1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetData.h"
47 #include "llvm/Target/TargetFrameLowering.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetIntrinsicInfo.h"
50 #include "llvm/Target/TargetLibraryInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67 cl::desc("Generate low-precision inline sequences "
68 "for some float libcalls"),
69 cl::location(LimitFloatPrecision),
70 cl::init(0));
71
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89 const SDValue *Parts, unsigned NumParts,
90 EVT PartVT, EVT ValueVT);
91
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent. If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,EVT PartVT,EVT ValueVT,ISD::NodeType AssertOp=ISD::DELETED_NODE)97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98 const SDValue *Parts,
99 unsigned NumParts, EVT PartVT, EVT ValueVT,
100 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101 if (ValueVT.isVector())
102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104 assert(NumParts > 0 && "No parts to assemble!");
105 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106 SDValue Val = Parts[0];
107
108 if (NumParts > 1) {
109 // Assemble the value from multiple parts.
110 if (ValueVT.isInteger()) {
111 unsigned PartBits = PartVT.getSizeInBits();
112 unsigned ValueBits = ValueVT.getSizeInBits();
113
114 // Assemble the power of 2 part.
115 unsigned RoundParts = NumParts & (NumParts - 1) ?
116 1 << Log2_32(NumParts) : NumParts;
117 unsigned RoundBits = PartBits * RoundParts;
118 EVT RoundVT = RoundBits == ValueBits ?
119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120 SDValue Lo, Hi;
121
122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124 if (RoundParts > 2) {
125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126 PartVT, HalfVT);
127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128 RoundParts / 2, PartVT, HalfVT);
129 } else {
130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132 }
133
134 if (TLI.isBigEndian())
135 std::swap(Lo, Hi);
136
137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139 if (RoundParts < NumParts) {
140 // Assemble the trailing non-power-of-2 part.
141 unsigned OddParts = NumParts - RoundParts;
142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143 Hi = getCopyFromParts(DAG, DL,
144 Parts + RoundParts, OddParts, PartVT, OddVT);
145
146 // Combine the round and odd parts.
147 Lo = Val;
148 if (TLI.isBigEndian())
149 std::swap(Lo, Hi);
150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153 DAG.getConstant(Lo.getValueType().getSizeInBits(),
154 TLI.getPointerTy()));
155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157 }
158 } else if (PartVT.isFloatingPoint()) {
159 // FP split into multiple FP parts (for ppcf128)
160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161 "Unexpected split");
162 SDValue Lo, Hi;
163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165 if (TLI.isBigEndian())
166 std::swap(Lo, Hi);
167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168 } else {
169 // FP split into integer parts (soft fp)
170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171 !PartVT.isVector() && "Unexpected split");
172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174 }
175 }
176
177 // There is now one part, held in Val. Correct it to match ValueVT.
178 PartVT = Val.getValueType();
179
180 if (PartVT == ValueVT)
181 return Val;
182
183 if (PartVT.isInteger() && ValueVT.isInteger()) {
184 if (ValueVT.bitsLT(PartVT)) {
185 // For a truncate, see if we have any information to
186 // indicate whether the truncated bits will always be
187 // zero or sign-extension.
188 if (AssertOp != ISD::DELETED_NODE)
189 Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190 DAG.getValueType(ValueVT));
191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192 }
193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194 }
195
196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197 // FP_ROUND's are always exact here.
198 if (ValueVT.bitsLT(Val.getValueType()))
199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200 DAG.getTargetConstant(1, TLI.getPointerTy()));
201
202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203 }
204
205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208 llvm_unreachable("Unknown mismatch!");
209 }
210
211 /// getCopyFromParts - Create a value that contains the specified legal parts
212 /// combined into the value they represent. If the parts combine to a type
213 /// larger then ValueVT then AssertOp can be used to specify whether the extra
214 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215 /// (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,EVT PartVT,EVT ValueVT)216 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217 const SDValue *Parts, unsigned NumParts,
218 EVT PartVT, EVT ValueVT) {
219 assert(ValueVT.isVector() && "Not a vector value");
220 assert(NumParts > 0 && "No parts to assemble!");
221 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222 SDValue Val = Parts[0];
223
224 // Handle a multi-element vector.
225 if (NumParts > 1) {
226 EVT IntermediateVT, RegisterVT;
227 unsigned NumIntermediates;
228 unsigned NumRegs =
229 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230 NumIntermediates, RegisterVT);
231 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232 NumParts = NumRegs; // Silence a compiler warning.
233 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234 assert(RegisterVT == Parts[0].getValueType() &&
235 "Part type doesn't match part!");
236
237 // Assemble the parts into intermediate operands.
238 SmallVector<SDValue, 8> Ops(NumIntermediates);
239 if (NumIntermediates == NumParts) {
240 // If the register was not expanded, truncate or copy the value,
241 // as appropriate.
242 for (unsigned i = 0; i != NumParts; ++i)
243 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244 PartVT, IntermediateVT);
245 } else if (NumParts > 0) {
246 // If the intermediate type was expanded, build the intermediate
247 // operands from the parts.
248 assert(NumParts % NumIntermediates == 0 &&
249 "Must expand into a divisible number of parts!");
250 unsigned Factor = NumParts / NumIntermediates;
251 for (unsigned i = 0; i != NumIntermediates; ++i)
252 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253 PartVT, IntermediateVT);
254 }
255
256 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257 // intermediate operands.
258 Val = DAG.getNode(IntermediateVT.isVector() ?
259 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260 ValueVT, &Ops[0], NumIntermediates);
261 }
262
263 // There is now one part, held in Val. Correct it to match ValueVT.
264 PartVT = Val.getValueType();
265
266 if (PartVT == ValueVT)
267 return Val;
268
269 if (PartVT.isVector()) {
270 // If the element type of the source/dest vectors are the same, but the
271 // parts vector has more elements than the value vector, then we have a
272 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
273 // elements we want.
274 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276 "Cannot narrow, it would be a lossy transformation");
277 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278 DAG.getIntPtrConstant(0));
279 }
280
281 // Vector/Vector bitcast.
282 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284
285 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286 "Cannot handle this kind of promotion");
287 // Promoted vector extract
288 bool Smaller = ValueVT.bitsLE(PartVT);
289 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290 DL, ValueVT, Val);
291
292 }
293
294 // Trivial bitcast if the types are the same size and the destination
295 // vector type is legal.
296 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297 TLI.isTypeLegal(ValueVT))
298 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299
300 // Handle cases such as i8 -> <1 x i1>
301 assert(ValueVT.getVectorNumElements() == 1 &&
302 "Only trivial scalar-to-vector conversions should get here!");
303
304 if (ValueVT.getVectorNumElements() == 1 &&
305 ValueVT.getVectorElementType() != PartVT) {
306 bool Smaller = ValueVT.bitsLE(PartVT);
307 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308 DL, ValueVT.getScalarType(), Val);
309 }
310
311 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312 }
313
314
315
316
317 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318 SDValue Val, SDValue *Parts, unsigned NumParts,
319 EVT PartVT);
320
321 /// getCopyToParts - Create a series of nodes that contain the specified value
322 /// split into legal parts. If the parts contain more bits than Val, then, for
323 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,EVT PartVT,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)324 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325 SDValue Val, SDValue *Parts, unsigned NumParts,
326 EVT PartVT,
327 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328 EVT ValueVT = Val.getValueType();
329
330 // Handle the vector case separately.
331 if (ValueVT.isVector())
332 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333
334 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335 unsigned PartBits = PartVT.getSizeInBits();
336 unsigned OrigNumParts = NumParts;
337 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338
339 if (NumParts == 0)
340 return;
341
342 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343 if (PartVT == ValueVT) {
344 assert(NumParts == 1 && "No-op copy with multiple parts!");
345 Parts[0] = Val;
346 return;
347 }
348
349 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350 // If the parts cover more bits than the value has, promote the value.
351 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352 assert(NumParts == 1 && "Do not know what to promote to!");
353 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354 } else {
355 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
356 ValueVT.isInteger() &&
357 "Unknown mismatch!");
358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360 if (PartVT == MVT::x86mmx)
361 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
362 }
363 } else if (PartBits == ValueVT.getSizeInBits()) {
364 // Different types of the same size.
365 assert(NumParts == 1 && PartVT != ValueVT);
366 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
367 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
368 // If the parts cover less bits than value has, truncate the value.
369 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370 ValueVT.isInteger() &&
371 "Unknown mismatch!");
372 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
374 if (PartVT == MVT::x86mmx)
375 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376 }
377
378 // The value may have changed - recompute ValueVT.
379 ValueVT = Val.getValueType();
380 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
381 "Failed to tile the value with PartVT!");
382
383 if (NumParts == 1) {
384 assert(PartVT == ValueVT && "Type conversion failed!");
385 Parts[0] = Val;
386 return;
387 }
388
389 // Expand the value into multiple parts.
390 if (NumParts & (NumParts - 1)) {
391 // The number of parts is not a power of 2. Split off and copy the tail.
392 assert(PartVT.isInteger() && ValueVT.isInteger() &&
393 "Do not know what to expand to!");
394 unsigned RoundParts = 1 << Log2_32(NumParts);
395 unsigned RoundBits = RoundParts * PartBits;
396 unsigned OddParts = NumParts - RoundParts;
397 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
398 DAG.getIntPtrConstant(RoundBits));
399 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
400
401 if (TLI.isBigEndian())
402 // The odd parts were reversed by getCopyToParts - unreverse them.
403 std::reverse(Parts + RoundParts, Parts + NumParts);
404
405 NumParts = RoundParts;
406 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
407 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
408 }
409
410 // The number of parts is a power of 2. Repeatedly bisect the value using
411 // EXTRACT_ELEMENT.
412 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
413 EVT::getIntegerVT(*DAG.getContext(),
414 ValueVT.getSizeInBits()),
415 Val);
416
417 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
418 for (unsigned i = 0; i < NumParts; i += StepSize) {
419 unsigned ThisBits = StepSize * PartBits / 2;
420 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
421 SDValue &Part0 = Parts[i];
422 SDValue &Part1 = Parts[i+StepSize/2];
423
424 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
425 ThisVT, Part0, DAG.getIntPtrConstant(1));
426 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
427 ThisVT, Part0, DAG.getIntPtrConstant(0));
428
429 if (ThisBits == PartBits && ThisVT != PartVT) {
430 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
431 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
432 }
433 }
434 }
435
436 if (TLI.isBigEndian())
437 std::reverse(Parts, Parts + OrigNumParts);
438 }
439
440
441 /// getCopyToPartsVector - Create a series of nodes that contain the specified
442 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,EVT PartVT)443 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
444 SDValue Val, SDValue *Parts, unsigned NumParts,
445 EVT PartVT) {
446 EVT ValueVT = Val.getValueType();
447 assert(ValueVT.isVector() && "Not a vector");
448 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
449
450 if (NumParts == 1) {
451 if (PartVT == ValueVT) {
452 // Nothing to do.
453 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
454 // Bitconvert vector->vector case.
455 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
456 } else if (PartVT.isVector() &&
457 PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
458 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
459 EVT ElementVT = PartVT.getVectorElementType();
460 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
461 // undef elements.
462 SmallVector<SDValue, 16> Ops;
463 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
464 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
465 ElementVT, Val, DAG.getIntPtrConstant(i)));
466
467 for (unsigned i = ValueVT.getVectorNumElements(),
468 e = PartVT.getVectorNumElements(); i != e; ++i)
469 Ops.push_back(DAG.getUNDEF(ElementVT));
470
471 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
472
473 // FIXME: Use CONCAT for 2x -> 4x.
474
475 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
476 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
477 } else if (PartVT.isVector() &&
478 PartVT.getVectorElementType().bitsGE(
479 ValueVT.getVectorElementType()) &&
480 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
481
482 // Promoted vector extract
483 bool Smaller = PartVT.bitsLE(ValueVT);
484 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
485 DL, PartVT, Val);
486 } else{
487 // Vector -> scalar conversion.
488 assert(ValueVT.getVectorNumElements() == 1 &&
489 "Only trivial vector-to-scalar conversions should get here!");
490 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
491 PartVT, Val, DAG.getIntPtrConstant(0));
492
493 bool Smaller = ValueVT.bitsLE(PartVT);
494 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
495 DL, PartVT, Val);
496 }
497
498 Parts[0] = Val;
499 return;
500 }
501
502 // Handle a multi-element vector.
503 EVT IntermediateVT, RegisterVT;
504 unsigned NumIntermediates;
505 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
506 IntermediateVT,
507 NumIntermediates, RegisterVT);
508 unsigned NumElements = ValueVT.getVectorNumElements();
509
510 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
511 NumParts = NumRegs; // Silence a compiler warning.
512 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
513
514 // Split the vector into intermediate operands.
515 SmallVector<SDValue, 8> Ops(NumIntermediates);
516 for (unsigned i = 0; i != NumIntermediates; ++i) {
517 if (IntermediateVT.isVector())
518 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
519 IntermediateVT, Val,
520 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
521 else
522 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523 IntermediateVT, Val, DAG.getIntPtrConstant(i));
524 }
525
526 // Split the intermediate operands into legal parts.
527 if (NumParts == NumIntermediates) {
528 // If the register was not expanded, promote or copy the value,
529 // as appropriate.
530 for (unsigned i = 0; i != NumParts; ++i)
531 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
532 } else if (NumParts > 0) {
533 // If the intermediate type was expanded, split each the value into
534 // legal parts.
535 assert(NumParts % NumIntermediates == 0 &&
536 "Must expand into a divisible number of parts!");
537 unsigned Factor = NumParts / NumIntermediates;
538 for (unsigned i = 0; i != NumIntermediates; ++i)
539 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
540 }
541 }
542
543
544
545
546 namespace {
547 /// RegsForValue - This struct represents the registers (physical or virtual)
548 /// that a particular set of values is assigned, and the type information
549 /// about the value. The most common situation is to represent one value at a
550 /// time, but struct or array values are handled element-wise as multiple
551 /// values. The splitting of aggregates is performed recursively, so that we
552 /// never have aggregate-typed registers. The values at this point do not
553 /// necessarily have legal types, so each value may require one or more
554 /// registers of some legal type.
555 ///
556 struct RegsForValue {
557 /// ValueVTs - The value types of the values, which may not be legal, and
558 /// may need be promoted or synthesized from one or more registers.
559 ///
560 SmallVector<EVT, 4> ValueVTs;
561
562 /// RegVTs - The value types of the registers. This is the same size as
563 /// ValueVTs and it records, for each value, what the type of the assigned
564 /// register or registers are. (Individual values are never synthesized
565 /// from more than one type of register.)
566 ///
567 /// With virtual registers, the contents of RegVTs is redundant with TLI's
568 /// getRegisterType member function, however when with physical registers
569 /// it is necessary to have a separate record of the types.
570 ///
571 SmallVector<EVT, 4> RegVTs;
572
573 /// Regs - This list holds the registers assigned to the values.
574 /// Each legal or promoted value requires one register, and each
575 /// expanded value requires multiple registers.
576 ///
577 SmallVector<unsigned, 4> Regs;
578
RegsForValue__anon60a510140111::RegsForValue579 RegsForValue() {}
580
RegsForValue__anon60a510140111::RegsForValue581 RegsForValue(const SmallVector<unsigned, 4> ®s,
582 EVT regvt, EVT valuevt)
583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
584
RegsForValue__anon60a510140111::RegsForValue585 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
586 unsigned Reg, Type *Ty) {
587 ComputeValueVTs(tli, Ty, ValueVTs);
588
589 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
590 EVT ValueVT = ValueVTs[Value];
591 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
592 EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
593 for (unsigned i = 0; i != NumRegs; ++i)
594 Regs.push_back(Reg + i);
595 RegVTs.push_back(RegisterVT);
596 Reg += NumRegs;
597 }
598 }
599
600 /// areValueTypesLegal - Return true if types of all the values are legal.
areValueTypesLegal__anon60a510140111::RegsForValue601 bool areValueTypesLegal(const TargetLowering &TLI) {
602 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
603 EVT RegisterVT = RegVTs[Value];
604 if (!TLI.isTypeLegal(RegisterVT))
605 return false;
606 }
607 return true;
608 }
609
610 /// append - Add the specified values to this one.
append__anon60a510140111::RegsForValue611 void append(const RegsForValue &RHS) {
612 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
613 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
614 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
615 }
616
617 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
618 /// this value and returns the result as a ValueVTs value. This uses
619 /// Chain/Flag as the input and updates them for the output Chain/Flag.
620 /// If the Flag pointer is NULL, no flag is used.
621 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
622 DebugLoc dl,
623 SDValue &Chain, SDValue *Flag) const;
624
625 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
626 /// specified value into the registers specified by this object. This uses
627 /// Chain/Flag as the input and updates them for the output Chain/Flag.
628 /// If the Flag pointer is NULL, no flag is used.
629 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
630 SDValue &Chain, SDValue *Flag) const;
631
632 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
633 /// operand list. This adds the code marker, matching input operand index
634 /// (if applicable), and includes the number of values added into it.
635 void AddInlineAsmOperands(unsigned Kind,
636 bool HasMatching, unsigned MatchingIdx,
637 SelectionDAG &DAG,
638 std::vector<SDValue> &Ops) const;
639 };
640 }
641
642 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643 /// this value and returns the result as a ValueVT value. This uses
644 /// Chain/Flag as the input and updates them for the output Chain/Flag.
645 /// If the Flag pointer is NULL, no flag is used.
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,DebugLoc dl,SDValue & Chain,SDValue * Flag) const646 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
647 FunctionLoweringInfo &FuncInfo,
648 DebugLoc dl,
649 SDValue &Chain, SDValue *Flag) const {
650 // A Value with type {} or [0 x %t] needs no registers.
651 if (ValueVTs.empty())
652 return SDValue();
653
654 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655
656 // Assemble the legal parts into the final values.
657 SmallVector<SDValue, 4> Values(ValueVTs.size());
658 SmallVector<SDValue, 8> Parts;
659 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
660 // Copy the legal parts from the registers.
661 EVT ValueVT = ValueVTs[Value];
662 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
663 EVT RegisterVT = RegVTs[Value];
664
665 Parts.resize(NumRegs);
666 for (unsigned i = 0; i != NumRegs; ++i) {
667 SDValue P;
668 if (Flag == 0) {
669 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
670 } else {
671 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
672 *Flag = P.getValue(2);
673 }
674
675 Chain = P.getValue(1);
676 Parts[i] = P;
677
678 // If the source register was virtual and if we know something about it,
679 // add an assert node.
680 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
681 !RegisterVT.isInteger() || RegisterVT.isVector())
682 continue;
683
684 const FunctionLoweringInfo::LiveOutInfo *LOI =
685 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
686 if (!LOI)
687 continue;
688
689 unsigned RegSize = RegisterVT.getSizeInBits();
690 unsigned NumSignBits = LOI->NumSignBits;
691 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
692
693 // FIXME: We capture more information than the dag can represent. For
694 // now, just use the tightest assertzext/assertsext possible.
695 bool isSExt = true;
696 EVT FromVT(MVT::Other);
697 if (NumSignBits == RegSize)
698 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
699 else if (NumZeroBits >= RegSize-1)
700 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
701 else if (NumSignBits > RegSize-8)
702 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
703 else if (NumZeroBits >= RegSize-8)
704 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
705 else if (NumSignBits > RegSize-16)
706 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
707 else if (NumZeroBits >= RegSize-16)
708 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
709 else if (NumSignBits > RegSize-32)
710 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
711 else if (NumZeroBits >= RegSize-32)
712 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
713 else
714 continue;
715
716 // Add an assertion node.
717 assert(FromVT != MVT::Other);
718 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
719 RegisterVT, P, DAG.getValueType(FromVT));
720 }
721
722 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
723 NumRegs, RegisterVT, ValueVT);
724 Part += NumRegs;
725 Parts.clear();
726 }
727
728 return DAG.getNode(ISD::MERGE_VALUES, dl,
729 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
730 &Values[0], ValueVTs.size());
731 }
732
733 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
734 /// specified value into the registers specified by this object. This uses
735 /// Chain/Flag as the input and updates them for the output Chain/Flag.
736 /// If the Flag pointer is NULL, no flag is used.
getCopyToRegs(SDValue Val,SelectionDAG & DAG,DebugLoc dl,SDValue & Chain,SDValue * Flag) const737 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
738 SDValue &Chain, SDValue *Flag) const {
739 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
740
741 // Get the list of the values's legal parts.
742 unsigned NumRegs = Regs.size();
743 SmallVector<SDValue, 8> Parts(NumRegs);
744 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
745 EVT ValueVT = ValueVTs[Value];
746 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
747 EVT RegisterVT = RegVTs[Value];
748
749 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
750 &Parts[Part], NumParts, RegisterVT);
751 Part += NumParts;
752 }
753
754 // Copy the parts into the registers.
755 SmallVector<SDValue, 8> Chains(NumRegs);
756 for (unsigned i = 0; i != NumRegs; ++i) {
757 SDValue Part;
758 if (Flag == 0) {
759 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
760 } else {
761 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
762 *Flag = Part.getValue(1);
763 }
764
765 Chains[i] = Part.getValue(0);
766 }
767
768 if (NumRegs == 1 || Flag)
769 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
770 // flagged to it. That is the CopyToReg nodes and the user are considered
771 // a single scheduling unit. If we create a TokenFactor and return it as
772 // chain, then the TokenFactor is both a predecessor (operand) of the
773 // user as well as a successor (the TF operands are flagged to the user).
774 // c1, f1 = CopyToReg
775 // c2, f2 = CopyToReg
776 // c3 = TokenFactor c1, c2
777 // ...
778 // = op c3, ..., f2
779 Chain = Chains[NumRegs-1];
780 else
781 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
782 }
783
784 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
785 /// operand list. This adds the code marker and includes the number of
786 /// values added into it.
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,SelectionDAG & DAG,std::vector<SDValue> & Ops) const787 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
788 unsigned MatchingIdx,
789 SelectionDAG &DAG,
790 std::vector<SDValue> &Ops) const {
791 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
792
793 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
794 if (HasMatching)
795 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
796 else if (!Regs.empty() &&
797 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
798 // Put the register class of the virtual registers in the flag word. That
799 // way, later passes can recompute register class constraints for inline
800 // assembly as well as normal instructions.
801 // Don't do this for tied operands that can use the regclass information
802 // from the def.
803 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
804 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
805 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
806 }
807
808 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
809 Ops.push_back(Res);
810
811 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
812 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
813 EVT RegisterVT = RegVTs[Value];
814 for (unsigned i = 0; i != NumRegs; ++i) {
815 assert(Reg < Regs.size() && "Mismatch in # registers expected");
816 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
817 }
818 }
819 }
820
init(GCFunctionInfo * gfi,AliasAnalysis & aa,const TargetLibraryInfo * li)821 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
822 const TargetLibraryInfo *li) {
823 AA = &aa;
824 GFI = gfi;
825 LibInfo = li;
826 TD = DAG.getTarget().getTargetData();
827 LPadToCallSiteMap.clear();
828 }
829
830 /// clear - Clear out the current SelectionDAG and the associated
831 /// state and prepare this SelectionDAGBuilder object to be used
832 /// for a new block. This doesn't clear out information about
833 /// additional blocks that are needed to complete switch lowering
834 /// or PHI node updating; that information is cleared out as it is
835 /// consumed.
clear()836 void SelectionDAGBuilder::clear() {
837 NodeMap.clear();
838 UnusedArgNodeMap.clear();
839 PendingLoads.clear();
840 PendingExports.clear();
841 CurDebugLoc = DebugLoc();
842 HasTailCall = false;
843 }
844
845 /// clearDanglingDebugInfo - Clear the dangling debug information
846 /// map. This function is seperated from the clear so that debug
847 /// information that is dangling in a basic block can be properly
848 /// resolved in a different basic block. This allows the
849 /// SelectionDAG to resolve dangling debug information attached
850 /// to PHI nodes.
clearDanglingDebugInfo()851 void SelectionDAGBuilder::clearDanglingDebugInfo() {
852 DanglingDebugInfoMap.clear();
853 }
854
855 /// getRoot - Return the current virtual root of the Selection DAG,
856 /// flushing any PendingLoad items. This must be done before emitting
857 /// a store or any other node that may need to be ordered after any
858 /// prior load instructions.
