• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if defined(V8_TARGET_ARCH_ARM)
31 
32 #include "bootstrapper.h"
33 #include "code-stubs.h"
34 #include "regexp-macro-assembler.h"
35 
36 namespace v8 {
37 namespace internal {
38 
39 
40 #define __ ACCESS_MASM(masm)
41 
42 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
43                                           Label* slow,
44                                           Condition cond,
45                                           bool never_nan_nan);
46 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
47                                     Register lhs,
48                                     Register rhs,
49                                     Label* lhs_not_nan,
50                                     Label* slow,
51                                     bool strict);
52 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
53 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
54                                            Register lhs,
55                                            Register rhs);
56 
57 
58 // Check if the operand is a heap number.
EmitCheckForHeapNumber(MacroAssembler * masm,Register operand,Register scratch1,Register scratch2,Label * not_a_heap_number)59 static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
60                                    Register scratch1, Register scratch2,
61                                    Label* not_a_heap_number) {
62   __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
63   __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
64   __ cmp(scratch1, scratch2);
65   __ b(ne, not_a_heap_number);
66 }
67 
68 
Generate(MacroAssembler * masm)69 void ToNumberStub::Generate(MacroAssembler* masm) {
70   // The ToNumber stub takes one argument in eax.
71   Label check_heap_number, call_builtin;
72   __ JumpIfNotSmi(r0, &check_heap_number);
73   __ Ret();
74 
75   __ bind(&check_heap_number);
76   EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin);
77   __ Ret();
78 
79   __ bind(&call_builtin);
80   __ push(r0);
81   __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
82 }
83 
84 
Generate(MacroAssembler * masm)85 void FastNewClosureStub::Generate(MacroAssembler* masm) {
86   // Create a new closure from the given function info in new
87   // space. Set the context to the current context in cp.
88   Label gc;
89 
90   // Pop the function info from the stack.
91   __ pop(r3);
92 
93   // Attempt to allocate new JSFunction in new space.
94   __ AllocateInNewSpace(JSFunction::kSize,
95                         r0,
96                         r1,
97                         r2,
98                         &gc,
99                         TAG_OBJECT);
100 
101   int map_index = (language_mode_ == CLASSIC_MODE)
102       ? Context::FUNCTION_MAP_INDEX
103       : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
104 
105   // Compute the function map in the current global context and set that
106   // as the map of the allocated object.
107   __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
108   __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
109   __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index)));
110   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
111 
112   // Initialize the rest of the function. We don't have to update the
113   // write barrier because the allocated object is in new space.
114   __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
115   __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
116   __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
117   __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
118   __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
119   __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
120   __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
121   __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
122   __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
123   __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
124 
125   // Initialize the code pointer in the function to be the one
126   // found in the shared function info object.
127   __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
128   __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
129   __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
130 
131   // Return result. The argument function info has been popped already.
132   __ Ret();
133 
134   // Create a new closure through the slower runtime call.
135   __ bind(&gc);
136   __ LoadRoot(r4, Heap::kFalseValueRootIndex);
137   __ Push(cp, r3, r4);
138   __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
139 }
140 
141 
Generate(MacroAssembler * masm)142 void FastNewContextStub::Generate(MacroAssembler* masm) {
143   // Try to allocate the context in new space.
144   Label gc;
145   int length = slots_ + Context::MIN_CONTEXT_SLOTS;
146 
147   // Attempt to allocate the context in new space.
148   __ AllocateInNewSpace(FixedArray::SizeFor(length),
149                         r0,
150                         r1,
151                         r2,
152                         &gc,
153                         TAG_OBJECT);
154 
155   // Load the function from the stack.
156   __ ldr(r3, MemOperand(sp, 0));
157 
158   // Set up the object header.
159   __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex);
160   __ mov(r2, Operand(Smi::FromInt(length)));
161   __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
162   __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
163 
164   // Set up the fixed slots, copy the global object from the previous context.
165   __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
166   __ mov(r1, Operand(Smi::FromInt(0)));
167   __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
168   __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
169   __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
170   __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
171 
172   // Initialize the rest of the slots to undefined.
173   __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
174   for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
175     __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
176   }
177 
178   // Remove the on-stack argument and return.
179   __ mov(cp, r0);
180   __ pop();
181   __ Ret();
182 
183   // Need to collect. Call into runtime system.
184   __ bind(&gc);
185   __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
186 }
187 
188 
Generate(MacroAssembler * masm)189 void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
190   // Stack layout on entry:
191   //
192   // [sp]: function.
193   // [sp + kPointerSize]: serialized scope info
194 
195   // Try to allocate the context in new space.
196   Label gc;
197   int length = slots_ + Context::MIN_CONTEXT_SLOTS;
198   __ AllocateInNewSpace(FixedArray::SizeFor(length),
199                         r0, r1, r2, &gc, TAG_OBJECT);
200 
201   // Load the function from the stack.
202   __ ldr(r3, MemOperand(sp, 0));
203 
204   // Load the serialized scope info from the stack.
205   __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
206 
207   // Set up the object header.
208   __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
209   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
210   __ mov(r2, Operand(Smi::FromInt(length)));
211   __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
212 
213   // If this block context is nested in the global context we get a smi
214   // sentinel instead of a function. The block context should get the
215   // canonical empty function of the global context as its closure which
216   // we still have to look up.
217   Label after_sentinel;
218   __ JumpIfNotSmi(r3, &after_sentinel);
219   if (FLAG_debug_code) {
220     const char* message = "Expected 0 as a Smi sentinel";
221     __ cmp(r3, Operand::Zero());
222     __ Assert(eq, message);
223   }
224   __ ldr(r3, GlobalObjectOperand());
225   __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalContextOffset));
226   __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
227   __ bind(&after_sentinel);
228 
229   // Set up the fixed slots, copy the global object from the previous context.
230   __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
231   __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
232   __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
233   __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
234   __ str(r2, ContextOperand(r0, Context::GLOBAL_INDEX));
235 
236   // Initialize the rest of the slots to the hole value.
237   __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
238   for (int i = 0; i < slots_; i++) {
239     __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
240   }
241 
242   // Remove the on-stack argument and return.
243   __ mov(cp, r0);
244   __ add(sp, sp, Operand(2 * kPointerSize));
245   __ Ret();
246 
247   // Need to collect. Call into runtime system.
248   __ bind(&gc);
249   __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
250 }
251 
252 
GenerateFastCloneShallowArrayCommon(MacroAssembler * masm,int length,FastCloneShallowArrayStub::Mode mode,Label * fail)253 static void GenerateFastCloneShallowArrayCommon(
254     MacroAssembler* masm,
255     int length,
256     FastCloneShallowArrayStub::Mode mode,
257     Label* fail) {
258   // Registers on entry:
259   //
260   // r3: boilerplate literal array.
261   ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
262 
263   // All sizes here are multiples of kPointerSize.
264   int elements_size = 0;
265   if (length > 0) {
266     elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
267         ? FixedDoubleArray::SizeFor(length)
268         : FixedArray::SizeFor(length);
269   }
270   int size = JSArray::kSize + elements_size;
271 
272   // Allocate both the JS array and the elements array in one big
273   // allocation. This avoids multiple limit checks.
274   __ AllocateInNewSpace(size,
275                         r0,
276                         r1,
277                         r2,
278                         fail,
279                         TAG_OBJECT);
280 
281   // Copy the JS array part.
282   for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
283     if ((i != JSArray::kElementsOffset) || (length == 0)) {
284       __ ldr(r1, FieldMemOperand(r3, i));
285       __ str(r1, FieldMemOperand(r0, i));
286     }
287   }
288 
289   if (length > 0) {
290     // Get hold of the elements array of the boilerplate and setup the
291     // elements pointer in the resulting object.
292     __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
293     __ add(r2, r0, Operand(JSArray::kSize));
294     __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
295 
296     // Copy the elements array.
297     ASSERT((elements_size % kPointerSize) == 0);
298     __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
299   }
300 }
301 
Generate(MacroAssembler * masm)302 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
303   // Stack layout on entry:
304   //
305   // [sp]: constant elements.
306   // [sp + kPointerSize]: literal index.
307   // [sp + (2 * kPointerSize)]: literals array.
308 
309   // Load boilerplate object into r3 and check if we need to create a
310   // boilerplate.
311   Label slow_case;
312   __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
313   __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
314   __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
315   __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
316   __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
317   __ b(eq, &slow_case);
318 
319   FastCloneShallowArrayStub::Mode mode = mode_;
320   if (mode == CLONE_ANY_ELEMENTS) {
321     Label double_elements, check_fast_elements;
322     __ ldr(r0, FieldMemOperand(r3, JSArray::kElementsOffset));
323     __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
324     __ CompareRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
325     __ b(ne, &check_fast_elements);
326     GenerateFastCloneShallowArrayCommon(masm, 0,
327                                         COPY_ON_WRITE_ELEMENTS, &slow_case);
328     // Return and remove the on-stack parameters.
329     __ add(sp, sp, Operand(3 * kPointerSize));
330     __ Ret();
331 
332     __ bind(&check_fast_elements);
333     __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
334     __ b(ne, &double_elements);
335     GenerateFastCloneShallowArrayCommon(masm, length_,
336                                         CLONE_ELEMENTS, &slow_case);
337     // Return and remove the on-stack parameters.
338     __ add(sp, sp, Operand(3 * kPointerSize));
339     __ Ret();
340 
341     __ bind(&double_elements);
342     mode = CLONE_DOUBLE_ELEMENTS;
343     // Fall through to generate the code to handle double elements.
344   }
345 
346   if (FLAG_debug_code) {
347     const char* message;
348     Heap::RootListIndex expected_map_index;
349     if (mode == CLONE_ELEMENTS) {
350       message = "Expected (writable) fixed array";
351       expected_map_index = Heap::kFixedArrayMapRootIndex;
352     } else if (mode == CLONE_DOUBLE_ELEMENTS) {
353       message = "Expected (writable) fixed double array";
354       expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
355     } else {
356       ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
357       message = "Expected copy-on-write fixed array";
358       expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
359     }
360     __ push(r3);
361     __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
362     __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
363     __ CompareRoot(r3, expected_map_index);
364     __ Assert(eq, message);
365     __ pop(r3);
366   }
367 
368   GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
369 
370   // Return and remove the on-stack parameters.
371   __ add(sp, sp, Operand(3 * kPointerSize));
372   __ Ret();
373 
374   __ bind(&slow_case);
375   __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
376 }
377 
378 
Generate(MacroAssembler * masm)379 void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
380   // Stack layout on entry:
381   //
382   // [sp]: object literal flags.
383   // [sp + kPointerSize]: constant properties.
384   // [sp + (2 * kPointerSize)]: literal index.
385   // [sp + (3 * kPointerSize)]: literals array.
386 
387   // Load boilerplate object into r3 and check if we need to create a
388   // boilerplate.
389   Label slow_case;
390   __ ldr(r3, MemOperand(sp, 3 * kPointerSize));
391   __ ldr(r0, MemOperand(sp, 2 * kPointerSize));
392   __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
393   __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
394   __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
395   __ b(eq, &slow_case);
396 
397   // Check that the boilerplate contains only fast properties and we can
398   // statically determine the instance size.
399   int size = JSObject::kHeaderSize + length_ * kPointerSize;
400   __ ldr(r0, FieldMemOperand(r3, HeapObject::kMapOffset));
401   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceSizeOffset));
402   __ cmp(r0, Operand(size >> kPointerSizeLog2));
403   __ b(ne, &slow_case);
404 
405   // Allocate the JS object and copy header together with all in-object
406   // properties from the boilerplate.
407   __ AllocateInNewSpace(size, r0, r1, r2, &slow_case, TAG_OBJECT);
408   for (int i = 0; i < size; i += kPointerSize) {
409     __ ldr(r1, FieldMemOperand(r3, i));
410     __ str(r1, FieldMemOperand(r0, i));
411   }
412 
413   // Return and remove the on-stack parameters.
414   __ add(sp, sp, Operand(4 * kPointerSize));
415   __ Ret();
416 
417   __ bind(&slow_case);
418   __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
419 }
420 
421 
422 // Takes a Smi and converts to an IEEE 64 bit floating point value in two
423 // registers.  The format is 1 sign bit, 11 exponent bits (biased 1023) and
424 // 52 fraction bits (20 in the first word, 32 in the second).  Zeros is a
425 // scratch register.  Destroys the source register.  No GC occurs during this
426 // stub so you don't have to set up the frame.
427 class ConvertToDoubleStub : public CodeStub {
428  public:
ConvertToDoubleStub(Register result_reg_1,Register result_reg_2,Register source_reg,Register scratch_reg)429   ConvertToDoubleStub(Register result_reg_1,
430                       Register result_reg_2,
431                       Register source_reg,
432                       Register scratch_reg)
433       : result1_(result_reg_1),
434         result2_(result_reg_2),
435         source_(source_reg),
436         zeros_(scratch_reg) { }
437 
438  private:
439   Register result1_;
440   Register result2_;
441   Register source_;
442   Register zeros_;
443 
444   // Minor key encoding in 16 bits.
445   class ModeBits: public BitField<OverwriteMode, 0, 2> {};
446   class OpBits: public BitField<Token::Value, 2, 14> {};
447 
MajorKey()448   Major MajorKey() { return ConvertToDouble; }
MinorKey()449   int MinorKey() {
450     // Encode the parameters in a unique 16 bit value.
451     return  result1_.code() +
452            (result2_.code() << 4) +
453            (source_.code() << 8) +
454            (zeros_.code() << 12);
455   }
456 
457   void Generate(MacroAssembler* masm);
458 };
459 
460 
Generate(MacroAssembler * masm)461 void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
462   Register exponent = result1_;
463   Register mantissa = result2_;
464 
465   Label not_special;
466   // Convert from Smi to integer.
467   __ mov(source_, Operand(source_, ASR, kSmiTagSize));
468   // Move sign bit from source to destination.  This works because the sign bit
469   // in the exponent word of the double has the same position and polarity as
470   // the 2's complement sign bit in a Smi.
471   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
472   __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
473   // Subtract from 0 if source was negative.
474   __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
475 
476   // We have -1, 0 or 1, which we treat specially. Register source_ contains
477   // absolute value: it is either equal to 1 (special case of -1 and 1),
478   // greater than 1 (not a special case) or less than 1 (special case of 0).
479   __ cmp(source_, Operand(1));
480   __ b(gt, &not_special);
481 
482   // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
483   const uint32_t exponent_word_for_1 =
484       HeapNumber::kExponentBias << HeapNumber::kExponentShift;
485   __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
486   // 1, 0 and -1 all have 0 for the second word.
487   __ mov(mantissa, Operand(0, RelocInfo::NONE));
488   __ Ret();
489 
490   __ bind(&not_special);
491   // Count leading zeros.  Uses mantissa for a scratch register on pre-ARM5.
492   // Gets the wrong answer for 0, but we already checked for that case above.
493   __ CountLeadingZeros(zeros_, source_, mantissa);
494   // Compute exponent and or it into the exponent register.
495   // We use mantissa as a scratch register here.  Use a fudge factor to
496   // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
497   // that fit in the ARM's constant field.
498   int fudge = 0x400;
499   __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
500   __ add(mantissa, mantissa, Operand(fudge));
501   __ orr(exponent,
502          exponent,
503          Operand(mantissa, LSL, HeapNumber::kExponentShift));
504   // Shift up the source chopping the top bit off.
505   __ add(zeros_, zeros_, Operand(1));
506   // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
507   __ mov(source_, Operand(source_, LSL, zeros_));
508   // Compute lower part of fraction (last 12 bits).
509   __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
510   // And the top (top 20 bits).
511   __ orr(exponent,
512          exponent,
513          Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
514   __ Ret();
515 }
516 
517 
LoadSmis(MacroAssembler * masm,FloatingPointHelper::Destination destination,Register scratch1,Register scratch2)518 void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
519                                    FloatingPointHelper::Destination destination,
520                                    Register scratch1,
521                                    Register scratch2) {
522   if (CpuFeatures::IsSupported(VFP3)) {
523     CpuFeatures::Scope scope(VFP3);
524     __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
525     __ vmov(d7.high(), scratch1);
526     __ vcvt_f64_s32(d7, d7.high());
527     __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
528     __ vmov(d6.high(), scratch1);
529     __ vcvt_f64_s32(d6, d6.high());
530     if (destination == kCoreRegisters) {
531       __ vmov(r2, r3, d7);
532       __ vmov(r0, r1, d6);
533     }
534   } else {
535     ASSERT(destination == kCoreRegisters);
536     // Write Smi from r0 to r3 and r2 in double format.
537     __ mov(scratch1, Operand(r0));
538     ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
539     __ push(lr);
540     __ Call(stub1.GetCode());
541     // Write Smi from r1 to r1 and r0 in double format.
542     __ mov(scratch1, Operand(r1));
543     ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
544     __ Call(stub2.GetCode());
545     __ pop(lr);
546   }
547 }
548 
549 
LoadOperands(MacroAssembler * masm,FloatingPointHelper::Destination destination,Register heap_number_map,Register scratch1,Register scratch2,Label * slow)550 void FloatingPointHelper::LoadOperands(
551     MacroAssembler* masm,
552     FloatingPointHelper::Destination destination,
553     Register heap_number_map,
554     Register scratch1,
555     Register scratch2,
556     Label* slow) {
557 
558   // Load right operand (r0) to d6 or r2/r3.
559   LoadNumber(masm, destination,
560              r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
561 
562   // Load left operand (r1) to d7 or r0/r1.
563   LoadNumber(masm, destination,
564              r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
565 }
566 
567 
LoadNumber(MacroAssembler * masm,Destination destination,Register object,DwVfpRegister dst,Register dst1,Register dst2,Register heap_number_map,Register scratch1,Register scratch2,Label * not_number)568 void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
569                                      Destination destination,
570                                      Register object,
571                                      DwVfpRegister dst,
572                                      Register dst1,
573                                      Register dst2,
574                                      Register heap_number_map,
575                                      Register scratch1,
576                                      Register scratch2,
577                                      Label* not_number) {
578   if (FLAG_debug_code) {
579     __ AbortIfNotRootValue(heap_number_map,
580                            Heap::kHeapNumberMapRootIndex,
581                            "HeapNumberMap register clobbered.");
582   }
583 
584   Label is_smi, done;
585 
586   // Smi-check
587   __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
588   // Heap number check
589   __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
590 
591   // Handle loading a double from a heap number.
592   if (CpuFeatures::IsSupported(VFP3) &&
593       destination == kVFPRegisters) {
594     CpuFeatures::Scope scope(VFP3);
595     // Load the double from tagged HeapNumber to double register.
596     __ sub(scratch1, object, Operand(kHeapObjectTag));
597     __ vldr(dst, scratch1, HeapNumber::kValueOffset);
598   } else {
599     ASSERT(destination == kCoreRegisters);
600     // Load the double from heap number to dst1 and dst2 in double format.
601     __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
602   }
603   __ jmp(&done);
604 
605   // Handle loading a double from a smi.
606   __ bind(&is_smi);
607   if (CpuFeatures::IsSupported(VFP3)) {
608     CpuFeatures::Scope scope(VFP3);
609     // Convert smi to double using VFP instructions.
610     __ vmov(dst.high(), scratch1);
611     __ vcvt_f64_s32(dst, dst.high());
612     if (destination == kCoreRegisters) {
613       // Load the converted smi to dst1 and dst2 in double format.
614       __ vmov(dst1, dst2, dst);
615     }
616   } else {
617     ASSERT(destination == kCoreRegisters);
618     // Write smi to dst1 and dst2 double format.
619     __ mov(scratch1, Operand(object));
620     ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
621     __ push(lr);
622     __ Call(stub.GetCode());
623     __ pop(lr);
624   }
625 
626   __ bind(&done);
627 }
628 
629 
ConvertNumberToInt32(MacroAssembler * masm,Register object,Register dst,Register heap_number_map,Register scratch1,Register scratch2,Register scratch3,DwVfpRegister double_scratch,Label * not_number)630 void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
631                                                Register object,
632                                                Register dst,
633                                                Register heap_number_map,
634                                                Register scratch1,
635                                                Register scratch2,
636                                                Register scratch3,
637                                                DwVfpRegister double_scratch,
638                                                Label* not_number) {
639   if (FLAG_debug_code) {
640     __ AbortIfNotRootValue(heap_number_map,
641                            Heap::kHeapNumberMapRootIndex,
642                            "HeapNumberMap register clobbered.");
643   }
644   Label done;
645   Label not_in_int32_range;
646 
647   __ UntagAndJumpIfSmi(dst, object, &done);
648   __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
649   __ cmp(scratch1, heap_number_map);
650   __ b(ne, not_number);
651   __ ConvertToInt32(object,
652                     dst,
653                     scratch1,
654                     scratch2,
655                     double_scratch,
656                     &not_in_int32_range);
657   __ jmp(&done);
658 
659   __ bind(&not_in_int32_range);
660   __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
661   __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
662 
663   __ EmitOutOfInt32RangeTruncate(dst,
664                                  scratch1,
665                                  scratch2,
666                                  scratch3);
667   __ bind(&done);
668 }
669 
670 
ConvertIntToDouble(MacroAssembler * masm,Register int_scratch,Destination destination,DwVfpRegister double_dst,Register dst1,Register dst2,Register scratch2,SwVfpRegister single_scratch)671 void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
672                                              Register int_scratch,
673                                              Destination destination,
674                                              DwVfpRegister double_dst,
675                                              Register dst1,
676                                              Register dst2,
677                                              Register scratch2,
678                                              SwVfpRegister single_scratch) {
679   ASSERT(!int_scratch.is(scratch2));
680   ASSERT(!int_scratch.is(dst1));
681   ASSERT(!int_scratch.is(dst2));
682 
683   Label done;
684 
685   if (CpuFeatures::IsSupported(VFP3)) {
686     CpuFeatures::Scope scope(VFP3);
687     __ vmov(single_scratch, int_scratch);
688     __ vcvt_f64_s32(double_dst, single_scratch);
689     if (destination == kCoreRegisters) {
690       __ vmov(dst1, dst2, double_dst);
691     }
692   } else {
693     Label fewer_than_20_useful_bits;
694     // Expected output:
695     // |         dst2            |         dst1            |
696     // | s |   exp   |              mantissa               |
697 
698     // Check for zero.
699     __ cmp(int_scratch, Operand::Zero());
700     __ mov(dst2, int_scratch);
701     __ mov(dst1, int_scratch);
702     __ b(eq, &done);
703 
704     // Preload the sign of the value.
705     __ and_(dst2, int_scratch, Operand(HeapNumber::kSignMask), SetCC);
706     // Get the absolute value of the object (as an unsigned integer).
707     __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi);
708 
709     // Get mantissa[51:20].
710 
711     // Get the position of the first set bit.
712     __ CountLeadingZeros(dst1, int_scratch, scratch2);
713     __ rsb(dst1, dst1, Operand(31));
714 
715     // Set the exponent.
716     __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias));
717     __ Bfi(dst2, scratch2, scratch2,
718         HeapNumber::kExponentShift, HeapNumber::kExponentBits);
719 
720     // Clear the first non null bit.
721     __ mov(scratch2, Operand(1));
722     __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst1));
723 
724     __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
725     // Get the number of bits to set in the lower part of the mantissa.
726     __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
727     __ b(mi, &fewer_than_20_useful_bits);
728     // Set the higher 20 bits of the mantissa.
729     __ orr(dst2, dst2, Operand(int_scratch, LSR, scratch2));
730     __ rsb(scratch2, scratch2, Operand(32));
731     __ mov(dst1, Operand(int_scratch, LSL, scratch2));
732     __ b(&done);
733 
734     __ bind(&fewer_than_20_useful_bits);
735     __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
736     __ mov(scratch2, Operand(int_scratch, LSL, scratch2));
737     __ orr(dst2, dst2, scratch2);
738     // Set dst1 to 0.
739     __ mov(dst1, Operand::Zero());
740   }
741   __ bind(&done);
742 }
743 
744 
LoadNumberAsInt32Double(MacroAssembler * masm,Register object,Destination destination,DwVfpRegister double_dst,Register dst1,Register dst2,Register heap_number_map,Register scratch1,Register scratch2,SwVfpRegister single_scratch,Label * not_int32)745 void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
746                                                   Register object,
747                                                   Destination destination,
748                                                   DwVfpRegister double_dst,
749                                                   Register dst1,
750                                                   Register dst2,
751                                                   Register heap_number_map,
752                                                   Register scratch1,
753                                                   Register scratch2,
754                                                   SwVfpRegister single_scratch,
755                                                   Label* not_int32) {
756   ASSERT(!scratch1.is(object) && !scratch2.is(object));
757   ASSERT(!scratch1.is(scratch2));
758   ASSERT(!heap_number_map.is(object) &&
759          !heap_number_map.is(scratch1) &&
760          !heap_number_map.is(scratch2));
761 
762   Label done, obj_is_not_smi;
763 
764   __ JumpIfNotSmi(object, &obj_is_not_smi);
765   __ SmiUntag(scratch1, object);
766   ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
767                      scratch2, single_scratch);
768   __ b(&done);
769 
770   __ bind(&obj_is_not_smi);
771   if (FLAG_debug_code) {
772     __ AbortIfNotRootValue(heap_number_map,
773                            Heap::kHeapNumberMapRootIndex,
774                            "HeapNumberMap register clobbered.");
775   }
776   __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
777 
778   // Load the number.
779   if (CpuFeatures::IsSupported(VFP3)) {
780     CpuFeatures::Scope scope(VFP3);
781     // Load the double value.
782     __ sub(scratch1, object, Operand(kHeapObjectTag));
783     __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
784 
785     __ EmitVFPTruncate(kRoundToZero,
786                        single_scratch,
787                        double_dst,
788                        scratch1,
789                        scratch2,
790                        kCheckForInexactConversion);
791 
792     // Jump to not_int32 if the operation did not succeed.
793     __ b(ne, not_int32);
794 
795     if (destination == kCoreRegisters) {
796       __ vmov(dst1, dst2, double_dst);
797     }
798 
799   } else {
800     ASSERT(!scratch1.is(object) && !scratch2.is(object));
801     // Load the double value in the destination registers..
802     __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
803 
804     // Check for 0 and -0.
805     __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
806     __ orr(scratch1, scratch1, Operand(dst2));
807     __ cmp(scratch1, Operand::Zero());
808     __ b(eq, &done);
809 
810     // Check that the value can be exactly represented by a 32-bit integer.
811     // Jump to not_int32 if that's not the case.
812     DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
813 
814     // dst1 and dst2 were trashed. Reload the double value.
815     __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
816   }
817 
818   __ bind(&done);
819 }
820 
821 
LoadNumberAsInt32(MacroAssembler * masm,Register object,Register dst,Register heap_number_map,Register scratch1,Register scratch2,Register scratch3,DwVfpRegister double_scratch,Label * not_int32)822 void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
823                                             Register object,
824                                             Register dst,
825                                             Register heap_number_map,
826                                             Register scratch1,
827                                             Register scratch2,
828                                             Register scratch3,
829                                             DwVfpRegister double_scratch,
830                                             Label* not_int32) {
831   ASSERT(!dst.is(object));
832   ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
833   ASSERT(!scratch1.is(scratch2) &&
834          !scratch1.is(scratch3) &&
835          !scratch2.is(scratch3));
836 
837   Label done;
838 
839   __ UntagAndJumpIfSmi(dst, object, &done);
840 
841   if (FLAG_debug_code) {
842     __ AbortIfNotRootValue(heap_number_map,
843                            Heap::kHeapNumberMapRootIndex,
844                            "HeapNumberMap register clobbered.");
845   }
846   __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
847 
848   // Object is a heap number.
849   // Convert the floating point value to a 32-bit integer.
850   if (CpuFeatures::IsSupported(VFP3)) {
851     CpuFeatures::Scope scope(VFP3);
852     SwVfpRegister single_scratch = double_scratch.low();
853     // Load the double value.
854     __ sub(scratch1, object, Operand(kHeapObjectTag));
855     __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
856 
857     __ EmitVFPTruncate(kRoundToZero,
858                        single_scratch,
859                        double_scratch,
860                        scratch1,
861                        scratch2,
862                        kCheckForInexactConversion);
863 
864     // Jump to not_int32 if the operation did not succeed.
865     __ b(ne, not_int32);
866     // Get the result in the destination register.
867     __ vmov(dst, single_scratch);
868 
869   } else {
870     // Load the double value in the destination registers.
871     __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
872     __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
873 
874     // Check for 0 and -0.
875     __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
876     __ orr(dst, scratch2, Operand(dst));
877     __ cmp(dst, Operand::Zero());
878     __ b(eq, &done);
879 
880     DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
881 
882     // Registers state after DoubleIs32BitInteger.
883     // dst: mantissa[51:20].
884     // scratch2: 1
885 
886     // Shift back the higher bits of the mantissa.
887     __ mov(dst, Operand(dst, LSR, scratch3));
888     // Set the implicit first bit.
889     __ rsb(scratch3, scratch3, Operand(32));
890     __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
891     // Set the sign.
892     __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
893     __ tst(scratch1, Operand(HeapNumber::kSignMask));
894     __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi);
895   }
896 
897   __ bind(&done);
898 }
899 
900 
DoubleIs32BitInteger(MacroAssembler * masm,Register src1,Register src2,Register dst,Register scratch,Label * not_int32)901 void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
902                                                Register src1,
903                                                Register src2,
904                                                Register dst,
905                                                Register scratch,
906                                                Label* not_int32) {
907   // Get exponent alone in scratch.
908   __ Ubfx(scratch,
909           src1,
910           HeapNumber::kExponentShift,
911           HeapNumber::kExponentBits);
912 
913   // Substract the bias from the exponent.
914   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
915 
916   // src1: higher (exponent) part of the double value.
917   // src2: lower (mantissa) part of the double value.
918   // scratch: unbiased exponent.
919 
920   // Fast cases. Check for obvious non 32-bit integer values.
921   // Negative exponent cannot yield 32-bit integers.
922   __ b(mi, not_int32);
923   // Exponent greater than 31 cannot yield 32-bit integers.
924   // Also, a positive value with an exponent equal to 31 is outside of the
925   // signed 32-bit integer range.
926   // Another way to put it is that if (exponent - signbit) > 30 then the
927   // number cannot be represented as an int32.
928   Register tmp = dst;
929   __ sub(tmp, scratch, Operand(src1, LSR, 31));
930   __ cmp(tmp, Operand(30));
931   __ b(gt, not_int32);
932   // - Bits [21:0] in the mantissa are not null.
933   __ tst(src2, Operand(0x3fffff));
934   __ b(ne, not_int32);
935 
936   // Otherwise the exponent needs to be big enough to shift left all the
937   // non zero bits left. So we need the (30 - exponent) last bits of the
938   // 31 higher bits of the mantissa to be null.
939   // Because bits [21:0] are null, we can check instead that the
940   // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
941 
942   // Get the 32 higher bits of the mantissa in dst.
943   __ Ubfx(dst,
944           src2,
945           HeapNumber::kMantissaBitsInTopWord,
946           32 - HeapNumber::kMantissaBitsInTopWord);
947   __ orr(dst,
948          dst,
949          Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
950 
951   // Create the mask and test the lower bits (of the higher bits).
952   __ rsb(scratch, scratch, Operand(32));
953   __ mov(src2, Operand(1));
954   __ mov(src1, Operand(src2, LSL, scratch));
955   __ sub(src1, src1, Operand(1));
956   __ tst(dst, src1);
957   __ b(ne, not_int32);
958 }
959 
960 
CallCCodeForDoubleOperation(MacroAssembler * masm,Token::Value op,Register heap_number_result,Register scratch)961 void FloatingPointHelper::CallCCodeForDoubleOperation(
962     MacroAssembler* masm,
963     Token::Value op,
964     Register heap_number_result,
965     Register scratch) {
966   // Using core registers:
967   // r0: Left value (least significant part of mantissa).
968   // r1: Left value (sign, exponent, top of mantissa).
969   // r2: Right value (least significant part of mantissa).
970   // r3: Right value (sign, exponent, top of mantissa).
971 
972   // Assert that heap_number_result is callee-saved.
973   // We currently always use r5 to pass it.
974   ASSERT(heap_number_result.is(r5));
975 
976   // Push the current return address before the C call. Return will be
977   // through pop(pc) below.
978   __ push(lr);
979   __ PrepareCallCFunction(0, 2, scratch);
980   if (masm->use_eabi_hardfloat()) {
981     CpuFeatures::Scope scope(VFP3);
982     __ vmov(d0, r0, r1);
983     __ vmov(d1, r2, r3);
984   }
985   {
986     AllowExternalCallThatCantCauseGC scope(masm);
987     __ CallCFunction(
988         ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
989   }
990   // Store answer in the overwritable heap number. Double returned in
991   // registers r0 and r1 or in d0.
992   if (masm->use_eabi_hardfloat()) {
993     CpuFeatures::Scope scope(VFP3);
994     __ vstr(d0,
995             FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
996   } else {
997     __ Strd(r0, r1, FieldMemOperand(heap_number_result,
998                                     HeapNumber::kValueOffset));
999   }
1000   // Place heap_number_result in r0 and return to the pushed return address.
