• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37 
38 #include "v8.h"
39 
40 #include "allocation.h"
41 #include "builtins.h"
42 #include "gdb-jit.h"
43 #include "isolate.h"
44 #include "runtime.h"
45 #include "token.h"
46 
47 namespace v8 {
48 
49 class ApiFunction;
50 
51 namespace internal {
52 
53 struct StatsCounter;
54 const unsigned kNoASTId = -1;
55 // -----------------------------------------------------------------------------
56 // Platform independent assembler base class.
57 
58 class AssemblerBase: public Malloced {
59  public:
60   explicit AssemblerBase(Isolate* isolate);
61 
isolate()62   Isolate* isolate() const { return isolate_; }
jit_cookie()63   int jit_cookie() { return jit_cookie_; }
64 
65   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
66   // cross-snapshotting.
QuietNaN(HeapObject * nan)67   static void QuietNaN(HeapObject* nan) { }
68 
69  private:
70   Isolate* isolate_;
71   int jit_cookie_;
72 };
73 
74 
75 // -----------------------------------------------------------------------------
76 // Labels represent pc locations; they are typically jump or call targets.
77 // After declaration, a label can be freely used to denote known or (yet)
78 // unknown pc location. Assembler::bind() is used to bind a label to the
79 // current pc. A label can be bound only once.
80 
81 class Label BASE_EMBEDDED {
82  public:
83   enum Distance {
84     kNear, kFar
85   };
86 
INLINE(Label ())87   INLINE(Label()) {
88     Unuse();
89     UnuseNear();
90   }
91 
INLINE(~Label ())92   INLINE(~Label()) {
93     ASSERT(!is_linked());
94     ASSERT(!is_near_linked());
95   }
96 
INLINE(void Unuse ())97   INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())98   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
99 
INLINE(bool is_bound ()const)100   INLINE(bool is_bound() const) { return pos_ <  0; }
INLINE(bool is_unused ()const)101   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)102   INLINE(bool is_linked() const) { return pos_ >  0; }
INLINE(bool is_near_linked ()const)103   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
104 
105   // Returns the position of bound or linked labels. Cannot be used
106   // for unused labels.
107   int pos() const;
near_link_pos()108   int near_link_pos() const { return near_link_pos_ - 1; }
109 
110  private:
111   // pos_ encodes both the binding state (via its sign)
112   // and the binding position (via its value) of a label.
113   //
114   // pos_ <  0  bound label, pos() returns the jump target position
115   // pos_ == 0  unused label
116   // pos_ >  0  linked label, pos() returns the last reference position
117   int pos_;
118 
119   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
120   int near_link_pos_;
121 
bind_to(int pos)122   void bind_to(int pos)  {
123     pos_ = -pos - 1;
124     ASSERT(is_bound());
125   }
126   void link_to(int pos, Distance distance = kFar) {
127     if (distance == kNear) {
128       near_link_pos_ = pos + 1;
129       ASSERT(is_near_linked());
130     } else {
131       pos_ = pos + 1;
132       ASSERT(is_linked());
133     }
134   }
135 
136   friend class Assembler;
137   friend class RegexpAssembler;
138   friend class Displacement;
139   friend class RegExpMacroAssemblerIrregexp;
140 };
141 
142 
143 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
144 
145 
146 // -----------------------------------------------------------------------------
147 // Relocation information
148 
149 
150 // Relocation information consists of the address (pc) of the datum
151 // to which the relocation information applies, the relocation mode
152 // (rmode), and an optional data field. The relocation mode may be
153 // "descriptive" and not indicate a need for relocation, but simply
154 // describe a property of the datum. Such rmodes are useful for GC
155 // and nice disassembly output.
