non-optimized
5439   // code, returns whether it asserted (i.e., always true if assertions are
5440   // disabled).
5441   bool VerifyBailoutId(int id);
5442 
5443   // Check whether a inlined constructor can be generated with the given
5444   // prototype.
5445   bool CanGenerateInlineConstructor(Object* prototype);
5446 
5447   // Prevents further attempts to generate inline constructors.
5448   // To be called if generation failed for any reason.
5449   void ForbidInlineConstructor();
5450 
5451   // For functions which only contains this property assignments this provides
5452   // access to the names for the properties assigned.
5453   DECL_ACCESSORS(this_property_assignments, Object)
5454   inline int this_property_assignments_count();
5455   inline void set_this_property_assignments_count(int value);
5456   String* GetThisPropertyAssignmentName(int index);
5457   bool IsThisPropertyAssignmentArgument(int index);
5458   int GetThisPropertyAssignmentArgument(int index);
5459   Object* GetThisPropertyAssignmentConstant(int index);
5460 
5461   // [source code]: Source code for the function.
5462   bool HasSourceCode();
5463   Handle<Object> GetSourceCode();
5464 
5465   inline int opt_count();
5466   inline void set_opt_count(int opt_count);
5467 
5468   // Source size of this function.
5469   int SourceSize();
5470 
5471   // Calculate the instance size.
5472   int CalculateInstanceSize();
5473 
5474   // Calculate the number of in-object properties.
5475   int CalculateInObjectProperties();
5476 
5477   // Dispatched behavior.
5478   // Set max_length to -1 for unlimited length.
5479   void SourceCodePrint(StringStream* accumulator, int max_length);
5480 #ifdef OBJECT_PRINT
SharedFunctionInfoPrint()5481   inline void SharedFunctionInfoPrint() {
5482     SharedFunctionInfoPrint(stdout);
5483   }
5484   void SharedFunctionInfoPrint(FILE* out);
5485 #endif
5486 #ifdef DEBUG
5487   void SharedFunctionInfoVerify();
5488 #endif
5489 
5490   void ResetForNewContext(int new_ic_age);
5491 
5492   // Helpers to compile the shared code.  Returns true on success, false on
5493   // failure (e.g., stack overflow during compilation).
5494   static bool EnsureCompiled(Handle<SharedFunctionInfo> shared,
5495                              ClearExceptionFlag flag);
5496   static bool CompileLazy(Handle<SharedFunctionInfo> shared,
5497                           ClearExceptionFlag flag);
5498 
5499   void SharedFunctionInfoIterateBody(ObjectVisitor* v);
5500 
5501   // Casting.
5502   static inline SharedFunctionInfo* cast(Object* obj);
5503 
5504   // Constants.
5505   static const int kDontAdaptArgumentsSentinel = -1;
5506 
5507   // Layout description.
5508   // Pointer fields.
5509   static const int kNameOffset = HeapObject::kHeaderSize;
5510   static const int kCodeOffset = kNameOffset + kPointerSize;
5511   static const int kScopeInfoOffset = kCodeOffset + kPointerSize;
5512   static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
5513   static const int kInstanceClassNameOffset =
5514       kConstructStubOffset + kPointerSize;
5515   static const int kFunctionDataOffset =
5516       kInstanceClassNameOffset + kPointerSize;
5517   static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
5518   static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
5519   static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
5520   static const int kInitialMapOffset =
5521       kInferredNameOffset + kPointerSize;
5522   static const int kThisPropertyAssignmentsOffset =
5523       kInitialMapOffset + kPointerSize;
5524   // ic_age is a Smi field. It could be grouped with another Smi field into a
5525   // PSEUDO_SMI_ACCESSORS pair (on x64), if one becomes available.
5526   static const int kICAgeOffset = kThisPropertyAssignmentsOffset + kPointerSize;
5527 #if V8_HOST_ARCH_32_BIT
5528   // Smi fields.
5529   static const int kLengthOffset =
5530       kICAgeOffset + kPointerSize;
5531   static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
5532   static const int kExpectedNofPropertiesOffset =
5533       kFormalParameterCountOffset + kPointerSize;
5534   static const int kNumLiteralsOffset =
5535       kExpectedNofPropertiesOffset + kPointerSize;
5536   static const int kStartPositionAndTypeOffset =
5537       kNumLiteralsOffset + kPointerSize;
5538   static const int kEndPositionOffset =
5539       kStartPositionAndTypeOffset + kPointerSize;
5540   static const int kFunctionTokenPositionOffset =
5541       kEndPositionOffset + kPointerSize;
5542   static const int kCompilerHintsOffset =
5543       kFunctionTokenPositionOffset + kPointerSize;
5544   static const int kThisPropertyAssignmentsCountOffset =
5545       kCompilerHintsOffset + kPointerSize;
5546   static const int kOptCountOffset =
5547       kThisPropertyAssignmentsCountOffset + kPointerSize;
5548   static const int kAstNodeCountOffset = kOptCountOffset + kPointerSize;
5549   static const int kDeoptCounterOffset = kAstNodeCountOffset + kPointerSize;
5550 
5551 
5552   // Total size.
5553   static const int kSize = kDeoptCounterOffset + kPointerSize;
5554 #else
5555   // The only reason to use smi fields instead of int fields
5556   // is to allow iteration without maps decoding during
5557   // garbage collections.
5558   // To avoid wasting space on 64-bit architectures we use
5559   // the following trick: we group integer fields into pairs
5560   // First integer in each pair is shifted left by 1.
5561   // By doing this we guarantee that LSB of each kPointerSize aligned
5562   // word is not set and thus this word cannot be treated as pointer
5563   // to HeapObject during old space traversal.
5564   static const int kLengthOffset =
5565       kICAgeOffset + kPointerSize;
5566   static const int kFormalParameterCountOffset =
5567       kLengthOffset + kIntSize;
5568 
5569   static const int kExpectedNofPropertiesOffset =
5570       kFormalParameterCountOffset + kIntSize;
5571   static const int kNumLiteralsOffset =
5572       kExpectedNofPropertiesOffset + kIntSize;
5573 
5574   static const int kEndPositionOffset =
5575       kNumLiteralsOffset + kIntSize;
5576   static const int kStartPositionAndTypeOffset =
5577       kEndPositionOffset + kIntSize;
5578 
5579   static const int kFunctionTokenPositionOffset =
5580       kStartPositionAndTypeOffset + kIntSize;
5581   static const int kCompilerHintsOffset =
5582       kFunctionTokenPositionOffset + kIntSize;
5583 
5584   static const int kThisPropertyAssignmentsCountOffset =
5585       kCompilerHintsOffset + kIntSize;
5586   static const int kOptCountOffset =
5587       kThisPropertyAssignmentsCountOffset + kIntSize;
5588 
5589   static const int kAstNodeCountOffset = kOptCountOffset + kIntSize;
5590   static const int kDeoptCounterOffset = kAstNodeCountOffset + kIntSize;
5591 
5592   // Total size.
5593   static const int kSize = kDeoptCounterOffset + kIntSize;
5594 
5595 #endif
5596 
5597   // The construction counter for inobject slack tracking is stored in the
5598   // most significant byte of compiler_hints which is otherwise unused.
5599   // Its offset depends on the endian-ness of the architecture.
5600 #if __BYTE_ORDER == __LITTLE_ENDIAN
5601   static const int kConstructionCountOffset = kCompilerHintsOffset + 3;
5602 #elif __BYTE_ORDER == __BIG_ENDIAN
5603   static const int kConstructionCountOffset = kCompilerHintsOffset + 0;
5604 #else
5605 #error Unknown byte ordering
5606 #endif
5607 
5608   static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
5609 
5610   typedef FixedBodyDescriptor<kNameOffset,
5611                               kThisPropertyAssignmentsOffset + kPointerSize,
5612                               kSize> BodyDescriptor;
5613 
5614   // Bit positions in start_position_and_type.
5615   // The source code start position is in the 30 most significant bits of
5616   // the start_position_and_type field.
5617   static const int kIsExpressionBit = 0;
5618   static const int kIsTopLevelBit   = 1;
5619   static const int kStartPositionShift = 2;
5620   static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
5621 
5622   // Bit positions in compiler_hints.
5623   static const int kCodeAgeSize = 3;
5624   static const int kCodeAgeMask = (1 << kCodeAgeSize) - 1;
5625 
5626   enum CompilerHints {
5627     kHasOnlySimpleThisPropertyAssignments,
5628     kAllowLazyCompilation,
5629     kLiveObjectsMayExist,
5630     kCodeAgeShift,
5631     kOptimizationDisabled = kCodeAgeShift + kCodeAgeSize,
5632     kStrictModeFunction,
5633     kExtendedModeFunction,
5634     kUsesArguments,
5635     kHasDuplicateParameters,
5636     kNative,
5637     kBoundFunction,
5638     kIsAnonymous,
5639     kNameShouldPrintAsAnonymous,
5640     kIsFunction,
5641     kDontOptimize,
5642     kDontInline,
5643     kCompilerHintsCount  // Pseudo entry
5644   };
5645 
5646  private:
5647 #if V8_HOST_ARCH_32_BIT
5648   // On 32 bit platforms, compiler hints is a smi.
5649   static const int kCompilerHintsSmiTagSize = kSmiTagSize;
5650   static const int kCompilerHintsSize = kPointerSize;
5651 #else
5652   // On 64 bit platforms, compiler hints is not a smi, see comment above.
5653   static const int kCompilerHintsSmiTagSize = 0;
5654   static const int kCompilerHintsSize = kIntSize;
5655 #endif
5656 
5657   STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
5658                 SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
5659 
5660  public:
5661   // Constants for optimizing codegen for strict mode function and
5662   // native tests.
5663   // Allows to use byte-width instructions.
5664   static const int kStrictModeBitWithinByte =
5665       (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
5666 
5667   static const int kExtendedModeBitWithinByte =
5668       (kExtendedModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
5669 
5670   static const int kNativeBitWithinByte =
5671       (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
5672 
5673 #if __BYTE_ORDER == __LITTLE_ENDIAN
5674   static const int kStrictModeByteOffset = kCompilerHintsOffset +
5675       (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
5676   static const int kExtendedModeByteOffset = kCompilerHintsOffset +
5677       (kExtendedModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
5678   static const int kNativeByteOffset = kCompilerHintsOffset +
5679       (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
5680 #elif __BYTE_ORDER == __BIG_ENDIAN
5681   static const int kStrictModeByteOffset = kCompilerHintsOffset +
5682       (kCompilerHintsSize - 1) -
5683       ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
5684   static const int kExtendedModeByteOffset = kCompilerHintsOffset +
5685       (kCompilerHintsSize - 1) -
5686       ((kExtendedModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
5687   static const int kNativeByteOffset = kCompilerHintsOffset +
5688       (kCompilerHintsSize - 1) -
5689       ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
5690 #else
5691 #error Unknown byte ordering
5692 #endif
5693 
5694  private:
5695   DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
5696 };
5697 
5698 
5699 // JSFunction describes JavaScript functions.
5700 class JSFunction: public JSObject {
5701  public:
5702   // [prototype_or_initial_map]:
5703   DECL_ACCESSORS(prototype_or_initial_map, Object)
5704 
5705   // [shared]: The information about the function that
5706   // can be shared by instances.
5707   DECL_ACCESSORS(shared, SharedFunctionInfo)
5708 
5709   inline SharedFunctionInfo* unchecked_shared();
5710 
5711   // [context]: The context for this function.
5712   inline Context* context();
5713   inline Object* unchecked_context();
5714   inline void set_context(Object* context);
5715 
5716   // [code]: The generated code object for this function.  Executed
5717   // when the function is invoked, e.g. foo() or new foo(). See
5718   // [[Call]] and [[Construct]] description in ECMA-262, section
5719   // 8.6.2, page 27.
5720   inline Code* code();
5721   inline void set_code(Code* code);
5722   inline void ReplaceCode(Code* code);
5723 
5724   inline Code* unchecked_code();
5725 
5726   // Tells whether this function is builtin.
5727   inline bool IsBuiltin();
5728 
5729   // Tells whether or not the function needs arguments adaption.
5730   inline bool NeedsArgumentsAdaption();
5731 
5732   // Tells whether or not this function has been optimized.
5733   inline bool IsOptimized();
5734 
5735   // Tells whether or not this function can be optimized.
5736   inline bool IsOptimizable();
5737 
5738   // Mark this function for lazy recompilation. The function will be
5739   // recompiled the next time it is executed.
5740   void MarkForLazyRecompilation();
5741 
5742   // Helpers to compile this function.  Returns true on success, false on
5743   // failure (e.g., stack overflow during compilation).
5744   static bool CompileLazy(Handle<JSFunction> function,
5745                           ClearExceptionFlag flag);
5746   static bool CompileOptimized(Handle<JSFunction> function,
5747                                int osr_ast_id,
5748                                ClearExceptionFlag flag);
5749 
5750   // Tells whether or not the function is already marked for lazy
5751   // recompilation.
5752   inline bool IsMarkedForLazyRecompilation();
5753 
5754   // Check whether or not this function is inlineable.
5755   bool IsInlineable();
5756 
5757   // [literals_or_bindings]: Fixed array holding either
5758   // the materialized literals or the bindings of a bound function.
5759   //
5760   // If the function contains object, regexp or array literals, the
5761   // literals array prefix contains the object, regexp, and array
5762   // function to be used when creating these literals.  This is
5763   // necessary so that we do not dynamically lookup the object, regexp
5764   // or array functions.  Performing a dynamic lookup, we might end up
5765   // using the functions from a new context that we should not have
5766   // access to.
5767   //
5768   // On bound functions, the array is a (copy-on-write) fixed-array containing
5769   // the function that was bound, bound this-value and any bound
5770   // arguments. Bound functions never contain literals.
5771   DECL_ACCESSORS(literals_or_bindings, FixedArray)
5772 
5773   inline FixedArray* literals();
5774   inline void set_literals(FixedArray* literals);
5775 
5776   inline FixedArray* function_bindings();
5777   inline void set_function_bindings(FixedArray* bindings);
5778 
5779   // The initial map for an object created by this constructor.
5780   inline Map* initial_map();
5781   inline void set_initial_map(Map* value);
5782   MUST_USE_RESULT inline MaybeObject* set_initial_map_and_cache_transitions(
5783       Map* value);
5784   inline bool has_initial_map();
5785 
5786   // Get and set the prototype property on a JSFunction. If the
5787   // function has an initial map the prototype is set on the initial
5788   // map. Otherwise, the prototype is put in the initial map field
5789   // until an initial map is needed.
5790   inline bool has_prototype();
5791   inline bool has_instance_prototype();
5792   inline Object* prototype();
5793   inline Object* instance_prototype();
5794   MUST_USE_RESULT MaybeObject* SetInstancePrototype(Object* value);
5795   MUST_USE_RESULT MaybeObject* SetPrototype(Object* value);
5796 
5797   // After prototype is removed, it will not be created when accessed, and
5798   // [[Construct]] from this function will not be allowed.