1001   __ mov(r0, Operand(heap_number_result));
1002   __ pop(pc);
1003 }
1004 
1005 
IsPregenerated()1006 bool WriteInt32ToHeapNumberStub::IsPregenerated() {
1007   // These variants are compiled ahead of time.  See next method.
1008   if (the_int_.is(r1) && the_heap_number_.is(r0) && scratch_.is(r2)) {
1009     return true;
1010   }
1011   if (the_int_.is(r2) && the_heap_number_.is(r0) && scratch_.is(r3)) {
1012     return true;
1013   }
1014   // Other register combinations are generated as and when they are needed,
1015   // so it is unsafe to call them from stubs (we can't generate a stub while
1016   // we are generating a stub).
1017   return false;
1018 }
1019 
1020 
GenerateFixedRegStubsAheadOfTime()1021 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
1022   WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
1023   WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
1024   stub1.GetCode()->set_is_pregenerated(true);
1025   stub2.GetCode()->set_is_pregenerated(true);
1026 }
1027 
1028 
1029 // See comment for class.
Generate(MacroAssembler * masm)1030 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
1031   Label max_negative_int;
1032   // the_int_ has the answer which is a signed int32 but not a Smi.
1033   // We test for the special value that has a different exponent.  This test
1034   // has the neat side effect of setting the flags according to the sign.
1035   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
1036   __ cmp(the_int_, Operand(0x80000000u));
1037   __ b(eq, &max_negative_int);
1038   // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
1039   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
1040   uint32_t non_smi_exponent =
1041       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1042   __ mov(scratch_, Operand(non_smi_exponent));
1043   // Set the sign bit in scratch_ if the value was negative.
1044   __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
1045   // Subtract from 0 if the value was negative.
1046   __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
1047   // We should be masking the implict first digit of the mantissa away here,
1048   // but it just ends up combining harmlessly with the last digit of the
1049   // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
1050   // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
1051   ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
1052   const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
1053   __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
1054   __ str(scratch_, FieldMemOperand(the_heap_number_,
1055                                    HeapNumber::kExponentOffset));
1056   __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
1057   __ str(scratch_, FieldMemOperand(the_heap_number_,
1058                                    HeapNumber::kMantissaOffset));
1059   __ Ret();
1060 
1061   __ bind(&max_negative_int);
1062   // The max negative int32 is stored as a positive number in the mantissa of
1063   // a double because it uses a sign bit instead of using two's complement.
1064   // The actual mantissa bits stored are all 0 because the implicit most
1065   // significant 1 bit is not stored.
1066   non_smi_exponent += 1 << HeapNumber::kExponentShift;
1067   __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
1068   __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
1069   __ mov(ip, Operand(0, RelocInfo::NONE));
1070   __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
1071   __ Ret();
1072 }
1073 
1074 
1075 // Handle the case where the lhs and rhs are the same object.
1076 // Equality is almost reflexive (everything but NaN), so this is a test
1077 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cond,bool never_nan_nan)1078 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
1079                                           Label* slow,
1080                                           Condition cond,
1081                                           bool never_nan_nan) {
1082   Label not_identical;
1083   Label heap_number, return_equal;
1084   __ cmp(r0, r1);
1085   __ b(ne, &not_identical);
1086 
1087   // The two objects are identical.  If we know that one of them isn't NaN then
1088   // we now know they test equal.
1089   if (cond != eq || !never_nan_nan) {
1090     // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
1091     // so we do the second best thing - test it ourselves.
1092     // They are both equal and they are not both Smis so both of them are not
1093     // Smis.  If it's not a heap number, then return equal.
1094     if (cond == lt || cond == gt) {
1095       __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
1096       __ b(ge, slow);
1097     } else {
1098       __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
1099       __ b(eq, &heap_number);
1100       // Comparing JS objects with <=, >= is complicated.
1101       if (cond != eq) {
1102         __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
1103         __ b(ge, slow);
1104         // Normally here we fall through to return_equal, but undefined is
1105         // special: (undefined == undefined) == true, but
1106         // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
1107         if (cond == le || cond == ge) {
1108           __ cmp(r4, Operand(ODDBALL_TYPE));
1109           __ b(ne, &return_equal);
1110           __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1111           __ cmp(r0, r2);
1112           __ b(ne, &return_equal);
1113           if (cond == le) {
1114             // undefined <= undefined should fail.
1115             __ mov(r0, Operand(GREATER));
1116           } else  {
1117             // undefined >= undefined should fail.
1118             __ mov(r0, Operand(LESS));
1119           }
1120           __ Ret();
1121         }
1122       }
1123     }
1124   }
1125 
1126   __ bind(&return_equal);
1127   if (cond == lt) {
1128     __ mov(r0, Operand(GREATER));  // Things aren't less than themselves.
1129   } else if (cond == gt) {
1130     __ mov(r0, Operand(LESS));     // Things aren't greater than themselves.
1131   } else {
1132     __ mov(r0, Operand(EQUAL));    // Things are <=, >=, ==, === themselves.
1133   }
1134   __ Ret();
1135 
1136   if (cond != eq || !never_nan_nan) {
1137     // For less and greater we don't have to check for NaN since the result of
1138     // x < x is false regardless.  For the others here is some code to check
1139     // for NaN.
1140     if (cond != lt && cond != gt) {
1141       __ bind(&heap_number);
1142       // It is a heap number, so return non-equal if it's NaN and equal if it's
1143       // not NaN.
1144 
1145       // The representation of NaN values has all exponent bits (52..62) set,
1146       // and not all mantissa bits (0..51) clear.
1147       // Read top bits of double representation (second word of value).
1148       __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1149       // Test that exponent bits are all set.
1150       __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
1151       // NaNs have all-one exponents so they sign extend to -1.
1152       __ cmp(r3, Operand(-1));
1153       __ b(ne, &return_equal);
1154 
1155       // Shift out flag and all exponent bits, retaining only mantissa.
1156       __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
1157       // Or with all low-bits of mantissa.
1158       __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
1159       __ orr(r0, r3, Operand(r2), SetCC);
1160       // For equal we already have the right value in r0:  Return zero (equal)
1161       // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1162       // not (it's a NaN).  For <= and >= we need to load r0 with the failing
1163       // value if it's a NaN.
1164       if (cond != eq) {
1165         // All-zero means Infinity means equal.
1166         __ Ret(eq);
1167         if (cond == le) {
1168           __ mov(r0, Operand(GREATER));  // NaN <= NaN should fail.
1169         } else {
1170           __ mov(r0, Operand(LESS));     // NaN >= NaN should fail.
1171         }
1172       }
1173       __ Ret();
1174     }
1175     // No fall through here.
1176   }
1177 
1178   __ bind(&not_identical);
1179 }
1180 
1181 
1182 // See comment at call site.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * lhs_not_nan,Label * slow,bool strict)1183 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1184                                     Register lhs,
1185                                     Register rhs,
1186                                     Label* lhs_not_nan,
1187                                     Label* slow,
1188                                     bool strict) {
1189   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1190          (lhs.is(r1) && rhs.is(r0)));
1191 
1192   Label rhs_is_smi;
1193   __ JumpIfSmi(rhs, &rhs_is_smi);
1194 
1195   // Lhs is a Smi.  Check whether the rhs is a heap number.
1196   __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
1197   if (strict) {
1198     // If rhs is not a number and lhs is a Smi then strict equality cannot
1199     // succeed.  Return non-equal
1200     // If rhs is r0 then there is already a non zero value in it.
1201     if (!rhs.is(r0)) {
1202       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1203     }
1204     __ Ret(ne);
1205   } else {
1206     // Smi compared non-strictly with a non-Smi non-heap-number.  Call
1207     // the runtime.
1208     __ b(ne, slow);
1209   }
1210 
1211   // Lhs is a smi, rhs is a number.
1212   if (CpuFeatures::IsSupported(VFP3)) {
1213     // Convert lhs to a double in d7.
1214     CpuFeatures::Scope scope(VFP3);
1215     __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
1216     // Load the double from rhs, tagged HeapNumber r0, to d6.
1217     __ sub(r7, rhs, Operand(kHeapObjectTag));
1218     __ vldr(d6, r7, HeapNumber::kValueOffset);
1219   } else {
1220     __ push(lr);
1221     // Convert lhs to a double in r2, r3.
1222     __ mov(r7, Operand(lhs));
1223     ConvertToDoubleStub stub1(r3, r2, r7, r6);
1224     __ Call(stub1.GetCode());
1225     // Load rhs to a double in r0, r1.
1226     __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1227     __ pop(lr);
1228   }
1229 
1230   // We now have both loaded as doubles but we can skip the lhs nan check
1231   // since it's a smi.
1232   __ jmp(lhs_not_nan);
1233 
1234   __ bind(&rhs_is_smi);
1235   // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
1236   __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
1237   if (strict) {
1238     // If lhs is not a number and rhs is a smi then strict equality cannot
1239     // succeed.  Return non-equal.
1240     // If lhs is r0 then there is already a non zero value in it.
1241     if (!lhs.is(r0)) {
1242       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1243     }
1244     __ Ret(ne);
1245   } else {
1246     // Smi compared non-strictly with a non-smi non-heap-number.  Call
1247     // the runtime.
1248     __ b(ne, slow);
1249   }
1250 
1251   // Rhs is a smi, lhs is a heap number.
1252   if (CpuFeatures::IsSupported(VFP3)) {
1253     CpuFeatures::Scope scope(VFP3);
1254     // Load the double from lhs, tagged HeapNumber r1, to d7.
1255     __ sub(r7, lhs, Operand(kHeapObjectTag));
1256     __ vldr(d7, r7, HeapNumber::kValueOffset);
1257     // Convert rhs to a double in d6              .
1258     __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
1259   } else {
1260     __ push(lr);
1261     // Load lhs to a double in r2, r3.
1262     __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1263     // Convert rhs to a double in r0, r1.
1264     __ mov(r7, Operand(rhs));
1265     ConvertToDoubleStub stub2(r1, r0, r7, r6);
1266     __ Call(stub2.GetCode());
1267     __ pop(lr);
1268   }
1269   // Fall through to both_loaded_as_doubles.
1270 }
1271 
1272 
EmitNanCheck(MacroAssembler * masm,Label * lhs_not_nan,Condition cond)1273 void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
1274   bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1275   Register rhs_exponent = exp_first ? r0 : r1;
1276   Register lhs_exponent = exp_first ? r2 : r3;
1277   Register rhs_mantissa = exp_first ? r1 : r0;
1278   Register lhs_mantissa = exp_first ? r3 : r2;
1279   Label one_is_nan, neither_is_nan;
1280 
1281   __ Sbfx(r4,
1282           lhs_exponent,
1283           HeapNumber::kExponentShift,
1284           HeapNumber::kExponentBits);
1285   // NaNs have all-one exponents so they sign extend to -1.
1286   __ cmp(r4, Operand(-1));
1287   __ b(ne, lhs_not_nan);
1288   __ mov(r4,
1289          Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1290          SetCC);
1291   __ b(ne, &one_is_nan);
1292   __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
1293   __ b(ne, &one_is_nan);
1294 
1295   __ bind(lhs_not_nan);
1296   __ Sbfx(r4,
1297           rhs_exponent,
1298           HeapNumber::kExponentShift,
1299           HeapNumber::kExponentBits);
1300   // NaNs have all-one exponents so they sign extend to -1.
1301   __ cmp(r4, Operand(-1));
1302   __ b(ne, &neither_is_nan);
1303   __ mov(r4,
1304          Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1305          SetCC);
1306   __ b(ne, &one_is_nan);
1307   __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
1308   __ b(eq, &neither_is_nan);
1309 
1310   __ bind(&one_is_nan);
1311   // NaN comparisons always fail.
1312   // Load whatever we need in r0 to make the comparison fail.
1313   if (cond == lt || cond == le) {
1314     __ mov(r0, Operand(GREATER));
1315   } else {
1316     __ mov(r0, Operand(LESS));
1317   }
1318   __ Ret();
1319 
1320   __ bind(&neither_is_nan);
1321 }
1322 
1323 
1324 // See comment at call site.
EmitTwoNonNanDoubleComparison(MacroAssembler * masm,Condition cond)1325 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
1326                                           Condition cond) {
1327   bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1328   Register rhs_exponent = exp_first ? r0 : r1;
1329   Register lhs_exponent = exp_first ? r2 : r3;
1330   Register rhs_mantissa = exp_first ? r1 : r0;
1331   Register lhs_mantissa = exp_first ? r3 : r2;
1332 
1333   // r0, r1, r2, r3 have the two doubles.  Neither is a NaN.
1334   if (cond == eq) {
1335     // Doubles are not equal unless they have the same bit pattern.
1336     // Exception: 0 and -0.
1337     __ cmp(rhs_mantissa, Operand(lhs_mantissa));
1338     __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
1339     // Return non-zero if the numbers are unequal.
1340     __ Ret(ne);
1341 
1342     __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
1343     // If exponents are equal then return 0.
1344     __ Ret(eq);
1345 
1346     // Exponents are unequal.  The only way we can return that the numbers
1347     // are equal is if one is -0 and the other is 0.  We already dealt
1348     // with the case where both are -0 or both are 0.
1349     // We start by seeing if the mantissas (that are equal) or the bottom
1350     // 31 bits of the rhs exponent are non-zero.  If so we return not
1351     // equal.
1352     __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
1353     __ mov(r0, Operand(r4), LeaveCC, ne);
1354     __ Ret(ne);
1355     // Now they are equal if and only if the lhs exponent is zero in its
1356     // low 31 bits.
1357     __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
1358     __ Ret();
1359   } else {
1360     // Call a native function to do a comparison between two non-NaNs.
1361     // Call C routine that may not cause GC or other trouble.
1362     __ push(lr);
1363     __ PrepareCallCFunction(0, 2, r5);
1364     if (masm->use_eabi_hardfloat()) {
1365       CpuFeatures::Scope scope(VFP3);
1366       __ vmov(d0, r0, r1);
1367       __ vmov(d1, r2, r3);
1368     }
1369 
1370     AllowExternalCallThatCantCauseGC scope(masm);
1371     __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
1372                      0, 2);
1373     __ pop(pc);  // Return.
1374   }
1375 }
1376 
1377 
1378 // See comment at call site.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)1379 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1380                                            Register lhs,
1381                                            Register rhs) {
1382     ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1383            (lhs.is(r1) && rhs.is(r0)));
1384 
1385     // If either operand is a JS object or an oddball value, then they are
1386     // not equal since their pointers are different.
1387     // There is no test for undetectability in strict equality.
1388     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1389     Label first_non_object;
1390     // Get the type of the first operand into r2 and compare it with
1391     // FIRST_SPEC_OBJECT_TYPE.
1392     __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
1393     __ b(lt, &first_non_object);
1394 
1395     // Return non-zero (r0 is not zero)
1396     Label return_not_equal;
1397     __ bind(&return_not_equal);
1398     __ Ret();
1399 
1400     __ bind(&first_non_object);
1401     // Check for oddballs: true, false, null, undefined.
1402     __ cmp(r2, Operand(ODDBALL_TYPE));
1403     __ b(eq, &return_not_equal);
1404 
1405     __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
1406     __ b(ge, &return_not_equal);
1407 
1408     // Check for oddballs: true, false, null, undefined.
1409     __ cmp(r3, Operand(ODDBALL_TYPE));
1410     __ b(eq, &return_not_equal);
1411 
1412     // Now that we have the types we might as well check for symbol-symbol.
1413     // Ensure that no non-strings have the symbol bit set.
1414     STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1415     STATIC_ASSERT(kSymbolTag != 0);
1416     __ and_(r2, r2, Operand(r3));
1417     __ tst(r2, Operand(kIsSymbolMask));
1418     __ b(ne, &return_not_equal);
1419 }
1420 
1421 
1422 // See comment at call site.
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)1423 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1424                                        Register lhs,
1425                                        Register rhs,
1426                                        Label* both_loaded_as_doubles,
1427                                        Label* not_heap_numbers,
1428                                        Label* slow) {
1429   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1430          (lhs.is(r1) && rhs.is(r0)));
1431 
1432   __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
1433   __ b(ne, not_heap_numbers);
1434   __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
1435   __ cmp(r2, r3);
1436   __ b(ne, slow);  // First was a heap number, second wasn't.  Go slow case.
1437 
1438   // Both are heap numbers.  Load them up then jump to the code we have
1439   // for that.
1440   if (CpuFeatures::IsSupported(VFP3)) {
1441     CpuFeatures::Scope scope(VFP3);
1442     __ sub(r7, rhs, Operand(kHeapObjectTag));
1443     __ vldr(d6, r7, HeapNumber::kValueOffset);
1444     __ sub(r7, lhs, Operand(kHeapObjectTag));
1445     __ vldr(d7, r7, HeapNumber::kValueOffset);
1446   } else {
1447     __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1448     __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1449   }
1450   __ jmp(both_loaded_as_doubles);
1451 }
1452 
1453 
1454 // Fast negative check for symbol-to-symbol equality.
EmitCheckForSymbolsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * not_both_strings)1455 static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1456                                          Register lhs,
1457                                          Register rhs,
1458                                          Label* possible_strings,
1459                                          Label* not_both_strings) {
1460   ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1461          (lhs.is(r1) && rhs.is(r0)));
1462 
1463   // r2 is object type of rhs.
1464   // Ensure that no non-strings have the symbol bit set.
1465   Label object_test;
1466   STATIC_ASSERT(kSymbolTag != 0);
1467   __ tst(r2, Operand(kIsNotStringMask));
1468   __ b(ne, &object_test);
1469   __ tst(r2, Operand(kIsSymbolMask));
1470   __ b(eq, possible_strings);
1471   __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1472   __ b(ge, not_both_strings);
1473   __ tst(r3, Operand(kIsSymbolMask));
1474   __ b(eq, possible_strings);
1475 
1476   // Both are symbols.  We already checked they weren't the same pointer
1477   // so they are not equal.
1478   __ mov(r0, Operand(NOT_EQUAL));
1479   __ Ret();
1480 
1481   __ bind(&object_test);
1482   __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
1483   __ b(lt, not_both_strings);
1484   __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
1485   __ b(lt, not_both_strings);
1486   // If both objects are undetectable, they are equal. Otherwise, they
1487   // are not equal, since they are different objects and an object is not
1488   // equal to undefined.
1489   __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1490   __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1491   __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1492   __ and_(r0, r2, Operand(r3));
1493   __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1494   __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1495   __ Ret();
1496 }
1497 
1498 
GenerateLookupNumberStringCache(MacroAssembler * masm,Register object,Register result,Register scratch1,Register scratch2,Register scratch3,bool object_is_smi,Label * not_found)1499 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1500                                                          Register object,
1501                                                          Register result,
1502                                                          Register scratch1,
1503                                                          Register scratch2,
1504                                                          Register scratch3,
1505                                                          bool object_is_smi,
1506                                                          Label* not_found) {
1507   // Use of registers. Register result is used as a temporary.
1508   Register number_string_cache = result;
1509   Register mask = scratch3;
1510 
1511   // Load the number string cache.
1512   __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1513 
1514   // Make the hash mask from the length of the number string cache. It
1515   // contains two elements (number and string) for each cache entry.
1516   __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1517   // Divide length by two (length is a smi).
1518   __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
1519   __ sub(mask, mask, Operand(1));  // Make mask.
1520 
1521   // Calculate the entry in the number string cache. The hash value in the
1522   // number string cache for smis is just the smi value, and the hash for
1523   // doubles is the xor of the upper and lower words. See
1524   // Heap::GetNumberStringCache.
1525   Isolate* isolate = masm->isolate();
1526   Label is_smi;
1527   Label load_result_from_cache;
1528   if (!object_is_smi) {
1529     __ JumpIfSmi(object, &is_smi);
1530     if (CpuFeatures::IsSupported(VFP3)) {
1531       CpuFeatures::Scope scope(VFP3);
1532       __ CheckMap(object,
1533                   scratch1,
1534                   Heap::kHeapNumberMapRootIndex,
1535                   not_found,
1536                   DONT_DO_SMI_CHECK);
1537 
1538       STATIC_ASSERT(8 == kDoubleSize);
1539       __ add(scratch1,
1540              object,
1541              Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1542       __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
1543       __ eor(scratch1, scratch1, Operand(scratch2));
1544       __ and_(scratch1, scratch1, Operand(mask));
1545 
1546       // Calculate address of entry in string cache: each entry consists
1547       // of two pointer sized fields.
1548       __ add(scratch1,
1549              number_string_cache,
1550              Operand(scratch1, LSL, kPointerSizeLog2 + 1));
1551 
1552       Register probe = mask;
1553       __ ldr(probe,
1554              FieldMemOperand(scratch1, FixedArray::kHeaderSize));
1555       __ JumpIfSmi(probe, not_found);
1556       __ sub(scratch2, object, Operand(kHeapObjectTag));
1557       __ vldr(d0, scratch2, HeapNumber::kValueOffset);
1558       __ sub(probe, probe, Operand(kHeapObjectTag));
1559       __ vldr(d1, probe, HeapNumber::kValueOffset);
1560       __ VFPCompareAndSetFlags(d0, d1);
1561       __ b(ne, not_found);  // The cache did not contain this value.
1562       __ b(&load_result_from_cache);
1563     } else {
1564       __ b(not_found);
1565     }
1566   }
1567 
1568   __ bind(&is_smi);
1569   Register scratch = scratch1;
1570   __ and_(scratch, mask, Operand(object, ASR, 1));
1571   // Calculate address of entry in string cache: each entry consists
1572   // of two pointer sized fields.
1573   __ add(scratch,
1574          number_string_cache,
1575          Operand(scratch, LSL, kPointerSizeLog2 + 1));
1576 
1577   // Check if the entry is the smi we are looking for.
1578   Register probe = mask;
1579   __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1580   __ cmp(object, probe);
1581   __ b(ne, not_found);
1582 
1583   // Get the result from the cache.
1584   __ bind(&load_result_from_cache);
1585   __ ldr(result,
1586          FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
1587   __ IncrementCounter(isolate->counters()->number_to_string_native(),
1588                       1,
1589                       scratch1,
1590                       scratch2);
1591 }
1592 
1593 
Generate(MacroAssembler * masm)1594 void NumberToStringStub::Generate(MacroAssembler* masm) {
1595   Label runtime;
1596 
1597   __ ldr(r1, MemOperand(sp, 0));
1598 
1599   // Generate code to lookup number in the number string cache.
1600   GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
1601   __ add(sp, sp, Operand(1 * kPointerSize));
1602   __ Ret();
1603 
1604   __ bind(&runtime);
1605   // Handle number to string in the runtime system if not found in the cache.
1606   __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
1607 }
1608 
1609 
1610 // On entry lhs_ and rhs_ are the values to be compared.
1611 // On exit r0 is 0, positive or negative to indicate the result of
1612 // the comparison.
Generate(MacroAssembler * masm)1613 void CompareStub::Generate(MacroAssembler* masm) {
1614   ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
1615          (lhs_.is(r1) && rhs_.is(r0)));
1616 
1617   Label slow;  // Call builtin.
1618   Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1619 
1620   if (include_smi_compare_) {
1621     Label not_two_smis, smi_done;
1622     __ orr(r2, r1, r0);
1623     __ JumpIfNotSmi(r2, &not_two_smis);
1624     __ mov(r1, Operand(r1, ASR, 1));
1625     __ sub(r0, r1, Operand(r0, ASR, 1));
1626     __ Ret();
1627     __ bind(&not_two_smis);
1628   } else if (FLAG_debug_code) {
1629     __ orr(r2, r1, r0);
1630     __ tst(r2, Operand(kSmiTagMask));
1631     __ Assert(ne, "CompareStub: unexpected smi operands.");
1632   }
1633 
1634   // NOTICE! This code is only reached after a smi-fast-case check, so
1635   // it is certain that at least one operand isn't a smi.
1636 
1637   // Handle the case where the objects are identical.  Either returns the answer
1638   // or goes to slow.  Only falls through if the objects were not identical.
1639   EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1640 
1641   // If either is a Smi (we know that not both are), then they can only
1642   // be strictly equal if the other is a HeapNumber.
1643   STATIC_ASSERT(kSmiTag == 0);
1644   ASSERT_EQ(0, Smi::FromInt(0));
1645   __ and_(r2, lhs_, Operand(rhs_));
1646   __ JumpIfNotSmi(r2, &not_smis);
1647   // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
1648   // 1) Return the answer.
1649   // 2) Go to slow.
1650   // 3) Fall through to both_loaded_as_doubles.
1651   // 4) Jump to lhs_not_nan.
1652   // In cases 3 and 4 we have found out we were dealing with a number-number
1653   // comparison.  If VFP3 is supported the double values of the numbers have
1654   // been loaded into d7 and d6.  Otherwise, the double values have been loaded
1655   // into r0, r1, r2, and r3.
1656   EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
1657 
1658   __ bind(&both_loaded_as_doubles);
1659   // The arguments have been converted to doubles and stored in d6 and d7, if
1660   // VFP3 is supported, or in r0, r1, r2, and r3.
1661   Isolate* isolate = masm->isolate();
1662   if (CpuFeatures::IsSupported(VFP3)) {
1663     __ bind(&lhs_not_nan);
1664     CpuFeatures::Scope scope(VFP3);
1665     Label no_nan;
1666     // ARMv7 VFP3 instructions to implement double precision comparison.
1667     __ VFPCompareAndSetFlags(d7, d6);
1668     Label nan;
1669     __ b(vs, &nan);
1670     __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1671     __ mov(r0, Operand(LESS), LeaveCC, lt);
1672     __ mov(r0, Operand(GREATER), LeaveCC, gt);
1673     __ Ret();
1674 
1675     __ bind(&nan);
1676     // If one of the sides was a NaN then the v flag is set.  Load r0 with
1677     // whatever it takes to make the comparison fail, since comparisons with NaN
1678     // always fail.
1679     if (cc_ == lt || cc_ == le) {
1680       __ mov(r0, Operand(GREATER));
1681     } else {
1682       __ mov(r0, Operand(LESS));
1683     }
1684     __ Ret();
1685   } else {
1686     // Checks for NaN in the doubles we have loaded.  Can return the answer or
1687     // fall through if neither is a NaN.  Also binds lhs_not_nan.
1688     EmitNanCheck(masm, &lhs_not_nan, cc_);
1689     // Compares two doubles in r0, r1, r2, r3 that are not NaNs.  Returns the
1690     // answer.  Never falls through.
1691     EmitTwoNonNanDoubleComparison(masm, cc_);
1692   }
1693 
1694   __ bind(&not_smis);
1695   // At this point we know we are dealing with two different objects,
1696   // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
1697   if (strict_) {
1698     // This returns non-equal for some object types, or falls through if it
1699     // was not lucky.
1700     EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1701   }
1702 
1703   Label check_for_symbols;
1704   Label flat_string_check;
1705   // Check for heap-number-heap-number comparison.  Can jump to slow case,
1706   // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1707   // that case.  If the inputs are not doubles then jumps to check_for_symbols.
1708   // In this case r2 will contain the type of rhs_.  Never falls through.
1709   EmitCheckForTwoHeapNumbers(masm,
1710                              lhs_,
1711                              rhs_,
1712                              &both_loaded_as_doubles,
1713                              &check_for_symbols,
1714                              &flat_string_check);
1715 
1716   __ bind(&check_for_symbols);
1717   // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1718   // symbols.
1719   if (cc_ == eq && !strict_) {
1720     // Returns an answer for two symbols or two detectable objects.
1721     // Otherwise jumps to string case or not both strings case.
1722     // Assumes that r2 is the type of rhs_ on entry.
1723     EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1724   }
1725 
1726   // Check for both being sequential ASCII strings, and inline if that is the
1727   // case.
1728   __ bind(&flat_string_check);
1729 
1730   __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
1731 
1732   __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
1733   if (cc_ == eq) {
1734     StringCompareStub::GenerateFlatAsciiStringEquals(masm,
1735                                                      lhs_,
1736                                                      rhs_,
1737                                                      r2,
1738                                                      r3,
1739                                                      r4);
1740   } else {
1741     StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1742                                                        lhs_,
1743                                                        rhs_,
1744                                                        r2,
1745                                                        r3,
1746                                                        r4,
1747                                                        r5);
1748   }
1749   // Never falls through to here.
1750 
1751   __ bind(&slow);
1752 
1753   __ Push(lhs_, rhs_);
1754   // Figure out which native to call and setup the arguments.
1755   Builtins::JavaScript native;
1756   if (cc_ == eq) {
1757     native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1758   } else {
1759     native = Builtins::COMPARE;
1760     int ncr;  // NaN compare result
1761     if (cc_ == lt || cc_ == le) {
1762       ncr = GREATER;
1763     } else {
1764       ASSERT(cc_ == gt || cc_ == ge);  // remaining cases
1765       ncr = LESS;
1766     }
1767     __ mov(r0, Operand(Smi::FromInt(ncr)));
1768     __ push(r0);
1769   }
1770 
1771   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1772   // tagged as a small integer.
1773   __ InvokeBuiltin(native, JUMP_FUNCTION);
1774 }
1775 
1776 
1777 // The stub expects its argument in the tos_ register and returns its result in
1778 // it, too: zero for false, and a non-zero value for true.
Generate(MacroAssembler * masm)1779 void ToBooleanStub::Generate(MacroAssembler* masm) {
1780   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
1781   // we cannot call anything that could cause a GC from this stub.
1782   // This stub uses VFP3 instructions.
1783   CpuFeatures::Scope scope(VFP3);
1784 
1785   Label patch;
1786   const Register map = r9.is(tos_) ? r7 : r9;
1787 
1788   // undefined -> false.
1789   CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
1790 
1791   // Boolean -> its value.
1792   CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
1793   CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
1794 
1795   // 'null' -> false.
1796   CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
1797 
1798   if (types_.Contains(SMI)) {
1799     // Smis: 0 -> false, all other -> true
1800     __ tst(tos_, Operand(kSmiTagMask));
1801     // tos_ contains the correct return value already
1802     __ Ret(eq);
1803   } else if (types_.NeedsMap()) {
1804     // If we need a map later and have a Smi -> patch.
1805     __ JumpIfSmi(tos_, &patch);
1806   }
1807 
1808   if (types_.NeedsMap()) {
1809     __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
1810 
1811     if (types_.CanBeUndetectable()) {
1812       __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
1813       __ tst(ip, Operand(1 << Map::kIsUndetectable));
1814       // Undetectable -> false.
1815       __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
1816       __ Ret(ne);
1817     }
1818   }
1819 
1820   if (types_.Contains(SPEC_OBJECT)) {
1821     // Spec object -> true.
1822     __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
1823     // tos_ contains the correct non-zero return value already.
1824     __ Ret(ge);
1825   }
1826 
1827   if (types_.Contains(STRING)) {
1828     // String value -> false iff empty.
1829   __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
1830   __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt);
1831   __ Ret(lt);  // the string length is OK as the return value
1832   }
1833 
1834   if (types_.Contains(HEAP_NUMBER)) {
1835     // Heap number -> false iff +0, -0, or NaN.
1836     Label not_heap_number;
1837     __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
1838     __ b(ne, &not_heap_number);
1839     __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset));
1840     __ VFPCompareAndSetFlags(d1, 0.0);
1841     // "tos_" is a register, and contains a non zero value by default.
1842     // Hence we only need to overwrite "tos_" with zero to return false for
1843     // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
1844     __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq);  // for FP_ZERO
1845     __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs);  // for FP_NAN
1846     __ Ret();
1847     __ bind(&not_heap_number);
1848   }
1849 
1850   __ bind(&patch);
1851   GenerateTypeTransition(masm);
1852 }
1853 
1854 
CheckOddball(MacroAssembler * masm,Type type,Heap::RootListIndex value,bool result)1855 void ToBooleanStub::CheckOddball(MacroAssembler* masm,
1856                                  Type type,
1857                                  Heap::RootListIndex value,
1858                                  bool result) {
1859   if (types_.Contains(type)) {
1860     // If we see an expected oddball, return its ToBoolean value tos_.
1861     __ LoadRoot(ip, value);
1862     __ cmp(tos_, ip);
1863     // The value of a root is never NULL, so we can avoid loading a non-null
1864     // value into tos_ when we want to return 'true'.
1865     if (!result) {
1866       __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1867     }
1868     __ Ret(eq);
1869   }
1870 }
1871 
1872 
GenerateTypeTransition(MacroAssembler * masm)1873 void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
1874   if (!tos_.is(r3)) {
1875     __ mov(r3, Operand(tos_));
1876   }
1877   __ mov(r2, Operand(Smi::FromInt(tos_.code())));
1878   __ mov(r1, Operand(Smi::FromInt(types_.ToByte())));
1879   __ Push(r3, r2, r1);
1880   // Patch the caller to an appropriate specialized stub and return the
1881   // operation result to the caller of the stub.
