• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16 
17 #include "llvm/Target/TargetRegisterInfo.h"
18 #include "llvm/CodeGen/MachineInstrBundle.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/IndexedMap.h"
21 #include <vector>
22 
23 namespace llvm {
24 
25 /// MachineRegisterInfo - Keep track of information for virtual and physical
26 /// registers, including vreg register classes, use/def chains for registers,
27 /// etc.
28 class MachineRegisterInfo {
29   const TargetRegisterInfo *const TRI;
30 
31   /// IsSSA - True when the machine function is in SSA form and virtual
32   /// registers have a single def.
33   bool IsSSA;
34 
35   /// TracksLiveness - True while register liveness is being tracked accurately.
36   /// Basic block live-in lists, kill flags, and implicit defs may not be
37   /// accurate when after this flag is cleared.
38   bool TracksLiveness;
39 
40   /// VRegInfo - Information we keep for each virtual register.
41   ///
42   /// Each element in this list contains the register class of the vreg and the
43   /// start of the use/def list for the register.
44   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
45              VirtReg2IndexFunctor> VRegInfo;
46 
47   /// RegAllocHints - This vector records register allocation hints for virtual
48   /// registers. For each virtual register, it keeps a register and hint type
49   /// pair making up the allocation hint. Hint type is target specific except
50   /// for the value 0 which means the second value of the pair is the preferred
51   /// register for allocation. For example, if the hint is <0, 1024>, it means
52   /// the allocator should prefer the physical register allocated to the virtual
53   /// register of the hint.
54   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
55 
56   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
57   /// physical registers.
58   MachineOperand **PhysRegUseDefLists;
59 
60   /// UsedPhysRegs - This is a bit vector that is computed and set by the
61   /// register allocator, and must be kept up to date by passes that run after
62   /// register allocation (though most don't modify this).  This is used
63   /// so that the code generator knows which callee save registers to save and
64   /// for other target specific uses.
65   /// This vector only has bits set for registers explicitly used, not their
66   /// aliases.
67   BitVector UsedPhysRegs;
68 
69   /// UsedPhysRegMask - Additional used physregs, but including aliases.
70   BitVector UsedPhysRegMask;
71 
72   /// ReservedRegs - This is a bit vector of reserved registers.  The target
73   /// may change its mind about which registers should be reserved.  This
74   /// vector is the frozen set of reserved registers when register allocation
75   /// started.
76   BitVector ReservedRegs;
77 
78   /// AllocatableRegs - From TRI->getAllocatableSet.
79   mutable BitVector AllocatableRegs;
80 
81   /// LiveIns/LiveOuts - Keep track of the physical registers that are
82   /// livein/liveout of the function.  Live in values are typically arguments in
83   /// registers, live out values are typically return values in registers.
84   /// LiveIn values are allowed to have virtual registers associated with them,
85   /// stored in the second element.
86   std::vector<std::pair<unsigned, unsigned> > LiveIns;
87   std::vector<unsigned> LiveOuts;
88 
89   MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
90   void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
91 public:
92   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
93   ~MachineRegisterInfo();
94 
95   //===--------------------------------------------------------------------===//
96   // Function State
97   //===--------------------------------------------------------------------===//
98 
99   // isSSA - Returns true when the machine function is in SSA form. Early
100   // passes require the machine function to be in SSA form where every virtual
101   // register has a single defining instruction.
102   //
103   // The TwoAddressInstructionPass and PHIElimination passes take the machine
104   // function out of SSA form when they introduce multiple defs per virtual
105   // register.
isSSA()106   bool isSSA() const { return IsSSA; }
107 
108   // leaveSSA - Indicates that the machine function is no longer in SSA form.
leaveSSA()109   void leaveSSA() { IsSSA = false; }
110 
111   /// tracksLiveness - Returns true when tracking register liveness accurately.
112   ///
113   /// While this flag is true, register liveness information in basic block
114   /// live-in lists and machine instruction operands is accurate. This means it
115   /// can be used to change the code in ways that affect the values in
116   /// registers, for example by the register scavenger.
