1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MachineRegisterInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H 15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H 16 17 #include "llvm/Target/TargetRegisterInfo.h" 18 #include "llvm/CodeGen/MachineInstrBundle.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/IndexedMap.h" 21 #include <vector> 22 23 namespace llvm { 24 25 /// MachineRegisterInfo - Keep track of information for virtual and physical 26 /// registers, including vreg register classes, use/def chains for registers, 27 /// etc. 28 class MachineRegisterInfo { 29 const TargetRegisterInfo *const TRI; 30 31 /// IsSSA - True when the machine function is in SSA form and virtual 32 /// registers have a single def. 33 bool IsSSA; 34 35 /// TracksLiveness - True while register liveness is being tracked accurately. 36 /// Basic block live-in lists, kill flags, and implicit defs may not be 37 /// accurate when after this flag is cleared. 38 bool TracksLiveness; 39 40 /// VRegInfo - Information we keep for each virtual register. 41 /// 42 /// Each element in this list contains the register class of the vreg and the 43 /// start of the use/def list for the register. 44 IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>, 45 VirtReg2IndexFunctor> VRegInfo; 46 47 /// RegAllocHints - This vector records register allocation hints for virtual 48 /// registers. For each virtual register, it keeps a register and hint type 49 /// pair making up the allocation hint. Hint type is target specific except 50 /// for the value 0 which means the second value of the pair is the preferred 51 /// register for allocation. For example, if the hint is <0, 1024>, it means 52 /// the allocator should prefer the physical register allocated to the virtual 53 /// register of the hint. 54 IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints; 55 56 /// PhysRegUseDefLists - This is an array of the head of the use/def list for 57 /// physical registers. 58 MachineOperand **PhysRegUseDefLists; 59 60 /// UsedPhysRegs - This is a bit vector that is computed and set by the 61 /// register allocator, and must be kept up to date by passes that run after 62 /// register allocation (though most don't modify this). This is used 63 /// so that the code generator knows which callee save registers to save and 64 /// for other target specific uses. 65 /// This vector only has bits set for registers explicitly used, not their 66 /// aliases. 67 BitVector UsedPhysRegs; 68 69 /// UsedPhysRegMask - Additional used physregs, but including aliases. 70 BitVector UsedPhysRegMask; 71 72 /// ReservedRegs - This is a bit vector of reserved registers. The target 73 /// may change its mind about which registers should be reserved. This 74 /// vector is the frozen set of reserved registers when register allocation 75 /// started. 76 BitVector ReservedRegs; 77 78 /// AllocatableRegs - From TRI->getAllocatableSet. 79 mutable BitVector AllocatableRegs; 80 81 /// LiveIns/LiveOuts - Keep track of the physical registers that are 82 /// livein/liveout of the function. Live in values are typically arguments in 83 /// registers, live out values are typically return values in registers. 84 /// LiveIn values are allowed to have virtual registers associated with them, 85 /// stored in the second element. 86 std::vector<std::pair<unsigned, unsigned> > LiveIns; 87 std::vector<unsigned> LiveOuts; 88 89 MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT 90 void operator=(const MachineRegisterInfo&); // DO NOT IMPLEMENT 91 public: 92 explicit MachineRegisterInfo(const TargetRegisterInfo &TRI); 93 ~MachineRegisterInfo(); 94 95 //===--------------------------------------------------------------------===// 96 // Function State 97 //===--------------------------------------------------------------------===// 98 99 // isSSA - Returns true when the machine function is in SSA form. Early 100 // passes require the machine function to be in SSA form where every virtual 101 // register has a single defining instruction. 102 // 103 // The TwoAddressInstructionPass and PHIElimination passes take the machine 104 // function out of SSA form when they introduce multiple defs per virtual 105 // register. isSSA()106 bool isSSA() const { return IsSSA; } 107 108 // leaveSSA - Indicates that the machine function is no longer in SSA form. leaveSSA()109 void leaveSSA() { IsSSA = false; } 110 111 /// tracksLiveness - Returns true when tracking register liveness accurately. 112 /// 113 /// While this flag is true, register liveness information in basic block 114 /// live-in lists and machine instruction operands is accurate. This means it 115 /// can be used to change the code in ways that affect the values in 116 /// registers, for example by the register scavenger. 