1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <signal.h>
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <errno.h>
35 #include <sys/atomics.h>
36 #include <bionic_tls.h>
37 #include <sys/mman.h>
38 #include <pthread.h>
39 #include <time.h>
40 #include "pthread_internal.h"
41 #include "thread_private.h"
42 #include <limits.h>
43 #include <memory.h>
44 #include <assert.h>
45 #include <malloc.h>
46 #include <bionic_futex.h>
47 #include <bionic_atomic_inline.h>
48 #include <sys/prctl.h>
49 #include <sys/stat.h>
50 #include <fcntl.h>
51 #include <stdio.h>
52 #include <bionic_pthread.h>
53
54 extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
55 extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
56
57 extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
58 extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
59 extern void _exit_thread(int retCode);
60 extern int __set_errno(int);
61
__futex_wake_ex(volatile void * ftx,int pshared,int val)62 int __futex_wake_ex(volatile void *ftx, int pshared, int val)
63 {
64 return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
65 }
66
__futex_wait_ex(volatile void * ftx,int pshared,int val,const struct timespec * timeout)67 int __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
68 {
69 return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
70 }
71
72 #define __likely(cond) __builtin_expect(!!(cond), 1)
73 #define __unlikely(cond) __builtin_expect(!!(cond), 0)
74
75 #ifdef __i386__
76 #define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall))
77 #else
78 #define ATTRIBUTES __attribute__((noinline))
79 #endif
80
81 void ATTRIBUTES _thread_created_hook(pid_t thread_id);
82
83 #define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
84 #define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
85
86 #define DEFAULT_STACKSIZE (1024 * 1024)
87
88 static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
89
90
91 static const pthread_attr_t gDefaultPthreadAttr = {
92 .flags = 0,
93 .stack_base = NULL,
94 .stack_size = DEFAULT_STACKSIZE,
95 .guard_size = PAGE_SIZE,
96 .sched_policy = SCHED_NORMAL,
97 .sched_priority = 0
98 };
99
100 #define INIT_THREADS 1
101
102 static pthread_internal_t* gThreadList = NULL;
103 static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
104 static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
105
106
107 /* we simply malloc/free the internal pthread_internal_t structures. we may
108 * want to use a different allocation scheme in the future, but this one should
109 * be largely enough
110 */
111 static pthread_internal_t*
_pthread_internal_alloc(void)112 _pthread_internal_alloc(void)
113 {
114 pthread_internal_t* thread;
115
116 thread = calloc( sizeof(*thread), 1 );
117 if (thread)
118 thread->intern = 1;
119
120 return thread;
121 }
122
123 static void
_pthread_internal_free(pthread_internal_t * thread)124 _pthread_internal_free( pthread_internal_t* thread )
125 {
126 if (thread && thread->intern) {
127 thread->intern = 0; /* just in case */
128 free (thread);
129 }
130 }
131
132
133 static void
_pthread_internal_remove_locked(pthread_internal_t * thread)134 _pthread_internal_remove_locked( pthread_internal_t* thread )
135 {
136 thread->next->pref = thread->pref;
137 thread->pref[0] = thread->next;
138 }
139
140 static void
_pthread_internal_remove(pthread_internal_t * thread)141 _pthread_internal_remove( pthread_internal_t* thread )
142 {
143 pthread_mutex_lock(&gThreadListLock);
144 _pthread_internal_remove_locked(thread);
145 pthread_mutex_unlock(&gThreadListLock);
146 }
147
148 __LIBC_ABI_PRIVATE__ void
_pthread_internal_add(pthread_internal_t * thread)149 _pthread_internal_add( pthread_internal_t* thread )
150 {
151 pthread_mutex_lock(&gThreadListLock);
152 thread->pref = &gThreadList;
153 thread->next = thread->pref[0];
154 if (thread->next)
155 thread->next->pref = &thread->next;
156 thread->pref[0] = thread;
157 pthread_mutex_unlock(&gThreadListLock);
158 }
159
160 __LIBC_ABI_PRIVATE__ pthread_internal_t*
__get_thread(void)161 __get_thread(void)
162 {
163 void** tls = (void**)__get_tls();
164
165 return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
166 }
167
168
169 void*
__get_stack_base(int * p_stack_size)170 __get_stack_base(int *p_stack_size)
171 {
172 pthread_internal_t* thread = __get_thread();
173
174 *p_stack_size = thread->attr.stack_size;
175 return thread->attr.stack_base;
176 }
177
178
__init_tls(void ** tls,void * thread)179 void __init_tls(void** tls, void* thread)
180 {
181 int nn;
182
183 ((pthread_internal_t*)thread)->tls = tls;
184
185 // slot 0 must point to the tls area, this is required by the implementation
186 // of the x86 Linux kernel thread-local-storage
187 tls[TLS_SLOT_SELF] = (void*)tls;
188 tls[TLS_SLOT_THREAD_ID] = thread;
189 for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
190 tls[nn] = 0;
191
192 __set_tls( (void*)tls );
193 }
194
195
196 /*
197 * This trampoline is called from the assembly clone() function
198 */
__thread_entry(int (* func)(void *),void * arg,void ** tls)199 void __thread_entry(int (*func)(void*), void *arg, void **tls)
200 {
201 int retValue;
202 pthread_internal_t * thrInfo;
203
204 // Wait for our creating thread to release us. This lets it have time to
205 // notify gdb about this thread before it starts doing anything.
206 //
207 // This also provides the memory barrier needed to ensure that all memory
208 // accesses previously made by the creating thread are visible to us.
209 pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
210 pthread_mutex_lock(start_mutex);
211 pthread_mutex_destroy(start_mutex);
212
213 thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
214
215 __init_tls( tls, thrInfo );
216
217 pthread_exit( (void*)func(arg) );
218 }
219
220 __LIBC_ABI_PRIVATE__
_init_thread(pthread_internal_t * thread,pid_t kernel_id,pthread_attr_t * attr,void * stack_base)221 void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
222 {
223 if (attr == NULL) {
224 thread->attr = gDefaultPthreadAttr;
225 } else {
226 thread->attr = *attr;
227 }
228 thread->attr.stack_base = stack_base;
229 thread->kernel_id = kernel_id;
230
231 // set the scheduling policy/priority of the thread
232 if (thread->attr.sched_policy != SCHED_NORMAL) {
233 struct sched_param param;
234 param.sched_priority = thread->attr.sched_priority;
235 sched_setscheduler(kernel_id, thread->attr.sched_policy, ¶m);
236 }
237
238 pthread_cond_init(&thread->join_cond, NULL);
239 thread->join_count = 0;
240
241 thread->cleanup_stack = NULL;
242 }
243
244
245 /* XXX stacks not reclaimed if thread spawn fails */
246 /* XXX stacks address spaces should be reused if available again */
247
mkstack(size_t size,size_t guard_size)248 static void *mkstack(size_t size, size_t guard_size)
249 {
250 void * stack;
251
252 pthread_mutex_lock(&mmap_lock);
253
254 stack = mmap(NULL, size,
255 PROT_READ | PROT_WRITE,
256 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
257 -1, 0);
258
259 if(stack == MAP_FAILED) {
260 stack = NULL;
261 goto done;
262 }
263
264 if(mprotect(stack, guard_size, PROT_NONE)){
265 munmap(stack, size);
266 stack = NULL;
267 goto done;
268 }
269
270 done:
271 pthread_mutex_unlock(&mmap_lock);
272 return stack;
273 }
274
275 /*
276 * Create a new thread. The thread's stack is laid out like so:
277 *
278 * +---------------------------+
279 * | pthread_internal_t |
280 * +---------------------------+
281 * | |
282 * | TLS area |
283 * | |
284 * +---------------------------+
285 * | |
286 * . .
287 * . stack area .
288 * . .
289 * | |
290 * +---------------------------+
291 * | guard page |
292 * +---------------------------+
293 *
294 * note that TLS[0] must be a pointer to itself, this is required
295 * by the thread-local storage implementation of the x86 Linux
296 * kernel, where the TLS pointer is read by reading fs:[0]
297 */
pthread_create(pthread_t * thread_out,pthread_attr_t const * attr,void * (* start_routine)(void *),void * arg)298 int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
299 void *(*start_routine)(void *), void * arg)
300 {
301 char* stack;
302 void** tls;
303 int tid;
304 pthread_mutex_t * start_mutex;
305 pthread_internal_t * thread;
306 int madestack = 0;
307 int old_errno = errno;
308
309 /* this will inform the rest of the C library that at least one thread
310 * was created. this will enforce certain functions to acquire/release
311 * locks (e.g. atexit()) to protect shared global structures.
312 *
313 * this works because pthread_create() is not called by the C library
314 * initialization routine that sets up the main thread's data structures.