5799   Object* RemovePrototype();
5800   inline bool should_have_prototype();
5801 
5802   // Accessor for this function's initial map's [[class]]
5803   // property. This is primarily used by ECMA native functions.  This
5804   // method sets the class_name field of this function's initial map
5805   // to a given value. It creates an initial map if this function does
5806   // not have one. Note that this method does not copy the initial map
5807   // if it has one already, but simply replaces it with the new value.
5808   // Instances created afterwards will have a map whose [[class]] is
5809   // set to 'value', but there is no guarantees on instances created
5810   // before.
5811   Object* SetInstanceClassName(String* name);
5812 
5813   // Returns if this function has been compiled to native code yet.
5814   inline bool is_compiled();
5815 
5816   // [next_function_link]: Field for linking functions. This list is treated as
5817   // a weak list by the GC.
DECL_ACCESSORS(next_function_link,Object)5818   DECL_ACCESSORS(next_function_link, Object)
5819 
5820   // Prints the name of the function using PrintF.
5821   inline void PrintName() {
5822     PrintName(stdout);
5823   }
5824   void PrintName(FILE* out);
5825 
5826   // Casting.
5827   static inline JSFunction* cast(Object* obj);
5828 
5829   // Iterates the objects, including code objects indirectly referenced
5830   // through pointers to the first instruction in the code object.
5831   void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
5832 
5833   // Dispatched behavior.
5834 #ifdef OBJECT_PRINT
JSFunctionPrint()5835   inline void JSFunctionPrint() {
5836     JSFunctionPrint(stdout);
5837   }
5838   void JSFunctionPrint(FILE* out);
5839 #endif
5840 #ifdef DEBUG
5841   void JSFunctionVerify();
5842 #endif
5843 
5844   // Returns the number of allocated literals.
5845   inline int NumberOfLiterals();
5846 
5847   // Retrieve the global context from a function's literal array.
5848   static Context* GlobalContextFromLiterals(FixedArray* literals);
5849 
5850   // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
5851   // kSize) is weak and has special handling during garbage collection.
5852   static const int kCodeEntryOffset = JSObject::kHeaderSize;
5853   static const int kPrototypeOrInitialMapOffset =
5854       kCodeEntryOffset + kPointerSize;
5855   static const int kSharedFunctionInfoOffset =
5856       kPrototypeOrInitialMapOffset + kPointerSize;
5857   static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
5858   static const int kLiteralsOffset = kContextOffset + kPointerSize;
5859   static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
5860   static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
5861   static const int kSize = kNextFunctionLinkOffset + kPointerSize;
5862 
5863   // Layout of the literals array.
5864   static const int kLiteralsPrefixSize = 1;
5865   static const int kLiteralGlobalContextIndex = 0;
5866 
5867   // Layout of the bound-function binding array.
5868   static const int kBoundFunctionIndex = 0;
5869   static const int kBoundThisIndex = 1;
5870   static const int kBoundArgumentsStartIndex = 2;
5871 
5872  private:
5873   DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
5874 };
5875 
5876 
5877 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
5878 // and the prototype is hidden. JSGlobalProxy always delegates
5879 // property accesses to its prototype if the prototype is not null.
5880 //
5881 // A JSGlobalProxy can be reinitialized which will preserve its identity.
5882 //
5883 // Accessing a JSGlobalProxy requires security check.
5884 
5885 class JSGlobalProxy : public JSObject {
5886  public:
5887   // [context]: the owner global context of this global proxy object.
5888   // It is null value if this object is not used by any context.
5889   DECL_ACCESSORS(context, Object)
5890 
5891   // Casting.
5892   static inline JSGlobalProxy* cast(Object* obj);
5893 
5894   // Dispatched behavior.
5895 #ifdef OBJECT_PRINT
JSGlobalProxyPrint()5896   inline void JSGlobalProxyPrint() {
5897     JSGlobalProxyPrint(stdout);
5898   }
5899   void JSGlobalProxyPrint(FILE* out);
5900 #endif
5901 #ifdef DEBUG
5902   void JSGlobalProxyVerify();
5903 #endif
5904 
5905   // Layout description.
5906   static const int kContextOffset = JSObject::kHeaderSize;
5907   static const int kSize = kContextOffset + kPointerSize;
5908 
5909  private:
5910   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
5911 };
5912 
5913 
5914 // Forward declaration.
5915 class JSBuiltinsObject;
5916 
5917 // Common super class for JavaScript global objects and the special
5918 // builtins global objects.
5919 class GlobalObject: public JSObject {
5920  public:
5921   // [builtins]: the object holding the runtime routines written in JS.
5922   DECL_ACCESSORS(builtins, JSBuiltinsObject)
5923 
5924   // [global context]: the global context corresponding to this global object.
5925   DECL_ACCESSORS(global_context, Context)
5926 
5927   // [global receiver]: the global receiver object of the context
5928   DECL_ACCESSORS(global_receiver, JSObject)
5929 
5930   // Retrieve the property cell used to store a property.
5931   JSGlobalPropertyCell* GetPropertyCell(LookupResult* result);
5932 
5933   // This is like GetProperty, but is used when you know the lookup won't fail
5934   // by throwing an exception.  This is for the debug and builtins global
5935   // objects, where it is known which properties can be expected to be present
5936   // on the object.
GetPropertyNoExceptionThrown(String * key)5937   Object* GetPropertyNoExceptionThrown(String* key) {
5938     Object* answer = GetProperty(key)->ToObjectUnchecked();
5939     return answer;
5940   }
5941 
5942   // Ensure that the global object has a cell for the given property name.
5943   static Handle<JSGlobalPropertyCell> EnsurePropertyCell(
5944       Handle<GlobalObject> global,
5945       Handle<String> name);
5946   // TODO(kmillikin): This function can be eliminated once the stub cache is
5947   // full handlified (and the static helper can be written directly).
5948   MUST_USE_RESULT MaybeObject* EnsurePropertyCell(String* name);
5949 
5950   // Casting.
5951   static inline GlobalObject* cast(Object* obj);
5952 
5953   // Layout description.
5954   static const int kBuiltinsOffset = JSObject::kHeaderSize;
5955   static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
5956   static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
5957   static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
5958 
5959  private:
5960   DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
5961 };
5962 
5963 
5964 // JavaScript global object.
5965 class JSGlobalObject: public GlobalObject {
5966  public:
5967   // Casting.
5968   static inline JSGlobalObject* cast(Object* obj);
5969 
5970   // Dispatched behavior.
5971 #ifdef OBJECT_PRINT
JSGlobalObjectPrint()5972   inline void JSGlobalObjectPrint() {
5973     JSGlobalObjectPrint(stdout);
5974   }
5975   void JSGlobalObjectPrint(FILE* out);
5976 #endif
5977 #ifdef DEBUG
5978   void JSGlobalObjectVerify();
5979 #endif
5980 
5981   // Layout description.
5982   static const int kSize = GlobalObject::kHeaderSize;
5983 
5984  private:
5985   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
5986 };
5987 
5988 
5989 // Builtins global object which holds the runtime routines written in
5990 // JavaScript.
5991 class JSBuiltinsObject: public GlobalObject {
5992  public:
5993   // Accessors for the runtime routines written in JavaScript.
5994   inline Object* javascript_builtin(Builtins::JavaScript id);
5995   inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
5996 
5997   // Accessors for code of the runtime routines written in JavaScript.
5998   inline Code* javascript_builtin_code(Builtins::JavaScript id);
5999   inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
6000 
6001   // Casting.
6002   static inline JSBuiltinsObject* cast(Object* obj);
6003 
6004   // Dispatched behavior.
6005 #ifdef OBJECT_PRINT
JSBuiltinsObjectPrint()6006   inline void JSBuiltinsObjectPrint() {
6007     JSBuiltinsObjectPrint(stdout);
6008   }
6009   void JSBuiltinsObjectPrint(FILE* out);
6010 #endif
6011 #ifdef DEBUG
6012   void JSBuiltinsObjectVerify();
6013 #endif
6014 
6015   // Layout description.  The size of the builtins object includes
6016   // room for two pointers per runtime routine written in javascript
6017   // (function and code object).
6018   static const int kJSBuiltinsCount = Builtins::id_count;
6019   static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
6020   static const int kJSBuiltinsCodeOffset =
6021       GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
6022   static const int kSize =
6023       kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
6024 
OffsetOfFunctionWithId(Builtins::JavaScript id)6025   static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
6026     return kJSBuiltinsOffset + id * kPointerSize;
6027   }
6028 
OffsetOfCodeWithId(Builtins::JavaScript id)6029   static int OffsetOfCodeWithId(Builtins::JavaScript id) {
6030     return kJSBuiltinsCodeOffset + id * kPointerSize;
6031   }
6032 
6033  private:
6034   DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
6035 };
6036 
6037 
6038 // Representation for JS Wrapper objects, String, Number, Boolean, etc.
6039 class JSValue: public JSObject {
6040  public:
6041   // [value]: the object being wrapped.
6042   DECL_ACCESSORS(value, Object)
6043 
6044   // Casting.
6045   static inline JSValue* cast(Object* obj);
6046 
6047   // Dispatched behavior.
6048 #ifdef OBJECT_PRINT
JSValuePrint()6049   inline void JSValuePrint() {
6050     JSValuePrint(stdout);
6051   }
6052   void JSValuePrint(FILE* out);
6053 #endif
6054 #ifdef DEBUG
6055   void JSValueVerify();
6056 #endif
6057 
6058   // Layout description.
6059   static const int kValueOffset = JSObject::kHeaderSize;
6060   static const int kSize = kValueOffset + kPointerSize;
6061 
6062  private:
6063   DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
6064 };
6065 
6066 
6067 class DateCache;
6068 
6069 // Representation for JS date objects.
6070 class JSDate: public JSObject {
6071  public:
6072   // If one component is NaN, all of them are, indicating a NaN time value.
6073   // [value]: the time value.
6074   DECL_ACCESSORS(value, Object)
6075   // [year]: caches year. Either undefined, smi, or NaN.
6076   DECL_ACCESSORS(year, Object)
6077   // [month]: caches month. Either undefined, smi, or NaN.
6078   DECL_ACCESSORS(month, Object)
6079   // [day]: caches day. Either undefined, smi, or NaN.
6080   DECL_ACCESSORS(day, Object)
6081   // [weekday]: caches day of week. Either undefined, smi, or NaN.
6082   DECL_ACCESSORS(weekday, Object)
6083   // [hour]: caches hours. Either undefined, smi, or NaN.
6084   DECL_ACCESSORS(hour, Object)
6085   // [min]: caches minutes. Either undefined, smi, or NaN.
6086   DECL_ACCESSORS(min, Object)
6087   // [sec]: caches seconds. Either undefined, smi, or NaN.
6088   DECL_ACCESSORS(sec, Object)
6089   // [cache stamp]: sample of the date cache stamp at the
6090   // moment when local fields were cached.
6091   DECL_ACCESSORS(cache_stamp, Object)
6092 
6093   // Casting.
6094   static inline JSDate* cast(Object* obj);
6095 
6096   // Returns the date field with the specified index.
6097   // See FieldIndex for the list of date fields.
6098   static MaybeObject* GetField(Object* date, Smi* index);
6099 
6100   void SetValue(Object* value, bool is_value_nan);
6101 
6102 
6103   // Dispatched behavior.
6104 #ifdef OBJECT_PRINT
JSDatePrint()6105   inline void JSDatePrint() {
6106     JSDatePrint(stdout);
6107   }
6108   void JSDatePrint(FILE* out);
6109 #endif
6110 #ifdef DEBUG
6111   void JSDateVerify();
6112 #endif
6113   // The order is important. It must be kept in sync with date macros
6114   // in macros.py.
6115   enum FieldIndex {
6116     kDateValue,
6117     kYear,
6118     kMonth,
6119     kDay,
6120     kWeekday,
6121     kHour,
6122     kMinute,
6123     kSecond,
6124     kFirstUncachedField,
6125     kMillisecond = kFirstUncachedField,
6126     kDays,
6127     kTimeInDay,
6128     kFirstUTCField,
6129     kYearUTC = kFirstUTCField,
6130     kMonthUTC,
6131     kDayUTC,
6132     kWeekdayUTC,
6133     kHourUTC,
6134     kMinuteUTC,
6135     kSecondUTC,
6136     kMillisecondUTC,
6137     kDaysUTC,
6138     kTimeInDayUTC,
6139     kTimezoneOffset
6140   };
6141 
6142   // Layout description.
6143   static const int kValueOffset = JSObject::kHeaderSize;
6144   static const int kYearOffset = kValueOffset + kPointerSize;
6145   static const int kMonthOffset = kYearOffset + kPointerSize;
6146   static const int kDayOffset = kMonthOffset + kPointerSize;
6147   static const int kWeekdayOffset = kDayOffset + kPointerSize;
6148   static const int kHourOffset = kWeekdayOffset  + kPointerSize;
6149   static const int kMinOffset = kHourOffset + kPointerSize;
6150   static const int kSecOffset = kMinOffset + kPointerSize;
6151   static const int kCacheStampOffset = kSecOffset + kPointerSize;
6152   static const int kSize = kCacheStampOffset + kPointerSize;
6153 
6154  private:
6155   inline Object* DoGetField(FieldIndex index);
6156 
6157   Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
6158 
6159   // Computes and caches the cacheable fields of the date.
6160   inline void SetLocalFields(int64_t local_time_ms, DateCache* date_cache);
6161 
6162 
6163   DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
6164 };
6165 
6166 
6167 // Representation of message objects used for error reporting through
6168 // the API. The messages are formatted in JavaScript so this object is
6169 // a real JavaScript object. The information used for formatting the
6170 // error messages are not directly accessible from JavaScript to
6171 // prevent leaking information to user code called during error
6172 // formatting.
6173 class JSMessageObject: public JSObject {
6174  public:
6175   // [type]: the type of error message.
6176   DECL_ACCESSORS(type, String)
6177 
6178   // [arguments]: the arguments for formatting the error message.
6179   DECL_ACCESSORS(arguments, JSArray)
6180 
6181   // [script]: the script from which the error message originated.
6182   DECL_ACCESSORS(script, Object)
6183 
6184   // [stack_trace]: the stack trace for this error message.
6185   DECL_ACCESSORS(stack_trace, Object)
6186 
6187   // [stack_frames]: an array of stack frames for this error object.
6188   DECL_ACCESSORS(stack_frames, Object)
6189 
6190   // [start_position]: the start position in the script for the error message.
6191   inline int start_position();
6192   inline void set_start_position(int value);
6193 
6194   // [end_position]: the end position in the script for the error message.
6195   inline int end_position();
6196   inline void set_end_position(int value);
6197 
6198   // Casting.
6199   static inline JSMessageObject* cast(Object* obj);
6200 
6201   // Dispatched behavior.
6202 #ifdef OBJECT_PRINT
JSMessageObjectPrint()6203   inline void JSMessageObjectPrint() {
6204     JSMessageObjectPrint(stdout);
6205   }
6206   void JSMessageObjectPrint(FILE* out);
6207 #endif
6208 #ifdef DEBUG
6209   void JSMessageObjectVerify();
6210 #endif
6211 
6212   // Layout description.
