• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 Apple Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include "config.h"
27 #include "DFGJITCompiler.h"
28 
29 #if ENABLE(DFG_JIT)
30 
31 #include "CodeBlock.h"
32 #include "DFGJITCodeGenerator.h"
33 #include "DFGNonSpeculativeJIT.h"
34 #include "DFGOperations.h"
35 #include "DFGRegisterBank.h"
36 #include "DFGSpeculativeJIT.h"
37 #include "JSGlobalData.h"
38 #include "LinkBuffer.h"
39 
40 namespace JSC { namespace DFG {
41 
42 // This method used to fill a numeric value to a FPR when linking speculative -> non-speculative.
fillNumericToDouble(NodeIndex nodeIndex,FPRReg fpr,GPRReg temporary)43 void JITCompiler::fillNumericToDouble(NodeIndex nodeIndex, FPRReg fpr, GPRReg temporary)
44 {
45     Node& node = graph()[nodeIndex];
46     MacroAssembler::RegisterID tempReg = gprToRegisterID(temporary);
47 
48     if (node.isConstant()) {
49         ASSERT(node.op == DoubleConstant);
50         move(MacroAssembler::ImmPtr(reinterpret_cast<void*>(reinterpretDoubleToIntptr(valueOfDoubleConstant(nodeIndex)))), tempReg);
51         movePtrToDouble(tempReg, fprToRegisterID(fpr));
52     } else {
53         loadPtr(addressFor(node.virtualRegister), tempReg);
54         Jump isInteger = branchPtr(MacroAssembler::AboveOrEqual, tempReg, tagTypeNumberRegister);
55         jitAssertIsJSDouble(gpr0);
56         addPtr(tagTypeNumberRegister, tempReg);
57         movePtrToDouble(tempReg, fprToRegisterID(fpr));
58         Jump hasUnboxedDouble = jump();
59         isInteger.link(this);
60         convertInt32ToDouble(tempReg, fprToRegisterID(fpr));
61         hasUnboxedDouble.link(this);
62     }
63 }
64 
65 // This method used to fill an integer value to a GPR when linking speculative -> non-speculative.
fillInt32ToInteger(NodeIndex nodeIndex,GPRReg gpr)66 void JITCompiler::fillInt32ToInteger(NodeIndex nodeIndex, GPRReg gpr)
67 {
68     Node& node = graph()[nodeIndex];
69 
70     if (node.isConstant()) {
71         ASSERT(node.op == Int32Constant);
72         move(MacroAssembler::Imm32(valueOfInt32Constant(nodeIndex)), gprToRegisterID(gpr));
73     } else {
74 #if DFG_JIT_ASSERT
75         // Redundant load, just so we can check the tag!
76         loadPtr(addressFor(node.virtualRegister), gprToRegisterID(gpr));
77         jitAssertIsJSInt32(gpr);
78 #endif
79         load32(addressFor(node.virtualRegister), gprToRegisterID(gpr));
80     }
81 }
82 
83 // This method used to fill a JSValue to a GPR when linking speculative -> non-speculative.
fillToJS(NodeIndex nodeIndex,GPRReg gpr)84 void JITCompiler::fillToJS(NodeIndex nodeIndex, GPRReg gpr)
85 {
86     Node& node = graph()[nodeIndex];
87 
88     if (node.isConstant()) {
89         if (isInt32Constant(nodeIndex)) {
90             JSValue jsValue = jsNumber(valueOfInt32Constant(nodeIndex));
91             move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gprToRegisterID(gpr));
92         } else if (isDoubleConstant(nodeIndex)) {
93             JSValue jsValue(JSValue::EncodeAsDouble, valueOfDoubleConstant(nodeIndex));
94             move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gprToRegisterID(gpr));
95         } else {
96             ASSERT(isJSConstant(nodeIndex));
97             JSValue jsValue = valueOfJSConstant(nodeIndex);
98             move(MacroAssembler::ImmPtr(JSValue::encode(jsValue)), gprToRegisterID(gpr));
99         }
100         return;
101     }
102 
103     loadPtr(addressFor(node.virtualRegister), gprToRegisterID(gpr));
104 }
105 
jumpFromSpeculativeToNonSpeculative(const SpeculationCheck & check,const EntryLocation & entry,SpeculationRecovery * recovery)106 void JITCompiler::jumpFromSpeculativeToNonSpeculative(const SpeculationCheck& check, const EntryLocation& entry, SpeculationRecovery* recovery)
107 {
108     ASSERT(check.m_nodeIndex == entry.m_nodeIndex);
109 
110     // Link the jump from the Speculative path to here.