315 */
316 __isthreaded = 1;
317
318 thread = _pthread_internal_alloc();
319 if (thread == NULL)
320 return ENOMEM;
321
322 if (attr == NULL) {
323 attr = &gDefaultPthreadAttr;
324 }
325
326 // make sure the stack is PAGE_SIZE aligned
327 size_t stackSize = (attr->stack_size +
328 (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
329
330 if (!attr->stack_base) {
331 stack = mkstack(stackSize, attr->guard_size);
332 if(stack == NULL) {
333 _pthread_internal_free(thread);
334 return ENOMEM;
335 }
336 madestack = 1;
337 } else {
338 stack = attr->stack_base;
339 }
340
341 // Make room for TLS
342 tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
343
344 // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
345 // it from doing anything until after we notify the debugger about it
346 //
347 // This also provides the memory barrier we need to ensure that all
348 // memory accesses previously performed by this thread are visible to
349 // the new thread.
350 start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
351 pthread_mutex_init(start_mutex, NULL);
352 pthread_mutex_lock(start_mutex);
353
354 tls[TLS_SLOT_THREAD_ID] = thread;
355
356 tid = __pthread_clone((int(*)(void*))start_routine, tls,
357 CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
358 | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
359 arg);
360
361 if(tid < 0) {
362 int result;
363 if (madestack)
364 munmap(stack, stackSize);
365 _pthread_internal_free(thread);
366 result = errno;
367 errno = old_errno;
368 return result;
369 }
370
371 _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
372
373 _pthread_internal_add(thread);
374
375 if (!madestack)
376 thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
377
378 // Notify any debuggers about the new thread
379 pthread_mutex_lock(&gDebuggerNotificationLock);
380 _thread_created_hook(tid);
381 pthread_mutex_unlock(&gDebuggerNotificationLock);
382
383 // Let the thread do it's thing
384 pthread_mutex_unlock(start_mutex);
385
386 *thread_out = (pthread_t)thread;
387 return 0;
388 }
389
390
pthread_attr_init(pthread_attr_t * attr)391 int pthread_attr_init(pthread_attr_t * attr)
392 {
393 *attr = gDefaultPthreadAttr;
394 return 0;
395 }
396
pthread_attr_destroy(pthread_attr_t * attr)397 int pthread_attr_destroy(pthread_attr_t * attr)
398 {
399 memset(attr, 0x42, sizeof(pthread_attr_t));
400 return 0;
401 }
402
pthread_attr_setdetachstate(pthread_attr_t * attr,int state)403 int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
404 {
405 if (state == PTHREAD_CREATE_DETACHED) {
406 attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
407 } else if (state == PTHREAD_CREATE_JOINABLE) {
408 attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
409 } else {
410 return EINVAL;
411 }
412 return 0;
413 }
414
pthread_attr_getdetachstate(pthread_attr_t const * attr,int * state)415 int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
416 {
417 *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
418 ? PTHREAD_CREATE_DETACHED
419 : PTHREAD_CREATE_JOINABLE;
420 return 0;
421 }
422
pthread_attr_setschedpolicy(pthread_attr_t * attr,int policy)423 int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
424 {
425 attr->sched_policy = policy;
426 return 0;
427 }
428
pthread_attr_getschedpolicy(pthread_attr_t const * attr,int * policy)429 int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
430 {
431 *policy = attr->sched_policy;
432 return 0;
433 }
434
pthread_attr_setschedparam(pthread_attr_t * attr,struct sched_param const * param)435 int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
436 {
437 attr->sched_priority = param->sched_priority;
438 return 0;
439 }
440
pthread_attr_getschedparam(pthread_attr_t const * attr,struct sched_param * param)441 int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
442 {
443 param->sched_priority = attr->sched_priority;
444 return 0;
445 }
446
pthread_attr_setstacksize(pthread_attr_t * attr,size_t stack_size)447 int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
448 {
449 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
450 return EINVAL;
451 }
452 attr->stack_size = stack_size;
453 return 0;
454 }
455
pthread_attr_getstacksize(pthread_attr_t const * attr,size_t * stack_size)456 int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
457 {
458 *stack_size = attr->stack_size;
459 return 0;
460 }
461
pthread_attr_setstackaddr(pthread_attr_t * attr,void * stack_addr)462 int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
463 {
464 #if 1
465 // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
466 return ENOSYS;
467 #else
468 if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
469 return EINVAL;
470 }
471 attr->stack_base = stack_addr;
472 return 0;
473 #endif
474 }
475
pthread_attr_getstackaddr(pthread_attr_t const * attr,void ** stack_addr)476 int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
477 {
478 *stack_addr = (char*)attr->stack_base + attr->stack_size;
479 return 0;
480 }
481
pthread_attr_setstack(pthread_attr_t * attr,void * stack_base,size_t stack_size)482 int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
483 {
484 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
485 return EINVAL;
486 }
487 if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
488 return EINVAL;
489 }
490 attr->stack_base = stack_base;
491 attr->stack_size = stack_size;
492 return 0;
493 }
494
pthread_attr_getstack(pthread_attr_t const * attr,void ** stack_base,size_t * stack_size)495 int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
496 {
497 *stack_base = attr->stack_base;
498 *stack_size = attr->stack_size;
499 return 0;
500 }
501
pthread_attr_setguardsize(pthread_attr_t * attr,size_t guard_size)502 int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
503 {
504 if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
505 return EINVAL;
506 }
507
508 attr->guard_size = guard_size;
509 return 0;
510 }
511
pthread_attr_getguardsize(pthread_attr_t const * attr,size_t * guard_size)512 int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
513 {
514 *guard_size = attr->guard_size;
515 return 0;
516 }
517
pthread_getattr_np(pthread_t thid,pthread_attr_t * attr)518 int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
519 {
520 pthread_internal_t * thread = (pthread_internal_t *)thid;
521 *attr = thread->attr;
522 return 0;
523 }
524
pthread_attr_setscope(pthread_attr_t * attr,int scope)525 int pthread_attr_setscope(pthread_attr_t *attr, int scope)
526 {
527 if (scope == PTHREAD_SCOPE_SYSTEM)
528 return 0;
529 if (scope == PTHREAD_SCOPE_PROCESS)
530 return ENOTSUP;
531
532 return EINVAL;
533 }
534
pthread_attr_getscope(pthread_attr_t const * attr)535 int pthread_attr_getscope(pthread_attr_t const *attr)
536 {
537 return PTHREAD_SCOPE_SYSTEM;
538 }
539
540
541 /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
542 * and thread cancelation
543 */
544
__pthread_cleanup_push(__pthread_cleanup_t * c,__pthread_cleanup_func_t routine,void * arg)545 void __pthread_cleanup_push( __pthread_cleanup_t* c,
546 __pthread_cleanup_func_t routine,
547 void* arg )
548 {
549 pthread_internal_t* thread = __get_thread();
550
551 c->__cleanup_routine = routine;
552 c->__cleanup_arg = arg;
553 c->__cleanup_prev = thread->cleanup_stack;
554 thread->cleanup_stack = c;
555 }
556
__pthread_cleanup_pop(__pthread_cleanup_t * c,int execute)557 void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
558 {
559 pthread_internal_t* thread = __get_thread();
560
561 thread->cleanup_stack = c->__cleanup_prev;
562 if (execute)
563 c->__cleanup_routine(c->__cleanup_arg);
564 }
565
566 /* used by pthread_exit() to clean all TLS keys of the current thread */
567 static void pthread_key_clean_all(void);
568
pthread_exit(void * retval)569 void pthread_exit(void * retval)
570 {
571 pthread_internal_t* thread = __get_thread();
572 void* stack_base = thread->attr.stack_base;
573 int stack_size = thread->attr.stack_size;
574 int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
575 sigset_t mask;
576
577 // call the cleanup handlers first
578 while (thread->cleanup_stack) {
579 __pthread_cleanup_t* c = thread->cleanup_stack;
580 thread->cleanup_stack = c->__cleanup_prev;
581 c->__cleanup_routine(c->__cleanup_arg);
582 }
583
584 // call the TLS destructors, it is important to do that before removing this
585 // thread from the global list. this will ensure that if someone else deletes
586 // a TLS key, the corresponding value will be set to NULL in this thread's TLS
587 // space (see pthread_key_delete)
588 pthread_key_clean_all();
589
590 // if the thread is detached, destroy the pthread_internal_t
591 // otherwise, keep it in memory and signal any joiners
592 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
593 _pthread_internal_remove(thread);
594 _pthread_internal_free(thread);
595 } else {
596 /* the join_count field is used to store the number of threads waiting for
597 * the termination of this thread with pthread_join(),
598 *
599 * if it is positive we need to signal the waiters, and we do not touch
600 * the count (it will be decremented by the waiters, the last one will
601 * also remove/free the thread structure
602 *
603 * if it is zero, we set the count value to -1 to indicate that the
604 * thread is in 'zombie' state: it has stopped executing, and its stack
605 * is gone (as well as its TLS area). when another thread calls pthread_join()
606 * on it, it will immediately free the thread and return.