6213   static const int kTypeOffset = JSObject::kHeaderSize;
6214   static const int kArgumentsOffset = kTypeOffset + kPointerSize;
6215   static const int kScriptOffset = kArgumentsOffset + kPointerSize;
6216   static const int kStackTraceOffset = kScriptOffset + kPointerSize;
6217   static const int kStackFramesOffset = kStackTraceOffset + kPointerSize;
6218   static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
6219   static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
6220   static const int kSize = kEndPositionOffset + kPointerSize;
6221 
6222   typedef FixedBodyDescriptor<HeapObject::kMapOffset,
6223                               kStackFramesOffset + kPointerSize,
6224                               kSize> BodyDescriptor;
6225 };
6226 
6227 
6228 // Regular expressions
6229 // The regular expression holds a single reference to a FixedArray in
6230 // the kDataOffset field.
6231 // The FixedArray contains the following data:
6232 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
6233 // - reference to the original source string
6234 // - reference to the original flag string
6235 // If it is an atom regexp
6236 // - a reference to a literal string to search for
6237 // If it is an irregexp regexp:
6238 // - a reference to code for ASCII inputs (bytecode or compiled), or a smi
6239 // used for tracking the last usage (used for code flushing).
6240 // - a reference to code for UC16 inputs (bytecode or compiled), or a smi
6241 // used for tracking the last usage (used for code flushing)..
6242 // - max number of registers used by irregexp implementations.
6243 // - number of capture registers (output values) of the regexp.
6244 class JSRegExp: public JSObject {
6245  public:
6246   // Meaning of Type:
6247   // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
6248   // ATOM: A simple string to match against using an indexOf operation.
6249   // IRREGEXP: Compiled with Irregexp.
6250   // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
6251   enum Type { NOT_COMPILED, ATOM, IRREGEXP };
6252   enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
6253 
6254   class Flags {
6255    public:
Flags(uint32_t value)6256     explicit Flags(uint32_t value) : value_(value) { }
is_global()6257     bool is_global() { return (value_ & GLOBAL) != 0; }
is_ignore_case()6258     bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
is_multiline()6259     bool is_multiline() { return (value_ & MULTILINE) != 0; }
value()6260     uint32_t value() { return value_; }
6261    private:
6262     uint32_t value_;
6263   };
6264 
6265   DECL_ACCESSORS(data, Object)
6266 
6267   inline Type TypeTag();
6268   inline int CaptureCount();
6269   inline Flags GetFlags();
6270   inline String* Pattern();
6271   inline Object* DataAt(int index);
6272   // Set implementation data after the object has been prepared.
6273   inline void SetDataAt(int index, Object* value);
6274 
6275   // Used during GC when flushing code or setting age.
6276   inline Object* DataAtUnchecked(int index);
6277   inline void SetDataAtUnchecked(int index, Object* value, Heap* heap);
6278   inline Type TypeTagUnchecked();
6279 
code_index(bool is_ascii)6280   static int code_index(bool is_ascii) {
6281     if (is_ascii) {
6282       return kIrregexpASCIICodeIndex;
6283     } else {
6284       return kIrregexpUC16CodeIndex;
6285     }
6286   }
6287 
saved_code_index(bool is_ascii)6288   static int saved_code_index(bool is_ascii) {
6289     if (is_ascii) {
6290       return kIrregexpASCIICodeSavedIndex;
6291     } else {
6292       return kIrregexpUC16CodeSavedIndex;
6293     }
6294   }
6295 
6296   static inline JSRegExp* cast(Object* obj);
6297 
6298   // Dispatched behavior.
6299 #ifdef DEBUG
6300   void JSRegExpVerify();
6301 #endif
6302 
6303   static const int kDataOffset = JSObject::kHeaderSize;
6304   static const int kSize = kDataOffset + kPointerSize;
6305 
6306   // Indices in the data array.
6307   static const int kTagIndex = 0;
6308   static const int kSourceIndex = kTagIndex + 1;
6309   static const int kFlagsIndex = kSourceIndex + 1;
6310   static const int kDataIndex = kFlagsIndex + 1;
6311   // The data fields are used in different ways depending on the
6312   // value of the tag.
6313   // Atom regexps (literal strings).
6314   static const int kAtomPatternIndex = kDataIndex;
6315 
6316   static const int kAtomDataSize = kAtomPatternIndex + 1;
6317 
6318   // Irregexp compiled code or bytecode for ASCII. If compilation
6319   // fails, this fields hold an exception object that should be
6320   // thrown if the regexp is used again.
6321   static const int kIrregexpASCIICodeIndex = kDataIndex;
6322   // Irregexp compiled code or bytecode for UC16.  If compilation
6323   // fails, this fields hold an exception object that should be
6324   // thrown if the regexp is used again.
6325   static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
6326 
6327   // Saved instance of Irregexp compiled code or bytecode for ASCII that
6328   // is a potential candidate for flushing.
6329   static const int kIrregexpASCIICodeSavedIndex = kDataIndex + 2;
6330   // Saved instance of Irregexp compiled code or bytecode for UC16 that is
6331   // a potential candidate for flushing.
6332   static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
6333 
6334   // Maximal number of registers used by either ASCII or UC16.
6335   // Only used to check that there is enough stack space
6336   static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
6337   // Number of captures in the compiled regexp.
6338   static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
6339 
6340   static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
6341 
6342   // Offsets directly into the data fixed array.
6343   static const int kDataTagOffset =
6344       FixedArray::kHeaderSize + kTagIndex * kPointerSize;
6345   static const int kDataAsciiCodeOffset =
6346       FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
6347   static const int kDataUC16CodeOffset =
6348       FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
6349   static const int kIrregexpCaptureCountOffset =
6350       FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
6351 
6352   // In-object fields.
6353   static const int kSourceFieldIndex = 0;
6354   static const int kGlobalFieldIndex = 1;
6355   static const int kIgnoreCaseFieldIndex = 2;
6356   static const int kMultilineFieldIndex = 3;
6357   static const int kLastIndexFieldIndex = 4;
6358   static const int kInObjectFieldCount = 5;
6359 
6360   // The uninitialized value for a regexp code object.
6361   static const int kUninitializedValue = -1;
6362 
6363   // The compilation error value for the regexp code object. The real error
6364   // object is in the saved code field.
6365   static const int kCompilationErrorValue = -2;
6366 
6367   // When we store the sweep generation at which we moved the code from the
6368   // code index to the saved code index we mask it of to be in the [0:255]
6369   // range.
6370   static const int kCodeAgeMask = 0xff;
6371 };
6372 
6373 
6374 class CompilationCacheShape : public BaseShape<HashTableKey*> {
6375  public:
IsMatch(HashTableKey * key,Object * value)6376   static inline bool IsMatch(HashTableKey* key, Object* value) {
6377     return key->IsMatch(value);
6378   }
6379 
Hash(HashTableKey * key)6380   static inline uint32_t Hash(HashTableKey* key) {
6381     return key->Hash();
6382   }
6383 
HashForObject(HashTableKey * key,Object * object)6384   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
6385     return key->HashForObject(object);
6386   }
6387 
AsObject(HashTableKey * key)6388   MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
6389     return key->AsObject();
6390   }
6391 
6392   static const int kPrefixSize = 0;
6393   static const int kEntrySize = 2;
6394 };
6395 
6396 
6397 class CompilationCacheTable: public HashTable<CompilationCacheShape,
6398                                               HashTableKey*> {
6399  public:
6400   // Find cached value for a string key, otherwise return null.
6401   Object* Lookup(String* src);
6402   Object* LookupEval(String* src,
6403                      Context* context,
6404                      LanguageMode language_mode,
6405                      int scope_position);
6406   Object* LookupRegExp(String* source, JSRegExp::Flags flags);
6407   MUST_USE_RESULT MaybeObject* Put(String* src, Object* value);
6408   MUST_USE_RESULT MaybeObject* PutEval(String* src,
6409                                        Context* context,
6410                                        SharedFunctionInfo* value,
6411                                        int scope_position);
6412   MUST_USE_RESULT MaybeObject* PutRegExp(String* src,
6413                                          JSRegExp::Flags flags,
6414                                          FixedArray* value);
6415 
6416   // Remove given value from cache.
6417   void Remove(Object* value);
6418 
6419   static inline CompilationCacheTable* cast(Object* obj);
6420 
6421  private:
6422   DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
6423 };
6424 
6425 
6426 class CodeCache: public Struct {
6427  public:
6428   DECL_ACCESSORS(default_cache, FixedArray)
6429   DECL_ACCESSORS(normal_type_cache, Object)
6430 
6431   // Add the code object to the cache.
6432   MUST_USE_RESULT MaybeObject* Update(String* name, Code* code);
6433 
6434   // Lookup code object in the cache. Returns code object if found and undefined
6435   // if not.
6436   Object* Lookup(String* name, Code::Flags flags);
6437 
6438   // Get the internal index of a code object in the cache. Returns -1 if the
6439   // code object is not in that cache. This index can be used to later call
6440   // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
6441   // RemoveByIndex.
6442   int GetIndex(Object* name, Code* code);
6443 
6444   // Remove an object from the cache with the provided internal index.
6445   void RemoveByIndex(Object* name, Code* code, int index);
6446 
6447   static inline CodeCache* cast(Object* obj);
6448 
6449 #ifdef OBJECT_PRINT
CodeCachePrint()6450   inline void CodeCachePrint() {
6451     CodeCachePrint(stdout);
6452   }
6453   void CodeCachePrint(FILE* out);
6454 #endif
6455 #ifdef DEBUG
6456   void CodeCacheVerify();
6457 #endif
6458 
6459   static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
6460   static const int kNormalTypeCacheOffset =
6461       kDefaultCacheOffset + kPointerSize;
6462   static const int kSize = kNormalTypeCacheOffset + kPointerSize;
6463 
6464  private:
6465   MUST_USE_RESULT MaybeObject* UpdateDefaultCache(String* name, Code* code);
6466   MUST_USE_RESULT MaybeObject* UpdateNormalTypeCache(String* name, Code* code);
6467   Object* LookupDefaultCache(String* name, Code::Flags flags);
6468   Object* LookupNormalTypeCache(String* name, Code::Flags flags);
6469 
6470   // Code cache layout of the default cache. Elements are alternating name and
6471   // code objects for non normal load/store/call IC's.
6472   static const int kCodeCacheEntrySize = 2;
6473   static const int kCodeCacheEntryNameOffset = 0;
6474   static const int kCodeCacheEntryCodeOffset = 1;
6475 
6476   DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
6477 };
6478 
6479 
6480 class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
6481  public:
IsMatch(HashTableKey * key,Object * value)6482   static inline bool IsMatch(HashTableKey* key, Object* value) {
6483     return key->IsMatch(value);
6484   }
6485 
Hash(HashTableKey * key)6486   static inline uint32_t Hash(HashTableKey* key) {
6487     return key->Hash();
6488   }
6489 
HashForObject(HashTableKey * key,Object * object)6490   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
6491     return key->HashForObject(object);
6492   }
6493 
AsObject(HashTableKey * key)6494   MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
6495     return key->AsObject();
6496   }
6497 
6498   static const int kPrefixSize = 0;
6499   static const int kEntrySize = 2;
6500 };
6501 
6502 
6503 class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
6504                                            HashTableKey*> {
6505  public:
6506   Object* Lookup(String* name, Code::Flags flags);
6507   MUST_USE_RESULT MaybeObject* Put(String* name, Code* code);
6508 
6509   int GetIndex(String* name, Code::Flags flags);
6510   void RemoveByIndex(int index);
6511 
6512   static inline CodeCacheHashTable* cast(Object* obj);
6513 
6514   // Initial size of the fixed array backing the hash table.
6515   static const int kInitialSize = 64;
6516 
6517  private:
6518   DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
6519 };
6520 
6521 
6522 class PolymorphicCodeCache: public Struct {
6523  public:
6524   DECL_ACCESSORS(cache, Object)
6525 
6526   static void Update(Handle<PolymorphicCodeCache> cache,
6527                      MapHandleList* maps,
6528                      Code::Flags flags,
6529                      Handle<Code> code);
6530 
6531   MUST_USE_RESULT MaybeObject* Update(MapHandleList* maps,
6532                                       Code::Flags flags,
6533                                       Code* code);
6534 
6535   // Returns an undefined value if the entry is not found.
6536   Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
6537 
6538   static inline PolymorphicCodeCache* cast(Object* obj);
6539 
6540 #ifdef OBJECT_PRINT
PolymorphicCodeCachePrint()6541   inline void PolymorphicCodeCachePrint() {
6542     PolymorphicCodeCachePrint(stdout);
6543   }
6544   void PolymorphicCodeCachePrint(FILE* out);
6545 #endif
6546 #ifdef DEBUG
6547   void PolymorphicCodeCacheVerify();
6548 #endif
6549 
6550   static const int kCacheOffset = HeapObject::kHeaderSize;
6551   static const int kSize = kCacheOffset + kPointerSize;
6552 
6553  private:
6554   DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
6555 };
6556 
6557 
6558 class PolymorphicCodeCacheHashTable
6559     : public HashTable<CodeCacheHashTableShape, HashTableKey*> {
6560  public:
6561   Object* Lookup(MapHandleList* maps, int code_kind);
6562 
6563   MUST_USE_RESULT MaybeObject* Put(MapHandleList* maps,
6564                                    int code_kind,
6565                                    Code* code);
6566 
6567   static inline PolymorphicCodeCacheHashTable* cast(Object* obj);
6568 
6569   static const int kInitialSize = 64;
6570  private:
6571   DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
6572 };
6573 
6574 
6575 class TypeFeedbackInfo: public Struct {
6576  public:
6577   inline int ic_total_count();
6578   inline void set_ic_total_count(int count);
6579 
6580   inline int ic_with_type_info_count();
6581   inline void set_ic_with_type_info_count(int count);
6582 
6583   DECL_ACCESSORS(type_feedback_cells, TypeFeedbackCells)
6584 
6585   static inline TypeFeedbackInfo* cast(Object* obj);
6586 
6587 #ifdef OBJECT_PRINT
TypeFeedbackInfoPrint()6588   inline void TypeFeedbackInfoPrint() {
6589     TypeFeedbackInfoPrint(stdout);
6590   }
6591   void TypeFeedbackInfoPrint(FILE* out);
6592 #endif
6593 #ifdef DEBUG
6594   void TypeFeedbackInfoVerify();
6595 #endif
6596 
6597   static const int kIcTotalCountOffset = HeapObject::kHeaderSize;
6598   static const int kIcWithTypeinfoCountOffset =
6599       kIcTotalCountOffset + kPointerSize;
6600   static const int kTypeFeedbackCellsOffset =
6601       kIcWithTypeinfoCountOffset + kPointerSize;
6602   static const int kSize = kTypeFeedbackCellsOffset + kPointerSize;
6603 
6604  private:
6605   DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
6606 };
6607 
6608 
6609 // Representation of a slow alias as part of a non-strict arguments objects.