1882   __ TailCallExternalReference(
1883       ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
1884       3,
1885       1);
1886 }
1887 
1888 
Generate(MacroAssembler * masm)1889 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
1890   // We don't allow a GC during a store buffer overflow so there is no need to
1891   // store the registers in any particular way, but we do have to store and
1892   // restore them.
1893   __ stm(db_w, sp, kCallerSaved | lr.bit());
1894   if (save_doubles_ == kSaveFPRegs) {
1895     CpuFeatures::Scope scope(VFP3);
1896     __ sub(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
1897     for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
1898       DwVfpRegister reg = DwVfpRegister::from_code(i);
1899       __ vstr(reg, MemOperand(sp, i * kDoubleSize));
1900     }
1901   }
1902   const int argument_count = 1;
1903   const int fp_argument_count = 0;
1904   const Register scratch = r1;
1905 
1906   AllowExternalCallThatCantCauseGC scope(masm);
1907   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
1908   __ mov(r0, Operand(ExternalReference::isolate_address()));
1909   __ CallCFunction(
1910       ExternalReference::store_buffer_overflow_function(masm->isolate()),
1911       argument_count);
1912   if (save_doubles_ == kSaveFPRegs) {
1913     CpuFeatures::Scope scope(VFP3);
1914     for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
1915       DwVfpRegister reg = DwVfpRegister::from_code(i);
1916       __ vldr(reg, MemOperand(sp, i * kDoubleSize));
1917     }
1918     __ add(sp, sp, Operand(kDoubleSize * DwVfpRegister::kNumRegisters));
1919   }
1920   __ ldm(ia_w, sp, kCallerSaved | pc.bit());  // Also pop pc to get Ret(0).
1921 }
1922 
1923 
PrintName(StringStream * stream)1924 void UnaryOpStub::PrintName(StringStream* stream) {
1925   const char* op_name = Token::Name(op_);
1926   const char* overwrite_name = NULL;  // Make g++ happy.
1927   switch (mode_) {
1928     case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
1929     case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
1930   }
1931   stream->Add("UnaryOpStub_%s_%s_%s",
1932               op_name,
1933               overwrite_name,
1934               UnaryOpIC::GetName(operand_type_));
1935 }
1936 
1937 
1938 // TODO(svenpanne): Use virtual functions instead of switch.
Generate(MacroAssembler * masm)1939 void UnaryOpStub::Generate(MacroAssembler* masm) {
1940   switch (operand_type_) {
1941     case UnaryOpIC::UNINITIALIZED:
1942       GenerateTypeTransition(masm);
1943       break;
1944     case UnaryOpIC::SMI:
1945       GenerateSmiStub(masm);
1946       break;
1947     case UnaryOpIC::HEAP_NUMBER:
1948       GenerateHeapNumberStub(masm);
1949       break;
1950     case UnaryOpIC::GENERIC:
1951       GenerateGenericStub(masm);
1952       break;
1953   }
1954 }
1955 
1956 
GenerateTypeTransition(MacroAssembler * masm)1957 void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
1958   __ mov(r3, Operand(r0));  // the operand
1959   __ mov(r2, Operand(Smi::FromInt(op_)));
1960   __ mov(r1, Operand(Smi::FromInt(mode_)));
1961   __ mov(r0, Operand(Smi::FromInt(operand_type_)));
1962   __ Push(r3, r2, r1, r0);
1963 
1964   __ TailCallExternalReference(
1965       ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
1966 }
1967 
1968 
1969 // TODO(svenpanne): Use virtual functions instead of switch.
GenerateSmiStub(MacroAssembler * masm)1970 void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
1971   switch (op_) {
1972     case Token::SUB:
1973       GenerateSmiStubSub(masm);
1974       break;
1975     case Token::BIT_NOT:
1976       GenerateSmiStubBitNot(masm);
1977       break;
1978     default:
1979       UNREACHABLE();
1980   }
1981 }
1982 
1983 
GenerateSmiStubSub(MacroAssembler * masm)1984 void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
1985   Label non_smi, slow;
1986   GenerateSmiCodeSub(masm, &non_smi, &slow);
1987   __ bind(&non_smi);
1988   __ bind(&slow);
1989   GenerateTypeTransition(masm);
1990 }
1991 
1992 
GenerateSmiStubBitNot(MacroAssembler * masm)1993 void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
1994   Label non_smi;
1995   GenerateSmiCodeBitNot(masm, &non_smi);
1996   __ bind(&non_smi);
1997   GenerateTypeTransition(masm);
1998 }
1999 
2000 
GenerateSmiCodeSub(MacroAssembler * masm,Label * non_smi,Label * slow)2001 void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
2002                                      Label* non_smi,
2003                                      Label* slow) {
2004   __ JumpIfNotSmi(r0, non_smi);
2005 
2006   // The result of negating zero or the smallest negative smi is not a smi.
2007   __ bic(ip, r0, Operand(0x80000000), SetCC);
2008   __ b(eq, slow);
2009 
2010   // Return '0 - value'.
2011   __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
2012   __ Ret();
2013 }
2014 
2015 
GenerateSmiCodeBitNot(MacroAssembler * masm,Label * non_smi)2016 void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
2017                                         Label* non_smi) {
2018   __ JumpIfNotSmi(r0, non_smi);
2019 
2020   // Flip bits and revert inverted smi-tag.
2021   __ mvn(r0, Operand(r0));
2022   __ bic(r0, r0, Operand(kSmiTagMask));
2023   __ Ret();
2024 }
2025 
2026 
2027 // TODO(svenpanne): Use virtual functions instead of switch.
GenerateHeapNumberStub(MacroAssembler * masm)2028 void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
2029   switch (op_) {
2030     case Token::SUB:
2031       GenerateHeapNumberStubSub(masm);
2032       break;
2033     case Token::BIT_NOT:
2034       GenerateHeapNumberStubBitNot(masm);
2035       break;
2036     default:
2037       UNREACHABLE();
2038   }
2039 }
2040 
2041 
GenerateHeapNumberStubSub(MacroAssembler * masm)2042 void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
2043   Label non_smi, slow, call_builtin;
2044   GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
2045   __ bind(&non_smi);
2046   GenerateHeapNumberCodeSub(masm, &slow);
2047   __ bind(&slow);
2048   GenerateTypeTransition(masm);
2049   __ bind(&call_builtin);
2050   GenerateGenericCodeFallback(masm);
2051 }
2052 
2053 
GenerateHeapNumberStubBitNot(MacroAssembler * masm)2054 void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
2055   Label non_smi, slow;
2056   GenerateSmiCodeBitNot(masm, &non_smi);
2057   __ bind(&non_smi);
2058   GenerateHeapNumberCodeBitNot(masm, &slow);
2059   __ bind(&slow);
2060   GenerateTypeTransition(masm);
2061 }
2062 
GenerateHeapNumberCodeSub(MacroAssembler * masm,Label * slow)2063 void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
2064                                             Label* slow) {
2065   EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2066   // r0 is a heap number.  Get a new heap number in r1.
2067   if (mode_ == UNARY_OVERWRITE) {
2068     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2069     __ eor(r2, r2, Operand(HeapNumber::kSignMask));  // Flip sign.
2070     __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2071   } else {
2072     Label slow_allocate_heapnumber, heapnumber_allocated;
2073     __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber);
2074     __ jmp(&heapnumber_allocated);
2075 
2076     __ bind(&slow_allocate_heapnumber);
2077     {
2078       FrameScope scope(masm, StackFrame::INTERNAL);
2079       __ push(r0);
2080       __ CallRuntime(Runtime::kNumberAlloc, 0);
2081       __ mov(r1, Operand(r0));
2082       __ pop(r0);
2083     }
2084 
2085     __ bind(&heapnumber_allocated);
2086     __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
2087     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
2088     __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
2089     __ eor(r2, r2, Operand(HeapNumber::kSignMask));  // Flip sign.
2090     __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
2091     __ mov(r0, Operand(r1));
2092   }
2093   __ Ret();
2094 }
2095 
2096 
GenerateHeapNumberCodeBitNot(MacroAssembler * masm,Label * slow)2097 void UnaryOpStub::GenerateHeapNumberCodeBitNot(
2098     MacroAssembler* masm, Label* slow) {
2099   Label impossible;
2100 
2101   EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
2102   // Convert the heap number is r0 to an untagged integer in r1.
2103   __ ConvertToInt32(r0, r1, r2, r3, d0, slow);
2104 
2105   // Do the bitwise operation and check if the result fits in a smi.
2106   Label try_float;
2107   __ mvn(r1, Operand(r1));
2108   __ add(r2, r1, Operand(0x40000000), SetCC);
2109   __ b(mi, &try_float);
2110 
2111   // Tag the result as a smi and we're done.
2112   __ mov(r0, Operand(r1, LSL, kSmiTagSize));
2113   __ Ret();
2114 
2115   // Try to store the result in a heap number.
2116   __ bind(&try_float);
2117   if (mode_ == UNARY_NO_OVERWRITE) {
2118     Label slow_allocate_heapnumber, heapnumber_allocated;
2119     // Allocate a new heap number without zapping r0, which we need if it fails.
2120     __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber);
2121     __ jmp(&heapnumber_allocated);
2122 
2123     __ bind(&slow_allocate_heapnumber);
2124     {
2125       FrameScope scope(masm, StackFrame::INTERNAL);
2126       __ push(r0);  // Push the heap number, not the untagged int32.
2127       __ CallRuntime(Runtime::kNumberAlloc, 0);
2128       __ mov(r2, r0);  // Move the new heap number into r2.
2129       // Get the heap number into r0, now that the new heap number is in r2.
2130       __ pop(r0);
2131     }
2132 
2133     // Convert the heap number in r0 to an untagged integer in r1.
2134     // This can't go slow-case because it's the same number we already
2135     // converted once again.
2136     __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible);
2137     __ mvn(r1, Operand(r1));
2138 
2139     __ bind(&heapnumber_allocated);
2140     __ mov(r0, r2);  // Move newly allocated heap number to r0.
2141   }
2142 
2143   if (CpuFeatures::IsSupported(VFP3)) {
2144     // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
2145     CpuFeatures::Scope scope(VFP3);
2146     __ vmov(s0, r1);
2147     __ vcvt_f64_s32(d0, s0);
2148     __ sub(r2, r0, Operand(kHeapObjectTag));
2149     __ vstr(d0, r2, HeapNumber::kValueOffset);
2150     __ Ret();
2151   } else {
2152     // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
2153     // have to set up a frame.
2154     WriteInt32ToHeapNumberStub stub(r1, r0, r2);
2155     __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2156   }
2157 
2158   __ bind(&impossible);
2159   if (FLAG_debug_code) {
2160     __ stop("Incorrect assumption in bit-not stub");
2161   }
2162 }
2163 
2164 
2165 // TODO(svenpanne): Use virtual functions instead of switch.
GenerateGenericStub(MacroAssembler * masm)2166 void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
2167   switch (op_) {
2168     case Token::SUB:
2169       GenerateGenericStubSub(masm);
2170       break;
2171     case Token::BIT_NOT:
2172       GenerateGenericStubBitNot(masm);
2173       break;
2174     default:
2175       UNREACHABLE();
2176   }
2177 }
2178 
2179 
GenerateGenericStubSub(MacroAssembler * masm)2180 void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
2181   Label non_smi, slow;
2182   GenerateSmiCodeSub(masm, &non_smi, &slow);
2183   __ bind(&non_smi);
2184   GenerateHeapNumberCodeSub(masm, &slow);
2185   __ bind(&slow);
2186   GenerateGenericCodeFallback(masm);
2187 }
2188 
2189 
GenerateGenericStubBitNot(MacroAssembler * masm)2190 void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
2191   Label non_smi, slow;
2192   GenerateSmiCodeBitNot(masm, &non_smi);
2193   __ bind(&non_smi);
2194   GenerateHeapNumberCodeBitNot(masm, &slow);
2195   __ bind(&slow);
2196   GenerateGenericCodeFallback(masm);
2197 }
2198 
2199 
GenerateGenericCodeFallback(MacroAssembler * masm)2200 void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
2201   // Handle the slow case by jumping to the JavaScript builtin.
2202   __ push(r0);
2203   switch (op_) {
2204     case Token::SUB:
2205       __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
2206       break;
2207     case Token::BIT_NOT:
2208       __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
2209       break;
2210     default:
2211       UNREACHABLE();
2212   }
2213 }
2214 
2215 
GenerateTypeTransition(MacroAssembler * masm)2216 void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
2217   Label get_result;
2218 
2219   __ Push(r1, r0);
2220 
2221   __ mov(r2, Operand(Smi::FromInt(MinorKey())));
2222   __ mov(r1, Operand(Smi::FromInt(op_)));
2223   __ mov(r0, Operand(Smi::FromInt(operands_type_)));
2224   __ Push(r2, r1, r0);
2225 
2226   __ TailCallExternalReference(
2227       ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
2228                         masm->isolate()),
2229       5,
2230       1);
2231 }
2232 
2233 
GenerateTypeTransitionWithSavedArgs(MacroAssembler * masm)2234 void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
2235     MacroAssembler* masm) {
2236   UNIMPLEMENTED();
2237 }
2238 
2239 
Generate(MacroAssembler * masm)2240 void BinaryOpStub::Generate(MacroAssembler* masm) {
2241   // Explicitly allow generation of nested stubs. It is safe here because
2242   // generation code does not use any raw pointers.
2243   AllowStubCallsScope allow_stub_calls(masm, true);
2244 
2245   switch (operands_type_) {
2246     case BinaryOpIC::UNINITIALIZED:
2247       GenerateTypeTransition(masm);
2248       break;
2249     case BinaryOpIC::SMI:
2250       GenerateSmiStub(masm);
2251       break;
2252     case BinaryOpIC::INT32:
2253       GenerateInt32Stub(masm);
2254       break;
2255     case BinaryOpIC::HEAP_NUMBER:
2256       GenerateHeapNumberStub(masm);
2257       break;
2258     case BinaryOpIC::ODDBALL:
2259       GenerateOddballStub(masm);
2260       break;
2261     case BinaryOpIC::BOTH_STRING:
2262       GenerateBothStringStub(masm);
2263       break;
2264     case BinaryOpIC::STRING:
2265       GenerateStringStub(masm);
2266       break;
2267     case BinaryOpIC::GENERIC:
2268       GenerateGeneric(masm);
2269       break;
2270     default:
2271       UNREACHABLE();
2272   }
2273 }
2274 
2275 
PrintName(StringStream * stream)2276 void BinaryOpStub::PrintName(StringStream* stream) {
2277   const char* op_name = Token::Name(op_);
2278   const char* overwrite_name;
2279   switch (mode_) {
2280     case NO_OVERWRITE: overwrite_name = "Alloc"; break;
2281     case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
2282     case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
2283     default: overwrite_name = "UnknownOverwrite"; break;
2284   }
2285   stream->Add("BinaryOpStub_%s_%s_%s",
2286               op_name,
2287               overwrite_name,
2288               BinaryOpIC::GetName(operands_type_));
2289 }
2290 
2291 
GenerateSmiSmiOperation(MacroAssembler * masm)2292 void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
2293   Register left = r1;
2294   Register right = r0;
2295   Register scratch1 = r7;
2296   Register scratch2 = r9;
2297 
2298   ASSERT(right.is(r0));
2299   STATIC_ASSERT(kSmiTag == 0);
2300 
2301   Label not_smi_result;
2302   switch (op_) {
2303     case Token::ADD:
2304       __ add(right, left, Operand(right), SetCC);  // Add optimistically.
2305       __ Ret(vc);
2306       __ sub(right, right, Operand(left));  // Revert optimistic add.
2307       break;
2308     case Token::SUB:
2309       __ sub(right, left, Operand(right), SetCC);  // Subtract optimistically.
2310       __ Ret(vc);
2311       __ sub(right, left, Operand(right));  // Revert optimistic subtract.
2312       break;
2313     case Token::MUL:
2314       // Remove tag from one of the operands. This way the multiplication result
2315       // will be a smi if it fits the smi range.
2316       __ SmiUntag(ip, right);
2317       // Do multiplication
2318       // scratch1 = lower 32 bits of ip * left.
2319       // scratch2 = higher 32 bits of ip * left.
2320       __ smull(scratch1, scratch2, left, ip);
2321       // Check for overflowing the smi range - no overflow if higher 33 bits of
2322       // the result are identical.
2323       __ mov(ip, Operand(scratch1, ASR, 31));
2324       __ cmp(ip, Operand(scratch2));
2325       __ b(ne, &not_smi_result);
2326       // Go slow on zero result to handle -0.
2327       __ cmp(scratch1, Operand(0));
2328       __ mov(right, Operand(scratch1), LeaveCC, ne);
2329       __ Ret(ne);
2330       // We need -0 if we were multiplying a negative number with 0 to get 0.
2331       // We know one of them was zero.
2332       __ add(scratch2, right, Operand(left), SetCC);
2333       __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2334       __ Ret(pl);  // Return smi 0 if the non-zero one was positive.
2335       // We fall through here if we multiplied a negative number with 0, because
2336       // that would mean we should produce -0.
2337       break;
2338     case Token::DIV:
2339       // Check for power of two on the right hand side.
2340       __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2341       // Check for positive and no remainder (scratch1 contains right - 1).
2342       __ orr(scratch2, scratch1, Operand(0x80000000u));
2343       __ tst(left, scratch2);
2344       __ b(ne, &not_smi_result);
2345 
2346       // Perform division by shifting.
2347       __ CountLeadingZeros(scratch1, scratch1, scratch2);
2348       __ rsb(scratch1, scratch1, Operand(31));
2349       __ mov(right, Operand(left, LSR, scratch1));
2350       __ Ret();
2351       break;
2352     case Token::MOD:
2353       // Check for two positive smis.
2354       __ orr(scratch1, left, Operand(right));
2355       __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
2356       __ b(ne, &not_smi_result);
2357 
2358       // Check for power of two on the right hand side.
2359       __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2360 
2361       // Perform modulus by masking.
2362       __ and_(right, left, Operand(scratch1));
2363       __ Ret();
2364       break;
2365     case Token::BIT_OR:
2366       __ orr(right, left, Operand(right));
2367       __ Ret();
2368       break;
2369     case Token::BIT_AND:
2370       __ and_(right, left, Operand(right));
2371       __ Ret();
2372       break;
2373     case Token::BIT_XOR:
2374       __ eor(right, left, Operand(right));
2375       __ Ret();
2376       break;
2377     case Token::SAR:
2378       // Remove tags from right operand.
2379       __ GetLeastBitsFromSmi(scratch1, right, 5);
2380       __ mov(right, Operand(left, ASR, scratch1));
2381       // Smi tag result.
2382       __ bic(right, right, Operand(kSmiTagMask));
2383       __ Ret();
2384       break;
2385     case Token::SHR:
2386       // Remove tags from operands. We can't do this on a 31 bit number
2387       // because then the 0s get shifted into bit 30 instead of bit 31.
2388       __ SmiUntag(scratch1, left);
2389       __ GetLeastBitsFromSmi(scratch2, right, 5);
2390       __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2391       // Unsigned shift is not allowed to produce a negative number, so
2392       // check the sign bit and the sign bit after Smi tagging.
2393       __ tst(scratch1, Operand(0xc0000000));
2394       __ b(ne, &not_smi_result);
2395       // Smi tag result.
2396       __ SmiTag(right, scratch1);
2397       __ Ret();
2398       break;
2399     case Token::SHL:
2400       // Remove tags from operands.
2401       __ SmiUntag(scratch1, left);
2402       __ GetLeastBitsFromSmi(scratch2, right, 5);
2403       __ mov(scratch1, Operand(scratch1, LSL, scratch2));
2404       // Check that the signed result fits in a Smi.
2405       __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2406       __ b(mi, &not_smi_result);
2407       __ SmiTag(right, scratch1);
2408       __ Ret();
2409       break;
2410     default:
2411       UNREACHABLE();
2412   }
2413   __ bind(&not_smi_result);
2414 }
2415 
2416 
GenerateFPOperation(MacroAssembler * masm,bool smi_operands,Label * not_numbers,Label * gc_required)2417 void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
2418                                        bool smi_operands,
2419                                        Label* not_numbers,
2420                                        Label* gc_required) {
2421   Register left = r1;
2422   Register right = r0;
2423   Register scratch1 = r7;
2424   Register scratch2 = r9;
2425   Register scratch3 = r4;
2426 
2427   ASSERT(smi_operands || (not_numbers != NULL));
2428   if (smi_operands && FLAG_debug_code) {
2429     __ AbortIfNotSmi(left);
2430     __ AbortIfNotSmi(right);
2431   }
2432 
2433   Register heap_number_map = r6;
2434   __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2435 
2436   switch (op_) {
2437     case Token::ADD:
2438     case Token::SUB:
2439     case Token::MUL:
2440     case Token::DIV:
2441     case Token::MOD: {
2442       // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
2443       // depending on whether VFP3 is available or not.
2444       FloatingPointHelper::Destination destination =
2445           CpuFeatures::IsSupported(VFP3) &&
2446           op_ != Token::MOD ?
2447           FloatingPointHelper::kVFPRegisters :
2448           FloatingPointHelper::kCoreRegisters;
2449 
2450       // Allocate new heap number for result.
2451       Register result = r5;
2452       GenerateHeapResultAllocation(
2453           masm, result, heap_number_map, scratch1, scratch2, gc_required);
2454 
2455       // Load the operands.
2456       if (smi_operands) {
2457         FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2458       } else {
2459         FloatingPointHelper::LoadOperands(masm,
2460                                           destination,
2461                                           heap_number_map,
2462                                           scratch1,
2463                                           scratch2,
2464                                           not_numbers);
2465       }
2466 
2467       // Calculate the result.
2468       if (destination == FloatingPointHelper::kVFPRegisters) {
2469         // Using VFP registers:
2470         // d6: Left value
2471         // d7: Right value
2472         CpuFeatures::Scope scope(VFP3);
2473         switch (op_) {
2474           case Token::ADD:
2475             __ vadd(d5, d6, d7);
2476             break;
2477           case Token::SUB:
2478             __ vsub(d5, d6, d7);
2479             break;
2480           case Token::MUL:
2481             __ vmul(d5, d6, d7);
2482             break;
2483           case Token::DIV:
2484             __ vdiv(d5, d6, d7);
2485             break;
2486           default:
2487             UNREACHABLE();
2488         }
2489 
2490         __ sub(r0, result, Operand(kHeapObjectTag));
2491         __ vstr(d5, r0, HeapNumber::kValueOffset);
2492         __ add(r0, r0, Operand(kHeapObjectTag));
2493         __ Ret();
2494       } else {
2495         // Call the C function to handle the double operation.
2496         FloatingPointHelper::CallCCodeForDoubleOperation(masm,
2497                                                          op_,
2498                                                          result,
2499                                                          scratch1);
2500         if (FLAG_debug_code) {
2501           __ stop("Unreachable code.");
2502         }
2503       }
2504       break;
2505     }
2506     case Token::BIT_OR:
2507     case Token::BIT_XOR:
2508     case Token::BIT_AND:
2509     case Token::SAR:
2510     case Token::SHR:
2511     case Token::SHL: {
2512       if (smi_operands) {
2513         __ SmiUntag(r3, left);
2514         __ SmiUntag(r2, right);
2515       } else {
2516         // Convert operands to 32-bit integers. Right in r2 and left in r3.
2517         FloatingPointHelper::ConvertNumberToInt32(masm,
2518                                                   left,
2519                                                   r3,
2520                                                   heap_number_map,
2521                                                   scratch1,
2522                                                   scratch2,
2523                                                   scratch3,
2524                                                   d0,
2525                                                   not_numbers);
2526         FloatingPointHelper::ConvertNumberToInt32(masm,
2527                                                   right,
2528                                                   r2,
2529                                                   heap_number_map,
2530                                                   scratch1,
2531                                                   scratch2,
2532                                                   scratch3,
2533                                                   d0,
2534                                                   not_numbers);
2535       }
2536 
2537       Label result_not_a_smi;
2538       switch (op_) {
2539         case Token::BIT_OR:
2540           __ orr(r2, r3, Operand(r2));
2541           break;
2542         case Token::BIT_XOR:
2543           __ eor(r2, r3, Operand(r2));
2544           break;
2545         case Token::BIT_AND:
2546           __ and_(r2, r3, Operand(r2));
2547           break;
2548         case Token::SAR:
2549           // Use only the 5 least significant bits of the shift count.
2550           __ GetLeastBitsFromInt32(r2, r2, 5);
2551           __ mov(r2, Operand(r3, ASR, r2));
2552           break;
2553         case Token::SHR:
2554           // Use only the 5 least significant bits of the shift count.
2555           __ GetLeastBitsFromInt32(r2, r2, 5);
2556           __ mov(r2, Operand(r3, LSR, r2), SetCC);
2557           // SHR is special because it is required to produce a positive answer.
2558           // The code below for writing into heap numbers isn't capable of
2559           // writing the register as an unsigned int so we go to slow case if we
2560           // hit this case.
2561           if (CpuFeatures::IsSupported(VFP3)) {
2562             __ b(mi, &result_not_a_smi);
2563           } else {
2564             __ b(mi, not_numbers);
2565           }
2566           break;
2567         case Token::SHL:
2568           // Use only the 5 least significant bits of the shift count.
2569           __ GetLeastBitsFromInt32(r2, r2, 5);
2570           __ mov(r2, Operand(r3, LSL, r2));
2571           break;
2572         default:
2573           UNREACHABLE();
2574       }
2575 
2576       // Check that the *signed* result fits in a smi.
2577       __ add(r3, r2, Operand(0x40000000), SetCC);
2578       __ b(mi, &result_not_a_smi);
2579       __ SmiTag(r0, r2);
2580       __ Ret();
2581 
2582       // Allocate new heap number for result.
2583       __ bind(&result_not_a_smi);
2584       Register result = r5;
2585       if (smi_operands) {
2586         __ AllocateHeapNumber(
2587             result, scratch1, scratch2, heap_number_map, gc_required);
2588       } else {
2589         GenerateHeapResultAllocation(
2590             masm, result, heap_number_map, scratch1, scratch2, gc_required);
2591       }
2592 
2593       // r2: Answer as signed int32.
2594       // r5: Heap number to write answer into.
2595 
2596       // Nothing can go wrong now, so move the heap number to r0, which is the
2597       // result.
2598       __ mov(r0, Operand(r5));
2599 
2600       if (CpuFeatures::IsSupported(VFP3)) {
2601         // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
2602         // mentioned above SHR needs to always produce a positive result.
2603         CpuFeatures::Scope scope(VFP3);
2604         __ vmov(s0, r2);
2605         if (op_ == Token::SHR) {
2606           __ vcvt_f64_u32(d0, s0);
2607         } else {
2608           __ vcvt_f64_s32(d0, s0);
2609         }
2610         __ sub(r3, r0, Operand(kHeapObjectTag));
2611         __ vstr(d0, r3, HeapNumber::kValueOffset);
2612         __ Ret();
2613       } else {
2614         // Tail call that writes the int32 in r2 to the heap number in r0, using
2615         // r3 as scratch. r0 is preserved and returned.
2616         WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2617         __ TailCallStub(&stub);
2618       }
2619       break;
2620     }
2621     default:
2622       UNREACHABLE();
2623   }
2624 }
2625 
2626 
2627 // Generate the smi code. If the operation on smis are successful this return is
2628 // generated. If the result is not a smi and heap number allocation is not
2629 // requested the code falls through. If number allocation is requested but a
2630 // heap number cannot be allocated the code jumps to the lable gc_required.
GenerateSmiCode(MacroAssembler * masm,Label * use_runtime,Label * gc_required,SmiCodeGenerateHeapNumberResults allow_heapnumber_results)2631 void BinaryOpStub::GenerateSmiCode(
2632     MacroAssembler* masm,
2633     Label* use_runtime,
2634     Label* gc_required,
2635     SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
2636   Label not_smis;
2637 
2638   Register left = r1;
2639   Register right = r0;
2640   Register scratch1 = r7;
2641 
2642   // Perform combined smi check on both operands.
2643   __ orr(scratch1, left, Operand(right));
2644   STATIC_ASSERT(kSmiTag == 0);
2645   __ JumpIfNotSmi(scratch1, &not_smis);
2646 
2647   // If the smi-smi operation results in a smi return is generated.
2648   GenerateSmiSmiOperation(masm);
2649 
2650   // If heap number results are possible generate the result in an allocated
2651   // heap number.
2652   if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
2653     GenerateFPOperation(masm, true, use_runtime, gc_required);
2654   }
2655   __ bind(&not_smis);
2656 }
2657 
2658 
GenerateSmiStub(MacroAssembler * masm)2659 void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
2660   Label not_smis, call_runtime;
2661 
2662   if (result_type_ == BinaryOpIC::UNINITIALIZED ||
2663       result_type_ == BinaryOpIC::SMI) {
2664     // Only allow smi results.
2665     GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
2666   } else {
2667     // Allow heap number result and don't make a transition if a heap number
2668     // cannot be allocated.
2669     GenerateSmiCode(masm,
2670                     &call_runtime,
2671                     &call_runtime,
2672                     ALLOW_HEAPNUMBER_RESULTS);
2673   }
2674 
2675   // Code falls through if the result is not returned as either a smi or heap
2676   // number.
2677   GenerateTypeTransition(masm);
2678 
2679   __ bind(&call_runtime);
2680   GenerateCallRuntime(masm);
2681 }
2682 
2683 
GenerateStringStub(MacroAssembler * masm)2684 void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
2685   ASSERT(operands_type_ == BinaryOpIC::STRING);
2686   ASSERT(op_ == Token::ADD);
2687   // Try to add arguments as strings, otherwise, transition to the generic
2688   // BinaryOpIC type.
2689   GenerateAddStrings(masm);
2690   GenerateTypeTransition(masm);
2691 }
2692 
2693 
GenerateBothStringStub(MacroAssembler * masm)2694 void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
2695   Label call_runtime;
2696   ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
2697   ASSERT(op_ == Token::ADD);
2698   // If both arguments are strings, call the string add stub.
2699   // Otherwise, do a transition.
2700 
2701   // Registers containing left and right operands respectively.
2702   Register left = r1;
2703   Register right = r0;
2704 
2705   // Test if left operand is a string.
2706   __ JumpIfSmi(left, &call_runtime);
2707   __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
2708   __ b(ge, &call_runtime);
2709 
2710   // Test if right operand is a string.
2711   __ JumpIfSmi(right, &call_runtime);
2712   __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
2713   __ b(ge, &call_runtime);
2714 
2715   StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2716   GenerateRegisterArgsPush(masm);
2717   __ TailCallStub(&string_add_stub);
2718 
2719   __ bind(&call_runtime);
2720   GenerateTypeTransition(masm);
2721 }
2722 
2723 
GenerateInt32Stub(MacroAssembler * masm)2724 void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
2725   ASSERT(operands_type_ == BinaryOpIC::INT32);
2726 
2727   Register left = r1;
2728   Register right = r0;
2729   Register scratch1 = r7;
2730   Register scratch2 = r9;
2731   DwVfpRegister double_scratch = d0;
2732   SwVfpRegister single_scratch = s3;
2733 
2734   Register heap_number_result = no_reg;
2735   Register heap_number_map = r6;
2736   __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2737 
2738   Label call_runtime;
2739   // Labels for type transition, used for wrong input or output types.
2740   // Both label are currently actually bound to the same position. We use two
2741   // different label to differentiate the cause leading to type transition.
2742   Label transition;
2743 
2744   // Smi-smi fast case.
2745   Label skip;
2746   __ orr(scratch1, left, right);
2747   __ JumpIfNotSmi(scratch1, &skip);
2748   GenerateSmiSmiOperation(masm);
2749   // Fall through if the result is not a smi.
2750   __ bind(&skip);
2751 
2752   switch (op_) {
2753     case Token::ADD:
2754     case Token::SUB:
2755     case Token::MUL:
2756     case Token::DIV:
2757     case Token::MOD: {
2758       // Load both operands and check that they are 32-bit integer.
2759       // Jump to type transition if they are not. The registers r0 and r1 (right
2760       // and left) are preserved for the runtime call.
2761       FloatingPointHelper::Destination destination =
2762           (CpuFeatures::IsSupported(VFP3) && op_ != Token::MOD)
2763               ? FloatingPointHelper::kVFPRegisters
2764               : FloatingPointHelper::kCoreRegisters;
2765 
2766       FloatingPointHelper::LoadNumberAsInt32Double(masm,
2767                                                    right,
2768                                                    destination,
2769                                                    d7,
2770                                                    r2,
2771                                                    r3,
2772                                                    heap_number_map,
2773                                                    scratch1,
2774                                                    scratch2,
2775                                                    s0,
2776                                                    &transition);
2777       FloatingPointHelper::LoadNumberAsInt32Double(masm,
2778                                                    left,
2779                                                    destination,
2780                                                    d6,
2781                                                    r4,
2782                                                    r5,
2783                                                    heap_number_map,
2784                                                    scratch1,
2785                                                    scratch2,
2786                                                    s0,
2787                                                    &transition);
2788 
2789       if (destination == FloatingPointHelper::kVFPRegisters) {
2790         CpuFeatures::Scope scope(VFP3);
2791         Label return_heap_number;
2792         switch (op_) {
2793           case Token::ADD:
2794             __ vadd(d5, d6, d7);
2795             break;
2796           case Token::SUB:
2797             __ vsub(d5, d6, d7);
2798             break;
2799           case Token::MUL:
2800             __ vmul(d5, d6, d7);
2801             break;
2802           case Token::DIV:
2803             __ vdiv(d5, d6, d7);
2804             break;
2805           default:
2806             UNREACHABLE();
2807         }
2808 
2809         if (op_ != Token::DIV) {
2810           // These operations produce an integer result.