859 ///
getRoot()860 SDValue SelectionDAGBuilder::getRoot() {
861 if (PendingLoads.empty())
862 return DAG.getRoot();
863
864 if (PendingLoads.size() == 1) {
865 SDValue Root = PendingLoads[0];
866 DAG.setRoot(Root);
867 PendingLoads.clear();
868 return Root;
869 }
870
871 // Otherwise, we have to make a token factor node.
872 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
873 &PendingLoads[0], PendingLoads.size());
874 PendingLoads.clear();
875 DAG.setRoot(Root);
876 return Root;
877 }
878
879 /// getControlRoot - Similar to getRoot, but instead of flushing all the
880 /// PendingLoad items, flush all the PendingExports items. It is necessary
881 /// to do this before emitting a terminator instruction.
882 ///
getControlRoot()883 SDValue SelectionDAGBuilder::getControlRoot() {
884 SDValue Root = DAG.getRoot();
885
886 if (PendingExports.empty())
887 return Root;
888
889 // Turn all of the CopyToReg chains into one factored node.
890 if (Root.getOpcode() != ISD::EntryToken) {
891 unsigned i = 0, e = PendingExports.size();
892 for (; i != e; ++i) {
893 assert(PendingExports[i].getNode()->getNumOperands() > 1);
894 if (PendingExports[i].getNode()->getOperand(0) == Root)
895 break; // Don't add the root if we already indirectly depend on it.
896 }
897
898 if (i == e)
899 PendingExports.push_back(Root);
900 }
901
902 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
903 &PendingExports[0],
904 PendingExports.size());
905 PendingExports.clear();
906 DAG.setRoot(Root);
907 return Root;
908 }
909
AssignOrderingToNode(const SDNode * Node)910 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
911 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
912 DAG.AssignOrdering(Node, SDNodeOrder);
913
914 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
915 AssignOrderingToNode(Node->getOperand(I).getNode());
916 }
917
visit(const Instruction & I)918 void SelectionDAGBuilder::visit(const Instruction &I) {
919 // Set up outgoing PHI node register values before emitting the terminator.
920 if (isa<TerminatorInst>(&I))
921 HandlePHINodesInSuccessorBlocks(I.getParent());
922
923 CurDebugLoc = I.getDebugLoc();
924
925 visit(I.getOpcode(), I);
926
927 if (!isa<TerminatorInst>(&I) && !HasTailCall)
928 CopyToExportRegsIfNeeded(&I);
929
930 CurDebugLoc = DebugLoc();
931 }
932
visitPHI(const PHINode &)933 void SelectionDAGBuilder::visitPHI(const PHINode &) {
934 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
935 }
936
visit(unsigned Opcode,const User & I)937 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
938 // Note: this doesn't use InstVisitor, because it has to work with
939 // ConstantExpr's in addition to instructions.
940 switch (Opcode) {
941 default: llvm_unreachable("Unknown instruction type encountered!");
942 // Build the switch statement using the Instruction.def file.
943 #define HANDLE_INST(NUM, OPCODE, CLASS) \
944 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
945 #include "llvm/Instruction.def"
946 }
947
948 // Assign the ordering to the freshly created DAG nodes.
949 if (NodeMap.count(&I)) {
950 ++SDNodeOrder;
951 AssignOrderingToNode(getValue(&I).getNode());
952 }
953 }
954
955 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
956 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)957 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
958 SDValue Val) {
959 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
960 if (DDI.getDI()) {
961 const DbgValueInst *DI = DDI.getDI();
962 DebugLoc dl = DDI.getdl();
963 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
964 MDNode *Variable = DI->getVariable();
965 uint64_t Offset = DI->getOffset();
966 SDDbgValue *SDV;
967 if (Val.getNode()) {
968 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
969 SDV = DAG.getDbgValue(Variable, Val.getNode(),
970 Val.getResNo(), Offset, dl, DbgSDNodeOrder);
971 DAG.AddDbgValue(SDV, Val.getNode(), false);
972 }
973 } else
974 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
975 DanglingDebugInfoMap[V] = DanglingDebugInfo();
976 }
977 }
978
979 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)980 SDValue SelectionDAGBuilder::getValue(const Value *V) {
981 // If we already have an SDValue for this value, use it. It's important
982 // to do this first, so that we don't create a CopyFromReg if we already
983 // have a regular SDValue.
984 SDValue &N = NodeMap[V];
985 if (N.getNode()) return N;
986
987 // If there's a virtual register allocated and initialized for this
988 // value, use it.
989 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
990 if (It != FuncInfo.ValueMap.end()) {
991 unsigned InReg = It->second;
992 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
993 SDValue Chain = DAG.getEntryNode();
994 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
995 resolveDanglingDebugInfo(V, N);
996 return N;
997 }
998
999 // Otherwise create a new SDValue and remember it.
1000 SDValue Val = getValueImpl(V);
1001 NodeMap[V] = Val;
1002 resolveDanglingDebugInfo(V, Val);
1003 return Val;
1004 }
1005
1006 /// getNonRegisterValue - Return an SDValue for the given Value, but
1007 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1008 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1009 // If we already have an SDValue for this value, use it.
1010 SDValue &N = NodeMap[V];
1011 if (N.getNode()) return N;
1012
1013 // Otherwise create a new SDValue and remember it.
1014 SDValue Val = getValueImpl(V);
1015 NodeMap[V] = Val;
1016 resolveDanglingDebugInfo(V, Val);
1017 return Val;
1018 }
1019
1020 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1021 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1022 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1023 if (const Constant *C = dyn_cast<Constant>(V)) {
1024 EVT VT = TLI.getValueType(V->getType(), true);
1025
1026 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1027 return DAG.getConstant(*CI, VT);
1028
1029 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1030 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1031
1032 if (isa<ConstantPointerNull>(C))
1033 return DAG.getConstant(0, TLI.getPointerTy());
1034
1035 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1036 return DAG.getConstantFP(*CFP, VT);
1037
1038 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1039 return DAG.getUNDEF(VT);
1040
1041 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1042 visit(CE->getOpcode(), *CE);
1043 SDValue N1 = NodeMap[V];
1044 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1045 return N1;
1046 }
1047
1048 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1049 SmallVector<SDValue, 4> Constants;
1050 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1051 OI != OE; ++OI) {
1052 SDNode *Val = getValue(*OI).getNode();
1053 // If the operand is an empty aggregate, there are no values.
1054 if (!Val) continue;
1055 // Add each leaf value from the operand to the Constants list
1056 // to form a flattened list of all the values.
1057 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1058 Constants.push_back(SDValue(Val, i));
1059 }
1060
1061 return DAG.getMergeValues(&Constants[0], Constants.size(),
1062 getCurDebugLoc());
1063 }
1064
1065 if (const ConstantDataSequential *CDS =
1066 dyn_cast<ConstantDataSequential>(C)) {
1067 SmallVector<SDValue, 4> Ops;
1068 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1069 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1070 // Add each leaf value from the operand to the Constants list
1071 // to form a flattened list of all the values.
1072 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1073 Ops.push_back(SDValue(Val, i));
1074 }
1075
1076 if (isa<ArrayType>(CDS->getType()))
1077 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1078 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1079 VT, &Ops[0], Ops.size());
1080 }
1081
1082 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1083 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1084 "Unknown struct or array constant!");
1085
1086 SmallVector<EVT, 4> ValueVTs;
1087 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1088 unsigned NumElts = ValueVTs.size();
1089 if (NumElts == 0)
1090 return SDValue(); // empty struct
1091 SmallVector<SDValue, 4> Constants(NumElts);
1092 for (unsigned i = 0; i != NumElts; ++i) {
1093 EVT EltVT = ValueVTs[i];
1094 if (isa<UndefValue>(C))
1095 Constants[i] = DAG.getUNDEF(EltVT);
1096 else if (EltVT.isFloatingPoint())
1097 Constants[i] = DAG.getConstantFP(0, EltVT);
1098 else
1099 Constants[i] = DAG.getConstant(0, EltVT);
1100 }
1101
1102 return DAG.getMergeValues(&Constants[0], NumElts,
1103 getCurDebugLoc());
1104 }
1105
1106 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1107 return DAG.getBlockAddress(BA, VT);
1108
1109 VectorType *VecTy = cast<VectorType>(V->getType());
1110 unsigned NumElements = VecTy->getNumElements();
1111
1112 // Now that we know the number and type of the elements, get that number of
1113 // elements into the Ops array based on what kind of constant it is.
1114 SmallVector<SDValue, 16> Ops;
1115 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1116 for (unsigned i = 0; i != NumElements; ++i)
1117 Ops.push_back(getValue(CV->getOperand(i)));
1118 } else {
1119 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1120 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1121
1122 SDValue Op;
1123 if (EltVT.isFloatingPoint())
1124 Op = DAG.getConstantFP(0, EltVT);
1125 else
1126 Op = DAG.getConstant(0, EltVT);
1127 Ops.assign(NumElements, Op);
1128 }
1129
1130 // Create a BUILD_VECTOR node.
1131 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1132 VT, &Ops[0], Ops.size());
1133 }
1134
1135 // If this is a static alloca, generate it as the frameindex instead of
1136 // computation.
1137 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1138 DenseMap<const AllocaInst*, int>::iterator SI =
1139 FuncInfo.StaticAllocaMap.find(AI);
1140 if (SI != FuncInfo.StaticAllocaMap.end())
1141 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1142 }
1143
1144 // If this is an instruction which fast-isel has deferred, select it now.
1145 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1146 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1147 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1148 SDValue Chain = DAG.getEntryNode();
1149 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1150 }
1151
1152 llvm_unreachable("Can't get register for value!");
1153 }
1154
visitRet(const ReturnInst & I)1155 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1156 SDValue Chain = getControlRoot();
1157 SmallVector<ISD::OutputArg, 8> Outs;
1158 SmallVector<SDValue, 8> OutVals;
1159
1160 if (!FuncInfo.CanLowerReturn) {
1161 unsigned DemoteReg = FuncInfo.DemoteRegister;
1162 const Function *F = I.getParent()->getParent();
1163
1164 // Emit a store of the return value through the virtual register.
1165 // Leave Outs empty so that LowerReturn won't try to load return
1166 // registers the usual way.
1167 SmallVector<EVT, 1> PtrValueVTs;
1168 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1169 PtrValueVTs);
1170
1171 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1172 SDValue RetOp = getValue(I.getOperand(0));
1173
1174 SmallVector<EVT, 4> ValueVTs;
1175 SmallVector<uint64_t, 4> Offsets;
1176 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1177 unsigned NumValues = ValueVTs.size();
1178
1179 SmallVector<SDValue, 4> Chains(NumValues);
1180 for (unsigned i = 0; i != NumValues; ++i) {
1181 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1182 RetPtr.getValueType(), RetPtr,
1183 DAG.getIntPtrConstant(Offsets[i]));
1184 Chains[i] =
1185 DAG.getStore(Chain, getCurDebugLoc(),
1186 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1187 // FIXME: better loc info would be nice.
1188 Add, MachinePointerInfo(), false, false, 0);
1189 }
1190
1191 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1192 MVT::Other, &Chains[0], NumValues);
1193 } else if (I.getNumOperands() != 0) {
1194 SmallVector<EVT, 4> ValueVTs;
1195 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1196 unsigned NumValues = ValueVTs.size();
1197 if (NumValues) {
1198 SDValue RetOp = getValue(I.getOperand(0));
1199 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1200 EVT VT = ValueVTs[j];
1201
1202 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1203
1204 const Function *F = I.getParent()->getParent();
1205 if (F->paramHasAttr(0, Attribute::SExt))
1206 ExtendKind = ISD::SIGN_EXTEND;
1207 else if (F->paramHasAttr(0, Attribute::ZExt))
1208 ExtendKind = ISD::ZERO_EXTEND;
1209
1210 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1211 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1212
1213 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1214 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1215 SmallVector<SDValue, 4> Parts(NumParts);
1216 getCopyToParts(DAG, getCurDebugLoc(),
1217 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1218 &Parts[0], NumParts, PartVT, ExtendKind);
1219
1220 // 'inreg' on function refers to return value
1221 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1222 if (F->paramHasAttr(0, Attribute::InReg))
1223 Flags.setInReg();
1224
1225 // Propagate extension type if any
1226 if (ExtendKind == ISD::SIGN_EXTEND)
1227 Flags.setSExt();
1228 else if (ExtendKind == ISD::ZERO_EXTEND)
1229 Flags.setZExt();
1230
1231 for (unsigned i = 0; i < NumParts; ++i) {
1232 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1233 /*isfixed=*/true));
1234 OutVals.push_back(Parts[i]);
1235 }
1236 }
1237 }
1238 }
1239
1240 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1241 CallingConv::ID CallConv =
1242 DAG.getMachineFunction().getFunction()->getCallingConv();
1243 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1244 Outs, OutVals, getCurDebugLoc(), DAG);
1245
1246 // Verify that the target's LowerReturn behaved as expected.
1247 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1248 "LowerReturn didn't return a valid chain!");
1249
1250 // Update the DAG with the new chain value resulting from return lowering.
1251 DAG.setRoot(Chain);
1252 }
1253
1254 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1255 /// created for it, emit nodes to copy the value into the virtual
1256 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1257 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1258 // Skip empty types
1259 if (V->getType()->isEmptyTy())
1260 return;
1261
1262 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1263 if (VMI != FuncInfo.ValueMap.end()) {
1264 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1265 CopyValueToVirtualRegister(V, VMI->second);
1266 }
1267 }
1268
1269 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1270 /// the current basic block, add it to ValueMap now so that we'll get a
1271 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1272 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1273 // No need to export constants.
1274 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1275
1276 // Already exported?
1277 if (FuncInfo.isExportedInst(V)) return;
1278
1279 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1280 CopyValueToVirtualRegister(V, Reg);
1281 }
1282
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1283 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1284 const BasicBlock *FromBB) {
1285 // The operands of the setcc have to be in this block. We don't know
1286 // how to export them from some other block.
1287 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1288 // Can export from current BB.
1289 if (VI->getParent() == FromBB)
1290 return true;
1291
1292 // Is already exported, noop.
1293 return FuncInfo.isExportedInst(V);
1294 }
1295
1296 // If this is an argument, we can export it if the BB is the entry block or
1297 // if it is already exported.
1298 if (isa<Argument>(V)) {
1299 if (FromBB == &FromBB->getParent()->getEntryBlock())
1300 return true;
1301
1302 // Otherwise, can only export this if it is already exported.
1303 return FuncInfo.isExportedInst(V);
1304 }
1305
1306 // Otherwise, constants can always be exported.
1307 return true;
1308 }
1309
1310 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
getEdgeWeight(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const1311 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1312 const MachineBasicBlock *Dst) const {
1313 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1314 if (!BPI)
1315 return 0;
1316 const BasicBlock *SrcBB = Src->getBasicBlock();
1317 const BasicBlock *DstBB = Dst->getBasicBlock();
1318 return BPI->getEdgeWeight(SrcBB, DstBB);
1319 }
1320
1321 void SelectionDAGBuilder::
addSuccessorWithWeight(MachineBasicBlock * Src,MachineBasicBlock * Dst,uint32_t Weight)1322 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1323 uint32_t Weight /* = 0 */) {
1324 if (!Weight)
1325 Weight = getEdgeWeight(Src, Dst);
1326 Src->addSuccessor(Dst, Weight);
1327 }
1328
1329
InBlock(const Value * V,const BasicBlock * BB)1330 static bool InBlock(const Value *V, const BasicBlock *BB) {
1331 if (const Instruction *I = dyn_cast<Instruction>(V))
1332 return I->getParent() == BB;
1333 return true;
1334 }
1335
1336 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1337 /// This function emits a branch and is used at the leaves of an OR or an
1338 /// AND operator tree.
1339 ///
1340 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB)1341 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1342 MachineBasicBlock *TBB,
1343 MachineBasicBlock *FBB,
1344 MachineBasicBlock *CurBB,
1345 MachineBasicBlock *SwitchBB) {
1346 const BasicBlock *BB = CurBB->getBasicBlock();
1347
1348 // If the leaf of the tree is a comparison, merge the condition into
1349 // the caseblock.
1350 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1351 // The operands of the cmp have to be in this block. We don't know
1352 // how to export them from some other block. If this is the first block
1353 // of the sequence, no exporting is needed.
1354 if (CurBB == SwitchBB ||
1355 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1356 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1357 ISD::CondCode Condition;
1358 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1359 Condition = getICmpCondCode(IC->getPredicate());
1360 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1361 Condition = getFCmpCondCode(FC->getPredicate());
1362 if (TM.Options.NoNaNsFPMath)
1363 Condition = getFCmpCodeWithoutNaN(Condition);
1364 } else {
1365 Condition = ISD::SETEQ; // silence warning.
1366 llvm_unreachable("Unknown compare instruction");
1367 }
1368
1369 CaseBlock CB(Condition, BOp->getOperand(0),
1370 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1371 SwitchCases.push_back(CB);
1372 return;
1373 }
1374 }
1375
1376 // Create a CaseBlock record representing this branch.
1377 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1378 NULL, TBB, FBB, CurBB);
1379 SwitchCases.push_back(CB);
1380 }
1381
1382 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,unsigned Opc)1383 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1384 MachineBasicBlock *TBB,
1385 MachineBasicBlock *FBB,
1386 MachineBasicBlock *CurBB,
1387 MachineBasicBlock *SwitchBB,
1388 unsigned Opc) {
1389 // If this node is not part of the or/and tree, emit it as a branch.
1390 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1391 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1392 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1393 BOp->getParent() != CurBB->getBasicBlock() ||
1394 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1395 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1396 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1397 return;
1398 }
1399
1400 // Create TmpBB after CurBB.
1401 MachineFunction::iterator BBI = CurBB;
1402 MachineFunction &MF = DAG.getMachineFunction();
1403 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1404 CurBB->getParent()->insert(++BBI, TmpBB);
1405
1406 if (Opc == Instruction::Or) {
1407 // Codegen X | Y as:
1408 // jmp_if_X TBB
1409 // jmp TmpBB
1410 // TmpBB:
1411 // jmp_if_Y TBB
1412 // jmp FBB
1413 //
1414
1415 // Emit the LHS condition.
1416 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1417
1418 // Emit the RHS condition into TmpBB.
1419 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1420 } else {
1421 assert(Opc == Instruction::And && "Unknown merge op!");
1422 // Codegen X & Y as:
1423 // jmp_if_X TmpBB
1424 // jmp FBB
1425 // TmpBB:
1426 // jmp_if_Y TBB
1427 // jmp FBB
1428 //
1429 // This requires creation of TmpBB after CurBB.
1430
1431 // Emit the LHS condition.
1432 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1433
1434 // Emit the RHS condition into TmpBB.
1435 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1436 }
1437 }
1438
1439 /// If the set of cases should be emitted as a series of branches, return true.
1440 /// If we should emit this as a bunch of and/or'd together conditions, return
1441 /// false.
1442 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1443 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1444 if (Cases.size() != 2) return true;
1445
1446 // If this is two comparisons of the same values or'd or and'd together, they
1447 // will get folded into a single comparison, so don't emit two blocks.
1448 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1449 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1450 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1451 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1452 return false;
1453 }
1454
1455 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1456 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1457 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1458 Cases[0].CC == Cases[1].CC &&
1459 isa<Constant>(Cases[0].CmpRHS) &&
1460 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1461 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1462 return false;
1463 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1464 return false;
1465 }
1466
1467 return true;
1468 }
1469
visitBr(const BranchInst & I)1470 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1471 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1472
1473 // Update machine-CFG edges.
1474 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1475
1476 // Figure out which block is immediately after the current one.
1477 MachineBasicBlock *NextBlock = 0;
1478 MachineFunction::iterator BBI = BrMBB;
1479 if (++BBI != FuncInfo.MF->end())
1480 NextBlock = BBI;
1481
1482 if (I.isUnconditional()) {
1483 // Update machine-CFG edges.
1484 BrMBB->addSuccessor(Succ0MBB);
1485
1486 // If this is not a fall-through branch, emit the branch.
1487 if (Succ0MBB != NextBlock)
1488 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1489 MVT::Other, getControlRoot(),
1490 DAG.getBasicBlock(Succ0MBB)));
1491
1492 return;
1493 }
1494
1495 // If this condition is one of the special cases we handle, do special stuff
1496 // now.
1497 const Value *CondVal = I.getCondition();
1498 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1499
1500 // If this is a series of conditions that are or'd or and'd together, emit
1501 // this as a sequence of branches instead of setcc's with and/or operations.
1502 // As long as jumps are not expensive, this should improve performance.
1503 // For example, instead of something like:
1504 // cmp A, B
1505 // C = seteq
1506 // cmp D, E
1507 // F = setle
1508 // or C, F
1509 // jnz foo
1510 // Emit:
1511 // cmp A, B
1512 // je foo
1513 // cmp D, E
1514 // jle foo
1515 //
1516 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1517 if (!TLI.isJumpExpensive() &&
1518 BOp->hasOneUse() &&
1519 (BOp->getOpcode() == Instruction::And ||
1520 BOp->getOpcode() == Instruction::Or)) {
1521 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1522 BOp->getOpcode());
1523 // If the compares in later blocks need to use values not currently
1524 // exported from this block, export them now. This block should always
1525 // be the first entry.
1526 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1527
1528 // Allow some cases to be rejected.
1529 if (ShouldEmitAsBranches(SwitchCases)) {
1530 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1531 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1532 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1533 }
1534
1535 // Emit the branch for this block.
1536 visitSwitchCase(SwitchCases[0], BrMBB);
1537 SwitchCases.erase(SwitchCases.begin());
1538 return;
1539 }
1540
1541 // Okay, we decided not to do this, remove any inserted MBB's and clear
1542 // SwitchCases.
1543 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1544 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1545
1546 SwitchCases.clear();
1547 }
1548 }
1549
1550 // Create a CaseBlock record representing this branch.
1551 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1552 NULL, Succ0MBB, Succ1MBB, BrMBB);
1553
1554 // Use visitSwitchCase to actually insert the fast branch sequence for this
1555 // cond branch.
1556 visitSwitchCase(CB, BrMBB);
1557 }
1558
1559 /// visitSwitchCase - Emits the necessary code to represent a single node in
1560 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)1561 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1562 MachineBasicBlock *SwitchBB) {
1563 SDValue Cond;
1564 SDValue CondLHS = getValue(CB.CmpLHS);
1565 DebugLoc dl = getCurDebugLoc();
1566
1567 // Build the setcc now.