607 */
608 pthread_mutex_lock(&gThreadListLock);
609 thread->return_value = retval;
610 if (thread->join_count > 0) {
611 pthread_cond_broadcast(&thread->join_cond);
612 } else {
613 thread->join_count = -1; /* zombie thread */
614 }
615 pthread_mutex_unlock(&gThreadListLock);
616 }
617
618 sigfillset(&mask);
619 sigdelset(&mask, SIGSEGV);
620 (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
621
622 // destroy the thread stack
623 if (user_stack)
624 _exit_thread((int)retval);
625 else
626 _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
627 }
628
pthread_join(pthread_t thid,void ** ret_val)629 int pthread_join(pthread_t thid, void ** ret_val)
630 {
631 pthread_internal_t* thread = (pthread_internal_t*)thid;
632 int count;
633
634 // check that the thread still exists and is not detached
635 pthread_mutex_lock(&gThreadListLock);
636
637 for (thread = gThreadList; thread != NULL; thread = thread->next)
638 if (thread == (pthread_internal_t*)thid)
639 goto FoundIt;
640
641 pthread_mutex_unlock(&gThreadListLock);
642 return ESRCH;
643
644 FoundIt:
645 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
646 pthread_mutex_unlock(&gThreadListLock);
647 return EINVAL;
648 }
649
650 /* wait for thread death when needed
651 *
652 * if the 'join_count' is negative, this is a 'zombie' thread that
653 * is already dead and without stack/TLS
654 *
655 * otherwise, we need to increment 'join-count' and wait to be signaled
656 */
657 count = thread->join_count;
658 if (count >= 0) {
659 thread->join_count += 1;
660 pthread_cond_wait( &thread->join_cond, &gThreadListLock );
661 count = --thread->join_count;
662 }
663 if (ret_val)
664 *ret_val = thread->return_value;
665
666 /* remove thread descriptor when we're the last joiner or when the
667 * thread was already a zombie.
668 */
669 if (count <= 0) {
670 _pthread_internal_remove_locked(thread);
671 _pthread_internal_free(thread);
672 }
673 pthread_mutex_unlock(&gThreadListLock);
674 return 0;
675 }
676
pthread_detach(pthread_t thid)677 int pthread_detach( pthread_t thid )
678 {
679 pthread_internal_t* thread;
680 int result = 0;
681 int flags;
682
683 pthread_mutex_lock(&gThreadListLock);
684 for (thread = gThreadList; thread != NULL; thread = thread->next)
685 if (thread == (pthread_internal_t*)thid)
686 goto FoundIt;
687
688 result = ESRCH;
689 goto Exit;
690
691 FoundIt:
692 do {
693 flags = thread->attr.flags;
694
695 if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
696 /* thread is not joinable ! */
697 result = EINVAL;
698 goto Exit;
699 }
700 }
701 while ( __bionic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
702 (volatile int*)&thread->attr.flags ) != 0 );
703 Exit:
704 pthread_mutex_unlock(&gThreadListLock);
705 return result;
706 }
707
pthread_self(void)708 pthread_t pthread_self(void)
709 {
710 return (pthread_t)__get_thread();
711 }
712
pthread_equal(pthread_t one,pthread_t two)713 int pthread_equal(pthread_t one, pthread_t two)
714 {
715 return (one == two ? 1 : 0);
716 }
717
pthread_getschedparam(pthread_t thid,int * policy,struct sched_param * param)718 int pthread_getschedparam(pthread_t thid, int * policy,
719 struct sched_param * param)
720 {
721 int old_errno = errno;
722
723 pthread_internal_t * thread = (pthread_internal_t *)thid;
724 int err = sched_getparam(thread->kernel_id, param);
725 if (!err) {
726 *policy = sched_getscheduler(thread->kernel_id);
727 } else {
728 err = errno;
729 errno = old_errno;
730 }
731 return err;
732 }
733
pthread_setschedparam(pthread_t thid,int policy,struct sched_param const * param)734 int pthread_setschedparam(pthread_t thid, int policy,
735 struct sched_param const * param)
736 {
737 pthread_internal_t * thread = (pthread_internal_t *)thid;
738 int old_errno = errno;
739 int ret;
740
741 ret = sched_setscheduler(thread->kernel_id, policy, param);
742 if (ret < 0) {
743 ret = errno;
744 errno = old_errno;
745 }
746 return ret;
747 }
748
749
750 /* a mutex is implemented as a 32-bit integer holding the following fields
751 *
752 * bits: name description
753 * 31-16 tid owner thread's kernel id (recursive and errorcheck only)
754 * 15-14 type mutex type
755 * 13 shared process-shared flag
756 * 12-2 counter counter of recursive mutexes
757 * 1-0 state lock state (0, 1 or 2)
758 */
759
760 /* Convenience macro, creates a mask of 'bits' bits that starts from
761 * the 'shift'-th least significant bit in a 32-bit word.
762 *
763 * Examples: FIELD_MASK(0,4) -> 0xf
764 * FIELD_MASK(16,9) -> 0x1ff0000
765 */
766 #define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift))
767
768 /* This one is used to create a bit pattern from a given field value */
769 #define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift))
770
771 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
772 #define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
773
774 /* Mutex state:
775 *
776 * 0 for unlocked
777 * 1 for locked, no waiters
778 * 2 for locked, maybe waiters
779 */
780 #define MUTEX_STATE_SHIFT 0
781 #define MUTEX_STATE_LEN 2
782
783 #define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
784 #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
785 #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
786
787 #define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
788 #define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
789 #define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
790
791 #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
792 #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
793
794 #define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
795 #define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
796 #define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
797
798 /* return true iff the mutex if locked with no waiters */
799 #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
800
801 /* return true iff the mutex if locked with maybe waiters */
802 #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
803
804 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
805 #define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
806
807 /* Mutex counter:
808 *
809 * We need to check for overflow before incrementing, and we also need to
810 * detect when the counter is 0
811 */
812 #define MUTEX_COUNTER_SHIFT 2
813 #define MUTEX_COUNTER_LEN 11
814 #define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
815
816 #define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
817 #define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
818
819 /* Used to increment the counter directly after overflow has been checked */
820 #define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
821
822 /* Returns true iff the counter is 0 */
823 #define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
824
825 /* Mutex shared bit flag
826 *
827 * This flag is set to indicate that the mutex is shared among processes.
828 * This changes the futex opcode we use for futex wait/wake operations
829 * (non-shared operations are much faster).
830 */
831 #define MUTEX_SHARED_SHIFT 13
832 #define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
833
834 /* Mutex type:
835 *
836 * We support normal, recursive and errorcheck mutexes.
837 *
838 * The constants defined here *cannot* be changed because they must match
839 * the C library ABI which defines the following initialization values in
840 * <pthread.h>:
841 *
842 * __PTHREAD_MUTEX_INIT_VALUE
843 * __PTHREAD_RECURSIVE_MUTEX_VALUE
844 * __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
845 */
846 #define MUTEX_TYPE_SHIFT 14
847 #define MUTEX_TYPE_LEN 2
848 #define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
849
850 #define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
851 #define MUTEX_TYPE_RECURSIVE 1
852 #define MUTEX_TYPE_ERRORCHECK 2
853
854 #define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
855
856 #define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
857 #define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
858 #define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
859
860 /* Mutex owner field:
861 *
862 * This is only used for recursive and errorcheck mutexes. It holds the
863 * kernel TID of the owning thread. Note that this works because the Linux
864 * kernel _only_ uses 16-bit values for thread ids.
865 *
866 * More specifically, it will wrap to 10000 when it reaches over 32768 for
867 * application processes. You can check this by running the following inside
868 * an adb shell session:
869 *
870 OLDPID=$$;
871 while true; do
872 NEWPID=$(sh -c 'echo $$')
873 if [ "$NEWPID" -gt 32768 ]; then
874 echo "AARGH: new PID $NEWPID is too high!"
875 exit 1
876 fi
877 if [ "$NEWPID" -lt "$OLDPID" ]; then
878 echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
879 else
880 echo -n "$NEWPID!"
881 fi
882 OLDPID=$NEWPID
883 done
884
885 * Note that you can run the same example on a desktop Linux system,
886 * the wrapping will also happen at 32768, but will go back to 300 instead.
887 */
888 #define MUTEX_OWNER_SHIFT 16
889 #define MUTEX_OWNER_LEN 16
890
891 #define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
892 #define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
893
894 /* Convenience macros.
895 *
896 * These are used to form or modify the bit pattern of a given mutex value
897 */
898
899
900
901 /* a mutex attribute holds the following fields
902 *
903 * bits: name description
904 * 0-3 type type of mutex
905 * 4 shared process-shared flag
906 */
907 #define MUTEXATTR_TYPE_MASK 0x000f
908 #define MUTEXATTR_SHARED_MASK 0x0010
909
910
pthread_mutexattr_init(pthread_mutexattr_t * attr)911 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
912 {
913 if (attr) {
914 *attr = PTHREAD_MUTEX_DEFAULT;
915 return 0;
916 } else {
917 return EINVAL;
918 }
919 }
920
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)921 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
922 {
923 if (attr) {
924 *attr = -1;
925 return 0;
926 } else {
927 return EINVAL;
928 }
929 }
930
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type)931 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
932 {
933 if (attr) {
934 int atype = (*attr & MUTEXATTR_TYPE_MASK);
935
936 if (atype >= PTHREAD_MUTEX_NORMAL &&
937 atype <= PTHREAD_MUTEX_ERRORCHECK) {
938 *type = atype;
939 return 0;
940 }
941 }
942 return EINVAL;
943 }
944
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)945 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
946 {
947 if (attr && type >= PTHREAD_MUTEX_NORMAL &&
948 type <= PTHREAD_MUTEX_ERRORCHECK ) {
949 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
950 return 0;
951 }
952 return EINVAL;
953 }
954
955 /* process-shared mutexes are not supported at the moment */
956
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)957 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
958 {
959 if (!attr)
960 return EINVAL;
961
962 switch (pshared) {
963 case PTHREAD_PROCESS_PRIVATE:
964 *attr &= ~MUTEXATTR_SHARED_MASK;
965 return 0;
966
967 case PTHREAD_PROCESS_SHARED:
968 /* our current implementation of pthread actually supports shared
969 * mutexes but won't cleanup if a process dies with the mutex held.
