• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
3  *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
4  *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
5  *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
6  *
7  *  This library is free software; you can redistribute it and/or
8  *  modify it under the terms of the GNU Lesser General Public
9  *  License as published by the Free Software Foundation; either
10  *  version 2 of the License, or (at your option) any later version.
11  *
12  *  This library is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  *  Lesser General Public License for more details.
16  *
17  *  You should have received a copy of the GNU Lesser General Public
18  *  License along with this library; if not, write to the Free Software
19  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
20  *
21  */
22 
23 #include "config.h"
24 #include "JSArray.h"
25 
26 #include "ArrayPrototype.h"
27 #include "CachedCall.h"
28 #include "Error.h"
29 #include "Executable.h"
30 #include "PropertyNameArray.h"
31 #include <wtf/AVLTree.h>
32 #include <wtf/Assertions.h>
33 #include <wtf/OwnPtr.h>
34 #include <Operations.h>
35 
36 using namespace std;
37 using namespace WTF;
38 
39 namespace JSC {
40 
41 ASSERT_CLASS_FITS_IN_CELL(JSArray);
42 
43 // Overview of JSArray
44 //
45 // Properties of JSArray objects may be stored in one of three locations:
46 //   * The regular JSObject property map.
47 //   * A storage vector.
48 //   * A sparse map of array entries.
49 //
50 // Properties with non-numeric identifiers, with identifiers that are not representable
51 // as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
52 // (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
53 // integer) are not considered array indices and will be stored in the JSObject property map.
54 //
55 // All properties with a numeric identifer, representable as an unsigned integer i,
56 // where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
57 // storage vector or the sparse map.  An array index i will be handled in the following
58 // fashion:
59 //
60 //   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
61 //   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
62 //     be stored in the storage vector or in the sparse array, depending on the density of
63 //     data that would be stored in the vector (a vector being used where at least
64 //     (1 / minDensityMultiplier) of the entries would be populated).
65 //   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
66 //     in the sparse array.
67 
68 // The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
69 // function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
70 // size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(JSValue)) +
71 // (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
72 #define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))
73 
74 // These values have to be macros to be used in max() and min() without introducing
75 // a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
76 #define MIN_SPARSE_ARRAY_INDEX 10000U
77 #define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
78 // 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
79 #define MAX_ARRAY_INDEX 0xFFFFFFFEU
80 
81 // The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
82 // for an array that was created with a sepcified length (e.g. a = new Array(123))
83 #define BASE_VECTOR_LEN 4U
84 
85 // The upper bound to the size we'll grow a zero length array when the first element
86 // is added.
87 #define FIRST_VECTOR_GROW 4U
88 
89 // Our policy for when to use a vector and when to use a sparse map.
90 // For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
91 // When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
92 // as long as it is 1/8 full. If more sparse than that, we use a map.
93 static const unsigned minDensityMultiplier = 8;
94 
95 const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0};
96 
97 // We keep track of the size of the last array after it was grown.  We use this
98 // as a simple heuristic for as the value to grow the next array from size 0.
99 // This value is capped by the constant FIRST_VECTOR_GROW defined above.
100 static unsigned lastArraySize = 0;
101 
storageSize(unsigned vectorLength)102 static inline size_t storageSize(unsigned vectorLength)
103 {
104     ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);
105 
106     // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
107     // - as asserted above - the following calculation cannot overflow.
108     size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
109     // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
110     // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
111     ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));
112 
113     return size;
114 }
115 
isDenseEnoughForVector(unsigned length,unsigned numValues)116 static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
117 {
118     return length / minDensityMultiplier <= numValues;
119 }
120 
121 #if !CHECK_ARRAY_CONSISTENCY
122 
checkConsistency(ConsistencyCheckType)123 inline void JSArray::checkConsistency(ConsistencyCheckType)
124 {
125 }
126 
127 #endif
128 
JSArray(VPtrStealingHackType)129 JSArray::JSArray(VPtrStealingHackType)
130     : JSNonFinalObject(VPtrStealingHack)
131 {
132 }
133 
JSArray(JSGlobalData & globalData,Structure * structure)134 JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
135     : JSNonFinalObject(globalData, structure)
136 {
137     ASSERT(inherits(&s_info));
138 
139     unsigned initialCapacity = 0;
140 
141     m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
142     m_storage->m_allocBase = m_storage;
143     m_indexBias = 0;
144     m_vectorLength = initialCapacity;
145 
146     checkConsistency();
147 
148     Heap::heap(this)->reportExtraMemoryCost(storageSize(0));
149 }
150 
JSArray(JSGlobalData & globalData,Structure * structure,unsigned initialLength,ArrayCreationMode creationMode)151 JSArray::JSArray(JSGlobalData& globalData, Structure* structure, unsigned initialLength, ArrayCreationMode creationMode)
152     : JSNonFinalObject(globalData, structure)
153 {
154     ASSERT(inherits(&s_info));
155 
156     unsigned initialCapacity;
157     if (creationMode == CreateCompact)
158         initialCapacity = initialLength;
159     else
160         initialCapacity = min(BASE_VECTOR_LEN, MIN_SPARSE_ARRAY_INDEX);
161 
162     m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
163     m_storage->m_allocBase = m_storage;
164     m_storage->m_length = initialLength;
165     m_indexBias = 0;
166     m_vectorLength = initialCapacity;
167     m_storage->m_sparseValueMap = 0;
168     m_storage->subclassData = 0;
169     m_storage->reportedMapCapacity = 0;
170 
171     if (creationMode == CreateCompact) {
172 #if CHECK_ARRAY_CONSISTENCY
173         m_storage->m_inCompactInitialization = !!initialCapacity;
174 #endif
175         m_storage->m_length = 0;
176         m_storage->m_numValuesInVector = initialCapacity;
177     } else {
178 #if CHECK_ARRAY_CONSISTENCY
179         storage->m_inCompactInitialization = false;
180 #endif
181         m_storage->m_length = initialLength;
182         m_storage->m_numValuesInVector = 0;
183         WriteBarrier<Unknown>* vector = m_storage->m_vector;
184         for (size_t i = 0; i < initialCapacity; ++i)
185             vector[i].clear();
186     }
187 
188     checkConsistency();
189 
190     Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
191 }
192 
JSArray(JSGlobalData & globalData,Structure * structure,const ArgList & list)193 JSArray::JSArray(JSGlobalData& globalData, Structure* structure, const ArgList& list)
194     : JSNonFinalObject(globalData, structure)
195 {
196     ASSERT(inherits(&s_info));
197 
198     unsigned initialCapacity = list.size();
199     unsigned initialStorage;
200 
201     // If the ArgList is empty, allocate space for 3 entries.  This value empirically
202     // works well for benchmarks.
