1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "VirtRegMap.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveRangeEdit.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29
30 using namespace llvm;
31
32 STATISTIC(NumFinished, "Number of splits finished");
33 STATISTIC(NumSimple, "Number of splits that were simple");
34 STATISTIC(NumCopies, "Number of copies inserted for splitting");
35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
37
38 //===----------------------------------------------------------------------===//
39 // Split Analysis
40 //===----------------------------------------------------------------------===//
41
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43 const LiveIntervals &lis,
44 const MachineLoopInfo &mli)
45 : MF(vrm.getMachineFunction()),
46 VRM(vrm),
47 LIS(lis),
48 Loops(mli),
49 TII(*MF.getTarget().getInstrInfo()),
50 CurLI(0),
51 LastSplitPoint(MF.getNumBlockIDs()) {}
52
clear()53 void SplitAnalysis::clear() {
54 UseSlots.clear();
55 UseBlocks.clear();
56 ThroughBlocks.clear();
57 CurLI = 0;
58 DidRepairRange = false;
59 }
60
computeLastSplitPoint(unsigned Num)61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67 // Compute split points on the first call. The pair is independent of the
68 // current live interval.
69 if (!LSP.first.isValid()) {
70 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71 if (FirstTerm == MBB->end())
72 LSP.first = MBBEnd;
73 else
74 LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76 // If there is a landing pad successor, also find the call instruction.
77 if (!LPad)
78 return LSP.first;
79 // There may not be a call instruction (?) in which case we ignore LPad.
80 LSP.second = LSP.first;
81 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82 I != E;) {
83 --I;
84 if (I->isCall()) {
85 LSP.second = LIS.getInstructionIndex(I);
86 break;
87 }
88 }
89 }
90
91 // If CurLI is live into a landing pad successor, move the last split point
92 // back to the call that may throw.
93 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94 return LSP.first;
95
96 // Find the value leaving MBB.
97 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98 if (!VNI)
99 return LSP.first;
100
101 // If the value leaving MBB was defined after the call in MBB, it can't
102 // really be live-in to the landing pad. This can happen if the landing pad
103 // has a PHI, and this register is undef on the exceptional edge.
104 // <rdar://problem/10664933>
105 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106 return LSP.first;
107
108 // Value is properly live-in to the landing pad.
109 // Only allow splits before the call.
110 return LSP.second;
111 }
112
113 MachineBasicBlock::iterator
getLastSplitPointIter(MachineBasicBlock * MBB)114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115 SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116 if (LSP == LIS.getMBBEndIdx(MBB))
117 return MBB->end();
118 return LIS.getInstructionFromIndex(LSP);
119 }
120
121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()122 void SplitAnalysis::analyzeUses() {
123 assert(UseSlots.empty() && "Call clear first");
124
125 // First get all the defs from the interval values. This provides the correct
126 // slots for early clobbers.
127 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128 E = CurLI->vni_end(); I != E; ++I)
129 if (!(*I)->isPHIDef() && !(*I)->isUnused())
130 UseSlots.push_back((*I)->def);
131
132 // Get use slots form the use-def chain.
133 const MachineRegisterInfo &MRI = MF.getRegInfo();
134 for (MachineRegisterInfo::use_nodbg_iterator
135 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
136 ++I)
137 if (!I.getOperand().isUndef())
138 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
139
140 array_pod_sort(UseSlots.begin(), UseSlots.end());
141
142 // Remove duplicates, keeping the smaller slot for each instruction.
143 // That is what we want for early clobbers.
144 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
145 SlotIndex::isSameInstr),
146 UseSlots.end());
147
148 // Compute per-live block info.
149 if (!calcLiveBlockInfo()) {
150 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
151 // I am looking at you, RegisterCoalescer!
152 DidRepairRange = true;
153 ++NumRepairs;
154 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
155 const_cast<LiveIntervals&>(LIS)
156 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
157 UseBlocks.clear();
158 ThroughBlocks.clear();
159 bool fixed = calcLiveBlockInfo();
160 (void)fixed;
161 assert(fixed && "Couldn't fix broken live interval");
162 }
163
164 DEBUG(dbgs() << "Analyze counted "
165 << UseSlots.size() << " instrs in "
166 << UseBlocks.size() << " blocks, through "
167 << NumThroughBlocks << " blocks.\n");
168 }
169
170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
171 /// where CurLI is live.
calcLiveBlockInfo()172 bool SplitAnalysis::calcLiveBlockInfo() {
173 ThroughBlocks.resize(MF.getNumBlockIDs());
174 NumThroughBlocks = NumGapBlocks = 0;
175 if (CurLI->empty())
176 return true;
177
178 LiveInterval::const_iterator LVI = CurLI->begin();
179 LiveInterval::const_iterator LVE = CurLI->end();
180
181 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
182 UseI = UseSlots.begin();
183 UseE = UseSlots.end();
184
185 // Loop over basic blocks where CurLI is live.
186 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
187 for (;;) {
188 BlockInfo BI;
189 BI.MBB = MFI;
190 SlotIndex Start, Stop;
191 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
192
193 // If the block contains no uses, the range must be live through. At one
194 // point, RegisterCoalescer could create dangling ranges that ended
195 // mid-block.
196 if (UseI == UseE || *UseI >= Stop) {
197 ++NumThroughBlocks;
198 ThroughBlocks.set(BI.MBB->getNumber());
199 // The range shouldn't end mid-block if there are no uses. This shouldn't
200 // happen.
201 if (LVI->end < Stop)
202 return false;
203 } else {
204 // This block has uses. Find the first and last uses in the block.