111     check.m_check.link(this);
112 
113     // Does this speculation check require any additional recovery to be performed,
114     // to restore any state that has been overwritten before we enter back in to the
115     // non-speculative path.
116     if (recovery) {
117         // The only additional recovery we currently support is for integer add operation
118         ASSERT(recovery->type() == SpeculativeAdd);
119         // Revert the add.
120         sub32(gprToRegisterID(recovery->src()), gprToRegisterID(recovery->dest()));
121     }
122 
123     // FIXME: - This is hideously inefficient!
124     // Where a value is live in a register in the speculative path, and is required in a register
125     // on the non-speculative path, we should not need to be spilling it and reloading (we may
126     // need to spill anyway, if the value is marked as spilled on the non-speculative path).
127     // This may also be spilling values that don't need spilling, e.g. are already spilled,
128     // are constants, or are arguments.
129 
130     // Spill all GPRs in use by the speculative path.
131     for (GPRReg gpr = gpr0; gpr < numberOfGPRs; next(gpr)) {
132         NodeIndex nodeIndex = check.m_gprInfo[gpr].nodeIndex;
133         if (nodeIndex == NoNode)
134             continue;
135 
136         DataFormat dataFormat = check.m_gprInfo[gpr].format;
137         VirtualRegister virtualRegister = graph()[nodeIndex].virtualRegister;
138 
139         ASSERT(dataFormat == DataFormatInteger || DataFormatCell || dataFormat & DataFormatJS);
140         if (dataFormat == DataFormatInteger)
141             orPtr(tagTypeNumberRegister, gprToRegisterID(gpr));
142         storePtr(gprToRegisterID(gpr), addressFor(virtualRegister));
143     }
144 
145     // Spill all FPRs in use by the speculative path.
146     for (FPRReg fpr = fpr0; fpr < numberOfFPRs; next(fpr)) {
147         NodeIndex nodeIndex = check.m_fprInfo[fpr];
148         if (nodeIndex == NoNode)
149             continue;
150 
151         VirtualRegister virtualRegister = graph()[nodeIndex].virtualRegister;
152 
153         moveDoubleToPtr(fprToRegisterID(fpr), regT0);
154         subPtr(tagTypeNumberRegister, regT0);
155         storePtr(regT0, addressFor(virtualRegister));
156     }
157 
158     // Fill all FPRs in use by the non-speculative path.
159     for (FPRReg fpr = fpr0; fpr < numberOfFPRs; next(fpr)) {
160         NodeIndex nodeIndex = entry.m_fprInfo[fpr];
161         if (nodeIndex == NoNode)
162             continue;
163 
164         fillNumericToDouble(nodeIndex, fpr, gpr0);
165     }
166 
167     // Fill all GPRs in use by the non-speculative path.
168     for (GPRReg gpr = gpr0; gpr < numberOfGPRs; next(gpr)) {
169         NodeIndex nodeIndex = entry.m_gprInfo[gpr].nodeIndex;
170         if (nodeIndex == NoNode)
171             continue;
172 
173         DataFormat dataFormat = entry.m_gprInfo[gpr].format;
174         if (dataFormat == DataFormatInteger)
175             fillInt32ToInteger(nodeIndex, gpr);
176         else {
177             ASSERT(dataFormat & DataFormatJS || dataFormat == DataFormatCell); // Treat cell as JSValue for now!
178             fillToJS(nodeIndex, gpr);
179             // FIXME: For subtypes of DataFormatJS, should jitAssert the subtype?
180         }
181     }
182 
183     // Jump into the non-speculative path.
184     jump(entry.m_entry);
185 }
186 
linkSpeculationChecks(SpeculativeJIT & speculative,NonSpeculativeJIT & nonSpeculative)187 void JITCompiler::linkSpeculationChecks(SpeculativeJIT& speculative, NonSpeculativeJIT& nonSpeculative)
188 {
189     // Iterators to walk over the set of bail outs & corresponding entry points.