2811           // Try to return a smi if we can.
2812           // Otherwise return a heap number if allowed, or jump to type
2813           // transition.
2814 
2815           __ EmitVFPTruncate(kRoundToZero,
2816                              single_scratch,
2817                              d5,
2818                              scratch1,
2819                              scratch2);
2820 
2821           if (result_type_ <= BinaryOpIC::INT32) {
2822             // If the ne condition is set, result does
2823             // not fit in a 32-bit integer.
2824             __ b(ne, &transition);
2825           }
2826 
2827           // Check if the result fits in a smi.
2828           __ vmov(scratch1, single_scratch);
2829           __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2830           // If not try to return a heap number.
2831           __ b(mi, &return_heap_number);
2832           // Check for minus zero. Return heap number for minus zero.
2833           Label not_zero;
2834           __ cmp(scratch1, Operand::Zero());
2835           __ b(ne, &not_zero);
2836           __ vmov(scratch2, d5.high());
2837           __ tst(scratch2, Operand(HeapNumber::kSignMask));
2838           __ b(ne, &return_heap_number);
2839           __ bind(&not_zero);
2840 
2841           // Tag the result and return.
2842           __ SmiTag(r0, scratch1);
2843           __ Ret();
2844         } else {
2845           // DIV just falls through to allocating a heap number.
2846         }
2847 
2848         __ bind(&return_heap_number);
2849         // Return a heap number, or fall through to type transition or runtime
2850         // call if we can't.
2851         if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
2852                                                  : BinaryOpIC::INT32)) {
2853           // We are using vfp registers so r5 is available.
2854           heap_number_result = r5;
2855           GenerateHeapResultAllocation(masm,
2856                                        heap_number_result,
2857                                        heap_number_map,
2858                                        scratch1,
2859                                        scratch2,
2860                                        &call_runtime);
2861           __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
2862           __ vstr(d5, r0, HeapNumber::kValueOffset);
2863           __ mov(r0, heap_number_result);
2864           __ Ret();
2865         }
2866 
2867         // A DIV operation expecting an integer result falls through
2868         // to type transition.
2869 
2870       } else {
2871         // We preserved r0 and r1 to be able to call runtime.
2872         // Save the left value on the stack.
2873         __ Push(r5, r4);
2874 
2875         Label pop_and_call_runtime;
2876 
2877         // Allocate a heap number to store the result.
2878         heap_number_result = r5;
2879         GenerateHeapResultAllocation(masm,
2880                                      heap_number_result,
2881                                      heap_number_map,
2882                                      scratch1,
2883                                      scratch2,
2884                                      &pop_and_call_runtime);
2885 
2886         // Load the left value from the value saved on the stack.
2887         __ Pop(r1, r0);
2888 
2889         // Call the C function to handle the double operation.
2890         FloatingPointHelper::CallCCodeForDoubleOperation(
2891             masm, op_, heap_number_result, scratch1);
2892         if (FLAG_debug_code) {
2893           __ stop("Unreachable code.");
2894         }
2895 
2896         __ bind(&pop_and_call_runtime);
2897         __ Drop(2);
2898         __ b(&call_runtime);
2899       }
2900 
2901       break;
2902     }
2903 
2904     case Token::BIT_OR:
2905     case Token::BIT_XOR:
2906     case Token::BIT_AND:
2907     case Token::SAR:
2908     case Token::SHR:
2909     case Token::SHL: {
2910       Label return_heap_number;
2911       Register scratch3 = r5;
2912       // Convert operands to 32-bit integers. Right in r2 and left in r3. The
2913       // registers r0 and r1 (right and left) are preserved for the runtime
2914       // call.
2915       FloatingPointHelper::LoadNumberAsInt32(masm,
2916                                              left,
2917                                              r3,
2918                                              heap_number_map,
2919                                              scratch1,
2920                                              scratch2,
2921                                              scratch3,
2922                                              d0,
2923                                              &transition);
2924       FloatingPointHelper::LoadNumberAsInt32(masm,
2925                                              right,
2926                                              r2,
2927                                              heap_number_map,
2928                                              scratch1,
2929                                              scratch2,
2930                                              scratch3,
2931                                              d0,
2932                                              &transition);
2933 
2934       // The ECMA-262 standard specifies that, for shift operations, only the
2935       // 5 least significant bits of the shift value should be used.
2936       switch (op_) {
2937         case Token::BIT_OR:
2938           __ orr(r2, r3, Operand(r2));
2939           break;
2940         case Token::BIT_XOR:
2941           __ eor(r2, r3, Operand(r2));
2942           break;
2943         case Token::BIT_AND:
2944           __ and_(r2, r3, Operand(r2));
2945           break;
2946         case Token::SAR:
2947           __ and_(r2, r2, Operand(0x1f));
2948           __ mov(r2, Operand(r3, ASR, r2));
2949           break;
2950         case Token::SHR:
2951           __ and_(r2, r2, Operand(0x1f));
2952           __ mov(r2, Operand(r3, LSR, r2), SetCC);
2953           // SHR is special because it is required to produce a positive answer.
2954           // We only get a negative result if the shift value (r2) is 0.
2955           // This result cannot be respresented as a signed 32-bit integer, try
2956           // to return a heap number if we can.
2957           // The non vfp3 code does not support this special case, so jump to
2958           // runtime if we don't support it.
2959           if (CpuFeatures::IsSupported(VFP3)) {
2960             __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2961                       ? &transition
2962                       : &return_heap_number);
2963           } else {
2964             __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2965                       ? &transition
2966                       : &call_runtime);
2967           }
2968           break;
2969         case Token::SHL:
2970           __ and_(r2, r2, Operand(0x1f));
2971           __ mov(r2, Operand(r3, LSL, r2));
2972           break;
2973         default:
2974           UNREACHABLE();
2975       }
2976 
2977       // Check if the result fits in a smi.
2978       __ add(scratch1, r2, Operand(0x40000000), SetCC);
2979       // If not try to return a heap number. (We know the result is an int32.)
2980       __ b(mi, &return_heap_number);
2981       // Tag the result and return.
2982       __ SmiTag(r0, r2);
2983       __ Ret();
2984 
2985       __ bind(&return_heap_number);
2986       heap_number_result = r5;
2987       GenerateHeapResultAllocation(masm,
2988                                    heap_number_result,
2989                                    heap_number_map,
2990                                    scratch1,
2991                                    scratch2,
2992                                    &call_runtime);
2993 
2994       if (CpuFeatures::IsSupported(VFP3)) {
2995         CpuFeatures::Scope scope(VFP3);
2996         if (op_ != Token::SHR) {
2997           // Convert the result to a floating point value.
2998           __ vmov(double_scratch.low(), r2);
2999           __ vcvt_f64_s32(double_scratch, double_scratch.low());
3000         } else {
3001           // The result must be interpreted as an unsigned 32-bit integer.
3002           __ vmov(double_scratch.low(), r2);
3003           __ vcvt_f64_u32(double_scratch, double_scratch.low());
3004         }
3005 
3006         // Store the result.
3007         __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
3008         __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
3009         __ mov(r0, heap_number_result);
3010         __ Ret();
3011       } else {
3012         // Tail call that writes the int32 in r2 to the heap number in r0, using
3013         // r3 as scratch. r0 is preserved and returned.
3014         __ mov(r0, r5);
3015         WriteInt32ToHeapNumberStub stub(r2, r0, r3);
3016         __ TailCallStub(&stub);
3017       }
3018 
3019       break;
3020     }
3021 
3022     default:
3023       UNREACHABLE();
3024   }
3025 
3026   // We never expect DIV to yield an integer result, so we always generate
3027   // type transition code for DIV operations expecting an integer result: the
3028   // code will fall through to this type transition.
3029   if (transition.is_linked() ||
3030       ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
3031     __ bind(&transition);
3032     GenerateTypeTransition(masm);
3033   }
3034 
3035   __ bind(&call_runtime);
3036   GenerateCallRuntime(masm);
3037 }
3038 
3039 
GenerateOddballStub(MacroAssembler * masm)3040 void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
3041   Label call_runtime;
3042 
3043   if (op_ == Token::ADD) {
3044     // Handle string addition here, because it is the only operation
3045     // that does not do a ToNumber conversion on the operands.
3046     GenerateAddStrings(masm);
3047   }
3048 
3049   // Convert oddball arguments to numbers.
3050   Label check, done;
3051   __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
3052   __ b(ne, &check);
3053   if (Token::IsBitOp(op_)) {
3054     __ mov(r1, Operand(Smi::FromInt(0)));
3055   } else {
3056     __ LoadRoot(r1, Heap::kNanValueRootIndex);
3057   }
3058   __ jmp(&done);
3059   __ bind(&check);
3060   __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
3061   __ b(ne, &done);
3062   if (Token::IsBitOp(op_)) {
3063     __ mov(r0, Operand(Smi::FromInt(0)));
3064   } else {
3065     __ LoadRoot(r0, Heap::kNanValueRootIndex);
3066   }
3067   __ bind(&done);
3068 
3069   GenerateHeapNumberStub(masm);
3070 }
3071 
3072 
GenerateHeapNumberStub(MacroAssembler * masm)3073 void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
3074   Label call_runtime;
3075   GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
3076 
3077   __ bind(&call_runtime);
3078   GenerateCallRuntime(masm);
3079 }
3080 
3081 
GenerateGeneric(MacroAssembler * masm)3082 void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
3083   Label call_runtime, call_string_add_or_runtime;
3084 
3085   GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
3086 
3087   GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
3088 
3089   __ bind(&call_string_add_or_runtime);
3090   if (op_ == Token::ADD) {
3091     GenerateAddStrings(masm);
3092   }
3093 
3094   __ bind(&call_runtime);
3095   GenerateCallRuntime(masm);
3096 }
3097 
3098 
GenerateAddStrings(MacroAssembler * masm)3099 void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
3100   ASSERT(op_ == Token::ADD);
3101   Label left_not_string, call_runtime;
3102 
3103   Register left = r1;
3104   Register right = r0;
3105 
3106   // Check if left argument is a string.
3107   __ JumpIfSmi(left, &left_not_string);
3108   __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
3109   __ b(ge, &left_not_string);
3110 
3111   StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
3112   GenerateRegisterArgsPush(masm);
3113   __ TailCallStub(&string_add_left_stub);
3114 
3115   // Left operand is not a string, test right.
3116   __ bind(&left_not_string);
3117   __ JumpIfSmi(right, &call_runtime);
3118   __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
3119   __ b(ge, &call_runtime);
3120 
3121   StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
3122   GenerateRegisterArgsPush(masm);
3123   __ TailCallStub(&string_add_right_stub);
3124 
3125   // At least one argument is not a string.
3126   __ bind(&call_runtime);
3127 }
3128 
3129 
GenerateCallRuntime(MacroAssembler * masm)3130 void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
3131   GenerateRegisterArgsPush(masm);
3132   switch (op_) {
3133     case Token::ADD:
3134       __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
3135       break;
3136     case Token::SUB:
3137       __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
3138       break;
3139     case Token::MUL:
3140       __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
3141       break;
3142     case Token::DIV:
3143       __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
3144       break;
3145     case Token::MOD:
3146       __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
3147       break;
3148     case Token::BIT_OR:
3149       __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
3150       break;
3151     case Token::BIT_AND:
3152       __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
3153       break;
3154     case Token::BIT_XOR:
3155       __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
3156       break;
3157     case Token::SAR:
3158       __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
3159       break;
3160     case Token::SHR:
3161       __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
3162       break;
3163     case Token::SHL:
3164       __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
3165       break;
3166     default:
3167       UNREACHABLE();
3168   }
3169 }
3170 
3171 
GenerateHeapResultAllocation(MacroAssembler * masm,Register result,Register heap_number_map,Register scratch1,Register scratch2,Label * gc_required)3172 void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
3173                                                 Register result,
3174                                                 Register heap_number_map,
3175                                                 Register scratch1,
3176                                                 Register scratch2,
3177                                                 Label* gc_required) {
3178   // Code below will scratch result if allocation fails. To keep both arguments
3179   // intact for the runtime call result cannot be one of these.
3180   ASSERT(!result.is(r0) && !result.is(r1));
3181 
3182   if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
3183     Label skip_allocation, allocated;
3184     Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
3185     // If the overwritable operand is already an object, we skip the
3186     // allocation of a heap number.
3187     __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
3188     // Allocate a heap number for the result.
3189     __ AllocateHeapNumber(
3190         result, scratch1, scratch2, heap_number_map, gc_required);
3191     __ b(&allocated);
3192     __ bind(&skip_allocation);
3193     // Use object holding the overwritable operand for result.
3194     __ mov(result, Operand(overwritable_operand));
3195     __ bind(&allocated);
3196   } else {
3197     ASSERT(mode_ == NO_OVERWRITE);
3198     __ AllocateHeapNumber(
3199         result, scratch1, scratch2, heap_number_map, gc_required);
3200   }
3201 }
3202 
3203 
GenerateRegisterArgsPush(MacroAssembler * masm)3204 void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
3205   __ Push(r1, r0);
3206 }
3207 
3208 
Generate(MacroAssembler * masm)3209 void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
3210   // Untagged case: double input in d2, double result goes
3211   //   into d2.
3212   // Tagged case: tagged input on top of stack and in r0,
3213   //   tagged result (heap number) goes into r0.
3214 
3215   Label input_not_smi;
3216   Label loaded;
3217   Label calculate;
3218   Label invalid_cache;
3219   const Register scratch0 = r9;
3220   const Register scratch1 = r7;
3221   const Register cache_entry = r0;
3222   const bool tagged = (argument_type_ == TAGGED);
3223 
3224   if (CpuFeatures::IsSupported(VFP3)) {
3225     CpuFeatures::Scope scope(VFP3);
3226     if (tagged) {
3227       // Argument is a number and is on stack and in r0.
3228       // Load argument and check if it is a smi.
3229       __ JumpIfNotSmi(r0, &input_not_smi);
3230 
3231       // Input is a smi. Convert to double and load the low and high words
3232       // of the double into r2, r3.
3233       __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
3234       __ b(&loaded);
3235 
3236       __ bind(&input_not_smi);
3237       // Check if input is a HeapNumber.
3238       __ CheckMap(r0,
3239                   r1,
3240                   Heap::kHeapNumberMapRootIndex,
3241                   &calculate,
3242                   DONT_DO_SMI_CHECK);
3243       // Input is a HeapNumber. Load it to a double register and store the
3244       // low and high words into r2, r3.
3245       __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
3246       __ vmov(r2, r3, d0);
3247     } else {
3248       // Input is untagged double in d2. Output goes to d2.
3249       __ vmov(r2, r3, d2);
3250     }
3251     __ bind(&loaded);
3252     // r2 = low 32 bits of double value
3253     // r3 = high 32 bits of double value
3254     // Compute hash (the shifts are arithmetic):
3255     //   h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3256     __ eor(r1, r2, Operand(r3));
3257     __ eor(r1, r1, Operand(r1, ASR, 16));
3258     __ eor(r1, r1, Operand(r1, ASR, 8));
3259     ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
3260     __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
3261 
3262     // r2 = low 32 bits of double value.
3263     // r3 = high 32 bits of double value.
3264     // r1 = TranscendentalCache::hash(double value).
3265     Isolate* isolate = masm->isolate();
3266     ExternalReference cache_array =
3267         ExternalReference::transcendental_cache_array_address(isolate);
3268     __ mov(cache_entry, Operand(cache_array));
3269     // cache_entry points to cache array.
3270     int cache_array_index
3271         = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
3272     __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
3273     // r0 points to the cache for the type type_.
3274     // If NULL, the cache hasn't been initialized yet, so go through runtime.
3275     __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
3276     __ b(eq, &invalid_cache);
3277 
3278 #ifdef DEBUG
3279     // Check that the layout of cache elements match expectations.
3280     { TranscendentalCache::SubCache::Element test_elem[2];
3281       char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3282       char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3283       char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3284       char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3285       char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3286       CHECK_EQ(12, elem2_start - elem_start);  // Two uint_32's and a pointer.
3287       CHECK_EQ(0, elem_in0 - elem_start);
3288       CHECK_EQ(kIntSize, elem_in1 - elem_start);
3289       CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3290     }
3291 #endif
3292 
3293     // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
3294     __ add(r1, r1, Operand(r1, LSL, 1));
3295     __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
3296     // Check if cache matches: Double value is stored in uint32_t[2] array.
3297     __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
3298     __ cmp(r2, r4);
3299     __ cmp(r3, r5, eq);
3300     __ b(ne, &calculate);
3301     // Cache hit. Load result, cleanup and return.
3302     Counters* counters = masm->isolate()->counters();
3303     __ IncrementCounter(
3304         counters->transcendental_cache_hit(), 1, scratch0, scratch1);
3305     if (tagged) {
3306       // Pop input value from stack and load result into r0.
3307       __ pop();
3308       __ mov(r0, Operand(r6));
3309     } else {
3310       // Load result into d2.
3311        __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3312     }
3313     __ Ret();
3314   }  // if (CpuFeatures::IsSupported(VFP3))
3315 
3316   __ bind(&calculate);
3317   Counters* counters = masm->isolate()->counters();
3318   __ IncrementCounter(
3319       counters->transcendental_cache_miss(), 1, scratch0, scratch1);
3320   if (tagged) {
3321     __ bind(&invalid_cache);
3322     ExternalReference runtime_function =
3323         ExternalReference(RuntimeFunction(), masm->isolate());
3324     __ TailCallExternalReference(runtime_function, 1, 1);
3325   } else {
3326     if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
3327     CpuFeatures::Scope scope(VFP3);
3328 
3329     Label no_update;
3330     Label skip_cache;
3331 
3332     // Call C function to calculate the result and update the cache.
3333     // Register r0 holds precalculated cache entry address; preserve
3334     // it on the stack and pop it into register cache_entry after the
3335     // call.
3336     __ push(cache_entry);
3337     GenerateCallCFunction(masm, scratch0);
3338     __ GetCFunctionDoubleResult(d2);
3339 
3340     // Try to update the cache. If we cannot allocate a
3341     // heap number, we return the result without updating.
3342     __ pop(cache_entry);
3343     __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3344     __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
3345     __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3346     __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
3347     __ Ret();
3348 
3349     __ bind(&invalid_cache);
3350     // The cache is invalid. Call runtime which will recreate the
3351     // cache.
3352     __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3353     __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
3354     __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3355     {
3356       FrameScope scope(masm, StackFrame::INTERNAL);
3357       __ push(r0);
3358       __ CallRuntime(RuntimeFunction(), 1);
3359     }
3360     __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3361     __ Ret();
3362 
3363     __ bind(&skip_cache);
3364     // Call C function to calculate the result and answer directly
3365     // without updating the cache.
3366     GenerateCallCFunction(masm, scratch0);
3367     __ GetCFunctionDoubleResult(d2);
3368     __ bind(&no_update);
3369 
3370     // We return the value in d2 without adding it to the cache, but
3371     // we cause a scavenging GC so that future allocations will succeed.
3372     {
3373       FrameScope scope(masm, StackFrame::INTERNAL);
3374 
3375       // Allocate an aligned object larger than a HeapNumber.
3376       ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3377       __ mov(scratch0, Operand(4 * kPointerSize));
3378       __ push(scratch0);
3379       __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3380     }
3381     __ Ret();
3382   }
3383 }
3384 
3385 
GenerateCallCFunction(MacroAssembler * masm,Register scratch)3386 void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3387                                                     Register scratch) {
3388   Isolate* isolate = masm->isolate();
3389 
3390   __ push(lr);
3391   __ PrepareCallCFunction(0, 1, scratch);
3392   if (masm->use_eabi_hardfloat()) {
3393     __ vmov(d0, d2);
3394   } else {
3395     __ vmov(r0, r1, d2);
3396   }
3397   AllowExternalCallThatCantCauseGC scope(masm);
3398   switch (type_) {
3399     case TranscendentalCache::SIN:
3400       __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
3401           0, 1);
3402       break;
3403     case TranscendentalCache::COS:
3404       __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
3405           0, 1);
3406       break;
3407     case TranscendentalCache::TAN:
3408       __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
3409           0, 1);
3410       break;
3411     case TranscendentalCache::LOG:
3412       __ CallCFunction(ExternalReference::math_log_double_function(isolate),
3413           0, 1);
3414       break;
3415     default:
3416       UNIMPLEMENTED();
3417       break;
3418   }
3419   __ pop(lr);
3420 }
3421 
3422 
RuntimeFunction()3423 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3424   switch (type_) {
3425     // Add more cases when necessary.
3426     case TranscendentalCache::SIN: return Runtime::kMath_sin;
3427     case TranscendentalCache::COS: return Runtime::kMath_cos;
3428     case TranscendentalCache::TAN: return Runtime::kMath_tan;
3429     case TranscendentalCache::LOG: return Runtime::kMath_log;
3430     default:
3431       UNIMPLEMENTED();
3432       return Runtime::kAbort;
3433   }
3434 }
3435 
3436 
Generate(MacroAssembler * masm)3437 void StackCheckStub::Generate(MacroAssembler* masm) {
3438   __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
3439 }
3440 
3441 
Generate(MacroAssembler * masm)3442 void InterruptStub::Generate(MacroAssembler* masm) {
3443   __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
3444 }
3445 
3446 
Generate(MacroAssembler * masm)3447 void MathPowStub::Generate(MacroAssembler* masm) {
3448   CpuFeatures::Scope vfp3_scope(VFP3);
3449   const Register base = r1;
3450   const Register exponent = r2;
3451   const Register heapnumbermap = r5;
3452   const Register heapnumber = r0;
3453   const DoubleRegister double_base = d1;
3454   const DoubleRegister double_exponent = d2;
3455   const DoubleRegister double_result = d3;
3456   const DoubleRegister double_scratch = d0;
3457   const SwVfpRegister single_scratch = s0;
3458   const Register scratch = r9;
3459   const Register scratch2 = r7;
3460 
3461   Label call_runtime, done, int_exponent;
3462   if (exponent_type_ == ON_STACK) {
3463     Label base_is_smi, unpack_exponent;
3464     // The exponent and base are supplied as arguments on the stack.
3465     // This can only happen if the stub is called from non-optimized code.
3466     // Load input parameters from stack to double registers.
3467     __ ldr(base, MemOperand(sp, 1 * kPointerSize));
3468     __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
3469 
3470     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
3471 
3472     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
3473     __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3474     __ cmp(scratch, heapnumbermap);
3475     __ b(ne, &call_runtime);
3476 
3477     __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3478     __ jmp(&unpack_exponent);
3479 
3480     __ bind(&base_is_smi);
3481     __ vmov(single_scratch, scratch);
3482     __ vcvt_f64_s32(double_base, single_scratch);
3483     __ bind(&unpack_exponent);
3484 
3485     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
3486 
3487     __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3488     __ cmp(scratch, heapnumbermap);
3489     __ b(ne, &call_runtime);
3490     __ vldr(double_exponent,
3491             FieldMemOperand(exponent, HeapNumber::kValueOffset));
3492   } else if (exponent_type_ == TAGGED) {
3493     // Base is already in double_base.
3494     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
3495 
3496     __ vldr(double_exponent,
3497             FieldMemOperand(exponent, HeapNumber::kValueOffset));
3498   }
3499 
3500   if (exponent_type_ != INTEGER) {
3501     Label int_exponent_convert;
3502     // Detect integer exponents stored as double.
3503     __ vcvt_u32_f64(single_scratch, double_exponent);
3504     // We do not check for NaN or Infinity here because comparing numbers on
3505     // ARM correctly distinguishes NaNs.  We end up calling the built-in.
3506     __ vcvt_f64_u32(double_scratch, single_scratch);
3507     __ VFPCompareAndSetFlags(double_scratch, double_exponent);
3508     __ b(eq, &int_exponent_convert);
3509 
3510     if (exponent_type_ == ON_STACK) {
3511       // Detect square root case.  Crankshaft detects constant +/-0.5 at
3512       // compile time and uses DoMathPowHalf instead.  We then skip this check
3513       // for non-constant cases of +/-0.5 as these hardly occur.
3514       Label not_plus_half;
3515 
3516       // Test for 0.5.
3517       __ vmov(double_scratch, 0.5);
3518       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3519       __ b(ne, &not_plus_half);
3520 
3521       // Calculates square root of base.  Check for the special case of
3522       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
3523       __ vmov(double_scratch, -V8_INFINITY);
3524       __ VFPCompareAndSetFlags(double_base, double_scratch);
3525       __ vneg(double_result, double_scratch, eq);
3526       __ b(eq, &done);
3527 
3528       // Add +0 to convert -0 to +0.
3529       __ vadd(double_scratch, double_base, kDoubleRegZero);
3530       __ vsqrt(double_result, double_scratch);
3531       __ jmp(&done);
3532 
3533       __ bind(&not_plus_half);
3534       __ vmov(double_scratch, -0.5);
3535       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
3536       __ b(ne, &call_runtime);
3537 
3538       // Calculates square root of base.  Check for the special case of
3539       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
3540       __ vmov(double_scratch, -V8_INFINITY);
3541       __ VFPCompareAndSetFlags(double_base, double_scratch);
3542       __ vmov(double_result, kDoubleRegZero, eq);
3543       __ b(eq, &done);
3544 
3545       // Add +0 to convert -0 to +0.
3546       __ vadd(double_scratch, double_base, kDoubleRegZero);
3547       __ vmov(double_result, 1);
3548       __ vsqrt(double_scratch, double_scratch);
3549       __ vdiv(double_result, double_result, double_scratch);
3550       __ jmp(&done);
3551     }
3552 
3553     __ push(lr);
3554     {
3555       AllowExternalCallThatCantCauseGC scope(masm);
3556       __ PrepareCallCFunction(0, 2, scratch);
3557       __ SetCallCDoubleArguments(double_base, double_exponent);
3558       __ CallCFunction(
3559           ExternalReference::power_double_double_function(masm->isolate()),
3560           0, 2);
3561     }
3562     __ pop(lr);
3563     __ GetCFunctionDoubleResult(double_result);
3564     __ jmp(&done);
3565 
3566     __ bind(&int_exponent_convert);
3567     __ vcvt_u32_f64(single_scratch, double_exponent);
3568     __ vmov(scratch, single_scratch);
3569   }
3570 
3571   // Calculate power with integer exponent.
3572   __ bind(&int_exponent);
3573 
3574   // Get two copies of exponent in the registers scratch and exponent.
3575   if (exponent_type_ == INTEGER) {
3576     __ mov(scratch, exponent);
3577   } else {
3578     // Exponent has previously been stored into scratch as untagged integer.
3579     __ mov(exponent, scratch);
3580   }
3581   __ vmov(double_scratch, double_base);  // Back up base.
3582   __ vmov(double_result, 1.0);
3583 
3584   // Get absolute value of exponent.
3585   __ cmp(scratch, Operand(0));
3586   __ mov(scratch2, Operand(0), LeaveCC, mi);
3587   __ sub(scratch, scratch2, scratch, LeaveCC, mi);
3588 
3589   Label while_true;
3590   __ bind(&while_true);
3591   __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
3592   __ vmul(double_result, double_result, double_scratch, cs);
3593   __ vmul(double_scratch, double_scratch, double_scratch, ne);
3594   __ b(ne, &while_true);
3595 
3596   __ cmp(exponent, Operand(0));
3597   __ b(ge, &done);
3598   __ vmov(double_scratch, 1.0);
3599   __ vdiv(double_result, double_scratch, double_result);
3600   // Test whether result is zero.  Bail out to check for subnormal result.
3601   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
3602   __ VFPCompareAndSetFlags(double_result, 0.0);
3603   __ b(ne, &done);
3604   // double_exponent may not containe the exponent value if the input was a
3605   // smi.  We set it with exponent value before bailing out.
3606   __ vmov(single_scratch, exponent);
3607   __ vcvt_f64_s32(double_exponent, single_scratch);
3608 
3609   // Returning or bailing out.
3610   Counters* counters = masm->isolate()->counters();
3611   if (exponent_type_ == ON_STACK) {
3612     // The arguments are still on the stack.
3613     __ bind(&call_runtime);
3614     __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3615 
3616     // The stub is called from non-optimized code, which expects the result
3617     // as heap number in exponent.
3618     __ bind(&done);
3619     __ AllocateHeapNumber(
3620         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
3621     __ vstr(double_result,
3622             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3623     ASSERT(heapnumber.is(r0));
3624     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3625     __ Ret(2);
3626   } else {
3627     __ push(lr);
3628     {
3629       AllowExternalCallThatCantCauseGC scope(masm);
3630       __ PrepareCallCFunction(0, 2, scratch);
3631       __ SetCallCDoubleArguments(double_base, double_exponent);
3632       __ CallCFunction(
3633           ExternalReference::power_double_double_function(masm->isolate()),
3634           0, 2);
3635     }
3636     __ pop(lr);
3637     __ GetCFunctionDoubleResult(double_result);
3638 
3639     __ bind(&done);
3640     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3641     __ Ret();
3642   }
3643 }
3644 
3645 
NeedsImmovableCode()3646 bool CEntryStub::NeedsImmovableCode() {
3647   return true;
3648 }
3649 
3650 
IsPregenerated()3651 bool CEntryStub::IsPregenerated() {
3652   return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
3653           result_size_ == 1;
3654 }
3655 
3656 
GenerateStubsAheadOfTime()3657 void CodeStub::GenerateStubsAheadOfTime() {
3658   CEntryStub::GenerateAheadOfTime();
3659   WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
3660   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
3661   RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
3662 }
3663 
3664 
GenerateFPStubs()3665 void CodeStub::GenerateFPStubs() {
3666   CEntryStub save_doubles(1, kSaveFPRegs);
3667   Handle<Code> code = save_doubles.GetCode();
3668   code->set_is_pregenerated(true);
3669   StoreBufferOverflowStub stub(kSaveFPRegs);
3670   stub.GetCode()->set_is_pregenerated(true);
3671   code->GetIsolate()->set_fp_stubs_generated(true);
3672 }
3673 
3674 
GenerateAheadOfTime()3675 void CEntryStub::GenerateAheadOfTime() {
3676   CEntryStub stub(1, kDontSaveFPRegs);
3677   Handle<Code> code = stub.GetCode();
3678   code->set_is_pregenerated(true);
3679 }
3680 
3681 
GenerateCore(MacroAssembler * masm,Label * throw_normal_exception,Label * throw_termination_exception,Label * throw_out_of_memory_exception,bool do_gc,bool always_allocate)3682 void CEntryStub::GenerateCore(MacroAssembler* masm,
3683                               Label* throw_normal_exception,
3684                               Label* throw_termination_exception,
3685                               Label* throw_out_of_memory_exception,
3686                               bool do_gc,
3687                               bool always_allocate) {
3688   // r0: result parameter for PerformGC, if any
3689   // r4: number of arguments including receiver  (C callee-saved)
3690   // r5: pointer to builtin function  (C callee-saved)
3691   // r6: pointer to the first argument (C callee-saved)
3692   Isolate* isolate = masm->isolate();
3693 
3694   if (do_gc) {
3695     // Passing r0.
3696     __ PrepareCallCFunction(1, 0, r1);
3697     __ CallCFunction(ExternalReference::perform_gc_function(isolate),
3698         1, 0);
3699   }
3700 
3701   ExternalReference scope_depth =
3702       ExternalReference::heap_always_allocate_scope_depth(isolate);
3703   if (always_allocate) {
3704     __ mov(r0, Operand(scope_depth));
3705     __ ldr(r1, MemOperand(r0));
3706     __ add(r1, r1, Operand(1));
3707     __ str(r1, MemOperand(r0));
3708   }
3709 
3710   // Call C built-in.
3711   // r0 = argc, r1 = argv
3712   __ mov(r0, Operand(r4));
3713   __ mov(r1, Operand(r6));
3714 
3715 #if defined(V8_HOST_ARCH_ARM)
3716   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
3717   int frame_alignment_mask = frame_alignment - 1;
3718   if (FLAG_debug_code) {
3719     if (frame_alignment > kPointerSize) {
3720       Label alignment_as_expected;
3721       ASSERT(IsPowerOf2(frame_alignment));
3722       __ tst(sp, Operand(frame_alignment_mask));
3723       __ b(eq, &alignment_as_expected);
3724       // Don't use Check here, as it will call Runtime_Abort re-entering here.