203     if (!initialCapacity)
204         initialStorage = 3;
205     else
206         initialStorage = initialCapacity;
207 
208     m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialStorage)));
209     m_storage->m_allocBase = m_storage;
210     m_indexBias = 0;
211     m_storage->m_length = initialCapacity;
212     m_vectorLength = initialStorage;
213     m_storage->m_numValuesInVector = initialCapacity;
214     m_storage->m_sparseValueMap = 0;
215     m_storage->subclassData = 0;
216     m_storage->reportedMapCapacity = 0;
217 #if CHECK_ARRAY_CONSISTENCY
218     m_storage->m_inCompactInitialization = false;
219 #endif
220 
221     size_t i = 0;
222     WriteBarrier<Unknown>* vector = m_storage->m_vector;
223     ArgList::const_iterator end = list.end();
224     for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
225         vector[i].set(globalData, this, *it);
226     for (; i < initialStorage; i++)
227         vector[i].clear();
228 
229     checkConsistency();
230 
231     Heap::heap(this)->reportExtraMemoryCost(storageSize(initialStorage));
232 }
233 
~JSArray()234 JSArray::~JSArray()
235 {
236     ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
237     checkConsistency(DestructorConsistencyCheck);
238 
239     delete m_storage->m_sparseValueMap;
240     fastFree(m_storage->m_allocBase);
241 }
242 
getOwnPropertySlot(ExecState * exec,unsigned i,PropertySlot & slot)243 bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
244 {
245     ArrayStorage* storage = m_storage;
246 
247     if (i >= storage->m_length) {
248         if (i > MAX_ARRAY_INDEX)
249             return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
250         return false;
251     }
252 
253     if (i < m_vectorLength) {
254         JSValue value = storage->m_vector[i].get();
255         if (value) {
256             slot.setValue(value);
257             return true;
258         }
259     } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
260         if (i >= MIN_SPARSE_ARRAY_INDEX) {
261             SparseArrayValueMap::iterator it = map->find(i);
262             if (it != map->end()) {
263                 slot.setValue(it->second.get());
264                 return true;
265             }
266         }
267     }
268 
269     return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
270 }
271 
getOwnPropertySlot(ExecState * exec,const Identifier & propertyName,PropertySlot & slot)272 bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
273 {
274     if (propertyName == exec->propertyNames().length) {
275         slot.setValue(jsNumber(length()));
276         return true;
277     }
278 
279     bool isArrayIndex;
280     unsigned i = propertyName.toArrayIndex(isArrayIndex);
281     if (isArrayIndex)
282         return JSArray::getOwnPropertySlot(exec, i, slot);
283 
284     return JSObject::getOwnPropertySlot(exec, propertyName, slot);
285 }
286 
getOwnPropertyDescriptor(ExecState * exec,const Identifier & propertyName,PropertyDescriptor & descriptor)287 bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
288 {
289     if (propertyName == exec->propertyNames().length) {
290         descriptor.setDescriptor(jsNumber(length()), DontDelete | DontEnum);
291         return true;
292     }
293 
294     ArrayStorage* storage = m_storage;
295 
296     bool isArrayIndex;
297     unsigned i = propertyName.toArrayIndex(isArrayIndex);
298     if (isArrayIndex) {
299         if (i >= storage->m_length)
300             return false;
301         if (i < m_vectorLength) {
302             WriteBarrier<Unknown>& value = storage->m_vector[i];
303             if (value) {
304                 descriptor.setDescriptor(value.get(), 0);
305                 return true;
306             }
307         } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
308             if (i >= MIN_SPARSE_ARRAY_INDEX) {
309                 SparseArrayValueMap::iterator it = map->find(i);
310                 if (it != map->end()) {
311                     descriptor.setDescriptor(it->second.get(), 0);
312                     return true;
313                 }
314             }
315         }
316     }
317     return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
318 }
319 
320 // ECMA 15.4.5.1
put(ExecState * exec,const Identifier & propertyName,JSValue value,PutPropertySlot & slot)321 void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
322 {
323     bool isArrayIndex;
324     unsigned i = propertyName.toArrayIndex(isArrayIndex);
325     if (isArrayIndex) {
326         put(exec, i, value);
327         return;
328     }
329 
330     if (propertyName == exec->propertyNames().length) {
331         unsigned newLength = value.toUInt32(exec);
332         if (value.toNumber(exec) != static_cast<double>(newLength)) {
333             throwError(exec, createRangeError(exec, "Invalid array length."));
334             return;
335         }
336         setLength(newLength);
337         return;
338     }
339 
340     JSObject::put(exec, propertyName, value, slot);
341 }
342 
put(ExecState * exec,unsigned i,JSValue value)343 void JSArray::put(ExecState* exec, unsigned i, JSValue value)
344 {
345     checkConsistency();
346 
347     ArrayStorage* storage = m_storage;
348 
349     unsigned length = storage->m_length;
350     if (i >= length && i <= MAX_ARRAY_INDEX) {
351         length = i + 1;
352         storage->m_length = length;
353     }
354 
355     if (i < m_vectorLength) {
356         WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
357         if (valueSlot) {
358             valueSlot.set(exec->globalData(), this, value);
359             checkConsistency();
360             return;
361         }
362         valueSlot.set(exec->globalData(), this, value);
363         ++storage->m_numValuesInVector;
364         checkConsistency();
365         return;
366     }
367 
368     putSlowCase(exec, i, value);
369 }
370 
putSlowCase(ExecState * exec,unsigned i,JSValue value)371 NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
372 {
373     ArrayStorage* storage = m_storage;
374 
375     SparseArrayValueMap* map = storage->m_sparseValueMap;
376 
377     if (i >= MIN_SPARSE_ARRAY_INDEX) {
378         if (i > MAX_ARRAY_INDEX) {