190     SpeculationCheckVector::Iterator checksIter = speculative.speculationChecks().begin();
191     SpeculationCheckVector::Iterator checksEnd = speculative.speculationChecks().end();
192     NonSpeculativeJIT::EntryLocationVector::Iterator entriesIter = nonSpeculative.entryLocations().begin();
193     NonSpeculativeJIT::EntryLocationVector::Iterator entriesEnd = nonSpeculative.entryLocations().end();
194 
195     // Iterate over the speculation checks.
196     while (checksIter != checksEnd) {
197         // For every bail out from the speculative path, we must have provided an entry point
198         // into the non-speculative one.
199         ASSERT(checksIter->m_nodeIndex == entriesIter->m_nodeIndex);
200 
201         // There may be multiple bail outs that map to the same entry point!
202         do {
203             ASSERT(checksIter != checksEnd);
204             ASSERT(entriesIter != entriesEnd);
205 
206             // Plant code to link this speculation failure.
207             const SpeculationCheck& check = *checksIter;
208             const EntryLocation& entry = *entriesIter;
209             jumpFromSpeculativeToNonSpeculative(check, entry, speculative.speculationRecovery(check.m_recoveryIndex));
210              ++checksIter;
211         } while (checksIter != checksEnd && checksIter->m_nodeIndex == entriesIter->m_nodeIndex);
212          ++entriesIter;
213     }
214 
215     // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56289
216     ASSERT(!(checksIter != checksEnd));
217     ASSERT(!(entriesIter != entriesEnd));
218 }
219 
compileFunction(JITCode & entry,MacroAssemblerCodePtr & entryWithArityCheck)220 void JITCompiler::compileFunction(JITCode& entry, MacroAssemblerCodePtr& entryWithArityCheck)
221 {
222     // === Stage 1 - Function header code generation ===
223     //
224     // This code currently matches the old JIT. In the function header we need to
225     // pop the return address (since we do not allow any recursion on the machine
226     // stack), and perform a fast register file check.
227 
228     // This is the main entry point, without performing an arity check.
229     // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56292
230     // We'll need to convert the remaining cti_ style calls (specifically the register file
231     // check) which will be dependent on stack layout. (We'd need to account for this in
232     // both normal return code and when jumping to an exception handler).
233     preserveReturnAddressAfterCall(regT2);
234     emitPutToCallFrameHeader(regT2, RegisterFile::ReturnPC);
235     // If we needed to perform an arity check we will already have moved the return address,
236     // so enter after this.
237     Label fromArityCheck(this);
238 
239     // Setup a pointer to the codeblock in the CallFrameHeader.
240     emitPutImmediateToCallFrameHeader(m_codeBlock, RegisterFile::CodeBlock);
241 
242     // Plant a check that sufficient space is available in the RegisterFile.
243     // FIXME: https://bugs.webkit.org/show_bug.cgi?id=56291
244     addPtr(Imm32(m_codeBlock->m_numCalleeRegisters * sizeof(Register)), callFrameRegister, regT1);
245     Jump registerFileCheck = branchPtr(Below, AbsoluteAddress(m_globalData->interpreter->registerFile().addressOfEnd()), regT1);
246     // Return here after register file check.
247     Label fromRegisterFileCheck = label();
248 
249 
250     // === Stage 2 - Function body code generation ===
251     //
252     // We generate the speculative code path, followed by the non-speculative
253     // code for the function. Next we need to link the two together, making
254     // bail-outs from the speculative path jump to the corresponding point on
255     // the non-speculative one (and generating any code necessary to juggle
256     // register values around, rebox values, and ensure spilled, to match the
257     // non-speculative path's requirements).
258 
259 #if DFG_JIT_BREAK_ON_EVERY_FUNCTION
260     // Handy debug tool!
261     breakpoint();
262 #endif
263 
264     // First generate the speculative path.
265     Label speculativePathBegin = label();
266     SpeculativeJIT speculative(*this);
267     bool compiledSpeculative = speculative.compile();
268 
269     // Next, generate the non-speculative path. We pass this a SpeculationCheckIndexIterator
270     // to allow it to check which nodes in the graph may bail out, and may need to reenter the
271     // non-speculative path.