3725       __ stop("Unexpected alignment");
3726       __ bind(&alignment_as_expected);
3727     }
3728   }
3729 #endif
3730 
3731   __ mov(r2, Operand(ExternalReference::isolate_address()));
3732 
3733   // To let the GC traverse the return address of the exit frames, we need to
3734   // know where the return address is. The CEntryStub is unmovable, so
3735   // we can store the address on the stack to be able to find it again and
3736   // we never have to restore it, because it will not change.
3737   // Compute the return address in lr to return to after the jump below. Pc is
3738   // already at '+ 8' from the current instruction but return is after three
3739   // instructions so add another 4 to pc to get the return address.
3740   masm->add(lr, pc, Operand(4));
3741   __ str(lr, MemOperand(sp, 0));
3742   masm->Jump(r5);
3743 
3744   if (always_allocate) {
3745     // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
3746     // though (contain the result).
3747     __ mov(r2, Operand(scope_depth));
3748     __ ldr(r3, MemOperand(r2));
3749     __ sub(r3, r3, Operand(1));
3750     __ str(r3, MemOperand(r2));
3751   }
3752 
3753   // check for failure result
3754   Label failure_returned;
3755   STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3756   // Lower 2 bits of r2 are 0 iff r0 has failure tag.
3757   __ add(r2, r0, Operand(1));
3758   __ tst(r2, Operand(kFailureTagMask));
3759   __ b(eq, &failure_returned);
3760 
3761   // Exit C frame and return.
3762   // r0:r1: result
3763   // sp: stack pointer
3764   // fp: frame pointer
3765   //  Callee-saved register r4 still holds argc.
3766   __ LeaveExitFrame(save_doubles_, r4);
3767   __ mov(pc, lr);
3768 
3769   // check if we should retry or throw exception
3770   Label retry;
3771   __ bind(&failure_returned);
3772   STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3773   __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
3774   __ b(eq, &retry);
3775 
3776   // Special handling of out of memory exceptions.
3777   Failure* out_of_memory = Failure::OutOfMemoryException();
3778   __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
3779   __ b(eq, throw_out_of_memory_exception);
3780 
3781   // Retrieve the pending exception and clear the variable.
3782   __ mov(r3, Operand(isolate->factory()->the_hole_value()));
3783   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3784                                        isolate)));
3785   __ ldr(r0, MemOperand(ip));
3786   __ str(r3, MemOperand(ip));
3787 
3788   // Special handling of termination exceptions which are uncatchable
3789   // by javascript code.
3790   __ cmp(r0, Operand(isolate->factory()->termination_exception()));
3791   __ b(eq, throw_termination_exception);
3792 
3793   // Handle normal exception.
3794   __ jmp(throw_normal_exception);
3795 
3796   __ bind(&retry);  // pass last failure (r0) as parameter (r0) when retrying
3797 }
3798 
3799 
Generate(MacroAssembler * masm)3800 void CEntryStub::Generate(MacroAssembler* masm) {
3801   // Called from JavaScript; parameters are on stack as if calling JS function
3802   // r0: number of arguments including receiver
3803   // r1: pointer to builtin function
3804   // fp: frame pointer  (restored after C call)
3805   // sp: stack pointer  (restored as callee's sp after C call)
3806   // cp: current context  (C callee-saved)
3807 
3808   // Result returned in r0 or r0+r1 by default.
3809 
3810   // NOTE: Invocations of builtins may return failure objects
3811   // instead of a proper result. The builtin entry handles
3812   // this by performing a garbage collection and retrying the
3813   // builtin once.
3814 
3815   // Compute the argv pointer in a callee-saved register.
3816   __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
3817   __ sub(r6, r6, Operand(kPointerSize));
3818 
3819   // Enter the exit frame that transitions from JavaScript to C++.
3820   FrameScope scope(masm, StackFrame::MANUAL);
3821   __ EnterExitFrame(save_doubles_);
3822 
3823   // Set up argc and the builtin function in callee-saved registers.
3824   __ mov(r4, Operand(r0));
3825   __ mov(r5, Operand(r1));
3826 
3827   // r4: number of arguments (C callee-saved)
3828   // r5: pointer to builtin function (C callee-saved)
3829   // r6: pointer to first argument (C callee-saved)
3830 
3831   Label throw_normal_exception;
3832   Label throw_termination_exception;
3833   Label throw_out_of_memory_exception;
3834 
3835   // Call into the runtime system.
3836   GenerateCore(masm,
3837                &throw_normal_exception,
3838                &throw_termination_exception,
3839                &throw_out_of_memory_exception,
3840                false,
3841                false);
3842 
3843   // Do space-specific GC and retry runtime call.
3844   GenerateCore(masm,
3845                &throw_normal_exception,
3846                &throw_termination_exception,
3847                &throw_out_of_memory_exception,
3848                true,
3849                false);
3850 
3851   // Do full GC and retry runtime call one final time.
3852   Failure* failure = Failure::InternalError();
3853   __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
3854   GenerateCore(masm,
3855                &throw_normal_exception,
3856                &throw_termination_exception,
3857                &throw_out_of_memory_exception,
3858                true,
3859                true);
3860 
3861   __ bind(&throw_out_of_memory_exception);
3862   // Set external caught exception to false.
3863   Isolate* isolate = masm->isolate();
3864   ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
3865                                     isolate);
3866   __ mov(r0, Operand(false, RelocInfo::NONE));
3867   __ mov(r2, Operand(external_caught));
3868   __ str(r0, MemOperand(r2));
3869 
3870   // Set pending exception and r0 to out of memory exception.
3871   Failure* out_of_memory = Failure::OutOfMemoryException();
3872   __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
3873   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3874                                        isolate)));
3875   __ str(r0, MemOperand(r2));
3876   // Fall through to the next label.
3877 
3878   __ bind(&throw_termination_exception);
3879   __ ThrowUncatchable(r0);
3880 
3881   __ bind(&throw_normal_exception);
3882   __ Throw(r0);
3883 }
3884 
3885 
GenerateBody(MacroAssembler * masm,bool is_construct)3886 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
3887   // r0: code entry
3888   // r1: function
3889   // r2: receiver
3890   // r3: argc
3891   // [sp+0]: argv
3892 
3893   Label invoke, handler_entry, exit;
3894 
3895   // Called from C, so do not pop argc and args on exit (preserve sp)
3896   // No need to save register-passed args
3897   // Save callee-saved registers (incl. cp and fp), sp, and lr
3898   __ stm(db_w, sp, kCalleeSaved | lr.bit());
3899 
3900   if (CpuFeatures::IsSupported(VFP3)) {
3901     CpuFeatures::Scope scope(VFP3);
3902     // Save callee-saved vfp registers.
3903     __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
3904     // Set up the reserved register for 0.0.
3905     __ vmov(kDoubleRegZero, 0.0);
3906   }
3907 
3908   // Get address of argv, see stm above.
3909   // r0: code entry
3910   // r1: function
3911   // r2: receiver
3912   // r3: argc
3913 
3914   // Set up argv in r4.
3915   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
3916   if (CpuFeatures::IsSupported(VFP3)) {
3917     offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
3918   }
3919   __ ldr(r4, MemOperand(sp, offset_to_argv));
3920 
3921   // Push a frame with special values setup to mark it as an entry frame.
3922   // r0: code entry
3923   // r1: function
3924   // r2: receiver
3925   // r3: argc
3926   // r4: argv
3927   Isolate* isolate = masm->isolate();
3928   __ mov(r8, Operand(-1));  // Push a bad frame pointer to fail if it is used.
3929   int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
3930   __ mov(r7, Operand(Smi::FromInt(marker)));
3931   __ mov(r6, Operand(Smi::FromInt(marker)));
3932   __ mov(r5,
3933          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
3934   __ ldr(r5, MemOperand(r5));
3935   __ Push(r8, r7, r6, r5);
3936 
3937   // Set up frame pointer for the frame to be pushed.
3938   __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
3939 
3940   // If this is the outermost JS call, set js_entry_sp value.
3941   Label non_outermost_js;
3942   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
3943   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
3944   __ ldr(r6, MemOperand(r5));
3945   __ cmp(r6, Operand::Zero());
3946   __ b(ne, &non_outermost_js);
3947   __ str(fp, MemOperand(r5));
3948   __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
3949   Label cont;
3950   __ b(&cont);
3951   __ bind(&non_outermost_js);
3952   __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
3953   __ bind(&cont);
3954   __ push(ip);
3955 
3956   // Jump to a faked try block that does the invoke, with a faked catch
3957   // block that sets the pending exception.
3958   __ jmp(&invoke);
3959   __ bind(&handler_entry);
3960   handler_offset_ = handler_entry.pos();
3961   // Caught exception: Store result (exception) in the pending exception
3962   // field in the JSEnv and return a failure sentinel.  Coming in here the
3963   // fp will be invalid because the PushTryHandler below sets it to 0 to
3964   // signal the existence of the JSEntry frame.
3965   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3966                                        isolate)));
3967   __ str(r0, MemOperand(ip));
3968   __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
3969   __ b(&exit);
3970 
3971   // Invoke: Link this frame into the handler chain.  There's only one
3972   // handler block in this code object, so its index is 0.
3973   __ bind(&invoke);
3974   // Must preserve r0-r4, r5-r7 are available.
3975   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
3976   // If an exception not caught by another handler occurs, this handler
3977   // returns control to the code after the bl(&invoke) above, which
3978   // restores all kCalleeSaved registers (including cp and fp) to their
3979   // saved values before returning a failure to C.
3980 
3981   // Clear any pending exceptions.
3982   __ mov(r5, Operand(isolate->factory()->the_hole_value()));
3983   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3984                                        isolate)));
3985   __ str(r5, MemOperand(ip));
3986 
3987   // Invoke the function by calling through JS entry trampoline builtin.
3988   // Notice that we cannot store a reference to the trampoline code directly in
3989   // this stub, because runtime stubs are not traversed when doing GC.
3990 
3991   // Expected registers by Builtins::JSEntryTrampoline
3992   // r0: code entry
3993   // r1: function
3994   // r2: receiver
3995   // r3: argc
3996   // r4: argv
3997   if (is_construct) {
3998     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
3999                                       isolate);
4000     __ mov(ip, Operand(construct_entry));
4001   } else {
4002     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
4003     __ mov(ip, Operand(entry));
4004   }
4005   __ ldr(ip, MemOperand(ip));  // deref address
4006 
4007   // Branch and link to JSEntryTrampoline.  We don't use the double underscore
4008   // macro for the add instruction because we don't want the coverage tool
4009   // inserting instructions here after we read the pc.
4010   __ mov(lr, Operand(pc));
4011   masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
4012 
4013   // Unlink this frame from the handler chain.
4014   __ PopTryHandler();
4015 
4016   __ bind(&exit);  // r0 holds result
4017   // Check if the current stack frame is marked as the outermost JS frame.
4018   Label non_outermost_js_2;
4019   __ pop(r5);
4020   __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4021   __ b(ne, &non_outermost_js_2);
4022   __ mov(r6, Operand::Zero());
4023   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
4024   __ str(r6, MemOperand(r5));
4025   __ bind(&non_outermost_js_2);
4026 
4027   // Restore the top frame descriptors from the stack.
4028   __ pop(r3);
4029   __ mov(ip,
4030          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
4031   __ str(r3, MemOperand(ip));
4032 
4033   // Reset the stack to the callee saved registers.
4034   __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
4035 
4036   // Restore callee-saved registers and return.
4037 #ifdef DEBUG
4038   if (FLAG_debug_code) {
4039     __ mov(lr, Operand(pc));
4040   }
4041 #endif
4042 
4043   if (CpuFeatures::IsSupported(VFP3)) {
4044     CpuFeatures::Scope scope(VFP3);
4045     // Restore callee-saved vfp registers.
4046     __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
4047   }
4048 
4049   __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
4050 }
4051 
4052 
4053 // Uses registers r0 to r4.
4054 // Expected input (depending on whether args are in registers or on the stack):
4055 // * object: r0 or at sp + 1 * kPointerSize.
4056 // * function: r1 or at sp.
4057 //
4058 // An inlined call site may have been generated before calling this stub.
4059 // In this case the offset to the inline site to patch is passed on the stack,
4060 // in the safepoint slot for register r4.
4061 // (See LCodeGen::DoInstanceOfKnownGlobal)
Generate(MacroAssembler * masm)4062 void InstanceofStub::Generate(MacroAssembler* masm) {
4063   // Call site inlining and patching implies arguments in registers.
4064   ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4065   // ReturnTrueFalse is only implemented for inlined call sites.
4066   ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
4067 
4068   // Fixed register usage throughout the stub:
4069   const Register object = r0;  // Object (lhs).
4070   Register map = r3;  // Map of the object.
4071   const Register function = r1;  // Function (rhs).
4072   const Register prototype = r4;  // Prototype of the function.
4073   const Register inline_site = r9;
4074   const Register scratch = r2;
4075 
4076   const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
4077 
4078   Label slow, loop, is_instance, is_not_instance, not_js_object;
4079 
4080   if (!HasArgsInRegisters()) {
4081     __ ldr(object, MemOperand(sp, 1 * kPointerSize));
4082     __ ldr(function, MemOperand(sp, 0));
4083   }
4084 
4085   // Check that the left hand is a JS object and load map.
4086   __ JumpIfSmi(object, &not_js_object);
4087   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
4088 
4089   // If there is a call site cache don't look in the global cache, but do the
4090   // real lookup and update the call site cache.
4091   if (!HasCallSiteInlineCheck()) {
4092     Label miss;
4093     __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4094     __ b(ne, &miss);
4095     __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
4096     __ b(ne, &miss);
4097     __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4098     __ Ret(HasArgsInRegisters() ? 0 : 2);
4099 
4100     __ bind(&miss);
4101   }
4102 
4103   // Get the prototype of the function.
4104   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
4105 
4106   // Check that the function prototype is a JS object.
4107   __ JumpIfSmi(prototype, &slow);
4108   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
4109 
4110   // Update the global instanceof or call site inlined cache with the current
4111   // map and function. The cached answer will be set when it is known below.
4112   if (!HasCallSiteInlineCheck()) {
4113     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4114     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
4115   } else {
4116     ASSERT(HasArgsInRegisters());
4117     // Patch the (relocated) inlined map check.
4118 
4119     // The offset was stored in r4 safepoint slot.
4120     // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
4121     __ LoadFromSafepointRegisterSlot(scratch, r4);
4122     __ sub(inline_site, lr, scratch);
4123     // Get the map location in scratch and patch it.
4124     __ GetRelocatedValueLocation(inline_site, scratch);
4125     __ ldr(scratch, MemOperand(scratch));
4126     __ str(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
4127   }
4128 
4129   // Register mapping: r3 is object map and r4 is function prototype.
4130   // Get prototype of object into r2.
4131   __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
4132 
4133   // We don't need map any more. Use it as a scratch register.
4134   Register scratch2 = map;
4135   map = no_reg;
4136 
4137   // Loop through the prototype chain looking for the function prototype.
4138   __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
4139   __ bind(&loop);
4140   __ cmp(scratch, Operand(prototype));
4141   __ b(eq, &is_instance);
4142   __ cmp(scratch, scratch2);
4143   __ b(eq, &is_not_instance);
4144   __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
4145   __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
4146   __ jmp(&loop);
4147 
4148   __ bind(&is_instance);
4149   if (!HasCallSiteInlineCheck()) {
4150     __ mov(r0, Operand(Smi::FromInt(0)));
4151     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4152   } else {
4153     // Patch the call site to return true.
4154     __ LoadRoot(r0, Heap::kTrueValueRootIndex);
4155     __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4156     // Get the boolean result location in scratch and patch it.
4157     __ GetRelocatedValueLocation(inline_site, scratch);
4158     __ str(r0, MemOperand(scratch));
4159 
4160     if (!ReturnTrueFalseObject()) {
4161       __ mov(r0, Operand(Smi::FromInt(0)));
4162     }
4163   }
4164   __ Ret(HasArgsInRegisters() ? 0 : 2);
4165 
4166   __ bind(&is_not_instance);
4167   if (!HasCallSiteInlineCheck()) {
4168     __ mov(r0, Operand(Smi::FromInt(1)));
4169     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4170   } else {
4171     // Patch the call site to return false.
4172     __ LoadRoot(r0, Heap::kFalseValueRootIndex);
4173     __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4174     // Get the boolean result location in scratch and patch it.
4175     __ GetRelocatedValueLocation(inline_site, scratch);
4176     __ str(r0, MemOperand(scratch));
4177 
4178     if (!ReturnTrueFalseObject()) {
4179       __ mov(r0, Operand(Smi::FromInt(1)));
4180     }
4181   }
4182   __ Ret(HasArgsInRegisters() ? 0 : 2);
4183 
4184   Label object_not_null, object_not_null_or_smi;
4185   __ bind(&not_js_object);
4186   // Before null, smi and string value checks, check that the rhs is a function
4187   // as for a non-function rhs an exception needs to be thrown.
4188   __ JumpIfSmi(function, &slow);
4189   __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
4190   __ b(ne, &slow);
4191 
4192   // Null is not instance of anything.
4193   __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
4194   __ b(ne, &object_not_null);
4195   __ mov(r0, Operand(Smi::FromInt(1)));
4196   __ Ret(HasArgsInRegisters() ? 0 : 2);
4197 
4198   __ bind(&object_not_null);
4199   // Smi values are not instances of anything.
4200   __ JumpIfNotSmi(object, &object_not_null_or_smi);
4201   __ mov(r0, Operand(Smi::FromInt(1)));
4202   __ Ret(HasArgsInRegisters() ? 0 : 2);
4203 
4204   __ bind(&object_not_null_or_smi);
4205   // String values are not instances of anything.
4206   __ IsObjectJSStringType(object, scratch, &slow);
4207   __ mov(r0, Operand(Smi::FromInt(1)));
4208   __ Ret(HasArgsInRegisters() ? 0 : 2);
4209 
4210   // Slow-case.  Tail call builtin.
4211   __ bind(&slow);
4212   if (!ReturnTrueFalseObject()) {
4213     if (HasArgsInRegisters()) {
4214       __ Push(r0, r1);
4215     }
4216   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
4217   } else {
4218     {
4219       FrameScope scope(masm, StackFrame::INTERNAL);
4220       __ Push(r0, r1);
4221       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4222     }
4223     __ cmp(r0, Operand::Zero());
4224     __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
4225     __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
4226     __ Ret(HasArgsInRegisters() ? 0 : 2);
4227   }
4228 }
4229 
4230 
left()4231 Register InstanceofStub::left() { return r0; }
4232 
4233 
right()4234 Register InstanceofStub::right() { return r1; }
4235 
4236 
GenerateReadElement(MacroAssembler * masm)4237 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
4238   // The displacement is the offset of the last parameter (if any)
4239   // relative to the frame pointer.
4240   const int kDisplacement =
4241       StandardFrameConstants::kCallerSPOffset - kPointerSize;
4242 
4243   // Check that the key is a smi.
4244   Label slow;
4245   __ JumpIfNotSmi(r1, &slow);
4246 
4247   // Check if the calling frame is an arguments adaptor frame.
4248   Label adaptor;
4249   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4250   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4251   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4252   __ b(eq, &adaptor);
4253 
4254   // Check index against formal parameters count limit passed in
4255   // through register r0. Use unsigned comparison to get negative
4256   // check for free.
4257   __ cmp(r1, r0);
4258   __ b(hs, &slow);
4259 
4260   // Read the argument from the stack and return it.
4261   __ sub(r3, r0, r1);
4262   __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4263   __ ldr(r0, MemOperand(r3, kDisplacement));
4264   __ Jump(lr);
4265 
4266   // Arguments adaptor case: Check index against actual arguments
4267   // limit found in the arguments adaptor frame. Use unsigned
4268   // comparison to get negative check for free.
4269   __ bind(&adaptor);
4270   __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4271   __ cmp(r1, r0);
4272   __ b(cs, &slow);
4273 
4274   // Read the argument from the adaptor frame and return it.
4275   __ sub(r3, r0, r1);
4276   __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4277   __ ldr(r0, MemOperand(r3, kDisplacement));
4278   __ Jump(lr);
4279 
4280   // Slow-case: Handle non-smi or out-of-bounds access to arguments
4281   // by calling the runtime system.
4282   __ bind(&slow);
4283   __ push(r1);
4284   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
4285 }
4286 
4287 
GenerateNewNonStrictSlow(MacroAssembler * masm)4288 void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
4289   // sp[0] : number of parameters
4290   // sp[4] : receiver displacement
4291   // sp[8] : function
4292 
4293   // Check if the calling frame is an arguments adaptor frame.
4294   Label runtime;
4295   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4296   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4297   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4298   __ b(ne, &runtime);
4299 
4300   // Patch the arguments.length and the parameters pointer in the current frame.
4301   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4302   __ str(r2, MemOperand(sp, 0 * kPointerSize));
4303   __ add(r3, r3, Operand(r2, LSL, 1));
4304   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4305   __ str(r3, MemOperand(sp, 1 * kPointerSize));
4306 
4307   __ bind(&runtime);
4308   __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4309 }
4310 
4311 
GenerateNewNonStrictFast(MacroAssembler * masm)4312 void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
4313   // Stack layout:
4314   //  sp[0] : number of parameters (tagged)
4315   //  sp[4] : address of receiver argument
4316   //  sp[8] : function
4317   // Registers used over whole function:
4318   //  r6 : allocated object (tagged)
4319   //  r9 : mapped parameter count (tagged)
4320 
4321   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
4322   // r1 = parameter count (tagged)
4323 
4324   // Check if the calling frame is an arguments adaptor frame.
4325   Label runtime;
4326   Label adaptor_frame, try_allocate;
4327   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4328   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
4329   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4330   __ b(eq, &adaptor_frame);
4331 
4332   // No adaptor, parameter count = argument count.
4333   __ mov(r2, r1);
4334   __ b(&try_allocate);
4335 
4336   // We have an adaptor frame. Patch the parameters pointer.
4337   __ bind(&adaptor_frame);
4338   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4339   __ add(r3, r3, Operand(r2, LSL, 1));
4340   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4341   __ str(r3, MemOperand(sp, 1 * kPointerSize));
4342 
4343   // r1 = parameter count (tagged)
4344   // r2 = argument count (tagged)
4345   // Compute the mapped parameter count = min(r1, r2) in r1.
4346   __ cmp(r1, Operand(r2));
4347   __ mov(r1, Operand(r2), LeaveCC, gt);
4348 
4349   __ bind(&try_allocate);
4350 
4351   // Compute the sizes of backing store, parameter map, and arguments object.
4352   // 1. Parameter map, has 2 extra words containing context and backing store.
4353   const int kParameterMapHeaderSize =
4354       FixedArray::kHeaderSize + 2 * kPointerSize;
4355   // If there are no mapped parameters, we do not need the parameter_map.
4356   __ cmp(r1, Operand(Smi::FromInt(0)));
4357   __ mov(r9, Operand::Zero(), LeaveCC, eq);
4358   __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
4359   __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
4360 
4361   // 2. Backing store.
4362   __ add(r9, r9, Operand(r2, LSL, 1));
4363   __ add(r9, r9, Operand(FixedArray::kHeaderSize));
4364 
4365   // 3. Arguments object.
4366   __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
4367 
4368   // Do the allocation of all three objects in one go.
4369   __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT);
4370 
4371   // r0 = address of new object(s) (tagged)
4372   // r2 = argument count (tagged)
4373   // Get the arguments boilerplate from the current (global) context into r4.
4374   const int kNormalOffset =
4375       Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4376   const int kAliasedOffset =
4377       Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
4378 
4379   __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_INDEX)));
4380   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
4381   __ cmp(r1, Operand::Zero());
4382   __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
4383   __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
4384 
4385   // r0 = address of new object (tagged)
4386   // r1 = mapped parameter count (tagged)
4387   // r2 = argument count (tagged)
4388   // r4 = address of boilerplate object (tagged)
4389   // Copy the JS object part.
4390   for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
4391     __ ldr(r3, FieldMemOperand(r4, i));
4392     __ str(r3, FieldMemOperand(r0, i));
4393   }
4394 
4395   // Set up the callee in-object property.
4396   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
4397   __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
4398   const int kCalleeOffset = JSObject::kHeaderSize +
4399       Heap::kArgumentsCalleeIndex * kPointerSize;
4400   __ str(r3, FieldMemOperand(r0, kCalleeOffset));
4401 
4402   // Use the length (smi tagged) and set that as an in-object property too.
4403   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4404   const int kLengthOffset = JSObject::kHeaderSize +
4405       Heap::kArgumentsLengthIndex * kPointerSize;
4406   __ str(r2, FieldMemOperand(r0, kLengthOffset));
4407 
4408   // Set up the elements pointer in the allocated arguments object.
4409   // If we allocated a parameter map, r4 will point there, otherwise
4410   // it will point to the backing store.
4411   __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
4412   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4413 
4414   // r0 = address of new object (tagged)
4415   // r1 = mapped parameter count (tagged)
4416   // r2 = argument count (tagged)
4417   // r4 = address of parameter map or backing store (tagged)
4418   // Initialize parameter map. If there are no mapped arguments, we're done.
4419   Label skip_parameter_map;
4420   __ cmp(r1, Operand(Smi::FromInt(0)));
4421   // Move backing store address to r3, because it is
4422   // expected there when filling in the unmapped arguments.
4423   __ mov(r3, r4, LeaveCC, eq);
4424   __ b(eq, &skip_parameter_map);
4425 
4426   __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
4427   __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
4428   __ add(r6, r1, Operand(Smi::FromInt(2)));
4429   __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
4430   __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
4431   __ add(r6, r4, Operand(r1, LSL, 1));
4432   __ add(r6, r6, Operand(kParameterMapHeaderSize));
4433   __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
4434 
4435   // Copy the parameter slots and the holes in the arguments.
4436   // We need to fill in mapped_parameter_count slots. They index the context,
4437   // where parameters are stored in reverse order, at
4438   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4439   // The mapped parameter thus need to get indices
4440   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
4441   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4442   // We loop from right to left.
4443   Label parameters_loop, parameters_test;
4444   __ mov(r6, r1);
4445   __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
4446   __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4447   __ sub(r9, r9, Operand(r1));
4448   __ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
4449   __ add(r3, r4, Operand(r6, LSL, 1));
4450   __ add(r3, r3, Operand(kParameterMapHeaderSize));
4451 
4452   // r6 = loop variable (tagged)
4453   // r1 = mapping index (tagged)
4454   // r3 = address of backing store (tagged)
4455   // r4 = address of parameter map (tagged)
4456   // r5 = temporary scratch (a.o., for address calculation)
4457   // r7 = the hole value
4458   __ jmp(&parameters_test);
4459 
4460   __ bind(&parameters_loop);
4461   __ sub(r6, r6, Operand(Smi::FromInt(1)));
4462   __ mov(r5, Operand(r6, LSL, 1));
4463   __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4464   __ str(r9, MemOperand(r4, r5));
4465   __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4466   __ str(r7, MemOperand(r3, r5));
4467   __ add(r9, r9, Operand(Smi::FromInt(1)));
4468   __ bind(&parameters_test);
4469   __ cmp(r6, Operand(Smi::FromInt(0)));
4470   __ b(ne, &parameters_loop);
4471 
4472   __ bind(&skip_parameter_map);
4473   // r2 = argument count (tagged)
4474   // r3 = address of backing store (tagged)
4475   // r5 = scratch
4476   // Copy arguments header and remaining slots (if there are any).
4477   __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
4478   __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
4479   __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
4480 
4481   Label arguments_loop, arguments_test;
4482   __ mov(r9, r1);
4483   __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
4484   __ sub(r4, r4, Operand(r9, LSL, 1));
4485   __ jmp(&arguments_test);
4486 
4487   __ bind(&arguments_loop);
4488   __ sub(r4, r4, Operand(kPointerSize));
4489   __ ldr(r6, MemOperand(r4, 0));
4490   __ add(r5, r3, Operand(r9, LSL, 1));
4491   __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
4492   __ add(r9, r9, Operand(Smi::FromInt(1)));
4493 
4494   __ bind(&arguments_test);
4495   __ cmp(r9, Operand(r2));
4496   __ b(lt, &arguments_loop);
4497 
4498   // Return and remove the on-stack parameters.
4499   __ add(sp, sp, Operand(3 * kPointerSize));
4500   __ Ret();
4501 
4502   // Do the runtime call to allocate the arguments object.
4503   // r2 = argument count (tagged)
4504   __ bind(&runtime);
4505   __ str(r2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
4506   __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4507 }
4508 
4509 
GenerateNewStrict(MacroAssembler * masm)4510 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
4511   // sp[0] : number of parameters
4512   // sp[4] : receiver displacement
4513   // sp[8] : function
4514   // Check if the calling frame is an arguments adaptor frame.
4515   Label adaptor_frame, try_allocate, runtime;
4516   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4517   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4518   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4519   __ b(eq, &adaptor_frame);
4520 
4521   // Get the length from the frame.
4522   __ ldr(r1, MemOperand(sp, 0));
4523   __ b(&try_allocate);
4524 
4525   // Patch the arguments.length and the parameters pointer.
4526   __ bind(&adaptor_frame);
4527   __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4528   __ str(r1, MemOperand(sp, 0));
4529   __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
4530   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4531   __ str(r3, MemOperand(sp, 1 * kPointerSize));
4532 
4533   // Try the new space allocation. Start out with computing the size
4534   // of the arguments object and the elements array in words.
4535   Label add_arguments_object;
4536   __ bind(&try_allocate);
4537   __ cmp(r1, Operand(0, RelocInfo::NONE));
4538   __ b(eq, &add_arguments_object);
4539   __ mov(r1, Operand(r1, LSR, kSmiTagSize));
4540   __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
4541   __ bind(&add_arguments_object);
4542   __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
4543 
4544   // Do the allocation of both objects in one go.
4545   __ AllocateInNewSpace(r1,
4546                         r0,
4547                         r2,
4548                         r3,
4549                         &runtime,
4550                         static_cast<AllocationFlags>(TAG_OBJECT |
4551                                                      SIZE_IN_WORDS));
4552 
4553   // Get the arguments boilerplate from the current (global) context.
4554   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4555   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
4556   __ ldr(r4, MemOperand(r4, Context::SlotOffset(
4557       Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
4558 
4559   // Copy the JS object part.
4560   __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
4561 
4562   // Get the length (smi tagged) and set that as an in-object property too.
4563   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4564   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
4565   __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
4566       Heap::kArgumentsLengthIndex * kPointerSize));
4567 
4568   // If there are no actual arguments, we're done.
4569   Label done;
4570   __ cmp(r1, Operand(0, RelocInfo::NONE));
4571   __ b(eq, &done);
4572 
4573   // Get the parameters pointer from the stack.
4574   __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
4575 
4576   // Set up the elements pointer in the allocated arguments object and
4577   // initialize the header in the elements fixed array.
4578   __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
4579   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4580   __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
4581   __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
4582   __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
4583   // Untag the length for the loop.
4584   __ mov(r1, Operand(r1, LSR, kSmiTagSize));
4585 
4586   // Copy the fixed array slots.
4587   Label loop;
4588   // Set up r4 to point to the first array slot.
4589   __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4590   __ bind(&loop);
4591   // Pre-decrement r2 with kPointerSize on each iteration.
4592   // Pre-decrement in order to skip receiver.
4593   __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
4594   // Post-increment r4 with kPointerSize on each iteration.
4595   __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
4596   __ sub(r1, r1, Operand(1));
4597   __ cmp(r1, Operand(0, RelocInfo::NONE));
4598   __ b(ne, &loop);
4599 
4600   // Return and remove the on-stack parameters.
4601   __ bind(&done);
4602   __ add(sp, sp, Operand(3 * kPointerSize));
4603   __ Ret();
4604 
4605   // Do the runtime call to allocate the arguments object.
4606   __ bind(&runtime);
4607   __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
4608 }
4609 
4610 
Generate(MacroAssembler * masm)4611 void RegExpExecStub::Generate(MacroAssembler* masm) {
4612   // Just jump directly to runtime if native RegExp is not selected at compile
4613   // time or if regexp entry in generated code is turned off runtime switch or
4614   // at compilation.
4615 #ifdef V8_INTERPRETED_REGEXP
4616   __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4617 #else  // V8_INTERPRETED_REGEXP
4618 
4619   // Stack frame on entry.
4620   //  sp[0]: last_match_info (expected JSArray)
4621   //  sp[4]: previous index
4622   //  sp[8]: subject string
4623   //  sp[12]: JSRegExp object
4624 
4625   const int kLastMatchInfoOffset = 0 * kPointerSize;
4626   const int kPreviousIndexOffset = 1 * kPointerSize;
4627   const int kSubjectOffset = 2 * kPointerSize;
4628   const int kJSRegExpOffset = 3 * kPointerSize;
4629 
4630   Label runtime, invoke_regexp;
4631 
4632   // Allocation of registers for this function. These are in callee save
4633   // registers and will be preserved by the call to the native RegExp code, as
4634   // this code is called using the normal C calling convention. When calling
4635   // directly from generated code the native RegExp code will not do a GC and
4636   // therefore the content of these registers are safe to use after the call.
4637   Register subject = r4;
4638   Register regexp_data = r5;
4639   Register last_match_info_elements = r6;
4640 
4641   // Ensure that a RegExp stack is allocated.