117   ///
118   /// When this flag is false, liveness is no longer reliable.
tracksLiveness()119   bool tracksLiveness() const { return TracksLiveness; }
120 
121   /// invalidateLiveness - Indicates that register liveness is no longer being
122   /// tracked accurately.
123   ///
124   /// This should be called by late passes that invalidate the liveness
125   /// information.
invalidateLiveness()126   void invalidateLiveness() { TracksLiveness = false; }
127 
128   //===--------------------------------------------------------------------===//
129   // Register Info
130   //===--------------------------------------------------------------------===//
131 
132   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
133   /// and uses of a register within the MachineFunction that corresponds to this
134   /// MachineRegisterInfo object.
135   template<bool Uses, bool Defs, bool SkipDebug>
136   class defusechain_iterator;
137 
138   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
139   /// register.
140   typedef defusechain_iterator<true,true,false> reg_iterator;
reg_begin(unsigned RegNo)141   reg_iterator reg_begin(unsigned RegNo) const {
142     return reg_iterator(getRegUseDefListHead(RegNo));
143   }
reg_end()144   static reg_iterator reg_end() { return reg_iterator(0); }
145 
146   /// reg_empty - Return true if there are no instructions using or defining the
147   /// specified register (it may be live-in).
reg_empty(unsigned RegNo)148   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
149 
150   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
151   /// of the specified register, skipping those marked as Debug.
152   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
reg_nodbg_begin(unsigned RegNo)153   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
154     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
155   }
reg_nodbg_end()156   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
157 
158   /// reg_nodbg_empty - Return true if the only instructions using or defining
159   /// Reg are Debug instructions.
reg_nodbg_empty(unsigned RegNo)160   bool reg_nodbg_empty(unsigned RegNo) const {
161     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
162   }
163 
164   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
165   typedef defusechain_iterator<false,true,false> def_iterator;
def_begin(unsigned RegNo)166   def_iterator def_begin(unsigned RegNo) const {
167     return def_iterator(getRegUseDefListHead(RegNo));
168   }
def_end()169   static def_iterator def_end() { return def_iterator(0); }
170 
171   /// def_empty - Return true if there are no instructions defining the
172   /// specified register (it may be live-in).
def_empty(unsigned RegNo)173   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
174 
175   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
176   typedef defusechain_iterator<true,false,false> use_iterator;
use_begin(unsigned RegNo)177   use_iterator use_begin(unsigned RegNo) const {
178     return use_iterator(getRegUseDefListHead(RegNo));
179   }
use_end()180   static use_iterator use_end() { return use_iterator(0); }
181 
182   /// use_empty - Return true if there are no instructions using the specified
183   /// register.
use_empty(unsigned RegNo)184   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
185 
186   /// hasOneUse - Return true if there is exactly one instruction using the
187   /// specified register.
188   bool hasOneUse(unsigned RegNo) const;
189 
190   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
191   /// specified register, skipping those marked as Debug.
192   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
use_nodbg_begin(unsigned RegNo)193   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
194     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
195   }
use_nodbg_end()196   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
197 
198   /// use_nodbg_empty - Return true if there are no non-Debug instructions
199   /// using the specified register.
use_nodbg_empty(unsigned RegNo)200   bool use_nodbg_empty(unsigned RegNo) const {
201     return use_nodbg_begin(RegNo) == use_nodbg_end();
202   }
203 
204   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
205   /// instruction using the specified register.
206   bool hasOneNonDBGUse(unsigned RegNo) const;
207 
208   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
209   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
210   /// except that it also changes any definitions of the register as well.
211   ///
212   /// Note that it is usually necessary to first constrain ToReg's register
213   /// class to match the FromReg constraints using:
214   ///
215   ///   constrainRegClass(ToReg, getRegClass(FromReg))
216   ///
217   /// That function will return NULL if the virtual registers have incompatible
218   /// constraints.