205 BI.FirstInstr = *UseI;
206 assert(BI.FirstInstr >= Start);
207 do ++UseI;
208 while (UseI != UseE && *UseI < Stop);
209 BI.LastInstr = UseI[-1];
210 assert(BI.LastInstr < Stop);
211
212 // LVI is the first live segment overlapping MBB.
213 BI.LiveIn = LVI->start <= Start;
214
215 // When not live in, the first use should be a def.
216 if (!BI.LiveIn) {
217 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
218 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
219 BI.FirstDef = BI.FirstInstr;
220 }
221
222 // Look for gaps in the live range.
223 BI.LiveOut = true;
224 while (LVI->end < Stop) {
225 SlotIndex LastStop = LVI->end;
226 if (++LVI == LVE || LVI->start >= Stop) {
227 BI.LiveOut = false;
228 BI.LastInstr = LastStop;
229 break;
230 }
231
232 if (LastStop < LVI->start) {
233 // There is a gap in the live range. Create duplicate entries for the
234 // live-in snippet and the live-out snippet.
235 ++NumGapBlocks;
236
237 // Push the Live-in part.
238 BI.LiveOut = false;
239 UseBlocks.push_back(BI);
240 UseBlocks.back().LastInstr = LastStop;
241
242 // Set up BI for the live-out part.
243 BI.LiveIn = false;
244 BI.LiveOut = true;
245 BI.FirstInstr = BI.FirstDef = LVI->start;
246 }
247
248 // A LiveRange that starts in the middle of the block must be a def.
249 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
250 if (!BI.FirstDef)
251 BI.FirstDef = LVI->start;
252 }
253
254 UseBlocks.push_back(BI);
255
256 // LVI is now at LVE or LVI->end >= Stop.
257 if (LVI == LVE)
258 break;
259 }
260
261 // Live segment ends exactly at Stop. Move to the next segment.
262 if (LVI->end == Stop && ++LVI == LVE)
263 break;
264
265 // Pick the next basic block.
266 if (LVI->start < Stop)
267 ++MFI;
268 else
269 MFI = LIS.getMBBFromIndex(LVI->start);
270 }
271
272 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
273 return true;
274 }
275
countLiveBlocks(const LiveInterval * cli) const276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
277 if (cli->empty())
278 return 0;
279 LiveInterval *li = const_cast<LiveInterval*>(cli);
280 LiveInterval::iterator LVI = li->begin();
281 LiveInterval::iterator LVE = li->end();
282 unsigned Count = 0;
283
284 // Loop over basic blocks where li is live.
285 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
286 SlotIndex Stop = LIS.getMBBEndIdx(MFI);
287 for (;;) {
288 ++Count;
289 LVI = li->advanceTo(LVI, Stop);
290 if (LVI == LVE)
291 return Count;
292 do {
293 ++MFI;
294 Stop = LIS.getMBBEndIdx(MFI);
295 } while (Stop <= LVI->start);
296 }
297 }
298
isOriginalEndpoint(SlotIndex Idx) const299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
300 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
301 const LiveInterval &Orig = LIS.getInterval(OrigReg);
302 assert(!Orig.empty() && "Splitting empty interval?");
303 LiveInterval::const_iterator I = Orig.find(Idx);
304
305 // Range containing Idx should begin at Idx.
306 if (I != Orig.end() && I->start <= Idx)
307 return I->start == Idx;
308
309 // Range does not contain Idx, previous must end at Idx.
310 return I != Orig.begin() && (--I)->end == Idx;
311 }
312
analyze(const LiveInterval * li)313 void SplitAnalysis::analyze(const LiveInterval *li) {
314 clear();
315 CurLI = li;
316 analyzeUses();
317 }
318
319
320 //===----------------------------------------------------------------------===//
321 // Split Editor
322 //===----------------------------------------------------------------------===//
323
324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt)325 SplitEditor::SplitEditor(SplitAnalysis &sa,
326 LiveIntervals &lis,
327 VirtRegMap &vrm,
328 MachineDominatorTree &mdt)
329 : SA(sa), LIS(lis), VRM(vrm),
330 MRI(vrm.getMachineFunction().getRegInfo()),
331 MDT(mdt),
332 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
333 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
334 Edit(0),
335 OpenIdx(0),
336 SpillMode(SM_Partition),
337 RegAssign(Allocator)
338 {}
339
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)340 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
341 Edit = &LRE;
342 SpillMode = SM;
343 OpenIdx = 0;
344 RegAssign.clear();
345 Values.clear();
346
347 // Reset the LiveRangeCalc instances needed for this spill mode.
348 LRCalc[0].reset(&VRM.getMachineFunction());
349 if (SpillMode)
350 LRCalc[1].reset(&VRM.getMachineFunction());
351
352 // We don't need an AliasAnalysis since we will only be performing
353 // cheap-as-a-copy remats anyway.
354 Edit->anyRematerializable(0);
355 }
356
dump() const357 void SplitEditor::dump() const {
358 if (RegAssign.empty()) {
359 dbgs() << " empty\n";
360 return;
361 }
362
363 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
364 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
365 dbgs() << '\n';
366 }
367
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx)368 VNInfo *SplitEditor::defValue(unsigned RegIdx,
369 const VNInfo *ParentVNI,
370 SlotIndex Idx) {
371 assert(ParentVNI && "Mapping NULL value");
372 assert(Idx.isValid() && "Invalid SlotIndex");
373 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
374 LiveInterval *LI = Edit->get(RegIdx);
375
376 // Create a new value.
377 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
378
379 // Use insert for lookup, so we can add missing values with a second lookup.
380 std::pair<ValueMap::iterator, bool> InsP =
381 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
382 ValueForcePair(VNI, false)));
383
384 // This was the first time (RegIdx, ParentVNI) was mapped.