156 
157 class RelocInfo BASE_EMBEDDED {
158  public:
159   // The constant kNoPosition is used with the collecting of source positions
160   // in the relocation information. Two types of source positions are collected
161   // "position" (RelocMode position) and "statement position" (RelocMode
162   // statement_position). The "position" is collected at places in the source
163   // code which are of interest when making stack traces to pin-point the source
164   // location of a stack frame as close as possible. The "statement position" is
165   // collected at the beginning at each statement, and is used to indicate
166   // possible break locations. kNoPosition is used to indicate an
167   // invalid/uninitialized position value.
168   static const int kNoPosition = -1;
169 
170   // This string is used to add padding comments to the reloc info in cases
171   // where we are not sure to have enough space for patching in during
172   // lazy deoptimization. This is the case if we have indirect calls for which
173   // we do not normally record relocation info.
174   static const char* const kFillerCommentString;
175 
176   // The minimum size of a comment is equal to three bytes for the extra tagged
177   // pc + the tag for the data, and kPointerSize for the actual pointer to the
178   // comment.
179   static const int kMinRelocCommentSize = 3 + kPointerSize;
180 
181   // The maximum size for a call instruction including pc-jump.
182   static const int kMaxCallSize = 6;
183 
184   // The maximum pc delta that will use the short encoding.
185   static const int kMaxSmallPCDelta;
186 
187   enum Mode {
188     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
189     CODE_TARGET,  // Code target which is not any of the above.
190     CODE_TARGET_WITH_ID,
191     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
192     CODE_TARGET_CONTEXT,  // Code target used for contextual loads and stores.
193     DEBUG_BREAK,  // Code target for the debugger statement.
194     EMBEDDED_OBJECT,
195     GLOBAL_PROPERTY_CELL,
196 
197     // Everything after runtime_entry (inclusive) is not GC'ed.
198     RUNTIME_ENTRY,
199     JS_RETURN,  // Marks start of the ExitJSFrame code.
200     COMMENT,
201     POSITION,  // See comment for kNoPosition above.
202     STATEMENT_POSITION,  // See comment for kNoPosition above.
203     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
204     EXTERNAL_REFERENCE,  // The address of an external C++ function.
205     INTERNAL_REFERENCE,  // An address inside the same function.
206 
207     // add more as needed
208     // Pseudo-types
209     NUMBER_OF_MODES,  // There are at most 14 modes with noncompact encoding.
210     NONE,  // never recorded
211     LAST_CODE_ENUM = DEBUG_BREAK,
212     LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL,
213     // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
214     LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID
215   };
216 
217 
RelocInfo()218   RelocInfo() {}
219 
RelocInfo(byte * pc,Mode rmode,intptr_t data,Code * host)220   RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
221       : pc_(pc), rmode_(rmode), data_(data), host_(host) {
222   }
223 
IsConstructCall(Mode mode)224   static inline bool IsConstructCall(Mode mode) {
225     return mode == CONSTRUCT_CALL;
226   }
IsCodeTarget(Mode mode)227   static inline bool IsCodeTarget(Mode mode) {
228     return mode <= LAST_CODE_ENUM;
229   }
IsEmbeddedObject(Mode mode)230   static inline bool IsEmbeddedObject(Mode mode) {
231     return mode == EMBEDDED_OBJECT;
232   }
233   // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)234   static inline bool IsGCRelocMode(Mode mode) {
235     return mode <= LAST_GCED_ENUM;
236   }
IsJSReturn(Mode mode)237   static inline bool IsJSReturn(Mode mode) {
238     return mode == JS_RETURN;
239   }
IsComment(Mode mode)240   static inline bool IsComment(Mode mode) {
241     return mode == COMMENT;
242   }
IsPosition(Mode mode)243   static inline bool IsPosition(Mode mode) {
244     return mode == POSITION || mode == STATEMENT_POSITION;
245   }
IsStatementPosition(Mode mode)246   static inline bool IsStatementPosition(Mode mode) {
247     return mode == STATEMENT_POSITION;
248   }
IsExternalReference(Mode mode)249   static inline bool IsExternalReference(Mode mode) {
250     return mode == EXTERNAL_REFERENCE;
251   }
IsInternalReference(Mode mode)252   static inline bool IsInternalReference(Mode mode) {
253     return mode == INTERNAL_REFERENCE;
254   }
IsDebugBreakSlot(Mode mode)255   static inline bool IsDebugBreakSlot(Mode mode) {
256     return mode == DEBUG_BREAK_SLOT;
257   }
ModeMask(Mode mode)258   static inline int ModeMask(Mode mode) { return 1 << mode; }
259 
260   // Accessors
pc()261   byte* pc() const { return pc_; }
set_pc(byte * pc)262   void set_pc(byte* pc) { pc_ = pc; }
rmode()263   Mode rmode() const {  return rmode_; }
data()264   intptr_t data() const { return data_; }
host()265   Code* host() const { return host_; }
266 
267   // Apply a relocation by delta bytes
268   INLINE(void apply(intptr_t delta));
269 
270   // Is the pointer this relocation info refers to coded like a plain pointer
271   // or is it strange in some way (e.g. relative or patched into a series of
272   // instructions).