970 * Nevertheless, it's better than nothing. Shared mutexes are used
971 * by surfaceflinger and audioflinger.
972 */
973 *attr |= MUTEXATTR_SHARED_MASK;
974 return 0;
975 }
976 return EINVAL;
977 }
978
pthread_mutexattr_getpshared(pthread_mutexattr_t * attr,int * pshared)979 int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
980 {
981 if (!attr || !pshared)
982 return EINVAL;
983
984 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
985 : PTHREAD_PROCESS_PRIVATE;
986 return 0;
987 }
988
pthread_mutex_init(pthread_mutex_t * mutex,const pthread_mutexattr_t * attr)989 int pthread_mutex_init(pthread_mutex_t *mutex,
990 const pthread_mutexattr_t *attr)
991 {
992 int value = 0;
993
994 if (mutex == NULL)
995 return EINVAL;
996
997 if (__likely(attr == NULL)) {
998 mutex->value = MUTEX_TYPE_BITS_NORMAL;
999 return 0;
1000 }
1001
1002 if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
1003 value |= MUTEX_SHARED_MASK;
1004
1005 switch (*attr & MUTEXATTR_TYPE_MASK) {
1006 case PTHREAD_MUTEX_NORMAL:
1007 value |= MUTEX_TYPE_BITS_NORMAL;
1008 break;
1009 case PTHREAD_MUTEX_RECURSIVE:
1010 value |= MUTEX_TYPE_BITS_RECURSIVE;
1011 break;
1012 case PTHREAD_MUTEX_ERRORCHECK:
1013 value |= MUTEX_TYPE_BITS_ERRORCHECK;
1014 break;
1015 default:
1016 return EINVAL;
1017 }
1018
1019 mutex->value = value;
1020 return 0;
1021 }
1022
1023
1024 /*
1025 * Lock a non-recursive mutex.
1026 *
1027 * As noted above, there are three states:
1028 * 0 (unlocked, no contention)
1029 * 1 (locked, no contention)
1030 * 2 (locked, contention)
1031 *
1032 * Non-recursive mutexes don't use the thread-id or counter fields, and the
1033 * "type" value is zero, so the only bits that will be set are the ones in
1034 * the lock state field.
1035 */
1036 static __inline__ void
_normal_lock(pthread_mutex_t * mutex,int shared)1037 _normal_lock(pthread_mutex_t* mutex, int shared)
1038 {
1039 /* convenience shortcuts */
1040 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
1041 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1042 /*
1043 * The common case is an unlocked mutex, so we begin by trying to
1044 * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
1045 * __bionic_cmpxchg() returns 0 if it made the swap successfully.
1046 * If the result is nonzero, this lock is already held by another thread.
1047 */
1048 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
1049 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1050 /*
1051 * We want to go to sleep until the mutex is available, which
1052 * requires promoting it to state 2 (CONTENDED). We need to
1053 * swap in the new state value and then wait until somebody wakes us up.
1054 *
1055 * __bionic_swap() returns the previous value. We swap 2 in and
1056 * see if we got zero back; if so, we have acquired the lock. If
1057 * not, another thread still holds the lock and we wait again.
1058 *
1059 * The second argument to the __futex_wait() call is compared
1060 * against the current value. If it doesn't match, __futex_wait()
1061 * returns immediately (otherwise, it sleeps for a time specified
1062 * by the third argument; 0 means sleep forever). This ensures
1063 * that the mutex is in state 2 when we go to sleep on it, which
1064 * guarantees a wake-up call.
1065 */
1066 while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
1067 __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
1068 }
1069 ANDROID_MEMBAR_FULL();
1070 }
1071
1072 /*
1073 * Release a non-recursive mutex. The caller is responsible for determining
1074 * that we are in fact the owner of this lock.
1075 */
1076 static __inline__ void
_normal_unlock(pthread_mutex_t * mutex,int shared)1077 _normal_unlock(pthread_mutex_t* mutex, int shared)
1078 {
1079 ANDROID_MEMBAR_FULL();
1080
1081 /*
1082 * The mutex state will be 1 or (rarely) 2. We use an atomic decrement
1083 * to release the lock. __bionic_atomic_dec() returns the previous value;
1084 * if it wasn't 1 we have to do some additional work.
1085 */
1086 if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
1087 /*
1088 * Start by releasing the lock. The decrement changed it from
1089 * "contended lock" to "uncontended lock", which means we still
1090 * hold it, and anybody who tries to sneak in will push it back
1091 * to state 2.
1092 *
1093 * Once we set it to zero the lock is up for grabs. We follow
1094 * this with a __futex_wake() to ensure that one of the waiting
1095 * threads has a chance to grab it.
1096 *
1097 * This doesn't cause a race with the swap/wait pair in
1098 * _normal_lock(), because the __futex_wait() call there will
1099 * return immediately if the mutex value isn't 2.
1100 */
1101 mutex->value = shared;
1102
1103 /*
1104 * Wake up one waiting thread. We don't know which thread will be
1105 * woken or when it'll start executing -- futexes make no guarantees
1106 * here. There may not even be a thread waiting.
1107 *
1108 * The newly-woken thread will replace the 0 we just set above
1109 * with 2, which means that when it eventually releases the mutex
1110 * it will also call FUTEX_WAKE. This results in one extra wake
1111 * call whenever a lock is contended, but lets us avoid forgetting
1112 * anyone without requiring us to track the number of sleepers.
1113 *
1114 * It's possible for another thread to sneak in and grab the lock
1115 * between the zero assignment above and the wake call below. If
1116 * the new thread is "slow" and holds the lock for a while, we'll
1117 * wake up a sleeper, which will swap in a 2 and then go back to
1118 * sleep since the lock is still held. If the new thread is "fast",
1119 * running to completion before we call wake, the thread we
1120 * eventually wake will find an unlocked mutex and will execute.
1121 * Either way we have correct behavior and nobody is orphaned on
1122 * the wait queue.
1123 */
1124 __futex_wake_ex(&mutex->value, shared, 1);
1125 }
1126 }
1127
1128 /* This common inlined function is used to increment the counter of an
1129 * errorcheck or recursive mutex.
1130 *
1131 * For errorcheck mutexes, it will return EDEADLK
1132 * If the counter overflows, it will return EAGAIN
1133 * Otherwise, it atomically increments the counter and returns 0
1134 * after providing an acquire barrier.
1135 *
1136 * mtype is the current mutex type
1137 * mvalue is the current mutex value (already loaded)
1138 * mutex pointers to the mutex.
1139 */
1140 static __inline__ __attribute__((always_inline)) int
_recursive_increment(pthread_mutex_t * mutex,int mvalue,int mtype)1141 _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
1142 {
1143 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
1144 /* trying to re-lock a mutex we already acquired */
1145 return EDEADLK;
1146 }
1147
1148 /* Detect recursive lock overflow and return EAGAIN.
1149 * This is safe because only the owner thread can modify the
1150 * counter bits in the mutex value.
1151 */
1152 if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
1153 return EAGAIN;
1154 }
1155
1156 /* We own the mutex, but other threads are able to change
1157 * the lower bits (e.g. promoting it to "contended"), so we
1158 * need to use an atomic cmpxchg loop to update the counter.
1159 */
1160 for (;;) {
1161 /* increment counter, overflow was already checked */
1162 int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
1163 if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1164 /* mutex is still locked, not need for a memory barrier */
1165 return 0;
1166 }
1167 /* the value was changed, this happens when another thread changes
1168 * the lower state bits from 1 to 2 to indicate contention. This
1169 * cannot change the counter, so simply reload and try again.
1170 */
1171 mvalue = mutex->value;
1172 }
1173 }
1174
1175 __LIBC_HIDDEN__
pthread_mutex_lock_impl(pthread_mutex_t * mutex)1176 int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
1177 {
1178 int mvalue, mtype, tid, new_lock_type, shared;
1179
1180 if (__unlikely(mutex == NULL))
1181 return EINVAL;
1182
1183 mvalue = mutex->value;
1184 mtype = (mvalue & MUTEX_TYPE_MASK);
1185 shared = (mvalue & MUTEX_SHARED_MASK);
1186
1187 /* Handle normal case first */
1188 if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
1189 _normal_lock(mutex, shared);
1190 return 0;
1191 }
1192
1193 /* Do we already own this recursive or error-check mutex ? */
1194 tid = __get_thread()->kernel_id;
1195 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1196 return _recursive_increment(mutex, mvalue, mtype);
1197
1198 /* Add in shared state to avoid extra 'or' operations below */
1199 mtype |= shared;
1200
1201 /* First, if the mutex is unlocked, try to quickly acquire it.