219   void replaceRegWith(unsigned FromReg, unsigned ToReg);
220 
221   /// getRegUseDefListHead - Return the head pointer for the register use/def
222   /// list for the specified virtual or physical register.
getRegUseDefListHead(unsigned RegNo)223   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
224     if (TargetRegisterInfo::isVirtualRegister(RegNo))
225       return VRegInfo[RegNo].second;
226     return PhysRegUseDefLists[RegNo];
227   }
228 
getRegUseDefListHead(unsigned RegNo)229   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
230     if (TargetRegisterInfo::isVirtualRegister(RegNo))
231       return VRegInfo[RegNo].second;
232     return PhysRegUseDefLists[RegNo];
233   }
234 
235   /// getVRegDef - Return the machine instr that defines the specified virtual
236   /// register or null if none is found.  This assumes that the code is in SSA
237   /// form, so there should only be one definition.
238   MachineInstr *getVRegDef(unsigned Reg) const;
239 
240   /// clearKillFlags - Iterate over all the uses of the given register and
241   /// clear the kill flag from the MachineOperand. This function is used by
242   /// optimization passes which extend register lifetimes and need only
243   /// preserve conservative kill flag information.
244   void clearKillFlags(unsigned Reg) const;
245 
246 #ifndef NDEBUG
247   void dumpUses(unsigned RegNo) const;
248 #endif
249 
250   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
251   /// throughout the function.  It is safe to move instructions that read such
252   /// a physreg.
253   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
254 
255   //===--------------------------------------------------------------------===//
256   // Virtual Register Info
257   //===--------------------------------------------------------------------===//
258 
259   /// getRegClass - Return the register class of the specified virtual register.
260   ///
getRegClass(unsigned Reg)261   const TargetRegisterClass *getRegClass(unsigned Reg) const {
262     return VRegInfo[Reg].first;
263   }
264 
265   /// setRegClass - Set the register class of the specified virtual register.
266   ///
267   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
268 
269   /// constrainRegClass - Constrain the register class of the specified virtual
270   /// register to be a common subclass of RC and the current register class,
271   /// but only if the new class has at least MinNumRegs registers.  Return the
272   /// new register class, or NULL if no such class exists.
273   /// This should only be used when the constraint is known to be trivial, like
274   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
275   ///
276   const TargetRegisterClass *constrainRegClass(unsigned Reg,
277                                                const TargetRegisterClass *RC,
278                                                unsigned MinNumRegs = 0);
279 
280   /// recomputeRegClass - Try to find a legal super-class of Reg's register
281   /// class that still satisfies the constraints from the instructions using
282   /// Reg.  Returns true if Reg was upgraded.
283   ///
284   /// This method can be used after constraints have been removed from a
285   /// virtual register, for example after removing instructions or splitting
286   /// the live range.
287   ///
288   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
289 
290   /// createVirtualRegister - Create and return a new virtual register in the
291   /// function with the specified register class.
292   ///
293   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
294 
295   /// getNumVirtRegs - Return the number of virtual registers created.
296   ///
getNumVirtRegs()297   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
298 
299   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
300   void clearVirtRegs();
301 
302   /// setRegAllocationHint - Specify a register allocation hint for the
303   /// specified virtual register.
setRegAllocationHint(unsigned Reg,unsigned Type,unsigned PrefReg)304   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
305     RegAllocHints[Reg].first  = Type;
306     RegAllocHints[Reg].second = PrefReg;
307   }
308 
309   /// getRegAllocationHint - Return the register allocation hint for the
310   /// specified virtual register.