1568 if (CB.CmpMHS == NULL) {
1569 // Fold "(X == true)" to X and "(X == false)" to !X to
1570 // handle common cases produced by branch lowering.
1571 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1572 CB.CC == ISD::SETEQ)
1573 Cond = CondLHS;
1574 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1575 CB.CC == ISD::SETEQ) {
1576 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1577 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1578 } else
1579 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1580 } else {
1581 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1582
1583 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1584 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1585
1586 SDValue CmpOp = getValue(CB.CmpMHS);
1587 EVT VT = CmpOp.getValueType();
1588
1589 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1590 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1591 ISD::SETLE);
1592 } else {
1593 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1594 VT, CmpOp, DAG.getConstant(Low, VT));
1595 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1596 DAG.getConstant(High-Low, VT), ISD::SETULE);
1597 }
1598 }
1599
1600 // Update successor info
1601 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1602 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1603
1604 // Set NextBlock to be the MBB immediately after the current one, if any.
1605 // This is used to avoid emitting unnecessary branches to the next block.
1606 MachineBasicBlock *NextBlock = 0;
1607 MachineFunction::iterator BBI = SwitchBB;
1608 if (++BBI != FuncInfo.MF->end())
1609 NextBlock = BBI;
1610
1611 // If the lhs block is the next block, invert the condition so that we can
1612 // fall through to the lhs instead of the rhs block.
1613 if (CB.TrueBB == NextBlock) {
1614 std::swap(CB.TrueBB, CB.FalseBB);
1615 SDValue True = DAG.getConstant(1, Cond.getValueType());
1616 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1617 }
1618
1619 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1620 MVT::Other, getControlRoot(), Cond,
1621 DAG.getBasicBlock(CB.TrueBB));
1622
1623 // Insert the false branch. Do this even if it's a fall through branch,
1624 // this makes it easier to do DAG optimizations which require inverting
1625 // the branch condition.
1626 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1627 DAG.getBasicBlock(CB.FalseBB));
1628
1629 DAG.setRoot(BrCond);
1630 }
1631
1632 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)1633 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1634 // Emit the code for the jump table
1635 assert(JT.Reg != -1U && "Should lower JT Header first!");
1636 EVT PTy = TLI.getPointerTy();
1637 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1638 JT.Reg, PTy);
1639 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1640 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1641 MVT::Other, Index.getValue(1),
1642 Table, Index);
1643 DAG.setRoot(BrJumpTable);
1644 }
1645
1646 /// visitJumpTableHeader - This function emits necessary code to produce index
1647 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)1648 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1649 JumpTableHeader &JTH,
1650 MachineBasicBlock *SwitchBB) {
1651 // Subtract the lowest switch case value from the value being switched on and
1652 // conditional branch to default mbb if the result is greater than the
1653 // difference between smallest and largest cases.
1654 SDValue SwitchOp = getValue(JTH.SValue);
1655 EVT VT = SwitchOp.getValueType();
1656 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1657 DAG.getConstant(JTH.First, VT));
1658
1659 // The SDNode we just created, which holds the value being switched on minus
1660 // the smallest case value, needs to be copied to a virtual register so it
1661 // can be used as an index into the jump table in a subsequent basic block.
1662 // This value may be smaller or larger than the target's pointer type, and
1663 // therefore require extension or truncating.
1664 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1665
1666 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1667 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1668 JumpTableReg, SwitchOp);
1669 JT.Reg = JumpTableReg;
1670
1671 // Emit the range check for the jump table, and branch to the default block
1672 // for the switch statement if the value being switched on exceeds the largest
1673 // case in the switch.
1674 SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1675 TLI.getSetCCResultType(Sub.getValueType()), Sub,
1676 DAG.getConstant(JTH.Last-JTH.First,VT),
1677 ISD::SETUGT);
1678
1679 // Set NextBlock to be the MBB immediately after the current one, if any.
1680 // This is used to avoid emitting unnecessary branches to the next block.
1681 MachineBasicBlock *NextBlock = 0;
1682 MachineFunction::iterator BBI = SwitchBB;
1683
1684 if (++BBI != FuncInfo.MF->end())
1685 NextBlock = BBI;
1686
1687 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1688 MVT::Other, CopyTo, CMP,
1689 DAG.getBasicBlock(JT.Default));
1690
1691 if (JT.MBB != NextBlock)
1692 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1693 DAG.getBasicBlock(JT.MBB));
1694
1695 DAG.setRoot(BrCond);
1696 }
1697
1698 /// visitBitTestHeader - This function emits necessary code to produce value
1699 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)1700 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1701 MachineBasicBlock *SwitchBB) {
1702 // Subtract the minimum value
1703 SDValue SwitchOp = getValue(B.SValue);
1704 EVT VT = SwitchOp.getValueType();
1705 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1706 DAG.getConstant(B.First, VT));
1707
1708 // Check range
1709 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1710 TLI.getSetCCResultType(Sub.getValueType()),
1711 Sub, DAG.getConstant(B.Range, VT),
1712 ISD::SETUGT);
1713
1714 // Determine the type of the test operands.
1715 bool UsePtrType = false;
1716 if (!TLI.isTypeLegal(VT))
1717 UsePtrType = true;
1718 else {
1719 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1720 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1721 // Switch table case range are encoded into series of masks.
1722 // Just use pointer type, it's guaranteed to fit.
1723 UsePtrType = true;
1724 break;
1725 }
1726 }
1727 if (UsePtrType) {
1728 VT = TLI.getPointerTy();
1729 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1730 }
1731
1732 B.RegVT = VT;
1733 B.Reg = FuncInfo.CreateReg(VT);
1734 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1735 B.Reg, Sub);
1736
1737 // Set NextBlock to be the MBB immediately after the current one, if any.
1738 // This is used to avoid emitting unnecessary branches to the next block.
1739 MachineBasicBlock *NextBlock = 0;
1740 MachineFunction::iterator BBI = SwitchBB;
1741 if (++BBI != FuncInfo.MF->end())
1742 NextBlock = BBI;
1743
1744 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1745
1746 addSuccessorWithWeight(SwitchBB, B.Default);
1747 addSuccessorWithWeight(SwitchBB, MBB);
1748
1749 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1750 MVT::Other, CopyTo, RangeCmp,
1751 DAG.getBasicBlock(B.Default));
1752
1753 if (MBB != NextBlock)
1754 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1755 DAG.getBasicBlock(MBB));
1756
1757 DAG.setRoot(BrRange);
1758 }
1759
1760 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)1761 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1762 MachineBasicBlock* NextMBB,
1763 unsigned Reg,
1764 BitTestCase &B,
1765 MachineBasicBlock *SwitchBB) {
1766 EVT VT = BB.RegVT;
1767 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1768 Reg, VT);
1769 SDValue Cmp;
1770 unsigned PopCount = CountPopulation_64(B.Mask);
1771 if (PopCount == 1) {
1772 // Testing for a single bit; just compare the shift count with what it
1773 // would need to be to shift a 1 bit in that position.
1774 Cmp = DAG.getSetCC(getCurDebugLoc(),
1775 TLI.getSetCCResultType(VT),
1776 ShiftOp,
1777 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1778 ISD::SETEQ);
1779 } else if (PopCount == BB.Range) {
1780 // There is only one zero bit in the range, test for it directly.
1781 Cmp = DAG.getSetCC(getCurDebugLoc(),
1782 TLI.getSetCCResultType(VT),
1783 ShiftOp,
1784 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1785 ISD::SETNE);
1786 } else {
1787 // Make desired shift
1788 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1789 DAG.getConstant(1, VT), ShiftOp);
1790
1791 // Emit bit tests and jumps
1792 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1793 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1794 Cmp = DAG.getSetCC(getCurDebugLoc(),
1795 TLI.getSetCCResultType(VT),
1796 AndOp, DAG.getConstant(0, VT),
1797 ISD::SETNE);
1798 }
1799
1800 addSuccessorWithWeight(SwitchBB, B.TargetBB);
1801 addSuccessorWithWeight(SwitchBB, NextMBB);
1802
1803 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1804 MVT::Other, getControlRoot(),
1805 Cmp, DAG.getBasicBlock(B.TargetBB));
1806
1807 // Set NextBlock to be the MBB immediately after the current one, if any.
1808 // This is used to avoid emitting unnecessary branches to the next block.
1809 MachineBasicBlock *NextBlock = 0;
1810 MachineFunction::iterator BBI = SwitchBB;
1811 if (++BBI != FuncInfo.MF->end())
1812 NextBlock = BBI;
1813
1814 if (NextMBB != NextBlock)
1815 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1816 DAG.getBasicBlock(NextMBB));
1817
1818 DAG.setRoot(BrAnd);
1819 }
1820
visitInvoke(const InvokeInst & I)1821 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1822 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1823
1824 // Retrieve successors.
1825 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1826 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1827
1828 const Value *Callee(I.getCalledValue());
1829 if (isa<InlineAsm>(Callee))
1830 visitInlineAsm(&I);
1831 else
1832 LowerCallTo(&I, getValue(Callee), false, LandingPad);
1833
1834 // If the value of the invoke is used outside of its defining block, make it
1835 // available as a virtual register.
1836 CopyToExportRegsIfNeeded(&I);
1837
1838 // Update successor info
1839 addSuccessorWithWeight(InvokeMBB, Return);
1840 addSuccessorWithWeight(InvokeMBB, LandingPad);
1841
1842 // Drop into normal successor.
1843 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1844 MVT::Other, getControlRoot(),
1845 DAG.getBasicBlock(Return)));
1846 }
1847
visitResume(const ResumeInst & RI)1848 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1849 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1850 }
1851
visitLandingPad(const LandingPadInst & LP)1852 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1853 assert(FuncInfo.MBB->isLandingPad() &&
1854 "Call to landingpad not in landing pad!");
1855
1856 MachineBasicBlock *MBB = FuncInfo.MBB;
1857 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1858 AddLandingPadInfo(LP, MMI, MBB);
1859
1860 // If there aren't registers to copy the values into (e.g., during SjLj
1861 // exceptions), then don't bother to create these DAG nodes.
1862 if (TLI.getExceptionPointerRegister() == 0 &&
1863 TLI.getExceptionSelectorRegister() == 0)
1864 return;
1865
1866 SmallVector<EVT, 2> ValueVTs;
1867 ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1868
1869 // Insert the EXCEPTIONADDR instruction.
1870 assert(FuncInfo.MBB->isLandingPad() &&
1871 "Call to eh.exception not in landing pad!");
1872 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1873 SDValue Ops[2];
1874 Ops[0] = DAG.getRoot();
1875 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1876 SDValue Chain = Op1.getValue(1);
1877
1878 // Insert the EHSELECTION instruction.
1879 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1880 Ops[0] = Op1;
1881 Ops[1] = Chain;
1882 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1883 Chain = Op2.getValue(1);
1884 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1885
1886 Ops[0] = Op1;
1887 Ops[1] = Op2;
1888 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1889 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1890 &Ops[0], 2);
1891
1892 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1893 setValue(&LP, RetPair.first);
1894 DAG.setRoot(RetPair.second);
1895 }
1896
1897 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1898 /// small case ranges).
handleSmallSwitchRange(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)1899 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1900 CaseRecVector& WorkList,
1901 const Value* SV,
1902 MachineBasicBlock *Default,
1903 MachineBasicBlock *SwitchBB) {
1904 Case& BackCase = *(CR.Range.second-1);
1905
1906 // Size is the number of Cases represented by this range.
1907 size_t Size = CR.Range.second - CR.Range.first;
1908 if (Size > 3)
1909 return false;
1910
1911 // Get the MachineFunction which holds the current MBB. This is used when
1912 // inserting any additional MBBs necessary to represent the switch.
1913 MachineFunction *CurMF = FuncInfo.MF;
1914
1915 // Figure out which block is immediately after the current one.
1916 MachineBasicBlock *NextBlock = 0;
1917 MachineFunction::iterator BBI = CR.CaseBB;
1918
1919 if (++BBI != FuncInfo.MF->end())
1920 NextBlock = BBI;
1921
1922 // If any two of the cases has the same destination, and if one value
1923 // is the same as the other, but has one bit unset that the other has set,
1924 // use bit manipulation to do two compares at once. For example:
1925 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1926 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1927 // TODO: Handle cases where CR.CaseBB != SwitchBB.
1928 if (Size == 2 && CR.CaseBB == SwitchBB) {
1929 Case &Small = *CR.Range.first;
1930 Case &Big = *(CR.Range.second-1);
1931
1932 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1933 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1934 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1935
1936 // Check that there is only one bit different.
1937 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1938 (SmallValue | BigValue) == BigValue) {
1939 // Isolate the common bit.
1940 APInt CommonBit = BigValue & ~SmallValue;
1941 assert((SmallValue | CommonBit) == BigValue &&
1942 CommonBit.countPopulation() == 1 && "Not a common bit?");
1943
1944 SDValue CondLHS = getValue(SV);
1945 EVT VT = CondLHS.getValueType();
1946 DebugLoc DL = getCurDebugLoc();
1947
1948 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1949 DAG.getConstant(CommonBit, VT));
1950 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1951 Or, DAG.getConstant(BigValue, VT),
1952 ISD::SETEQ);
1953
1954 // Update successor info.
1955 addSuccessorWithWeight(SwitchBB, Small.BB);
1956 addSuccessorWithWeight(SwitchBB, Default);
1957
1958 // Insert the true branch.
1959 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1960 getControlRoot(), Cond,
1961 DAG.getBasicBlock(Small.BB));
1962
1963 // Insert the false branch.
1964 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1965 DAG.getBasicBlock(Default));
1966
1967 DAG.setRoot(BrCond);
1968 return true;
1969 }
1970 }
1971 }
1972
1973 // Rearrange the case blocks so that the last one falls through if possible.
1974 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1975 // The last case block won't fall through into 'NextBlock' if we emit the
1976 // branches in this order. See if rearranging a case value would help.
1977 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1978 if (I->BB == NextBlock) {
1979 std::swap(*I, BackCase);
1980 break;
1981 }
1982 }
1983 }
1984
1985 // Create a CaseBlock record representing a conditional branch to
1986 // the Case's target mbb if the value being switched on SV is equal
1987 // to C.
1988 MachineBasicBlock *CurBlock = CR.CaseBB;
1989 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1990 MachineBasicBlock *FallThrough;
1991 if (I != E-1) {
1992 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1993 CurMF->insert(BBI, FallThrough);
1994
1995 // Put SV in a virtual register to make it available from the new blocks.
1996 ExportFromCurrentBlock(SV);
1997 } else {
1998 // If the last case doesn't match, go to the default block.
1999 FallThrough = Default;
2000 }
2001
2002 const Value *RHS, *LHS, *MHS;
2003 ISD::CondCode CC;
2004 if (I->High == I->Low) {
2005 // This is just small small case range :) containing exactly 1 case
2006 CC = ISD::SETEQ;
2007 LHS = SV; RHS = I->High; MHS = NULL;
2008 } else {
2009 CC = ISD::SETLE;
2010 LHS = I->Low; MHS = SV; RHS = I->High;
2011 }
2012
2013 uint32_t ExtraWeight = I->ExtraWeight;
2014 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2015 /* me */ CurBlock,
2016 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2017
2018 // If emitting the first comparison, just call visitSwitchCase to emit the
2019 // code into the current block. Otherwise, push the CaseBlock onto the
2020 // vector to be later processed by SDISel, and insert the node's MBB
2021 // before the next MBB.
2022 if (CurBlock == SwitchBB)
2023 visitSwitchCase(CB, SwitchBB);
2024 else
2025 SwitchCases.push_back(CB);
2026
2027 CurBlock = FallThrough;
2028 }
2029
2030 return true;
2031 }
2032
areJTsAllowed(const TargetLowering & TLI)2033 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2034 return !TLI.getTargetMachine().Options.DisableJumpTables &&
2035 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2036 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2037 }
2038
ComputeRange(const APInt & First,const APInt & Last)2039 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2040 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2041 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2042 return (LastExt - FirstExt + 1ULL);
2043 }
2044
2045 /// handleJTSwitchCase - Emit jumptable for current switch case range
handleJTSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2046 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2047 CaseRecVector &WorkList,
2048 const Value *SV,
2049 MachineBasicBlock *Default,
2050 MachineBasicBlock *SwitchBB) {
2051 Case& FrontCase = *CR.Range.first;
2052 Case& BackCase = *(CR.Range.second-1);
2053
2054 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2055 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2056
2057 APInt TSize(First.getBitWidth(), 0);
2058 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2059 TSize += I->size();
2060
2061 if (!areJTsAllowed(TLI) || TSize.ult(4))
2062 return false;
2063
2064 APInt Range = ComputeRange(First, Last);
2065 // The density is TSize / Range. Require at least 40%.
2066 // It should not be possible for IntTSize to saturate for sane code, but make
2067 // sure we handle Range saturation correctly.
2068 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2069 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2070 if (IntTSize * 10 < IntRange * 4)
2071 return false;
2072
2073 DEBUG(dbgs() << "Lowering jump table\n"
2074 << "First entry: " << First << ". Last entry: " << Last << '\n'
2075 << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2076
2077 // Get the MachineFunction which holds the current MBB. This is used when
2078 // inserting any additional MBBs necessary to represent the switch.
2079 MachineFunction *CurMF = FuncInfo.MF;
2080
2081 // Figure out which block is immediately after the current one.
2082 MachineFunction::iterator BBI = CR.CaseBB;
2083 ++BBI;
2084
2085 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2086
2087 // Create a new basic block to hold the code for loading the address
2088 // of the jump table, and jumping to it. Update successor information;
2089 // we will either branch to the default case for the switch, or the jump
2090 // table.
2091 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2092 CurMF->insert(BBI, JumpTableBB);
2093
2094 addSuccessorWithWeight(CR.CaseBB, Default);
2095 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2096
2097 // Build a vector of destination BBs, corresponding to each target
2098 // of the jump table. If the value of the jump table slot corresponds to
2099 // a case statement, push the case's BB onto the vector, otherwise, push
2100 // the default BB.
2101 std::vector<MachineBasicBlock*> DestBBs;
2102 APInt TEI = First;
2103 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2104 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2105 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2106
2107 if (Low.sle(TEI) && TEI.sle(High)) {
2108 DestBBs.push_back(I->BB);
2109 if (TEI==High)
2110 ++I;
2111 } else {
2112 DestBBs.push_back(Default);
2113 }
2114 }
2115
2116 // Update successor info. Add one edge to each unique successor.
2117 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2118 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2119 E = DestBBs.end(); I != E; ++I) {
2120 if (!SuccsHandled[(*I)->getNumber()]) {
2121 SuccsHandled[(*I)->getNumber()] = true;
2122 addSuccessorWithWeight(JumpTableBB, *I);
2123 }
2124 }
2125
2126 // Create a jump table index for this jump table.
2127 unsigned JTEncoding = TLI.getJumpTableEncoding();
2128 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2129 ->createJumpTableIndex(DestBBs);
2130
2131 // Set the jump table information so that we can codegen it as a second
2132 // MachineBasicBlock
2133 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2134 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2135 if (CR.CaseBB == SwitchBB)
2136 visitJumpTableHeader(JT, JTH, SwitchBB);
2137
2138 JTCases.push_back(JumpTableBlock(JTH, JT));
2139 return true;
2140 }
2141
2142 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2143 /// 2 subtrees.
handleBTSplitSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2144 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2145 CaseRecVector& WorkList,
2146 const Value* SV,
2147 MachineBasicBlock *Default,
2148 MachineBasicBlock *SwitchBB) {
2149 // Get the MachineFunction which holds the current MBB. This is used when
2150 // inserting any additional MBBs necessary to represent the switch.
2151 MachineFunction *CurMF = FuncInfo.MF;
2152
2153 // Figure out which block is immediately after the current one.
2154 MachineFunction::iterator BBI = CR.CaseBB;
2155 ++BBI;
2156
2157 Case& FrontCase = *CR.Range.first;
2158 Case& BackCase = *(CR.Range.second-1);
2159 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2160
2161 // Size is the number of Cases represented by this range.
2162 unsigned Size = CR.Range.second - CR.Range.first;
2163
2164 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2165 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2166 double FMetric = 0;
2167 CaseItr Pivot = CR.Range.first + Size/2;
2168
2169 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2170 // (heuristically) allow us to emit JumpTable's later.
2171 APInt TSize(First.getBitWidth(), 0);
2172 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2173 I!=E; ++I)
2174 TSize += I->size();
2175
2176 APInt LSize = FrontCase.size();
2177 APInt RSize = TSize-LSize;
2178 DEBUG(dbgs() << "Selecting best pivot: \n"
2179 << "First: " << First << ", Last: " << Last <<'\n'
2180 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2181 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2182 J!=E; ++I, ++J) {
2183 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2184 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2185 APInt Range = ComputeRange(LEnd, RBegin);
2186 assert((Range - 2ULL).isNonNegative() &&
2187 "Invalid case distance");
2188 // Use volatile double here to avoid excess precision issues on some hosts,
2189 // e.g. that use 80-bit X87 registers.
2190 volatile double LDensity =
2191 (double)LSize.roundToDouble() /
2192 (LEnd - First + 1ULL).roundToDouble();
2193 volatile double RDensity =
2194 (double)RSize.roundToDouble() /
2195 (Last - RBegin + 1ULL).roundToDouble();
2196 double Metric = Range.logBase2()*(LDensity+RDensity);
2197 // Should always split in some non-trivial place
2198 DEBUG(dbgs() <<"=>Step\n"
2199 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2200 << "LDensity: " << LDensity
2201 << ", RDensity: " << RDensity << '\n'
2202 << "Metric: " << Metric << '\n');
2203 if (FMetric < Metric) {
2204 Pivot = J;
2205 FMetric = Metric;
2206 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2207 }
2208
2209 LSize += J->size();
2210 RSize -= J->size();
2211 }
2212 if (areJTsAllowed(TLI)) {
2213 // If our case is dense we *really* should handle it earlier!
2214 assert((FMetric > 0) && "Should handle dense range earlier!");
2215 } else {
2216 Pivot = CR.Range.first + Size/2;
2217 }
2218
2219 CaseRange LHSR(CR.Range.first, Pivot);
2220 CaseRange RHSR(Pivot, CR.Range.second);
2221 const Constant *C = Pivot->Low;
2222 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2223
2224 // We know that we branch to the LHS if the Value being switched on is
2225 // less than the Pivot value, C. We use this to optimize our binary
2226 // tree a bit, by recognizing that if SV is greater than or equal to the
2227 // LHS's Case Value, and that Case Value is exactly one less than the
2228 // Pivot's Value, then we can branch directly to the LHS's Target,
2229 // rather than creating a leaf node for it.
2230 if ((LHSR.second - LHSR.first) == 1 &&
2231 LHSR.first->High == CR.GE &&
2232 cast<ConstantInt>(C)->getValue() ==
2233 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2234 TrueBB = LHSR.first->BB;
2235 } else {
2236 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2237 CurMF->insert(BBI, TrueBB);
2238 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2239
2240 // Put SV in a virtual register to make it available from the new blocks.
2241 ExportFromCurrentBlock(SV);
2242 }
2243
2244 // Similar to the optimization above, if the Value being switched on is
2245 // known to be less than the Constant CR.LT, and the current Case Value
2246 // is CR.LT - 1, then we can branch directly to the target block for
2247 // the current Case Value, rather than emitting a RHS leaf node for it.