1202 * In the optimistic case where this works, set the state to 1 to
1203 * indicate locked with no contention */
1204 if (mvalue == mtype) {
1205 int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1206 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
1207 ANDROID_MEMBAR_FULL();
1208 return 0;
1209 }
1210 /* argh, the value changed, reload before entering the loop */
1211 mvalue = mutex->value;
1212 }
1213
1214 for (;;) {
1215 int newval;
1216
1217 /* if the mutex is unlocked, its value should be 'mtype' and
1218 * we try to acquire it by setting its owner and state atomically.
1219 * NOTE: We put the state to 2 since we _know_ there is contention
1220 * when we are in this loop. This ensures all waiters will be
1221 * unlocked.
1222 */
1223 if (mvalue == mtype) {
1224 newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1225 /* TODO: Change this to __bionic_cmpxchg_acquire when we
1226 * implement it to get rid of the explicit memory
1227 * barrier below.
1228 */
1229 if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1230 mvalue = mutex->value;
1231 continue;
1232 }
1233 ANDROID_MEMBAR_FULL();
1234 return 0;
1235 }
1236
1237 /* the mutex is already locked by another thread, if its state is 1
1238 * we will change it to 2 to indicate contention. */
1239 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1240 newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
1241 if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1242 mvalue = mutex->value;
1243 continue;
1244 }
1245 mvalue = newval;
1246 }
1247
1248 /* wait until the mutex is unlocked */
1249 __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
1250
1251 mvalue = mutex->value;
1252 }
1253 /* NOTREACHED */
1254 }
1255
pthread_mutex_lock(pthread_mutex_t * mutex)1256 int pthread_mutex_lock(pthread_mutex_t *mutex)
1257 {
1258 int err = pthread_mutex_lock_impl(mutex);
1259 #ifdef PTHREAD_DEBUG
1260 if (PTHREAD_DEBUG_ENABLED) {
1261 if (!err) {
1262 pthread_debug_mutex_lock_check(mutex);
1263 }
1264 }
1265 #endif
1266 return err;
1267 }
1268
1269 __LIBC_HIDDEN__
pthread_mutex_unlock_impl(pthread_mutex_t * mutex)1270 int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
1271 {
1272 int mvalue, mtype, tid, oldv, shared;
1273
1274 if (__unlikely(mutex == NULL))
1275 return EINVAL;
1276
1277 mvalue = mutex->value;
1278 mtype = (mvalue & MUTEX_TYPE_MASK);
1279 shared = (mvalue & MUTEX_SHARED_MASK);
1280
1281 /* Handle common case first */
1282 if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) {
1283 _normal_unlock(mutex, shared);
1284 return 0;
1285 }
1286
1287 /* Do we already own this recursive or error-check mutex ? */
1288 tid = __get_thread()->kernel_id;
1289 if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
1290 return EPERM;
1291
1292 /* If the counter is > 0, we can simply decrement it atomically.
1293 * Since other threads can mutate the lower state bits (and only the
1294 * lower state bits), use a cmpxchg to do it.
1295 */
1296 if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
1297 for (;;) {
1298 int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
1299 if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1300 /* success: we still own the mutex, so no memory barrier */
1301 return 0;
1302 }
1303 /* the value changed, so reload and loop */
1304 mvalue = mutex->value;
1305 }
1306 }
1307
1308 /* the counter is 0, so we're going to unlock the mutex by resetting
1309 * its value to 'unlocked'. We need to perform a swap in order
1310 * to read the current state, which will be 2 if there are waiters
1311 * to awake.
1312 *
1313 * TODO: Change this to __bionic_swap_release when we implement it
1314 * to get rid of the explicit memory barrier below.
1315 */
1316 ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */
1317 mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
1318
1319 /* Wake one waiting thread, if any */
1320 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1321 __futex_wake_ex(&mutex->value, shared, 1);
1322 }
1323 return 0;
1324 }
1325
pthread_mutex_unlock(pthread_mutex_t * mutex)1326 int pthread_mutex_unlock(pthread_mutex_t *mutex)
1327 {
1328 #ifdef PTHREAD_DEBUG
1329 if (PTHREAD_DEBUG_ENABLED) {
1330 pthread_debug_mutex_unlock_check(mutex);
1331 }
1332 #endif
1333 return pthread_mutex_unlock_impl(mutex);
1334 }
1335
1336 __LIBC_HIDDEN__
pthread_mutex_trylock_impl(pthread_mutex_t * mutex)1337 int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
1338 {
1339 int mvalue, mtype, tid, oldv, shared;
1340
1341 if (__unlikely(mutex == NULL))
1342 return EINVAL;
1343
1344 mvalue = mutex->value;
1345 mtype = (mvalue & MUTEX_TYPE_MASK);
1346 shared = (mvalue & MUTEX_SHARED_MASK);
1347
1348 /* Handle common case first */
1349 if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1350 {
1351 if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
1352 shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
1353 &mutex->value) == 0) {
1354 ANDROID_MEMBAR_FULL();
1355 return 0;
1356 }
1357
1358 return EBUSY;
1359 }
1360
1361 /* Do we already own this recursive or error-check mutex ? */
1362 tid = __get_thread()->kernel_id;
1363 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1364 return _recursive_increment(mutex, mvalue, mtype);
1365
1366 /* Same as pthread_mutex_lock, except that we don't want to wait, and
1367 * the only operation that can succeed is a single cmpxchg to acquire the
1368 * lock if it is released / not owned by anyone. No need for a complex loop.
1369 */
1370 mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
1371 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1372
1373 if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1374 ANDROID_MEMBAR_FULL();
1375 return 0;
1376 }
1377
1378 return EBUSY;
1379 }
1380
pthread_mutex_trylock(pthread_mutex_t * mutex)1381 int pthread_mutex_trylock(pthread_mutex_t *mutex)
1382 {
1383 int err = pthread_mutex_trylock_impl(mutex);
1384 #ifdef PTHREAD_DEBUG
1385 if (PTHREAD_DEBUG_ENABLED) {
1386 if (!err) {
1387 pthread_debug_mutex_lock_check(mutex);
1388 }
1389 }
1390 #endif
1391 return err;
1392 }
1393
1394 /* initialize 'ts' with the difference between 'abstime' and the current time
1395 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1396 */
1397 static int
__timespec_to_absolute(struct timespec * ts,const struct timespec * abstime,clockid_t clock)1398 __timespec_to_absolute(struct timespec* ts, const struct timespec* abstime, clockid_t clock)
1399 {
1400 clock_gettime(clock, ts);
1401 ts->tv_sec = abstime->tv_sec - ts->tv_sec;
1402 ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1403 if (ts->tv_nsec < 0) {
1404 ts->tv_sec--;
1405 ts->tv_nsec += 1000000000;
1406 }
1407 if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1408 return -1;
1409
1410 return 0;
1411 }
1412
1413 /* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1414 * milliseconds.
1415 */
1416 static void
__timespec_to_relative_msec(struct timespec * abstime,unsigned msecs,clockid_t clock)1417 __timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_t clock)
1418 {
1419 clock_gettime(clock, abstime);
1420 abstime->tv_sec += msecs/1000;
1421 abstime->tv_nsec += (msecs%1000)*1000000;
1422 if (abstime->tv_nsec >= 1000000000) {
1423 abstime->tv_sec++;
1424 abstime->tv_nsec -= 1000000000;
1425 }
1426 }
1427
1428 __LIBC_HIDDEN__
pthread_mutex_lock_timeout_np_impl(pthread_mutex_t * mutex,unsigned msecs)1429 int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
1430 {
1431 clockid_t clock = CLOCK_MONOTONIC;
1432 struct timespec abstime;
1433 struct timespec ts;
1434 int mvalue, mtype, tid, oldv, new_lock_type, shared;
1435
1436 /* compute absolute expiration time */
1437 __timespec_to_relative_msec(&abstime, msecs, clock);
1438
1439 if (__unlikely(mutex == NULL))
1440 return EINVAL;
1441
1442 mvalue = mutex->value;
1443 mtype = (mvalue & MUTEX_TYPE_MASK);
1444 shared = (mvalue & MUTEX_SHARED_MASK);
1445
1446 /* Handle common case first */
1447 if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1448 {
1449 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
1450 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1451 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1452
1453 /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
1454 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
1455 ANDROID_MEMBAR_FULL();
1456 return 0;
1457 }
1458
1459 /* loop while needed */
1460 while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
1461 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1462 return EBUSY;
1463
1464 __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
1465 }
1466 ANDROID_MEMBAR_FULL();
1467 return 0;
1468 }
1469
1470 /* Do we already own this recursive or error-check mutex ? */
1471 tid = __get_thread()->kernel_id;
1472 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1473 return _recursive_increment(mutex, mvalue, mtype);
1474
1475 /* the following implements the same loop than pthread_mutex_lock_impl
1476 * but adds checks to ensure that the operation never exceeds the
1477 * absolute expiration time.