311   std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned Reg)312   getRegAllocationHint(unsigned Reg) const {
313     return RegAllocHints[Reg];
314   }
315 
316   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
317   /// standard simple hint (Type == 0) is not set.
getSimpleHint(unsigned Reg)318   unsigned getSimpleHint(unsigned Reg) const {
319     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
320     return Hint.first ? 0 : Hint.second;
321   }
322 
323 
324   //===--------------------------------------------------------------------===//
325   // Physical Register Use Info
326   //===--------------------------------------------------------------------===//
327 
328   /// isPhysRegUsed - Return true if the specified register is used in this
329   /// function.  This only works after register allocation.
isPhysRegUsed(unsigned Reg)330   bool isPhysRegUsed(unsigned Reg) const {
331     return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
332   }
333 
334   /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
335   /// is used in this function.
isPhysRegOrOverlapUsed(unsigned Reg)336   bool isPhysRegOrOverlapUsed(unsigned Reg) const {
337     if (UsedPhysRegMask.test(Reg))
338       return true;
339     for (const uint16_t *AI = TRI->getOverlaps(Reg); *AI; ++AI)
340       if (UsedPhysRegs.test(*AI))
341         return true;
342     return false;
343   }
344 
345   /// setPhysRegUsed - Mark the specified register used in this function.
346   /// This should only be called during and after register allocation.
setPhysRegUsed(unsigned Reg)347   void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
348 
349   /// addPhysRegsUsed - Mark the specified registers used in this function.
350   /// This should only be called during and after register allocation.
addPhysRegsUsed(const BitVector & Regs)351   void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
352 
353   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
354   /// This corresponds to the bit mask attached to register mask operands.
addPhysRegsUsedFromRegMask(const uint32_t * RegMask)355   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
356     UsedPhysRegMask.setBitsNotInMask(RegMask);
357   }
358 
359   /// setPhysRegUnused - Mark the specified register unused in this function.
360   /// This should only be called during and after register allocation.
setPhysRegUnused(unsigned Reg)361   void setPhysRegUnused(unsigned Reg) {
362     UsedPhysRegs.reset(Reg);
363     UsedPhysRegMask.reset(Reg);
364   }
365 
366 
367   //===--------------------------------------------------------------------===//
368   // Reserved Register Info
369   //===--------------------------------------------------------------------===//
370   //
371   // The set of reserved registers must be invariant during register
372   // allocation.  For example, the target cannot suddenly decide it needs a
373   // frame pointer when the register allocator has already used the frame
374   // pointer register for something else.
375   //
376   // These methods can be used by target hooks like hasFP() to avoid changing
377   // the reserved register set during register allocation.
378 
379   /// freezeReservedRegs - Called by the register allocator to freeze the set
380   /// of reserved registers before allocation begins.
381   void freezeReservedRegs(const MachineFunction&);
382 
383   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
384   /// to ensure the set of reserved registers stays constant.
reservedRegsFrozen()385   bool reservedRegsFrozen() const {
386     return !ReservedRegs.empty();
387   }
388 
389   /// canReserveReg - Returns true if PhysReg can be used as a reserved
390   /// register.  Any register can be reserved before freezeReservedRegs() is
391   /// called.
canReserveReg(unsigned PhysReg)392   bool canReserveReg(unsigned PhysReg) const {
393     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
394   }
395 
396 
397   //===--------------------------------------------------------------------===//
398   // LiveIn/LiveOut Management
399   //===--------------------------------------------------------------------===//
400 
401   /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
402   /// is an error to add the same register to the same set more than once.
403   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
404     LiveIns.push_back(std::make_pair(Reg, vreg));
405   }
addLiveOut(unsigned Reg)406   void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
407 
408   // Iteration support for live in/out sets.  These sets are kept in sorted
409   // order by their register number.
410   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
411   livein_iterator;
412   typedef std::vector<unsigned>::const_iterator liveout_iterator;
livein_begin()413   livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_end()414   livein_iterator livein_end()   const { return LiveIns.end(); }
livein_empty()415   bool            livein_empty() const { return LiveIns.empty(); }
liveout_begin()416   liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
liveout_end()417   liveout_iterator liveout_end()   const { return LiveOuts.end(); }
liveout_empty()418   bool             liveout_empty() const { return LiveOuts.empty(); }
419 
420   bool isLiveIn(unsigned Reg) const;
421   bool isLiveOut(unsigned Reg) const;
422 
423   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
424   /// corresponding live-in physical register.
425   unsigned getLiveInPhysReg(unsigned VReg) const;
426 
427   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
428   /// corresponding live-in physical register.