273   bool IsCodedSpecially();
274 
275   // Read/modify the code target in the branch/call instruction
276   // this relocation applies to;
277   // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
278   INLINE(Address target_address());
279   INLINE(void set_target_address(Address target,
280                                  WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
281   INLINE(Object* target_object());
282   INLINE(Handle<Object> target_object_handle(Assembler* origin));
283   INLINE(Object** target_object_address());
284   INLINE(void set_target_object(Object* target,
285                                 WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
286   INLINE(JSGlobalPropertyCell* target_cell());
287   INLINE(Handle<JSGlobalPropertyCell> target_cell_handle());
288   INLINE(void set_target_cell(JSGlobalPropertyCell* cell,
289                               WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
290 
291 
292   // Read the address of the word containing the target_address in an
293   // instruction stream.  What this means exactly is architecture-independent.
294   // The only architecture-independent user of this function is the serializer.
295   // The serializer uses it to find out how many raw bytes of instruction to
296   // output before the next target.  Architecture-independent code shouldn't
297   // dereference the pointer it gets back from this.
298   INLINE(Address target_address_address());
299   // This indicates how much space a target takes up when deserializing a code
300   // stream.  For most architectures this is just the size of a pointer.  For
301   // an instruction like movw/movt where the target bits are mixed into the
302   // instruction bits the size of the target will be zero, indicating that the
303   // serializer should not step forwards in memory after a target is resolved
304   // and written.  In this case the target_address_address function above
305   // should return the end of the instructions to be patched, allowing the
306   // deserializer to deserialize the instructions as raw bytes and put them in
307   // place, ready to be patched with the target.
308   INLINE(int target_address_size());
309 
310   // Read/modify the reference in the instruction this relocation
311   // applies to; can only be called if rmode_ is external_reference
312   INLINE(Address* target_reference_address());
313 
314   // Read/modify the address of a call instruction. This is used to relocate
315   // the break points where straight-line code is patched with a call
316   // instruction.
317   INLINE(Address call_address());
318   INLINE(void set_call_address(Address target));
319   INLINE(Object* call_object());
320   INLINE(void set_call_object(Object* target));
321   INLINE(Object** call_object_address());
322 
323   template<typename StaticVisitor> inline void Visit(Heap* heap);
324   inline void Visit(ObjectVisitor* v);
325 
326   // Patch the code with some other code.
327   void PatchCode(byte* instructions, int instruction_count);
328 
329   // Patch the code with a call.
330   void PatchCodeWithCall(Address target, int guard_bytes);
331 
332   // Check whether this return sequence has been patched
333   // with a call to the debugger.
334   INLINE(bool IsPatchedReturnSequence());
335 
336   // Check whether this debug break slot has been patched with a call to the
337   // debugger.