385 // Keep it as a simple def without any liveness.
386 if (InsP.second)
387 return VNI;
388
389 // If the previous value was a simple mapping, add liveness for it now.
390 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
391 SlotIndex Def = OldVNI->def;
392 LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
393 // No longer a simple mapping. Switch to a complex, non-forced mapping.
394 InsP.first->second = ValueForcePair();
395 }
396
397 // This is a complex mapping, add liveness for VNI
398 SlotIndex Def = VNI->def;
399 LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
400
401 return VNI;
402 }
403
forceRecompute(unsigned RegIdx,const VNInfo * ParentVNI)404 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
405 assert(ParentVNI && "Mapping NULL value");
406 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
407 VNInfo *VNI = VFP.getPointer();
408
409 // ParentVNI was either unmapped or already complex mapped. Either way, just
410 // set the force bit.
411 if (!VNI) {
412 VFP.setInt(true);
413 return;
414 }
415
416 // This was previously a single mapping. Make sure the old def is represented
417 // by a trivial live range.
418 SlotIndex Def = VNI->def;
419 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
420 // Mark as complex mapped, forced.
421 VFP = ValueForcePair(0, true);
422 }
423
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)424 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
425 VNInfo *ParentVNI,
426 SlotIndex UseIdx,
427 MachineBasicBlock &MBB,
428 MachineBasicBlock::iterator I) {
429 MachineInstr *CopyMI = 0;
430 SlotIndex Def;
431 LiveInterval *LI = Edit->get(RegIdx);
432
433 // We may be trying to avoid interference that ends at a deleted instruction,
434 // so always begin RegIdx 0 early and all others late.
435 bool Late = RegIdx != 0;
436
437 // Attempt cheap-as-a-copy rematerialization.
438 LiveRangeEdit::Remat RM(ParentVNI);
439 if (Edit->canRematerializeAt(RM, UseIdx, true)) {
440 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
441 ++NumRemats;
442 } else {
443 // Can't remat, just insert a copy from parent.
444 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
445 .addReg(Edit->getReg());
446 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
447 .getRegSlot();
448 ++NumCopies;
449 }
450
451 // Define the value in Reg.
452 return defValue(RegIdx, ParentVNI, Def);
453 }
454
455 /// Create a new virtual register and live interval.
openIntv()456 unsigned SplitEditor::openIntv() {
457 // Create the complement as index 0.
458 if (Edit->empty())
459 Edit->create();
460
461 // Create the open interval.
462 OpenIdx = Edit->size();
463 Edit->create();
464 return OpenIdx;
465 }
466
selectIntv(unsigned Idx)467 void SplitEditor::selectIntv(unsigned Idx) {
468 assert(Idx != 0 && "Cannot select the complement interval");
469 assert(Idx < Edit->size() && "Can only select previously opened interval");
470 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
471 OpenIdx = Idx;
472 }
473
enterIntvBefore(SlotIndex Idx)474 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
475 assert(OpenIdx && "openIntv not called before enterIntvBefore");
476 DEBUG(dbgs() << " enterIntvBefore " << Idx);
477 Idx = Idx.getBaseIndex();
478 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
479 if (!ParentVNI) {
480 DEBUG(dbgs() << ": not live\n");
481 return Idx;
482 }
483 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
484 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
485 assert(MI && "enterIntvBefore called with invalid index");
486
487 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
488 return VNI->def;
489 }
490
enterIntvAfter(SlotIndex Idx)491 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
492 assert(OpenIdx && "openIntv not called before enterIntvAfter");
493 DEBUG(dbgs() << " enterIntvAfter " << Idx);
494 Idx = Idx.getBoundaryIndex();
495 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
496 if (!ParentVNI) {
497 DEBUG(dbgs() << ": not live\n");
498 return Idx;
499 }
500 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
501 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
502 assert(MI && "enterIntvAfter called with invalid index");
503
504 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
505 llvm::next(MachineBasicBlock::iterator(MI)));
506 return VNI->def;
507 }
508
enterIntvAtEnd(MachineBasicBlock & MBB)509 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
510 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
511 SlotIndex End = LIS.getMBBEndIdx(&MBB);
512 SlotIndex Last = End.getPrevSlot();
513 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
514 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
515 if (!ParentVNI) {
516 DEBUG(dbgs() << ": not live\n");
517 return End;
518 }
519 DEBUG(dbgs() << ": valno " << ParentVNI->id);
520 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
521 SA.getLastSplitPointIter(&MBB));
522 RegAssign.insert(VNI->def, End, OpenIdx);
523 DEBUG(dump());
524 return VNI->def;
525 }
526
527 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)528 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
529 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
530 }
531
useIntv(SlotIndex Start,SlotIndex End)532 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
533 assert(OpenIdx && "openIntv not called before useIntv");
534 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
535 RegAssign.insert(Start, End, OpenIdx);
536 DEBUG(dump());
537 }
538
leaveIntvAfter(SlotIndex Idx)539 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
540 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
541 DEBUG(dbgs() << " leaveIntvAfter " << Idx);
542
543 // The interval must be live beyond the instruction at Idx.
544 SlotIndex Boundary = Idx.getBoundaryIndex();
545 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
546 if (!ParentVNI) {
547 DEBUG(dbgs() << ": not live\n");
548 return Boundary.getNextSlot();
549 }
550 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
551 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
552 assert(MI && "No instruction at index");
553
554 // In spill mode, make live ranges as short as possible by inserting the copy
555 // before MI. This is only possible if that instruction doesn't redefine the
556 // value. The inserted COPY is not a kill, and we don't need to recompute
557 // the source live range. The spiller also won't try to hoist this copy.