6610 // For fast aliases (if HasNonStrictArgumentsElements()):
6611 // - the parameter map contains an index into the context
6612 // - all attributes of the element have default values
6613 // For slow aliases (if HasDictionaryArgumentsElements()):
6614 // - the parameter map contains no fast alias mapping (i.e. the hole)
6615 // - this struct (in the slow backing store) contains an index into the context
6616 // - all attributes are available as part if the property details
6617 class AliasedArgumentsEntry: public Struct {
6618  public:
6619   inline int aliased_context_slot();
6620   inline void set_aliased_context_slot(int count);
6621 
6622   static inline AliasedArgumentsEntry* cast(Object* obj);
6623 
6624 #ifdef OBJECT_PRINT
AliasedArgumentsEntryPrint()6625   inline void AliasedArgumentsEntryPrint() {
6626     AliasedArgumentsEntryPrint(stdout);
6627   }
6628   void AliasedArgumentsEntryPrint(FILE* out);
6629 #endif
6630 #ifdef DEBUG
6631   void AliasedArgumentsEntryVerify();
6632 #endif
6633 
6634   static const int kAliasedContextSlot = HeapObject::kHeaderSize;
6635   static const int kSize = kAliasedContextSlot + kPointerSize;
6636 
6637  private:
6638   DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
6639 };
6640 
6641 
6642 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
6643 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
6644 
6645 
6646 class StringHasher {
6647  public:
6648   explicit inline StringHasher(int length, uint32_t seed);
6649 
6650   // Returns true if the hash of this string can be computed without
6651   // looking at the contents.
6652   inline bool has_trivial_hash();
6653 
6654   // Add a character to the hash and update the array index calculation.
6655   inline void AddCharacter(uint32_t c);
6656 
6657   // Adds a character to the hash but does not update the array index
6658   // calculation.  This can only be called when it has been verified
6659   // that the input is not an array index.
6660   inline void AddCharacterNoIndex(uint32_t c);
6661 
6662   // Add a character above 0xffff as a surrogate pair.  These can get into
6663   // the hasher through the routines that take a UTF-8 string and make a symbol.
6664   void AddSurrogatePair(uc32 c);
6665   void AddSurrogatePairNoIndex(uc32 c);
6666 
6667   // Returns the value to store in the hash field of a string with
6668   // the given length and contents.
6669   uint32_t GetHashField();
6670 
6671   // Returns true if the characters seen so far make up a legal array
6672   // index.
is_array_index()6673   bool is_array_index() { return is_array_index_; }
6674 
is_valid()6675   bool is_valid() { return is_valid_; }
6676 
invalidate()6677   void invalidate() { is_valid_ = false; }
6678 
6679   // Calculated hash value for a string consisting of 1 to
6680   // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
6681   // value is represented decimal value.
6682   static uint32_t MakeArrayIndexHash(uint32_t value, int length);
6683 
6684   // No string is allowed to have a hash of zero.  That value is reserved
6685   // for internal properties.  If the hash calculation yields zero then we
6686   // use 27 instead.
6687   static const int kZeroHash = 27;
6688 
6689  private:
array_index()6690   uint32_t array_index() {
6691     ASSERT(is_array_index());
6692     return array_index_;
6693   }
6694 
6695   inline uint32_t GetHash();
6696 
6697   int length_;
6698   uint32_t raw_running_hash_;
6699   uint32_t array_index_;
6700   bool is_array_index_;
6701   bool is_first_char_;
6702   bool is_valid_;
6703   friend class TwoCharHashTableKey;
6704 };
6705 
6706 
6707 // Calculates string hash.
6708 template <typename schar>
6709 inline uint32_t HashSequentialString(const schar* chars,
6710                                      int length,
6711                                      uint32_t seed);
6712 
6713 
6714 // The characteristics of a string are stored in its map.  Retrieving these
6715 // few bits of information is moderately expensive, involving two memory
6716 // loads where the second is dependent on the first.  To improve efficiency
6717 // the shape of the string is given its own class so that it can be retrieved
6718 // once and used for several string operations.  A StringShape is small enough
6719 // to be passed by value and is immutable, but be aware that flattening a
6720 // string can potentially alter its shape.  Also be aware that a GC caused by
6721 // something else can alter the shape of a string due to ConsString
6722 // shortcutting.  Keeping these restrictions in mind has proven to be error-
6723 // prone and so we no longer put StringShapes in variables unless there is a
6724 // concrete performance benefit at that particular point in the code.
6725 class StringShape BASE_EMBEDDED {
6726  public:
6727   inline explicit StringShape(String* s);
6728   inline explicit StringShape(Map* s);
6729   inline explicit StringShape(InstanceType t);
6730   inline bool IsSequential();
6731   inline bool IsExternal();
6732   inline bool IsCons();
6733   inline bool IsSliced();
6734   inline bool IsIndirect();
6735   inline bool IsExternalAscii();
6736   inline bool IsExternalTwoByte();
6737   inline bool IsSequentialAscii();
6738   inline bool IsSequentialTwoByte();
6739   inline bool IsSymbol();
6740   inline StringRepresentationTag representation_tag();
6741   inline uint32_t encoding_tag();
6742   inline uint32_t full_representation_tag();
6743   inline uint32_t size_tag();
6744 #ifdef DEBUG
type()6745   inline uint32_t type() { return type_; }
invalidate()6746   inline void invalidate() { valid_ = false; }
valid()6747   inline bool valid() { return valid_; }
6748 #else
invalidate()6749   inline void invalidate() { }
6750 #endif
6751 
6752  private:
6753   uint32_t type_;
6754 #ifdef DEBUG
set_valid()6755   inline void set_valid() { valid_ = true; }
6756   bool valid_;
6757 #else
set_valid()6758   inline void set_valid() { }
6759 #endif
6760 };
6761 
6762 
6763 // The String abstract class captures JavaScript string values:
6764 //
6765 // Ecma-262:
6766 //  4.3.16 String Value
6767 //    A string value is a member of the type String and is a finite
6768 //    ordered sequence of zero or more 16-bit unsigned integer values.
6769 //
6770 // All string values have a length field.
6771 class String: public HeapObject {
6772  public:
6773   // Representation of the flat content of a String.
6774   // A non-flat string doesn't have flat content.
6775   // A flat string has content that's encoded as a sequence of either
6776   // ASCII chars or two-byte UC16.
6777   // Returned by String::GetFlatContent().
6778   class FlatContent {
6779    public:
6780     // Returns true if the string is flat and this structure contains content.
IsFlat()6781     bool IsFlat() { return state_ != NON_FLAT; }
6782     // Returns true if the structure contains ASCII content.
IsAscii()6783     bool IsAscii() { return state_ == ASCII; }
6784     // Returns true if the structure contains two-byte content.
IsTwoByte()6785     bool IsTwoByte() { return state_ == TWO_BYTE; }
6786 
6787     // Return the ASCII content of the string. Only use if IsAscii() returns
6788     // true.
ToAsciiVector()6789     Vector<const char> ToAsciiVector() {
6790       ASSERT_EQ(ASCII, state_);
6791       return Vector<const char>::cast(buffer_);
6792     }
6793     // Return the two-byte content of the string. Only use if IsTwoByte()
6794     // returns true.
ToUC16Vector()6795     Vector<const uc16> ToUC16Vector() {
6796       ASSERT_EQ(TWO_BYTE, state_);
6797       return Vector<const uc16>::cast(buffer_);
6798     }
6799 
6800    private:
6801     enum State { NON_FLAT, ASCII, TWO_BYTE };
6802 
6803     // Constructors only used by String::GetFlatContent().
FlatContent(Vector<const char> chars)6804     explicit FlatContent(Vector<const char> chars)
6805         : buffer_(Vector<const byte>::cast(chars)),
6806           state_(ASCII) { }
FlatContent(Vector<const uc16> chars)6807     explicit FlatContent(Vector<const uc16> chars)
6808         : buffer_(Vector<const byte>::cast(chars)),
6809           state_(TWO_BYTE) { }
FlatContent()6810     FlatContent() : buffer_(), state_(NON_FLAT) { }
6811 
6812     Vector<const byte> buffer_;
6813     State state_;
6814 
6815     friend class String;
6816   };
6817 
6818   // Get and set the length of the string.
6819   inline int length();
6820   inline void set_length(int value);
6821 
6822   // Get and set the hash field of the string.
6823   inline uint32_t hash_field();
6824   inline void set_hash_field(uint32_t value);
6825 
6826   // Returns whether this string has only ASCII chars, i.e. all of them can
6827   // be ASCII encoded.  This might be the case even if the string is
6828   // two-byte.  Such strings may appear when the embedder prefers
6829   // two-byte external representations even for ASCII data.
6830   inline bool IsAsciiRepresentation();
6831   inline bool IsTwoByteRepresentation();
6832 
6833   // Cons and slices have an encoding flag that may not represent the actual
6834   // encoding of the underlying string.  This is taken into account here.
6835   // Requires: this->IsFlat()
6836   inline bool IsAsciiRepresentationUnderneath();
6837   inline bool IsTwoByteRepresentationUnderneath();
6838 
6839   // NOTE: this should be considered only a hint.  False negatives are
6840   // possible.
6841   inline bool HasOnlyAsciiChars();
6842 
6843   // Get and set individual two byte chars in the string.
6844   inline void Set(int index, uint16_t value);
6845   // Get individual two byte char in the string.  Repeated calls
6846   // to this method are not efficient unless the string is flat.
6847   inline uint16_t Get(int index);
6848 
6849   // Try to flatten the string.  Checks first inline to see if it is
6850   // necessary.  Does nothing if the string is not a cons string.
6851   // Flattening allocates a sequential string with the same data as
6852   // the given string and mutates the cons string to a degenerate
6853   // form, where the first component is the new sequential string and
6854   // the second component is the empty string.  If allocation fails,
6855   // this function returns a failure.  If flattening succeeds, this
6856   // function returns the sequential string that is now the first
6857   // component of the cons string.
6858   //
6859   // Degenerate cons strings are handled specially by the garbage
6860   // collector (see IsShortcutCandidate).
6861   //
6862   // Use FlattenString from Handles.cc to flatten even in case an
6863   // allocation failure happens.
6864   inline MaybeObject* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
6865 
6866   // Convenience function.  Has exactly the same behavior as
6867   // TryFlatten(), except in the case of failure returns the original
6868   // string.
6869   inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
6870 
6871   // Tries to return the content of a flat string as a structure holding either
6872   // a flat vector of char or of uc16.
6873   // If the string isn't flat, and therefore doesn't have flat content, the
6874   // returned structure will report so, and can't provide a vector of either
6875   // kind.
6876   FlatContent GetFlatContent();
6877 
6878   // Returns the parent of a sliced string or first part of a flat cons string.
6879   // Requires: StringShape(this).IsIndirect() && this->IsFlat()
6880   inline String* GetUnderlying();
6881 
6882   // Mark the string as an undetectable object. It only applies to
6883   // ASCII and two byte string types.
6884   bool MarkAsUndetectable();
6885 
6886   // Return a substring.
6887   MUST_USE_RESULT MaybeObject* SubString(int from,
6888                                          int to,
6889                                          PretenureFlag pretenure = NOT_TENURED);
6890 
6891   // String equality operations.
6892   inline bool Equals(String* other);
6893   bool IsEqualTo(Vector<const char> str);
6894   bool IsAsciiEqualTo(Vector<const char> str);
6895   bool IsTwoByteEqualTo(Vector<const uc16> str);
6896 
6897   // Return a UTF8 representation of the string.  The string is null
6898   // terminated but may optionally contain nulls.  Length is returned
6899   // in length_output if length_output is not a null pointer  The string
6900   // should be nearly flat, otherwise the performance of this method may
6901   // be very slow (quadratic in the length).  Setting robustness_flag to
6902   // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
6903   // handles unexpected data without causing assert failures and it does not
6904   // do any heap allocations.  This is useful when printing stack traces.
6905   SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
6906                                     RobustnessFlag robustness_flag,
6907                                     int offset,
6908                                     int length,
6909                                     int* length_output = 0);
6910   SmartArrayPointer<char> ToCString(
6911       AllowNullsFlag allow_nulls = DISALLOW_NULLS,
6912       RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
6913       int* length_output = 0);
6914 
6915   // Return a 16 bit Unicode representation of the string.
6916   // The string should be nearly flat, otherwise the performance of
6917   // of this method may be very bad.  Setting robustness_flag to
6918   // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
6919   // handles unexpected data without causing assert failures and it does not
6920   // do any heap allocations.  This is useful when printing stack traces.
6921   SmartArrayPointer<uc16> ToWideCString(
6922       RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
6923 
6924   // Tells whether the hash code has been computed.
6925   inline bool HasHashCode();
6926 
6927   // Returns a hash value used for the property table
6928   inline uint32_t Hash();
6929 
6930   static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
6931                                    int length,
6932                                    uint32_t seed);
6933 
6934   static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
6935                                 uint32_t* index,
6936                                 int length);
6937 
6938   // Externalization.
6939   bool MakeExternal(v8::String::ExternalStringResource* resource);
6940   bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
6941 
6942   // Conversion.
6943   inline bool AsArrayIndex(uint32_t* index);
6944 
6945   // Casting.
6946   static inline String* cast(Object* obj);
6947 
6948   void PrintOn(FILE* out);
6949 
6950   // For use during stack traces.  Performs rudimentary sanity check.
6951   bool LooksValid();
6952 
6953   // Dispatched behavior.
6954   void StringShortPrint(StringStream* accumulator);
6955 #ifdef OBJECT_PRINT
StringPrint()6956   inline void StringPrint() {
6957     StringPrint(stdout);
6958   }
6959   void StringPrint(FILE* out);
6960 
6961   char* ToAsciiArray();
6962 #endif
6963 #ifdef DEBUG
6964   void StringVerify();
6965 #endif
6966   inline bool IsFlat();
6967 
6968   // Layout description.
6969   static const int kLengthOffset = HeapObject::kHeaderSize;
6970   static const int kHashFieldOffset = kLengthOffset + kPointerSize;
6971   static const int kSize = kHashFieldOffset + kPointerSize;
6972 
6973   // Maximum number of characters to consider when trying to convert a string
6974   // value into an array index.
6975   static const int kMaxArrayIndexSize = 10;
6976 
6977   // Max ASCII char code.
6978   static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
6979   static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
6980   static const int kMaxUtf16CodeUnit = 0xffff;
6981 
6982   // Mask constant for checking if a string has a computed hash code
6983   // and if it is an array index.  The least significant bit indicates
6984   // whether a hash code has been computed.  If the hash code has been
6985   // computed the 2nd bit tells whether the string can be used as an
6986   // array index.
6987   static const int kHashNotComputedMask = 1;
6988   static const int kIsNotArrayIndexMask = 1 << 1;
6989   static const int kNofHashBitFields = 2;
6990 
6991   // Shift constant retrieving hash code from hash field.
6992   static const int kHashShift = kNofHashBitFields;
6993 
6994   // Only these bits are relevant in the hash, since the top two are shifted
6995   // out.
6996   static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
6997 
6998   // Array index strings this short can keep their index in the hash
6999   // field.