338   INLINE(bool IsPatchedDebugBreakSlotSequence());
339 
340 #ifdef ENABLE_DISASSEMBLER
341   // Printing
342   static const char* RelocModeName(Mode rmode);
343   void Print(FILE* out);
344 #endif  // ENABLE_DISASSEMBLER
345 #ifdef DEBUG
346   // Debugging
347   void Verify();
348 #endif
349 
350   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
351   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
352   static const int kDataMask =
353       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
354   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
355 
356  private:
357   // On ARM, note that pc_ is the address of the constant pool entry
358   // to be relocated and not the address of the instruction
359   // referencing the constant pool entry (except when rmode_ ==
360   // comment).
361   byte* pc_;
362   Mode rmode_;
363   intptr_t data_;
364   Code* host_;
365 #ifdef V8_TARGET_ARCH_MIPS
366   // Code and Embedded Object pointers in mips are stored split
367   // across two consecutive 32-bit instructions. Heap management
368   // routines expect to access these pointers indirectly. The following
369   // location provides a place for these pointers to exist natually
370   // when accessed via the Iterator.
371   Object* reconstructed_obj_ptr_;
372   // External-reference pointers are also split across instruction-pairs
373   // in mips, but are accessed via indirect pointers. This location
374   // provides a place for that pointer to exist naturally. Its address
375   // is returned by RelocInfo::target_reference_address().
376   Address reconstructed_adr_ptr_;
377 #endif  // V8_TARGET_ARCH_MIPS
378   friend class RelocIterator;
379 };
380 
381 
382 // RelocInfoWriter serializes a stream of relocation info. It writes towards
383 // lower addresses.
384 class RelocInfoWriter BASE_EMBEDDED {
385  public:
RelocInfoWriter()386   RelocInfoWriter() : pos_(NULL),
387                       last_pc_(NULL),
388                       last_id_(0),
389                       last_position_(0) {}
RelocInfoWriter(byte * pos,byte * pc)390   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
391                                          last_pc_(pc),
392                                          last_id_(0),
393                                          last_position_(0) {}
394 
pos()395   byte* pos() const { return pos_; }
last_pc()396   byte* last_pc() const { return last_pc_; }
397 
398   void Write(const RelocInfo* rinfo);
399 
400   // Update the state of the stream after reloc info buffer
401   // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)402   void Reposition(byte* pos, byte* pc) {
403     pos_ = pos;
404     last_pc_ = pc;
405   }
406 
407   // Max size (bytes) of a written RelocInfo. Longest encoding is
408   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
409   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
410   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
411   // Here we use the maximum of the two.
412   static const int kMaxSize = 16;
413 
414  private:
415   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
416   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
417   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
418   inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
419   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
420   inline void WriteTaggedData(intptr_t data_delta, int tag);
421   inline void WriteExtraTag(int extra_tag, int top_tag);
422 
423   byte* pos_;
424   byte* last_pc_;
425   int last_id_;
426   int last_position_;
427   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
428 };
429 
430 
431 // A RelocIterator iterates over relocation information.
432 // Typical use:
433 //
434 //   for (RelocIterator it(code); !it.done(); it.next()) {
435 //     // do something with it.rinfo() here
436 //   }
437 //
438 // A mask can be specified to skip unwanted modes.
439 class RelocIterator: public Malloced {
440  public:
441   // Create a new iterator positioned at
442   // the beginning of the reloc info.
443   // Relocation information with mode k is included in the
444   // iteration iff bit k of mode_mask is set.
445   explicit RelocIterator(Code* code, int mode_mask = -1);
446   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
447 
448   // Iteration
done()449   bool done() const { return done_; }
450   void next();
451 
452   // Return pointer valid until next next().
rinfo()453   RelocInfo* rinfo() {
454     ASSERT(!done());
455     return &rinfo_;
456   }
457 
458  private:
459   // Advance* moves the position before/after reading.
460   // *Read* reads from current byte(s) into rinfo_.
461   // *Get* just reads and returns info on current byte.