1478 */
1479 mtype |= shared;
1480
1481 /* first try a quick lock */
1482 if (mvalue == mtype) {
1483 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1484 if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1485 ANDROID_MEMBAR_FULL();
1486 return 0;
1487 }
1488 mvalue = mutex->value;
1489 }
1490
1491 for (;;) {
1492 struct timespec ts;
1493
1494 /* if the value is 'unlocked', try to acquire it directly */
1495 /* NOTE: put state to 2 since we know there is contention */
1496 if (mvalue == mtype) /* unlocked */ {
1497 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1498 if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
1499 ANDROID_MEMBAR_FULL();
1500 return 0;
1501 }
1502 /* the value changed before we could lock it. We need to check
1503 * the time to avoid livelocks, reload the value, then loop again. */
1504 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1505 return EBUSY;
1506
1507 mvalue = mutex->value;
1508 continue;
1509 }
1510
1511 /* The value is locked. If 'uncontended', try to switch its state
1512 * to 'contented' to ensure we get woken up later. */
1513 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1514 int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
1515 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
1516 /* this failed because the value changed, reload it */
1517 mvalue = mutex->value;
1518 } else {
1519 /* this succeeded, update mvalue */
1520 mvalue = newval;
1521 }
1522 }
1523
1524 /* check time and update 'ts' */
1525 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1526 return EBUSY;
1527
1528 /* Only wait to be woken up if the state is '2', otherwise we'll
1529 * simply loop right now. This can happen when the second cmpxchg
1530 * in our loop failed because the mutex was unlocked by another
1531 * thread.
1532 */
1533 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1534 if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
1535 return EBUSY;
1536 }
1537 mvalue = mutex->value;
1538 }
1539 }
1540 /* NOTREACHED */
1541 }
1542
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex,unsigned msecs)1543 int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1544 {
1545 int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
1546 #ifdef PTHREAD_DEBUG
1547 if (PTHREAD_DEBUG_ENABLED) {
1548 if (!err) {
1549 pthread_debug_mutex_lock_check(mutex);
1550 }
1551 }
1552 #endif
1553 return err;
1554 }
1555
pthread_mutex_destroy(pthread_mutex_t * mutex)1556 int pthread_mutex_destroy(pthread_mutex_t *mutex)
1557 {
1558 int ret;
1559
1560 /* use trylock to ensure that the mutex value is
1561 * valid and is not already locked. */
1562 ret = pthread_mutex_trylock_impl(mutex);
1563 if (ret != 0)
1564 return ret;
1565
1566 mutex->value = 0xdead10cc;
1567 return 0;
1568 }
1569
1570
1571
pthread_condattr_init(pthread_condattr_t * attr)1572 int pthread_condattr_init(pthread_condattr_t *attr)
1573 {
1574 if (attr == NULL)
1575 return EINVAL;
1576
1577 *attr = PTHREAD_PROCESS_PRIVATE;
1578 return 0;
1579 }
1580
pthread_condattr_getpshared(pthread_condattr_t * attr,int * pshared)1581 int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1582 {
1583 if (attr == NULL || pshared == NULL)
1584 return EINVAL;
1585
1586 *pshared = *attr;
1587 return 0;
1588 }
1589
pthread_condattr_setpshared(pthread_condattr_t * attr,int pshared)1590 int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1591 {
1592 if (attr == NULL)
1593 return EINVAL;
1594
1595 if (pshared != PTHREAD_PROCESS_SHARED &&
1596 pshared != PTHREAD_PROCESS_PRIVATE)
1597 return EINVAL;
1598
1599 *attr = pshared;
1600 return 0;
1601 }
1602
pthread_condattr_destroy(pthread_condattr_t * attr)1603 int pthread_condattr_destroy(pthread_condattr_t *attr)
1604 {
1605 if (attr == NULL)
1606 return EINVAL;
1607
1608 *attr = 0xdeada11d;
1609 return 0;
1610 }
1611
1612 /* We use one bit in condition variable values as the 'shared' flag
1613 * The rest is a counter.
1614 */
1615 #define COND_SHARED_MASK 0x0001
1616 #define COND_COUNTER_INCREMENT 0x0002
1617 #define COND_COUNTER_MASK (~COND_SHARED_MASK)
1618
1619 #define COND_IS_SHARED(c) (((c)->value & COND_SHARED_MASK) != 0)
1620
1621 /* XXX *technically* there is a race condition that could allow
1622 * XXX a signal to be missed. If thread A is preempted in _wait()
1623 * XXX after unlocking the mutex and before waiting, and if other
1624 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1625 * XXX before thread A is scheduled again and calls futex_wait(),
1626 * XXX then the signal will be lost.
1627 */
1628
pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t * attr)1629 int pthread_cond_init(pthread_cond_t *cond,
1630 const pthread_condattr_t *attr)
1631 {
1632 if (cond == NULL)
1633 return EINVAL;
1634
1635 cond->value = 0;
1636
1637 if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1638 cond->value |= COND_SHARED_MASK;
1639
1640 return 0;
1641 }
1642
pthread_cond_destroy(pthread_cond_t * cond)1643 int pthread_cond_destroy(pthread_cond_t *cond)
1644 {
1645 if (cond == NULL)
1646 return EINVAL;
1647
1648 cond->value = 0xdeadc04d;
1649 return 0;
1650 }
1651
1652 /* This function is used by pthread_cond_broadcast and
1653 * pthread_cond_signal to atomically decrement the counter
1654 * then wake-up 'counter' threads.
1655 */
1656 static int
__pthread_cond_pulse(pthread_cond_t * cond,int counter)1657 __pthread_cond_pulse(pthread_cond_t *cond, int counter)
1658 {
1659 long flags;
1660
1661 if (__unlikely(cond == NULL))
1662 return EINVAL;
1663
1664 flags = (cond->value & ~COND_COUNTER_MASK);
1665 for (;;) {
1666 long oldval = cond->value;
1667 long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1668 | flags;
1669 if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
1670 break;
1671 }
1672
1673 /*
1674 * Ensure that all memory accesses previously made by this thread are
1675 * visible to the woken thread(s). On the other side, the "wait"
1676 * code will issue any necessary barriers when locking the mutex.
1677 *
1678 * This may not strictly be necessary -- if the caller follows
1679 * recommended practice and holds the mutex before signaling the cond
1680 * var, the mutex ops will provide correct semantics. If they don't
1681 * hold the mutex, they're subject to race conditions anyway.
1682 */
1683 ANDROID_MEMBAR_FULL();
1684
1685 __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1686 return 0;
1687 }
1688
pthread_cond_broadcast(pthread_cond_t * cond)1689 int pthread_cond_broadcast(pthread_cond_t *cond)
1690 {
1691 return __pthread_cond_pulse(cond, INT_MAX);
1692 }
1693
pthread_cond_signal(pthread_cond_t * cond)1694 int pthread_cond_signal(pthread_cond_t *cond)
1695 {
1696 return __pthread_cond_pulse(cond, 1);
1697 }
1698
pthread_cond_wait(pthread_cond_t * cond,pthread_mutex_t * mutex)1699 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1700 {
1701 return pthread_cond_timedwait(cond, mutex, NULL);
1702 }
1703
__pthread_cond_timedwait_relative(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1704 int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1705 pthread_mutex_t * mutex,
1706 const struct timespec *reltime)
1707 {
1708 int status;
1709 int oldvalue = cond->value;
1710
1711 pthread_mutex_unlock(mutex);
1712 status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1713 pthread_mutex_lock(mutex);
1714
1715 if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1716 return 0;
1717 }
1718
__pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime,clockid_t clock)1719 int __pthread_cond_timedwait(pthread_cond_t *cond,
1720 pthread_mutex_t * mutex,
1721 const struct timespec *abstime,
1722 clockid_t clock)
1723 {
1724 struct timespec ts;
1725 struct timespec * tsp;
1726
1727 if (abstime != NULL) {
1728 if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1729 return ETIMEDOUT;
1730 tsp = &ts;
1731 } else {
1732 tsp = NULL;
1733 }
1734
1735 return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1736 }
1737
pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1738 int pthread_cond_timedwait(pthread_cond_t *cond,
1739 pthread_mutex_t * mutex,
1740 const struct timespec *abstime)
1741 {
1742 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1743 }
1744
1745
1746 /* this one exists only for backward binary compatibility */
pthread_cond_timedwait_monotonic(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1747 int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1748 pthread_mutex_t * mutex,
1749 const struct timespec *abstime)
1750 {
1751 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1752 }
1753
pthread_cond_timedwait_monotonic_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1754 int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1755 pthread_mutex_t * mutex,
1756 const struct timespec *abstime)
1757 {
1758 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1759 }
1760
pthread_cond_timedwait_relative_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1761 int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1762 pthread_mutex_t * mutex,
1763 const struct timespec *reltime)
1764 {
1765 return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1766 }
1767
pthread_cond_timeout_np(pthread_cond_t * cond,pthread_mutex_t * mutex,unsigned msecs)1768 int pthread_cond_timeout_np(pthread_cond_t *cond,
1769 pthread_mutex_t * mutex,
1770 unsigned msecs)
1771 {
1772 struct timespec ts;
1773
1774 ts.tv_sec = msecs / 1000;
1775 ts.tv_nsec = (msecs % 1000) * 1000000;
1776
1777 return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1778 }
1779
1780
1781
1782 /* A technical note regarding our thread-local-storage (TLS) implementation:
1783 *
1784 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1785 * though the first TLSMAP_START keys are reserved for Bionic to hold
1786 * special thread-specific variables like errno or a pointer to
1787 * the current thread's descriptor.