558 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
559 MI->readsVirtualRegister(Edit->getReg())) {
560 forceRecompute(0, ParentVNI);
561 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
562 return Idx;
563 }
564
565 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
566 llvm::next(MachineBasicBlock::iterator(MI)));
567 return VNI->def;
568 }
569
leaveIntvBefore(SlotIndex Idx)570 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
571 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
572 DEBUG(dbgs() << " leaveIntvBefore " << Idx);
573
574 // The interval must be live into the instruction at Idx.
575 Idx = Idx.getBaseIndex();
576 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
577 if (!ParentVNI) {
578 DEBUG(dbgs() << ": not live\n");
579 return Idx.getNextSlot();
580 }
581 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
582
583 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
584 assert(MI && "No instruction at index");
585 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
586 return VNI->def;
587 }
588
leaveIntvAtTop(MachineBasicBlock & MBB)589 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
590 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
591 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
592 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
593
594 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
595 if (!ParentVNI) {
596 DEBUG(dbgs() << ": not live\n");
597 return Start;
598 }
599
600 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
601 MBB.SkipPHIsAndLabels(MBB.begin()));
602 RegAssign.insert(Start, VNI->def, OpenIdx);
603 DEBUG(dump());
604 return VNI->def;
605 }
606
overlapIntv(SlotIndex Start,SlotIndex End)607 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
608 assert(OpenIdx && "openIntv not called before overlapIntv");
609 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
610 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
611 "Parent changes value in extended range");
612 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
613 "Range cannot span basic blocks");
614
615 // The complement interval will be extended as needed by LRCalc.extend().
616 if (ParentVNI)
617 forceRecompute(0, ParentVNI);
618 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
619 RegAssign.insert(Start, End, OpenIdx);
620 DEBUG(dump());
621 }
622
623 //===----------------------------------------------------------------------===//
624 // Spill modes
625 //===----------------------------------------------------------------------===//
626
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)627 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
628 LiveInterval *LI = Edit->get(0);
629 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
630 RegAssignMap::iterator AssignI;
631 AssignI.setMap(RegAssign);
632
633 for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
634 VNInfo *VNI = Copies[i];
635 SlotIndex Def = VNI->def;
636 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
637 assert(MI && "No instruction for back-copy");
638
639 MachineBasicBlock *MBB = MI->getParent();
640 MachineBasicBlock::iterator MBBI(MI);
641 bool AtBegin;
642 do AtBegin = MBBI == MBB->begin();
643 while (!AtBegin && (--MBBI)->isDebugValue());
644
645 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
646 LI->removeValNo(VNI);
647 LIS.RemoveMachineInstrFromMaps(MI);
648 MI->eraseFromParent();
649
650 // Adjust RegAssign if a register assignment is killed at VNI->def. We
651 // want to avoid calculating the live range of the source register if
652 // possible.
653 AssignI.find(VNI->def.getPrevSlot());
654 if (!AssignI.valid() || AssignI.start() >= Def)
655 continue;
656 // If MI doesn't kill the assigned register, just leave it.
657 if (AssignI.stop() != Def)
658 continue;
659 unsigned RegIdx = AssignI.value();
660 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
661 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n');
662 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
663 } else {
664 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
665 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
666 AssignI.setStop(Kill);
667 }
668 }
669 }
670
671 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)672 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
673 MachineBasicBlock *DefMBB) {
674 if (MBB == DefMBB)
675 return MBB;
676 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
677
678 const MachineLoopInfo &Loops = SA.Loops;
679 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
680 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
681
682 // Best candidate so far.
683 MachineBasicBlock *BestMBB = MBB;
684 unsigned BestDepth = UINT_MAX;
685
686 for (;;) {
687 const MachineLoop *Loop = Loops.getLoopFor(MBB);
688
689 // MBB isn't in a loop, it doesn't get any better. All dominators have a
690 // higher frequency by definition.
691 if (!Loop) {
692 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
693 << MBB->getNumber() << " at depth 0\n");
694 return MBB;
695 }
696
697 // We'll never be able to exit the DefLoop.
698 if (Loop == DefLoop) {
699 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
700 << MBB->getNumber() << " in the same loop\n");
701 return MBB;
702 }
703
704 // Least busy dominator seen so far.
705 unsigned Depth = Loop->getLoopDepth();
706 if (Depth < BestDepth) {
707 BestMBB = MBB;
708 BestDepth = Depth;
709 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
710 << MBB->getNumber() << " at depth " << Depth << '\n');
711 }
712
713 // Leave loop by going to the immediate dominator of the loop header.
714 // This is a bigger stride than simply walking up the dominator tree.
715 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
716
717 // Too far up the dominator tree?
718 if (!IDom || !MDT.dominates(DefDomNode, IDom))
719 return BestMBB;
720
721 MBB = IDom->getBlock();
722 }
723 }
724
hoistCopiesForSize()725 void SplitEditor::hoistCopiesForSize() {
726 // Get the complement interval, always RegIdx 0.
727 LiveInterval *LI = Edit->get(0);
728 LiveInterval *Parent = &Edit->getParent();
729
730 // Track the nearest common dominator for all back-copies for each ParentVNI,
731 // indexed by ParentVNI->id.
732 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
733 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
734
735 // Find the nearest common dominator for parent values with multiple
736 // back-copies. If a single back-copy dominates, put it in DomPair.second.
737 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
738 VI != VE; ++VI) {
739 VNInfo *VNI = *VI;
740 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
741 assert(ParentVNI && "Parent not live at complement def");
742
743 // Don't hoist remats. The complement is probably going to disappear
744 // completely anyway.