7000   static const int kMaxCachedArrayIndexLength = 7;
7001 
7002   // For strings which are array indexes the hash value has the string length
7003   // mixed into the hash, mainly to avoid a hash value of zero which would be
7004   // the case for the string '0'. 24 bits are used for the array index value.
7005   static const int kArrayIndexValueBits = 24;
7006   static const int kArrayIndexLengthBits =
7007       kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
7008 
7009   STATIC_CHECK((kArrayIndexLengthBits > 0));
7010   STATIC_CHECK(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
7011 
7012   static const int kArrayIndexHashLengthShift =
7013       kArrayIndexValueBits + kNofHashBitFields;
7014 
7015   static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
7016 
7017   static const int kArrayIndexValueMask =
7018       ((1 << kArrayIndexValueBits) - 1) << kHashShift;
7019 
7020   // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
7021   // could use a mask to test if the length of string is less than or equal to
7022   // kMaxCachedArrayIndexLength.
7023   STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
7024 
7025   static const int kContainsCachedArrayIndexMask =
7026       (~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) |
7027       kIsNotArrayIndexMask;
7028 
7029   // Value of empty hash field indicating that the hash is not computed.
7030   static const int kEmptyHashField =
7031       kIsNotArrayIndexMask | kHashNotComputedMask;
7032 
7033   // Value of hash field containing computed hash equal to zero.
7034   static const int kZeroHash = kIsNotArrayIndexMask;
7035 
7036   // Maximal string length.
7037   static const int kMaxLength = (1 << (32 - 2)) - 1;
7038 
7039   // Max length for computing hash. For strings longer than this limit the
7040   // string length is used as the hash value.
7041   static const int kMaxHashCalcLength = 16383;
7042 
7043   // Limit for truncation in short printing.
7044   static const int kMaxShortPrintLength = 1024;
7045 
7046   // Support for regular expressions.
7047   const uc16* GetTwoByteData();
7048   const uc16* GetTwoByteData(unsigned start);
7049 
7050   // Support for StringInputBuffer
7051   static const unibrow::byte* ReadBlock(String* input,
7052                                         unibrow::byte* util_buffer,
7053                                         unsigned capacity,
7054                                         unsigned* remaining,
7055                                         unsigned* offset);
7056   static const unibrow::byte* ReadBlock(String** input,
7057                                         unibrow::byte* util_buffer,
7058                                         unsigned capacity,
7059                                         unsigned* remaining,
7060                                         unsigned* offset);
7061 
7062   // Helper function for flattening strings.
7063   template <typename sinkchar>
7064   static void WriteToFlat(String* source,
7065                           sinkchar* sink,
7066                           int from,
7067                           int to);
7068 
IsAscii(const char * chars,int length)7069   static inline bool IsAscii(const char* chars, int length) {
7070     const char* limit = chars + length;
7071 #ifdef V8_HOST_CAN_READ_UNALIGNED
7072     ASSERT(kMaxAsciiCharCode == 0x7F);
7073     const uintptr_t non_ascii_mask = kUintptrAllBitsSet / 0xFF * 0x80;
7074     while (chars <= limit - sizeof(uintptr_t)) {
7075       if (*reinterpret_cast<const uintptr_t*>(chars) & non_ascii_mask) {
7076         return false;
7077       }
7078       chars += sizeof(uintptr_t);
7079     }
7080 #endif
7081     while (chars < limit) {
7082       if (static_cast<uint8_t>(*chars) > kMaxAsciiCharCodeU) return false;
7083       ++chars;
7084     }
7085     return true;
7086   }
7087 
IsAscii(const uc16 * chars,int length)7088   static inline bool IsAscii(const uc16* chars, int length) {
7089     const uc16* limit = chars + length;
7090     while (chars < limit) {
7091       if (*chars > kMaxAsciiCharCodeU) return false;
7092       ++chars;
7093     }
7094     return true;
7095   }
7096 
7097  protected:
7098   class ReadBlockBuffer {
7099    public:
ReadBlockBuffer(unibrow::byte * util_buffer_,unsigned cursor_,unsigned capacity_,unsigned remaining_)7100     ReadBlockBuffer(unibrow::byte* util_buffer_,
7101                     unsigned cursor_,
7102                     unsigned capacity_,
7103                     unsigned remaining_) :
7104       util_buffer(util_buffer_),
7105       cursor(cursor_),
7106       capacity(capacity_),
7107       remaining(remaining_) {
7108     }
7109     unibrow::byte* util_buffer;
7110     unsigned       cursor;
7111     unsigned       capacity;
7112     unsigned       remaining;
7113   };
7114 
7115   static inline const unibrow::byte* ReadBlock(String* input,
7116                                                ReadBlockBuffer* buffer,
7117                                                unsigned* offset,
7118                                                unsigned max_chars);
7119   static void ReadBlockIntoBuffer(String* input,
7120                                   ReadBlockBuffer* buffer,
7121                                   unsigned* offset_ptr,
7122                                   unsigned max_chars);
7123 
7124  private:
7125   // Try to flatten the top level ConsString that is hiding behind this
7126   // string.  This is a no-op unless the string is a ConsString.  Flatten
7127   // mutates the ConsString and might return a failure.
7128   MUST_USE_RESULT MaybeObject* SlowTryFlatten(PretenureFlag pretenure);
7129 
7130   static inline bool IsHashFieldComputed(uint32_t field);
7131 
7132   // Slow case of String::Equals.  This implementation works on any strings
7133   // but it is most efficient on strings that are almost flat.
7134   bool SlowEquals(String* other);
7135 
7136   // Slow case of AsArrayIndex.
7137   bool SlowAsArrayIndex(uint32_t* index);
7138 
7139   // Compute and set the hash code.
7140   uint32_t ComputeAndSetHash();
7141 
7142   DISALLOW_IMPLICIT_CONSTRUCTORS(String);
7143 };
7144 
7145 
7146 // The SeqString abstract class captures sequential string values.
7147 class SeqString: public String {
7148  public:
7149   // Casting.
7150   static inline SeqString* cast(Object* obj);
7151 
7152   // Layout description.
7153   static const int kHeaderSize = String::kSize;
7154 
7155  private:
7156   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
7157 };
7158 
7159 
7160 // The AsciiString class captures sequential ASCII string objects.
7161 // Each character in the AsciiString is an ASCII character.
7162 class SeqAsciiString: public SeqString {
7163  public:
7164   static const bool kHasAsciiEncoding = true;
7165 
7166   // Dispatched behavior.
7167   inline uint16_t SeqAsciiStringGet(int index);
7168   inline void SeqAsciiStringSet(int index, uint16_t value);
7169 
7170   // Get the address of the characters in this string.
7171   inline Address GetCharsAddress();
7172 
7173   inline char* GetChars();
7174 
7175   // Casting
7176   static inline SeqAsciiString* cast(Object* obj);
7177 
7178   // Garbage collection support.  This method is called by the
7179   // garbage collector to compute the actual size of an AsciiString
7180   // instance.
7181   inline int SeqAsciiStringSize(InstanceType instance_type);
7182 
7183   // Computes the size for an AsciiString instance of a given length.
SizeFor(int length)7184   static int SizeFor(int length) {
7185     return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
7186   }
7187 
7188   // Maximal memory usage for a single sequential ASCII string.
7189   static const int kMaxSize = 512 * MB - 1;
7190   // Maximal length of a single sequential ASCII string.
7191   // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
7192   static const int kMaxLength = (kMaxSize - kHeaderSize);
7193 
7194   // Support for StringInputBuffer.
7195   inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
7196                                                 unsigned* offset,
7197                                                 unsigned chars);
7198   inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
7199                                                       unsigned* offset,
7200                                                       unsigned chars);
7201 
7202  private:
7203   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
7204 };
7205 
7206 
7207 // The TwoByteString class captures sequential unicode string objects.
7208 // Each character in the TwoByteString is a two-byte uint16_t.
7209 class SeqTwoByteString: public SeqString {
7210  public:
7211   static const bool kHasAsciiEncoding = false;
7212 
7213   // Dispatched behavior.
7214   inline uint16_t SeqTwoByteStringGet(int index);
7215   inline void SeqTwoByteStringSet(int index, uint16_t value);
7216 
7217   // Get the address of the characters in this string.
7218   inline Address GetCharsAddress();
7219 
7220   inline uc16* GetChars();
7221 
7222   // For regexp code.
7223   const uint16_t* SeqTwoByteStringGetData(unsigned start);
7224 
7225   // Casting
7226   static inline SeqTwoByteString* cast(Object* obj);
7227 
7228   // Garbage collection support.  This method is called by the
7229   // garbage collector to compute the actual size of a TwoByteString
7230   // instance.
7231   inline int SeqTwoByteStringSize(InstanceType instance_type);
7232 
7233   // Computes the size for a TwoByteString instance of a given length.
SizeFor(int length)7234   static int SizeFor(int length) {
7235     return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
7236   }
7237 
7238   // Maximal memory usage for a single sequential two-byte string.
7239   static const int kMaxSize = 512 * MB - 1;
7240   // Maximal length of a single sequential two-byte string.
7241   // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
7242   static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
7243 
7244   // Support for StringInputBuffer.
7245   inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
7246                                                   unsigned* offset_ptr,
7247                                                   unsigned chars);
7248 
7249  private:
7250   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
7251 };
7252 
7253 
7254 // The ConsString class describes string values built by using the
7255 // addition operator on strings.  A ConsString is a pair where the
7256 // first and second components are pointers to other string values.
7257 // One or both components of a ConsString can be pointers to other
7258 // ConsStrings, creating a binary tree of ConsStrings where the leaves
7259 // are non-ConsString string values.  The string value represented by
7260 // a ConsString can be obtained by concatenating the leaf string
7261 // values in a left-to-right depth-first traversal of the tree.
7262 class ConsString: public String {
7263  public:
7264   // First string of the cons cell.
7265   inline String* first();
7266   // Doesn't check that the result is a string, even in debug mode.  This is
7267   // useful during GC where the mark bits confuse the checks.
7268   inline Object* unchecked_first();
7269   inline void set_first(String* first,
7270                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
7271 
7272   // Second string of the cons cell.
7273   inline String* second();
7274   // Doesn't check that the result is a string, even in debug mode.  This is
7275   // useful during GC where the mark bits confuse the checks.
7276   inline Object* unchecked_second();
7277   inline void set_second(String* second,
7278                          WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
7279 
7280   // Dispatched behavior.
7281   uint16_t ConsStringGet(int index);
7282 
7283   // Casting.
7284   static inline ConsString* cast(Object* obj);
7285 
7286   // Layout description.
7287   static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
7288   static const int kSecondOffset = kFirstOffset + kPointerSize;
7289   static const int kSize = kSecondOffset + kPointerSize;
7290 
7291   // Support for StringInputBuffer.
7292   inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
7293                                                   unsigned* offset_ptr,
7294                                                   unsigned chars);
7295   inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
7296                                             unsigned* offset_ptr,
7297                                             unsigned chars);
7298 
7299   // Minimum length for a cons string.
7300   static const int kMinLength = 13;
7301 
7302   typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
7303           BodyDescriptor;
7304 
7305 #ifdef DEBUG
7306   void ConsStringVerify();
7307 #endif
7308 
7309  private:
7310   DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
7311 };
7312 
7313 
7314 // The Sliced String class describes strings that are substrings of another
7315 // sequential string.  The motivation is to save time and memory when creating
7316 // a substring.  A Sliced String is described as a pointer to the parent,
7317 // the offset from the start of the parent string and the length.  Using
7318 // a Sliced String therefore requires unpacking of the parent string and
7319 // adding the offset to the start address.  A substring of a Sliced String
7320 // are not nested since the double indirection is simplified when creating
7321 // such a substring.
7322 // Currently missing features are:
7323 //  - handling externalized parent strings
7324 //  - external strings as parent
7325 //  - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
7326 class SlicedString: public String {
7327  public:
7328   inline String* parent();
7329   inline void set_parent(String* parent);
7330   inline int offset();
7331   inline void set_offset(int offset);
7332 
7333   // Dispatched behavior.
7334   uint16_t SlicedStringGet(int index);
7335 
7336   // Casting.
7337   static inline SlicedString* cast(Object* obj);
7338 
7339   // Layout description.
7340   static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
7341   static const int kOffsetOffset = kParentOffset + kPointerSize;
7342   static const int kSize = kOffsetOffset + kPointerSize;
7343 
7344   // Support for StringInputBuffer
7345   inline const unibrow::byte* SlicedStringReadBlock(ReadBlockBuffer* buffer,
7346                                                     unsigned* offset_ptr,
7347                                                     unsigned chars);
7348   inline void SlicedStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
7349                                               unsigned* offset_ptr,
7350                                               unsigned chars);
7351   // Minimum length for a sliced string.
7352   static const int kMinLength = 13;
7353 
7354   typedef FixedBodyDescriptor<kParentOffset,
7355                               kOffsetOffset + kPointerSize, kSize>
7356           BodyDescriptor;
7357 
7358 #ifdef DEBUG
7359   void SlicedStringVerify();
7360 #endif
7361 
7362  private:
7363   DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
7364 };
7365 
7366 
7367 // The ExternalString class describes string values that are backed by
7368 // a string resource that lies outside the V8 heap.  ExternalStrings
7369 // consist of the length field common to all strings, a pointer to the
7370 // external resource.  It is important to ensure (externally) that the
7371 // resource is not deallocated while the ExternalString is live in the
7372 // V8 heap.
7373 //
7374 // The API expects that all ExternalStrings are created through the
7375 // API.  Therefore, ExternalStrings should not be used internally.
7376 class ExternalString: public String {
7377  public:
7378   // Casting
7379   static inline ExternalString* cast(Object* obj);
7380 
7381   // Layout description.
7382   static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
7383   static const int kShortSize = kResourceOffset + kPointerSize;
7384   static const int kResourceDataOffset = kResourceOffset + kPointerSize;
7385   static const int kSize = kResourceDataOffset + kPointerSize;
7386 
7387   // Return whether external string is short (data pointer is not cached).
7388   inline bool is_short();
7389 
7390   STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
7391 
7392  private:
7393   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
7394 };
7395 
7396 
7397 // The ExternalAsciiString class is an external string backed by an
7398 // ASCII string.
7399 class ExternalAsciiString: public ExternalString {
7400  public:
7401   static const bool kHasAsciiEncoding = true;
7402 
7403   typedef v8::String::ExternalAsciiStringResource Resource;
7404 
7405   // The underlying resource.
7406   inline const Resource* resource();
7407   inline void set_resource(const Resource* buffer);
7408 
7409   // Update the pointer cache to the external character array.
7410   // The cached pointer is always valid, as the external character array does =
7411   // not move during lifetime.  Deserialization is the only exception, after
7412   // which the pointer cache has to be refreshed.
7413   inline void update_data_cache();
7414 
7415   inline const char* GetChars();
7416 
7417   // Dispatched behavior.
7418   inline uint16_t ExternalAsciiStringGet(int index);
7419 
7420   // Casting.
7421   static inline ExternalAsciiString* cast(Object* obj);
7422 
7423   // Garbage collection support.