379             PutPropertySlot slot;
380             put(exec, Identifier::from(exec, i), value, slot);
381             return;
382         }
383 
384         // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
385         // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
386         if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
387             if (!map) {
388                 map = new SparseArrayValueMap;
389                 storage->m_sparseValueMap = map;
390             }
391 
392             WriteBarrier<Unknown> temp;
393             pair<SparseArrayValueMap::iterator, bool> result = map->add(i, temp);
394             result.first->second.set(exec->globalData(), this, value);
395             if (!result.second) // pre-existing entry
396                 return;
397 
398             size_t capacity = map->capacity();
399             if (capacity != storage->reportedMapCapacity) {
400                 Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
401                 storage->reportedMapCapacity = capacity;
402             }
403             return;
404         }
405     }
406 
407     // We have decided that we'll put the new item into the vector.
408     // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
409     if (!map || map->isEmpty()) {
410         if (increaseVectorLength(i + 1)) {
411             storage = m_storage;
412             storage->m_vector[i].set(exec->globalData(), this, value);
413             ++storage->m_numValuesInVector;
414             checkConsistency();
415         } else
416             throwOutOfMemoryError(exec);
417         return;
418     }
419 
420     // Decide how many values it would be best to move from the map.
421     unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
422     unsigned newVectorLength = getNewVectorLength(i + 1);
423     for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
424         newNumValuesInVector += map->contains(j);
425     if (i >= MIN_SPARSE_ARRAY_INDEX)
426         newNumValuesInVector -= map->contains(i);
427     if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
428         unsigned needLength = max(i + 1, storage->m_length);
429         unsigned proposedNewNumValuesInVector = newNumValuesInVector;
430         // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
431         while ((newVectorLength < needLength) && (newVectorLength < MAX_STORAGE_VECTOR_LENGTH)) {
432             unsigned proposedNewVectorLength = getNewVectorLength(newVectorLength + 1);
433             for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
434                 proposedNewNumValuesInVector += map->contains(j);
435             if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
436                 break;
437             newVectorLength = proposedNewVectorLength;
438             newNumValuesInVector = proposedNewNumValuesInVector;
439         }
440     }
441 
442     void* baseStorage = storage->m_allocBase;
443 
444     if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage)) {
445         throwOutOfMemoryError(exec);
446         return;
447     }
448 
449     m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
450     m_storage->m_allocBase = baseStorage;
451     storage = m_storage;
452 
453     unsigned vectorLength = m_vectorLength;
454     WriteBarrier<Unknown>* vector = storage->m_vector;
455 
456     if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
457         for (unsigned j = vectorLength; j < newVectorLength; ++j)
458             vector[j].clear();
459         if (i > MIN_SPARSE_ARRAY_INDEX)
460             map->remove(i);
461     } else {
462         for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
463             vector[j].clear();
464         JSGlobalData& globalData = exec->globalData();
465         for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
466             vector[j].set(globalData, this, map->take(j).get());
467     }
468 
469     ASSERT(i < newVectorLength);
470 
471     m_vectorLength = newVectorLength;
472     storage->m_numValuesInVector = newNumValuesInVector;
473 
474     storage->m_vector[i].set(exec->globalData(), this, value);
475 
476     checkConsistency();
477 
478     Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
479 }
480 
deleteProperty(ExecState * exec,const Identifier & propertyName)481 bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
482 {
483     bool isArrayIndex;
484     unsigned i = propertyName.toArrayIndex(isArrayIndex);
485     if (isArrayIndex)
486         return deleteProperty(exec, i);
487 
488     if (propertyName == exec->propertyNames().length)
489         return false;
490 
491     return JSObject::deleteProperty(exec, propertyName);
492 }
493 
deleteProperty(ExecState * exec,unsigned i)494 bool JSArray::deleteProperty(ExecState* exec, unsigned i)
495 {
496     checkConsistency();
497 
498     ArrayStorage* storage = m_storage;
499 
500     if (i < m_vectorLength) {
501         WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
502         if (!valueSlot) {
503             checkConsistency();
504             return false;
505         }
506         valueSlot.clear();
507         --storage->m_numValuesInVector;
508         checkConsistency();
509         return true;
510     }
511 
512     if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
513         if (i >= MIN_SPARSE_ARRAY_INDEX) {
514             SparseArrayValueMap::iterator it = map->find(i);
515             if (it != map->end()) {
516                 map->remove(it);
517                 checkConsistency();
518                 return true;
519             }
520         }
521     }
522 
523     checkConsistency();
524 
525     if (i > MAX_ARRAY_INDEX)
526         return deleteProperty(exec, Identifier::from(exec, i));
527 
528     return false;
529 }
530 
getOwnPropertyNames(ExecState * exec,PropertyNameArray & propertyNames,EnumerationMode mode)531 void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
532 {
533     // FIXME: Filling PropertyNameArray with an identifier for every integer
534     // is incredibly inefficient for large arrays. We need a different approach,
535     // which almost certainly means a different structure for PropertyNameArray.