745 if (Edit->didRematerialize(ParentVNI))
746 continue;
747
748 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
749 DomPair &Dom = NearestDom[ParentVNI->id];
750
751 // Keep directly defined parent values. This is either a PHI or an
752 // instruction in the complement range. All other copies of ParentVNI
753 // should be eliminated.
754 if (VNI->def == ParentVNI->def) {
755 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
756 Dom = DomPair(ValMBB, VNI->def);
757 continue;
758 }
759 // Skip the singly mapped values. There is nothing to gain from hoisting a
760 // single back-copy.
761 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
762 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
763 continue;
764 }
765
766 if (!Dom.first) {
767 // First time we see ParentVNI. VNI dominates itself.
768 Dom = DomPair(ValMBB, VNI->def);
769 } else if (Dom.first == ValMBB) {
770 // Two defs in the same block. Pick the earlier def.
771 if (!Dom.second.isValid() || VNI->def < Dom.second)
772 Dom.second = VNI->def;
773 } else {
774 // Different basic blocks. Check if one dominates.
775 MachineBasicBlock *Near =
776 MDT.findNearestCommonDominator(Dom.first, ValMBB);
777 if (Near == ValMBB)
778 // Def ValMBB dominates.
779 Dom = DomPair(ValMBB, VNI->def);
780 else if (Near != Dom.first)
781 // None dominate. Hoist to common dominator, need new def.
782 Dom = DomPair(Near, SlotIndex());
783 }
784
785 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
786 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
787 << " hoist to BB#" << Dom.first->getNumber() << ' '
788 << Dom.second << '\n');
789 }
790
791 // Insert the hoisted copies.
792 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
793 DomPair &Dom = NearestDom[i];
794 if (!Dom.first || Dom.second.isValid())
795 continue;
796 // This value needs a hoisted copy inserted at the end of Dom.first.
797 VNInfo *ParentVNI = Parent->getValNumInfo(i);
798 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
799 // Get a less loopy dominator than Dom.first.
800 Dom.first = findShallowDominator(Dom.first, DefMBB);
801 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
802 Dom.second =
803 defFromParent(0, ParentVNI, Last, *Dom.first,
804 SA.getLastSplitPointIter(Dom.first))->def;
805 }
806
807 // Remove redundant back-copies that are now known to be dominated by another
808 // def with the same value.
809 SmallVector<VNInfo*, 8> BackCopies;
810 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
811 VI != VE; ++VI) {
812 VNInfo *VNI = *VI;
813 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
814 const DomPair &Dom = NearestDom[ParentVNI->id];
815 if (!Dom.first || Dom.second == VNI->def)
816 continue;
817 BackCopies.push_back(VNI);
818 forceRecompute(0, ParentVNI);
819 }
820 removeBackCopies(BackCopies);
821 }
822
823
824 /// transferValues - Transfer all possible values to the new live ranges.
825 /// Values that were rematerialized are left alone, they need LRCalc.extend().
transferValues()826 bool SplitEditor::transferValues() {
827 bool Skipped = false;
828 RegAssignMap::const_iterator AssignI = RegAssign.begin();
829 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
830 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
831 DEBUG(dbgs() << " blit " << *ParentI << ':');
832 VNInfo *ParentVNI = ParentI->valno;
833 // RegAssign has holes where RegIdx 0 should be used.
834 SlotIndex Start = ParentI->start;
835 AssignI.advanceTo(Start);
836 do {
837 unsigned RegIdx;
838 SlotIndex End = ParentI->end;
839 if (!AssignI.valid()) {
840 RegIdx = 0;
841 } else if (AssignI.start() <= Start) {
842 RegIdx = AssignI.value();
843 if (AssignI.stop() < End) {
844 End = AssignI.stop();
845 ++AssignI;
846 }
847 } else {
848 RegIdx = 0;
849 End = std::min(End, AssignI.start());
850 }
851
852 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
853 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
854 LiveInterval *LI = Edit->get(RegIdx);
855
856 // Check for a simply defined value that can be blitted directly.
857 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
858 if (VNInfo *VNI = VFP.getPointer()) {
859 DEBUG(dbgs() << ':' << VNI->id);
860 LI->addRange(LiveRange(Start, End, VNI));
861 Start = End;
862 continue;
863 }
864
865 // Skip values with forced recomputation.
866 if (VFP.getInt()) {
867 DEBUG(dbgs() << "(recalc)");
868 Skipped = true;
869 Start = End;
870 continue;
871 }
872
873 LiveRangeCalc &LRC = getLRCalc(RegIdx);
874
875 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
876 // so the live range is accurate. Add live-in blocks in [Start;End) to the
877 // LiveInBlocks.
878 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
879 SlotIndex BlockStart, BlockEnd;
880 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
881
882 // The first block may be live-in, or it may have its own def.
883 if (Start != BlockStart) {
884 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
885 assert(VNI && "Missing def for complex mapped value");
886 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
887 // MBB has its own def. Is it also live-out?
888 if (BlockEnd <= End)
889 LRC.setLiveOutValue(MBB, VNI);
890
891 // Skip to the next block for live-in.
892 ++MBB;
893 BlockStart = BlockEnd;
894 }
895
896 // Handle the live-in blocks covered by [Start;End).
897 assert(Start <= BlockStart && "Expected live-in block");
898 while (BlockStart < End) {
899 DEBUG(dbgs() << ">BB#" << MBB->getNumber());
900 BlockEnd = LIS.getMBBEndIdx(MBB);
901 if (BlockStart == ParentVNI->def) {
902 // This block has the def of a parent PHI, so it isn't live-in.