429   unsigned getLiveInVirtReg(unsigned PReg) const;
430 
431   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
432   /// into the given entry block.
433   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
434                         const TargetRegisterInfo &TRI,
435                         const TargetInstrInfo &TII);
436 
437 private:
438   void HandleVRegListReallocation();
439 
440 public:
441   /// defusechain_iterator - This class provides iterator support for machine
442   /// operands in the function that use or define a specific register.  If
443   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
444   /// returns defs.  If neither are true then you are silly and it always
445   /// returns end().  If SkipDebug is true it skips uses marked Debug
446   /// when incrementing.
447   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
448   class defusechain_iterator
449     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
450     MachineOperand *Op;
defusechain_iterator(MachineOperand * op)451     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
452       // If the first node isn't one we're interested in, advance to one that
453       // we are interested in.
454       if (op) {
455         if ((!ReturnUses && op->isUse()) ||
456             (!ReturnDefs && op->isDef()) ||
457             (SkipDebug && op->isDebug()))
458           ++*this;
459       }
460     }
461     friend class MachineRegisterInfo;
462   public:
463     typedef std::iterator<std::forward_iterator_tag,
464                           MachineInstr, ptrdiff_t>::reference reference;
465     typedef std::iterator<std::forward_iterator_tag,
466                           MachineInstr, ptrdiff_t>::pointer pointer;
467 
defusechain_iterator(const defusechain_iterator & I)468     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
defusechain_iterator()469     defusechain_iterator() : Op(0) {}
470 
471     bool operator==(const defusechain_iterator &x) const {
472       return Op == x.Op;
473     }
474     bool operator!=(const defusechain_iterator &x) const {
475       return !operator==(x);
476     }
477 
478     /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()479     bool atEnd() const { return Op == 0; }
480 
481     // Iterator traversal: forward iteration only
482     defusechain_iterator &operator++() {          // Preincrement
483       assert(Op && "Cannot increment end iterator!");
484       Op = Op->getNextOperandForReg();
485 
486       // If this is an operand we don't care about, skip it.
487       while (Op && ((!ReturnUses && Op->isUse()) ||
488                     (!ReturnDefs && Op->isDef()) ||
489                     (SkipDebug && Op->isDebug())))
490         Op = Op->getNextOperandForReg();
491 
492       return *this;
493     }
494     defusechain_iterator operator++(int) {        // Postincrement
495       defusechain_iterator tmp = *this; ++*this; return tmp;
496     }
497 
498     /// skipInstruction - move forward until reaching a different instruction.
499     /// Return the skipped instruction that is no longer pointed to, or NULL if
500     /// already pointing to end().
skipInstruction()501     MachineInstr *skipInstruction() {
502       if (!Op) return 0;
503       MachineInstr *MI = Op->getParent();
504       do ++*this;
505       while (Op && Op->getParent() == MI);
506       return MI;
507     }
508 
skipBundle()509     MachineInstr *skipBundle() {
510       if (!Op) return 0;
511       MachineInstr *MI = getBundleStart(Op->getParent());
512       do ++*this;
513       while (Op && getBundleStart(Op->getParent()) == MI);
514       return MI;
515     }
516 
getOperand()517     MachineOperand &getOperand() const {
518       assert(Op && "Cannot dereference end iterator!");
519       return *Op;
520     }
521 
522     /// getOperandNo - Return the operand # of this MachineOperand in its
523     /// MachineInstr.
getOperandNo()524     unsigned getOperandNo() const {
525       assert(Op && "Cannot dereference end iterator!");
526       return Op - &Op->getParent()->getOperand(0);
527     }
528 
529     // Retrieve a reference to the current operand.
530     MachineInstr &operator*() const {
531       assert(Op && "Cannot dereference end iterator!");
532       return *Op->getParent();
533     }
534 
535     MachineInstr *operator->() const {
536       assert(Op && "Cannot dereference end iterator!");
537       return Op->getParent();
538     }
539   };
540 
541 };
542 
543 } // End llvm namespace
544 
545 #endif
546