7424   inline void ExternalAsciiStringIterateBody(ObjectVisitor* v);
7425 
7426   template<typename StaticVisitor>
7427   inline void ExternalAsciiStringIterateBody();
7428 
7429   // Support for StringInputBuffer.
7430   const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
7431                                                     unsigned* offset,
7432                                                     unsigned chars);
7433   inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
7434                                                      unsigned* offset,
7435                                                      unsigned chars);
7436 
7437  private:
7438   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
7439 };
7440 
7441 
7442 // The ExternalTwoByteString class is an external string backed by a UTF-16
7443 // encoded string.
7444 class ExternalTwoByteString: public ExternalString {
7445  public:
7446   static const bool kHasAsciiEncoding = false;
7447 
7448   typedef v8::String::ExternalStringResource Resource;
7449 
7450   // The underlying string resource.
7451   inline const Resource* resource();
7452   inline void set_resource(const Resource* buffer);
7453 
7454   // Update the pointer cache to the external character array.
7455   // The cached pointer is always valid, as the external character array does =
7456   // not move during lifetime.  Deserialization is the only exception, after
7457   // which the pointer cache has to be refreshed.
7458   inline void update_data_cache();
7459 
7460   inline const uint16_t* GetChars();
7461 
7462   // Dispatched behavior.
7463   inline uint16_t ExternalTwoByteStringGet(int index);
7464 
7465   // For regexp code.
7466   inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
7467 
7468   // Casting.
7469   static inline ExternalTwoByteString* cast(Object* obj);
7470 
7471   // Garbage collection support.
7472   inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
7473 
7474   template<typename StaticVisitor>
7475   inline void ExternalTwoByteStringIterateBody();
7476 
7477 
7478   // Support for StringInputBuffer.
7479   void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
7480                                                 unsigned* offset_ptr,
7481                                                 unsigned chars);
7482 
7483  private:
7484   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
7485 };
7486 
7487 
7488 // Utility superclass for stack-allocated objects that must be updated
7489 // on gc.  It provides two ways for the gc to update instances, either
7490 // iterating or updating after gc.
7491 class Relocatable BASE_EMBEDDED {
7492  public:
7493   explicit inline Relocatable(Isolate* isolate);
7494   inline virtual ~Relocatable();
IterateInstance(ObjectVisitor * v)7495   virtual void IterateInstance(ObjectVisitor* v) { }
PostGarbageCollection()7496   virtual void PostGarbageCollection() { }
7497 
7498   static void PostGarbageCollectionProcessing();
7499   static int ArchiveSpacePerThread();
7500   static char* ArchiveState(Isolate* isolate, char* to);
7501   static char* RestoreState(Isolate* isolate, char* from);
7502   static void Iterate(ObjectVisitor* v);
7503   static void Iterate(ObjectVisitor* v, Relocatable* top);
7504   static char* Iterate(ObjectVisitor* v, char* t);
7505  private:
7506   Isolate* isolate_;
7507   Relocatable* prev_;
7508 };
7509 
7510 
7511 // A flat string reader provides random access to the contents of a
7512 // string independent of the character width of the string.  The handle
7513 // must be valid as long as the reader is being used.
7514 class FlatStringReader : public Relocatable {
7515  public:
7516   FlatStringReader(Isolate* isolate, Handle<String> str);
7517   FlatStringReader(Isolate* isolate, Vector<const char> input);
7518   void PostGarbageCollection();
7519   inline uc32 Get(int index);
length()7520   int length() { return length_; }
7521  private:
7522   String** str_;
7523   bool is_ascii_;
7524   int length_;
7525   const void* start_;
7526 };
7527 
7528 
7529 // Note that StringInputBuffers are not valid across a GC!  To fix this
7530 // it would have to store a String Handle instead of a String* and
7531 // AsciiStringReadBlock would have to be modified to use memcpy.
7532 //
7533 // StringInputBuffer is able to traverse any string regardless of how
7534 // deeply nested a sequence of ConsStrings it is made of.  However,
7535 // performance will be better if deep strings are flattened before they
7536 // are traversed.  Since flattening requires memory allocation this is
7537 // not always desirable, however (esp. in debugging situations).
7538 class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
7539  public:
7540   virtual void Seek(unsigned pos);
StringInputBuffer()7541   inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
StringInputBuffer(String * backing)7542   explicit inline StringInputBuffer(String* backing):
7543       unibrow::InputBuffer<String, String*, 1024>(backing) {}
7544 };
7545 
7546 
7547 class SafeStringInputBuffer
7548   : public unibrow::InputBuffer<String, String**, 256> {
7549  public:
7550   virtual void Seek(unsigned pos);
SafeStringInputBuffer()7551   inline SafeStringInputBuffer()
7552       : unibrow::InputBuffer<String, String**, 256>() {}
SafeStringInputBuffer(String ** backing)7553   explicit inline SafeStringInputBuffer(String** backing)
7554       : unibrow::InputBuffer<String, String**, 256>(backing) {}
7555 };
7556 
7557 
7558 template <typename T>
7559 class VectorIterator {
7560  public:
VectorIterator(T * d,int l)7561   VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
VectorIterator(Vector<const T> data)7562   explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
GetNext()7563   T GetNext() { return data_[index_++]; }
has_more()7564   bool has_more() { return index_ < data_.length(); }
7565  private:
7566   Vector<const T> data_;
7567   int index_;
7568 };
7569 
7570 
7571 // The Oddball describes objects null, undefined, true, and false.
7572 class Oddball: public HeapObject {
7573  public:
7574   // [to_string]: Cached to_string computed at startup.
7575   DECL_ACCESSORS(to_string, String)
7576 
7577   // [to_number]: Cached to_number computed at startup.
7578   DECL_ACCESSORS(to_number, Object)
7579 
7580   inline byte kind();
7581   inline void set_kind(byte kind);
7582 
7583   // Casting.
7584   static inline Oddball* cast(Object* obj);
7585 
7586   // Dispatched behavior.
7587 #ifdef DEBUG
7588   void OddballVerify();
7589 #endif
7590 
7591   // Initialize the fields.
7592   MUST_USE_RESULT MaybeObject* Initialize(const char* to_string,
7593                                           Object* to_number,
7594                                           byte kind);
7595 
7596   // Layout description.
7597   static const int kToStringOffset = HeapObject::kHeaderSize;
7598   static const int kToNumberOffset = kToStringOffset + kPointerSize;
7599   static const int kKindOffset = kToNumberOffset + kPointerSize;
7600   static const int kSize = kKindOffset + kPointerSize;
7601 
7602   static const byte kFalse = 0;
7603   static const byte kTrue = 1;
7604   static const byte kNotBooleanMask = ~1;
7605   static const byte kTheHole = 2;
7606   static const byte kNull = 3;
7607   static const byte kArgumentMarker = 4;
7608   static const byte kUndefined = 5;
7609   static const byte kOther = 6;
7610 
7611   typedef FixedBodyDescriptor<kToStringOffset,
7612                               kToNumberOffset + kPointerSize,
7613                               kSize> BodyDescriptor;
7614 
7615  private:
7616   DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
7617 };
7618 
7619 
7620 class JSGlobalPropertyCell: public HeapObject {
7621  public:
7622   // [value]: value of the global property.
7623   DECL_ACCESSORS(value, Object)
7624 
7625   // Casting.
7626   static inline JSGlobalPropertyCell* cast(Object* obj);
7627 
7628 #ifdef DEBUG
7629   void JSGlobalPropertyCellVerify();
7630 #endif
7631 #ifdef OBJECT_PRINT
JSGlobalPropertyCellPrint()7632   inline void JSGlobalPropertyCellPrint() {
7633     JSGlobalPropertyCellPrint(stdout);
7634   }
7635   void JSGlobalPropertyCellPrint(FILE* out);
7636 #endif
7637 
7638   // Layout description.
7639   static const int kValueOffset = HeapObject::kHeaderSize;
7640   static const int kSize = kValueOffset + kPointerSize;
7641 
7642   typedef FixedBodyDescriptor<kValueOffset,
7643                               kValueOffset + kPointerSize,
7644                               kSize> BodyDescriptor;
7645 
7646  private:
7647   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
7648 };
7649 
7650 
7651 // The JSProxy describes EcmaScript Harmony proxies
7652 class JSProxy: public JSReceiver {
7653  public:
7654   // [handler]: The handler property.
7655   DECL_ACCESSORS(handler, Object)
7656 
7657   // [hash]: The hash code property (undefined if not initialized yet).
7658   DECL_ACCESSORS(hash, Object)
7659 
7660   // Casting.
7661   static inline JSProxy* cast(Object* obj);
7662 
7663   bool HasPropertyWithHandler(String* name);
7664   bool HasElementWithHandler(uint32_t index);
7665 
7666   MUST_USE_RESULT MaybeObject* GetPropertyWithHandler(
7667       Object* receiver,
7668       String* name);
7669   MUST_USE_RESULT MaybeObject* GetElementWithHandler(
7670       Object* receiver,
7671       uint32_t index);
7672 
7673   MUST_USE_RESULT MaybeObject* SetPropertyWithHandler(
7674       String* name,
7675       Object* value,
7676       PropertyAttributes attributes,
7677       StrictModeFlag strict_mode);
7678   MUST_USE_RESULT MaybeObject* SetElementWithHandler(
7679       uint32_t index,
7680       Object* value,
7681       StrictModeFlag strict_mode);
7682 
7683   // If the handler defines an accessor property, invoke its setter
7684   // (or throw if only a getter exists) and set *found to true. Otherwise false.
7685   MUST_USE_RESULT MaybeObject* SetPropertyWithHandlerIfDefiningSetter(
7686       String* name,
7687       Object* value,
7688       PropertyAttributes attributes,
7689       StrictModeFlag strict_mode,
7690       bool* found);
7691 
7692   MUST_USE_RESULT MaybeObject* DeletePropertyWithHandler(
7693       String* name,
7694       DeleteMode mode);
7695   MUST_USE_RESULT MaybeObject* DeleteElementWithHandler(
7696       uint32_t index,
7697       DeleteMode mode);
7698 
7699   MUST_USE_RESULT PropertyAttributes GetPropertyAttributeWithHandler(
7700       JSReceiver* receiver,
7701       String* name);
7702   MUST_USE_RESULT PropertyAttributes GetElementAttributeWithHandler(
7703       JSReceiver* receiver,
7704       uint32_t index);
7705 
7706   MUST_USE_RESULT MaybeObject* GetIdentityHash(CreationFlag flag);
7707 
7708   // Turn this into an (empty) JSObject.
7709   void Fix();
7710 
7711   // Initializes the body after the handler slot.
7712   inline void InitializeBody(int object_size, Object* value);
7713 
7714   // Invoke a trap by name. If the trap does not exist on this's handler,
7715   // but derived_trap is non-NULL, invoke that instead.  May cause GC.
7716   Handle<Object> CallTrap(const char* name,
7717                           Handle<Object> derived_trap,
7718                           int argc,
7719                           Handle<Object> args[]);
7720 
7721   // Dispatched behavior.
7722 #ifdef OBJECT_PRINT
JSProxyPrint()7723   inline void JSProxyPrint() {
7724     JSProxyPrint(stdout);
7725   }
7726   void JSProxyPrint(FILE* out);
7727 #endif
7728 #ifdef DEBUG
7729   void JSProxyVerify();
7730 #endif
7731 
7732   // Layout description. We add padding so that a proxy has the same
7733   // size as a virgin JSObject. This is essential for becoming a JSObject
7734   // upon freeze.
7735   static const int kHandlerOffset = HeapObject::kHeaderSize;
7736   static const int kHashOffset = kHandlerOffset + kPointerSize;
7737   static const int kPaddingOffset = kHashOffset + kPointerSize;
7738   static const int kSize = JSObject::kHeaderSize;
7739   static const int kHeaderSize = kPaddingOffset;
7740   static const int kPaddingSize = kSize - kPaddingOffset;
7741 
7742   STATIC_CHECK(kPaddingSize >= 0);
7743 
7744   typedef FixedBodyDescriptor<kHandlerOffset,
7745                               kPaddingOffset,
7746                               kSize> BodyDescriptor;
7747 
7748  private:
7749   DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
7750 };
7751 
7752 
7753 class JSFunctionProxy: public JSProxy {
7754  public:
7755   // [call_trap]: The call trap.
7756   DECL_ACCESSORS(call_trap, Object)
7757 
7758   // [construct_trap]: The construct trap.
7759   DECL_ACCESSORS(construct_trap, Object)
7760 
7761   // Casting.
7762   static inline JSFunctionProxy* cast(Object* obj);
7763 
7764   // Dispatched behavior.
7765 #ifdef OBJECT_PRINT
JSFunctionProxyPrint()7766   inline void JSFunctionProxyPrint() {
7767     JSFunctionProxyPrint(stdout);
7768   }
7769   void JSFunctionProxyPrint(FILE* out);
7770 #endif
7771 #ifdef DEBUG
7772   void JSFunctionProxyVerify();
7773 #endif
7774 
7775   // Layout description.
7776   static const int kCallTrapOffset = JSProxy::kPaddingOffset;
7777   static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
7778   static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
7779   static const int kSize = JSFunction::kSize;
7780   static const int kPaddingSize = kSize - kPaddingOffset;
7781 
7782   STATIC_CHECK(kPaddingSize >= 0);
7783 
7784   typedef FixedBodyDescriptor<kHandlerOffset,
7785                               kConstructTrapOffset + kPointerSize,
7786                               kSize> BodyDescriptor;
7787 
7788  private:
7789   DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
7790 };
7791 
7792 
7793 // The JSSet describes EcmaScript Harmony sets
7794 class JSSet: public JSObject {
7795  public:
7796   // [set]: the backing hash set containing keys.
7797   DECL_ACCESSORS(table, Object)
7798 
7799   // Casting.
7800   static inline JSSet* cast(Object* obj);
7801 
7802 #ifdef OBJECT_PRINT
JSSetPrint()7803   inline void JSSetPrint() {
7804     JSSetPrint(stdout);
7805   }
7806   void JSSetPrint(FILE* out);
7807 #endif
7808 #ifdef DEBUG
7809   void JSSetVerify();
7810 #endif
7811 
7812   static const int kTableOffset = JSObject::kHeaderSize;
7813   static const int kSize = kTableOffset + kPointerSize;
7814 
7815  private:
7816   DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
7817 };
7818 
7819 
7820 // The JSMap describes EcmaScript Harmony maps
7821 class JSMap: public JSObject {
7822  public:
7823   // [table]: the backing hash table mapping keys to values.
7824   DECL_ACCESSORS(table, Object)
7825 
7826   // Casting.
7827   static inline JSMap* cast(Object* obj);
7828 
7829 #ifdef OBJECT_PRINT
JSMapPrint()7830   inline void JSMapPrint() {
7831     JSMapPrint(stdout);
7832   }
7833   void JSMapPrint(FILE* out);
7834 #endif
7835 #ifdef DEBUG
7836   void JSMapVerify();
7837 #endif
7838 
7839   static const int kTableOffset = JSObject::kHeaderSize;
7840   static const int kSize = kTableOffset + kPointerSize;
7841 
7842  private:
7843   DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
7844 };
7845 
7846 
7847 // The JSWeakMap describes EcmaScript Harmony weak maps
7848 class JSWeakMap: public JSObject {
7849  public:
7850   // [table]: the backing hash table mapping keys to values.