2248 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2249 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2250 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2251 FalseBB = RHSR.first->BB;
2252 } else {
2253 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2254 CurMF->insert(BBI, FalseBB);
2255 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2256
2257 // Put SV in a virtual register to make it available from the new blocks.
2258 ExportFromCurrentBlock(SV);
2259 }
2260
2261 // Create a CaseBlock record representing a conditional branch to
2262 // the LHS node if the value being switched on SV is less than C.
2263 // Otherwise, branch to LHS.
2264 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2265
2266 if (CR.CaseBB == SwitchBB)
2267 visitSwitchCase(CB, SwitchBB);
2268 else
2269 SwitchCases.push_back(CB);
2270
2271 return true;
2272 }
2273
2274 /// handleBitTestsSwitchCase - if current case range has few destination and
2275 /// range span less, than machine word bitwidth, encode case range into series
2276 /// of masks and emit bit tests with these masks.
handleBitTestsSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2277 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2278 CaseRecVector& WorkList,
2279 const Value* SV,
2280 MachineBasicBlock* Default,
2281 MachineBasicBlock *SwitchBB){
2282 EVT PTy = TLI.getPointerTy();
2283 unsigned IntPtrBits = PTy.getSizeInBits();
2284
2285 Case& FrontCase = *CR.Range.first;
2286 Case& BackCase = *(CR.Range.second-1);
2287
2288 // Get the MachineFunction which holds the current MBB. This is used when
2289 // inserting any additional MBBs necessary to represent the switch.
2290 MachineFunction *CurMF = FuncInfo.MF;
2291
2292 // If target does not have legal shift left, do not emit bit tests at all.
2293 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2294 return false;
2295
2296 size_t numCmps = 0;
2297 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2298 I!=E; ++I) {
2299 // Single case counts one, case range - two.
2300 numCmps += (I->Low == I->High ? 1 : 2);
2301 }
2302
2303 // Count unique destinations
2304 SmallSet<MachineBasicBlock*, 4> Dests;
2305 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2306 Dests.insert(I->BB);
2307 if (Dests.size() > 3)
2308 // Don't bother the code below, if there are too much unique destinations
2309 return false;
2310 }
2311 DEBUG(dbgs() << "Total number of unique destinations: "
2312 << Dests.size() << '\n'
2313 << "Total number of comparisons: " << numCmps << '\n');
2314
2315 // Compute span of values.
2316 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2317 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2318 APInt cmpRange = maxValue - minValue;
2319
2320 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2321 << "Low bound: " << minValue << '\n'
2322 << "High bound: " << maxValue << '\n');
2323
2324 if (cmpRange.uge(IntPtrBits) ||
2325 (!(Dests.size() == 1 && numCmps >= 3) &&
2326 !(Dests.size() == 2 && numCmps >= 5) &&
2327 !(Dests.size() >= 3 && numCmps >= 6)))
2328 return false;
2329
2330 DEBUG(dbgs() << "Emitting bit tests\n");
2331 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2332
2333 // Optimize the case where all the case values fit in a
2334 // word without having to subtract minValue. In this case,
2335 // we can optimize away the subtraction.
2336 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2337 cmpRange = maxValue;
2338 } else {
2339 lowBound = minValue;
2340 }
2341
2342 CaseBitsVector CasesBits;
2343 unsigned i, count = 0;
2344
2345 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2346 MachineBasicBlock* Dest = I->BB;
2347 for (i = 0; i < count; ++i)
2348 if (Dest == CasesBits[i].BB)
2349 break;
2350
2351 if (i == count) {
2352 assert((count < 3) && "Too much destinations to test!");
2353 CasesBits.push_back(CaseBits(0, Dest, 0));
2354 count++;
2355 }
2356
2357 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2358 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2359
2360 uint64_t lo = (lowValue - lowBound).getZExtValue();
2361 uint64_t hi = (highValue - lowBound).getZExtValue();
2362
2363 for (uint64_t j = lo; j <= hi; j++) {
2364 CasesBits[i].Mask |= 1ULL << j;
2365 CasesBits[i].Bits++;
2366 }
2367
2368 }
2369 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2370
2371 BitTestInfo BTC;
2372
2373 // Figure out which block is immediately after the current one.
2374 MachineFunction::iterator BBI = CR.CaseBB;
2375 ++BBI;
2376
2377 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2378
2379 DEBUG(dbgs() << "Cases:\n");
2380 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2381 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2382 << ", Bits: " << CasesBits[i].Bits
2383 << ", BB: " << CasesBits[i].BB << '\n');
2384
2385 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2386 CurMF->insert(BBI, CaseBB);
2387 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2388 CaseBB,
2389 CasesBits[i].BB));
2390
2391 // Put SV in a virtual register to make it available from the new blocks.
2392 ExportFromCurrentBlock(SV);
2393 }
2394
2395 BitTestBlock BTB(lowBound, cmpRange, SV,
2396 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2397 CR.CaseBB, Default, BTC);
2398
2399 if (CR.CaseBB == SwitchBB)
2400 visitBitTestHeader(BTB, SwitchBB);
2401
2402 BitTestCases.push_back(BTB);
2403
2404 return true;
2405 }
2406
2407 /// Clusterify - Transform simple list of Cases into list of CaseRange's
Clusterify(CaseVector & Cases,const SwitchInst & SI)2408 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2409 const SwitchInst& SI) {
2410 size_t numCmps = 0;
2411
2412 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2413 // Start with "simple" cases
2414 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2415 i != e; ++i) {
2416 const BasicBlock *SuccBB = i.getCaseSuccessor();
2417 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2418
2419 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2420
2421 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2422 SMBB, ExtraWeight));
2423 }
2424 std::sort(Cases.begin(), Cases.end(), CaseCmp());
2425
2426 // Merge case into clusters
2427 if (Cases.size() >= 2)
2428 // Must recompute end() each iteration because it may be
2429 // invalidated by erase if we hold on to it
2430 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2431 J != Cases.end(); ) {
2432 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2433 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2434 MachineBasicBlock* nextBB = J->BB;
2435 MachineBasicBlock* currentBB = I->BB;
2436
2437 // If the two neighboring cases go to the same destination, merge them
2438 // into a single case.
2439 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2440 I->High = J->High;
2441 J = Cases.erase(J);
2442
2443 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2444 uint32_t CurWeight = currentBB->getBasicBlock() ?
2445 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2446 uint32_t NextWeight = nextBB->getBasicBlock() ?
2447 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2448
2449 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2450 CurWeight + NextWeight);
2451 }
2452 } else {
2453 I = J++;
2454 }
2455 }
2456
2457 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2458 if (I->Low != I->High)
2459 // A range counts double, since it requires two compares.
2460 ++numCmps;
2461 }
2462
2463 return numCmps;
2464 }
2465
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2466 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2467 MachineBasicBlock *Last) {
2468 // Update JTCases.
2469 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2470 if (JTCases[i].first.HeaderBB == First)
2471 JTCases[i].first.HeaderBB = Last;
2472
2473 // Update BitTestCases.
2474 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2475 if (BitTestCases[i].Parent == First)
2476 BitTestCases[i].Parent = Last;
2477 }
2478
visitSwitch(const SwitchInst & SI)2479 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2480 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2481
2482 // Figure out which block is immediately after the current one.
2483 MachineBasicBlock *NextBlock = 0;
2484 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2485
2486 // If there is only the default destination, branch to it if it is not the
2487 // next basic block. Otherwise, just fall through.
2488 if (!SI.getNumCases()) {
2489 // Update machine-CFG edges.
2490
2491 // If this is not a fall-through branch, emit the branch.
2492 SwitchMBB->addSuccessor(Default);
2493 if (Default != NextBlock)
2494 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2495 MVT::Other, getControlRoot(),
2496 DAG.getBasicBlock(Default)));
2497
2498 return;
2499 }
2500
2501 // If there are any non-default case statements, create a vector of Cases
2502 // representing each one, and sort the vector so that we can efficiently
2503 // create a binary search tree from them.
2504 CaseVector Cases;
2505 size_t numCmps = Clusterify(Cases, SI);
2506 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2507 << ". Total compares: " << numCmps << '\n');
2508 (void)numCmps;
2509
2510 // Get the Value to be switched on and default basic blocks, which will be
2511 // inserted into CaseBlock records, representing basic blocks in the binary
2512 // search tree.
2513 const Value *SV = SI.getCondition();
2514
2515 // Push the initial CaseRec onto the worklist
2516 CaseRecVector WorkList;
2517 WorkList.push_back(CaseRec(SwitchMBB,0,0,
2518 CaseRange(Cases.begin(),Cases.end())));
2519
2520 while (!WorkList.empty()) {
2521 // Grab a record representing a case range to process off the worklist
2522 CaseRec CR = WorkList.back();
2523 WorkList.pop_back();
2524
2525 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2526 continue;
2527
2528 // If the range has few cases (two or less) emit a series of specific
2529 // tests.
2530 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2531 continue;
2532
2533 // If the switch has more than 5 blocks, and at least 40% dense, and the
2534 // target supports indirect branches, then emit a jump table rather than
2535 // lowering the switch to a binary tree of conditional branches.
2536 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2537 continue;
2538
2539 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2540 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2541 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2542 }
2543 }
2544
visitIndirectBr(const IndirectBrInst & I)2545 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2546 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2547
2548 // Update machine-CFG edges with unique successors.
2549 SmallVector<BasicBlock*, 32> succs;
2550 succs.reserve(I.getNumSuccessors());
2551 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2552 succs.push_back(I.getSuccessor(i));
2553 array_pod_sort(succs.begin(), succs.end());
2554 succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2555 for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2556 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2557 addSuccessorWithWeight(IndirectBrMBB, Succ);
2558 }
2559
2560 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2561 MVT::Other, getControlRoot(),
2562 getValue(I.getAddress())));
2563 }
2564
visitFSub(const User & I)2565 void SelectionDAGBuilder::visitFSub(const User &I) {
2566 // -0.0 - X --> fneg
2567 Type *Ty = I.getType();
2568 if (isa<Constant>(I.getOperand(0)) &&
2569 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2570 SDValue Op2 = getValue(I.getOperand(1));
2571 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2572 Op2.getValueType(), Op2));
2573 return;
2574 }
2575
2576 visitBinary(I, ISD::FSUB);
2577 }
2578
visitBinary(const User & I,unsigned OpCode)2579 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2580 SDValue Op1 = getValue(I.getOperand(0));
2581 SDValue Op2 = getValue(I.getOperand(1));
2582 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2583 Op1.getValueType(), Op1, Op2));
2584 }
2585
visitShift(const User & I,unsigned Opcode)2586 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2587 SDValue Op1 = getValue(I.getOperand(0));
2588 SDValue Op2 = getValue(I.getOperand(1));
2589
2590 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2591
2592 // Coerce the shift amount to the right type if we can.
2593 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2594 unsigned ShiftSize = ShiftTy.getSizeInBits();
2595 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2596 DebugLoc DL = getCurDebugLoc();
2597
2598 // If the operand is smaller than the shift count type, promote it.
2599 if (ShiftSize > Op2Size)
2600 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2601
2602 // If the operand is larger than the shift count type but the shift
2603 // count type has enough bits to represent any shift value, truncate
2604 // it now. This is a common case and it exposes the truncate to
2605 // optimization early.
2606 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2607 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2608 // Otherwise we'll need to temporarily settle for some other convenient
2609 // type. Type legalization will make adjustments once the shiftee is split.
2610 else
2611 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2612 }
2613
2614 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2615 Op1.getValueType(), Op1, Op2));
2616 }
2617
visitSDiv(const User & I)2618 void SelectionDAGBuilder::visitSDiv(const User &I) {
2619 SDValue Op1 = getValue(I.getOperand(0));
2620 SDValue Op2 = getValue(I.getOperand(1));
2621
2622 // Turn exact SDivs into multiplications.
2623 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2624 // exact bit.
2625 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2626 !isa<ConstantSDNode>(Op1) &&
2627 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2628 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2629 else
2630 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2631 Op1, Op2));
2632 }
2633
visitICmp(const User & I)2634 void SelectionDAGBuilder::visitICmp(const User &I) {
2635 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2636 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2637 predicate = IC->getPredicate();
2638 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2639 predicate = ICmpInst::Predicate(IC->getPredicate());
2640 SDValue Op1 = getValue(I.getOperand(0));
2641 SDValue Op2 = getValue(I.getOperand(1));
2642 ISD::CondCode Opcode = getICmpCondCode(predicate);
2643
2644 EVT DestVT = TLI.getValueType(I.getType());
2645 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2646 }
2647
visitFCmp(const User & I)2648 void SelectionDAGBuilder::visitFCmp(const User &I) {
2649 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2650 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2651 predicate = FC->getPredicate();
2652 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2653 predicate = FCmpInst::Predicate(FC->getPredicate());
2654 SDValue Op1 = getValue(I.getOperand(0));
2655 SDValue Op2 = getValue(I.getOperand(1));
2656 ISD::CondCode Condition = getFCmpCondCode(predicate);
2657 if (TM.Options.NoNaNsFPMath)
2658 Condition = getFCmpCodeWithoutNaN(Condition);
2659 EVT DestVT = TLI.getValueType(I.getType());
2660 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2661 }
2662
visitSelect(const User & I)2663 void SelectionDAGBuilder::visitSelect(const User &I) {
2664 SmallVector<EVT, 4> ValueVTs;
2665 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2666 unsigned NumValues = ValueVTs.size();
2667 if (NumValues == 0) return;
2668
2669 SmallVector<SDValue, 4> Values(NumValues);
2670 SDValue Cond = getValue(I.getOperand(0));
2671 SDValue TrueVal = getValue(I.getOperand(1));
2672 SDValue FalseVal = getValue(I.getOperand(2));
2673 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2674 ISD::VSELECT : ISD::SELECT;
2675
2676 for (unsigned i = 0; i != NumValues; ++i)
2677 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2678 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2679 Cond,
2680 SDValue(TrueVal.getNode(),
2681 TrueVal.getResNo() + i),
2682 SDValue(FalseVal.getNode(),
2683 FalseVal.getResNo() + i));
2684
2685 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2686 DAG.getVTList(&ValueVTs[0], NumValues),
2687 &Values[0], NumValues));
2688 }
2689
visitTrunc(const User & I)2690 void SelectionDAGBuilder::visitTrunc(const User &I) {
2691 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2692 SDValue N = getValue(I.getOperand(0));
2693 EVT DestVT = TLI.getValueType(I.getType());
2694 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2695 }
2696
visitZExt(const User & I)2697 void SelectionDAGBuilder::visitZExt(const User &I) {
2698 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2699 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2700 SDValue N = getValue(I.getOperand(0));
2701 EVT DestVT = TLI.getValueType(I.getType());
2702 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2703 }
2704
visitSExt(const User & I)2705 void SelectionDAGBuilder::visitSExt(const User &I) {
2706 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2707 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2708 SDValue N = getValue(I.getOperand(0));
2709 EVT DestVT = TLI.getValueType(I.getType());
2710 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2711 }
2712
visitFPTrunc(const User & I)2713 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2714 // FPTrunc is never a no-op cast, no need to check
2715 SDValue N = getValue(I.getOperand(0));
2716 EVT DestVT = TLI.getValueType(I.getType());
2717 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2718 DestVT, N,
2719 DAG.getTargetConstant(0, TLI.getPointerTy())));
2720 }
2721
visitFPExt(const User & I)2722 void SelectionDAGBuilder::visitFPExt(const User &I){
2723 // FPExt is never a no-op cast, no need to check
2724 SDValue N = getValue(I.getOperand(0));
2725 EVT DestVT = TLI.getValueType(I.getType());
2726 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2727 }
2728
visitFPToUI(const User & I)2729 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2730 // FPToUI is never a no-op cast, no need to check
2731 SDValue N = getValue(I.getOperand(0));
2732 EVT DestVT = TLI.getValueType(I.getType());
2733 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2734 }
2735
visitFPToSI(const User & I)2736 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2737 // FPToSI is never a no-op cast, no need to check
2738 SDValue N = getValue(I.getOperand(0));
2739 EVT DestVT = TLI.getValueType(I.getType());
2740 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2741 }
2742
visitUIToFP(const User & I)2743 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2744 // UIToFP is never a no-op cast, no need to check
2745 SDValue N = getValue(I.getOperand(0));
2746 EVT DestVT = TLI.getValueType(I.getType());
2747 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2748 }
2749
visitSIToFP(const User & I)2750 void SelectionDAGBuilder::visitSIToFP(const User &I){
2751 // SIToFP is never a no-op cast, no need to check
2752 SDValue N = getValue(I.getOperand(0));
2753 EVT DestVT = TLI.getValueType(I.getType());
2754 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2755 }
2756
visitPtrToInt(const User & I)2757 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2758 // What to do depends on the size of the integer and the size of the pointer.
2759 // We can either truncate, zero extend, or no-op, accordingly.
2760 SDValue N = getValue(I.getOperand(0));
2761 EVT DestVT = TLI.getValueType(I.getType());
2762 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2763 }
2764
visitIntToPtr(const User & I)2765 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2766 // What to do depends on the size of the integer and the size of the pointer.
2767 // We can either truncate, zero extend, or no-op, accordingly.
2768 SDValue N = getValue(I.getOperand(0));
2769 EVT DestVT = TLI.getValueType(I.getType());
2770 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2771 }
2772
visitBitCast(const User & I)2773 void SelectionDAGBuilder::visitBitCast(const User &I) {
2774 SDValue N = getValue(I.getOperand(0));
2775 EVT DestVT = TLI.getValueType(I.getType());
2776
2777 // BitCast assures us that source and destination are the same size so this is
2778 // either a BITCAST or a no-op.
2779 if (DestVT != N.getValueType())
2780 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2781 DestVT, N)); // convert types.
2782 else
2783 setValue(&I, N); // noop cast.
2784 }
2785
visitInsertElement(const User & I)2786 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2787 SDValue InVec = getValue(I.getOperand(0));
2788 SDValue InVal = getValue(I.getOperand(1));
2789 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2790 TLI.getPointerTy(),
2791 getValue(I.getOperand(2)));
2792 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2793 TLI.getValueType(I.getType()),
2794 InVec, InVal, InIdx));
2795 }
2796
visitExtractElement(const User & I)2797 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2798 SDValue InVec = getValue(I.getOperand(0));
2799 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2800 TLI.getPointerTy(),
2801 getValue(I.getOperand(1)));
2802 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2803 TLI.getValueType(I.getType()), InVec, InIdx));
2804 }
2805
2806 // Utility for visitShuffleVector - Return true if every element in Mask,
2807 // begining from position Pos and ending in Pos+Size, falls within the
2808 // specified sequential range [L, L+Pos). or is undef.
isSequentialInRange(const SmallVectorImpl<int> & Mask,unsigned Pos,unsigned Size,int Low)2809 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2810 unsigned Pos, unsigned Size, int Low) {
2811 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2812 if (Mask[i] >= 0 && Mask[i] != Low)
2813 return false;
2814 return true;
2815 }
2816
visitShuffleVector(const User & I)2817 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2818 SDValue Src1 = getValue(I.getOperand(0));
2819 SDValue Src2 = getValue(I.getOperand(1));
2820
2821 SmallVector<int, 8> Mask;
2822 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2823 unsigned MaskNumElts = Mask.size();
2824
2825 EVT VT = TLI.getValueType(I.getType());
2826 EVT SrcVT = Src1.getValueType();
2827 unsigned SrcNumElts = SrcVT.getVectorNumElements();
2828
2829 if (SrcNumElts == MaskNumElts) {
2830 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2831 &Mask[0]));
2832 return;
2833 }
2834
2835 // Normalize the shuffle vector since mask and vector length don't match.
2836 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2837 // Mask is longer than the source vectors and is a multiple of the source
2838 // vectors. We can use concatenate vector to make the mask and vectors
2839 // lengths match.
2840 if (SrcNumElts*2 == MaskNumElts) {
2841 // First check for Src1 in low and Src2 in high
2842 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2843 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2844 // The shuffle is concatenating two vectors together.
2845 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2846 VT, Src1, Src2));
2847 return;
2848 }
2849 // Then check for Src2 in low and Src1 in high
2850 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2851 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2852 // The shuffle is concatenating two vectors together.
2853 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2854 VT, Src2, Src1));
2855 return;
2856 }
2857 }
2858
2859 // Pad both vectors with undefs to make them the same length as the mask.
2860 unsigned NumConcat = MaskNumElts / SrcNumElts;
2861 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2862 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2863 SDValue UndefVal = DAG.getUNDEF(SrcVT);
2864
2865 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2866 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2867 MOps1[0] = Src1;
2868 MOps2[0] = Src2;
2869
2870 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2871 getCurDebugLoc(), VT,
2872 &MOps1[0], NumConcat);
2873 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2874 getCurDebugLoc(), VT,
2875 &MOps2[0], NumConcat);
2876
2877 // Readjust mask for new input vector length.
2878 SmallVector<int, 8> MappedOps;
2879 for (unsigned i = 0; i != MaskNumElts; ++i) {
2880 int Idx = Mask[i];
2881 if (Idx >= (int)SrcNumElts)
2882 Idx -= SrcNumElts - MaskNumElts;
2883 MappedOps.push_back(Idx);
2884 }
2885
2886 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2887 &MappedOps[0]));
2888 return;
2889 }
2890
2891 if (SrcNumElts > MaskNumElts) {
2892 // Analyze the access pattern of the vector to see if we can extract
2893 // two subvectors and do the shuffle. The analysis is done by calculating
2894 // the range of elements the mask access on both vectors.
2895 int MinRange[2] = { static_cast<int>(SrcNumElts),
2896 static_cast<int>(SrcNumElts)};
2897 int MaxRange[2] = {-1, -1};
2898
2899 for (unsigned i = 0; i != MaskNumElts; ++i) {
2900 int Idx = Mask[i];
2901 unsigned Input = 0;
2902 if (Idx < 0)
2903 continue;
2904
2905 if (Idx >= (int)SrcNumElts) {
2906 Input = 1;
2907 Idx -= SrcNumElts;
2908 }
2909 if (Idx > MaxRange[Input])
2910 MaxRange[Input] = Idx;
2911 if (Idx < MinRange[Input])
2912 MinRange[Input] = Idx;
2913 }
2914
2915 // Check if the access is smaller than the vector size and can we find
2916 // a reasonable extract index.
2917 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
2918 // Extract.
2919 int StartIdx[2]; // StartIdx to extract from
2920 for (unsigned Input = 0; Input < 2; ++Input) {
2921 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2922 RangeUse[Input] = 0; // Unused
2923 StartIdx[Input] = 0;
2924 continue;
2925 }
2926
2927 // Find a good start index that is a multiple of the mask length. Then
2928 // see if the rest of the elements are in range.
2929 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2930 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2931 StartIdx[Input] + MaskNumElts <= SrcNumElts)
2932 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2933 }
2934
2935 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2936 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2937 return;
2938 }
2939 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2940 // Extract appropriate subvector and generate a vector shuffle
2941 for (unsigned Input = 0; Input < 2; ++Input) {
2942 SDValue &Src = Input == 0 ? Src1 : Src2;
2943 if (RangeUse[Input] == 0)
2944 Src = DAG.getUNDEF(VT);
2945 else
2946 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2947 Src, DAG.getIntPtrConstant(StartIdx[Input]));
2948 }
2949
2950 // Calculate new mask.