1788 *
1789 * while stored in the TLS area, these entries cannot be accessed through
1790 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1791 *
1792 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1793 * to greatly simplify and speedup some OpenGL-related operations. though the
1794 * initialy value will be NULL on all threads.
1795 *
1796 * you can use pthread_getspecific()/setspecific() on these, and in theory
1797 * you could also call pthread_key_delete() as well, though this would
1798 * probably break some apps.
1799 *
1800 * The 'tlsmap_t' type defined below implements a shared global map of
1801 * currently created/allocated TLS keys and the destructors associated
1802 * with them. You should use tlsmap_lock/unlock to access it to avoid
1803 * any race condition.
1804 *
1805 * the global TLS map simply contains a bitmap of allocated keys, and
1806 * an array of destructors.
1807 *
1808 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1809 * pointers. the TLS area of the main thread is stack-allocated in
1810 * __libc_init_common, while the TLS area of other threads is placed at
1811 * the top of their stack in pthread_create.
1812 *
1813 * when pthread_key_create() is called, it finds the first free key in the
1814 * bitmap, then set it to 1, saving the destructor altogether
1815 *
1816 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1817 * and its destructor, and will also clear the key data in the TLS area of
1818 * all created threads. As mandated by Posix, it is the responsability of
1819 * the caller of pthread_key_delete() to properly reclaim the objects that
1820 * were pointed to by these data fields (either before or after the call).
1821 *
1822 */
1823
1824 /* TLS Map implementation
1825 */
1826
1827 #define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
1828 #define TLSMAP_SIZE BIONIC_TLS_SLOTS
1829 #define TLSMAP_BITS 32
1830 #define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1831 #define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
1832 #define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
1833
1834 /* this macro is used to quickly check that a key belongs to a reasonable range */
1835 #define TLSMAP_VALIDATE_KEY(key) \
1836 ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1837
1838 /* the type of tls key destructor functions */
1839 typedef void (*tls_dtor_t)(void*);
1840
1841 typedef struct {
1842 int init; /* see comment in tlsmap_lock() */
1843 uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
1844 tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
1845 } tlsmap_t;
1846
1847 static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1848 static tlsmap_t _tlsmap;
1849
1850 /* lock the global TLS map lock and return a handle to it */
tlsmap_lock(void)1851 static __inline__ tlsmap_t* tlsmap_lock(void)
1852 {
1853 tlsmap_t* m = &_tlsmap;
1854
1855 pthread_mutex_lock(&_tlsmap_lock);
1856 /* we need to initialize the first entry of the 'map' array
1857 * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1858 * when declaring _tlsmap is a bit awkward and is going to
1859 * produce warnings, so do it the first time we use the map
1860 * instead
1861 */
1862 if (__unlikely(!m->init)) {
1863 TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1864 m->init = 1;
1865 }
1866 return m;
1867 }
1868
1869 /* unlock the global TLS map */
tlsmap_unlock(tlsmap_t * m)1870 static __inline__ void tlsmap_unlock(tlsmap_t* m)
1871 {
1872 pthread_mutex_unlock(&_tlsmap_lock);
1873 (void)m; /* a good compiler is a happy compiler */
1874 }
1875
1876 /* test to see wether a key is allocated */
tlsmap_test(tlsmap_t * m,int key)1877 static __inline__ int tlsmap_test(tlsmap_t* m, int key)
1878 {
1879 return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1880 }
1881
1882 /* set the destructor and bit flag on a newly allocated key */
tlsmap_set(tlsmap_t * m,int key,tls_dtor_t dtor)1883 static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
1884 {
1885 TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1886 m->dtors[key] = dtor;
1887 }
1888
1889 /* clear the destructor and bit flag on an existing key */
tlsmap_clear(tlsmap_t * m,int key)1890 static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
1891 {
1892 TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1893 m->dtors[key] = NULL;
1894 }
1895
1896 /* allocate a new TLS key, return -1 if no room left */
tlsmap_alloc(tlsmap_t * m,tls_dtor_t dtor)1897 static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
1898 {
1899 int key;
1900
1901 for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1902 if ( !tlsmap_test(m, key) ) {
1903 tlsmap_set(m, key, dtor);
1904 return key;
1905 }
1906 }
1907 return -1;
1908 }
1909
1910
pthread_key_create(pthread_key_t * key,void (* destructor_function)(void *))1911 int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1912 {
1913 uint32_t err = ENOMEM;
1914 tlsmap_t* map = tlsmap_lock();
1915 int k = tlsmap_alloc(map, destructor_function);
1916
1917 if (k >= 0) {
1918 *key = k;
1919 err = 0;
1920 }
1921 tlsmap_unlock(map);
1922 return err;
1923 }
1924
1925
1926 /* This deletes a pthread_key_t. note that the standard mandates that this does
1927 * not call the destructor of non-NULL key values. Instead, it is the
1928 * responsability of the caller to properly dispose of the corresponding data
1929 * and resources, using any mean it finds suitable.
1930 *
1931 * On the other hand, this function will clear the corresponding key data
1932 * values in all known threads. this prevents later (invalid) calls to
1933 * pthread_getspecific() to receive invalid/stale values.
1934 */
pthread_key_delete(pthread_key_t key)1935 int pthread_key_delete(pthread_key_t key)
1936 {
1937 uint32_t err;
1938 pthread_internal_t* thr;
1939 tlsmap_t* map;
1940
1941 if (!TLSMAP_VALIDATE_KEY(key)) {
1942 return EINVAL;
1943 }
1944
1945 map = tlsmap_lock();
1946
1947 if (!tlsmap_test(map, key)) {
1948 err = EINVAL;
1949 goto err1;
1950 }
1951
1952 /* clear value in all threads */
1953 pthread_mutex_lock(&gThreadListLock);
1954 for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1955 /* avoid zombie threads with a negative 'join_count'. these are really
1956 * already dead and don't have a TLS area anymore.
1957 *
1958 * similarly, it is possible to have thr->tls == NULL for threads that
1959 * were just recently created through pthread_create() but whose
1960 * startup trampoline (__thread_entry) hasn't been run yet by the
1961 * scheduler. so check for this too.
1962 */
1963 if (thr->join_count < 0 || !thr->tls)
1964 continue;
1965
1966 thr->tls[key] = NULL;
1967 }
1968 tlsmap_clear(map, key);
1969
1970 pthread_mutex_unlock(&gThreadListLock);
1971 err = 0;
1972
1973 err1:
1974 tlsmap_unlock(map);
1975 return err;
1976 }
1977
1978
pthread_setspecific(pthread_key_t key,const void * ptr)1979 int pthread_setspecific(pthread_key_t key, const void *ptr)
1980 {
1981 int err = EINVAL;
1982 tlsmap_t* map;
1983
1984 if (TLSMAP_VALIDATE_KEY(key)) {
1985 /* check that we're trying to set data for an allocated key */
1986 map = tlsmap_lock();
1987 if (tlsmap_test(map, key)) {
1988 ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1989 err = 0;
1990 }
1991 tlsmap_unlock(map);
1992 }
1993 return err;
1994 }
1995
pthread_getspecific(pthread_key_t key)1996 void * pthread_getspecific(pthread_key_t key)
1997 {
1998 if (!TLSMAP_VALIDATE_KEY(key)) {
1999 return NULL;
2000 }
2001
2002 /* for performance reason, we do not lock/unlock the global TLS map
2003 * to check that the key is properly allocated. if the key was not
2004 * allocated, the value read from the TLS should always be NULL
2005 * due to pthread_key_delete() clearing the values for all threads.
2006 */
2007 return (void *)(((unsigned *)__get_tls())[key]);
2008 }
2009
2010 /* Posix mandates that this be defined in <limits.h> but we don't have
2011 * it just yet.
2012 */
2013 #ifndef PTHREAD_DESTRUCTOR_ITERATIONS
2014 # define PTHREAD_DESTRUCTOR_ITERATIONS 4
2015 #endif
2016
2017 /* this function is called from pthread_exit() to remove all TLS key data
2018 * from this thread's TLS area. this must call the destructor of all keys
2019 * that have a non-NULL data value (and a non-NULL destructor).
2020 *
2021 * because destructors can do funky things like deleting/creating other
2022 * keys, we need to implement this in a loop
2023 */
pthread_key_clean_all(void)2024 static void pthread_key_clean_all(void)
2025 {
2026 tlsmap_t* map;
2027 void** tls = (void**)__get_tls();
2028 int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
2029
2030 map = tlsmap_lock();
2031
2032 for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
2033 {
2034 int kk, count = 0;
2035
2036 for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
2037 if ( tlsmap_test(map, kk) )
2038 {
2039 void* data = tls[kk];
2040 tls_dtor_t dtor = map->dtors[kk];
2041
2042 if (data != NULL && dtor != NULL)
2043 {
2044 /* we need to clear the key data now, this will prevent the
2045 * destructor (or a later one) from seeing the old value if
2046 * it calls pthread_getspecific() for some odd reason
2047 *
2048 * we do not do this if 'dtor == NULL' just in case another
2049 * destructor function might be responsible for manually
2050 * releasing the corresponding data.