7851   DECL_ACCESSORS(table, Object)
7852 
7853   // [next]: linked list of encountered weak maps during GC.
7854   DECL_ACCESSORS(next, Object)
7855 
7856   // Casting.
7857   static inline JSWeakMap* cast(Object* obj);
7858 
7859 #ifdef OBJECT_PRINT
JSWeakMapPrint()7860   inline void JSWeakMapPrint() {
7861     JSWeakMapPrint(stdout);
7862   }
7863   void JSWeakMapPrint(FILE* out);
7864 #endif
7865 #ifdef DEBUG
7866   void JSWeakMapVerify();
7867 #endif
7868 
7869   static const int kTableOffset = JSObject::kHeaderSize;
7870   static const int kNextOffset = kTableOffset + kPointerSize;
7871   static const int kSize = kNextOffset + kPointerSize;
7872 
7873  private:
7874   DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
7875 };
7876 
7877 
7878 // Foreign describes objects pointing from JavaScript to C structures.
7879 // Since they cannot contain references to JS HeapObjects they can be
7880 // placed in old_data_space.
7881 class Foreign: public HeapObject {
7882  public:
7883   // [address]: field containing the address.
7884   inline Address foreign_address();
7885   inline void set_foreign_address(Address value);
7886 
7887   // Casting.
7888   static inline Foreign* cast(Object* obj);
7889 
7890   // Dispatched behavior.
7891   inline void ForeignIterateBody(ObjectVisitor* v);
7892 
7893   template<typename StaticVisitor>
7894   inline void ForeignIterateBody();
7895 
7896 #ifdef OBJECT_PRINT
ForeignPrint()7897   inline void ForeignPrint() {
7898     ForeignPrint(stdout);
7899   }
7900   void ForeignPrint(FILE* out);
7901 #endif
7902 #ifdef DEBUG
7903   void ForeignVerify();
7904 #endif
7905 
7906   // Layout description.
7907 
7908   static const int kForeignAddressOffset = HeapObject::kHeaderSize;
7909   static const int kSize = kForeignAddressOffset + kPointerSize;
7910 
7911   STATIC_CHECK(kForeignAddressOffset == Internals::kForeignAddressOffset);
7912 
7913  private:
7914   DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
7915 };
7916 
7917 
7918 // The JSArray describes JavaScript Arrays
7919 //  Such an array can be in one of two modes:
7920 //    - fast, backing storage is a FixedArray and length <= elements.length();
7921 //       Please note: push and pop can be used to grow and shrink the array.
7922 //    - slow, backing storage is a HashTable with numbers as keys.
7923 class JSArray: public JSObject {
7924  public:
7925   // [length]: The length property.
7926   DECL_ACCESSORS(length, Object)
7927 
7928   // Overload the length setter to skip write barrier when the length
7929   // is set to a smi. This matches the set function on FixedArray.
7930   inline void set_length(Smi* length);
7931 
7932   MUST_USE_RESULT MaybeObject* JSArrayUpdateLengthFromIndex(uint32_t index,
7933                                                             Object* value);
7934 
7935   // Initialize the array with the given capacity. The function may
7936   // fail due to out-of-memory situations, but only if the requested
7937   // capacity is non-zero.
7938   MUST_USE_RESULT MaybeObject* Initialize(int capacity);
7939 
7940   // Initializes the array to a certain length.
7941   inline bool AllowsSetElementsLength();
7942   MUST_USE_RESULT MaybeObject* SetElementsLength(Object* length);
7943 
7944   // Set the content of the array to the content of storage.
7945   MUST_USE_RESULT inline MaybeObject* SetContent(FixedArrayBase* storage);
7946 
7947   // Casting.
7948   static inline JSArray* cast(Object* obj);
7949 
7950   // Uses handles.  Ensures that the fixed array backing the JSArray has at
7951   // least the stated size.
7952   inline void EnsureSize(int minimum_size_of_backing_fixed_array);
7953 
7954   // Dispatched behavior.
7955 #ifdef OBJECT_PRINT
JSArrayPrint()7956   inline void JSArrayPrint() {
7957     JSArrayPrint(stdout);
7958   }
7959   void JSArrayPrint(FILE* out);
7960 #endif
7961 #ifdef DEBUG
7962   void JSArrayVerify();
7963 #endif
7964 
7965   // Number of element slots to pre-allocate for an empty array.
7966   static const int kPreallocatedArrayElements = 4;
7967 
7968   // Layout description.
7969   static const int kLengthOffset = JSObject::kHeaderSize;
7970   static const int kSize = kLengthOffset + kPointerSize;
7971 
7972  private:
7973   // Expand the fixed array backing of a fast-case JSArray to at least
7974   // the requested size.
7975   void Expand(int minimum_size_of_backing_fixed_array);
7976 
7977   DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
7978 };
7979 
7980 
7981 // JSRegExpResult is just a JSArray with a specific initial map.
7982 // This initial map adds in-object properties for "index" and "input"
7983 // properties, as assigned by RegExp.prototype.exec, which allows
7984 // faster creation of RegExp exec results.
7985 // This class just holds constants used when creating the result.
7986 // After creation the result must be treated as a JSArray in all regards.
7987 class JSRegExpResult: public JSArray {
7988  public:
7989   // Offsets of object fields.
7990   static const int kIndexOffset = JSArray::kSize;
7991   static const int kInputOffset = kIndexOffset + kPointerSize;
7992   static const int kSize = kInputOffset + kPointerSize;
7993   // Indices of in-object properties.
7994   static const int kIndexIndex = 0;
7995   static const int kInputIndex = 1;
7996  private:
7997   DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
7998 };
7999 
8000 
8001 // An accessor must have a getter, but can have no setter.
8002 //
8003 // When setting a property, V8 searches accessors in prototypes.
8004 // If an accessor was found and it does not have a setter,
8005 // the request is ignored.
8006 //
8007 // If the accessor in the prototype has the READ_ONLY property attribute, then
8008 // a new value is added to the local object when the property is set.
8009 // This shadows the accessor in the prototype.
8010 class AccessorInfo: public Struct {
8011  public:
8012   DECL_ACCESSORS(getter, Object)
8013   DECL_ACCESSORS(setter, Object)
8014   DECL_ACCESSORS(data, Object)
8015   DECL_ACCESSORS(name, Object)
8016   DECL_ACCESSORS(flag, Smi)
8017 
8018   inline bool all_can_read();
8019   inline void set_all_can_read(bool value);
8020 
8021   inline bool all_can_write();
8022   inline void set_all_can_write(bool value);
8023 
8024   inline bool prohibits_overwriting();
8025   inline void set_prohibits_overwriting(bool value);
8026 
8027   inline PropertyAttributes property_attributes();
8028   inline void set_property_attributes(PropertyAttributes attributes);
8029 
8030   static inline AccessorInfo* cast(Object* obj);
8031 
8032 #ifdef OBJECT_PRINT
AccessorInfoPrint()8033   inline void AccessorInfoPrint() {
8034     AccessorInfoPrint(stdout);
8035   }
8036   void AccessorInfoPrint(FILE* out);
8037 #endif
8038 #ifdef DEBUG
8039   void AccessorInfoVerify();
8040 #endif
8041 
8042   static const int kGetterOffset = HeapObject::kHeaderSize;
8043   static const int kSetterOffset = kGetterOffset + kPointerSize;
8044   static const int kDataOffset = kSetterOffset + kPointerSize;
8045   static const int kNameOffset = kDataOffset + kPointerSize;
8046   static const int kFlagOffset = kNameOffset + kPointerSize;
8047   static const int kSize = kFlagOffset + kPointerSize;
8048 
8049  private:
8050   // Bit positions in flag.
8051   static const int kAllCanReadBit = 0;
8052   static const int kAllCanWriteBit = 1;
8053   static const int kProhibitsOverwritingBit = 2;
8054   class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
8055 
8056   DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
8057 };
8058 
8059 
8060 // Support for JavaScript accessors: A pair of a getter and a setter. Each
8061 // accessor can either be
8062 //   * a pointer to a JavaScript function or proxy: a real accessor
8063 //   * undefined: considered an accessor by the spec, too, strangely enough
8064 //   * the hole: an accessor which has not been set
8065 //   * a pointer to a map: a transition used to ensure map sharing
8066 class AccessorPair: public Struct {
8067  public:
8068   DECL_ACCESSORS(getter, Object)
8069   DECL_ACCESSORS(setter, Object)
8070 
8071   static inline AccessorPair* cast(Object* obj);
8072 
8073   MUST_USE_RESULT MaybeObject* CopyWithoutTransitions();
8074 
8075   // Note: Returns undefined instead in case of a hole.
8076   Object* GetComponent(AccessorComponent component);
8077 
8078   // Set both components, skipping arguments which are a JavaScript null.
SetComponents(Object * getter,Object * setter)8079   void SetComponents(Object* getter, Object* setter) {
8080     if (!getter->IsNull()) set_getter(getter);
8081     if (!setter->IsNull()) set_setter(setter);
8082   }
8083 
ContainsAccessor()8084   bool ContainsAccessor() {
8085     return IsJSAccessor(getter()) || IsJSAccessor(setter());
8086   }
8087 
8088 #ifdef OBJECT_PRINT
8089   void AccessorPairPrint(FILE* out = stdout);
8090 #endif
8091 #ifdef DEBUG
8092   void AccessorPairVerify();
8093 #endif
8094 
8095   static const int kGetterOffset = HeapObject::kHeaderSize;
8096   static const int kSetterOffset = kGetterOffset + kPointerSize;
8097   static const int kSize = kSetterOffset + kPointerSize;
8098 
8099  private:
8100   // Strangely enough, in addition to functions and harmony proxies, the spec
8101   // requires us to consider undefined as a kind of accessor, too:
8102   //    var obj = {};
8103   //    Object.defineProperty(obj, "foo", {get: undefined});
8104   //    assertTrue("foo" in obj);
IsJSAccessor(Object * obj)8105   bool IsJSAccessor(Object* obj) {
8106     return obj->IsSpecFunction() || obj->IsUndefined();
8107   }
8108 
8109   DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
8110 };
8111 
8112 
8113 class AccessCheckInfo: public Struct {
8114  public:
8115   DECL_ACCESSORS(named_callback, Object)
8116   DECL_ACCESSORS(indexed_callback, Object)
8117   DECL_ACCESSORS(data, Object)
8118 
8119   static inline AccessCheckInfo* cast(Object* obj);
8120 
8121 #ifdef OBJECT_PRINT
AccessCheckInfoPrint()8122   inline void AccessCheckInfoPrint() {
8123     AccessCheckInfoPrint(stdout);
8124   }
8125   void AccessCheckInfoPrint(FILE* out);
8126 #endif
8127 #ifdef DEBUG
8128   void AccessCheckInfoVerify();
8129 #endif
8130 
8131   static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
8132   static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
8133   static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
8134   static const int kSize = kDataOffset + kPointerSize;
8135 
8136  private:
8137   DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
8138 };
8139 
8140 
8141 class InterceptorInfo: public Struct {
8142  public:
8143   DECL_ACCESSORS(getter, Object)
8144   DECL_ACCESSORS(setter, Object)
8145   DECL_ACCESSORS(query, Object)
8146   DECL_ACCESSORS(deleter, Object)
8147   DECL_ACCESSORS(enumerator, Object)
8148   DECL_ACCESSORS(data, Object)
8149 
8150   static inline InterceptorInfo* cast(Object* obj);
8151 
8152 #ifdef OBJECT_PRINT
InterceptorInfoPrint()8153   inline void InterceptorInfoPrint() {
8154     InterceptorInfoPrint(stdout);
8155   }
8156   void InterceptorInfoPrint(FILE* out);
8157 #endif
8158 #ifdef DEBUG
8159   void InterceptorInfoVerify();
8160 #endif
8161 
8162   static const int kGetterOffset = HeapObject::kHeaderSize;
8163   static const int kSetterOffset = kGetterOffset + kPointerSize;
8164   static const int kQueryOffset = kSetterOffset + kPointerSize;
8165   static const int kDeleterOffset = kQueryOffset + kPointerSize;
8166   static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
8167   static const int kDataOffset = kEnumeratorOffset + kPointerSize;
8168   static const int kSize = kDataOffset + kPointerSize;
8169 
8170  private:
8171   DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
8172 };
8173 
8174 
8175 class CallHandlerInfo: public Struct {
8176  public:
8177   DECL_ACCESSORS(callback, Object)
8178   DECL_ACCESSORS(data, Object)
8179 
8180   static inline CallHandlerInfo* cast(Object* obj);
8181 
8182 #ifdef OBJECT_PRINT
CallHandlerInfoPrint()8183   inline void CallHandlerInfoPrint() {
8184     CallHandlerInfoPrint(stdout);
8185   }
8186   void CallHandlerInfoPrint(FILE* out);
8187 #endif
8188 #ifdef DEBUG
8189   void CallHandlerInfoVerify();
8190 #endif
8191 
8192   static const int kCallbackOffset = HeapObject::kHeaderSize;
8193   static const int kDataOffset = kCallbackOffset + kPointerSize;
8194   static const int kSize = kDataOffset + kPointerSize;
8195 
8196  private:
8197   DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
8198 };
8199 
8200 
8201 class TemplateInfo: public Struct {
8202  public:
8203   DECL_ACCESSORS(tag, Object)
8204   DECL_ACCESSORS(property_list, Object)
8205 
8206 #ifdef DEBUG
8207   void TemplateInfoVerify();
8208 #endif
8209 
8210   static const int kTagOffset          = HeapObject::kHeaderSize;
8211   static const int kPropertyListOffset = kTagOffset + kPointerSize;
8212   static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
8213 
8214  private:
8215   DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
8216 };
8217 
8218 
8219 class FunctionTemplateInfo: public TemplateInfo {
8220  public:
8221   DECL_ACCESSORS(serial_number, Object)
8222   DECL_ACCESSORS(call_code, Object)
8223   DECL_ACCESSORS(property_accessors, Object)
8224   DECL_ACCESSORS(prototype_template, Object)
8225   DECL_ACCESSORS(parent_template, Object)
8226   DECL_ACCESSORS(named_property_handler, Object)
8227   DECL_ACCESSORS(indexed_property_handler, Object)
8228   DECL_ACCESSORS(instance_template, Object)
8229   DECL_ACCESSORS(class_name, Object)
8230   DECL_ACCESSORS(signature, Object)
8231   DECL_ACCESSORS(instance_call_handler, Object)
8232   DECL_ACCESSORS(access_check_info, Object)
8233   DECL_ACCESSORS(flag, Smi)
8234 
8235   // Following properties use flag bits.
8236   DECL_BOOLEAN_ACCESSORS(hidden_prototype)
8237   DECL_BOOLEAN_ACCESSORS(undetectable)
8238   // If the bit is set, object instances created by this function
8239   // requires access check.