462   void Advance(int bytes = 1) { pos_ -= bytes; }
463   int AdvanceGetTag();
464   int GetExtraTag();
465   int GetTopTag();
466   void ReadTaggedPC();
467   void AdvanceReadPC();
468   void AdvanceReadId();
469   void AdvanceReadPosition();
470   void AdvanceReadData();
471   void AdvanceReadVariableLengthPCJump();
472   int GetLocatableTypeTag();
473   void ReadTaggedId();
474   void ReadTaggedPosition();
475 
476   // If the given mode is wanted, set it in rinfo_ and return true.
477   // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)478   bool SetMode(RelocInfo::Mode mode) {
479     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
480   }
481 
482   byte* pos_;
483   byte* end_;
484   RelocInfo rinfo_;
485   bool done_;
486   int mode_mask_;
487   int last_id_;
488   int last_position_;
489   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
490 };
491 
492 
493 //------------------------------------------------------------------------------
494 // External function
495 
496 //----------------------------------------------------------------------------
497 class IC_Utility;
498 class SCTableReference;
499 #ifdef ENABLE_DEBUGGER_SUPPORT
500 class Debug_Address;
501 #endif
502 
503 
504 // An ExternalReference represents a C++ address used in the generated
505 // code. All references to C++ functions and variables must be encapsulated in
506 // an ExternalReference instance. This is done in order to track the origin of
507 // all external references in the code so that they can be bound to the correct
508 // addresses when deserializing a heap.
509 class ExternalReference BASE_EMBEDDED {
510  public:
511   // Used in the simulator to support different native api calls.
512   enum Type {
513     // Builtin call.
514     // MaybeObject* f(v8::internal::Arguments).
515     BUILTIN_CALL,  // default
516 
517     // Builtin that takes float arguments and returns an int.
518     // int f(double, double).
519     BUILTIN_COMPARE_CALL,
520 
521     // Builtin call that returns floating point.
522     // double f(double, double).
523     BUILTIN_FP_FP_CALL,
524 
525     // Builtin call that returns floating point.
526     // double f(double).
527     BUILTIN_FP_CALL,
528 
529     // Builtin call that returns floating point.
530     // double f(double, int).
531     BUILTIN_FP_INT_CALL,
532 
533     // Direct call to API function callback.
534     // Handle<Value> f(v8::Arguments&)
535     DIRECT_API_CALL,
536 
537     // Direct call to accessor getter callback.
538     // Handle<value> f(Local<String> property, AccessorInfo& info)
539     DIRECT_GETTER_CALL
540   };
541 
542   typedef void* ExternalReferenceRedirector(void* original, Type type);
543 
544   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
545 
546   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
547 
548   ExternalReference(Builtins::Name name, Isolate* isolate);
549 
550   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
551 
552   ExternalReference(const Runtime::Function* f, Isolate* isolate);
553 
554   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
555 
556 #ifdef ENABLE_DEBUGGER_SUPPORT
557   ExternalReference(const Debug_Address& debug_address, Isolate* isolate);
558 #endif
559 
560   explicit ExternalReference(StatsCounter* counter);
561 
562   ExternalReference(Isolate::AddressId id, Isolate* isolate);
563 
564   explicit ExternalReference(const SCTableReference& table_ref);
565 
566   // Isolate::Current() as an external reference.
567   static ExternalReference isolate_address();
568 
569   // One-of-a-kind references. These references are not part of a general
570   // pattern. This means that they have to be added to the
571   // ExternalReferenceTable in serialize.cc manually.