536 
537     ArrayStorage* storage = m_storage;
538 
539     unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
540     for (unsigned i = 0; i < usedVectorLength; ++i) {
541         if (storage->m_vector[i])
542             propertyNames.add(Identifier::from(exec, i));
543     }
544 
545     if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
546         SparseArrayValueMap::iterator end = map->end();
547         for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
548             propertyNames.add(Identifier::from(exec, it->first));
549     }
550 
551     if (mode == IncludeDontEnumProperties)
552         propertyNames.add(exec->propertyNames().length);
553 
554     JSObject::getOwnPropertyNames(exec, propertyNames, mode);
555 }
556 
getNewVectorLength(unsigned desiredLength)557 ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
558 {
559     ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);
560 
561     unsigned increasedLength;
562     unsigned maxInitLength = min(m_storage->m_length, 100000U);
563 
564     if (desiredLength < maxInitLength)
565         increasedLength = maxInitLength;
566     else if (!m_vectorLength)
567         increasedLength = max(desiredLength, lastArraySize);
568     else {
569         // Mathematically equivalent to:
570         //   increasedLength = (newLength * 3 + 1) / 2;
571         // or:
572         //   increasedLength = (unsigned)ceil(newLength * 1.5));
573         // This form is not prone to internal overflow.
574         increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
575     }
576 
577     ASSERT(increasedLength >= desiredLength);
578 
579     lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);
580 
581     return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
582 }
583 
increaseVectorLength(unsigned newLength)584 bool JSArray::increaseVectorLength(unsigned newLength)
585 {
586     // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
587     // to the vector. Callers have to account for that, because they can do it more efficiently.
588 
589     ArrayStorage* storage = m_storage;
590 
591     unsigned vectorLength = m_vectorLength;
592     ASSERT(newLength > vectorLength);
593     ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
594     unsigned newVectorLength = getNewVectorLength(newLength);
595     void* baseStorage = storage->m_allocBase;
596 
597     if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage))
598         return false;
599 
600     storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
601     m_storage->m_allocBase = baseStorage;
602 
603     WriteBarrier<Unknown>* vector = storage->m_vector;
604     for (unsigned i = vectorLength; i < newVectorLength; ++i)
605         vector[i].clear();
606 
607     m_vectorLength = newVectorLength;
608 
609     Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
610 
611     return true;
612 }
613 
increaseVectorPrefixLength(unsigned newLength)614 bool JSArray::increaseVectorPrefixLength(unsigned newLength)
615 {
616     // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
617     // to the vector. Callers have to account for that, because they can do it more efficiently.