2051 */
2052 tls[kk] = NULL;
2053
2054 /* because the destructor is free to call pthread_key_create
2055 * and/or pthread_key_delete, we need to temporarily unlock
2056 * the TLS map
2057 */
2058 tlsmap_unlock(map);
2059 (*dtor)(data);
2060 map = tlsmap_lock();
2061
2062 count += 1;
2063 }
2064 }
2065 }
2066
2067 /* if we didn't call any destructor, there is no need to check the
2068 * TLS data again
2069 */
2070 if (count == 0)
2071 break;
2072 }
2073 tlsmap_unlock(map);
2074 }
2075
2076 // man says this should be in <linux/unistd.h>, but it isn't
2077 extern int tgkill(int tgid, int tid, int sig);
2078
pthread_kill(pthread_t tid,int sig)2079 int pthread_kill(pthread_t tid, int sig)
2080 {
2081 int ret;
2082 int old_errno = errno;
2083 pthread_internal_t * thread = (pthread_internal_t *)tid;
2084
2085 ret = tgkill(getpid(), thread->kernel_id, sig);
2086 if (ret < 0) {
2087 ret = errno;
2088 errno = old_errno;
2089 }
2090
2091 return ret;
2092 }
2093
2094 /* Despite the fact that our kernel headers define sigset_t explicitly
2095 * as a 32-bit integer, the kernel system call really expects a 64-bit
2096 * bitmap for the signal set, or more exactly an array of two-32-bit
2097 * values (see $KERNEL/arch/$ARCH/include/asm/signal.h for details).
2098 *
2099 * Unfortunately, we cannot fix the sigset_t definition without breaking
2100 * the C library ABI, so perform a little runtime translation here.
2101 */
2102 typedef union {
2103 sigset_t bionic;
2104 uint32_t kernel[2];
2105 } kernel_sigset_t;
2106
2107 /* this is a private syscall stub */
2108 extern int __rt_sigprocmask(int, const kernel_sigset_t *, kernel_sigset_t *, size_t);
2109
pthread_sigmask(int how,const sigset_t * set,sigset_t * oset)2110 int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
2111 {
2112 /* pthread_sigmask must return the error code, but the syscall
2113 * will set errno instead and return 0/-1
2114 */
2115 int ret, old_errno = errno;
2116
2117 /* We must convert *set into a kernel_sigset_t */
2118 kernel_sigset_t in_set, *in_set_ptr;
2119 kernel_sigset_t out_set;
2120
2121 in_set.kernel[0] = in_set.kernel[1] = 0;
2122 out_set.kernel[0] = out_set.kernel[1] = 0;
2123
2124 /* 'in_set_ptr' is the second parameter to __rt_sigprocmask. It must be NULL
2125 * if 'set' is NULL to ensure correct semantics (which in this case would
2126 * be to ignore 'how' and return the current signal set into 'oset'.
2127 */
2128 if (set == NULL) {
2129 in_set_ptr = NULL;
2130 } else {
2131 in_set.bionic = *set;
2132 in_set_ptr = &in_set;
2133 }
2134
2135 ret = __rt_sigprocmask(how, in_set_ptr, &out_set, sizeof(kernel_sigset_t));
2136 if (ret < 0)
2137 ret = errno;
2138
2139 if (oset)
2140 *oset = out_set.bionic;
2141
2142 errno = old_errno;
2143 return ret;
2144 }
2145
2146
pthread_getcpuclockid(pthread_t tid,clockid_t * clockid)2147 int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
2148 {
2149 const int CLOCK_IDTYPE_BITS = 3;
2150 pthread_internal_t* thread = (pthread_internal_t*)tid;
2151
2152 if (!thread)
2153 return ESRCH;
2154
2155 *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
2156 return 0;
2157 }
2158
2159
2160 /* NOTE: this implementation doesn't support a init function that throws a C++ exception
2161 * or calls fork()
2162 */
pthread_once(pthread_once_t * once_control,void (* init_routine)(void))2163 int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
2164 {
2165 static pthread_mutex_t once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
2166 volatile pthread_once_t* ocptr = once_control;
2167 pthread_once_t value;
2168
2169 /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
2170 *
2171 * bit 0 set -> initialization is under way
2172 * bit 1 set -> initialization is complete
2173 */
2174 #define ONCE_INITIALIZING (1 << 0)
2175 #define ONCE_COMPLETED (1 << 1)
2176
2177 /* First check if the once is already initialized. This will be the common
2178 * case and we want to make this as fast as possible. Note that this still
2179 * requires a load_acquire operation here to ensure that all the
2180 * stores performed by the initialization function are observable on
2181 * this CPU after we exit.
2182 */
2183 if (__likely((*ocptr & ONCE_COMPLETED) != 0)) {
2184 ANDROID_MEMBAR_FULL();
2185 return 0;
2186 }
2187
2188 for (;;) {
2189 /* Try to atomically set the INITIALIZING flag.
2190 * This requires a cmpxchg loop, and we may need
2191 * to exit prematurely if we detect that
2192 * COMPLETED is now set.
2193 */
2194 int32_t oldval, newval;
2195
2196 do {
2197 oldval = *ocptr;
2198 if ((oldval & ONCE_COMPLETED) != 0)
2199 break;
2200
2201 newval = oldval | ONCE_INITIALIZING;
2202 } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
2203
2204 if ((oldval & ONCE_COMPLETED) != 0) {
2205 /* We detected that COMPLETED was set while in our loop */
2206 ANDROID_MEMBAR_FULL();
2207 return 0;
2208 }
2209
2210 if ((oldval & ONCE_INITIALIZING) == 0) {
2211 /* We got there first, we can jump out of the loop to
2212 * handle the initialization */
2213 break;
2214 }
2215
2216 /* Another thread is running the initialization and hasn't completed
2217 * yet, so wait for it, then try again. */
2218 __futex_wait_ex(ocptr, 0, oldval, NULL);
2219 }
2220
2221 /* call the initialization function. */
2222 (*init_routine)();
2223
2224 /* Do a store_release indicating that initialization is complete */
2225 ANDROID_MEMBAR_FULL();
2226 *ocptr = ONCE_COMPLETED;
2227
2228 /* Wake up any waiters, if any */
2229 __futex_wake_ex(ocptr, 0, INT_MAX);
2230
2231 return 0;
2232 }
2233
2234 /* This value is not exported by kernel headers, so hardcode it here */
2235 #define MAX_TASK_COMM_LEN 16
2236 #define TASK_COMM_FMT "/proc/self/task/%u/comm"
2237
pthread_setname_np(pthread_t thid,const char * thname)2238 int pthread_setname_np(pthread_t thid, const char *thname)
2239 {
2240 size_t thname_len;
2241 int saved_errno, ret;
2242
2243 if (thid == 0 || thname == NULL)
2244 return EINVAL;
2245
2246 thname_len = strlen(thname);
2247 if (thname_len >= MAX_TASK_COMM_LEN)
2248 return ERANGE;
2249
2250 saved_errno = errno;
2251 if (thid == pthread_self())
2252 {
2253 ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
2254 }
2255 else
2256 {
2257 /* Have to change another thread's name */
2258 pthread_internal_t *thread = (pthread_internal_t *)thid;
2259 char comm_name[sizeof(TASK_COMM_FMT) + 8];
2260 ssize_t n;
2261 int fd;
2262
2263 snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
2264 fd = open(comm_name, O_RDWR);
2265 if (fd == -1)
2266 {
2267 ret = errno;
2268 goto exit;
2269 }
2270 n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
2271 close(fd);
2272
2273 if (n < 0)
2274 ret = errno;
2275 else if ((size_t)n != thname_len)
2276 ret = EIO;
2277 else
2278 ret = 0;
2279 }
2280 exit:
2281 errno = saved_errno;
2282 return ret;
2283 }
2284
2285 /* Return the kernel thread ID for a pthread.
2286 * This is only defined for implementations where pthread <-> kernel is 1:1, which this is.
2287 * Not the same as pthread_getthreadid_np, which is commonly defined to be opaque.
2288 * Internal, not an NDK API.
2289 */
2290
__pthread_gettid(pthread_t thid)2291 pid_t __pthread_gettid(pthread_t thid)
2292 {
2293 pthread_internal_t* thread = (pthread_internal_t*)thid;
2294 return thread->kernel_id;
2295 }
2296
__pthread_settid(pthread_t thid,pid_t tid)2297 int __pthread_settid(pthread_t thid, pid_t tid)
2298 {
2299 if (thid == 0)
2300 return EINVAL;
2301
2302 pthread_internal_t* thread = (pthread_internal_t*)thid;
2303 thread->kernel_id = tid;
2304
2305 return 0;
2306 }
2307