903 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
904 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
905 assert(VNI && "Missing def for complex mapped parent PHI");
906 if (End >= BlockEnd)
907 LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
908 } else {
909 // This block needs a live-in value. The last block covered may not
910 // be live-out.
911 if (End < BlockEnd)
912 LRC.addLiveInBlock(LI, MDT[MBB], End);
913 else {
914 // Live-through, and we don't know the value.
915 LRC.addLiveInBlock(LI, MDT[MBB]);
916 LRC.setLiveOutValue(MBB, 0);
917 }
918 }
919 BlockStart = BlockEnd;
920 ++MBB;
921 }
922 Start = End;
923 } while (Start != ParentI->end);
924 DEBUG(dbgs() << '\n');
925 }
926
927 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT,
928 &LIS.getVNInfoAllocator());
929 if (SpillMode)
930 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT,
931 &LIS.getVNInfoAllocator());
932
933 return Skipped;
934 }
935
extendPHIKillRanges()936 void SplitEditor::extendPHIKillRanges() {
937 // Extend live ranges to be live-out for successor PHI values.
938 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
939 E = Edit->getParent().vni_end(); I != E; ++I) {
940 const VNInfo *PHIVNI = *I;
941 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
942 continue;
943 unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
944 LiveInterval *LI = Edit->get(RegIdx);
945 LiveRangeCalc &LRC = getLRCalc(RegIdx);
946 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
947 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
948 PE = MBB->pred_end(); PI != PE; ++PI) {
949 SlotIndex End = LIS.getMBBEndIdx(*PI);
950 SlotIndex LastUse = End.getPrevSlot();
951 // The predecessor may not have a live-out value. That is OK, like an
952 // undef PHI operand.
953 if (Edit->getParent().liveAt(LastUse)) {
954 assert(RegAssign.lookup(LastUse) == RegIdx &&
955 "Different register assignment in phi predecessor");
956 LRC.extend(LI, End,
957 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
958 }
959 }
960 }
961 }
962
963 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)964 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
965 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
966 RE = MRI.reg_end(); RI != RE;) {
967 MachineOperand &MO = RI.getOperand();
968 MachineInstr *MI = MO.getParent();
969 ++RI;
970 // LiveDebugVariables should have handled all DBG_VALUE instructions.
971 if (MI->isDebugValue()) {
972 DEBUG(dbgs() << "Zapping " << *MI);
973 MO.setReg(0);
974 continue;
975 }
976
977 // <undef> operands don't really read the register, so it doesn't matter
978 // which register we choose. When the use operand is tied to a def, we must
979 // use the same register as the def, so just do that always.
980 SlotIndex Idx = LIS.getInstructionIndex(MI);
981 if (MO.isDef() || MO.isUndef())
982 Idx = Idx.getRegSlot(MO.isEarlyClobber());
983
984 // Rewrite to the mapped register at Idx.
985 unsigned RegIdx = RegAssign.lookup(Idx);
986 LiveInterval *LI = Edit->get(RegIdx);
987 MO.setReg(LI->reg);
988 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
989 << Idx << ':' << RegIdx << '\t' << *MI);
990
991 // Extend liveness to Idx if the instruction reads reg.
992 if (!ExtendRanges || MO.isUndef())
993 continue;
994
995 // Skip instructions that don't read Reg.
996 if (MO.isDef()) {
997 if (!MO.getSubReg() && !MO.isEarlyClobber())
998 continue;
999 // We may wan't to extend a live range for a partial redef, or for a use
1000 // tied to an early clobber.
1001 Idx = Idx.getPrevSlot();
1002 if (!Edit->getParent().liveAt(Idx))
1003 continue;
1004 } else
1005 Idx = Idx.getRegSlot(true);
1006
1007 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(),
1008 &MDT, &LIS.getVNInfoAllocator());
1009 }
1010 }
1011
deleteRematVictims()1012 void SplitEditor::deleteRematVictims() {
1013 SmallVector<MachineInstr*, 8> Dead;
1014 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1015 LiveInterval *LI = *I;
1016 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1017 LII != LIE; ++LII) {
1018 // Dead defs end at the dead slot.
1019 if (LII->end != LII->valno->def.getDeadSlot())
1020 continue;
1021 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1022 assert(MI && "Missing instruction for dead def");
1023 MI->addRegisterDead(LI->reg, &TRI);
1024
1025 if (!MI->allDefsAreDead())
1026 continue;
1027
1028 DEBUG(dbgs() << "All defs dead: " << *MI);
1029 Dead.push_back(MI);
1030 }
1031 }
1032
1033 if (Dead.empty())
1034 return;
1035
1036 Edit->eliminateDeadDefs(Dead);
1037 }
1038
finish(SmallVectorImpl<unsigned> * LRMap)1039 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1040 ++NumFinished;
1041
1042 // At this point, the live intervals in Edit contain VNInfos corresponding to
1043 // the inserted copies.
1044
1045 // Add the original defs from the parent interval.
1046 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1047 E = Edit->getParent().vni_end(); I != E; ++I) {
1048 const VNInfo *ParentVNI = *I;
1049 if (ParentVNI->isUnused())
1050 continue;
1051 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1052 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
1053 VNI->setIsPHIDef(ParentVNI->isPHIDef());
1054
1055 // Force rematted values to be recomputed everywhere.
1056 // The new live ranges may be truncated.
1057 if (Edit->didRematerialize(ParentVNI))
1058 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1059 forceRecompute(i, ParentVNI);
1060 }
1061
1062 // Hoist back-copies to the complement interval when in spill mode.
1063 switch (SpillMode) {
1064 case SM_Partition:
1065 // Leave all back-copies as is.