618 
619     ArrayStorage* storage = m_storage;
620 
621     unsigned vectorLength = m_vectorLength;
622     ASSERT(newLength > vectorLength);
623     ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
624     unsigned newVectorLength = getNewVectorLength(newLength);
625 
626     void* newBaseStorage = fastMalloc(storageSize(newVectorLength + m_indexBias));
627     if (!newBaseStorage)
628         return false;
629 
630     m_indexBias += newVectorLength - newLength;
631 
632     m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(newBaseStorage) + m_indexBias * sizeof(JSValue));
633 
634     memcpy(m_storage, storage, storageSize(0));
635     memcpy(&m_storage->m_vector[newLength - m_vectorLength], &storage->m_vector[0], vectorLength * sizeof(JSValue));
636 
637     m_storage->m_allocBase = newBaseStorage;
638     m_vectorLength = newLength;
639 
640     fastFree(storage->m_allocBase);
641 
642     Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
643 
644     return true;
645 }
646 
647 
setLength(unsigned newLength)648 void JSArray::setLength(unsigned newLength)
649 {
650     ArrayStorage* storage = m_storage;
651 
652 #if CHECK_ARRAY_CONSISTENCY
653     if (!storage->m_inCompactInitialization)
654         checkConsistency();
655     else
656         storage->m_inCompactInitialization = false;
657 #endif
658 
659     unsigned length = storage->m_length;
660 
661     if (newLength < length) {
662         unsigned usedVectorLength = min(length, m_vectorLength);
663         for (unsigned i = newLength; i < usedVectorLength; ++i) {
664             WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
665             bool hadValue = valueSlot;
666             valueSlot.clear();
667             storage->m_numValuesInVector -= hadValue;
668         }
669 
670         if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
671             SparseArrayValueMap copy = *map;
672             SparseArrayValueMap::iterator end = copy.end();
673             for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
674                 if (it->first >= newLength)
675                     map->remove(it->first);
676             }
677             if (map->isEmpty()) {
678                 delete map;
679                 storage->m_sparseValueMap = 0;
680             }
681         }
682     }
683 
684     storage->m_length = newLength;
685 
686     checkConsistency();
687 }
688 
pop()689 JSValue JSArray::pop()
690 {
691     checkConsistency();
692 
693     ArrayStorage* storage = m_storage;
694 
695     unsigned length = storage->m_length;
696     if (!length)
697         return jsUndefined();
698 
699     --length;
700 
701     JSValue result;
702 
703     if (length < m_vectorLength) {
704         WriteBarrier<Unknown>& valueSlot = storage->m_vector[length];
705         if (valueSlot) {
706             --storage->m_numValuesInVector;
707             result = valueSlot.get();
708             valueSlot.clear();
709         } else
710             result = jsUndefined();
711     } else {
712         result = jsUndefined();
713         if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
714             SparseArrayValueMap::iterator it = map->find(length);
715             if (it != map->end()) {
716                 result = it->second.get();
717                 map->remove(it);
718                 if (map->isEmpty()) {
719                     delete map;
720                     storage->m_sparseValueMap = 0;
721                 }
722             }
723         }
724     }
725 
726     storage->m_length = length;
727 
728     checkConsistency();
729 
730     return result;
731 }
732 
push(ExecState * exec,JSValue value)733 void JSArray::push(ExecState* exec, JSValue value)
734 {
735     checkConsistency();
736 
737     ArrayStorage* storage = m_storage;
738 
739     if (storage->m_length < m_vectorLength) {
740         storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
741         ++storage->m_numValuesInVector;
742         ++storage->m_length;
743         checkConsistency();
744         return;
745     }
746 
747     if (storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
748         SparseArrayValueMap* map = storage->m_sparseValueMap;
749         if (!map || map->isEmpty()) {
750             if (increaseVectorLength(storage->m_length + 1)) {
751                 storage = m_storage;
752                 storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
753                 ++storage->m_numValuesInVector;
754                 ++storage->m_length;
755                 checkConsistency();
756                 return;
757             }
758             checkConsistency();
759             throwOutOfMemoryError(exec);
760             return;
761         }
762     }
763 
764     putSlowCase(exec, storage->m_length++, value);
765 }
766 
shiftCount(ExecState * exec,int count)767 void JSArray::shiftCount(ExecState* exec, int count)
768 {
769     ASSERT(count > 0);
770 
771     ArrayStorage* storage = m_storage;
772 
773     unsigned oldLength = storage->m_length;
774 
775     if (!oldLength)
776         return;
777 
778     if (oldLength != storage->m_numValuesInVector) {
779         // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
780         // which means we need to go through each entry looking for the the "empty"
781         // slots and then fill them with possible properties.  See ECMA spec.
782         // 15.4.4.9 steps 11 through 13.
783         for (unsigned i = count; i < oldLength; ++i) {
784             if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
785                 PropertySlot slot(this);
786                 JSValue p = prototype();
787                 if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
788                     put(exec, i, slot.getValue(exec, i));
789             }
790         }
791 
792         storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
793 
794         // Need to decrement numValuesInvector based on number of real entries
795         for (unsigned i = 0; i < (unsigned)count; ++i)
796             if ((i < m_vectorLength) && (storage->m_vector[i]))
797                 --storage->m_numValuesInVector;
798     } else
799         storage->m_numValuesInVector -= count;
800 
801     storage->m_length -= count;
802 
803     if (m_vectorLength) {
804         count = min(m_vectorLength, (unsigned)count);
805 
806         m_vectorLength -= count;
807 
808         if (m_vectorLength) {
809             char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(JSValue);
810             memmove(newBaseStorage, storage, storageSize(0));
811             m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
812 
813             m_indexBias += count;
814         }
815     }
816 }
817 
unshiftCount(ExecState * exec,int count)818 void JSArray::unshiftCount(ExecState* exec, int count)
819 {
820     ArrayStorage* storage = m_storage;
821 
822     ASSERT(m_indexBias >= 0);
823     ASSERT(count >= 0);
824 
825     unsigned length = storage->m_length;
826 
827     if (length != storage->m_numValuesInVector) {
828         // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
829         // which means we need to go through each entry looking for the the "empty"
830         // slots and then fill them with possible properties.  See ECMA spec.
831         // 15.4.4.13 steps 8 through 10.