4642   Isolate* isolate = masm->isolate();
4643   ExternalReference address_of_regexp_stack_memory_address =
4644       ExternalReference::address_of_regexp_stack_memory_address(isolate);
4645   ExternalReference address_of_regexp_stack_memory_size =
4646       ExternalReference::address_of_regexp_stack_memory_size(isolate);
4647   __ mov(r0, Operand(address_of_regexp_stack_memory_size));
4648   __ ldr(r0, MemOperand(r0, 0));
4649   __ cmp(r0, Operand(0));
4650   __ b(eq, &runtime);
4651 
4652   // Check that the first argument is a JSRegExp object.
4653   __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
4654   STATIC_ASSERT(kSmiTag == 0);
4655   __ JumpIfSmi(r0, &runtime);
4656   __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
4657   __ b(ne, &runtime);
4658 
4659   // Check that the RegExp has been compiled (data contains a fixed array).
4660   __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
4661   if (FLAG_debug_code) {
4662     __ tst(regexp_data, Operand(kSmiTagMask));
4663     __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
4664     __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
4665     __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
4666   }
4667 
4668   // regexp_data: RegExp data (FixedArray)
4669   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
4670   __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
4671   __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
4672   __ b(ne, &runtime);
4673 
4674   // regexp_data: RegExp data (FixedArray)
4675   // Check that the number of captures fit in the static offsets vector buffer.
4676   __ ldr(r2,
4677          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4678   // Calculate number of capture registers (number_of_captures + 1) * 2. This
4679   // uses the asumption that smis are 2 * their untagged value.
4680   STATIC_ASSERT(kSmiTag == 0);
4681   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4682   __ add(r2, r2, Operand(2));  // r2 was a smi.
4683   // Check that the static offsets vector buffer is large enough.
4684   __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
4685   __ b(hi, &runtime);
4686 
4687   // r2: Number of capture registers
4688   // regexp_data: RegExp data (FixedArray)
4689   // Check that the second argument is a string.
4690   __ ldr(subject, MemOperand(sp, kSubjectOffset));
4691   __ JumpIfSmi(subject, &runtime);
4692   Condition is_string = masm->IsObjectStringType(subject, r0);
4693   __ b(NegateCondition(is_string), &runtime);
4694   // Get the length of the string to r3.
4695   __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
4696 
4697   // r2: Number of capture registers
4698   // r3: Length of subject string as a smi
4699   // subject: Subject string
4700   // regexp_data: RegExp data (FixedArray)
4701   // Check that the third argument is a positive smi less than the subject
4702   // string length. A negative value will be greater (unsigned comparison).
4703   __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
4704   __ JumpIfNotSmi(r0, &runtime);
4705   __ cmp(r3, Operand(r0));
4706   __ b(ls, &runtime);
4707 
4708   // r2: Number of capture registers
4709   // subject: Subject string
4710   // regexp_data: RegExp data (FixedArray)
4711   // Check that the fourth object is a JSArray object.
4712   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
4713   __ JumpIfSmi(r0, &runtime);
4714   __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
4715   __ b(ne, &runtime);
4716   // Check that the JSArray is in fast case.
4717   __ ldr(last_match_info_elements,
4718          FieldMemOperand(r0, JSArray::kElementsOffset));
4719   __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
4720   __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
4721   __ b(ne, &runtime);
4722   // Check that the last match info has space for the capture registers and the
4723   // additional information.
4724   __ ldr(r0,
4725          FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4726   __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
4727   __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
4728   __ b(gt, &runtime);
4729 
4730   // Reset offset for possibly sliced string.
4731   __ mov(r9, Operand(0));
4732   // subject: Subject string
4733   // regexp_data: RegExp data (FixedArray)
4734   // Check the representation and encoding of the subject string.
4735   Label seq_string;
4736   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4737   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
4738   // First check for flat string.  None of the following string type tests will
4739   // succeed if subject is not a string or a short external string.
4740   __ and_(r1,
4741           r0,
4742           Operand(kIsNotStringMask |
4743                   kStringRepresentationMask |
4744                   kShortExternalStringMask),
4745           SetCC);
4746   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4747   __ b(eq, &seq_string);
4748 
4749   // subject: Subject string
4750   // regexp_data: RegExp data (FixedArray)
4751   // r1: whether subject is a string and if yes, its string representation
4752   // Check for flat cons string or sliced string.
4753   // A flat cons string is a cons string where the second part is the empty
4754   // string. In that case the subject string is just the first part of the cons
4755   // string. Also in this case the first part of the cons string is known to be
4756   // a sequential string or an external string.
4757   // In the case of a sliced string its offset has to be taken into account.
4758   Label cons_string, external_string, check_encoding;
4759   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
4760   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
4761   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
4762   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
4763   __ cmp(r1, Operand(kExternalStringTag));
4764   __ b(lt, &cons_string);
4765   __ b(eq, &external_string);
4766 
4767   // Catch non-string subject or short external string.
4768   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
4769   __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
4770   __ b(ne, &runtime);
4771 
4772   // String is sliced.
4773   __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
4774   __ mov(r9, Operand(r9, ASR, kSmiTagSize));
4775   __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
4776   // r9: offset of sliced string, smi-tagged.
4777   __ jmp(&check_encoding);
4778   // String is a cons string, check whether it is flat.
4779   __ bind(&cons_string);
4780   __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
4781   __ CompareRoot(r0, Heap::kEmptyStringRootIndex);
4782   __ b(ne, &runtime);
4783   __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
4784   // Is first part of cons or parent of slice a flat string?
4785   __ bind(&check_encoding);
4786   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4787   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
4788   STATIC_ASSERT(kSeqStringTag == 0);
4789   __ tst(r0, Operand(kStringRepresentationMask));
4790   __ b(ne, &external_string);
4791 
4792   __ bind(&seq_string);
4793   // subject: Subject string
4794   // regexp_data: RegExp data (FixedArray)
4795   // r0: Instance type of subject string
4796   STATIC_ASSERT(4 == kAsciiStringTag);
4797   STATIC_ASSERT(kTwoByteStringTag == 0);
4798   // Find the code object based on the assumptions above.
4799   __ and_(r0, r0, Operand(kStringEncodingMask));
4800   __ mov(r3, Operand(r0, ASR, 2), SetCC);
4801   __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
4802   __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
4803 
4804   // Check that the irregexp code has been generated for the actual string
4805   // encoding. If it has, the field contains a code object otherwise it contains
4806   // a smi (code flushing support).
4807   __ JumpIfSmi(r7, &runtime);
4808 
4809   // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
4810   // r7: code
4811   // subject: Subject string
4812   // regexp_data: RegExp data (FixedArray)
4813   // Load used arguments before starting to push arguments for call to native
4814   // RegExp code to avoid handling changing stack height.
4815   __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
4816   __ mov(r1, Operand(r1, ASR, kSmiTagSize));
4817 
4818   // r1: previous index
4819   // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
4820   // r7: code
4821   // subject: Subject string
4822   // regexp_data: RegExp data (FixedArray)
4823   // All checks done. Now push arguments for native regexp code.
4824   __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
4825 
4826   // Isolates: note we add an additional parameter here (isolate pointer).
4827   const int kRegExpExecuteArguments = 8;
4828   const int kParameterRegisters = 4;
4829   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
4830 
4831   // Stack pointer now points to cell where return address is to be written.
4832   // Arguments are before that on the stack or in registers.
4833 
4834   // Argument 8 (sp[16]): Pass current isolate address.
4835   __ mov(r0, Operand(ExternalReference::isolate_address()));
4836   __ str(r0, MemOperand(sp, 4 * kPointerSize));
4837 
4838   // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
4839   __ mov(r0, Operand(1));
4840   __ str(r0, MemOperand(sp, 3 * kPointerSize));
4841 
4842   // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
4843   __ mov(r0, Operand(address_of_regexp_stack_memory_address));
4844   __ ldr(r0, MemOperand(r0, 0));
4845   __ mov(r2, Operand(address_of_regexp_stack_memory_size));
4846   __ ldr(r2, MemOperand(r2, 0));
4847   __ add(r0, r0, Operand(r2));
4848   __ str(r0, MemOperand(sp, 2 * kPointerSize));
4849 
4850   // Argument 5 (sp[4]): static offsets vector buffer.
4851   __ mov(r0,
4852          Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
4853   __ str(r0, MemOperand(sp, 1 * kPointerSize));
4854 
4855   // For arguments 4 and 3 get string length, calculate start of string data and
4856   // calculate the shift of the index (0 for ASCII and 1 for two byte).
4857   __ add(r8, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
4858   __ eor(r3, r3, Operand(1));
4859   // Load the length from the original subject string from the previous stack
4860   // frame. Therefore we have to use fp, which points exactly to two pointer
4861   // sizes below the previous sp. (Because creating a new stack frame pushes
4862   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
4863   __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
4864   // If slice offset is not 0, load the length from the original sliced string.
4865   // Argument 4, r3: End of string data
4866   // Argument 3, r2: Start of string data
4867   // Prepare start and end index of the input.
4868   __ add(r9, r8, Operand(r9, LSL, r3));
4869   __ add(r2, r9, Operand(r1, LSL, r3));
4870 
4871   __ ldr(r8, FieldMemOperand(subject, String::kLengthOffset));
4872   __ mov(r8, Operand(r8, ASR, kSmiTagSize));
4873   __ add(r3, r9, Operand(r8, LSL, r3));
4874 
4875   // Argument 2 (r1): Previous index.
4876   // Already there
4877 
4878   // Argument 1 (r0): Subject string.
4879   __ mov(r0, subject);
4880 
4881   // Locate the code entry and call it.
4882   __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
4883   DirectCEntryStub stub;
4884   stub.GenerateCall(masm, r7);
4885 
4886   __ LeaveExitFrame(false, no_reg);
4887 
4888   // r0: result
4889   // subject: subject string (callee saved)
4890   // regexp_data: RegExp data (callee saved)
4891   // last_match_info_elements: Last match info elements (callee saved)
4892 
4893   // Check the result.
4894   Label success;
4895 
4896   __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
4897   __ b(eq, &success);
4898   Label failure;
4899   __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
4900   __ b(eq, &failure);
4901   __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
4902   // If not exception it can only be retry. Handle that in the runtime system.
4903   __ b(ne, &runtime);
4904   // Result must now be exception. If there is no pending exception already a
4905   // stack overflow (on the backtrack stack) was detected in RegExp code but
4906   // haven't created the exception yet. Handle that in the runtime system.
4907   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
4908   __ mov(r1, Operand(isolate->factory()->the_hole_value()));
4909   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4910                                        isolate)));
4911   __ ldr(r0, MemOperand(r2, 0));
4912   __ cmp(r0, r1);
4913   __ b(eq, &runtime);
4914 
4915   __ str(r1, MemOperand(r2, 0));  // Clear pending exception.
4916 
4917   // Check if the exception is a termination. If so, throw as uncatchable.
4918   __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
4919 
4920   Label termination_exception;
4921   __ b(eq, &termination_exception);
4922 
4923   __ Throw(r0);
4924 
4925   __ bind(&termination_exception);
4926   __ ThrowUncatchable(r0);
4927 
4928   __ bind(&failure);
4929   // For failure and exception return null.
4930   __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
4931   __ add(sp, sp, Operand(4 * kPointerSize));
4932   __ Ret();
4933 
4934   // Process the result from the native regexp code.
4935   __ bind(&success);
4936   __ ldr(r1,
4937          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4938   // Calculate number of capture registers (number_of_captures + 1) * 2.
4939   STATIC_ASSERT(kSmiTag == 0);
4940   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4941   __ add(r1, r1, Operand(2));  // r1 was a smi.
4942 
4943   // r1: number of capture registers
4944   // r4: subject string
4945   // Store the capture count.
4946   __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize));  // To smi.
4947   __ str(r2, FieldMemOperand(last_match_info_elements,
4948                              RegExpImpl::kLastCaptureCountOffset));
4949   // Store last subject and last input.
4950   __ str(subject,
4951          FieldMemOperand(last_match_info_elements,
4952                          RegExpImpl::kLastSubjectOffset));
4953   __ mov(r2, subject);
4954   __ RecordWriteField(last_match_info_elements,
4955                       RegExpImpl::kLastSubjectOffset,
4956                       r2,
4957                       r7,
4958                       kLRHasNotBeenSaved,
4959                       kDontSaveFPRegs);
4960   __ str(subject,
4961          FieldMemOperand(last_match_info_elements,
4962                          RegExpImpl::kLastInputOffset));
4963   __ RecordWriteField(last_match_info_elements,
4964                       RegExpImpl::kLastInputOffset,
4965                       subject,
4966                       r7,
4967                       kLRHasNotBeenSaved,
4968                       kDontSaveFPRegs);
4969 
4970   // Get the static offsets vector filled by the native regexp code.
4971   ExternalReference address_of_static_offsets_vector =
4972       ExternalReference::address_of_static_offsets_vector(isolate);
4973   __ mov(r2, Operand(address_of_static_offsets_vector));
4974 
4975   // r1: number of capture registers
4976   // r2: offsets vector
4977   Label next_capture, done;
4978   // Capture register counter starts from number of capture registers and
4979   // counts down until wraping after zero.
4980   __ add(r0,
4981          last_match_info_elements,
4982          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
4983   __ bind(&next_capture);
4984   __ sub(r1, r1, Operand(1), SetCC);
4985   __ b(mi, &done);
4986   // Read the value from the static offsets vector buffer.
4987   __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
4988   // Store the smi value in the last match info.
4989   __ mov(r3, Operand(r3, LSL, kSmiTagSize));
4990   __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
4991   __ jmp(&next_capture);
4992   __ bind(&done);
4993 
4994   // Return last match info.
4995   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
4996   __ add(sp, sp, Operand(4 * kPointerSize));
4997   __ Ret();
4998 
4999   // External string.  Short external strings have already been ruled out.
5000   // r0: scratch
5001   __ bind(&external_string);
5002   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
5003   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
5004   if (FLAG_debug_code) {
5005     // Assert that we do not have a cons or slice (indirect strings) here.
5006     // Sequential strings have already been ruled out.
5007     __ tst(r0, Operand(kIsIndirectStringMask));
5008     __ Assert(eq, "external string expected, but not found");
5009   }
5010   __ ldr(subject,
5011          FieldMemOperand(subject, ExternalString::kResourceDataOffset));
5012   // Move the pointer so that offset-wise, it looks like a sequential string.
5013   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
5014   __ sub(subject,
5015          subject,
5016          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5017   __ jmp(&seq_string);
5018 
5019   // Do the runtime call to execute the regexp.
5020   __ bind(&runtime);
5021   __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5022 #endif  // V8_INTERPRETED_REGEXP
5023 }
5024 
5025 
Generate(MacroAssembler * masm)5026 void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
5027   const int kMaxInlineLength = 100;
5028   Label slowcase;
5029   Label done;
5030   Factory* factory = masm->isolate()->factory();
5031 
5032   __ ldr(r1, MemOperand(sp, kPointerSize * 2));
5033   STATIC_ASSERT(kSmiTag == 0);
5034   STATIC_ASSERT(kSmiTagSize == 1);
5035   __ JumpIfNotSmi(r1, &slowcase);
5036   __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
5037   __ b(hi, &slowcase);
5038   // Smi-tagging is equivalent to multiplying by 2.
5039   // Allocate RegExpResult followed by FixedArray with size in ebx.
5040   // JSArray:   [Map][empty properties][Elements][Length-smi][index][input]
5041   // Elements:  [Map][Length][..elements..]
5042   // Size of JSArray with two in-object properties and the header of a
5043   // FixedArray.
5044   int objects_size =
5045       (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
5046   __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
5047   __ add(r2, r5, Operand(objects_size));
5048   __ AllocateInNewSpace(
5049       r2,  // In: Size, in words.
5050       r0,  // Out: Start of allocation (tagged).
5051       r3,  // Scratch register.
5052       r4,  // Scratch register.
5053       &slowcase,
5054       static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
5055   // r0: Start of allocated area, object-tagged.
5056   // r1: Number of elements in array, as smi.
5057   // r5: Number of elements, untagged.
5058 
5059   // Set JSArray map to global.regexp_result_map().
5060   // Set empty properties FixedArray.
5061   // Set elements to point to FixedArray allocated right after the JSArray.
5062   // Interleave operations for better latency.
5063   __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
5064   __ add(r3, r0, Operand(JSRegExpResult::kSize));
5065   __ mov(r4, Operand(factory->empty_fixed_array()));
5066   __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
5067   __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
5068   __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
5069   __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
5070   __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
5071 
5072   // Set input, index and length fields from arguments.
5073   __ ldr(r1, MemOperand(sp, kPointerSize * 0));
5074   __ ldr(r2, MemOperand(sp, kPointerSize * 1));
5075   __ ldr(r6, MemOperand(sp, kPointerSize * 2));
5076   __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
5077   __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
5078   __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset));
5079 
5080   // Fill out the elements FixedArray.
5081   // r0: JSArray, tagged.
5082   // r3: FixedArray, tagged.
5083   // r5: Number of elements in array, untagged.
5084 
5085   // Set map.
5086   __ mov(r2, Operand(factory->fixed_array_map()));
5087   __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
5088   // Set FixedArray length.
5089   __ mov(r6, Operand(r5, LSL, kSmiTagSize));
5090   __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
5091   // Fill contents of fixed-array with the-hole.
5092   __ mov(r2, Operand(factory->the_hole_value()));
5093   __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5094   // Fill fixed array elements with hole.
5095   // r0: JSArray, tagged.
5096   // r2: the hole.
5097   // r3: Start of elements in FixedArray.
5098   // r5: Number of elements to fill.
5099   Label loop;
5100   __ cmp(r5, Operand(0));
5101   __ bind(&loop);
5102   __ b(le, &done);  // Jump if r5 is negative or zero.
5103   __ sub(r5, r5, Operand(1), SetCC);
5104   __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
5105   __ jmp(&loop);
5106 
5107   __ bind(&done);
5108   __ add(sp, sp, Operand(3 * kPointerSize));
5109   __ Ret();
5110 
5111   __ bind(&slowcase);
5112   __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
5113 }
5114 
5115 
GenerateRecordCallTarget(MacroAssembler * masm)5116 static void GenerateRecordCallTarget(MacroAssembler* masm) {
5117   // Cache the called function in a global property cell.  Cache states
5118   // are uninitialized, monomorphic (indicated by a JSFunction), and
5119   // megamorphic.
5120   // r1 : the function to call
5121   // r2 : cache cell for call target
5122   Label done;
5123 
5124   ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
5125             masm->isolate()->heap()->undefined_value());
5126   ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
5127             masm->isolate()->heap()->the_hole_value());
5128 
5129   // Load the cache state into r3.
5130   __ ldr(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
5131 
5132   // A monomorphic cache hit or an already megamorphic state: invoke the
5133   // function without changing the state.
5134   __ cmp(r3, r1);
5135   __ b(eq, &done);
5136   __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
5137   __ b(eq, &done);
5138 
5139   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
5140   // megamorphic.
5141   __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
5142   // MegamorphicSentinel is an immortal immovable object (undefined) so no
5143   // write-barrier is needed.
5144   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex, ne);
5145   __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), ne);
5146 
5147   // An uninitialized cache is patched with the function.
5148   __ str(r1, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), eq);
5149   // No need for a write barrier here - cells are rescanned.
5150 
5151   __ bind(&done);
5152 }
5153 
5154 
Generate(MacroAssembler * masm)5155 void CallFunctionStub::Generate(MacroAssembler* masm) {
5156   // r1 : the function to call
5157   // r2 : cache cell for call target
5158   Label slow, non_function;
5159 
5160   // The receiver might implicitly be the global object. This is
5161   // indicated by passing the hole as the receiver to the call
5162   // function stub.
5163   if (ReceiverMightBeImplicit()) {
5164     Label call;
5165     // Get the receiver from the stack.
5166     // function, receiver [, arguments]
5167     __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
5168     // Call as function is indicated with the hole.
5169     __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5170     __ b(ne, &call);
5171     // Patch the receiver on the stack with the global receiver object.
5172     __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
5173     __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
5174     __ str(r2, MemOperand(sp, argc_ * kPointerSize));
5175     __ bind(&call);
5176   }
5177 
5178   // Check that the function is really a JavaScript function.
5179   // r1: pushed function (to be verified)
5180   __ JumpIfSmi(r1, &non_function);
5181   // Get the map of the function object.
5182   __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
5183   __ b(ne, &slow);
5184 
5185   // Fast-case: Invoke the function now.
5186   // r1: pushed function
5187   ParameterCount actual(argc_);
5188 
5189   if (ReceiverMightBeImplicit()) {
5190     Label call_as_function;
5191     __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
5192     __ b(eq, &call_as_function);
5193     __ InvokeFunction(r1,
5194                       actual,
5195                       JUMP_FUNCTION,
5196                       NullCallWrapper(),
5197                       CALL_AS_METHOD);
5198     __ bind(&call_as_function);
5199   }
5200   __ InvokeFunction(r1,
5201                     actual,
5202                     JUMP_FUNCTION,
5203                     NullCallWrapper(),
5204                     CALL_AS_FUNCTION);
5205 
5206   // Slow-case: Non-function called.
5207   __ bind(&slow);
5208   // Check for function proxy.
5209   __ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE));
5210   __ b(ne, &non_function);
5211   __ push(r1);  // put proxy as additional argument
5212   __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE));
5213   __ mov(r2, Operand(0, RelocInfo::NONE));
5214   __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
5215   __ SetCallKind(r5, CALL_AS_METHOD);
5216   {
5217     Handle<Code> adaptor =
5218       masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
5219     __ Jump(adaptor, RelocInfo::CODE_TARGET);
5220   }
5221 
5222   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
5223   // of the original receiver from the call site).
5224   __ bind(&non_function);
5225   __ str(r1, MemOperand(sp, argc_ * kPointerSize));
5226   __ mov(r0, Operand(argc_));  // Set up the number of arguments.
5227   __ mov(r2, Operand(0, RelocInfo::NONE));
5228   __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
5229   __ SetCallKind(r5, CALL_AS_METHOD);
5230   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5231           RelocInfo::CODE_TARGET);
5232 }
5233 
5234 
Generate(MacroAssembler * masm)5235 void CallConstructStub::Generate(MacroAssembler* masm) {
5236   // r0 : number of arguments
5237   // r1 : the function to call
5238   // r2 : cache cell for call target
5239   Label slow, non_function_call;
5240 
5241   // Check that the function is not a smi.
5242   __ JumpIfSmi(r1, &non_function_call);
5243   // Check that the function is a JSFunction.
5244   __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
5245   __ b(ne, &slow);
5246 
5247   if (RecordCallTarget()) {
5248     GenerateRecordCallTarget(masm);
5249   }
5250 
5251   // Jump to the function-specific construct stub.
5252   __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
5253   __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
5254   __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
5255 
5256   // r0: number of arguments
5257   // r1: called object
5258   // r3: object type
5259   Label do_call;
5260   __ bind(&slow);
5261   __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
5262   __ b(ne, &non_function_call);
5263   __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
5264   __ jmp(&do_call);
5265 
5266   __ bind(&non_function_call);
5267   __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
5268   __ bind(&do_call);
5269   // Set expected number of arguments to zero (not changing r0).
5270   __ mov(r2, Operand(0, RelocInfo::NONE));
5271   __ SetCallKind(r5, CALL_AS_METHOD);
5272   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5273           RelocInfo::CODE_TARGET);
5274 }
5275 
5276 
5277 // Unfortunately you have to run without snapshots to see most of these
5278 // names in the profile since most compare stubs end up in the snapshot.
PrintName(StringStream * stream)5279 void CompareStub::PrintName(StringStream* stream) {
5280   ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5281          (lhs_.is(r1) && rhs_.is(r0)));
5282   const char* cc_name;
5283   switch (cc_) {
5284     case lt: cc_name = "LT"; break;
5285     case gt: cc_name = "GT"; break;
5286     case le: cc_name = "LE"; break;
5287     case ge: cc_name = "GE"; break;
5288     case eq: cc_name = "EQ"; break;
5289     case ne: cc_name = "NE"; break;
5290     default: cc_name = "UnknownCondition"; break;
5291   }
5292   bool is_equality = cc_ == eq || cc_ == ne;
5293   stream->Add("CompareStub_%s", cc_name);
5294   stream->Add(lhs_.is(r0) ? "_r0" : "_r1");
5295   stream->Add(rhs_.is(r0) ? "_r0" : "_r1");
5296   if (strict_ && is_equality) stream->Add("_STRICT");
5297   if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
5298   if (!include_number_compare_) stream->Add("_NO_NUMBER");
5299   if (!include_smi_compare_) stream->Add("_NO_SMI");
5300 }
5301 
5302 
MinorKey()5303 int CompareStub::MinorKey() {
5304   // Encode the three parameters in a unique 16 bit value. To avoid duplicate
5305   // stubs the never NaN NaN condition is only taken into account if the
5306   // condition is equals.
5307   ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
5308   ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5309          (lhs_.is(r1) && rhs_.is(r0)));
5310   return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
5311          | RegisterField::encode(lhs_.is(r0))
5312          | StrictField::encode(strict_)
5313          | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
5314          | IncludeNumberCompareField::encode(include_number_compare_)
5315          | IncludeSmiCompareField::encode(include_smi_compare_);
5316 }
5317 
5318 
5319 // StringCharCodeAtGenerator
GenerateFast(MacroAssembler * masm)5320 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
5321   Label flat_string;
5322   Label ascii_string;
5323   Label got_char_code;
5324   Label sliced_string;
5325 
5326   // If the receiver is a smi trigger the non-string case.
5327   __ JumpIfSmi(object_, receiver_not_string_);
5328 
5329   // Fetch the instance type of the receiver into result register.
5330   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5331   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5332   // If the receiver is not a string trigger the non-string case.
5333   __ tst(result_, Operand(kIsNotStringMask));
5334   __ b(ne, receiver_not_string_);
5335 
5336   // If the index is non-smi trigger the non-smi case.
5337   __ JumpIfNotSmi(index_, &index_not_smi_);
5338   __ bind(&got_smi_index_);
5339 
5340   // Check for index out of range.
5341   __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
5342   __ cmp(ip, Operand(index_));
5343   __ b(ls, index_out_of_range_);
5344 
5345   __ mov(index_, Operand(index_, ASR, kSmiTagSize));
5346 
5347   StringCharLoadGenerator::Generate(masm,
5348                                     object_,
5349                                     index_,
5350                                     result_,
5351                                     &call_runtime_);
5352 
5353   __ mov(result_, Operand(result_, LSL, kSmiTagSize));
5354   __ bind(&exit_);
5355 }
5356 
5357 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)5358 void StringCharCodeAtGenerator::GenerateSlow(
5359     MacroAssembler* masm,
5360     const RuntimeCallHelper& call_helper) {
5361   __ Abort("Unexpected fallthrough to CharCodeAt slow case");
5362 
5363   // Index is not a smi.
5364   __ bind(&index_not_smi_);
5365   // If index is a heap number, try converting it to an integer.
5366   __ CheckMap(index_,
5367               result_,
5368               Heap::kHeapNumberMapRootIndex,
5369               index_not_number_,
5370               DONT_DO_SMI_CHECK);
5371   call_helper.BeforeCall(masm);
5372   __ push(object_);
5373   __ push(index_);  // Consumed by runtime conversion function.
5374   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
5375     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
5376   } else {
5377     ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
5378     // NumberToSmi discards numbers that are not exact integers.
5379     __ CallRuntime(Runtime::kNumberToSmi, 1);
5380   }
5381   // Save the conversion result before the pop instructions below
5382   // have a chance to overwrite it.
5383   __ Move(index_, r0);
5384   __ pop(object_);
5385   // Reload the instance type.
5386   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5387   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5388   call_helper.AfterCall(masm);
5389   // If index is still not a smi, it must be out of range.
5390   __ JumpIfNotSmi(index_, index_out_of_range_);
5391   // Otherwise, return to the fast path.
5392   __ jmp(&got_smi_index_);
5393 
5394   // Call runtime. We get here when the receiver is a string and the
5395   // index is a number, but the code of getting the actual character
5396   // is too complex (e.g., when the string needs to be flattened).
5397   __ bind(&call_runtime_);
5398   call_helper.BeforeCall(masm);
5399   __ mov(index_, Operand(index_, LSL, kSmiTagSize));
5400   __ Push(object_, index_);
5401   __ CallRuntime(Runtime::kStringCharCodeAt, 2);
5402   __ Move(result_, r0);
5403   call_helper.AfterCall(masm);
5404   __ jmp(&exit_);
5405 
5406   __ Abort("Unexpected fallthrough from CharCodeAt slow case");
5407 }
5408 
5409 
5410 // -------------------------------------------------------------------------
5411 // StringCharFromCodeGenerator
5412 
GenerateFast(MacroAssembler * masm)5413 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
5414   // Fast case of Heap::LookupSingleCharacterStringFromCode.
5415   STATIC_ASSERT(kSmiTag == 0);
5416   STATIC_ASSERT(kSmiShiftSize == 0);
5417   ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
5418   __ tst(code_,
5419          Operand(kSmiTagMask |
5420                  ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
5421   __ b(ne, &slow_case_);
5422 
5423   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
5424   // At this point code register contains smi tagged ASCII char code.
5425   STATIC_ASSERT(kSmiTag == 0);
5426   __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
5427   __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
5428   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
5429   __ b(eq, &slow_case_);
5430   __ bind(&exit_);
5431 }
5432 
5433 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)5434 void StringCharFromCodeGenerator::GenerateSlow(
5435     MacroAssembler* masm,
5436     const RuntimeCallHelper& call_helper) {
5437   __ Abort("Unexpected fallthrough to CharFromCode slow case");
5438 
5439   __ bind(&slow_case_);
5440   call_helper.BeforeCall(masm);
5441   __ push(code_);
5442   __ CallRuntime(Runtime::kCharFromCode, 1);
5443   __ Move(result_, r0);
5444   call_helper.AfterCall(masm);
5445   __ jmp(&exit_);
5446 
5447   __ Abort("Unexpected fallthrough from CharFromCode slow case");
5448 }
5449 
5450 
5451 // -------------------------------------------------------------------------
5452 // StringCharAtGenerator
5453 
GenerateFast(MacroAssembler * masm)5454 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5455   char_code_at_generator_.GenerateFast(masm);
5456   char_from_code_generator_.GenerateFast(masm);
5457 }
5458 
5459 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)5460 void StringCharAtGenerator::GenerateSlow(
5461     MacroAssembler* masm,
5462     const RuntimeCallHelper& call_helper) {
5463   char_code_at_generator_.GenerateSlow(masm, call_helper);
5464   char_from_code_generator_.GenerateSlow(masm, call_helper);
5465 }
5466 
5467 
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,bool ascii)5468 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5469                                           Register dest,
5470                                           Register src,
5471                                           Register count,
5472                                           Register scratch,
5473                                           bool ascii) {
5474   Label loop;
5475   Label done;
5476   // This loop just copies one character at a time, as it is only used for very
5477   // short strings.
5478   if (!ascii) {
5479     __ add(count, count, Operand(count), SetCC);
5480   } else {
5481     __ cmp(count, Operand(0, RelocInfo::NONE));
5482   }
5483   __ b(eq, &done);
5484 
5485   __ bind(&loop);
5486   __ ldrb(scratch, MemOperand(src, 1, PostIndex));
5487   // Perform sub between load and dependent store to get the load time to
5488   // complete.
5489   __ sub(count, count, Operand(1), SetCC);
5490   __ strb(scratch, MemOperand(dest, 1, PostIndex));
5491   // last iteration.
5492   __ b(gt, &loop);
5493 
5494   __ bind(&done);
5495 }
5496 
5497 
5498 enum CopyCharactersFlags {
5499   COPY_ASCII = 1,
5500   DEST_ALWAYS_ALIGNED = 2
5501 };
5502 
5503 
GenerateCopyCharactersLong(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,int flags)5504 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5505                                               Register dest,
5506                                               Register src,
5507                                               Register count,
5508                                               Register scratch1,
5509                                               Register scratch2,
5510                                               Register scratch3,
5511                                               Register scratch4,
5512                                               Register scratch5,
5513                                               int flags) {
5514   bool ascii = (flags & COPY_ASCII) != 0;
5515   bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5516 
5517   if (dest_always_aligned && FLAG_debug_code) {
5518     // Check that destination is actually word aligned if the flag says
5519     // that it is.
5520     __ tst(dest, Operand(kPointerAlignmentMask));
5521     __ Check(eq, "Destination of copy not aligned.");
5522   }
5523 
5524   const int kReadAlignment = 4;
5525   const int kReadAlignmentMask = kReadAlignment - 1;
5526   // Ensure that reading an entire aligned word containing the last character
5527   // of a string will not read outside the allocated area (because we pad up
5528   // to kObjectAlignment).
5529   STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5530   // Assumes word reads and writes are little endian.
5531   // Nothing to do for zero characters.