2951 SmallVector<int, 8> MappedOps;
2952 for (unsigned i = 0; i != MaskNumElts; ++i) {
2953 int Idx = Mask[i];
2954 if (Idx >= 0) {
2955 if (Idx < (int)SrcNumElts)
2956 Idx -= StartIdx[0];
2957 else
2958 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2959 }
2960 MappedOps.push_back(Idx);
2961 }
2962
2963 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2964 &MappedOps[0]));
2965 return;
2966 }
2967 }
2968
2969 // We can't use either concat vectors or extract subvectors so fall back to
2970 // replacing the shuffle with extract and build vector.
2971 // to insert and build vector.
2972 EVT EltVT = VT.getVectorElementType();
2973 EVT PtrVT = TLI.getPointerTy();
2974 SmallVector<SDValue,8> Ops;
2975 for (unsigned i = 0; i != MaskNumElts; ++i) {
2976 int Idx = Mask[i];
2977 SDValue Res;
2978
2979 if (Idx < 0) {
2980 Res = DAG.getUNDEF(EltVT);
2981 } else {
2982 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2983 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2984
2985 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2986 EltVT, Src, DAG.getConstant(Idx, PtrVT));
2987 }
2988
2989 Ops.push_back(Res);
2990 }
2991
2992 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2993 VT, &Ops[0], Ops.size()));
2994 }
2995
visitInsertValue(const InsertValueInst & I)2996 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2997 const Value *Op0 = I.getOperand(0);
2998 const Value *Op1 = I.getOperand(1);
2999 Type *AggTy = I.getType();
3000 Type *ValTy = Op1->getType();
3001 bool IntoUndef = isa<UndefValue>(Op0);
3002 bool FromUndef = isa<UndefValue>(Op1);
3003
3004 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3005
3006 SmallVector<EVT, 4> AggValueVTs;
3007 ComputeValueVTs(TLI, AggTy, AggValueVTs);
3008 SmallVector<EVT, 4> ValValueVTs;
3009 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3010
3011 unsigned NumAggValues = AggValueVTs.size();
3012 unsigned NumValValues = ValValueVTs.size();
3013 SmallVector<SDValue, 4> Values(NumAggValues);
3014
3015 SDValue Agg = getValue(Op0);
3016 unsigned i = 0;
3017 // Copy the beginning value(s) from the original aggregate.
3018 for (; i != LinearIndex; ++i)
3019 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3020 SDValue(Agg.getNode(), Agg.getResNo() + i);
3021 // Copy values from the inserted value(s).
3022 if (NumValValues) {
3023 SDValue Val = getValue(Op1);
3024 for (; i != LinearIndex + NumValValues; ++i)
3025 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3026 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3027 }
3028 // Copy remaining value(s) from the original aggregate.
3029 for (; i != NumAggValues; ++i)
3030 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3031 SDValue(Agg.getNode(), Agg.getResNo() + i);
3032
3033 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3034 DAG.getVTList(&AggValueVTs[0], NumAggValues),
3035 &Values[0], NumAggValues));
3036 }
3037
visitExtractValue(const ExtractValueInst & I)3038 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3039 const Value *Op0 = I.getOperand(0);
3040 Type *AggTy = Op0->getType();
3041 Type *ValTy = I.getType();
3042 bool OutOfUndef = isa<UndefValue>(Op0);
3043
3044 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3045
3046 SmallVector<EVT, 4> ValValueVTs;
3047 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3048
3049 unsigned NumValValues = ValValueVTs.size();
3050
3051 // Ignore a extractvalue that produces an empty object
3052 if (!NumValValues) {
3053 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3054 return;
3055 }
3056
3057 SmallVector<SDValue, 4> Values(NumValValues);
3058
3059 SDValue Agg = getValue(Op0);
3060 // Copy out the selected value(s).
3061 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3062 Values[i - LinearIndex] =
3063 OutOfUndef ?
3064 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3065 SDValue(Agg.getNode(), Agg.getResNo() + i);
3066
3067 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3068 DAG.getVTList(&ValValueVTs[0], NumValValues),
3069 &Values[0], NumValValues));
3070 }
3071
visitGetElementPtr(const User & I)3072 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3073 SDValue N = getValue(I.getOperand(0));
3074 // Note that the pointer operand may be a vector of pointers. Take the scalar
3075 // element which holds a pointer.
3076 Type *Ty = I.getOperand(0)->getType()->getScalarType();
3077
3078 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3079 OI != E; ++OI) {
3080 const Value *Idx = *OI;
3081 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3082 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3083 if (Field) {
3084 // N = N + Offset
3085 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3086 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3087 DAG.getIntPtrConstant(Offset));
3088 }
3089
3090 Ty = StTy->getElementType(Field);
3091 } else {
3092 Ty = cast<SequentialType>(Ty)->getElementType();
3093
3094 // If this is a constant subscript, handle it quickly.
3095 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3096 if (CI->isZero()) continue;
3097 uint64_t Offs =
3098 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3099 SDValue OffsVal;
3100 EVT PTy = TLI.getPointerTy();
3101 unsigned PtrBits = PTy.getSizeInBits();
3102 if (PtrBits < 64)
3103 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3104 TLI.getPointerTy(),
3105 DAG.getConstant(Offs, MVT::i64));
3106 else
3107 OffsVal = DAG.getIntPtrConstant(Offs);
3108
3109 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3110 OffsVal);
3111 continue;
3112 }
3113
3114 // N = N + Idx * ElementSize;
3115 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3116 TD->getTypeAllocSize(Ty));
3117 SDValue IdxN = getValue(Idx);
3118
3119 // If the index is smaller or larger than intptr_t, truncate or extend
3120 // it.
3121 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3122
3123 // If this is a multiply by a power of two, turn it into a shl
3124 // immediately. This is a very common case.
3125 if (ElementSize != 1) {
3126 if (ElementSize.isPowerOf2()) {
3127 unsigned Amt = ElementSize.logBase2();
3128 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3129 N.getValueType(), IdxN,
3130 DAG.getConstant(Amt, IdxN.getValueType()));
3131 } else {
3132 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3133 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3134 N.getValueType(), IdxN, Scale);
3135 }
3136 }
3137
3138 N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3139 N.getValueType(), N, IdxN);
3140 }
3141 }
3142
3143 setValue(&I, N);
3144 }
3145
visitAlloca(const AllocaInst & I)3146 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3147 // If this is a fixed sized alloca in the entry block of the function,
3148 // allocate it statically on the stack.
3149 if (FuncInfo.StaticAllocaMap.count(&I))
3150 return; // getValue will auto-populate this.
3151
3152 Type *Ty = I.getAllocatedType();
3153 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3154 unsigned Align =
3155 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3156 I.getAlignment());
3157
3158 SDValue AllocSize = getValue(I.getArraySize());
3159
3160 EVT IntPtr = TLI.getPointerTy();
3161 if (AllocSize.getValueType() != IntPtr)
3162 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3163
3164 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3165 AllocSize,
3166 DAG.getConstant(TySize, IntPtr));
3167
3168 // Handle alignment. If the requested alignment is less than or equal to
3169 // the stack alignment, ignore it. If the size is greater than or equal to
3170 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3171 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3172 if (Align <= StackAlign)
3173 Align = 0;
3174
3175 // Round the size of the allocation up to the stack alignment size
3176 // by add SA-1 to the size.
3177 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3178 AllocSize.getValueType(), AllocSize,
3179 DAG.getIntPtrConstant(StackAlign-1));
3180
3181 // Mask out the low bits for alignment purposes.
3182 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3183 AllocSize.getValueType(), AllocSize,
3184 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3185
3186 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3187 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3188 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3189 VTs, Ops, 3);
3190 setValue(&I, DSA);
3191 DAG.setRoot(DSA.getValue(1));
3192
3193 // Inform the Frame Information that we have just allocated a variable-sized
3194 // object.
3195 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3196 }
3197
visitLoad(const LoadInst & I)3198 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3199 if (I.isAtomic())
3200 return visitAtomicLoad(I);
3201
3202 const Value *SV = I.getOperand(0);
3203 SDValue Ptr = getValue(SV);
3204
3205 Type *Ty = I.getType();
3206
3207 bool isVolatile = I.isVolatile();
3208 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3209 bool isInvariant = I.getMetadata("invariant.load") != 0;
3210 unsigned Alignment = I.getAlignment();
3211 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3212 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3213
3214 SmallVector<EVT, 4> ValueVTs;
3215 SmallVector<uint64_t, 4> Offsets;
3216 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3217 unsigned NumValues = ValueVTs.size();
3218 if (NumValues == 0)
3219 return;
3220
3221 SDValue Root;
3222 bool ConstantMemory = false;
3223 if (I.isVolatile() || NumValues > MaxParallelChains)
3224 // Serialize volatile loads with other side effects.
3225 Root = getRoot();
3226 else if (AA->pointsToConstantMemory(
3227 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3228 // Do not serialize (non-volatile) loads of constant memory with anything.
3229 Root = DAG.getEntryNode();
3230 ConstantMemory = true;
3231 } else {
3232 // Do not serialize non-volatile loads against each other.
3233 Root = DAG.getRoot();
3234 }
3235
3236 SmallVector<SDValue, 4> Values(NumValues);
3237 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3238 NumValues));
3239 EVT PtrVT = Ptr.getValueType();
3240 unsigned ChainI = 0;
3241 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3242 // Serializing loads here may result in excessive register pressure, and
3243 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3244 // could recover a bit by hoisting nodes upward in the chain by recognizing
3245 // they are side-effect free or do not alias. The optimizer should really
3246 // avoid this case by converting large object/array copies to llvm.memcpy
3247 // (MaxParallelChains should always remain as failsafe).
3248 if (ChainI == MaxParallelChains) {
3249 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3250 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3251 MVT::Other, &Chains[0], ChainI);
3252 Root = Chain;
3253 ChainI = 0;
3254 }
3255 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3256 PtrVT, Ptr,
3257 DAG.getConstant(Offsets[i], PtrVT));
3258 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3259 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3260 isNonTemporal, isInvariant, Alignment, TBAAInfo,
3261 Ranges);
3262
3263 Values[i] = L;
3264 Chains[ChainI] = L.getValue(1);
3265 }
3266
3267 if (!ConstantMemory) {
3268 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3269 MVT::Other, &Chains[0], ChainI);
3270 if (isVolatile)
3271 DAG.setRoot(Chain);
3272 else
3273 PendingLoads.push_back(Chain);
3274 }
3275
3276 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3277 DAG.getVTList(&ValueVTs[0], NumValues),
3278 &Values[0], NumValues));
3279 }
3280
visitStore(const StoreInst & I)3281 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3282 if (I.isAtomic())
3283 return visitAtomicStore(I);
3284
3285 const Value *SrcV = I.getOperand(0);
3286 const Value *PtrV = I.getOperand(1);
3287
3288 SmallVector<EVT, 4> ValueVTs;
3289 SmallVector<uint64_t, 4> Offsets;
3290 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3291 unsigned NumValues = ValueVTs.size();
3292 if (NumValues == 0)
3293 return;
3294
3295 // Get the lowered operands. Note that we do this after
3296 // checking if NumResults is zero, because with zero results
3297 // the operands won't have values in the map.
3298 SDValue Src = getValue(SrcV);
3299 SDValue Ptr = getValue(PtrV);
3300
3301 SDValue Root = getRoot();
3302 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3303 NumValues));
3304 EVT PtrVT = Ptr.getValueType();
3305 bool isVolatile = I.isVolatile();
3306 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3307 unsigned Alignment = I.getAlignment();
3308 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3309
3310 unsigned ChainI = 0;
3311 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3312 // See visitLoad comments.
3313 if (ChainI == MaxParallelChains) {
3314 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3315 MVT::Other, &Chains[0], ChainI);
3316 Root = Chain;
3317 ChainI = 0;
3318 }
3319 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3320 DAG.getConstant(Offsets[i], PtrVT));
3321 SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3322 SDValue(Src.getNode(), Src.getResNo() + i),
3323 Add, MachinePointerInfo(PtrV, Offsets[i]),
3324 isVolatile, isNonTemporal, Alignment, TBAAInfo);
3325 Chains[ChainI] = St;
3326 }
3327
3328 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3329 MVT::Other, &Chains[0], ChainI);
3330 ++SDNodeOrder;
3331 AssignOrderingToNode(StoreNode.getNode());
3332 DAG.setRoot(StoreNode);
3333 }
3334
InsertFenceForAtomic(SDValue Chain,AtomicOrdering Order,SynchronizationScope Scope,bool Before,DebugLoc dl,SelectionDAG & DAG,const TargetLowering & TLI)3335 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3336 SynchronizationScope Scope,
3337 bool Before, DebugLoc dl,
3338 SelectionDAG &DAG,
3339 const TargetLowering &TLI) {
3340 // Fence, if necessary
3341 if (Before) {
3342 if (Order == AcquireRelease || Order == SequentiallyConsistent)
3343 Order = Release;
3344 else if (Order == Acquire || Order == Monotonic)
3345 return Chain;
3346 } else {
3347 if (Order == AcquireRelease)
3348 Order = Acquire;
3349 else if (Order == Release || Order == Monotonic)
3350 return Chain;
3351 }
3352 SDValue Ops[3];
3353 Ops[0] = Chain;
3354 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3355 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3356 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3357 }
3358
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)3359 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3360 DebugLoc dl = getCurDebugLoc();
3361 AtomicOrdering Order = I.getOrdering();
3362 SynchronizationScope Scope = I.getSynchScope();
3363
3364 SDValue InChain = getRoot();
3365
3366 if (TLI.getInsertFencesForAtomic())
3367 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3368 DAG, TLI);
3369
3370 SDValue L =
3371 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3372 getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3373 InChain,
3374 getValue(I.getPointerOperand()),
3375 getValue(I.getCompareOperand()),
3376 getValue(I.getNewValOperand()),
3377 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3378 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3379 Scope);
3380
3381 SDValue OutChain = L.getValue(1);
3382
3383 if (TLI.getInsertFencesForAtomic())
3384 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3385 DAG, TLI);
3386
3387 setValue(&I, L);
3388 DAG.setRoot(OutChain);
3389 }
3390
visitAtomicRMW(const AtomicRMWInst & I)3391 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3392 DebugLoc dl = getCurDebugLoc();
3393 ISD::NodeType NT;
3394 switch (I.getOperation()) {
3395 default: llvm_unreachable("Unknown atomicrmw operation");
3396 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3397 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3398 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3399 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3400 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3401 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3402 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3403 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3404 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3405 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3406 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3407 }
3408 AtomicOrdering Order = I.getOrdering();
3409 SynchronizationScope Scope = I.getSynchScope();
3410
3411 SDValue InChain = getRoot();
3412
3413 if (TLI.getInsertFencesForAtomic())
3414 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3415 DAG, TLI);
3416
3417 SDValue L =
3418 DAG.getAtomic(NT, dl,
3419 getValue(I.getValOperand()).getValueType().getSimpleVT(),
3420 InChain,
3421 getValue(I.getPointerOperand()),
3422 getValue(I.getValOperand()),
3423 I.getPointerOperand(), 0 /* Alignment */,
3424 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3425 Scope);
3426
3427 SDValue OutChain = L.getValue(1);
3428
3429 if (TLI.getInsertFencesForAtomic())
3430 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3431 DAG, TLI);
3432
3433 setValue(&I, L);
3434 DAG.setRoot(OutChain);
3435 }
3436
visitFence(const FenceInst & I)3437 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3438 DebugLoc dl = getCurDebugLoc();
3439 SDValue Ops[3];
3440 Ops[0] = getRoot();
3441 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3442 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3443 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3444 }
3445
visitAtomicLoad(const LoadInst & I)3446 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3447 DebugLoc dl = getCurDebugLoc();
3448 AtomicOrdering Order = I.getOrdering();
3449 SynchronizationScope Scope = I.getSynchScope();
3450
3451 SDValue InChain = getRoot();
3452
3453 EVT VT = EVT::getEVT(I.getType());
3454
3455 if (I.getAlignment() * 8 < VT.getSizeInBits())
3456 report_fatal_error("Cannot generate unaligned atomic load");
3457
3458 SDValue L =
3459 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3460 getValue(I.getPointerOperand()),
3461 I.getPointerOperand(), I.getAlignment(),
3462 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3463 Scope);
3464
3465 SDValue OutChain = L.getValue(1);
3466
3467 if (TLI.getInsertFencesForAtomic())
3468 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3469 DAG, TLI);
3470
3471 setValue(&I, L);
3472 DAG.setRoot(OutChain);
3473 }
3474
visitAtomicStore(const StoreInst & I)3475 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3476 DebugLoc dl = getCurDebugLoc();
3477
3478 AtomicOrdering Order = I.getOrdering();
3479 SynchronizationScope Scope = I.getSynchScope();
3480
3481 SDValue InChain = getRoot();
3482
3483 EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3484
3485 if (I.getAlignment() * 8 < VT.getSizeInBits())
3486 report_fatal_error("Cannot generate unaligned atomic store");
3487
3488 if (TLI.getInsertFencesForAtomic())
3489 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3490 DAG, TLI);
3491
3492 SDValue OutChain =
3493 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3494 InChain,
3495 getValue(I.getPointerOperand()),
3496 getValue(I.getValueOperand()),
3497 I.getPointerOperand(), I.getAlignment(),
3498 TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3499 Scope);
3500
3501 if (TLI.getInsertFencesForAtomic())
3502 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3503 DAG, TLI);
3504
3505 DAG.setRoot(OutChain);
3506 }
3507
3508 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3509 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)3510 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3511 unsigned Intrinsic) {
3512 bool HasChain = !I.doesNotAccessMemory();
3513 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3514
3515 // Build the operand list.
3516 SmallVector<SDValue, 8> Ops;
3517 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3518 if (OnlyLoad) {
3519 // We don't need to serialize loads against other loads.
3520 Ops.push_back(DAG.getRoot());
3521 } else {
3522 Ops.push_back(getRoot());
3523 }
3524 }
3525
3526 // Info is set by getTgtMemInstrinsic
3527 TargetLowering::IntrinsicInfo Info;
3528 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3529
3530 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3531 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3532 Info.opc == ISD::INTRINSIC_W_CHAIN)
3533 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3534
3535 // Add all operands of the call to the operand list.
3536 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3537 SDValue Op = getValue(I.getArgOperand(i));
3538 Ops.push_back(Op);
3539 }
3540
3541 SmallVector<EVT, 4> ValueVTs;
3542 ComputeValueVTs(TLI, I.getType(), ValueVTs);
3543
3544 if (HasChain)
3545 ValueVTs.push_back(MVT::Other);
3546
3547 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3548
3549 // Create the node.
3550 SDValue Result;
3551 if (IsTgtIntrinsic) {
3552 // This is target intrinsic that touches memory
3553 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3554 VTs, &Ops[0], Ops.size(),
3555 Info.memVT,
3556 MachinePointerInfo(Info.ptrVal, Info.offset),
3557 Info.align, Info.vol,
3558 Info.readMem, Info.writeMem);
3559 } else if (!HasChain) {
3560 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3561 VTs, &Ops[0], Ops.size());
3562 } else if (!I.getType()->isVoidTy()) {
3563 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3564 VTs, &Ops[0], Ops.size());
3565 } else {
3566 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3567 VTs, &Ops[0], Ops.size());
3568 }
3569
3570 if (HasChain) {
3571 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3572 if (OnlyLoad)
3573 PendingLoads.push_back(Chain);
3574 else
3575 DAG.setRoot(Chain);
3576 }
3577
3578 if (!I.getType()->isVoidTy()) {
3579 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3580 EVT VT = TLI.getValueType(PTy);
3581 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3582 }
3583
3584 setValue(&I, Result);
3585 } else {
3586 // Assign order to result here. If the intrinsic does not produce a result,
3587 // it won't be mapped to a SDNode and visit() will not assign it an order
3588 // number.
3589 ++SDNodeOrder;
3590 AssignOrderingToNode(Result.getNode());
3591 }
3592 }
3593
3594 /// GetSignificand - Get the significand and build it into a floating-point
3595 /// number with exponent of 1:
3596 ///
3597 /// Op = (Op & 0x007fffff) | 0x3f800000;
3598 ///
3599 /// where Op is the hexidecimal representation of floating point value.
3600 static SDValue
GetSignificand(SelectionDAG & DAG,SDValue Op,DebugLoc dl)3601 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3602 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3603 DAG.getConstant(0x007fffff, MVT::i32));
3604 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3605 DAG.getConstant(0x3f800000, MVT::i32));
3606 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3607 }
3608
3609 /// GetExponent - Get the exponent:
3610 ///
3611 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3612 ///
3613 /// where Op is the hexidecimal representation of floating point value.
3614 static SDValue
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,DebugLoc dl)3615 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3616 DebugLoc dl) {
3617 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3618 DAG.getConstant(0x7f800000, MVT::i32));
3619 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3620 DAG.getConstant(23, TLI.getPointerTy()));
3621 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3622 DAG.getConstant(127, MVT::i32));
3623 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3624 }
3625
3626 /// getF32Constant - Get 32-bit floating point constant.
3627 static SDValue
getF32Constant(SelectionDAG & DAG,unsigned Flt)3628 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3629 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3630 }
3631
3632 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3633 /// limited-precision mode.
3634 void
visitExp(const CallInst & I)3635 SelectionDAGBuilder::visitExp(const CallInst &I) {
3636 SDValue result;
3637 DebugLoc dl = getCurDebugLoc();
3638
3639 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3640 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3641 SDValue Op = getValue(I.getArgOperand(0));
3642
3643 // Put the exponent in the right bit position for later addition to the
3644 // final result:
3645 //
3646 // #define LOG2OFe 1.4426950f
3647 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3648 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3649 getF32Constant(DAG, 0x3fb8aa3b));
3650 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3651
3652 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3653 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3654 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3655
3656 // IntegerPartOfX <<= 23;
3657 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3658 DAG.getConstant(23, TLI.getPointerTy()));
3659
3660 if (LimitFloatPrecision <= 6) {
3661 // For floating-point precision of 6:
3662 //
3663 // TwoToFractionalPartOfX =
3664 // 0.997535578f +
3665 // (0.735607626f + 0.252464424f * x) * x;
3666 //
3667 // error 0.0144103317, which is 6 bits
3668 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3669 getF32Constant(DAG, 0x3e814304));
3670 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3671 getF32Constant(DAG, 0x3f3c50c8));
3672 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3673 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3674 getF32Constant(DAG, 0x3f7f5e7e));
3675 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3676
3677 // Add the exponent into the result in integer domain.
3678 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3679 TwoToFracPartOfX, IntegerPartOfX);
3680
3681 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3682 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3683 // For floating-point precision of 12:
3684 //
3685 // TwoToFractionalPartOfX =
3686 // 0.999892986f +
3687 // (0.696457318f +
3688 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3689 //
3690 // 0.000107046256 error, which is 13 to 14 bits
3691 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3692 getF32Constant(DAG, 0x3da235e3));
3693 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3694 getF32Constant(DAG, 0x3e65b8f3));
3695 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3696 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3697 getF32Constant(DAG, 0x3f324b07));
3698 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3699 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3700 getF32Constant(DAG, 0x3f7ff8fd));
3701 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3702
3703 // Add the exponent into the result in integer domain.