272     if (compiledSpeculative) {
273         SpeculationCheckIndexIterator checkIterator(speculative.speculationChecks());
274         NonSpeculativeJIT nonSpeculative(*this);
275         nonSpeculative.compile(checkIterator);
276 
277         // Link the bail-outs from the speculative path to the corresponding entry points into the non-speculative one.
278         linkSpeculationChecks(speculative, nonSpeculative);
279     } else {
280         // If compilation through the SpeculativeJIT failed, throw away the code we generated.
281         m_calls.clear();
282         rewindToLabel(speculativePathBegin);
283 
284         SpeculationCheckVector noChecks;
285         SpeculationCheckIndexIterator checkIterator(noChecks);
286         NonSpeculativeJIT nonSpeculative(*this);
287         nonSpeculative.compile(checkIterator);
288     }
289 
290     // === Stage 3 - Function footer code generation ===
291     //
292     // Generate code to lookup and jump to exception handlers, to perform the slow
293     // register file check (if the fast one in the function header fails), and
294     // generate the entry point with arity check.
295 
296     // Iterate over the m_calls vector, checking for exception checks,
297     // and linking them to here.
298     unsigned exceptionCheckCount = 0;
299     for (unsigned i = 0; i < m_calls.size(); ++i) {
300         Jump& exceptionCheck = m_calls[i].m_exceptionCheck;
301         if (exceptionCheck.isSet()) {
302             exceptionCheck.link(this);
303             ++exceptionCheckCount;
304         }
305     }
306     // If any exception checks were linked, generate code to lookup a handler.
307     if (exceptionCheckCount) {
308         // lookupExceptionHandler is passed two arguments, exec (the CallFrame*), and
309         // an identifier for the operation that threw the exception, which we can use
310         // to look up handler information. The identifier we use is the return address
311         // of the call out from JIT code that threw the exception; this is still
312         // available on the stack, just below the stack pointer!
313         move(callFrameRegister, argumentRegister0);
314         peek(argumentRegister1, -1);
315         m_calls.append(CallRecord(call(), lookupExceptionHandler));
316         // lookupExceptionHandler leaves the handler CallFrame* in the returnValueRegister,
317         // and the address of the handler in returnValueRegister2.
318         jump(returnValueRegister2);
319     }
320 
321     // Generate the register file check; if the fast check in the function head fails,
322     // we need to call out to a helper function to check whether more space is available.
323     // FIXME: change this from a cti call to a DFG style operation (normal C calling conventions).
324     registerFileCheck.link(this);
325     move(stackPointerRegister, argumentRegister0);
326     poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
327     Call callRegisterFileCheck = call();
328     jump(fromRegisterFileCheck);
329 
330     // The fast entry point into a function does not check the correct number of arguments
331     // have been passed to the call (we only use the fast entry point where we can statically
332     // determine the correct number of arguments have been passed, or have already checked).
333     // In cases where an arity check is necessary, we enter here.
334     // FIXME: change this from a cti call to a DFG style operation (normal C calling conventions).
335     Label arityCheck = label();
336     preserveReturnAddressAfterCall(regT2);
337     emitPutToCallFrameHeader(regT2, RegisterFile::ReturnPC);
338     branch32(Equal, regT1, Imm32(m_codeBlock->m_numParameters)).linkTo(fromArityCheck, this);
339     move(stackPointerRegister, argumentRegister0);
340     poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
341     Call callArityCheck = call();
342     move(regT0, callFrameRegister);
343     jump(fromArityCheck);
344 
345 
346     // === Stage 4 - Link ===
347     //
348     // Link the code, populate data in CodeBlock data structures.
349 
350     LinkBuffer linkBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()), 0);
351 
352 #if DFG_DEBUG_VERBOSE
353     fprintf(stderr, "JIT code start at %p\n", linkBuffer.debugAddress());
354 #endif
355 
356     // Link all calls out from the JIT code to their respective functions.