117 /// 118 /// When this flag is false, liveness is no longer reliable. tracksLiveness()119 bool tracksLiveness() const { return TracksLiveness; } 120 121 /// invalidateLiveness - Indicates that register liveness is no longer being 122 /// tracked accurately. 123 /// 124 /// This should be called by late passes that invalidate the liveness 125 /// information. invalidateLiveness()126 void invalidateLiveness() { TracksLiveness = false; } 127 128 //===--------------------------------------------------------------------===// 129 // Register Info 130 //===--------------------------------------------------------------------===// 131 132 /// reg_begin/reg_end - Provide iteration support to walk over all definitions 133 /// and uses of a register within the MachineFunction that corresponds to this 134 /// MachineRegisterInfo object. 135 template<bool Uses, bool Defs, bool SkipDebug> 136 class defusechain_iterator; 137 138 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified 139 /// register. 140 typedef defusechain_iterator<true,true,false> reg_iterator; reg_begin(unsigned RegNo)141 reg_iterator reg_begin(unsigned RegNo) const { 142 return reg_iterator(getRegUseDefListHead(RegNo)); 143 } reg_end()144 static reg_iterator reg_end() { return reg_iterator(0); } 145 146 /// reg_empty - Return true if there are no instructions using or defining the 147 /// specified register (it may be live-in). reg_empty(unsigned RegNo)148 bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); } 149 150 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses 151 /// of the specified register, skipping those marked as Debug. 152 typedef defusechain_iterator<true,true,true> reg_nodbg_iterator; reg_nodbg_begin(unsigned RegNo)153 reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const { 154 return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); 155 } reg_nodbg_end()156 static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); } 157 158 /// reg_nodbg_empty - Return true if the only instructions using or defining 159 /// Reg are Debug instructions. reg_nodbg_empty(unsigned RegNo)160 bool reg_nodbg_empty(unsigned RegNo) const { 161 return reg_nodbg_begin(RegNo) == reg_nodbg_end(); 162 } 163 164 /// def_iterator/def_begin/def_end - Walk all defs of the specified register. 165 typedef defusechain_iterator<false,true,false> def_iterator; def_begin(unsigned RegNo)166 def_iterator def_begin(unsigned RegNo) const { 167 return def_iterator(getRegUseDefListHead(RegNo)); 168 } def_end()169 static def_iterator def_end() { return def_iterator(0); } 170 171 /// def_empty - Return true if there are no instructions defining the 172 /// specified register (it may be live-in). def_empty(unsigned RegNo)173 bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); } 174 175 /// use_iterator/use_begin/use_end - Walk all uses of the specified register. 176 typedef defusechain_iterator<true,false,false> use_iterator; use_begin(unsigned RegNo)177 use_iterator use_begin(unsigned RegNo) const { 178 return use_iterator(getRegUseDefListHead(RegNo)); 179 } use_end()180 static use_iterator use_end() { return use_iterator(0); } 181 182 /// use_empty - Return true if there are no instructions using the specified 183 /// register. use_empty(unsigned RegNo)184 bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); } 185 186 /// hasOneUse - Return true if there is exactly one instruction using the 187 /// specified register. 188 bool hasOneUse(unsigned RegNo) const; 189 190 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the 191 /// specified register, skipping those marked as Debug. 192 typedef defusechain_iterator<true,false,true> use_nodbg_iterator; use_nodbg_begin(unsigned RegNo)193 use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const { 194 return use_nodbg_iterator(getRegUseDefListHead(RegNo)); 195 } use_nodbg_end()196 static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); } 197 198 /// use_nodbg_empty - Return true if there are no non-Debug instructions 199 /// using the specified register. use_nodbg_empty(unsigned RegNo)200 bool use_nodbg_empty(unsigned RegNo) const { 201 return use_nodbg_begin(RegNo) == use_nodbg_end(); 202 } 203 204 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug 205 /// instruction using the specified register. 