832         for (unsigned i = 0; i < length; ++i) {
833             if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
834                 PropertySlot slot(this);
835                 JSValue p = prototype();
836                 if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
837                     put(exec, i, slot.getValue(exec, i));
838             }
839         }
840     }
841 
842     storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
843 
844     if (m_indexBias >= count) {
845         m_indexBias -= count;
846         char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(JSValue);
847         memmove(newBaseStorage, storage, storageSize(0));
848         m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
849         m_vectorLength += count;
850     } else if (!increaseVectorPrefixLength(m_vectorLength + count)) {
851         throwOutOfMemoryError(exec);
852         return;
853     }
854 
855     WriteBarrier<Unknown>* vector = m_storage->m_vector;
856     for (int i = 0; i < count; i++)
857         vector[i].clear();
858 }
859 
markChildren(MarkStack & markStack)860 void JSArray::markChildren(MarkStack& markStack)
861 {
862     markChildrenDirect(markStack);
863 }
864 
compareNumbersForQSort(const void * a,const void * b)865 static int compareNumbersForQSort(const void* a, const void* b)
866 {
867     double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
868     double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
869     return (da > db) - (da < db);
870 }
871 
compareByStringPairForQSort(const void * a,const void * b)872 static int compareByStringPairForQSort(const void* a, const void* b)
873 {
874     const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
875     const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
876     return codePointCompare(va->second, vb->second);
877 }
878 
sortNumeric(ExecState * exec,JSValue compareFunction,CallType callType,const CallData & callData)879 void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
880 {
881     ArrayStorage* storage = m_storage;
882 
883     unsigned lengthNotIncludingUndefined = compactForSorting();
884     if (storage->m_sparseValueMap) {
885         throwOutOfMemoryError(exec);
886         return;
887     }
888 
889     if (!lengthNotIncludingUndefined)
890         return;
891 
892     bool allValuesAreNumbers = true;
893     size_t size = storage->m_numValuesInVector;
894     for (size_t i = 0; i < size; ++i) {
895         if (!storage->m_vector[i].isNumber()) {
896             allValuesAreNumbers = false;
897             break;
898         }
899     }
900 
901     if (!allValuesAreNumbers)
902         return sort(exec, compareFunction, callType, callData);
903 
904     // For numeric comparison, which is fast, qsort is faster than mergesort. We
905     // also don't require mergesort's stability, since there's no user visible
906     // side-effect from swapping the order of equal primitive values.
907     qsort(storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);
908 
909     checkConsistency(SortConsistencyCheck);
910 }
911 
sort(ExecState * exec)912 void JSArray::sort(ExecState* exec)
913 {
914     ArrayStorage* storage = m_storage;
915 
916     unsigned lengthNotIncludingUndefined = compactForSorting();
917     if (storage->m_sparseValueMap) {
918         throwOutOfMemoryError(exec);
919         return;
920     }
921 
922     if (!lengthNotIncludingUndefined)
923         return;
924 
925     // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
926     // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
927     // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
928     // random or otherwise changing results, effectively making compare function inconsistent.
929 
930     Vector<ValueStringPair> values(lengthNotIncludingUndefined);
931     if (!values.begin()) {
932         throwOutOfMemoryError(exec);
933         return;
934     }
935 
936     Heap::heap(this)->pushTempSortVector(&values);
937 
938     for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
939         JSValue value = storage->m_vector[i].get();
940         ASSERT(!value.isUndefined());
941         values[i].first = value;
942     }
943 
944     // FIXME: The following loop continues to call toString on subsequent values even after
945     // a toString call raises an exception.
946 
947     for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
948         values[i].second = values[i].first.toString(exec);
949 
950     if (exec->hadException()) {
951         Heap::heap(this)->popTempSortVector(&values);
952         return;
953     }
954 
955     // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
956     // than O(N log N).
957 
958 #if HAVE(MERGESORT)
959     mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
960 #else
961     // FIXME: The qsort library function is likely to not be a stable sort.
962     // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
963     qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
964 #endif
965 
966     // If the toString function changed the length of the array or vector storage,
967     // increase the length to handle the orignal number of actual values.
968     if (m_vectorLength < lengthNotIncludingUndefined)
969         increaseVectorLength(lengthNotIncludingUndefined);
970     if (storage->m_length < lengthNotIncludingUndefined)
971         storage->m_length = lengthNotIncludingUndefined;
972 
973     JSGlobalData& globalData = exec->globalData();
974     for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
975         storage->m_vector[i].set(globalData, this, values[i].first);
976 
977     Heap::heap(this)->popTempSortVector(&values);
978 
979     checkConsistency(SortConsistencyCheck);
980 }
981 
982 struct AVLTreeNodeForArrayCompare {
983     JSValue value;
984 
985     // Child pointers.  The high bit of gt is robbed and used as the
986     // balance factor sign.  The high bit of lt is robbed and used as
987     // the magnitude of the balance factor.
988     int32_t gt;
989     int32_t lt;
990 };
991 
992 struct AVLTreeAbstractorForArrayCompare {
993     typedef int32_t handle; // Handle is an index into m_nodes vector.