3704 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3705 TwoToFracPartOfX, IntegerPartOfX);
3706
3707 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3708 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3709 // For floating-point precision of 18:
3710 //
3711 // TwoToFractionalPartOfX =
3712 // 0.999999982f +
3713 // (0.693148872f +
3714 // (0.240227044f +
3715 // (0.554906021e-1f +
3716 // (0.961591928e-2f +
3717 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3718 //
3719 // error 2.47208000*10^(-7), which is better than 18 bits
3720 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3721 getF32Constant(DAG, 0x3924b03e));
3722 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3723 getF32Constant(DAG, 0x3ab24b87));
3724 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3725 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3726 getF32Constant(DAG, 0x3c1d8c17));
3727 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3728 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3729 getF32Constant(DAG, 0x3d634a1d));
3730 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3731 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3732 getF32Constant(DAG, 0x3e75fe14));
3733 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3734 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3735 getF32Constant(DAG, 0x3f317234));
3736 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3737 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3738 getF32Constant(DAG, 0x3f800000));
3739 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3740 MVT::i32, t13);
3741
3742 // Add the exponent into the result in integer domain.
3743 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3744 TwoToFracPartOfX, IntegerPartOfX);
3745
3746 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3747 }
3748 } else {
3749 // No special expansion.
3750 result = DAG.getNode(ISD::FEXP, dl,
3751 getValue(I.getArgOperand(0)).getValueType(),
3752 getValue(I.getArgOperand(0)));
3753 }
3754
3755 setValue(&I, result);
3756 }
3757
3758 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3759 /// limited-precision mode.
3760 void
visitLog(const CallInst & I)3761 SelectionDAGBuilder::visitLog(const CallInst &I) {
3762 SDValue result;
3763 DebugLoc dl = getCurDebugLoc();
3764
3765 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3766 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3767 SDValue Op = getValue(I.getArgOperand(0));
3768 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3769
3770 // Scale the exponent by log(2) [0.69314718f].
3771 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3772 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3773 getF32Constant(DAG, 0x3f317218));
3774
3775 // Get the significand and build it into a floating-point number with
3776 // exponent of 1.
3777 SDValue X = GetSignificand(DAG, Op1, dl);
3778
3779 if (LimitFloatPrecision <= 6) {
3780 // For floating-point precision of 6:
3781 //
3782 // LogofMantissa =
3783 // -1.1609546f +
3784 // (1.4034025f - 0.23903021f * x) * x;
3785 //
3786 // error 0.0034276066, which is better than 8 bits
3787 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3788 getF32Constant(DAG, 0xbe74c456));
3789 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3790 getF32Constant(DAG, 0x3fb3a2b1));
3791 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3792 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3793 getF32Constant(DAG, 0x3f949a29));
3794
3795 result = DAG.getNode(ISD::FADD, dl,
3796 MVT::f32, LogOfExponent, LogOfMantissa);
3797 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3798 // For floating-point precision of 12:
3799 //
3800 // LogOfMantissa =
3801 // -1.7417939f +
3802 // (2.8212026f +
3803 // (-1.4699568f +
3804 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3805 //
3806 // error 0.000061011436, which is 14 bits
3807 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3808 getF32Constant(DAG, 0xbd67b6d6));
3809 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3810 getF32Constant(DAG, 0x3ee4f4b8));
3811 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3812 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3813 getF32Constant(DAG, 0x3fbc278b));
3814 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3815 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3816 getF32Constant(DAG, 0x40348e95));
3817 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3818 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3819 getF32Constant(DAG, 0x3fdef31a));
3820
3821 result = DAG.getNode(ISD::FADD, dl,
3822 MVT::f32, LogOfExponent, LogOfMantissa);
3823 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3824 // For floating-point precision of 18:
3825 //
3826 // LogOfMantissa =
3827 // -2.1072184f +
3828 // (4.2372794f +
3829 // (-3.7029485f +
3830 // (2.2781945f +
3831 // (-0.87823314f +
3832 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3833 //
3834 // error 0.0000023660568, which is better than 18 bits
3835 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3836 getF32Constant(DAG, 0xbc91e5ac));
3837 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3838 getF32Constant(DAG, 0x3e4350aa));
3839 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3840 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3841 getF32Constant(DAG, 0x3f60d3e3));
3842 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3843 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3844 getF32Constant(DAG, 0x4011cdf0));
3845 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3846 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3847 getF32Constant(DAG, 0x406cfd1c));
3848 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3849 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3850 getF32Constant(DAG, 0x408797cb));
3851 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3852 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3853 getF32Constant(DAG, 0x4006dcab));
3854
3855 result = DAG.getNode(ISD::FADD, dl,
3856 MVT::f32, LogOfExponent, LogOfMantissa);
3857 }
3858 } else {
3859 // No special expansion.
3860 result = DAG.getNode(ISD::FLOG, dl,
3861 getValue(I.getArgOperand(0)).getValueType(),
3862 getValue(I.getArgOperand(0)));
3863 }
3864
3865 setValue(&I, result);
3866 }
3867
3868 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3869 /// limited-precision mode.
3870 void
visitLog2(const CallInst & I)3871 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3872 SDValue result;
3873 DebugLoc dl = getCurDebugLoc();
3874
3875 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3876 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3877 SDValue Op = getValue(I.getArgOperand(0));
3878 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3879
3880 // Get the exponent.
3881 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3882
3883 // Get the significand and build it into a floating-point number with
3884 // exponent of 1.
3885 SDValue X = GetSignificand(DAG, Op1, dl);
3886
3887 // Different possible minimax approximations of significand in
3888 // floating-point for various degrees of accuracy over [1,2].
3889 if (LimitFloatPrecision <= 6) {
3890 // For floating-point precision of 6:
3891 //
3892 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3893 //
3894 // error 0.0049451742, which is more than 7 bits
3895 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3896 getF32Constant(DAG, 0xbeb08fe0));
3897 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3898 getF32Constant(DAG, 0x40019463));
3899 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3900 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3901 getF32Constant(DAG, 0x3fd6633d));
3902
3903 result = DAG.getNode(ISD::FADD, dl,
3904 MVT::f32, LogOfExponent, Log2ofMantissa);
3905 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3906 // For floating-point precision of 12:
3907 //
3908 // Log2ofMantissa =
3909 // -2.51285454f +
3910 // (4.07009056f +
3911 // (-2.12067489f +
3912 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3913 //
3914 // error 0.0000876136000, which is better than 13 bits
3915 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3916 getF32Constant(DAG, 0xbda7262e));
3917 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3918 getF32Constant(DAG, 0x3f25280b));
3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3920 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3921 getF32Constant(DAG, 0x4007b923));
3922 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3923 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3924 getF32Constant(DAG, 0x40823e2f));
3925 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3926 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3927 getF32Constant(DAG, 0x4020d29c));
3928
3929 result = DAG.getNode(ISD::FADD, dl,
3930 MVT::f32, LogOfExponent, Log2ofMantissa);
3931 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3932 // For floating-point precision of 18:
3933 //
3934 // Log2ofMantissa =
3935 // -3.0400495f +
3936 // (6.1129976f +
3937 // (-5.3420409f +
3938 // (3.2865683f +
3939 // (-1.2669343f +
3940 // (0.27515199f -
3941 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3942 //
3943 // error 0.0000018516, which is better than 18 bits
3944 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3945 getF32Constant(DAG, 0xbcd2769e));
3946 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3947 getF32Constant(DAG, 0x3e8ce0b9));
3948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3949 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3950 getF32Constant(DAG, 0x3fa22ae7));
3951 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3952 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3953 getF32Constant(DAG, 0x40525723));
3954 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3955 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3956 getF32Constant(DAG, 0x40aaf200));
3957 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3958 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3959 getF32Constant(DAG, 0x40c39dad));
3960 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3961 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3962 getF32Constant(DAG, 0x4042902c));
3963
3964 result = DAG.getNode(ISD::FADD, dl,
3965 MVT::f32, LogOfExponent, Log2ofMantissa);
3966 }
3967 } else {
3968 // No special expansion.
3969 result = DAG.getNode(ISD::FLOG2, dl,
3970 getValue(I.getArgOperand(0)).getValueType(),
3971 getValue(I.getArgOperand(0)));
3972 }
3973
3974 setValue(&I, result);
3975 }
3976
3977 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3978 /// limited-precision mode.
3979 void
visitLog10(const CallInst & I)3980 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3981 SDValue result;
3982 DebugLoc dl = getCurDebugLoc();
3983
3984 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3985 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3986 SDValue Op = getValue(I.getArgOperand(0));
3987 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3988
3989 // Scale the exponent by log10(2) [0.30102999f].
3990 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3991 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3992 getF32Constant(DAG, 0x3e9a209a));
3993
3994 // Get the significand and build it into a floating-point number with
3995 // exponent of 1.
3996 SDValue X = GetSignificand(DAG, Op1, dl);
3997
3998 if (LimitFloatPrecision <= 6) {
3999 // For floating-point precision of 6:
4000 //
4001 // Log10ofMantissa =
4002 // -0.50419619f +
4003 // (0.60948995f - 0.10380950f * x) * x;
4004 //
4005 // error 0.0014886165, which is 6 bits
4006 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4007 getF32Constant(DAG, 0xbdd49a13));
4008 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4009 getF32Constant(DAG, 0x3f1c0789));
4010 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4011 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4012 getF32Constant(DAG, 0x3f011300));
4013
4014 result = DAG.getNode(ISD::FADD, dl,
4015 MVT::f32, LogOfExponent, Log10ofMantissa);
4016 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4017 // For floating-point precision of 12:
4018 //
4019 // Log10ofMantissa =
4020 // -0.64831180f +
4021 // (0.91751397f +
4022 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4023 //
4024 // error 0.00019228036, which is better than 12 bits
4025 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4026 getF32Constant(DAG, 0x3d431f31));
4027 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4028 getF32Constant(DAG, 0x3ea21fb2));
4029 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4030 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4031 getF32Constant(DAG, 0x3f6ae232));
4032 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4033 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4034 getF32Constant(DAG, 0x3f25f7c3));
4035
4036 result = DAG.getNode(ISD::FADD, dl,
4037 MVT::f32, LogOfExponent, Log10ofMantissa);
4038 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4039 // For floating-point precision of 18:
4040 //
4041 // Log10ofMantissa =
4042 // -0.84299375f +
4043 // (1.5327582f +
4044 // (-1.0688956f +
4045 // (0.49102474f +
4046 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4047 //
4048 // error 0.0000037995730, which is better than 18 bits
4049 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4050 getF32Constant(DAG, 0x3c5d51ce));
4051 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4052 getF32Constant(DAG, 0x3e00685a));
4053 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4054 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4055 getF32Constant(DAG, 0x3efb6798));
4056 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4057 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4058 getF32Constant(DAG, 0x3f88d192));
4059 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4060 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4061 getF32Constant(DAG, 0x3fc4316c));
4062 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4063 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4064 getF32Constant(DAG, 0x3f57ce70));
4065
4066 result = DAG.getNode(ISD::FADD, dl,
4067 MVT::f32, LogOfExponent, Log10ofMantissa);
4068 }
4069 } else {
4070 // No special expansion.
4071 result = DAG.getNode(ISD::FLOG10, dl,
4072 getValue(I.getArgOperand(0)).getValueType(),
4073 getValue(I.getArgOperand(0)));
4074 }
4075
4076 setValue(&I, result);
4077 }
4078
4079 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4080 /// limited-precision mode.
4081 void
visitExp2(const CallInst & I)4082 SelectionDAGBuilder::visitExp2(const CallInst &I) {
4083 SDValue result;
4084 DebugLoc dl = getCurDebugLoc();
4085
4086 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4087 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4088 SDValue Op = getValue(I.getArgOperand(0));
4089
4090 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4091
4092 // FractionalPartOfX = x - (float)IntegerPartOfX;
4093 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4094 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4095
4096 // IntegerPartOfX <<= 23;
4097 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4098 DAG.getConstant(23, TLI.getPointerTy()));
4099
4100 if (LimitFloatPrecision <= 6) {
4101 // For floating-point precision of 6:
4102 //
4103 // TwoToFractionalPartOfX =
4104 // 0.997535578f +
4105 // (0.735607626f + 0.252464424f * x) * x;
4106 //
4107 // error 0.0144103317, which is 6 bits
4108 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4109 getF32Constant(DAG, 0x3e814304));
4110 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4111 getF32Constant(DAG, 0x3f3c50c8));
4112 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4113 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4114 getF32Constant(DAG, 0x3f7f5e7e));
4115 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4116 SDValue TwoToFractionalPartOfX =
4117 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4118
4119 result = DAG.getNode(ISD::BITCAST, dl,
4120 MVT::f32, TwoToFractionalPartOfX);
4121 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4122 // For floating-point precision of 12:
4123 //
4124 // TwoToFractionalPartOfX =
4125 // 0.999892986f +
4126 // (0.696457318f +
4127 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4128 //
4129 // error 0.000107046256, which is 13 to 14 bits
4130 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4131 getF32Constant(DAG, 0x3da235e3));
4132 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4133 getF32Constant(DAG, 0x3e65b8f3));
4134 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4135 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4136 getF32Constant(DAG, 0x3f324b07));
4137 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4138 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4139 getF32Constant(DAG, 0x3f7ff8fd));
4140 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4141 SDValue TwoToFractionalPartOfX =
4142 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4143
4144 result = DAG.getNode(ISD::BITCAST, dl,
4145 MVT::f32, TwoToFractionalPartOfX);
4146 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4147 // For floating-point precision of 18:
4148 //
4149 // TwoToFractionalPartOfX =
4150 // 0.999999982f +
4151 // (0.693148872f +
4152 // (0.240227044f +
4153 // (0.554906021e-1f +
4154 // (0.961591928e-2f +
4155 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4156 // error 2.47208000*10^(-7), which is better than 18 bits
4157 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4158 getF32Constant(DAG, 0x3924b03e));
4159 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4160 getF32Constant(DAG, 0x3ab24b87));
4161 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4162 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4163 getF32Constant(DAG, 0x3c1d8c17));
4164 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4165 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4166 getF32Constant(DAG, 0x3d634a1d));
4167 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4168 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4169 getF32Constant(DAG, 0x3e75fe14));
4170 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4171 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4172 getF32Constant(DAG, 0x3f317234));
4173 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4174 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4175 getF32Constant(DAG, 0x3f800000));
4176 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4177 SDValue TwoToFractionalPartOfX =
4178 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4179
4180 result = DAG.getNode(ISD::BITCAST, dl,
4181 MVT::f32, TwoToFractionalPartOfX);
4182 }
4183 } else {
4184 // No special expansion.
4185 result = DAG.getNode(ISD::FEXP2, dl,
4186 getValue(I.getArgOperand(0)).getValueType(),
4187 getValue(I.getArgOperand(0)));
4188 }
4189
4190 setValue(&I, result);
4191 }
4192
4193 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4194 /// limited-precision mode with x == 10.0f.
4195 void
visitPow(const CallInst & I)4196 SelectionDAGBuilder::visitPow(const CallInst &I) {
4197 SDValue result;
4198 const Value *Val = I.getArgOperand(0);
4199 DebugLoc dl = getCurDebugLoc();
4200 bool IsExp10 = false;
4201
4202 if (getValue(Val).getValueType() == MVT::f32 &&
4203 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4204 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4205 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4206 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4207 APFloat Ten(10.0f);
4208 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4209 }
4210 }
4211 }
4212
4213 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4214 SDValue Op = getValue(I.getArgOperand(1));
4215
4216 // Put the exponent in the right bit position for later addition to the
4217 // final result:
4218 //
4219 // #define LOG2OF10 3.3219281f
4220 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
4221 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4222 getF32Constant(DAG, 0x40549a78));
4223 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4224
4225 // FractionalPartOfX = x - (float)IntegerPartOfX;
4226 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4227 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4228
4229 // IntegerPartOfX <<= 23;
4230 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4231 DAG.getConstant(23, TLI.getPointerTy()));
4232
4233 if (LimitFloatPrecision <= 6) {
4234 // For floating-point precision of 6:
4235 //
4236 // twoToFractionalPartOfX =
4237 // 0.997535578f +
4238 // (0.735607626f + 0.252464424f * x) * x;
4239 //
4240 // error 0.0144103317, which is 6 bits
4241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4242 getF32Constant(DAG, 0x3e814304));
4243 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4244 getF32Constant(DAG, 0x3f3c50c8));
4245 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4246 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4247 getF32Constant(DAG, 0x3f7f5e7e));
4248 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4249 SDValue TwoToFractionalPartOfX =
4250 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4251
4252 result = DAG.getNode(ISD::BITCAST, dl,
4253 MVT::f32, TwoToFractionalPartOfX);
4254 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4255 // For floating-point precision of 12:
4256 //
4257 // TwoToFractionalPartOfX =
4258 // 0.999892986f +
4259 // (0.696457318f +
4260 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4261 //
4262 // error 0.000107046256, which is 13 to 14 bits
4263 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4264 getF32Constant(DAG, 0x3da235e3));
4265 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4266 getF32Constant(DAG, 0x3e65b8f3));
4267 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4268 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4269 getF32Constant(DAG, 0x3f324b07));
4270 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4271 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4272 getF32Constant(DAG, 0x3f7ff8fd));
4273 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4274 SDValue TwoToFractionalPartOfX =
4275 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4276
4277 result = DAG.getNode(ISD::BITCAST, dl,
4278 MVT::f32, TwoToFractionalPartOfX);
4279 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4280 // For floating-point precision of 18:
4281 //
4282 // TwoToFractionalPartOfX =
4283 // 0.999999982f +
4284 // (0.693148872f +
4285 // (0.240227044f +
4286 // (0.554906021e-1f +
4287 // (0.961591928e-2f +
4288 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4289 // error 2.47208000*10^(-7), which is better than 18 bits
4290 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4291 getF32Constant(DAG, 0x3924b03e));
4292 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4293 getF32Constant(DAG, 0x3ab24b87));
4294 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4295 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4296 getF32Constant(DAG, 0x3c1d8c17));
4297 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4298 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4299 getF32Constant(DAG, 0x3d634a1d));
4300 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4301 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4302 getF32Constant(DAG, 0x3e75fe14));
4303 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4304 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4305 getF32Constant(DAG, 0x3f317234));
4306 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4307 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4308 getF32Constant(DAG, 0x3f800000));
4309 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4310 SDValue TwoToFractionalPartOfX =
4311 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4312
4313 result = DAG.getNode(ISD::BITCAST, dl,
4314 MVT::f32, TwoToFractionalPartOfX);
4315 }
4316 } else {
4317 // No special expansion.
4318 result = DAG.getNode(ISD::FPOW, dl,
4319 getValue(I.getArgOperand(0)).getValueType(),
4320 getValue(I.getArgOperand(0)),
4321 getValue(I.getArgOperand(1)));
4322 }
4323
4324 setValue(&I, result);
4325 }
4326
4327
4328 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(DebugLoc DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4329 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4330 SelectionDAG &DAG) {
4331 // If RHS is a constant, we can expand this out to a multiplication tree,
4332 // otherwise we end up lowering to a call to __powidf2 (for example). When
4333 // optimizing for size, we only want to do this if the expansion would produce
4334 // a small number of multiplies, otherwise we do the full expansion.
4335 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4336 // Get the exponent as a positive value.
4337 unsigned Val = RHSC->getSExtValue();
4338 if ((int)Val < 0) Val = -Val;
4339
4340 // powi(x, 0) -> 1.0
4341 if (Val == 0)
4342 return DAG.getConstantFP(1.0, LHS.getValueType());
4343
4344 const Function *F = DAG.getMachineFunction().getFunction();
4345 if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4346 // If optimizing for size, don't insert too many multiplies. This
4347 // inserts up to 5 multiplies.
4348 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4349 // We use the simple binary decomposition method to generate the multiply
4350 // sequence. There are more optimal ways to do this (for example,
4351 // powi(x,15) generates one more multiply than it should), but this has
4352 // the benefit of being both really simple and much better than a libcall.
4353 SDValue Res; // Logically starts equal to 1.0
4354 SDValue CurSquare = LHS;
4355 while (Val) {
4356 if (Val & 1) {
4357 if (Res.getNode())
4358 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4359 else
4360 Res = CurSquare; // 1.0*CurSquare.
4361 }
4362
4363 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4364 CurSquare, CurSquare);
4365 Val >>= 1;
4366 }
4367
4368 // If the original was negative, invert the result, producing 1/(x*x*x).
4369 if (RHSC->getSExtValue() < 0)
4370 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4371 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4372 return Res;
4373 }
4374 }
4375
4376 // Otherwise, expand to a libcall.
4377 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4378 }
4379
4380 // getTruncatedArgReg - Find underlying register used for an truncated
4381 // argument.
getTruncatedArgReg(const SDValue & N)4382 static unsigned getTruncatedArgReg(const SDValue &N) {
4383 if (N.getOpcode() != ISD::TRUNCATE)
4384 return 0;
4385
4386 const SDValue &Ext = N.getOperand(0);
4387 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4388 const SDValue &CFR = Ext.getOperand(0);
4389 if (CFR.getOpcode() == ISD::CopyFromReg)
4390 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4391 if (CFR.getOpcode() == ISD::TRUNCATE)
4392 return getTruncatedArgReg(CFR);
4393 }
4394 return 0;
4395 }
4396
4397 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4398 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4399 /// At the end of instruction selection, they will be inserted to the entry BB.
4400 bool
EmitFuncArgumentDbgValue(const Value * V,MDNode * Variable,int64_t Offset,const SDValue & N)4401 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4402 int64_t Offset,
4403 const SDValue &N) {
4404 const Argument *Arg = dyn_cast<Argument>(V);
4405 if (!Arg)
4406 return false;
4407
4408 MachineFunction &MF = DAG.getMachineFunction();
4409 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4410 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4411
4412 // Ignore inlined function arguments here.
4413 DIVariable DV(Variable);
4414 if (DV.isInlinedFnArgument(MF.getFunction()))
4415 return false;
4416
4417 unsigned Reg = 0;
4418 // Some arguments' frame index is recorded during argument lowering.
4419 Offset = FuncInfo.getArgumentFrameIndex(Arg);
4420 if (Offset)
4421 Reg = TRI->getFrameRegister(MF);
4422
4423 if (!Reg && N.getNode()) {
4424 if (N.getOpcode() == ISD::CopyFromReg)
4425 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4426 else
4427 Reg = getTruncatedArgReg(N);
4428 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4429 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4430 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4431 if (PR)
4432 Reg = PR;
4433 }
4434 }
4435
4436 if (!Reg) {
4437 // Check if ValueMap has reg number.
4438 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4439 if (VMI != FuncInfo.ValueMap.end())
4440 Reg = VMI->second;
4441 }
4442
4443 if (!Reg && N.getNode()) {
4444 // Check if frame index is available.
4445 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4446 if (FrameIndexSDNode *FINode =
4447 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4448 Reg = TRI->getFrameRegister(MF);
4449 Offset = FINode->getIndex();
4450 }
4451 }
4452
4453 if (!Reg)
4454 return false;
4455
4456 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4457 TII->get(TargetOpcode::DBG_VALUE))
4458 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4459 FuncInfo.ArgDbgValues.push_back(&*MIB);
4460 return true;
4461 }
4462
4463 // VisualStudio defines setjmp as _setjmp
4464 #if defined(_MSC_VER) && defined(setjmp) && \
4465 !defined(setjmp_undefined_for_msvc)
4466 # pragma push_macro("setjmp")
4467 # undef setjmp
4468 # define setjmp_undefined_for_msvc
4469 #endif
4470
4471 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4472 /// we want to emit this as a call to a named external function, return the name
4473 /// otherwise lower it and return null.