206 bool hasOneNonDBGUse(unsigned RegNo) const; 207 208 /// replaceRegWith - Replace all instances of FromReg with ToReg in the 209 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), 210 /// except that it also changes any definitions of the register as well. 211 /// 212 /// Note that it is usually necessary to first constrain ToReg's register 213 /// class to match the FromReg constraints using: 214 /// 215 /// constrainRegClass(ToReg, getRegClass(FromReg)) 216 /// 217 /// That function will return NULL if the virtual registers have incompatible 218 /// constraints. 219 void replaceRegWith(unsigned FromReg, unsigned ToReg); 220 221 /// getRegUseDefListHead - Return the head pointer for the register use/def 222 /// list for the specified virtual or physical register. getRegUseDefListHead(unsigned RegNo)223 MachineOperand *&getRegUseDefListHead(unsigned RegNo) { 224 if (TargetRegisterInfo::isVirtualRegister(RegNo)) 225 return VRegInfo[RegNo].second; 226 return PhysRegUseDefLists[RegNo]; 227 } 228 getRegUseDefListHead(unsigned RegNo)229 MachineOperand *getRegUseDefListHead(unsigned RegNo) const { 230 if (TargetRegisterInfo::isVirtualRegister(RegNo)) 231 return VRegInfo[RegNo].second; 232 return PhysRegUseDefLists[RegNo]; 233 } 234 235 /// getVRegDef - Return the machine instr that defines the specified virtual 236 /// register or null if none is found. This assumes that the code is in SSA 237 /// form, so there should only be one definition. 238 MachineInstr *getVRegDef(unsigned Reg) const; 239 240 /// clearKillFlags - Iterate over all the uses of the given register and 241 /// clear the kill flag from the MachineOperand. This function is used by 242 /// optimization passes which extend register lifetimes and need only 243 /// preserve conservative kill flag information. 244 void clearKillFlags(unsigned Reg) const; 245 246 #ifndef NDEBUG 247 void dumpUses(unsigned RegNo) const; 248 #endif 249 250 /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant 251 /// throughout the function. It is safe to move instructions that read such 252 /// a physreg. 253 bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const; 254 255 //===--------------------------------------------------------------------===// 256 // Virtual Register Info 257 //===--------------------------------------------------------------------===// 258 259 /// getRegClass - Return the register class of the specified virtual register. 260 /// getRegClass(unsigned Reg)261 const TargetRegisterClass *getRegClass(unsigned Reg) const { 262 return VRegInfo[Reg].first; 263 } 264 265 /// setRegClass - Set the register class of the specified virtual register. 266 /// 267 void setRegClass(unsigned Reg, const TargetRegisterClass *RC); 268 269 /// constrainRegClass - Constrain the register class of the specified virtual 270 /// register to be a common subclass of RC and the current register class, 271 /// but only if the new class has at least MinNumRegs registers. Return the 272 /// new register class, or NULL if no such class exists. 273 /// This should only be used when the constraint is known to be trivial, like 274 /// GR32 -> GR32_NOSP. Beware of increasing register pressure. 275 /// 276 const TargetRegisterClass *constrainRegClass(unsigned Reg, 277 const TargetRegisterClass *RC, 278 unsigned MinNumRegs = 0); 279 280 /// recomputeRegClass - Try to find a legal super-class of Reg's register 281 /// class that still satisfies the constraints from the instructions using 282 /// Reg. Returns true if Reg was upgraded. 283 /// 284 /// This method can be used after constraints have been removed from a 285 /// virtual register, for example after removing instructions or splitting 286 /// the live range. 287 /// 288 bool recomputeRegClass(unsigned Reg, const TargetMachine&); 289 290 /// createVirtualRegister - Create and return a new virtual register in the 291 /// function with the specified register class. 292 /// 293 unsigned createVirtualRegister(const TargetRegisterClass *RegClass); 294 295 /// getNumVirtRegs - Return the number of virtual registers created. 296 /// getNumVirtRegs()297 unsigned getNumVirtRegs() const { return VRegInfo.size(); } 298 299 /// clearVirtRegs - Remove all virtual registers (after physreg assignment). 300 void clearVirtRegs(); 301 302 /// setRegAllocationHint - Specify a register allocation hint for the 303 /// specified virtual register. setRegAllocationHint(unsigned Reg,unsigned Type,unsigned PrefReg)304 void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) { 305 RegAllocHints[Reg].first = Type; 306 RegAllocHints[Reg].second = PrefReg; 307 } 308 309 /// getRegAllocationHint - Return the register allocation hint for the 310 /// specified virtual register. 