5532   Label done;
5533   if (!ascii) {
5534     __ add(count, count, Operand(count), SetCC);
5535   } else {
5536     __ cmp(count, Operand(0, RelocInfo::NONE));
5537   }
5538   __ b(eq, &done);
5539 
5540   // Assume that you cannot read (or write) unaligned.
5541   Label byte_loop;
5542   // Must copy at least eight bytes, otherwise just do it one byte at a time.
5543   __ cmp(count, Operand(8));
5544   __ add(count, dest, Operand(count));
5545   Register limit = count;  // Read until src equals this.
5546   __ b(lt, &byte_loop);
5547 
5548   if (!dest_always_aligned) {
5549     // Align dest by byte copying. Copies between zero and three bytes.
5550     __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
5551     Label dest_aligned;
5552     __ b(eq, &dest_aligned);
5553     __ cmp(scratch4, Operand(2));
5554     __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
5555     __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
5556     __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
5557     __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5558     __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
5559     __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
5560     __ bind(&dest_aligned);
5561   }
5562 
5563   Label simple_loop;
5564 
5565   __ sub(scratch4, dest, Operand(src));
5566   __ and_(scratch4, scratch4, Operand(0x03), SetCC);
5567   __ b(eq, &simple_loop);
5568   // Shift register is number of bits in a source word that
5569   // must be combined with bits in the next source word in order
5570   // to create a destination word.
5571 
5572   // Complex loop for src/dst that are not aligned the same way.
5573   {
5574     Label loop;
5575     __ mov(scratch4, Operand(scratch4, LSL, 3));
5576     Register left_shift = scratch4;
5577     __ and_(src, src, Operand(~3));  // Round down to load previous word.
5578     __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5579     // Store the "shift" most significant bits of scratch in the least
5580     // signficant bits (i.e., shift down by (32-shift)).
5581     __ rsb(scratch2, left_shift, Operand(32));
5582     Register right_shift = scratch2;
5583     __ mov(scratch1, Operand(scratch1, LSR, right_shift));
5584 
5585     __ bind(&loop);
5586     __ ldr(scratch3, MemOperand(src, 4, PostIndex));
5587     __ sub(scratch5, limit, Operand(dest));
5588     __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
5589     __ str(scratch1, MemOperand(dest, 4, PostIndex));
5590     __ mov(scratch1, Operand(scratch3, LSR, right_shift));
5591     // Loop if four or more bytes left to copy.
5592     // Compare to eight, because we did the subtract before increasing dst.
5593     __ sub(scratch5, scratch5, Operand(8), SetCC);
5594     __ b(ge, &loop);
5595   }
5596   // There is now between zero and three bytes left to copy (negative that
5597   // number is in scratch5), and between one and three bytes already read into
5598   // scratch1 (eight times that number in scratch4). We may have read past
5599   // the end of the string, but because objects are aligned, we have not read
5600   // past the end of the object.
5601   // Find the minimum of remaining characters to move and preloaded characters
5602   // and write those as bytes.
5603   __ add(scratch5, scratch5, Operand(4), SetCC);
5604   __ b(eq, &done);
5605   __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
5606   // Move minimum of bytes read and bytes left to copy to scratch4.
5607   __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
5608   // Between one and three (value in scratch5) characters already read into
5609   // scratch ready to write.
5610   __ cmp(scratch5, Operand(2));
5611   __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5612   __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
5613   __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
5614   __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
5615   __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
5616   // Copy any remaining bytes.
5617   __ b(&byte_loop);
5618 
5619   // Simple loop.
5620   // Copy words from src to dst, until less than four bytes left.
5621   // Both src and dest are word aligned.
5622   __ bind(&simple_loop);
5623   {
5624     Label loop;
5625     __ bind(&loop);
5626     __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5627     __ sub(scratch3, limit, Operand(dest));
5628     __ str(scratch1, MemOperand(dest, 4, PostIndex));
5629     // Compare to 8, not 4, because we do the substraction before increasing
5630     // dest.
5631     __ cmp(scratch3, Operand(8));
5632     __ b(ge, &loop);
5633   }
5634 
5635   // Copy bytes from src to dst until dst hits limit.
5636   __ bind(&byte_loop);
5637   __ cmp(dest, Operand(limit));
5638   __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
5639   __ b(ge, &done);
5640   __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5641   __ b(&byte_loop);
5642 
5643   __ bind(&done);
5644 }
5645 
5646 
GenerateTwoCharacterSymbolTableProbe(MacroAssembler * masm,Register c1,Register c2,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,Label * not_found)5647 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5648                                                         Register c1,
5649                                                         Register c2,
5650                                                         Register scratch1,
5651                                                         Register scratch2,
5652                                                         Register scratch3,
5653                                                         Register scratch4,
5654                                                         Register scratch5,
5655                                                         Label* not_found) {
5656   // Register scratch3 is the general scratch register in this function.
5657   Register scratch = scratch3;
5658 
5659   // Make sure that both characters are not digits as such strings has a
5660   // different hash algorithm. Don't try to look for these in the symbol table.
5661   Label not_array_index;
5662   __ sub(scratch, c1, Operand(static_cast<int>('0')));
5663   __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5664   __ b(hi, &not_array_index);
5665   __ sub(scratch, c2, Operand(static_cast<int>('0')));
5666   __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5667 
5668   // If check failed combine both characters into single halfword.
5669   // This is required by the contract of the method: code at the
5670   // not_found branch expects this combination in c1 register
5671   __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
5672   __ b(ls, not_found);
5673 
5674   __ bind(&not_array_index);
5675   // Calculate the two character string hash.
5676   Register hash = scratch1;
5677   StringHelper::GenerateHashInit(masm, hash, c1);
5678   StringHelper::GenerateHashAddCharacter(masm, hash, c2);
5679   StringHelper::GenerateHashGetHash(masm, hash);
5680 
5681   // Collect the two characters in a register.
5682   Register chars = c1;
5683   __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
5684 
5685   // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5686   // hash:  hash of two character string.
5687 
5688   // Load symbol table
5689   // Load address of first element of the symbol table.
5690   Register symbol_table = c2;
5691   __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
5692 
5693   Register undefined = scratch4;
5694   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5695 
5696   // Calculate capacity mask from the symbol table capacity.
5697   Register mask = scratch2;
5698   __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
5699   __ mov(mask, Operand(mask, ASR, 1));
5700   __ sub(mask, mask, Operand(1));
5701 
5702   // Calculate untagged address of the first element of the symbol table.
5703   Register first_symbol_table_element = symbol_table;
5704   __ add(first_symbol_table_element, symbol_table,
5705          Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
5706 
5707   // Registers
5708   // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5709   // hash:  hash of two character string
5710   // mask:  capacity mask
5711   // first_symbol_table_element: address of the first element of
5712   //                             the symbol table
5713   // undefined: the undefined object
5714   // scratch: -
5715 
5716   // Perform a number of probes in the symbol table.
5717   const int kProbes = 4;
5718   Label found_in_symbol_table;
5719   Label next_probe[kProbes];
5720   Register candidate = scratch5;  // Scratch register contains candidate.
5721   for (int i = 0; i < kProbes; i++) {
5722     // Calculate entry in symbol table.
5723     if (i > 0) {
5724       __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5725     } else {
5726       __ mov(candidate, hash);
5727     }
5728 
5729     __ and_(candidate, candidate, Operand(mask));
5730 
5731     // Load the entry from the symble table.
5732     STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5733     __ ldr(candidate,
5734            MemOperand(first_symbol_table_element,
5735                       candidate,
5736                       LSL,
5737                       kPointerSizeLog2));
5738 
5739     // If entry is undefined no string with this hash can be found.
5740     Label is_string;
5741     __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
5742     __ b(ne, &is_string);
5743 
5744     __ cmp(undefined, candidate);
5745     __ b(eq, not_found);
5746     // Must be the hole (deleted entry).
5747     if (FLAG_debug_code) {
5748       __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
5749       __ cmp(ip, candidate);
5750       __ Assert(eq, "oddball in symbol table is not undefined or the hole");
5751     }
5752     __ jmp(&next_probe[i]);
5753 
5754     __ bind(&is_string);
5755 
5756     // Check that the candidate is a non-external ASCII string.  The instance
5757     // type is still in the scratch register from the CompareObjectType
5758     // operation.
5759     __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
5760 
5761     // If length is not 2 the string is not a candidate.
5762     __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5763     __ cmp(scratch, Operand(Smi::FromInt(2)));
5764     __ b(ne, &next_probe[i]);
5765 
5766     // Check if the two characters match.
5767     // Assumes that word load is little endian.
5768     __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5769     __ cmp(chars, scratch);
5770     __ b(eq, &found_in_symbol_table);
5771     __ bind(&next_probe[i]);
5772   }
5773 
5774   // No matching 2 character string found by probing.
5775   __ jmp(not_found);
5776 
5777   // Scratch register contains result when we fall through to here.
5778   Register result = candidate;
5779   __ bind(&found_in_symbol_table);
5780   __ Move(r0, result);
5781 }
5782 
5783 
GenerateHashInit(MacroAssembler * masm,Register hash,Register character)5784 void StringHelper::GenerateHashInit(MacroAssembler* masm,
5785                                     Register hash,
5786                                     Register character) {
5787   // hash = character + (character << 10);
5788   __ LoadRoot(hash, Heap::kHashSeedRootIndex);
5789   // Untag smi seed and add the character.
5790   __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
5791   // hash += hash << 10;
5792   __ add(hash, hash, Operand(hash, LSL, 10));
5793   // hash ^= hash >> 6;
5794   __ eor(hash, hash, Operand(hash, LSR, 6));
5795 }
5796 
5797 
GenerateHashAddCharacter(MacroAssembler * masm,Register hash,Register character)5798 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5799                                             Register hash,
5800                                             Register character) {
5801   // hash += character;
5802   __ add(hash, hash, Operand(character));
5803   // hash += hash << 10;
5804   __ add(hash, hash, Operand(hash, LSL, 10));
5805   // hash ^= hash >> 6;
5806   __ eor(hash, hash, Operand(hash, LSR, 6));
5807 }
5808 
5809 
GenerateHashGetHash(MacroAssembler * masm,Register hash)5810 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5811                                        Register hash) {
5812   // hash += hash << 3;
5813   __ add(hash, hash, Operand(hash, LSL, 3));
5814   // hash ^= hash >> 11;
5815   __ eor(hash, hash, Operand(hash, LSR, 11));
5816   // hash += hash << 15;
5817   __ add(hash, hash, Operand(hash, LSL, 15));
5818 
5819   __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
5820 
5821   // if (hash == 0) hash = 27;
5822   __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
5823 }
5824 
5825 
Generate(MacroAssembler * masm)5826 void SubStringStub::Generate(MacroAssembler* masm) {
5827   Label runtime;
5828 
5829   // Stack frame on entry.
5830   //  lr: return address
5831   //  sp[0]: to
5832   //  sp[4]: from
5833   //  sp[8]: string
5834 
5835   // This stub is called from the native-call %_SubString(...), so
5836   // nothing can be assumed about the arguments. It is tested that:
5837   //  "string" is a sequential string,
5838   //  both "from" and "to" are smis, and
5839   //  0 <= from <= to <= string.length.
5840   // If any of these assumptions fail, we call the runtime system.
5841 
5842   const int kToOffset = 0 * kPointerSize;
5843   const int kFromOffset = 1 * kPointerSize;
5844   const int kStringOffset = 2 * kPointerSize;
5845 
5846   __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
5847   STATIC_ASSERT(kFromOffset == kToOffset + 4);
5848   STATIC_ASSERT(kSmiTag == 0);
5849   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5850 
5851   // I.e., arithmetic shift right by one un-smi-tags.
5852   __ mov(r2, Operand(r2, ASR, 1), SetCC);
5853   __ mov(r3, Operand(r3, ASR, 1), SetCC, cc);
5854   // If either to or from had the smi tag bit set, then carry is set now.
5855   __ b(cs, &runtime);  // Either "from" or "to" is not a smi.
5856   // We want to bailout to runtime here if From is negative.  In that case, the
5857   // next instruction is not executed and we fall through to bailing out to
5858   // runtime.  pl is the opposite of mi.
5859   // Both r2 and r3 are untagged integers.
5860   __ sub(r2, r2, Operand(r3), SetCC, pl);
5861   __ b(mi, &runtime);  // Fail if from > to.
5862 
5863   // Make sure first argument is a string.
5864   __ ldr(r0, MemOperand(sp, kStringOffset));
5865   STATIC_ASSERT(kSmiTag == 0);
5866   __ JumpIfSmi(r0, &runtime);
5867   Condition is_string = masm->IsObjectStringType(r0, r1);
5868   __ b(NegateCondition(is_string), &runtime);
5869 
5870   // Short-cut for the case of trivial substring.
5871   Label return_r0;
5872   // r0: original string
5873   // r2: result string length
5874   __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
5875   __ cmp(r2, Operand(r4, ASR, 1));
5876   __ b(eq, &return_r0);
5877 
5878   Label result_longer_than_two;
5879   // Check for special case of two character ASCII string, in which case
5880   // we do a lookup in the symbol table first.
5881   __ cmp(r2, Operand(2));
5882   __ b(gt, &result_longer_than_two);
5883   __ b(lt, &runtime);
5884 
5885   __ JumpIfInstanceTypeIsNotSequentialAscii(r1, r1, &runtime);
5886 
5887   // Get the two characters forming the sub string.
5888   __ add(r0, r0, Operand(r3));
5889   __ ldrb(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
5890   __ ldrb(r4, FieldMemOperand(r0, SeqAsciiString::kHeaderSize + 1));
5891 
5892   // Try to lookup two character string in symbol table.
5893   Label make_two_character_string;
5894   StringHelper::GenerateTwoCharacterSymbolTableProbe(
5895       masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
5896   __ jmp(&return_r0);
5897 
5898   // r2: result string length.
5899   // r3: two characters combined into halfword in little endian byte order.
5900   __ bind(&make_two_character_string);
5901   __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
5902   __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
5903   __ jmp(&return_r0);
5904 
5905   __ bind(&result_longer_than_two);
5906   // Deal with different string types: update the index if necessary
5907   // and put the underlying string into r5.
5908   // r0: original string
5909   // r1: instance type
5910   // r2: length
5911   // r3: from index (untagged)
5912   Label underlying_unpacked, sliced_string, seq_or_external_string;
5913   // If the string is not indirect, it can only be sequential or external.
5914   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
5915   STATIC_ASSERT(kIsIndirectStringMask != 0);
5916   __ tst(r1, Operand(kIsIndirectStringMask));
5917   __ b(eq, &seq_or_external_string);
5918 
5919   __ tst(r1, Operand(kSlicedNotConsMask));
5920   __ b(ne, &sliced_string);
5921   // Cons string.  Check whether it is flat, then fetch first part.
5922   __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
5923   __ CompareRoot(r5, Heap::kEmptyStringRootIndex);
5924   __ b(ne, &runtime);
5925   __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
5926   // Update instance type.
5927   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
5928   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
5929   __ jmp(&underlying_unpacked);
5930 
5931   __ bind(&sliced_string);
5932   // Sliced string.  Fetch parent and correct start index by offset.
5933   __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
5934   __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
5935   __ add(r3, r3, Operand(r4, ASR, 1));  // Add offset to index.
5936   // Update instance type.
5937   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
5938   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
5939   __ jmp(&underlying_unpacked);
5940 
5941   __ bind(&seq_or_external_string);
5942   // Sequential or external string.  Just move string to the expected register.
5943   __ mov(r5, r0);
5944 
5945   __ bind(&underlying_unpacked);
5946 
5947   if (FLAG_string_slices) {
5948     Label copy_routine;
5949     // r5: underlying subject string
5950     // r1: instance type of underlying subject string
5951     // r2: length
5952     // r3: adjusted start index (untagged)
5953     __ cmp(r2, Operand(SlicedString::kMinLength));
5954     // Short slice.  Copy instead of slicing.
5955     __ b(lt, &copy_routine);
5956     // Allocate new sliced string.  At this point we do not reload the instance
5957     // type including the string encoding because we simply rely on the info
5958     // provided by the original string.  It does not matter if the original
5959     // string's encoding is wrong because we always have to recheck encoding of
5960     // the newly created string's parent anyways due to externalized strings.
5961     Label two_byte_slice, set_slice_header;
5962     STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
5963     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
5964     __ tst(r1, Operand(kStringEncodingMask));
5965     __ b(eq, &two_byte_slice);
5966     __ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime);
5967     __ jmp(&set_slice_header);
5968     __ bind(&two_byte_slice);
5969     __ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime);
5970     __ bind(&set_slice_header);
5971     __ mov(r3, Operand(r3, LSL, 1));
5972     __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
5973     __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
5974     __ jmp(&return_r0);
5975 
5976     __ bind(&copy_routine);
5977   }
5978 
5979   // r5: underlying subject string
5980   // r1: instance type of underlying subject string
5981   // r2: length
5982   // r3: adjusted start index (untagged)
5983   Label two_byte_sequential, sequential_string, allocate_result;
5984   STATIC_ASSERT(kExternalStringTag != 0);
5985   STATIC_ASSERT(kSeqStringTag == 0);
5986   __ tst(r1, Operand(kExternalStringTag));
5987   __ b(eq, &sequential_string);
5988 
5989   // Handle external string.
5990   // Rule out short external strings.
5991   STATIC_CHECK(kShortExternalStringTag != 0);
5992   __ tst(r1, Operand(kShortExternalStringTag));
5993   __ b(ne, &runtime);
5994   __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
5995   // r5 already points to the first character of underlying string.
5996   __ jmp(&allocate_result);
5997 
5998   __ bind(&sequential_string);
5999   // Locate first character of underlying subject string.
6000   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
6001   __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6002 
6003   __ bind(&allocate_result);
6004   // Sequential acii string.  Allocate the result.
6005   STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
6006   __ tst(r1, Operand(kStringEncodingMask));
6007   __ b(eq, &two_byte_sequential);
6008 
6009   // Allocate and copy the resulting ASCII string.
6010   __ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime);
6011 
6012   // Locate first character of substring to copy.
6013   __ add(r5, r5, r3);
6014   // Locate first character of result.
6015   __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6016 
6017   // r0: result string
6018   // r1: first character of result string
6019   // r2: result string length
6020   // r5: first character of substring to copy
6021   STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
6022   StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
6023                                            COPY_ASCII | DEST_ALWAYS_ALIGNED);
6024   __ jmp(&return_r0);
6025 
6026   // Allocate and copy the resulting two-byte string.
6027   __ bind(&two_byte_sequential);
6028   __ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime);
6029 
6030   // Locate first character of substring to copy.
6031   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
6032   __ add(r5, r5, Operand(r3, LSL, 1));
6033   // Locate first character of result.
6034   __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6035 
6036   // r0: result string.
6037   // r1: first character of result.
6038   // r2: result length.
6039   // r5: first character of substring to copy.
6040   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
6041   StringHelper::GenerateCopyCharactersLong(
6042       masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
6043 
6044   __ bind(&return_r0);
6045   Counters* counters = masm->isolate()->counters();
6046   __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
6047   __ add(sp, sp, Operand(3 * kPointerSize));
6048   __ Ret();
6049 
6050   // Just jump to runtime to create the sub string.
6051   __ bind(&runtime);
6052   __ TailCallRuntime(Runtime::kSubString, 3, 1);
6053 }
6054 
6055 
GenerateFlatAsciiStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)6056 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
6057                                                       Register left,
6058                                                       Register right,
6059                                                       Register scratch1,
6060                                                       Register scratch2,
6061                                                       Register scratch3) {
6062   Register length = scratch1;
6063 
6064   // Compare lengths.
6065   Label strings_not_equal, check_zero_length;
6066   __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
6067   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6068   __ cmp(length, scratch2);
6069   __ b(eq, &check_zero_length);
6070   __ bind(&strings_not_equal);
6071   __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
6072   __ Ret();
6073 
6074   // Check if the length is zero.
6075   Label compare_chars;
6076   __ bind(&check_zero_length);
6077   STATIC_ASSERT(kSmiTag == 0);
6078   __ cmp(length, Operand(0));
6079   __ b(ne, &compare_chars);
6080   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6081   __ Ret();
6082 
6083   // Compare characters.
6084   __ bind(&compare_chars);
6085   GenerateAsciiCharsCompareLoop(masm,
6086                                 left, right, length, scratch2, scratch3,
6087                                 &strings_not_equal);
6088 
6089   // Characters are equal.
6090   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6091   __ Ret();
6092 }
6093 
6094 
GenerateCompareFlatAsciiStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)6095 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
6096                                                         Register left,
6097                                                         Register right,
6098                                                         Register scratch1,
6099                                                         Register scratch2,
6100                                                         Register scratch3,
6101                                                         Register scratch4) {
6102   Label result_not_equal, compare_lengths;
6103   // Find minimum length and length difference.
6104   __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
6105   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6106   __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
6107   Register length_delta = scratch3;
6108   __ mov(scratch1, scratch2, LeaveCC, gt);
6109   Register min_length = scratch1;
6110   STATIC_ASSERT(kSmiTag == 0);
6111   __ cmp(min_length, Operand(0));
6112   __ b(eq, &compare_lengths);
6113 
6114   // Compare loop.
6115   GenerateAsciiCharsCompareLoop(masm,
6116                                 left, right, min_length, scratch2, scratch4,
6117                                 &result_not_equal);
6118 
6119   // Compare lengths - strings up to min-length are equal.
6120   __ bind(&compare_lengths);
6121   ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
6122   // Use length_delta as result if it's zero.
6123   __ mov(r0, Operand(length_delta), SetCC);
6124   __ bind(&result_not_equal);
6125   // Conditionally update the result based either on length_delta or
6126   // the last comparion performed in the loop above.
6127   __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
6128   __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
6129   __ Ret();
6130 }
6131 
6132 
GenerateAsciiCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Label * chars_not_equal)6133 void StringCompareStub::GenerateAsciiCharsCompareLoop(
6134     MacroAssembler* masm,
6135     Register left,
6136     Register right,
6137     Register length,
6138     Register scratch1,
6139     Register scratch2,
6140     Label* chars_not_equal) {
6141   // Change index to run from -length to -1 by adding length to string
6142   // start. This means that loop ends when index reaches zero, which
6143   // doesn't need an additional compare.
6144   __ SmiUntag(length);
6145   __ add(scratch1, length,
6146          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6147   __ add(left, left, Operand(scratch1));
6148   __ add(right, right, Operand(scratch1));
6149   __ rsb(length, length, Operand::Zero());
6150   Register index = length;  // index = -length;
6151 
6152   // Compare loop.
6153   Label loop;
6154   __ bind(&loop);
6155   __ ldrb(scratch1, MemOperand(left, index));
6156   __ ldrb(scratch2, MemOperand(right, index));
6157   __ cmp(scratch1, scratch2);
6158   __ b(ne, chars_not_equal);
6159   __ add(index, index, Operand(1), SetCC);
6160   __ b(ne, &loop);
6161 }
6162 
6163 
Generate(MacroAssembler * masm)6164 void StringCompareStub::Generate(MacroAssembler* masm) {
6165   Label runtime;
6166 
6167   Counters* counters = masm->isolate()->counters();
6168 
6169   // Stack frame on entry.
6170   //  sp[0]: right string
6171   //  sp[4]: left string
6172   __ Ldrd(r0 , r1, MemOperand(sp));  // Load right in r0, left in r1.
6173 
6174   Label not_same;
6175   __ cmp(r0, r1);
6176   __ b(ne, &not_same);
6177   STATIC_ASSERT(EQUAL == 0);
6178   STATIC_ASSERT(kSmiTag == 0);
6179   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6180   __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
6181   __ add(sp, sp, Operand(2 * kPointerSize));
6182   __ Ret();
6183 
6184   __ bind(&not_same);
6185 
6186   // Check that both objects are sequential ASCII strings.
6187   __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
6188 
6189   // Compare flat ASCII strings natively. Remove arguments from stack first.
6190   __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
6191   __ add(sp, sp, Operand(2 * kPointerSize));
6192   GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
6193 
6194   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
6195   // tagged as a small integer.
6196   __ bind(&runtime);
6197   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6198 }
6199 
6200 
Generate(MacroAssembler * masm)6201 void StringAddStub::Generate(MacroAssembler* masm) {
6202   Label call_runtime, call_builtin;
6203   Builtins::JavaScript builtin_id = Builtins::ADD;
6204 
6205   Counters* counters = masm->isolate()->counters();
6206 
6207   // Stack on entry:
6208   // sp[0]: second argument (right).
6209   // sp[4]: first argument (left).
6210 
6211   // Load the two arguments.
6212   __ ldr(r0, MemOperand(sp, 1 * kPointerSize));  // First argument.
6213   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));  // Second argument.
6214 
6215   // Make sure that both arguments are strings if not known in advance.
6216   if (flags_ == NO_STRING_ADD_FLAGS) {
6217     __ JumpIfEitherSmi(r0, r1, &call_runtime);
6218     // Load instance types.
6219     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6220     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6221     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6222     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6223     STATIC_ASSERT(kStringTag == 0);
6224     // If either is not a string, go to runtime.
6225     __ tst(r4, Operand(kIsNotStringMask));
6226     __ tst(r5, Operand(kIsNotStringMask), eq);
6227     __ b(ne, &call_runtime);
6228   } else {
6229     // Here at least one of the arguments is definitely a string.
6230     // We convert the one that is not known to be a string.
6231     if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
6232       ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
6233       GenerateConvertArgument(
6234           masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
6235       builtin_id = Builtins::STRING_ADD_RIGHT;
6236     } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
6237       ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
6238       GenerateConvertArgument(
6239           masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
6240       builtin_id = Builtins::STRING_ADD_LEFT;
6241     }
6242   }
6243 
6244   // Both arguments are strings.
6245   // r0: first string
6246   // r1: second string
6247   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6248   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6249   {
6250     Label strings_not_empty;
6251     // Check if either of the strings are empty. In that case return the other.
6252     __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
6253     __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
6254     STATIC_ASSERT(kSmiTag == 0);
6255     __ cmp(r2, Operand(Smi::FromInt(0)));  // Test if first string is empty.
6256     __ mov(r0, Operand(r1), LeaveCC, eq);  // If first is empty, return second.
6257     STATIC_ASSERT(kSmiTag == 0);
6258      // Else test if second string is empty.
6259     __ cmp(r3, Operand(Smi::FromInt(0)), ne);
6260     __ b(ne, &strings_not_empty);  // If either string was empty, return r0.
6261 
6262     __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
6263     __ add(sp, sp, Operand(2 * kPointerSize));
6264     __ Ret();
6265 
6266     __ bind(&strings_not_empty);
6267   }
6268 
6269   __ mov(r2, Operand(r2, ASR, kSmiTagSize));
6270   __ mov(r3, Operand(r3, ASR, kSmiTagSize));
6271   // Both strings are non-empty.
6272   // r0: first string
6273   // r1: second string
6274   // r2: length of first string
6275   // r3: length of second string
6276   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6277   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6278   // Look at the length of the result of adding the two strings.
6279   Label string_add_flat_result, longer_than_two;
6280   // Adding two lengths can't overflow.
6281   STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
6282   __ add(r6, r2, Operand(r3));
6283   // Use the symbol table when adding two one character strings, as it
6284   // helps later optimizations to return a symbol here.
6285   __ cmp(r6, Operand(2));
6286   __ b(ne, &longer_than_two);
6287 
6288   // Check that both strings are non-external ASCII strings.
6289   if (flags_ != NO_STRING_ADD_FLAGS) {
6290     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6291     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6292     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6293     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6294   }
6295   __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
6296                                                   &call_runtime);
6297 
6298   // Get the two characters forming the sub string.
6299   __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
6300   __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
6301 
6302   // Try to lookup two character string in symbol table. If it is not found
6303   // just allocate a new one.
6304   Label make_two_character_string;
6305   StringHelper::GenerateTwoCharacterSymbolTableProbe(
6306       masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
6307   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
6308   __ add(sp, sp, Operand(2 * kPointerSize));
6309   __ Ret();
6310 
6311   __ bind(&make_two_character_string);
6312   // Resulting string has length 2 and first chars of two strings
6313   // are combined into single halfword in r2 register.
6314   // So we can fill resulting string without two loops by a single
6315   // halfword store instruction (which assumes that processor is
6316   // in a little endian mode)
6317   __ mov(r6, Operand(2));
6318   __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
6319   __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
6320   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
6321   __ add(sp, sp, Operand(2 * kPointerSize));
6322   __ Ret();
6323 
6324   __ bind(&longer_than_two);
6325   // Check if resulting string will be flat.
6326   __ cmp(r6, Operand(ConsString::kMinLength));
6327   __ b(lt, &string_add_flat_result);
6328   // Handle exceptionally long strings in the runtime system.
6329   STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
6330   ASSERT(IsPowerOf2(String::kMaxLength + 1));
6331   // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
6332   __ cmp(r6, Operand(String::kMaxLength + 1));
6333   __ b(hs, &call_runtime);
6334 
6335   // If result is not supposed to be flat, allocate a cons string object.
6336   // If both strings are ASCII the result is an ASCII cons string.
6337   if (flags_ != NO_STRING_ADD_FLAGS) {
6338     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6339     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6340     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6341     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6342   }
6343   Label non_ascii, allocated, ascii_data;
6344   STATIC_ASSERT(kTwoByteStringTag == 0);
6345   __ tst(r4, Operand(kStringEncodingMask));
6346   __ tst(r5, Operand(kStringEncodingMask), ne);
6347   __ b(eq, &non_ascii);
6348 
6349   // Allocate an ASCII cons string.
6350   __ bind(&ascii_data);
6351   __ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime);
6352   __ bind(&allocated);
6353   // Fill the fields of the cons string.
6354   __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
6355   __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
6356   __ mov(r0, Operand(r7));
6357   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
6358   __ add(sp, sp, Operand(2 * kPointerSize));
6359   __ Ret();
6360 
6361   __ bind(&non_ascii);
6362   // At least one of the strings is two-byte. Check whether it happens
6363   // to contain only ASCII characters.
6364   // r4: first instance type.
6365   // r5: second instance type.
6366   __ tst(r4, Operand(kAsciiDataHintMask));
6367   __ tst(r5, Operand(kAsciiDataHintMask), ne);
6368   __ b(ne, &ascii_data);
6369   __ eor(r4, r4, Operand(r5));
6370   STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
6371   __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6372   __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6373   __ b(eq, &ascii_data);
6374 
6375   // Allocate a two byte cons string.
6376   __ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime);
6377   __ jmp(&allocated);
6378 
6379   // We cannot encounter sliced strings or cons strings here since:
6380   STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
6381   // Handle creating a flat result from either external or sequential strings.
6382   // Locate the first characters' locations.
6383   // r0: first string
6384   // r1: second string
6385   // r2: length of first string
6386   // r3: length of second string
6387   // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6388   // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6389   // r6: sum of lengths.
6390   Label first_prepared, second_prepared;
6391   __ bind(&string_add_flat_result);
6392   if (flags_ != NO_STRING_ADD_FLAGS) {
6393     __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6394     __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6395     __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6396     __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6397   }
6398 
6399   // Check whether both strings have same encoding
6400   __ eor(r7, r4, Operand(r5));
6401   __ tst(r7, Operand(kStringEncodingMask));
6402   __ b(ne, &call_runtime);
6403 
6404   STATIC_ASSERT(kSeqStringTag == 0);
6405   __ tst(r4, Operand(kStringRepresentationMask));
6406   STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6407   __ add(r7,
6408          r0,
6409          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
6410          LeaveCC,
6411          eq);
6412   __ b(eq, &first_prepared);
6413   // External string: rule out short external string and load string resource.
6414   STATIC_ASSERT(kShortExternalStringTag != 0);
6415   __ tst(r4, Operand(kShortExternalStringMask));
6416   __ b(ne, &call_runtime);
6417   __ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
6418   __ bind(&first_prepared);
6419 
6420   STATIC_ASSERT(kSeqStringTag == 0);
6421   __ tst(r5, Operand(kStringRepresentationMask));
6422   STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6423   __ add(r1,
6424          r1,
6425          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag),
6426          LeaveCC,
6427          eq);
6428   __ b(eq, &second_prepared);
6429   // External string: rule out short external string and load string resource.
6430   STATIC_ASSERT(kShortExternalStringTag != 0);
6431   __ tst(r5, Operand(kShortExternalStringMask));
6432   __ b(ne, &call_runtime);
6433   __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
6434   __ bind(&second_prepared);
6435 
6436   Label non_ascii_string_add_flat_result;
6437   // r7: first character of first string
6438   // r1: first character of second string
6439   // r2: length of first string.
6440   // r3: length of second string.
6441   // r6: sum of lengths.
6442   // Both strings have the same encoding.
6443   STATIC_ASSERT(kTwoByteStringTag == 0);
6444   __ tst(r5, Operand(kStringEncodingMask));
6445   __ b(eq, &non_ascii_string_add_flat_result);
6446 
6447   __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
6448   __ add(r6, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6449   // r0: result string.
6450   // r7: first character of first string.
6451   // r1: first character of second string.