8240   DECL_BOOLEAN_ACCESSORS(needs_access_check)
8241   DECL_BOOLEAN_ACCESSORS(read_only_prototype)
8242 
8243   static inline FunctionTemplateInfo* cast(Object* obj);
8244 
8245 #ifdef OBJECT_PRINT
FunctionTemplateInfoPrint()8246   inline void FunctionTemplateInfoPrint() {
8247     FunctionTemplateInfoPrint(stdout);
8248   }
8249   void FunctionTemplateInfoPrint(FILE* out);
8250 #endif
8251 #ifdef DEBUG
8252   void FunctionTemplateInfoVerify();
8253 #endif
8254 
8255   static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
8256   static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
8257   static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
8258   static const int kPrototypeTemplateOffset =
8259       kPropertyAccessorsOffset + kPointerSize;
8260   static const int kParentTemplateOffset =
8261       kPrototypeTemplateOffset + kPointerSize;
8262   static const int kNamedPropertyHandlerOffset =
8263       kParentTemplateOffset + kPointerSize;
8264   static const int kIndexedPropertyHandlerOffset =
8265       kNamedPropertyHandlerOffset + kPointerSize;
8266   static const int kInstanceTemplateOffset =
8267       kIndexedPropertyHandlerOffset + kPointerSize;
8268   static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
8269   static const int kSignatureOffset = kClassNameOffset + kPointerSize;
8270   static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
8271   static const int kAccessCheckInfoOffset =
8272       kInstanceCallHandlerOffset + kPointerSize;
8273   static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
8274   static const int kSize = kFlagOffset + kPointerSize;
8275 
8276  private:
8277   // Bit position in the flag, from least significant bit position.
8278   static const int kHiddenPrototypeBit   = 0;
8279   static const int kUndetectableBit      = 1;
8280   static const int kNeedsAccessCheckBit  = 2;
8281   static const int kReadOnlyPrototypeBit = 3;
8282 
8283   DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
8284 };
8285 
8286 
8287 class ObjectTemplateInfo: public TemplateInfo {
8288  public:
8289   DECL_ACCESSORS(constructor, Object)
8290   DECL_ACCESSORS(internal_field_count, Object)
8291 
8292   static inline ObjectTemplateInfo* cast(Object* obj);
8293 
8294 #ifdef OBJECT_PRINT
ObjectTemplateInfoPrint()8295   inline void ObjectTemplateInfoPrint() {
8296     ObjectTemplateInfoPrint(stdout);
8297   }
8298   void ObjectTemplateInfoPrint(FILE* out);
8299 #endif
8300 #ifdef DEBUG
8301   void ObjectTemplateInfoVerify();
8302 #endif
8303 
8304   static const int kConstructorOffset = TemplateInfo::kHeaderSize;
8305   static const int kInternalFieldCountOffset =
8306       kConstructorOffset + kPointerSize;
8307   static const int kSize = kInternalFieldCountOffset + kPointerSize;
8308 };
8309 
8310 
8311 class SignatureInfo: public Struct {
8312  public:
8313   DECL_ACCESSORS(receiver, Object)
8314   DECL_ACCESSORS(args, Object)
8315 
8316   static inline SignatureInfo* cast(Object* obj);
8317 
8318 #ifdef OBJECT_PRINT
SignatureInfoPrint()8319   inline void SignatureInfoPrint() {
8320     SignatureInfoPrint(stdout);
8321   }
8322   void SignatureInfoPrint(FILE* out);
8323 #endif
8324 #ifdef DEBUG
8325   void SignatureInfoVerify();
8326 #endif
8327 
8328   static const int kReceiverOffset = Struct::kHeaderSize;
8329   static const int kArgsOffset     = kReceiverOffset + kPointerSize;
8330   static const int kSize           = kArgsOffset + kPointerSize;
8331 
8332  private:
8333   DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
8334 };
8335 
8336 
8337 class TypeSwitchInfo: public Struct {
8338  public:
8339   DECL_ACCESSORS(types, Object)
8340 
8341   static inline TypeSwitchInfo* cast(Object* obj);
8342 
8343 #ifdef OBJECT_PRINT
TypeSwitchInfoPrint()8344   inline void TypeSwitchInfoPrint() {
8345     TypeSwitchInfoPrint(stdout);
8346   }
8347   void TypeSwitchInfoPrint(FILE* out);
8348 #endif
8349 #ifdef DEBUG
8350   void TypeSwitchInfoVerify();
8351 #endif
8352 
8353   static const int kTypesOffset = Struct::kHeaderSize;
8354   static const int kSize        = kTypesOffset + kPointerSize;
8355 };
8356 
8357 
8358 #ifdef ENABLE_DEBUGGER_SUPPORT
8359 // The DebugInfo class holds additional information for a function being
8360 // debugged.
8361 class DebugInfo: public Struct {
8362  public:
8363   // The shared function info for the source being debugged.
8364   DECL_ACCESSORS(shared, SharedFunctionInfo)
8365   // Code object for the original code.
8366   DECL_ACCESSORS(original_code, Code)
8367   // Code object for the patched code. This code object is the code object
8368   // currently active for the function.
8369   DECL_ACCESSORS(code, Code)
8370   // Fixed array holding status information for each active break point.
8371   DECL_ACCESSORS(break_points, FixedArray)
8372 
8373   // Check if there is a break point at a code position.
8374   bool HasBreakPoint(int code_position);
8375   // Get the break point info object for a code position.
8376   Object* GetBreakPointInfo(int code_position);
8377   // Clear a break point.
8378   static void ClearBreakPoint(Handle<DebugInfo> debug_info,
8379                               int code_position,
8380                               Handle<Object> break_point_object);
8381   // Set a break point.
8382   static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
8383                             int source_position, int statement_position,
8384                             Handle<Object> break_point_object);
8385   // Get the break point objects for a code position.
8386   Object* GetBreakPointObjects(int code_position);
8387   // Find the break point info holding this break point object.
8388   static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
8389                                     Handle<Object> break_point_object);
8390   // Get the number of break points for this function.
8391   int GetBreakPointCount();
8392 
8393   static inline DebugInfo* cast(Object* obj);
8394 
8395 #ifdef OBJECT_PRINT
DebugInfoPrint()8396   inline void DebugInfoPrint() {
8397     DebugInfoPrint(stdout);
8398   }
8399   void DebugInfoPrint(FILE* out);
8400 #endif
8401 #ifdef DEBUG
8402   void DebugInfoVerify();
8403 #endif
8404 
8405   static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
8406   static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
8407   static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
8408   static const int kActiveBreakPointsCountIndex =
8409       kPatchedCodeIndex + kPointerSize;
8410   static const int kBreakPointsStateIndex =
8411       kActiveBreakPointsCountIndex + kPointerSize;
8412   static const int kSize = kBreakPointsStateIndex + kPointerSize;
8413 
8414  private:
8415   static const int kNoBreakPointInfo = -1;
8416 
8417   // Lookup the index in the break_points array for a code position.
8418   int GetBreakPointInfoIndex(int code_position);
8419 
8420   DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
8421 };
8422 
8423 
8424 // The BreakPointInfo class holds information for break points set in a
8425 // function. The DebugInfo object holds a BreakPointInfo object for each code
8426 // position with one or more break points.
8427 class BreakPointInfo: public Struct {
8428  public:
8429   // The position in the code for the break point.
8430   DECL_ACCESSORS(code_position, Smi)
8431   // The position in the source for the break position.
8432   DECL_ACCESSORS(source_position, Smi)
8433   // The position in the source for the last statement before this break
8434   // position.
8435   DECL_ACCESSORS(statement_position, Smi)
8436   // List of related JavaScript break points.
8437   DECL_ACCESSORS(break_point_objects, Object)
8438 
8439   // Removes a break point.
8440   static void ClearBreakPoint(Handle<BreakPointInfo> info,
8441                               Handle<Object> break_point_object);
8442   // Set a break point.
8443   static void SetBreakPoint(Handle<BreakPointInfo> info,
8444                             Handle<Object> break_point_object);
8445   // Check if break point info has this break point object.
8446   static bool HasBreakPointObject(Handle<BreakPointInfo> info,
8447                                   Handle<Object> break_point_object);
8448   // Get the number of break points for this code position.
8449   int GetBreakPointCount();
8450 
8451   static inline BreakPointInfo* cast(Object* obj);
8452 
8453 #ifdef OBJECT_PRINT
BreakPointInfoPrint()8454   inline void BreakPointInfoPrint() {
8455     BreakPointInfoPrint(stdout);
8456   }
8457   void BreakPointInfoPrint(FILE* out);
8458 #endif
8459 #ifdef DEBUG
8460   void BreakPointInfoVerify();
8461 #endif
8462 
8463   static const int kCodePositionIndex = Struct::kHeaderSize;
8464   static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
8465   static const int kStatementPositionIndex =
8466       kSourcePositionIndex + kPointerSize;
8467   static const int kBreakPointObjectsIndex =
8468       kStatementPositionIndex + kPointerSize;
8469   static const int kSize = kBreakPointObjectsIndex + kPointerSize;
8470 
8471  private:
8472   DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
8473 };
8474 #endif  // ENABLE_DEBUGGER_SUPPORT
8475 
8476 
8477 #undef DECL_BOOLEAN_ACCESSORS
8478 #undef DECL_ACCESSORS
8479 
8480 #define VISITOR_SYNCHRONIZATION_TAGS_LIST(V)                            \
8481   V(kSymbolTable, "symbol_table", "(Symbols)")                          \
8482   V(kExternalStringsTable, "external_strings_table", "(External strings)") \
8483   V(kStrongRootList, "strong_root_list", "(Strong roots)")              \
8484   V(kSymbol, "symbol", "(Symbol)")                                      \
8485   V(kBootstrapper, "bootstrapper", "(Bootstrapper)")                    \
8486   V(kTop, "top", "(Isolate)")                                           \
8487   V(kRelocatable, "relocatable", "(Relocatable)")                       \
8488   V(kDebug, "debug", "(Debugger)")                                      \
8489   V(kCompilationCache, "compilationcache", "(Compilation cache)")       \
8490   V(kHandleScope, "handlescope", "(Handle scope)")                      \
8491   V(kBuiltins, "builtins", "(Builtins)")                                \
8492   V(kGlobalHandles, "globalhandles", "(Global handles)")                \
8493   V(kThreadManager, "threadmanager", "(Thread manager)")                \
8494   V(kExtensions, "Extensions", "(Extensions)")
8495 
8496 class VisitorSynchronization : public AllStatic {
8497  public:
8498 #define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
8499   enum SyncTag {
8500     VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
8501     kNumberOfSyncTags
8502   };
8503 #undef DECLARE_ENUM
8504 
8505   static const char* const kTags[kNumberOfSyncTags];
8506   static const char* const kTagNames[kNumberOfSyncTags];
8507 };
8508 
8509 // Abstract base class for visiting, and optionally modifying, the
8510 // pointers contained in Objects. Used in GC and serialization/deserialization.
8511 class ObjectVisitor BASE_EMBEDDED {
8512  public:
~ObjectVisitor()8513   virtual ~ObjectVisitor() {}
8514 
8515   // Visits a contiguous arrays of pointers in the half-open range
8516   // [start, end). Any or all of the values may be modified on return.
8517   virtual void VisitPointers(Object** start, Object** end) = 0;
8518 
8519   // To allow lazy clearing of inline caches the visitor has
8520   // a rich interface for iterating over Code objects..
8521 
8522   // Visits a code target in the instruction stream.
8523   virtual void VisitCodeTarget(RelocInfo* rinfo);
8524 
8525   // Visits a code entry in a JS function.
8526   virtual void VisitCodeEntry(Address entry_address);
8527 
8528   // Visits a global property cell reference in the instruction stream.
8529   virtual void VisitGlobalPropertyCell(RelocInfo* rinfo);
8530 
8531   // Visits a runtime entry in the instruction stream.
VisitRuntimeEntry(RelocInfo * rinfo)8532   virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
8533 
8534   // Visits the resource of an ASCII or two-byte string.
VisitExternalAsciiString(v8::String::ExternalAsciiStringResource ** resource)8535   virtual void VisitExternalAsciiString(
8536       v8::String::ExternalAsciiStringResource** resource) {}
VisitExternalTwoByteString(v8::String::ExternalStringResource ** resource)8537   virtual void VisitExternalTwoByteString(
8538       v8::String::ExternalStringResource** resource) {}
8539 
8540   // Visits a debug call target in the instruction stream.
8541   virtual void VisitDebugTarget(RelocInfo* rinfo);
8542 
8543   // Handy shorthand for visiting a single pointer.
VisitPointer(Object ** p)8544   virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
8545 
8546   // Visit pointer embedded into a code object.
8547   virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
8548 
VisitSharedFunctionInfo(SharedFunctionInfo * shared)8549   virtual void VisitSharedFunctionInfo(SharedFunctionInfo* shared) {}
8550 
8551   // Visits a contiguous arrays of external references (references to the C++
8552   // heap) in the half-open range [start, end). Any or all of the values
8553   // may be modified on return.
VisitExternalReferences(Address * start,Address * end)8554   virtual void VisitExternalReferences(Address* start, Address* end) {}
8555 
8556   virtual void VisitExternalReference(RelocInfo* rinfo);
8557 
VisitExternalReference(Address * p)8558   inline void VisitExternalReference(Address* p) {
8559     VisitExternalReferences(p, p + 1);
8560   }
8561 
8562   // Visits a handle that has an embedder-assigned class ID.
VisitEmbedderReference(Object ** p,uint16_t class_id)8563   virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
8564 
8565   // Intended for serialization/deserialization checking: insert, or
8566   // check for the presence of, a tag at this position in the stream.
8567   // Also used for marking up GC roots in heap snapshots.
Synchronize(VisitorSynchronization::SyncTag tag)8568   virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
8569 };
8570 
8571 
8572 class StructBodyDescriptor : public
8573   FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
8574  public:
SizeOf(Map * map,HeapObject * object)8575   static inline int SizeOf(Map* map, HeapObject* object) {
8576     return map->instance_size();
8577   }
8578 };
8579 
8580 
8581 // BooleanBit is a helper class for setting and getting a bit in an
8582 // integer or Smi.
8583 class BooleanBit : public AllStatic {
8584  public:
get(Smi * smi,int bit_position)8585   static inline bool get(Smi* smi, int bit_position) {
8586     return get(smi->value(), bit_position);
8587   }
8588 
get(int value,int bit_position)8589   static inline bool get(int value, int bit_position) {
8590     return (value & (1 << bit_position)) != 0;
8591   }
8592 
set(Smi * smi,int bit_position,bool v)8593   static inline Smi* set(Smi* smi, int bit_position, bool v) {
8594     return Smi::FromInt(set(smi->value(), bit_position, v));
8595   }
8596 
set(int value,int bit_position,bool v)8597   static inline int set(int value, int bit_position, bool v) {
8598     if (v) {
8599       value |= (1 << bit_position);
8600     } else {
8601       value &= ~(1 << bit_position);
8602     }
8603     return value;
8604   }
8605 };
8606 
8607 } }  // namespace v8::internal
8608 
8609 #endif  // V8_OBJECTS_H_
8610