311 std::pair<unsigned, unsigned> getRegAllocationHint(unsigned Reg)312 getRegAllocationHint(unsigned Reg) const { 313 return RegAllocHints[Reg]; 314 } 315 316 /// getSimpleHint - Return the preferred register allocation hint, or 0 if a 317 /// standard simple hint (Type == 0) is not set. getSimpleHint(unsigned Reg)318 unsigned getSimpleHint(unsigned Reg) const { 319 std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg); 320 return Hint.first ? 0 : Hint.second; 321 } 322 323 324 //===--------------------------------------------------------------------===// 325 // Physical Register Use Info 326 //===--------------------------------------------------------------------===// 327 328 /// isPhysRegUsed - Return true if the specified register is used in this 329 /// function. This only works after register allocation. isPhysRegUsed(unsigned Reg)330 bool isPhysRegUsed(unsigned Reg) const { 331 return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg); 332 } 333 334 /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register 335 /// is used in this function. isPhysRegOrOverlapUsed(unsigned Reg)336 bool isPhysRegOrOverlapUsed(unsigned Reg) const { 337 if (UsedPhysRegMask.test(Reg)) 338 return true; 339 for (const uint16_t *AI = TRI->getOverlaps(Reg); *AI; ++AI) 340 if (UsedPhysRegs.test(*AI)) 341 return true; 342 return false; 343 } 344 345 /// setPhysRegUsed - Mark the specified register used in this function. 346 /// This should only be called during and after register allocation. setPhysRegUsed(unsigned Reg)347 void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); } 348 349 /// addPhysRegsUsed - Mark the specified registers used in this function. 350 /// This should only be called during and after register allocation. addPhysRegsUsed(const BitVector & Regs)351 void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; } 352 353 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used. 354 /// This corresponds to the bit mask attached to register mask operands. addPhysRegsUsedFromRegMask(const uint32_t * RegMask)355 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) { 356 UsedPhysRegMask.setBitsNotInMask(RegMask); 357 } 358 359 /// setPhysRegUnused - Mark the specified register unused in this function. 360 /// This should only be called during and after register allocation. setPhysRegUnused(unsigned Reg)361 void setPhysRegUnused(unsigned Reg) { 362 UsedPhysRegs.reset(Reg); 363 UsedPhysRegMask.reset(Reg); 364 } 365 366 367 //===--------------------------------------------------------------------===// 368 // Reserved Register Info 369 //===--------------------------------------------------------------------===// 370 // 371 // The set of reserved registers must be invariant during register 372 // allocation. For example, the target cannot suddenly decide it needs a 373 // frame pointer when the register allocator has already used the frame 374 // pointer register for something else. 375 // 376 // These methods can be used by target hooks like hasFP() to avoid changing 377 // the reserved register set during register allocation. 378 379 /// freezeReservedRegs - Called by the register allocator to freeze the set 380 /// of reserved registers before allocation begins. 381 void freezeReservedRegs(const MachineFunction&); 382 383 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called 384 /// to ensure the set of reserved registers stays constant. reservedRegsFrozen()385 bool reservedRegsFrozen() const { 386 return !ReservedRegs.empty(); 387 } 388 389 /// canReserveReg - Returns true if PhysReg can be used as a reserved 390 /// register. Any register can be reserved before freezeReservedRegs() is 391 /// called. canReserveReg(unsigned PhysReg)392 bool canReserveReg(unsigned PhysReg) const { 393 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg); 394 } 395 396 397 //===--------------------------------------------------------------------===// 398 // LiveIn/LiveOut Management 399 //===--------------------------------------------------------------------===// 400 401 /// addLiveIn/Out - Add the specified register as a live in/out. Note that it 402 /// is an error to add the same register to the same set more than once. 403 void addLiveIn(unsigned Reg, unsigned vreg = 0) { 404 LiveIns.push_back(std::make_pair(Reg, vreg)); 405 } addLiveOut(unsigned Reg)406 void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); } 407 408 // Iteration support for live in/out sets. These sets are kept in sorted 409 // order by their register number. 