4474 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)4475 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4476 DebugLoc dl = getCurDebugLoc();
4477 SDValue Res;
4478
4479 switch (Intrinsic) {
4480 default:
4481 // By default, turn this into a target intrinsic node.
4482 visitTargetIntrinsic(I, Intrinsic);
4483 return 0;
4484 case Intrinsic::vastart: visitVAStart(I); return 0;
4485 case Intrinsic::vaend: visitVAEnd(I); return 0;
4486 case Intrinsic::vacopy: visitVACopy(I); return 0;
4487 case Intrinsic::returnaddress:
4488 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4489 getValue(I.getArgOperand(0))));
4490 return 0;
4491 case Intrinsic::frameaddress:
4492 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4493 getValue(I.getArgOperand(0))));
4494 return 0;
4495 case Intrinsic::setjmp:
4496 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4497 case Intrinsic::longjmp:
4498 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4499 case Intrinsic::memcpy: {
4500 // Assert for address < 256 since we support only user defined address
4501 // spaces.
4502 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4503 < 256 &&
4504 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4505 < 256 &&
4506 "Unknown address space");
4507 SDValue Op1 = getValue(I.getArgOperand(0));
4508 SDValue Op2 = getValue(I.getArgOperand(1));
4509 SDValue Op3 = getValue(I.getArgOperand(2));
4510 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4511 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4512 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4513 MachinePointerInfo(I.getArgOperand(0)),
4514 MachinePointerInfo(I.getArgOperand(1))));
4515 return 0;
4516 }
4517 case Intrinsic::memset: {
4518 // Assert for address < 256 since we support only user defined address
4519 // spaces.
4520 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4521 < 256 &&
4522 "Unknown address space");
4523 SDValue Op1 = getValue(I.getArgOperand(0));
4524 SDValue Op2 = getValue(I.getArgOperand(1));
4525 SDValue Op3 = getValue(I.getArgOperand(2));
4526 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4527 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4528 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4529 MachinePointerInfo(I.getArgOperand(0))));
4530 return 0;
4531 }
4532 case Intrinsic::memmove: {
4533 // Assert for address < 256 since we support only user defined address
4534 // spaces.
4535 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4536 < 256 &&
4537 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4538 < 256 &&
4539 "Unknown address space");
4540 SDValue Op1 = getValue(I.getArgOperand(0));
4541 SDValue Op2 = getValue(I.getArgOperand(1));
4542 SDValue Op3 = getValue(I.getArgOperand(2));
4543 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4544 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4545 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4546 MachinePointerInfo(I.getArgOperand(0)),
4547 MachinePointerInfo(I.getArgOperand(1))));
4548 return 0;
4549 }
4550 case Intrinsic::dbg_declare: {
4551 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4552 MDNode *Variable = DI.getVariable();
4553 const Value *Address = DI.getAddress();
4554 if (!Address || !DIVariable(Variable).Verify()) {
4555 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4556 return 0;
4557 }
4558
4559 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4560 // but do not always have a corresponding SDNode built. The SDNodeOrder
4561 // absolute, but not relative, values are different depending on whether
4562 // debug info exists.
4563 ++SDNodeOrder;
4564
4565 // Check if address has undef value.
4566 if (isa<UndefValue>(Address) ||
4567 (Address->use_empty() && !isa<Argument>(Address))) {
4568 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4569 return 0;
4570 }
4571
4572 SDValue &N = NodeMap[Address];
4573 if (!N.getNode() && isa<Argument>(Address))
4574 // Check unused arguments map.
4575 N = UnusedArgNodeMap[Address];
4576 SDDbgValue *SDV;
4577 if (N.getNode()) {
4578 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4579 Address = BCI->getOperand(0);
4580 // Parameters are handled specially.
4581 bool isParameter =
4582 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4583 isa<Argument>(Address));
4584
4585 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4586
4587 if (isParameter && !AI) {
4588 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4589 if (FINode)
4590 // Byval parameter. We have a frame index at this point.
4591 SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4592 0, dl, SDNodeOrder);
4593 else {
4594 // Address is an argument, so try to emit its dbg value using
4595 // virtual register info from the FuncInfo.ValueMap.
4596 EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4597 return 0;
4598 }
4599 } else if (AI)
4600 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4601 0, dl, SDNodeOrder);
4602 else {
4603 // Can't do anything with other non-AI cases yet.
4604 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4605 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4606 DEBUG(Address->dump());
4607 return 0;
4608 }
4609 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4610 } else {
4611 // If Address is an argument then try to emit its dbg value using
4612 // virtual register info from the FuncInfo.ValueMap.
4613 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4614 // If variable is pinned by a alloca in dominating bb then
4615 // use StaticAllocaMap.
4616 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4617 if (AI->getParent() != DI.getParent()) {
4618 DenseMap<const AllocaInst*, int>::iterator SI =
4619 FuncInfo.StaticAllocaMap.find(AI);
4620 if (SI != FuncInfo.StaticAllocaMap.end()) {
4621 SDV = DAG.getDbgValue(Variable, SI->second,
4622 0, dl, SDNodeOrder);
4623 DAG.AddDbgValue(SDV, 0, false);
4624 return 0;
4625 }
4626 }
4627 }
4628 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4629 }
4630 }
4631 return 0;
4632 }
4633 case Intrinsic::dbg_value: {
4634 const DbgValueInst &DI = cast<DbgValueInst>(I);
4635 if (!DIVariable(DI.getVariable()).Verify())
4636 return 0;
4637
4638 MDNode *Variable = DI.getVariable();
4639 uint64_t Offset = DI.getOffset();
4640 const Value *V = DI.getValue();
4641 if (!V)
4642 return 0;
4643
4644 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4645 // but do not always have a corresponding SDNode built. The SDNodeOrder
4646 // absolute, but not relative, values are different depending on whether
4647 // debug info exists.
4648 ++SDNodeOrder;
4649 SDDbgValue *SDV;
4650 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4651 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4652 DAG.AddDbgValue(SDV, 0, false);
4653 } else {
4654 // Do not use getValue() in here; we don't want to generate code at
4655 // this point if it hasn't been done yet.
4656 SDValue N = NodeMap[V];
4657 if (!N.getNode() && isa<Argument>(V))
4658 // Check unused arguments map.
4659 N = UnusedArgNodeMap[V];
4660 if (N.getNode()) {
4661 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4662 SDV = DAG.getDbgValue(Variable, N.getNode(),
4663 N.getResNo(), Offset, dl, SDNodeOrder);
4664 DAG.AddDbgValue(SDV, N.getNode(), false);
4665 }
4666 } else if (!V->use_empty() ) {
4667 // Do not call getValue(V) yet, as we don't want to generate code.
4668 // Remember it for later.
4669 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4670 DanglingDebugInfoMap[V] = DDI;
4671 } else {
4672 // We may expand this to cover more cases. One case where we have no
4673 // data available is an unreferenced parameter.
4674 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4675 }
4676 }
4677
4678 // Build a debug info table entry.
4679 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4680 V = BCI->getOperand(0);
4681 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4682 // Don't handle byval struct arguments or VLAs, for example.
4683 if (!AI) {
4684 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
4685 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
4686 return 0;
4687 }
4688 DenseMap<const AllocaInst*, int>::iterator SI =
4689 FuncInfo.StaticAllocaMap.find(AI);
4690 if (SI == FuncInfo.StaticAllocaMap.end())
4691 return 0; // VLAs.
4692 int FI = SI->second;
4693
4694 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4695 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4696 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4697 return 0;
4698 }
4699
4700 case Intrinsic::eh_typeid_for: {
4701 // Find the type id for the given typeinfo.
4702 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4703 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4704 Res = DAG.getConstant(TypeID, MVT::i32);
4705 setValue(&I, Res);
4706 return 0;
4707 }
4708
4709 case Intrinsic::eh_return_i32:
4710 case Intrinsic::eh_return_i64:
4711 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4712 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4713 MVT::Other,
4714 getControlRoot(),
4715 getValue(I.getArgOperand(0)),
4716 getValue(I.getArgOperand(1))));
4717 return 0;
4718 case Intrinsic::eh_unwind_init:
4719 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4720 return 0;
4721 case Intrinsic::eh_dwarf_cfa: {
4722 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4723 TLI.getPointerTy());
4724 SDValue Offset = DAG.getNode(ISD::ADD, dl,
4725 TLI.getPointerTy(),
4726 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4727 TLI.getPointerTy()),
4728 CfaArg);
4729 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4730 TLI.getPointerTy(),
4731 DAG.getConstant(0, TLI.getPointerTy()));
4732 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4733 FA, Offset));
4734 return 0;
4735 }
4736 case Intrinsic::eh_sjlj_callsite: {
4737 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4738 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4739 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4740 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4741
4742 MMI.setCurrentCallSite(CI->getZExtValue());
4743 return 0;
4744 }
4745 case Intrinsic::eh_sjlj_functioncontext: {
4746 // Get and store the index of the function context.
4747 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4748 AllocaInst *FnCtx =
4749 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4750 int FI = FuncInfo.StaticAllocaMap[FnCtx];
4751 MFI->setFunctionContextIndex(FI);
4752 return 0;
4753 }
4754 case Intrinsic::eh_sjlj_setjmp: {
4755 SDValue Ops[2];
4756 Ops[0] = getRoot();
4757 Ops[1] = getValue(I.getArgOperand(0));
4758 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4759 DAG.getVTList(MVT::i32, MVT::Other),
4760 Ops, 2);
4761 setValue(&I, Op.getValue(0));
4762 DAG.setRoot(Op.getValue(1));
4763 return 0;
4764 }
4765 case Intrinsic::eh_sjlj_longjmp: {
4766 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4767 getRoot(), getValue(I.getArgOperand(0))));
4768 return 0;
4769 }
4770
4771 case Intrinsic::x86_mmx_pslli_w:
4772 case Intrinsic::x86_mmx_pslli_d:
4773 case Intrinsic::x86_mmx_pslli_q:
4774 case Intrinsic::x86_mmx_psrli_w:
4775 case Intrinsic::x86_mmx_psrli_d:
4776 case Intrinsic::x86_mmx_psrli_q:
4777 case Intrinsic::x86_mmx_psrai_w:
4778 case Intrinsic::x86_mmx_psrai_d: {
4779 SDValue ShAmt = getValue(I.getArgOperand(1));
4780 if (isa<ConstantSDNode>(ShAmt)) {
4781 visitTargetIntrinsic(I, Intrinsic);
4782 return 0;
4783 }
4784 unsigned NewIntrinsic = 0;
4785 EVT ShAmtVT = MVT::v2i32;
4786 switch (Intrinsic) {
4787 case Intrinsic::x86_mmx_pslli_w:
4788 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4789 break;
4790 case Intrinsic::x86_mmx_pslli_d:
4791 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4792 break;
4793 case Intrinsic::x86_mmx_pslli_q:
4794 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4795 break;
4796 case Intrinsic::x86_mmx_psrli_w:
4797 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4798 break;
4799 case Intrinsic::x86_mmx_psrli_d:
4800 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4801 break;
4802 case Intrinsic::x86_mmx_psrli_q:
4803 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4804 break;
4805 case Intrinsic::x86_mmx_psrai_w:
4806 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4807 break;
4808 case Intrinsic::x86_mmx_psrai_d:
4809 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4810 break;
4811 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4812 }
4813
4814 // The vector shift intrinsics with scalars uses 32b shift amounts but
4815 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4816 // to be zero.
4817 // We must do this early because v2i32 is not a legal type.
4818 DebugLoc dl = getCurDebugLoc();
4819 SDValue ShOps[2];
4820 ShOps[0] = ShAmt;
4821 ShOps[1] = DAG.getConstant(0, MVT::i32);
4822 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4823 EVT DestVT = TLI.getValueType(I.getType());
4824 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4825 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4826 DAG.getConstant(NewIntrinsic, MVT::i32),
4827 getValue(I.getArgOperand(0)), ShAmt);
4828 setValue(&I, Res);
4829 return 0;
4830 }
4831 case Intrinsic::x86_avx_vinsertf128_pd_256:
4832 case Intrinsic::x86_avx_vinsertf128_ps_256:
4833 case Intrinsic::x86_avx_vinsertf128_si_256:
4834 case Intrinsic::x86_avx2_vinserti128: {
4835 DebugLoc dl = getCurDebugLoc();
4836 EVT DestVT = TLI.getValueType(I.getType());
4837 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4838 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4839 ElVT.getVectorNumElements();
4840 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4841 getValue(I.getArgOperand(0)),
4842 getValue(I.getArgOperand(1)),
4843 DAG.getConstant(Idx, MVT::i32));
4844 setValue(&I, Res);
4845 return 0;
4846 }
4847 case Intrinsic::convertff:
4848 case Intrinsic::convertfsi:
4849 case Intrinsic::convertfui:
4850 case Intrinsic::convertsif:
4851 case Intrinsic::convertuif:
4852 case Intrinsic::convertss:
4853 case Intrinsic::convertsu:
4854 case Intrinsic::convertus:
4855 case Intrinsic::convertuu: {
4856 ISD::CvtCode Code = ISD::CVT_INVALID;
4857 switch (Intrinsic) {
4858 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4859 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
4860 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4861 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4862 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4863 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4864 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
4865 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
4866 case Intrinsic::convertus: Code = ISD::CVT_US; break;
4867 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
4868 }
4869 EVT DestVT = TLI.getValueType(I.getType());
4870 const Value *Op1 = I.getArgOperand(0);
4871 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4872 DAG.getValueType(DestVT),
4873 DAG.getValueType(getValue(Op1).getValueType()),
4874 getValue(I.getArgOperand(1)),
4875 getValue(I.getArgOperand(2)),
4876 Code);
4877 setValue(&I, Res);
4878 return 0;
4879 }
4880 case Intrinsic::sqrt:
4881 setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4882 getValue(I.getArgOperand(0)).getValueType(),
4883 getValue(I.getArgOperand(0))));
4884 return 0;
4885 case Intrinsic::powi:
4886 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4887 getValue(I.getArgOperand(1)), DAG));
4888 return 0;
4889 case Intrinsic::sin:
4890 setValue(&I, DAG.getNode(ISD::FSIN, dl,
4891 getValue(I.getArgOperand(0)).getValueType(),
4892 getValue(I.getArgOperand(0))));
4893 return 0;
4894 case Intrinsic::cos:
4895 setValue(&I, DAG.getNode(ISD::FCOS, dl,
4896 getValue(I.getArgOperand(0)).getValueType(),
4897 getValue(I.getArgOperand(0))));
4898 return 0;
4899 case Intrinsic::log:
4900 visitLog(I);
4901 return 0;
4902 case Intrinsic::log2:
4903 visitLog2(I);
4904 return 0;
4905 case Intrinsic::log10:
4906 visitLog10(I);
4907 return 0;
4908 case Intrinsic::exp:
4909 visitExp(I);
4910 return 0;
4911 case Intrinsic::exp2:
4912 visitExp2(I);
4913 return 0;
4914 case Intrinsic::pow:
4915 visitPow(I);
4916 return 0;
4917 case Intrinsic::fma:
4918 setValue(&I, DAG.getNode(ISD::FMA, dl,
4919 getValue(I.getArgOperand(0)).getValueType(),
4920 getValue(I.getArgOperand(0)),
4921 getValue(I.getArgOperand(1)),
4922 getValue(I.getArgOperand(2))));
4923 return 0;
4924 case Intrinsic::convert_to_fp16:
4925 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4926 MVT::i16, getValue(I.getArgOperand(0))));
4927 return 0;
4928 case Intrinsic::convert_from_fp16:
4929 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4930 MVT::f32, getValue(I.getArgOperand(0))));
4931 return 0;
4932 case Intrinsic::pcmarker: {
4933 SDValue Tmp = getValue(I.getArgOperand(0));
4934 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4935 return 0;
4936 }
4937 case Intrinsic::readcyclecounter: {
4938 SDValue Op = getRoot();
4939 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4940 DAG.getVTList(MVT::i64, MVT::Other),
4941 &Op, 1);
4942 setValue(&I, Res);
4943 DAG.setRoot(Res.getValue(1));
4944 return 0;
4945 }
4946 case Intrinsic::bswap:
4947 setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4948 getValue(I.getArgOperand(0)).getValueType(),
4949 getValue(I.getArgOperand(0))));
4950 return 0;
4951 case Intrinsic::cttz: {
4952 SDValue Arg = getValue(I.getArgOperand(0));
4953 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4954 EVT Ty = Arg.getValueType();
4955 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4956 dl, Ty, Arg));
4957 return 0;
4958 }
4959 case Intrinsic::ctlz: {
4960 SDValue Arg = getValue(I.getArgOperand(0));
4961 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4962 EVT Ty = Arg.getValueType();
4963 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4964 dl, Ty, Arg));
4965 return 0;
4966 }
4967 case Intrinsic::ctpop: {
4968 SDValue Arg = getValue(I.getArgOperand(0));
4969 EVT Ty = Arg.getValueType();
4970 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4971 return 0;
4972 }
4973 case Intrinsic::stacksave: {
4974 SDValue Op = getRoot();
4975 Res = DAG.getNode(ISD::STACKSAVE, dl,
4976 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4977 setValue(&I, Res);
4978 DAG.setRoot(Res.getValue(1));
4979 return 0;
4980 }
4981 case Intrinsic::stackrestore: {
4982 Res = getValue(I.getArgOperand(0));
4983 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4984 return 0;
4985 }
4986 case Intrinsic::stackprotector: {
4987 // Emit code into the DAG to store the stack guard onto the stack.
4988 MachineFunction &MF = DAG.getMachineFunction();
4989 MachineFrameInfo *MFI = MF.getFrameInfo();
4990 EVT PtrTy = TLI.getPointerTy();
4991
4992 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
4993 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4994
4995 int FI = FuncInfo.StaticAllocaMap[Slot];
4996 MFI->setStackProtectorIndex(FI);
4997
4998 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4999
5000 // Store the stack protector onto the stack.
5001 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5002 MachinePointerInfo::getFixedStack(FI),
5003 true, false, 0);
5004 setValue(&I, Res);
5005 DAG.setRoot(Res);
5006 return 0;
5007 }
5008 case Intrinsic::objectsize: {
5009 // If we don't know by now, we're never going to know.
5010 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5011
5012 assert(CI && "Non-constant type in __builtin_object_size?");
5013
5014 SDValue Arg = getValue(I.getCalledValue());
5015 EVT Ty = Arg.getValueType();
5016
5017 if (CI->isZero())
5018 Res = DAG.getConstant(-1ULL, Ty);
5019 else
5020 Res = DAG.getConstant(0, Ty);
5021
5022 setValue(&I, Res);
5023 return 0;
5024 }
5025 case Intrinsic::var_annotation:
5026 // Discard annotate attributes
5027 return 0;
5028
5029 case Intrinsic::init_trampoline: {
5030 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5031
5032 SDValue Ops[6];
5033 Ops[0] = getRoot();
5034 Ops[1] = getValue(I.getArgOperand(0));
5035 Ops[2] = getValue(I.getArgOperand(1));
5036 Ops[3] = getValue(I.getArgOperand(2));
5037 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5038 Ops[5] = DAG.getSrcValue(F);
5039
5040 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5041
5042 DAG.setRoot(Res);
5043 return 0;
5044 }
5045 case Intrinsic::adjust_trampoline: {
5046 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5047 TLI.getPointerTy(),
5048 getValue(I.getArgOperand(0))));
5049 return 0;
5050 }
5051 case Intrinsic::gcroot:
5052 if (GFI) {
5053 const Value *Alloca = I.getArgOperand(0);
5054 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5055
5056 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5057 GFI->addStackRoot(FI->getIndex(), TypeMap);
5058 }
5059 return 0;
5060 case Intrinsic::gcread:
5061 case Intrinsic::gcwrite:
5062 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5063 case Intrinsic::flt_rounds:
5064 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5065 return 0;
5066
5067 case Intrinsic::expect: {
5068 // Just replace __builtin_expect(exp, c) with EXP.
5069 setValue(&I, getValue(I.getArgOperand(0)));
5070 return 0;
5071 }
5072
5073 case Intrinsic::trap: {
5074 StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5075 if (TrapFuncName.empty()) {
5076 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5077 return 0;
5078 }
5079 TargetLowering::ArgListTy Args;
5080 std::pair<SDValue, SDValue> Result =
5081 TLI.LowerCallTo(getRoot(), I.getType(),
5082 false, false, false, false, 0, CallingConv::C,
5083 /*isTailCall=*/false,
5084 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5085 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5086 Args, DAG, getCurDebugLoc());
5087 DAG.setRoot(Result.second);
5088 return 0;
5089 }
5090 case Intrinsic::uadd_with_overflow:
5091 case Intrinsic::sadd_with_overflow:
5092 case Intrinsic::usub_with_overflow:
5093 case Intrinsic::ssub_with_overflow:
5094 case Intrinsic::umul_with_overflow:
5095 case Intrinsic::smul_with_overflow: {
5096 ISD::NodeType Op;
5097 switch (Intrinsic) {
5098 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5099 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5100 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5101 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5102 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5103 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5104 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5105 }
5106 SDValue Op1 = getValue(I.getArgOperand(0));
5107 SDValue Op2 = getValue(I.getArgOperand(1));
5108
5109 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5110 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5111 return 0;
5112 }
5113 case Intrinsic::prefetch: {
5114 SDValue Ops[5];
5115 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5116 Ops[0] = getRoot();
5117 Ops[1] = getValue(I.getArgOperand(0));
5118 Ops[2] = getValue(I.getArgOperand(1));
5119 Ops[3] = getValue(I.getArgOperand(2));
5120 Ops[4] = getValue(I.getArgOperand(3));
5121 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5122 DAG.getVTList(MVT::Other),
5123 &Ops[0], 5,
5124 EVT::getIntegerVT(*Context, 8),
5125 MachinePointerInfo(I.getArgOperand(0)),
5126 0, /* align */
5127 false, /* volatile */
5128 rw==0, /* read */
5129 rw==1)); /* write */
5130 return 0;
5131 }
5132
5133 case Intrinsic::invariant_start:
5134 case Intrinsic::lifetime_start:
5135 // Discard region information.
5136 setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5137 return 0;
5138 case Intrinsic::invariant_end:
5139 case Intrinsic::lifetime_end:
5140 // Discard region information.
5141 return 0;
5142 }
5143 }
5144
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,MachineBasicBlock * LandingPad)5145 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5146 bool isTailCall,
5147 MachineBasicBlock *LandingPad) {
5148 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5149 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5150 Type *RetTy = FTy->getReturnType();
5151 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5152 MCSymbol *BeginLabel = 0;
5153
5154 TargetLowering::ArgListTy Args;
5155 TargetLowering::ArgListEntry Entry;
5156 Args.reserve(CS.arg_size());
5157
5158 // Check whether the function can return without sret-demotion.