994     typedef JSValue key;
995     typedef int32_t size;
996 
997     Vector<AVLTreeNodeForArrayCompare> m_nodes;
998     ExecState* m_exec;
999     JSValue m_compareFunction;
1000     CallType m_compareCallType;
1001     const CallData* m_compareCallData;
1002     JSValue m_globalThisValue;
1003     OwnPtr<CachedCall> m_cachedCall;
1004 
get_lessJSC::AVLTreeAbstractorForArrayCompare1005     handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
set_lessJSC::AVLTreeAbstractorForArrayCompare1006     void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
get_greaterJSC::AVLTreeAbstractorForArrayCompare1007     handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
set_greaterJSC::AVLTreeAbstractorForArrayCompare1008     void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
1009 
get_balance_factorJSC::AVLTreeAbstractorForArrayCompare1010     int get_balance_factor(handle h)
1011     {
1012         if (m_nodes[h].gt & 0x80000000)
1013             return -1;
1014         return static_cast<unsigned>(m_nodes[h].lt) >> 31;
1015     }
1016 
set_balance_factorJSC::AVLTreeAbstractorForArrayCompare1017     void set_balance_factor(handle h, int bf)
1018     {
1019         if (bf == 0) {
1020             m_nodes[h].lt &= 0x7FFFFFFF;
1021             m_nodes[h].gt &= 0x7FFFFFFF;
1022         } else {
1023             m_nodes[h].lt |= 0x80000000;
1024             if (bf < 0)
1025                 m_nodes[h].gt |= 0x80000000;
1026             else
1027                 m_nodes[h].gt &= 0x7FFFFFFF;
1028         }
1029     }
1030 
compare_key_keyJSC::AVLTreeAbstractorForArrayCompare1031     int compare_key_key(key va, key vb)
1032     {
1033         ASSERT(!va.isUndefined());
1034         ASSERT(!vb.isUndefined());
1035 
1036         if (m_exec->hadException())
1037             return 1;
1038 
1039         double compareResult;
1040         if (m_cachedCall) {
1041             m_cachedCall->setThis(m_globalThisValue);
1042             m_cachedCall->setArgument(0, va);
1043             m_cachedCall->setArgument(1, vb);
1044             compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
1045         } else {
1046             MarkedArgumentBuffer arguments;
1047             arguments.append(va);
1048             arguments.append(vb);
1049             compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
1050         }
1051         return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
1052     }
1053 
compare_key_nodeJSC::AVLTreeAbstractorForArrayCompare1054     int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
compare_node_nodeJSC::AVLTreeAbstractorForArrayCompare1055     int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
1056 
nullJSC::AVLTreeAbstractorForArrayCompare1057     static handle null() { return 0x7FFFFFFF; }
1058 };
1059 
sort(ExecState * exec,JSValue compareFunction,CallType callType,const CallData & callData)1060 void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
1061 {
1062     checkConsistency();
1063 
1064     ArrayStorage* storage = m_storage;
1065 
1066     // FIXME: This ignores exceptions raised in the compare function or in toNumber.
1067 
1068     // The maximum tree depth is compiled in - but the caller is clearly up to no good
1069     // if a larger array is passed.
1070     ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
1071     if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
1072         return;
1073 
1074     unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
1075     unsigned nodeCount = usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0);
1076 
1077     if (!nodeCount)
1078         return;
1079 
1080     AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
1081     tree.abstractor().m_exec = exec;
1082     tree.abstractor().m_compareFunction = compareFunction;
1083     tree.abstractor().m_compareCallType = callType;
1084     tree.abstractor().m_compareCallData = &callData;
1085     tree.abstractor().m_globalThisValue = exec->globalThisValue();
1086     tree.abstractor().m_nodes.grow(nodeCount);
1087 
1088     if (callType == CallTypeJS)
1089         tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2));
1090 
1091     if (!tree.abstractor().m_nodes.begin()) {
1092         throwOutOfMemoryError(exec);
1093         return;
1094     }
1095 
1096     // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
1097     // right out from under us while we're building the tree here.
1098 
1099     unsigned numDefined = 0;
1100     unsigned numUndefined = 0;
1101 
1102     // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
1103     for (; numDefined < usedVectorLength; ++numDefined) {
1104         JSValue v = storage->m_vector[numDefined].get();
1105         if (!v || v.isUndefined())
1106             break;
1107         tree.abstractor().m_nodes[numDefined].value = v;
1108         tree.insert(numDefined);
1109     }
1110     for (unsigned i = numDefined; i < usedVectorLength; ++i) {
1111         JSValue v = storage->m_vector[i].get();
1112         if (v) {
1113             if (v.isUndefined())
1114                 ++numUndefined;
1115             else {
1116                 tree.abstractor().m_nodes[numDefined].value = v;
1117                 tree.insert(numDefined);
1118                 ++numDefined;
1119             }
1120         }
1121     }
1122 
1123     unsigned newUsedVectorLength = numDefined + numUndefined;
1124 
1125     if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
1126         newUsedVectorLength += map->size();
1127         if (newUsedVectorLength > m_vectorLength) {
1128             // Check that it is possible to allocate an array large enough to hold all the entries.
1129             if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
1130                 throwOutOfMemoryError(exec);
1131                 return;
1132             }
1133         }
1134 
1135         storage = m_storage;
1136 
1137         SparseArrayValueMap::iterator end = map->end();
1138         for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
1139             tree.abstractor().m_nodes[numDefined].value = it->second.get();
1140             tree.insert(numDefined);
1141             ++numDefined;
1142         }
1143 
1144         delete map;
1145         storage->m_sparseValueMap = 0;
1146     }
1147 
1148     ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
1149 
1150     // FIXME: If the compare function changed the length of the array, the following might be
1151     // modifying the vector incorrectly.
1152 
1153     // Copy the values back into m_storage.
1154     AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
1155     iter.start_iter_least(tree);
1156     JSGlobalData& globalData = exec->globalData();
1157     for (unsigned i = 0; i < numDefined; ++i) {
1158         storage->m_vector[i].set(globalData, this, tree.abstractor().m_nodes[*iter].value);
1159         ++iter;
1160     }
1161 
1162     // Put undefined values back in.
1163     for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
1164         storage->m_vector[i].setUndefined();
1165 
1166     // Ensure that unused values in the vector are zeroed out.