410 typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator 411 livein_iterator; 412 typedef std::vector<unsigned>::const_iterator liveout_iterator; livein_begin()413 livein_iterator livein_begin() const { return LiveIns.begin(); } livein_end()414 livein_iterator livein_end() const { return LiveIns.end(); } livein_empty()415 bool livein_empty() const { return LiveIns.empty(); } liveout_begin()416 liveout_iterator liveout_begin() const { return LiveOuts.begin(); } liveout_end()417 liveout_iterator liveout_end() const { return LiveOuts.end(); } liveout_empty()418 bool liveout_empty() const { return LiveOuts.empty(); } 419 420 bool isLiveIn(unsigned Reg) const; 421 bool isLiveOut(unsigned Reg) const; 422 423 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the 424 /// corresponding live-in physical register. 425 unsigned getLiveInPhysReg(unsigned VReg) const; 426 427 /// getLiveInVirtReg - If PReg is a live-in physical register, return the 428 /// corresponding live-in physical register. 429 unsigned getLiveInVirtReg(unsigned PReg) const; 430 431 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers 432 /// into the given entry block. 433 void EmitLiveInCopies(MachineBasicBlock *EntryMBB, 434 const TargetRegisterInfo &TRI, 435 const TargetInstrInfo &TII); 436 437 private: 438 void HandleVRegListReallocation(); 439 440 public: 441 /// defusechain_iterator - This class provides iterator support for machine 442 /// operands in the function that use or define a specific register. If 443 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it 444 /// returns defs. If neither are true then you are silly and it always 445 /// returns end(). If SkipDebug is true it skips uses marked Debug 446 /// when incrementing. 447 template<bool ReturnUses, bool ReturnDefs, bool SkipDebug> 448 class defusechain_iterator 449 : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> { 450 MachineOperand *Op; defusechain_iterator(MachineOperand * op)451 explicit defusechain_iterator(MachineOperand *op) : Op(op) { 452 // If the first node isn't one we're interested in, advance to one that 453 // we are interested in. 454 if (op) { 455 if ((!ReturnUses && op->isUse()) || 456 (!ReturnDefs && op->isDef()) || 457 (SkipDebug && op->isDebug())) 458 ++*this; 459 } 460 } 461 friend class MachineRegisterInfo; 462 public: 463 typedef std::iterator<std::forward_iterator_tag, 464 MachineInstr, ptrdiff_t>::reference reference; 465 typedef std::iterator<std::forward_iterator_tag, 466 MachineInstr, ptrdiff_t>::pointer pointer; 467 defusechain_iterator(const defusechain_iterator & I)468 defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {} defusechain_iterator()469 defusechain_iterator() : Op(0) {} 470 471 bool operator==(const defusechain_iterator &x) const { 472 return Op == x.Op; 473 } 474 bool operator!=(const defusechain_iterator &x) const { 475 return !operator==(x); 476 } 477 478 /// atEnd - return true if this iterator is equal to reg_end() on the value. atEnd()479 bool atEnd() const { return Op == 0; } 480 481 // Iterator traversal: forward iteration only 482 defusechain_iterator &operator++() { // Preincrement 483 assert(Op && "Cannot increment end iterator!"); 484 Op = Op->getNextOperandForReg(); 485 486 // If this is an operand we don't care about, skip it. 487 while (Op && ((!ReturnUses && Op->isUse()) || 488 (!ReturnDefs && Op->isDef()) || 489 (SkipDebug && Op->isDebug()))) 490 Op = Op->getNextOperandForReg(); 491 492 return *this; 493 } 494 defusechain_iterator operator++(int) { // Postincrement 495 defusechain_iterator tmp = *this; ++*this; return tmp; 496 } 497 498 /// skipInstruction - move forward until reaching a different instruction. 499 /// Return the skipped instruction that is no longer pointed to, or NULL if 500 /// already pointing to end(). skipInstruction()501 MachineInstr *skipInstruction() { 502 if (!Op) return 0; 503 MachineInstr *MI = Op->getParent(); 504 do ++*this; 505 while (Op && Op->getParent() == MI); 506 return MI; 507 } 508 skipBundle()509 MachineInstr *skipBundle() { 510 if (!Op) return 0; 511 MachineInstr *MI = getBundleStart(Op->getParent()); 512 do ++*this; 513 while (Op && getBundleStart(Op->getParent()) == MI); 514 return MI; 515 } 516 getOperand()517 MachineOperand &getOperand() const { 518 assert(Op && "Cannot dereference end iterator!"); 519 return *Op; 520 } 521 522 /// getOperandNo - Return the operand # of this MachineOperand in its 523 /// MachineInstr. getOperandNo()524 unsigned getOperandNo() const { 525 assert(Op && "Cannot dereference end iterator!"); 526 return Op - &Op->getParent()->getOperand(0); 527 } 528 529 // Retrieve a reference to the current operand. 530 MachineInstr &operator*() const { 531 assert(Op && "Cannot dereference end iterator!"); 532 return *Op->getParent(); 533 } 534 535 MachineInstr *operator->() const { 536 assert(Op && "Cannot dereference end iterator!"); 537 return Op->getParent(); 538 } 539 }; 540 541 }; 542 543 } // End llvm namespace 544 545 #endif 546