1066 break;
1067 case SM_Size:
1068 hoistCopiesForSize();
1069 break;
1070 case SM_Speed:
1071 llvm_unreachable("Spill mode 'speed' not implemented yet");
1072 }
1073
1074 // Transfer the simply mapped values, check if any are skipped.
1075 bool Skipped = transferValues();
1076 if (Skipped)
1077 extendPHIKillRanges();
1078 else
1079 ++NumSimple;
1080
1081 // Rewrite virtual registers, possibly extending ranges.
1082 rewriteAssigned(Skipped);
1083
1084 // Delete defs that were rematted everywhere.
1085 if (Skipped)
1086 deleteRematVictims();
1087
1088 // Get rid of unused values and set phi-kill flags.
1089 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1090 (*I)->RenumberValues(LIS);
1091
1092 // Provide a reverse mapping from original indices to Edit ranges.
1093 if (LRMap) {
1094 LRMap->clear();
1095 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1096 LRMap->push_back(i);
1097 }
1098
1099 // Now check if any registers were separated into multiple components.
1100 ConnectedVNInfoEqClasses ConEQ(LIS);
1101 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1102 // Don't use iterators, they are invalidated by create() below.
1103 LiveInterval *li = Edit->get(i);
1104 unsigned NumComp = ConEQ.Classify(li);
1105 if (NumComp <= 1)
1106 continue;
1107 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
1108 SmallVector<LiveInterval*, 8> dups;
1109 dups.push_back(li);
1110 for (unsigned j = 1; j != NumComp; ++j)
1111 dups.push_back(&Edit->create());
1112 ConEQ.Distribute(&dups[0], MRI);
1113 // The new intervals all map back to i.
1114 if (LRMap)
1115 LRMap->resize(Edit->size(), i);
1116 }
1117
1118 // Calculate spill weight and allocation hints for new intervals.
1119 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops);
1120
1121 assert(!LRMap || LRMap->size() == Edit->size());
1122 }
1123
1124
1125 //===----------------------------------------------------------------------===//
1126 // Single Block Splitting
1127 //===----------------------------------------------------------------------===//
1128
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1129 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1130 bool SingleInstrs) const {
1131 // Always split for multiple instructions.
1132 if (!BI.isOneInstr())
1133 return true;
1134 // Don't split for single instructions unless explicitly requested.
1135 if (!SingleInstrs)
1136 return false;
1137 // Splitting a live-through range always makes progress.
1138 if (BI.LiveIn && BI.LiveOut)
1139 return true;
1140 // No point in isolating a copy. It has no register class constraints.
1141 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1142 return false;
1143 // Finally, don't isolate an end point that was created by earlier splits.
1144 return isOriginalEndpoint(BI.FirstInstr);
1145 }
1146
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1147 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1148 openIntv();
1149 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1150 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1151 LastSplitPoint));
1152 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1153 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1154 } else {
1155 // The last use is after the last valid split point.
1156 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1157 useIntv(SegStart, SegStop);
1158 overlapIntv(SegStop, BI.LastInstr);
1159 }
1160 }
1161
1162
1163 //===----------------------------------------------------------------------===//
1164 // Global Live Range Splitting Support
1165 //===----------------------------------------------------------------------===//
1166
1167 // These methods support a method of global live range splitting that uses a
1168 // global algorithm to decide intervals for CFG edges. They will insert split
1169 // points and color intervals in basic blocks while avoiding interference.
1170 //
1171 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1172 // are on the stack.
1173
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1174 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1175 unsigned IntvIn, SlotIndex LeaveBefore,
1176 unsigned IntvOut, SlotIndex EnterAfter){
1177 SlotIndex Start, Stop;
1178 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1179
1180 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1181 << ") intf " << LeaveBefore << '-' << EnterAfter
1182 << ", live-through " << IntvIn << " -> " << IntvOut);
1183
1184 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1185
1186 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1187 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1188 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1189
1190 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1191
1192 if (!IntvOut) {
1193 DEBUG(dbgs() << ", spill on entry.\n");
1194 //
1195 // <<<<<<<<< Possible LeaveBefore interference.
1196 // |-----------| Live through.
1197 // -____________ Spill on entry.
1198 //
1199 selectIntv(IntvIn);
1200 SlotIndex Idx = leaveIntvAtTop(*MBB);
1201 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1202 (void)Idx;
1203 return;
1204 }
1205
1206 if (!IntvIn) {
1207 DEBUG(dbgs() << ", reload on exit.\n");
1208 //
1209 // >>>>>>> Possible EnterAfter interference.
1210 // |-----------| Live through.
1211 // ___________-- Reload on exit.
1212 //
1213 selectIntv(IntvOut);
1214 SlotIndex Idx = enterIntvAtEnd(*MBB);
1215 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1216 (void)Idx;
1217 return;
1218 }
1219
1220 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1221 DEBUG(dbgs() << ", straight through.\n");
1222 //
1223 // |-----------| Live through.
1224 // ------------- Straight through, same intv, no interference.
1225 //
1226 selectIntv(IntvOut);
1227 useIntv(Start, Stop);
1228 return;
1229 }
1230
1231 // We cannot legally insert splits after LSP.
1232 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1233 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1234
1235 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1236 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1237 DEBUG(dbgs() << ", switch avoiding interference.\n");
1238 //
1239 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1240 // |-----------| Live through.
1241 // ------======= Switch intervals between interference.