6452   // r2: length of first string.
6453   // r3: length of second string.
6454   // r6: first character of result.
6455   StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true);
6456   // r6: next character of result.
6457   StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
6458   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
6459   __ add(sp, sp, Operand(2 * kPointerSize));
6460   __ Ret();
6461 
6462   __ bind(&non_ascii_string_add_flat_result);
6463   __ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime);
6464   __ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6465   // r0: result string.
6466   // r7: first character of first string.
6467   // r1: first character of second string.
6468   // r2: length of first string.
6469   // r3: length of second string.
6470   // r6: first character of result.
6471   StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false);
6472   // r6: next character of result.
6473   StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
6474   __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
6475   __ add(sp, sp, Operand(2 * kPointerSize));
6476   __ Ret();
6477 
6478   // Just jump to runtime to add the two strings.
6479   __ bind(&call_runtime);
6480   __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
6481 
6482   if (call_builtin.is_linked()) {
6483     __ bind(&call_builtin);
6484     __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
6485   }
6486 }
6487 
6488 
GenerateConvertArgument(MacroAssembler * masm,int stack_offset,Register arg,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Label * slow)6489 void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6490                                             int stack_offset,
6491                                             Register arg,
6492                                             Register scratch1,
6493                                             Register scratch2,
6494                                             Register scratch3,
6495                                             Register scratch4,
6496                                             Label* slow) {
6497   // First check if the argument is already a string.
6498   Label not_string, done;
6499   __ JumpIfSmi(arg, &not_string);
6500   __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
6501   __ b(lt, &done);
6502 
6503   // Check the number to string cache.
6504   Label not_cached;
6505   __ bind(&not_string);
6506   // Puts the cached result into scratch1.
6507   NumberToStringStub::GenerateLookupNumberStringCache(masm,
6508                                                       arg,
6509                                                       scratch1,
6510                                                       scratch2,
6511                                                       scratch3,
6512                                                       scratch4,
6513                                                       false,
6514                                                       &not_cached);
6515   __ mov(arg, scratch1);
6516   __ str(arg, MemOperand(sp, stack_offset));
6517   __ jmp(&done);
6518 
6519   // Check if the argument is a safe string wrapper.
6520   __ bind(&not_cached);
6521   __ JumpIfSmi(arg, slow);
6522   __ CompareObjectType(
6523       arg, scratch1, scratch2, JS_VALUE_TYPE);  // map -> scratch1.
6524   __ b(ne, slow);
6525   __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6526   __ and_(scratch2,
6527           scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6528   __ cmp(scratch2,
6529          Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6530   __ b(ne, slow);
6531   __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6532   __ str(arg, MemOperand(sp, stack_offset));
6533 
6534   __ bind(&done);
6535 }
6536 
6537 
GenerateSmis(MacroAssembler * masm)6538 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
6539   ASSERT(state_ == CompareIC::SMIS);
6540   Label miss;
6541   __ orr(r2, r1, r0);
6542   __ JumpIfNotSmi(r2, &miss);
6543 
6544   if (GetCondition() == eq) {
6545     // For equality we do not care about the sign of the result.
6546     __ sub(r0, r0, r1, SetCC);
6547   } else {
6548     // Untag before subtracting to avoid handling overflow.
6549     __ SmiUntag(r1);
6550     __ sub(r0, r1, SmiUntagOperand(r0));
6551   }
6552   __ Ret();
6553 
6554   __ bind(&miss);
6555   GenerateMiss(masm);
6556 }
6557 
6558 
GenerateHeapNumbers(MacroAssembler * masm)6559 void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
6560   ASSERT(state_ == CompareIC::HEAP_NUMBERS);
6561 
6562   Label generic_stub;
6563   Label unordered, maybe_undefined1, maybe_undefined2;
6564   Label miss;
6565   __ and_(r2, r1, Operand(r0));
6566   __ JumpIfSmi(r2, &generic_stub);
6567 
6568   __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
6569   __ b(ne, &maybe_undefined1);
6570   __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
6571   __ b(ne, &maybe_undefined2);
6572 
6573   // Inlining the double comparison and falling back to the general compare
6574   // stub if NaN is involved or VFP3 is unsupported.
6575   if (CpuFeatures::IsSupported(VFP3)) {
6576     CpuFeatures::Scope scope(VFP3);
6577 
6578     // Load left and right operand
6579     __ sub(r2, r1, Operand(kHeapObjectTag));
6580     __ vldr(d0, r2, HeapNumber::kValueOffset);
6581     __ sub(r2, r0, Operand(kHeapObjectTag));
6582     __ vldr(d1, r2, HeapNumber::kValueOffset);
6583 
6584     // Compare operands
6585     __ VFPCompareAndSetFlags(d0, d1);
6586 
6587     // Don't base result on status bits when a NaN is involved.
6588     __ b(vs, &unordered);
6589 
6590     // Return a result of -1, 0, or 1, based on status bits.
6591     __ mov(r0, Operand(EQUAL), LeaveCC, eq);
6592     __ mov(r0, Operand(LESS), LeaveCC, lt);
6593     __ mov(r0, Operand(GREATER), LeaveCC, gt);
6594     __ Ret();
6595   }
6596 
6597   __ bind(&unordered);
6598   CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
6599   __ bind(&generic_stub);
6600   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
6601 
6602   __ bind(&maybe_undefined1);
6603   if (Token::IsOrderedRelationalCompareOp(op_)) {
6604     __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
6605     __ b(ne, &miss);
6606     __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
6607     __ b(ne, &maybe_undefined2);
6608     __ jmp(&unordered);
6609   }
6610 
6611   __ bind(&maybe_undefined2);
6612   if (Token::IsOrderedRelationalCompareOp(op_)) {
6613     __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
6614     __ b(eq, &unordered);
6615   }
6616 
6617   __ bind(&miss);
6618   GenerateMiss(masm);
6619 }
6620 
6621 
GenerateSymbols(MacroAssembler * masm)6622 void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
6623   ASSERT(state_ == CompareIC::SYMBOLS);
6624   Label miss;
6625 
6626   // Registers containing left and right operands respectively.
6627   Register left = r1;
6628   Register right = r0;
6629   Register tmp1 = r2;
6630   Register tmp2 = r3;
6631 
6632   // Check that both operands are heap objects.
6633   __ JumpIfEitherSmi(left, right, &miss);
6634 
6635   // Check that both operands are symbols.
6636   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6637   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6638   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6639   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6640   STATIC_ASSERT(kSymbolTag != 0);
6641   __ and_(tmp1, tmp1, Operand(tmp2));
6642   __ tst(tmp1, Operand(kIsSymbolMask));
6643   __ b(eq, &miss);
6644 
6645   // Symbols are compared by identity.
6646   __ cmp(left, right);
6647   // Make sure r0 is non-zero. At this point input operands are
6648   // guaranteed to be non-zero.
6649   ASSERT(right.is(r0));
6650   STATIC_ASSERT(EQUAL == 0);
6651   STATIC_ASSERT(kSmiTag == 0);
6652   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6653   __ Ret();
6654 
6655   __ bind(&miss);
6656   GenerateMiss(masm);
6657 }
6658 
6659 
GenerateStrings(MacroAssembler * masm)6660 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
6661   ASSERT(state_ == CompareIC::STRINGS);
6662   Label miss;
6663 
6664   bool equality = Token::IsEqualityOp(op_);
6665 
6666   // Registers containing left and right operands respectively.
6667   Register left = r1;
6668   Register right = r0;
6669   Register tmp1 = r2;
6670   Register tmp2 = r3;
6671   Register tmp3 = r4;
6672   Register tmp4 = r5;
6673 
6674   // Check that both operands are heap objects.
6675   __ JumpIfEitherSmi(left, right, &miss);
6676 
6677   // Check that both operands are strings. This leaves the instance
6678   // types loaded in tmp1 and tmp2.
6679   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6680   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6681   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6682   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6683   STATIC_ASSERT(kNotStringTag != 0);
6684   __ orr(tmp3, tmp1, tmp2);
6685   __ tst(tmp3, Operand(kIsNotStringMask));
6686   __ b(ne, &miss);
6687 
6688   // Fast check for identical strings.
6689   __ cmp(left, right);
6690   STATIC_ASSERT(EQUAL == 0);
6691   STATIC_ASSERT(kSmiTag == 0);
6692   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6693   __ Ret(eq);
6694 
6695   // Handle not identical strings.
6696 
6697   // Check that both strings are symbols. If they are, we're done
6698   // because we already know they are not identical.
6699   if (equality) {
6700     ASSERT(GetCondition() == eq);
6701     STATIC_ASSERT(kSymbolTag != 0);
6702     __ and_(tmp3, tmp1, Operand(tmp2));
6703     __ tst(tmp3, Operand(kIsSymbolMask));
6704     // Make sure r0 is non-zero. At this point input operands are
6705     // guaranteed to be non-zero.
6706     ASSERT(right.is(r0));
6707     __ Ret(ne);
6708   }
6709 
6710   // Check that both strings are sequential ASCII.
6711   Label runtime;
6712   __ JumpIfBothInstanceTypesAreNotSequentialAscii(
6713       tmp1, tmp2, tmp3, tmp4, &runtime);
6714 
6715   // Compare flat ASCII strings. Returns when done.
6716   if (equality) {
6717     StringCompareStub::GenerateFlatAsciiStringEquals(
6718         masm, left, right, tmp1, tmp2, tmp3);
6719   } else {
6720     StringCompareStub::GenerateCompareFlatAsciiStrings(
6721         masm, left, right, tmp1, tmp2, tmp3, tmp4);
6722   }
6723 
6724   // Handle more complex cases in runtime.
6725   __ bind(&runtime);
6726   __ Push(left, right);
6727   if (equality) {
6728     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
6729   } else {
6730     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6731   }
6732 
6733   __ bind(&miss);
6734   GenerateMiss(masm);
6735 }
6736 
6737 
GenerateObjects(MacroAssembler * masm)6738 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6739   ASSERT(state_ == CompareIC::OBJECTS);
6740   Label miss;
6741   __ and_(r2, r1, Operand(r0));
6742   __ JumpIfSmi(r2, &miss);
6743 
6744   __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
6745   __ b(ne, &miss);
6746   __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
6747   __ b(ne, &miss);
6748 
6749   ASSERT(GetCondition() == eq);
6750   __ sub(r0, r0, Operand(r1));
6751   __ Ret();
6752 
6753   __ bind(&miss);
6754   GenerateMiss(masm);
6755 }
6756 
6757 
GenerateKnownObjects(MacroAssembler * masm)6758 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
6759   Label miss;
6760   __ and_(r2, r1, Operand(r0));
6761   __ JumpIfSmi(r2, &miss);
6762   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
6763   __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
6764   __ cmp(r2, Operand(known_map_));
6765   __ b(ne, &miss);
6766   __ cmp(r3, Operand(known_map_));
6767   __ b(ne, &miss);
6768 
6769   __ sub(r0, r0, Operand(r1));
6770   __ Ret();
6771 
6772   __ bind(&miss);
6773   GenerateMiss(masm);
6774 }
6775 
6776 
6777 
GenerateMiss(MacroAssembler * masm)6778 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
6779   {
6780     // Call the runtime system in a fresh internal frame.
6781     ExternalReference miss =
6782         ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
6783 
6784     FrameScope scope(masm, StackFrame::INTERNAL);
6785     __ Push(r1, r0);
6786     __ push(lr);
6787     __ Push(r1, r0);
6788     __ mov(ip, Operand(Smi::FromInt(op_)));
6789     __ push(ip);
6790     __ CallExternalReference(miss, 3);
6791     // Compute the entry point of the rewritten stub.
6792     __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
6793     // Restore registers.
6794     __ pop(lr);
6795     __ pop(r0);
6796     __ pop(r1);
6797   }
6798 
6799   __ Jump(r2);
6800 }
6801 
6802 
Generate(MacroAssembler * masm)6803 void DirectCEntryStub::Generate(MacroAssembler* masm) {
6804   __ ldr(pc, MemOperand(sp, 0));
6805 }
6806 
6807 
GenerateCall(MacroAssembler * masm,ExternalReference function)6808 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
6809                                     ExternalReference function) {
6810   __ mov(r2, Operand(function));
6811   GenerateCall(masm, r2);
6812 }
6813 
6814 
GenerateCall(MacroAssembler * masm,Register target)6815 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
6816                                     Register target) {
6817   __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
6818                      RelocInfo::CODE_TARGET));
6819   // Push return address (accessible to GC through exit frame pc).
6820   // Note that using pc with str is deprecated.
6821   Label start;
6822   __ bind(&start);
6823   __ add(ip, pc, Operand(Assembler::kInstrSize));
6824   __ str(ip, MemOperand(sp, 0));
6825   __ Jump(target);  // Call the C++ function.
6826   ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta,
6827             masm->SizeOfCodeGeneratedSince(&start));
6828 }
6829 
6830 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<String> name,Register scratch0)6831 void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
6832                                                         Label* miss,
6833                                                         Label* done,
6834                                                         Register receiver,
6835                                                         Register properties,
6836                                                         Handle<String> name,
6837                                                         Register scratch0) {
6838   // If names of slots in range from 1 to kProbes - 1 for the hash value are
6839   // not equal to the name and kProbes-th slot is not used (its name is the
6840   // undefined value), it guarantees the hash table doesn't contain the
6841   // property. It's true even if some slots represent deleted properties
6842   // (their names are the hole value).
6843   for (int i = 0; i < kInlinedProbes; i++) {
6844     // scratch0 points to properties hash.
6845     // Compute the masked index: (hash + i + i * i) & mask.
6846     Register index = scratch0;
6847     // Capacity is smi 2^n.
6848     __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
6849     __ sub(index, index, Operand(1));
6850     __ and_(index, index, Operand(
6851         Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
6852 
6853     // Scale the index by multiplying by the entry size.
6854     ASSERT(StringDictionary::kEntrySize == 3);
6855     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
6856 
6857     Register entity_name = scratch0;
6858     // Having undefined at this place means the name is not contained.
6859     ASSERT_EQ(kSmiTagSize, 1);
6860     Register tmp = properties;
6861     __ add(tmp, properties, Operand(index, LSL, 1));
6862     __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
6863 
6864     ASSERT(!tmp.is(entity_name));
6865     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
6866     __ cmp(entity_name, tmp);
6867     __ b(eq, done);
6868 
6869     if (i != kInlinedProbes - 1) {
6870       // Load the hole ready for use below:
6871       __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
6872 
6873       // Stop if found the property.
6874       __ cmp(entity_name, Operand(Handle<String>(name)));
6875       __ b(eq, miss);
6876 
6877       Label the_hole;
6878       __ cmp(entity_name, tmp);
6879       __ b(eq, &the_hole);
6880 
6881       // Check if the entry name is not a symbol.
6882       __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
6883       __ ldrb(entity_name,
6884               FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
6885       __ tst(entity_name, Operand(kIsSymbolMask));
6886       __ b(eq, miss);
6887 
6888       __ bind(&the_hole);
6889 
6890       // Restore the properties.
6891       __ ldr(properties,
6892              FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6893     }
6894   }
6895 
6896   const int spill_mask =
6897       (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
6898        r2.bit() | r1.bit() | r0.bit());
6899 
6900   __ stm(db_w, sp, spill_mask);
6901   __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6902   __ mov(r1, Operand(Handle<String>(name)));
6903   StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
6904   __ CallStub(&stub);
6905   __ cmp(r0, Operand(0));
6906   __ ldm(ia_w, sp, spill_mask);
6907 
6908   __ b(eq, done);
6909   __ b(ne, miss);
6910 }
6911 
6912 
6913 // Probe the string dictionary in the |elements| register. Jump to the
6914 // |done| label if a property with the given name is found. Jump to
6915 // the |miss| label otherwise.
6916 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)6917 void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
6918                                                         Label* miss,
6919                                                         Label* done,
6920                                                         Register elements,
6921                                                         Register name,
6922                                                         Register scratch1,
6923                                                         Register scratch2) {
6924   ASSERT(!elements.is(scratch1));
6925   ASSERT(!elements.is(scratch2));
6926   ASSERT(!name.is(scratch1));
6927   ASSERT(!name.is(scratch2));
6928 
6929   // Assert that name contains a string.
6930   if (FLAG_debug_code) __ AbortIfNotString(name);
6931 
6932   // Compute the capacity mask.
6933   __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
6934   __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize));  // convert smi to int
6935   __ sub(scratch1, scratch1, Operand(1));
6936 
6937   // Generate an unrolled loop that performs a few probes before
6938   // giving up. Measurements done on Gmail indicate that 2 probes
6939   // cover ~93% of loads from dictionaries.
6940   for (int i = 0; i < kInlinedProbes; i++) {
6941     // Compute the masked index: (hash + i + i * i) & mask.
6942     __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
6943     if (i > 0) {
6944       // Add the probe offset (i + i * i) left shifted to avoid right shifting
6945       // the hash in a separate instruction. The value hash + i + i * i is right
6946       // shifted in the following and instruction.
6947       ASSERT(StringDictionary::GetProbeOffset(i) <
6948              1 << (32 - String::kHashFieldOffset));
6949       __ add(scratch2, scratch2, Operand(
6950           StringDictionary::GetProbeOffset(i) << String::kHashShift));
6951     }
6952     __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
6953 
6954     // Scale the index by multiplying by the element size.
6955     ASSERT(StringDictionary::kEntrySize == 3);
6956     // scratch2 = scratch2 * 3.
6957     __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
6958 
6959     // Check if the key is identical to the name.
6960     __ add(scratch2, elements, Operand(scratch2, LSL, 2));
6961     __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
6962     __ cmp(name, Operand(ip));
6963     __ b(eq, done);
6964   }
6965 
6966   const int spill_mask =
6967       (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
6968        r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
6969       ~(scratch1.bit() | scratch2.bit());
6970 
6971   __ stm(db_w, sp, spill_mask);
6972   if (name.is(r0)) {
6973     ASSERT(!elements.is(r1));
6974     __ Move(r1, name);
6975     __ Move(r0, elements);
6976   } else {
6977     __ Move(r0, elements);
6978     __ Move(r1, name);
6979   }
6980   StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
6981   __ CallStub(&stub);
6982   __ cmp(r0, Operand(0));
6983   __ mov(scratch2, Operand(r2));
6984   __ ldm(ia_w, sp, spill_mask);
6985 
6986   __ b(ne, done);
6987   __ b(eq, miss);
6988 }
6989 
6990 
Generate(MacroAssembler * masm)6991 void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
6992   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
6993   // we cannot call anything that could cause a GC from this stub.
6994   // Registers:
6995   //  result: StringDictionary to probe
6996   //  r1: key
6997   //  : StringDictionary to probe.
6998   //  index_: will hold an index of entry if lookup is successful.
6999   //          might alias with result_.
7000   // Returns:
7001   //  result_ is zero if lookup failed, non zero otherwise.
7002 
7003   Register result = r0;
7004   Register dictionary = r0;
7005   Register key = r1;
7006   Register index = r2;
7007   Register mask = r3;
7008   Register hash = r4;
7009   Register undefined = r5;
7010   Register entry_key = r6;
7011 
7012   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
7013 
7014   __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
7015   __ mov(mask, Operand(mask, ASR, kSmiTagSize));
7016   __ sub(mask, mask, Operand(1));
7017 
7018   __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
7019 
7020   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
7021 
7022   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
7023     // Compute the masked index: (hash + i + i * i) & mask.
7024     // Capacity is smi 2^n.
7025     if (i > 0) {
7026       // Add the probe offset (i + i * i) left shifted to avoid right shifting
7027       // the hash in a separate instruction. The value hash + i + i * i is right
7028       // shifted in the following and instruction.
7029       ASSERT(StringDictionary::GetProbeOffset(i) <
7030              1 << (32 - String::kHashFieldOffset));
7031       __ add(index, hash, Operand(
7032           StringDictionary::GetProbeOffset(i) << String::kHashShift));
7033     } else {
7034       __ mov(index, Operand(hash));
7035     }
7036     __ and_(index, mask, Operand(index, LSR, String::kHashShift));
7037 
7038     // Scale the index by multiplying by the entry size.
7039     ASSERT(StringDictionary::kEntrySize == 3);
7040     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
7041 
7042     ASSERT_EQ(kSmiTagSize, 1);
7043     __ add(index, dictionary, Operand(index, LSL, 2));
7044     __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
7045 
7046     // Having undefined at this place means the name is not contained.
7047     __ cmp(entry_key, Operand(undefined));
7048     __ b(eq, &not_in_dictionary);
7049 
7050     // Stop if found the property.
7051     __ cmp(entry_key, Operand(key));
7052     __ b(eq, &in_dictionary);
7053 
7054     if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
7055       // Check if the entry name is not a symbol.
7056       __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
7057       __ ldrb(entry_key,
7058               FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
7059       __ tst(entry_key, Operand(kIsSymbolMask));
7060       __ b(eq, &maybe_in_dictionary);
7061     }
7062   }
7063 
7064   __ bind(&maybe_in_dictionary);
7065   // If we are doing negative lookup then probing failure should be
7066   // treated as a lookup success. For positive lookup probing failure
7067   // should be treated as lookup failure.
7068   if (mode_ == POSITIVE_LOOKUP) {
7069     __ mov(result, Operand::Zero());
7070     __ Ret();
7071   }
7072 
7073   __ bind(&in_dictionary);
7074   __ mov(result, Operand(1));
7075   __ Ret();
7076 
7077   __ bind(&not_in_dictionary);
7078   __ mov(result, Operand::Zero());
7079   __ Ret();
7080 }
7081 
7082 
7083 struct AheadOfTimeWriteBarrierStubList {
7084   Register object, value, address;
7085   RememberedSetAction action;
7086 };
7087 
7088 #define REG(Name) { kRegister_ ## Name ## _Code }
7089 
7090 static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
7091   // Used in RegExpExecStub.
7092   { REG(r6), REG(r4), REG(r7), EMIT_REMEMBERED_SET },
7093   { REG(r6), REG(r2), REG(r7), EMIT_REMEMBERED_SET },
7094   // Used in CompileArrayPushCall.
7095   // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
7096   // Also used in KeyedStoreIC::GenerateGeneric.
7097   { REG(r3), REG(r4), REG(r5), EMIT_REMEMBERED_SET },
7098   // Used in CompileStoreGlobal.
7099   { REG(r4), REG(r1), REG(r2), OMIT_REMEMBERED_SET },
7100   // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
7101   { REG(r1), REG(r2), REG(r3), EMIT_REMEMBERED_SET },
7102   { REG(r3), REG(r2), REG(r1), EMIT_REMEMBERED_SET },
7103   // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
7104   { REG(r2), REG(r1), REG(r3), EMIT_REMEMBERED_SET },
7105   { REG(r3), REG(r1), REG(r2), EMIT_REMEMBERED_SET },
7106   // KeyedStoreStubCompiler::GenerateStoreFastElement.
7107   { REG(r3), REG(r2), REG(r4), EMIT_REMEMBERED_SET },
7108   { REG(r2), REG(r3), REG(r4), EMIT_REMEMBERED_SET },
7109   // ElementsTransitionGenerator::GenerateSmiOnlyToObject
7110   // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
7111   // and ElementsTransitionGenerator::GenerateDoubleToObject
7112   { REG(r2), REG(r3), REG(r9), EMIT_REMEMBERED_SET },
7113   { REG(r2), REG(r3), REG(r9), OMIT_REMEMBERED_SET },
7114   // ElementsTransitionGenerator::GenerateDoubleToObject
7115   { REG(r6), REG(r2), REG(r0), EMIT_REMEMBERED_SET },
7116   { REG(r2), REG(r6), REG(r9), EMIT_REMEMBERED_SET },
7117   // StoreArrayLiteralElementStub::Generate
7118   { REG(r5), REG(r0), REG(r6), EMIT_REMEMBERED_SET },
7119   // Null termination.
7120   { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
7121 };
7122 
7123 #undef REG
7124 
IsPregenerated()7125 bool RecordWriteStub::IsPregenerated() {
7126   for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7127        !entry->object.is(no_reg);
7128        entry++) {
7129     if (object_.is(entry->object) &&
7130         value_.is(entry->value) &&
7131         address_.is(entry->address) &&
7132         remembered_set_action_ == entry->action &&
7133         save_fp_regs_mode_ == kDontSaveFPRegs) {
7134       return true;
7135     }
7136   }
7137   return false;
7138 }
7139 
7140 
IsPregenerated()7141 bool StoreBufferOverflowStub::IsPregenerated() {
7142   return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
7143 }
7144 
7145 
GenerateFixedRegStubsAheadOfTime()7146 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
7147   StoreBufferOverflowStub stub1(kDontSaveFPRegs);
7148   stub1.GetCode()->set_is_pregenerated(true);
7149 }
7150 
7151 
GenerateFixedRegStubsAheadOfTime()7152 void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
7153   for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7154        !entry->object.is(no_reg);
7155        entry++) {
7156     RecordWriteStub stub(entry->object,
7157                          entry->value,
7158                          entry->address,
7159                          entry->action,
7160                          kDontSaveFPRegs);
7161     stub.GetCode()->set_is_pregenerated(true);
7162   }
7163 }
7164 
7165 
7166 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
7167 // the value has just been written into the object, now this stub makes sure
7168 // we keep the GC informed.  The word in the object where the value has been
7169 // written is in the address register.
Generate(MacroAssembler * masm)7170 void RecordWriteStub::Generate(MacroAssembler* masm) {
7171   Label skip_to_incremental_noncompacting;
7172   Label skip_to_incremental_compacting;
7173 
7174   // The first two instructions are generated with labels so as to get the
7175   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
7176   // forth between a compare instructions (a nop in this position) and the
7177   // real branch when we start and stop incremental heap marking.
7178   // See RecordWriteStub::Patch for details.
7179   __ b(&skip_to_incremental_noncompacting);
7180   __ b(&skip_to_incremental_compacting);
7181 
7182   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7183     __ RememberedSetHelper(object_,
7184                            address_,
7185                            value_,
7186                            save_fp_regs_mode_,
7187                            MacroAssembler::kReturnAtEnd);
7188   }
7189   __ Ret();
7190 
7191   __ bind(&skip_to_incremental_noncompacting);
7192   GenerateIncremental(masm, INCREMENTAL);
7193 
7194   __ bind(&skip_to_incremental_compacting);
7195   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
7196 
7197   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
7198   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
7199   ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
7200   ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
7201   PatchBranchIntoNop(masm, 0);
7202   PatchBranchIntoNop(masm, Assembler::kInstrSize);
7203 }
7204 
7205 
GenerateIncremental(MacroAssembler * masm,Mode mode)7206 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
7207   regs_.Save(masm);
7208 
7209   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7210     Label dont_need_remembered_set;
7211 
7212     __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7213     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
7214                            regs_.scratch0(),
7215                            &dont_need_remembered_set);
7216 
7217     __ CheckPageFlag(regs_.object(),
7218                      regs_.scratch0(),
7219                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
7220                      ne,
7221                      &dont_need_remembered_set);
7222 
7223     // First notify the incremental marker if necessary, then update the
7224     // remembered set.
7225     CheckNeedsToInformIncrementalMarker(
7226         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
7227     InformIncrementalMarker(masm, mode);
7228     regs_.Restore(masm);
7229     __ RememberedSetHelper(object_,
7230                            address_,
7231                            value_,
7232                            save_fp_regs_mode_,
7233                            MacroAssembler::kReturnAtEnd);
7234 
7235     __ bind(&dont_need_remembered_set);
7236   }
7237 
7238   CheckNeedsToInformIncrementalMarker(
7239       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
7240   InformIncrementalMarker(masm, mode);
7241   regs_.Restore(masm);
7242   __ Ret();
7243 }
7244 
7245 
InformIncrementalMarker(MacroAssembler * masm,Mode mode)7246 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
7247   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
7248   int argument_count = 3;
7249   __ PrepareCallCFunction(argument_count, regs_.scratch0());
7250   Register address =
7251       r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
7252   ASSERT(!address.is(regs_.object()));
7253   ASSERT(!address.is(r0));
7254   __ Move(address, regs_.address());
7255   __ Move(r0, regs_.object());
7256   if (mode == INCREMENTAL_COMPACTION) {
7257     __ Move(r1, address);
7258   } else {
7259     ASSERT(mode == INCREMENTAL);
7260     __ ldr(r1, MemOperand(address, 0));
7261   }
7262   __ mov(r2, Operand(ExternalReference::isolate_address()));
7263 
7264   AllowExternalCallThatCantCauseGC scope(masm);
7265   if (mode == INCREMENTAL_COMPACTION) {
7266     __ CallCFunction(
7267         ExternalReference::incremental_evacuation_record_write_function(
7268             masm->isolate()),
7269         argument_count);
7270   } else {
7271     ASSERT(mode == INCREMENTAL);
7272     __ CallCFunction(
7273         ExternalReference::incremental_marking_record_write_function(
7274             masm->isolate()),
7275         argument_count);
7276   }
7277   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
7278 }
7279 
7280 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)7281 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
7282     MacroAssembler* masm,
7283     OnNoNeedToInformIncrementalMarker on_no_need,
7284     Mode mode) {
7285   Label on_black;
7286   Label need_incremental;
7287   Label need_incremental_pop_scratch;
7288 
7289   // Let's look at the color of the object:  If it is not black we don't have
7290   // to inform the incremental marker.
7291   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
7292 
7293   regs_.Restore(masm);
7294   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7295     __ RememberedSetHelper(object_,
7296                            address_,
7297                            value_,
7298                            save_fp_regs_mode_,
7299                            MacroAssembler::kReturnAtEnd);
7300   } else {
7301     __ Ret();
7302   }
7303 
7304   __ bind(&on_black);
7305 
7306   // Get the value from the slot.
7307   __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
7308 
7309   if (mode == INCREMENTAL_COMPACTION) {
7310     Label ensure_not_white;
7311 
7312     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
7313                      regs_.scratch1(),  // Scratch.
7314                      MemoryChunk::kEvacuationCandidateMask,
7315                      eq,
7316                      &ensure_not_white);
7317 
7318     __ CheckPageFlag(regs_.object(),
7319                      regs_.scratch1(),  // Scratch.
7320                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
7321                      eq,
7322                      &need_incremental);
7323 
7324     __ bind(&ensure_not_white);
7325   }
7326 
7327   // We need extra registers for this, so we push the object and the address
7328   // register temporarily.
7329   __ Push(regs_.object(), regs_.address());
7330   __ EnsureNotWhite(regs_.scratch0(),  // The value.
7331                     regs_.scratch1(),  // Scratch.
7332                     regs_.object(),  // Scratch.
7333                     regs_.address(),  // Scratch.
7334                     &need_incremental_pop_scratch);
7335   __ Pop(regs_.object(), regs_.address());
7336 
7337   regs_.Restore(masm);
7338   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7339     __ RememberedSetHelper(object_,
7340                            address_,
7341                            value_,
7342                            save_fp_regs_mode_,
7343                            MacroAssembler::kReturnAtEnd);
7344   } else {
7345     __ Ret();
7346   }
7347 
7348   __ bind(&need_incremental_pop_scratch);
7349   __ Pop(regs_.object(), regs_.address());
7350 
7351   __ bind(&need_incremental);
7352 
7353   // Fall through when we need to inform the incremental marker.
7354 }
7355 
7356 
Generate(MacroAssembler * masm)7357 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
7358   // ----------- S t a t e -------------
7359   //  -- r0    : element value to store
7360   //  -- r1    : array literal
7361   //  -- r2    : map of array literal
7362   //  -- r3    : element index as smi
7363   //  -- r4    : array literal index in function as smi
7364   // -----------------------------------
7365 
7366   Label element_done;
7367   Label double_elements;
7368   Label smi_element;
7369   Label slow_elements;
7370   Label fast_elements;
7371 
7372   __ CheckFastElements(r2, r5, &double_elements);
7373   // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
7374   __ JumpIfSmi(r0, &smi_element);
7375   __ CheckFastSmiOnlyElements(r2, r5, &fast_elements);
7376 
7377   // Store into the array literal requires a elements transition. Call into
7378   // the runtime.
7379   __ bind(&slow_elements);
7380   // call.
7381   __ Push(r1, r3, r0);
7382   __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
7383   __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
7384   __ Push(r5, r4);
7385   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
7386 
7387   // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
7388   __ bind(&fast_elements);
7389   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7390   __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7391   __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
7392   __ str(r0, MemOperand(r6, 0));
7393   // Update the write barrier for the array store.
7394   __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
7395                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
7396   __ Ret();
7397 
7398   // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
7399   // FAST_ELEMENTS, and value is Smi.
7400   __ bind(&smi_element);
7401   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7402   __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
7403   __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
7404   __ Ret();
7405 
7406   // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
7407   __ bind(&double_elements);
7408   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
7409   __ StoreNumberToDoubleElements(r0, r3, r1, r5, r6, r7, r9, r2,
7410                                  &slow_elements);
7411   __ Ret();
7412 }
7413 
7414 #undef __
7415 
7416 } }  // namespace v8::internal
7417 
7418 #endif  // V8_TARGET_ARCH_ARM
7419