357     for (unsigned i = 0; i < m_calls.size(); ++i)
358         linkBuffer.link(m_calls[i].m_call, m_calls[i].m_function);
359 
360     if (m_codeBlock->needsCallReturnIndices()) {
361         m_codeBlock->callReturnIndexVector().reserveCapacity(exceptionCheckCount);
362         for (unsigned i = 0; i < m_calls.size(); ++i) {
363             if (m_calls[i].m_exceptionCheck.isSet()) {
364                 unsigned returnAddressOffset = linkBuffer.returnAddressOffset(m_calls[i].m_call);
365                 unsigned exceptionInfo = m_calls[i].m_exceptionInfo;
366                 m_codeBlock->callReturnIndexVector().append(CallReturnOffsetToBytecodeOffset(returnAddressOffset, exceptionInfo));
367             }
368         }
369     }
370 
371     // FIXME: switch the register file check & arity check over to DFGOpertaion style calls, not JIT stubs.
372     linkBuffer.link(callRegisterFileCheck, cti_register_file_check);
373     linkBuffer.link(callArityCheck, m_codeBlock->m_isConstructor ? cti_op_construct_arityCheck : cti_op_call_arityCheck);
374 
375     entryWithArityCheck = linkBuffer.locationOf(arityCheck);
376     entry = linkBuffer.finalizeCode();
377 }
378 
379 #if DFG_JIT_ASSERT
jitAssertIsInt32(GPRReg gpr)380 void JITCompiler::jitAssertIsInt32(GPRReg gpr)
381 {
382 #if CPU(X86_64)
383     Jump checkInt32 = branchPtr(BelowOrEqual, gprToRegisterID(gpr), TrustedImmPtr(reinterpret_cast<void*>(static_cast<uintptr_t>(0xFFFFFFFFu))));
384     breakpoint();
385     checkInt32.link(this);
386 #else
387     UNUSED_PARAM(gpr);
388 #endif
389 }
390 
jitAssertIsJSInt32(GPRReg gpr)391 void JITCompiler::jitAssertIsJSInt32(GPRReg gpr)
392 {
393     Jump checkJSInt32 = branchPtr(AboveOrEqual, gprToRegisterID(gpr), tagTypeNumberRegister);
394     breakpoint();
395     checkJSInt32.link(this);
396 }
397 
jitAssertIsJSNumber(GPRReg gpr)398 void JITCompiler::jitAssertIsJSNumber(GPRReg gpr)
399 {
400     Jump checkJSNumber = branchTestPtr(MacroAssembler::NonZero, gprToRegisterID(gpr), tagTypeNumberRegister);
401     breakpoint();
402     checkJSNumber.link(this);
403 }
404 
jitAssertIsJSDouble(GPRReg gpr)405 void JITCompiler::jitAssertIsJSDouble(GPRReg gpr)
406 {
407     Jump checkJSInt32 = branchPtr(AboveOrEqual, gprToRegisterID(gpr), tagTypeNumberRegister);
408     Jump checkJSNumber = branchTestPtr(MacroAssembler::NonZero, gprToRegisterID(gpr), tagTypeNumberRegister);
409     checkJSInt32.link(this);
410     breakpoint();
411     checkJSNumber.link(this);
412 }
413 #endif
414 
415 #if ENABLE(SAMPLING_COUNTERS) && CPU(X86_64) // Or any other 64-bit platform!
emitCount(AbstractSamplingCounter & counter,uint32_t increment)416 void JITCompiler::emitCount(AbstractSamplingCounter& counter, uint32_t increment)
417 {
418     addPtr(TrustedImm32(increment), AbsoluteAddress(counter.addressOfCounter()));
419 }
420 #endif
421 
422 #if ENABLE(SAMPLING_COUNTERS) && CPU(X86) // Or any other little-endian 32-bit platform!
emitCount(AbstractSamplingCounter & counter,uint32_t increment)423 void JITCompiler::emitCount(AbstractSamplingCounter& counter, uint32_t increment)
424 {
425     intptr_t hiWord = reinterpret_cast<intptr_t>(counter.addressOfCounter()) + sizeof(int32_t);
426     add32(TrustedImm32(increment), AbsoluteAddress(counter.addressOfCounter()));
427     addWithCarry32(TrustedImm32(0), AbsoluteAddress(reinterpret_cast<void*>(hiWord)));
428 }
429 #endif
430 
431 } } // namespace JSC::DFG
432 
433 #endif
434