1242 //
1243 selectIntv(IntvOut);
1244 SlotIndex Idx;
1245 if (LeaveBefore && LeaveBefore < LSP) {
1246 Idx = enterIntvBefore(LeaveBefore);
1247 useIntv(Idx, Stop);
1248 } else {
1249 Idx = enterIntvAtEnd(*MBB);
1250 }
1251 selectIntv(IntvIn);
1252 useIntv(Start, Idx);
1253 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1254 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1255 return;
1256 }
1257
1258 DEBUG(dbgs() << ", create local intv for interference.\n");
1259 //
1260 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1261 // |-----------| Live through.
1262 // ==---------== Switch intervals before/after interference.
1263 //
1264 assert(LeaveBefore <= EnterAfter && "Missed case");
1265
1266 selectIntv(IntvOut);
1267 SlotIndex Idx = enterIntvAfter(EnterAfter);
1268 useIntv(Idx, Stop);
1269 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1270
1271 selectIntv(IntvIn);
1272 Idx = leaveIntvBefore(LeaveBefore);
1273 useIntv(Start, Idx);
1274 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1275 }
1276
1277
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1278 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1279 unsigned IntvIn, SlotIndex LeaveBefore) {
1280 SlotIndex Start, Stop;
1281 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1282
1283 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1284 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1285 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1286 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1287
1288 assert(IntvIn && "Must have register in");
1289 assert(BI.LiveIn && "Must be live-in");
1290 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1291
1292 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1293 DEBUG(dbgs() << " before interference.\n");
1294 //
1295 // <<< Interference after kill.
1296 // |---o---x | Killed in block.
1297 // ========= Use IntvIn everywhere.
1298 //
1299 selectIntv(IntvIn);
1300 useIntv(Start, BI.LastInstr);
1301 return;
1302 }
1303
1304 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1305
1306 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1307 //
1308 // <<< Possible interference after last use.
1309 // |---o---o---| Live-out on stack.
1310 // =========____ Leave IntvIn after last use.
1311 //
1312 // < Interference after last use.
1313 // |---o---o--o| Live-out on stack, late last use.
1314 // ============ Copy to stack after LSP, overlap IntvIn.
1315 // \_____ Stack interval is live-out.
1316 //
1317 if (BI.LastInstr < LSP) {
1318 DEBUG(dbgs() << ", spill after last use before interference.\n");
1319 selectIntv(IntvIn);
1320 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1321 useIntv(Start, Idx);
1322 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1323 } else {
1324 DEBUG(dbgs() << ", spill before last split point.\n");
1325 selectIntv(IntvIn);
1326 SlotIndex Idx = leaveIntvBefore(LSP);
1327 overlapIntv(Idx, BI.LastInstr);
1328 useIntv(Start, Idx);
1329 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1330 }
1331 return;
1332 }
1333
1334 // The interference is overlapping somewhere we wanted to use IntvIn. That
1335 // means we need to create a local interval that can be allocated a
1336 // different register.
1337 unsigned LocalIntv = openIntv();
1338 (void)LocalIntv;
1339 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1340
1341 if (!BI.LiveOut || BI.LastInstr < LSP) {
1342 //
1343 // <<<<<<< Interference overlapping uses.
1344 // |---o---o---| Live-out on stack.
1345 // =====----____ Leave IntvIn before interference, then spill.
1346 //
1347 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1348 SlotIndex From = enterIntvBefore(LeaveBefore);
1349 useIntv(From, To);
1350 selectIntv(IntvIn);
1351 useIntv(Start, From);
1352 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1353 return;
1354 }
1355
1356 // <<<<<<< Interference overlapping uses.
1357 // |---o---o--o| Live-out on stack, late last use.
1358 // =====------- Copy to stack before LSP, overlap LocalIntv.
1359 // \_____ Stack interval is live-out.
1360 //
1361 SlotIndex To = leaveIntvBefore(LSP);
1362 overlapIntv(To, BI.LastInstr);
1363 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1364 useIntv(From, To);
1365 selectIntv(IntvIn);
1366 useIntv(Start, From);
1367 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1368 }
1369
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1370 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1371 unsigned IntvOut, SlotIndex EnterAfter) {
1372 SlotIndex Start, Stop;
1373 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1374
1375 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1376 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1377 << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1378 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1379
1380 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1381
1382 assert(IntvOut && "Must have register out");
1383 assert(BI.LiveOut && "Must be live-out");
1384 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1385
1386 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1387 DEBUG(dbgs() << " after interference.\n");
1388 //
1389 // >>>> Interference before def.
1390 // | o---o---| Defined in block.
1391 // ========= Use IntvOut everywhere.
1392 //
1393 selectIntv(IntvOut);
1394 useIntv(BI.FirstInstr, Stop);
1395 return;
1396 }
1397
1398 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1399 DEBUG(dbgs() << ", reload after interference.\n");
1400 //
1401 // >>>> Interference before def.
1402 // |---o---o---| Live-through, stack-in.
1403 // ____========= Enter IntvOut before first use.
1404 //
1405 selectIntv(IntvOut);
1406 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1407 useIntv(Idx, Stop);
1408 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1409 return;
1410 }
1411
1412 // The interference is overlapping somewhere we wanted to use IntvOut. That
1413 // means we need to create a local interval that can be allocated a
1414 // different register.
1415 DEBUG(dbgs() << ", interference overlaps uses.\n");
1416 //
1417 // >>>>>>> Interference overlapping uses.
1418 // |---o---o---| Live-through, stack-in.
1419 // ____---====== Create local interval for interference range.
1420 //
1421 selectIntv(IntvOut);
1422 SlotIndex Idx = enterIntvAfter(EnterAfter);
1423 useIntv(Idx, Stop);
1424 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1425
1426 openIntv();
1427 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1428 useIntv(From, Idx);
1429 }
1430