572 
573   static ExternalReference incremental_marking_record_write_function(
574       Isolate* isolate);
575   static ExternalReference incremental_evacuation_record_write_function(
576       Isolate* isolate);
577   static ExternalReference store_buffer_overflow_function(
578       Isolate* isolate);
579   static ExternalReference flush_icache_function(Isolate* isolate);
580   static ExternalReference perform_gc_function(Isolate* isolate);
581   static ExternalReference fill_heap_number_with_random_function(
582       Isolate* isolate);
583   static ExternalReference random_uint32_function(Isolate* isolate);
584   static ExternalReference transcendental_cache_array_address(Isolate* isolate);
585   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
586 
587   static ExternalReference get_date_field_function(Isolate* isolate);
588   static ExternalReference date_cache_stamp(Isolate* isolate);
589 
590   // Deoptimization support.
591   static ExternalReference new_deoptimizer_function(Isolate* isolate);
592   static ExternalReference compute_output_frames_function(Isolate* isolate);
593 
594   // Static data in the keyed lookup cache.
595   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
596   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
597 
598   // Static variable Heap::roots_array_start()
599   static ExternalReference roots_array_start(Isolate* isolate);
600 
601   // Static variable StackGuard::address_of_jslimit()
602   static ExternalReference address_of_stack_limit(Isolate* isolate);
603 
604   // Static variable StackGuard::address_of_real_jslimit()
605   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
606 
607   // Static variable RegExpStack::limit_address()
608   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
609 
610   // Static variables for RegExp.
611   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
612   static ExternalReference address_of_regexp_stack_memory_address(
613       Isolate* isolate);
614   static ExternalReference address_of_regexp_stack_memory_size(
615       Isolate* isolate);
616 
617   // Static variable Heap::NewSpaceStart()
618   static ExternalReference new_space_start(Isolate* isolate);
619   static ExternalReference new_space_mask(Isolate* isolate);
620   static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
621   static ExternalReference new_space_mark_bits(Isolate* isolate);
622 
623   // Write barrier.
624   static ExternalReference store_buffer_top(Isolate* isolate);
625 
626   // Used for fast allocation in generated code.
627   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
628   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
629 
630   static ExternalReference double_fp_operation(Token::Value operation,
631                                                Isolate* isolate);
632   static ExternalReference compare_doubles(Isolate* isolate);
633   static ExternalReference power_double_double_function(Isolate* isolate);
634   static ExternalReference power_double_int_function(Isolate* isolate);
635 
636   static ExternalReference handle_scope_next_address();
637   static ExternalReference handle_scope_limit_address();
638   static ExternalReference handle_scope_level_address();
639 
640   static ExternalReference scheduled_exception_address(Isolate* isolate);
641 
642   // Static variables containing common double constants.
643   static ExternalReference address_of_min_int();
644   static ExternalReference address_of_one_half();
645   static ExternalReference address_of_minus_zero();
646   static ExternalReference address_of_zero();
647   static ExternalReference address_of_uint8_max_value();
648   static ExternalReference address_of_negative_infinity();
649   static ExternalReference address_of_canonical_non_hole_nan();
650   static ExternalReference address_of_the_hole_nan();
651 
652   static ExternalReference math_sin_double_function(Isolate* isolate);
653   static ExternalReference math_cos_double_function(Isolate* isolate);
654   static ExternalReference math_tan_double_function(Isolate* isolate);
655   static ExternalReference math_log_double_function(Isolate* isolate);
656 
address()657   Address address() const {return reinterpret_cast<Address>(address_);}
658 
659 #ifdef ENABLE_DEBUGGER_SUPPORT
660   // Function Debug::Break()
661   static ExternalReference debug_break(Isolate* isolate);
662 
663   // Used to check if single stepping is enabled in generated code.
664   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
665 #endif
666 
667 #ifndef V8_INTERPRETED_REGEXP
668   // C functions called from RegExp generated code.
669 
670   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
671   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
672 
673   // Function RegExpMacroAssembler*::CheckStackGuardState()
674   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
675 
676   // Function NativeRegExpMacroAssembler::GrowStack()
677   static ExternalReference re_grow_stack(Isolate* isolate);
678 
679   // byte NativeRegExpMacroAssembler::word_character_bitmap
680   static ExternalReference re_word_character_map();
681 
682 #endif
683 
684   // This lets you register a function that rewrites all external references.