1167     for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
1168         storage->m_vector[i].clear();
1169 
1170     storage->m_numValuesInVector = newUsedVectorLength;
1171 
1172     checkConsistency(SortConsistencyCheck);
1173 }
1174 
fillArgList(ExecState * exec,MarkedArgumentBuffer & args)1175 void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
1176 {
1177     ArrayStorage* storage = m_storage;
1178 
1179     WriteBarrier<Unknown>* vector = storage->m_vector;
1180     unsigned vectorEnd = min(storage->m_length, m_vectorLength);
1181     unsigned i = 0;
1182     for (; i < vectorEnd; ++i) {
1183         WriteBarrier<Unknown>& v = vector[i];
1184         if (!v)
1185             break;
1186         args.append(v.get());
1187     }
1188 
1189     for (; i < storage->m_length; ++i)
1190         args.append(get(exec, i));
1191 }
1192 
copyToRegisters(ExecState * exec,Register * buffer,uint32_t maxSize)1193 void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
1194 {
1195     ASSERT(m_storage->m_length >= maxSize);
1196     UNUSED_PARAM(maxSize);
1197     WriteBarrier<Unknown>* vector = m_storage->m_vector;
1198     unsigned vectorEnd = min(maxSize, m_vectorLength);
1199     unsigned i = 0;
1200     for (; i < vectorEnd; ++i) {
1201         WriteBarrier<Unknown>& v = vector[i];
1202         if (!v)
1203             break;
1204         buffer[i] = v.get();
1205     }
1206 
1207     for (; i < maxSize; ++i)
1208         buffer[i] = get(exec, i);
1209 }
1210 
compactForSorting()1211 unsigned JSArray::compactForSorting()
1212 {
1213     checkConsistency();
1214 
1215     ArrayStorage* storage = m_storage;
1216 
1217     unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
1218 
1219     unsigned numDefined = 0;
1220     unsigned numUndefined = 0;
1221 
1222     for (; numDefined < usedVectorLength; ++numDefined) {
1223         JSValue v = storage->m_vector[numDefined].get();
1224         if (!v || v.isUndefined())
1225             break;
1226     }
1227 
1228     for (unsigned i = numDefined; i < usedVectorLength; ++i) {
1229         JSValue v = storage->m_vector[i].get();
1230         if (v) {
1231             if (v.isUndefined())
1232                 ++numUndefined;
1233             else
1234                 storage->m_vector[numDefined++].setWithoutWriteBarrier(v);
1235         }
1236     }
1237 
1238     unsigned newUsedVectorLength = numDefined + numUndefined;
1239 
1240     if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
1241         newUsedVectorLength += map->size();
1242         if (newUsedVectorLength > m_vectorLength) {
1243             // Check that it is possible to allocate an array large enough to hold all the entries - if not,
1244             // exception is thrown by caller.
1245             if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
1246                 return 0;
1247 
1248             storage = m_storage;
1249         }
1250 
1251         SparseArrayValueMap::iterator end = map->end();
1252         for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
1253             storage->m_vector[numDefined++].setWithoutWriteBarrier(it->second.get());
1254 
1255         delete map;
1256         storage->m_sparseValueMap = 0;
1257     }
1258 
1259     for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
1260         storage->m_vector[i].setUndefined();
1261     for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
1262         storage->m_vector[i].clear();
1263 
1264     storage->m_numValuesInVector = newUsedVectorLength;
1265 
1266     checkConsistency(SortConsistencyCheck);
1267 
1268     return numDefined;
1269 }
1270 
subclassData() const1271 void* JSArray::subclassData() const
1272 {
1273     return m_storage->subclassData;
1274 }
1275 
setSubclassData(void * d)1276 void JSArray::setSubclassData(void* d)
1277 {
1278     m_storage->subclassData = d;
1279 }
1280 
1281 #if CHECK_ARRAY_CONSISTENCY
1282 
checkConsistency(ConsistencyCheckType type)1283 void JSArray::checkConsistency(ConsistencyCheckType type)
1284 {
1285     ArrayStorage* storage = m_storage;
1286 
1287     ASSERT(storage);
1288     if (type == SortConsistencyCheck)
1289         ASSERT(!storage->m_sparseValueMap);
1290 
1291     unsigned numValuesInVector = 0;
1292     for (unsigned i = 0; i < m_vectorLength; ++i) {
1293         if (JSValue value = storage->m_vector[i]) {
1294             ASSERT(i < storage->m_length);
1295             if (type != DestructorConsistencyCheck)
1296                 value.isUndefined(); // Likely to crash if the object was deallocated.
1297             ++numValuesInVector;
1298         } else {
1299             if (type == SortConsistencyCheck)
1300                 ASSERT(i >= storage->m_numValuesInVector);
1301         }
1302     }
1303     ASSERT(numValuesInVector == storage->m_numValuesInVector);
1304     ASSERT(numValuesInVector <= storage->m_length);
1305 
1306     if (storage->m_sparseValueMap) {
1307         SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end();
1308         for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) {
1309             unsigned index = it->first;
1310             ASSERT(index < storage->m_length);
1311             ASSERT(index >= storage->m_vectorLength);
1312             ASSERT(index <= MAX_ARRAY_INDEX);
1313             ASSERT(it->second);
1314             if (type != DestructorConsistencyCheck)
1315                 it->second.isUndefined(); // Likely to crash if the object was deallocated.
1316         }
1317     }
1318 }
1319 
1320 #endif
1321 
1322 } // namespace JSC
1323