685   // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)686   static void set_redirector(Isolate* isolate,
687                              ExternalReferenceRedirector* redirector) {
688     // We can't stack them.
689     ASSERT(isolate->external_reference_redirector() == NULL);
690     isolate->set_external_reference_redirector(
691         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
692   }
693 
694  private:
ExternalReference(void * address)695   explicit ExternalReference(void* address)
696       : address_(address) {}
697 
698   static void* Redirect(Isolate* isolate,
699                         void* address,
700                         Type type = ExternalReference::BUILTIN_CALL) {
701     ExternalReferenceRedirector* redirector =
702         reinterpret_cast<ExternalReferenceRedirector*>(
703             isolate->external_reference_redirector());
704     if (redirector == NULL) return address;
705     void* answer = (*redirector)(address, type);
706     return answer;
707   }
708 
709   static void* Redirect(Isolate* isolate,
710                         Address address_arg,
711                         Type type = ExternalReference::BUILTIN_CALL) {
712     ExternalReferenceRedirector* redirector =
713         reinterpret_cast<ExternalReferenceRedirector*>(
714             isolate->external_reference_redirector());
715     void* address = reinterpret_cast<void*>(address_arg);
716     void* answer = (redirector == NULL) ?
717                    address :
718                    (*redirector)(address, type);
719     return answer;
720   }
721 
722   void* address_;
723 };
724 
725 
726 // -----------------------------------------------------------------------------
727 // Position recording support
728 
729 struct PositionState {
PositionStatePositionState730   PositionState() : current_position(RelocInfo::kNoPosition),
731                     written_position(RelocInfo::kNoPosition),
732                     current_statement_position(RelocInfo::kNoPosition),
733                     written_statement_position(RelocInfo::kNoPosition) {}
734 
735   int current_position;
736   int written_position;
737 
738   int current_statement_position;
739   int written_statement_position;
740 };
741 
742 
743 class PositionsRecorder BASE_EMBEDDED {
744  public:
PositionsRecorder(Assembler * assembler)745   explicit PositionsRecorder(Assembler* assembler)
746       : assembler_(assembler) {
747 #ifdef ENABLE_GDB_JIT_INTERFACE
748     gdbjit_lineinfo_ = NULL;
749 #endif
750   }
751 
752 #ifdef ENABLE_GDB_JIT_INTERFACE
~PositionsRecorder()753   ~PositionsRecorder() {
754     delete gdbjit_lineinfo_;
755   }
756 
StartGDBJITLineInfoRecording()757   void StartGDBJITLineInfoRecording() {
758     if (FLAG_gdbjit) {
759       gdbjit_lineinfo_ = new GDBJITLineInfo();
760     }
761   }
762 
DetachGDBJITLineInfo()763   GDBJITLineInfo* DetachGDBJITLineInfo() {
764     GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
765     gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
766     return lineinfo;
767   }
768 #endif
769 
770   // Set current position to pos.
771   void RecordPosition(int pos);
772 
773   // Set current statement position to pos.
774   void RecordStatementPosition(int pos);
775 
776   // Write recorded positions to relocation information.
777   bool WriteRecordedPositions();
778 
current_position()779   int current_position() const { return state_.current_position; }
780 
current_statement_position()781   int current_statement_position() const {
782     return state_.current_statement_position;
783   }
784 
785  private:
786   Assembler* assembler_;
787   PositionState state_;
788 #ifdef ENABLE_GDB_JIT_INTERFACE
789   GDBJITLineInfo* gdbjit_lineinfo_;
790 #endif
791 
792   friend class PreservePositionScope;
793 
794   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
795 };
796 
797 
798 class PreservePositionScope BASE_EMBEDDED {
799  public:
PreservePositionScope(PositionsRecorder * positions_recorder)800   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
801       : positions_recorder_(positions_recorder),
802         saved_state_(positions_recorder->state_) {}
803 
~PreservePositionScope()804   ~PreservePositionScope() {
805     positions_recorder_->state_ = saved_state_;
806   }
807 
808  private:
809   PositionsRecorder* positions_recorder_;
810   const PositionState saved_state_;
811 
812   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
813 };
814 
815 
816 // -----------------------------------------------------------------------------
817 // Utility functions
818 
is_intn(int x,int n)819 inline bool is_intn(int x, int n)  {
820   return -(1 << (n-1)) <= x && x < (1 << (n-1));
821 }
822 
is_int8(int x)823 inline bool is_int8(int x)  { return is_intn(x, 8); }
is_int16(int x)824 inline bool is_int16(int x)  { return is_intn(x, 16); }
is_int18(int x)825 inline bool is_int18(int x)  { return is_intn(x, 18); }
is_int24(int x)826 inline bool is_int24(int x)  { return is_intn(x, 24); }
827 
is_uintn(int x,int n)828 inline bool is_uintn(int x, int n) {
829   return (x & -(1 << n)) == 0;
830 }
831 
is_uint2(int x)832 inline bool is_uint2(int x)  { return is_uintn(x, 2); }
is_uint3(int x)833 inline bool is_uint3(int x)  { return is_uintn(x, 3); }
is_uint4(int x)834 inline bool is_uint4(int x)  { return is_uintn(x, 4); }
is_uint5(int x)835 inline bool is_uint5(int x)  { return is_uintn(x, 5); }
is_uint6(int x)836 inline bool is_uint6(int x)  { return is_uintn(x, 6); }
is_uint8(int x)837 inline bool is_uint8(int x)  { return is_uintn(x, 8); }
is_uint10(int x)838 inline bool is_uint10(int x)  { return is_uintn(x, 10); }
is_uint12(int x)839 inline bool is_uint12(int x)  { return is_uintn(x, 12); }
is_uint16(int x)840 inline bool is_uint16(int x)  { return is_uintn(x, 16); }
is_uint24(int x)841 inline bool is_uint24(int x)  { return is_uintn(x, 24); }
is_uint26(int x)842 inline bool is_uint26(int x)  { return is_uintn(x, 26); }
is_uint28(int x)843 inline bool is_uint28(int x)  { return is_uintn(x, 28); }
844 
NumberOfBitsSet(uint32_t x)845 inline int NumberOfBitsSet(uint32_t x) {
846   unsigned int num_bits_set;
847   for (num_bits_set = 0; x; x >>= 1) {
848     num_bits_set += x & 1;
849   }
850   return num_bits_set;
851 }
852 
853 bool EvalComparison(Token::Value op, double op1, double op2);
854 
855 // Computes pow(x, y) with the special cases in the spec for Math.pow.
856 double power_double_int(double x, int y);
857 double power_double_double(double x, double y);
858 
859 // Helper class for generating code or data associated with the code
860 // right after a call instruction. As an example this can be used to
861 // generate safepoint data after calls for crankshaft.
862 class CallWrapper {
863  public:
CallWrapper()864   CallWrapper() { }
~CallWrapper()865   virtual ~CallWrapper() { }
866   // Called just before emitting a call. Argument is the size of the generated
867   // call code.
868   virtual void BeforeCall(int call_size) const = 0;
869   // Called just after emitting a call, i.e., at the return site for the call.
870   virtual void AfterCall() const = 0;
871 };
872 
873 class NullCallWrapper : public CallWrapper {
874  public:
NullCallWrapper()875   NullCallWrapper() { }
~NullCallWrapper()876   virtual ~NullCallWrapper() { }
BeforeCall(int call_size)877   virtual void BeforeCall(int call_size) const { }
AfterCall()878   virtual void AfterCall() const { }
879 };
880 
881 } }  // namespace v8::internal
882 
883 #endif  // V8_ASSEMBLER_H_
884