5159 SmallVector<ISD::OutputArg, 4> Outs;
5160 SmallVector<uint64_t, 4> Offsets;
5161 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5162 Outs, TLI, &Offsets);
5163
5164 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5165 DAG.getMachineFunction(),
5166 FTy->isVarArg(), Outs,
5167 FTy->getContext());
5168
5169 SDValue DemoteStackSlot;
5170 int DemoteStackIdx = -100;
5171
5172 if (!CanLowerReturn) {
5173 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5174 FTy->getReturnType());
5175 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
5176 FTy->getReturnType());
5177 MachineFunction &MF = DAG.getMachineFunction();
5178 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5179 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5180
5181 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5182 Entry.Node = DemoteStackSlot;
5183 Entry.Ty = StackSlotPtrType;
5184 Entry.isSExt = false;
5185 Entry.isZExt = false;
5186 Entry.isInReg = false;
5187 Entry.isSRet = true;
5188 Entry.isNest = false;
5189 Entry.isByVal = false;
5190 Entry.Alignment = Align;
5191 Args.push_back(Entry);
5192 RetTy = Type::getVoidTy(FTy->getContext());
5193 }
5194
5195 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5196 i != e; ++i) {
5197 const Value *V = *i;
5198
5199 // Skip empty types
5200 if (V->getType()->isEmptyTy())
5201 continue;
5202
5203 SDValue ArgNode = getValue(V);
5204 Entry.Node = ArgNode; Entry.Ty = V->getType();
5205
5206 unsigned attrInd = i - CS.arg_begin() + 1;
5207 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
5208 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
5209 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5210 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
5211 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
5212 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5213 Entry.Alignment = CS.getParamAlignment(attrInd);
5214 Args.push_back(Entry);
5215 }
5216
5217 if (LandingPad) {
5218 // Insert a label before the invoke call to mark the try range. This can be
5219 // used to detect deletion of the invoke via the MachineModuleInfo.
5220 BeginLabel = MMI.getContext().CreateTempSymbol();
5221
5222 // For SjLj, keep track of which landing pads go with which invokes
5223 // so as to maintain the ordering of pads in the LSDA.
5224 unsigned CallSiteIndex = MMI.getCurrentCallSite();
5225 if (CallSiteIndex) {
5226 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5227 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5228
5229 // Now that the call site is handled, stop tracking it.
5230 MMI.setCurrentCallSite(0);
5231 }
5232
5233 // Both PendingLoads and PendingExports must be flushed here;
5234 // this call might not return.
5235 (void)getRoot();
5236 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5237 }
5238
5239 // Check if target-independent constraints permit a tail call here.
5240 // Target-dependent constraints are checked within TLI.LowerCallTo.
5241 if (isTailCall &&
5242 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5243 isTailCall = false;
5244
5245 // If there's a possibility that fast-isel has already selected some amount
5246 // of the current basic block, don't emit a tail call.
5247 if (isTailCall && TM.Options.EnableFastISel)
5248 isTailCall = false;
5249
5250 std::pair<SDValue,SDValue> Result =
5251 TLI.LowerCallTo(getRoot(), RetTy,
5252 CS.paramHasAttr(0, Attribute::SExt),
5253 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5254 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5255 CS.getCallingConv(),
5256 isTailCall,
5257 CS.doesNotReturn(),
5258 !CS.getInstruction()->use_empty(),
5259 Callee, Args, DAG, getCurDebugLoc());
5260 assert((isTailCall || Result.second.getNode()) &&
5261 "Non-null chain expected with non-tail call!");
5262 assert((Result.second.getNode() || !Result.first.getNode()) &&
5263 "Null value expected with tail call!");
5264 if (Result.first.getNode()) {
5265 setValue(CS.getInstruction(), Result.first);
5266 } else if (!CanLowerReturn && Result.second.getNode()) {
5267 // The instruction result is the result of loading from the
5268 // hidden sret parameter.
5269 SmallVector<EVT, 1> PVTs;
5270 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5271
5272 ComputeValueVTs(TLI, PtrRetTy, PVTs);
5273 assert(PVTs.size() == 1 && "Pointers should fit in one register");
5274 EVT PtrVT = PVTs[0];
5275 unsigned NumValues = Outs.size();
5276 SmallVector<SDValue, 4> Values(NumValues);
5277 SmallVector<SDValue, 4> Chains(NumValues);
5278
5279 for (unsigned i = 0; i < NumValues; ++i) {
5280 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5281 DemoteStackSlot,
5282 DAG.getConstant(Offsets[i], PtrVT));
5283 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5284 Add,
5285 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5286 false, false, false, 1);
5287 Values[i] = L;
5288 Chains[i] = L.getValue(1);
5289 }
5290
5291 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5292 MVT::Other, &Chains[0], NumValues);
5293 PendingLoads.push_back(Chain);
5294
5295 // Collect the legal value parts into potentially illegal values
5296 // that correspond to the original function's return values.
5297 SmallVector<EVT, 4> RetTys;
5298 RetTy = FTy->getReturnType();
5299 ComputeValueVTs(TLI, RetTy, RetTys);
5300 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5301 SmallVector<SDValue, 4> ReturnValues;
5302 unsigned CurReg = 0;
5303 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5304 EVT VT = RetTys[I];
5305 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5306 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5307
5308 SDValue ReturnValue =
5309 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5310 RegisterVT, VT, AssertOp);
5311 ReturnValues.push_back(ReturnValue);
5312 CurReg += NumRegs;
5313 }
5314
5315 setValue(CS.getInstruction(),
5316 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5317 DAG.getVTList(&RetTys[0], RetTys.size()),
5318 &ReturnValues[0], ReturnValues.size()));
5319 }
5320
5321 // Assign order to nodes here. If the call does not produce a result, it won't
5322 // be mapped to a SDNode and visit() will not assign it an order number.
5323 if (!Result.second.getNode()) {
5324 // As a special case, a null chain means that a tail call has been emitted and
5325 // the DAG root is already updated.
5326 HasTailCall = true;
5327 ++SDNodeOrder;
5328 AssignOrderingToNode(DAG.getRoot().getNode());
5329 } else {
5330 DAG.setRoot(Result.second);
5331 ++SDNodeOrder;
5332 AssignOrderingToNode(Result.second.getNode());
5333 }
5334
5335 if (LandingPad) {
5336 // Insert a label at the end of the invoke call to mark the try range. This
5337 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5338 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5339 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5340
5341 // Inform MachineModuleInfo of range.
5342 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5343 }
5344 }
5345
5346 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5347 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(const Value * V)5348 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5349 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5350 UI != E; ++UI) {
5351 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5352 if (IC->isEquality())
5353 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5354 if (C->isNullValue())
5355 continue;
5356 // Unknown instruction.
5357 return false;
5358 }
5359 return true;
5360 }
5361
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,Type * LoadTy,SelectionDAGBuilder & Builder)5362 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5363 Type *LoadTy,
5364 SelectionDAGBuilder &Builder) {
5365
5366 // Check to see if this load can be trivially constant folded, e.g. if the
5367 // input is from a string literal.
5368 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5369 // Cast pointer to the type we really want to load.
5370 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5371 PointerType::getUnqual(LoadTy));
5372
5373 if (const Constant *LoadCst =
5374 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5375 Builder.TD))
5376 return Builder.getValue(LoadCst);
5377 }
5378
5379 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5380 // still constant memory, the input chain can be the entry node.
5381 SDValue Root;
5382 bool ConstantMemory = false;
5383
5384 // Do not serialize (non-volatile) loads of constant memory with anything.
5385 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5386 Root = Builder.DAG.getEntryNode();
5387 ConstantMemory = true;
5388 } else {
5389 // Do not serialize non-volatile loads against each other.
5390 Root = Builder.DAG.getRoot();
5391 }
5392
5393 SDValue Ptr = Builder.getValue(PtrVal);
5394 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5395 Ptr, MachinePointerInfo(PtrVal),
5396 false /*volatile*/,
5397 false /*nontemporal*/,
5398 false /*isinvariant*/, 1 /* align=1 */);
5399
5400 if (!ConstantMemory)
5401 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5402 return LoadVal;
5403 }
5404
5405
5406 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5407 /// If so, return true and lower it, otherwise return false and it will be
5408 /// lowered like a normal call.
visitMemCmpCall(const CallInst & I)5409 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5410 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5411 if (I.getNumArgOperands() != 3)
5412 return false;
5413
5414 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5415 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5416 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5417 !I.getType()->isIntegerTy())
5418 return false;
5419
5420 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5421
5422 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5423 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5424 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5425 bool ActuallyDoIt = true;
5426 MVT LoadVT;
5427 Type *LoadTy;
5428 switch (Size->getZExtValue()) {
5429 default:
5430 LoadVT = MVT::Other;
5431 LoadTy = 0;
5432 ActuallyDoIt = false;
5433 break;
5434 case 2:
5435 LoadVT = MVT::i16;
5436 LoadTy = Type::getInt16Ty(Size->getContext());
5437 break;
5438 case 4:
5439 LoadVT = MVT::i32;
5440 LoadTy = Type::getInt32Ty(Size->getContext());
5441 break;
5442 case 8:
5443 LoadVT = MVT::i64;
5444 LoadTy = Type::getInt64Ty(Size->getContext());
5445 break;
5446 /*
5447 case 16:
5448 LoadVT = MVT::v4i32;
5449 LoadTy = Type::getInt32Ty(Size->getContext());
5450 LoadTy = VectorType::get(LoadTy, 4);
5451 break;
5452 */
5453 }
5454
5455 // This turns into unaligned loads. We only do this if the target natively
5456 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5457 // we'll only produce a small number of byte loads.
5458
5459 // Require that we can find a legal MVT, and only do this if the target
5460 // supports unaligned loads of that type. Expanding into byte loads would
5461 // bloat the code.
5462 if (ActuallyDoIt && Size->getZExtValue() > 4) {
5463 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5464 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5465 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5466 ActuallyDoIt = false;
5467 }
5468
5469 if (ActuallyDoIt) {
5470 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5471 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5472
5473 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5474 ISD::SETNE);
5475 EVT CallVT = TLI.getValueType(I.getType(), true);
5476 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5477 return true;
5478 }
5479 }
5480
5481
5482 return false;
5483 }
5484
5485
visitCall(const CallInst & I)5486 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5487 // Handle inline assembly differently.
5488 if (isa<InlineAsm>(I.getCalledValue())) {
5489 visitInlineAsm(&I);
5490 return;
5491 }
5492
5493 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5494 ComputeUsesVAFloatArgument(I, &MMI);
5495
5496 const char *RenameFn = 0;
5497 if (Function *F = I.getCalledFunction()) {
5498 if (F->isDeclaration()) {
5499 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5500 if (unsigned IID = II->getIntrinsicID(F)) {
5501 RenameFn = visitIntrinsicCall(I, IID);
5502 if (!RenameFn)
5503 return;
5504 }
5505 }
5506 if (unsigned IID = F->getIntrinsicID()) {
5507 RenameFn = visitIntrinsicCall(I, IID);
5508 if (!RenameFn)
5509 return;
5510 }
5511 }
5512
5513 // Check for well-known libc/libm calls. If the function is internal, it
5514 // can't be a library call.
5515 if (!F->hasLocalLinkage() && F->hasName()) {
5516 StringRef Name = F->getName();
5517 if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5518 (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5519 (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5520 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
5521 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5522 I.getType() == I.getArgOperand(0)->getType() &&
5523 I.getType() == I.getArgOperand(1)->getType()) {
5524 SDValue LHS = getValue(I.getArgOperand(0));
5525 SDValue RHS = getValue(I.getArgOperand(1));
5526 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5527 LHS.getValueType(), LHS, RHS));
5528 return;
5529 }
5530 } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5531 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5532 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5533 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5534 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5535 I.getType() == I.getArgOperand(0)->getType()) {
5536 SDValue Tmp = getValue(I.getArgOperand(0));
5537 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5538 Tmp.getValueType(), Tmp));
5539 return;
5540 }
5541 } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5542 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5543 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5544 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5545 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5546 I.getType() == I.getArgOperand(0)->getType() &&
5547 I.onlyReadsMemory()) {
5548 SDValue Tmp = getValue(I.getArgOperand(0));
5549 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5550 Tmp.getValueType(), Tmp));
5551 return;
5552 }
5553 } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5554 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5555 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5556 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5557 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5558 I.getType() == I.getArgOperand(0)->getType() &&
5559 I.onlyReadsMemory()) {
5560 SDValue Tmp = getValue(I.getArgOperand(0));
5561 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5562 Tmp.getValueType(), Tmp));
5563 return;
5564 }
5565 } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5566 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5567 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5568 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5569 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5570 I.getType() == I.getArgOperand(0)->getType() &&
5571 I.onlyReadsMemory()) {
5572 SDValue Tmp = getValue(I.getArgOperand(0));
5573 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5574 Tmp.getValueType(), Tmp));
5575 return;
5576 }
5577 } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5578 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5579 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5580 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5581 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5582 I.getType() == I.getArgOperand(0)->getType()) {
5583 SDValue Tmp = getValue(I.getArgOperand(0));
5584 setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5585 Tmp.getValueType(), Tmp));
5586 return;
5587 }
5588 } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5589 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5590 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5591 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5592 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5593 I.getType() == I.getArgOperand(0)->getType()) {
5594 SDValue Tmp = getValue(I.getArgOperand(0));
5595 setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5596 Tmp.getValueType(), Tmp));
5597 return;
5598 }
5599 } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5600 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5601 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5602 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5603 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5604 I.getType() == I.getArgOperand(0)->getType()) {
5605 SDValue Tmp = getValue(I.getArgOperand(0));
5606 setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5607 Tmp.getValueType(), Tmp));
5608 return;
5609 }
5610 } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5611 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5612 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5613 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5614 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5615 I.getType() == I.getArgOperand(0)->getType()) {
5616 SDValue Tmp = getValue(I.getArgOperand(0));
5617 setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5618 Tmp.getValueType(), Tmp));
5619 return;
5620 }
5621 } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5622 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5623 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5624 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5625 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5626 I.getType() == I.getArgOperand(0)->getType()) {
5627 SDValue Tmp = getValue(I.getArgOperand(0));
5628 setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5629 Tmp.getValueType(), Tmp));
5630 return;
5631 }
5632 } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5633 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5634 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5635 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5636 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5637 I.getType() == I.getArgOperand(0)->getType() &&
5638 I.onlyReadsMemory()) {
5639 SDValue Tmp = getValue(I.getArgOperand(0));
5640 setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5641 Tmp.getValueType(), Tmp));
5642 return;
5643 }
5644 } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5645 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5646 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5647 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5648 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5649 I.getType() == I.getArgOperand(0)->getType() &&
5650 I.onlyReadsMemory()) {
5651 SDValue Tmp = getValue(I.getArgOperand(0));
5652 setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5653 Tmp.getValueType(), Tmp));
5654 return;
5655 }
5656 } else if (Name == "memcmp") {
5657 if (visitMemCmpCall(I))
5658 return;
5659 }
5660 }
5661 }
5662
5663 SDValue Callee;
5664 if (!RenameFn)
5665 Callee = getValue(I.getCalledValue());
5666 else
5667 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5668
5669 // Check if we can potentially perform a tail call. More detailed checking is
5670 // be done within LowerCallTo, after more information about the call is known.
5671 LowerCallTo(&I, Callee, I.isTailCall());
5672 }
5673
5674 namespace {
5675
5676 /// AsmOperandInfo - This contains information for each constraint that we are
5677 /// lowering.
5678 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5679 public:
5680 /// CallOperand - If this is the result output operand or a clobber
5681 /// this is null, otherwise it is the incoming operand to the CallInst.
5682 /// This gets modified as the asm is processed.
5683 SDValue CallOperand;
5684
5685 /// AssignedRegs - If this is a register or register class operand, this
5686 /// contains the set of register corresponding to the operand.
5687 RegsForValue AssignedRegs;
5688
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)5689 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5690 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5691 }
5692
5693 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5694 /// corresponds to. If there is no Value* for this operand, it returns
5695 /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const TargetData * TD) const5696 EVT getCallOperandValEVT(LLVMContext &Context,
5697 const TargetLowering &TLI,
5698 const TargetData *TD) const {
5699 if (CallOperandVal == 0) return MVT::Other;
5700
5701 if (isa<BasicBlock>(CallOperandVal))
5702 return TLI.getPointerTy();
5703
5704 llvm::Type *OpTy = CallOperandVal->getType();
5705
5706 // FIXME: code duplicated from TargetLowering::ParseConstraints().
5707 // If this is an indirect operand, the operand is a pointer to the
5708 // accessed type.
5709 if (isIndirect) {
5710 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5711 if (!PtrTy)
5712 report_fatal_error("Indirect operand for inline asm not a pointer!");
5713 OpTy = PtrTy->getElementType();
5714 }
5715
5716 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5717 if (StructType *STy = dyn_cast<StructType>(OpTy))
5718 if (STy->getNumElements() == 1)
5719 OpTy = STy->getElementType(0);
5720
5721 // If OpTy is not a single value, it may be a struct/union that we
5722 // can tile with integers.
5723 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5724 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5725 switch (BitSize) {
5726 default: break;
5727 case 1:
5728 case 8:
5729 case 16:
5730 case 32:
5731 case 64:
5732 case 128:
5733 OpTy = IntegerType::get(Context, BitSize);
5734 break;
5735 }
5736 }
5737
5738 return TLI.getValueType(OpTy, true);
5739 }
5740 };
5741
5742 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5743
5744 } // end anonymous namespace
5745
5746 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5747 /// specified operand. We prefer to assign virtual registers, to allow the
5748 /// register allocator to handle the assignment process. However, if the asm
5749 /// uses features that we can't model on machineinstrs, we have SDISel do the
5750 /// allocation. This produces generally horrible, but correct, code.
5751 ///
5752 /// OpInfo describes the operand.
5753 ///
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,DebugLoc DL,SDISelAsmOperandInfo & OpInfo)5754 static void GetRegistersForValue(SelectionDAG &DAG,
5755 const TargetLowering &TLI,
5756 DebugLoc DL,
5757 SDISelAsmOperandInfo &OpInfo) {
5758 LLVMContext &Context = *DAG.getContext();
5759
5760 MachineFunction &MF = DAG.getMachineFunction();
5761 SmallVector<unsigned, 4> Regs;
5762
5763 // If this is a constraint for a single physreg, or a constraint for a
5764 // register class, find it.
5765 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5766 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5767 OpInfo.ConstraintVT);
5768
5769 unsigned NumRegs = 1;
5770 if (OpInfo.ConstraintVT != MVT::Other) {
5771 // If this is a FP input in an integer register (or visa versa) insert a bit
5772 // cast of the input value. More generally, handle any case where the input
5773 // value disagrees with the register class we plan to stick this in.
5774 if (OpInfo.Type == InlineAsm::isInput &&
5775 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5776 // Try to convert to the first EVT that the reg class contains. If the
5777 // types are identical size, use a bitcast to convert (e.g. two differing
5778 // vector types).
5779 EVT RegVT = *PhysReg.second->vt_begin();
5780 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5781 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5782 RegVT, OpInfo.CallOperand);
5783 OpInfo.ConstraintVT = RegVT;
5784 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5785 // If the input is a FP value and we want it in FP registers, do a
5786 // bitcast to the corresponding integer type. This turns an f64 value
5787 // into i64, which can be passed with two i32 values on a 32-bit
5788 // machine.
5789 RegVT = EVT::getIntegerVT(Context,
5790 OpInfo.ConstraintVT.getSizeInBits());
5791 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5792 RegVT, OpInfo.CallOperand);
5793 OpInfo.ConstraintVT = RegVT;
5794 }
5795 }
5796
5797 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5798 }
5799
5800 EVT RegVT;
5801 EVT ValueVT = OpInfo.ConstraintVT;
5802
5803 // If this is a constraint for a specific physical register, like {r17},
5804 // assign it now.
5805 if (unsigned AssignedReg = PhysReg.first) {
5806 const TargetRegisterClass *RC = PhysReg.second;
5807 if (OpInfo.ConstraintVT == MVT::Other)
5808 ValueVT = *RC->vt_begin();
5809
5810 // Get the actual register value type. This is important, because the user
5811 // may have asked for (e.g.) the AX register in i32 type. We need to
5812 // remember that AX is actually i16 to get the right extension.
5813 RegVT = *RC->vt_begin();
5814
5815 // This is a explicit reference to a physical register.
5816 Regs.push_back(AssignedReg);
5817
5818 // If this is an expanded reference, add the rest of the regs to Regs.
5819 if (NumRegs != 1) {
5820 TargetRegisterClass::iterator I = RC->begin();
5821 for (; *I != AssignedReg; ++I)
5822 assert(I != RC->end() && "Didn't find reg!");
5823
5824 // Already added the first reg.
5825 --NumRegs; ++I;
5826 for (; NumRegs; --NumRegs, ++I) {
5827 assert(I != RC->end() && "Ran out of registers to allocate!");
5828 Regs.push_back(*I);
5829 }
5830 }
5831
5832 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5833 return;
5834 }
5835
5836 // Otherwise, if this was a reference to an LLVM register class, create vregs
5837 // for this reference.
5838 if (const TargetRegisterClass *RC = PhysReg.second) {
5839 RegVT = *RC->vt_begin();
5840 if (OpInfo.ConstraintVT == MVT::Other)
5841 ValueVT = RegVT;
5842
5843 // Create the appropriate number of virtual registers.
5844 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5845 for (; NumRegs; --NumRegs)
5846 Regs.push_back(RegInfo.createVirtualRegister(RC));
5847
5848 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5849 return;
5850 }
5851
5852 // Otherwise, we couldn't allocate enough registers for this.
5853 }
5854
5855 /// visitInlineAsm - Handle a call to an InlineAsm object.
5856 ///
visitInlineAsm(ImmutableCallSite CS)5857 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5858 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5859
5860 /// ConstraintOperands - Information about all of the constraints.
5861 SDISelAsmOperandInfoVector ConstraintOperands;
5862
5863 TargetLowering::AsmOperandInfoVector
5864 TargetConstraints = TLI.ParseConstraints(CS);
5865
5866 bool hasMemory = false;
5867
5868 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5869 unsigned ResNo = 0; // ResNo - The result number of the next output.
5870 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5871 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5872 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5873
5874 EVT OpVT = MVT::Other;
5875
5876 // Compute the value type for each operand.
5877 switch (OpInfo.Type) {
5878 case InlineAsm::isOutput:
5879 // Indirect outputs just consume an argument.
5880 if (OpInfo.isIndirect) {
5881 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5882 break;
5883 }
5884
5885 // The return value of the call is this value. As such, there is no
5886 // corresponding argument.
5887 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5888 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5889 OpVT = TLI.getValueType(STy->getElementType(ResNo));
5890 } else {
5891 assert(ResNo == 0 && "Asm only has one result!");
5892 OpVT = TLI.getValueType(CS.getType());
5893 }
5894 ++ResNo;
5895 break;
5896 case InlineAsm::isInput:
5897 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5898 break;
5899 case InlineAsm::isClobber:
5900 // Nothing to do.
5901 break;
5902 }
5903
5904 // If this is an input or an indirect output, process the call argument.
5905 // BasicBlocks are labels, currently appearing only in asm's.
5906 if (OpInfo.CallOperandVal) {
5907 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5908 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5909 } else {
5910 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5911 }
5912
5913 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5914 }
5915
5916 OpInfo.ConstraintVT = OpVT;
5917
5918 // Indirect operand accesses access memory.
5919 if (OpInfo.isIndirect)
5920 hasMemory = true;
5921 else {
5922 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5923 TargetLowering::ConstraintType
5924 CType = TLI.getConstraintType(OpInfo.Codes[j]);
5925 if (CType == TargetLowering::C_Memory) {
5926 hasMemory = true;
5927 break;
5928 }
5929 }
5930 }
5931 }
5932
5933 SDValue Chain, Flag;
5934
5935 // We won't need to flush pending loads if this asm doesn't touch
5936 // memory and is nonvolatile.
5937 if (hasMemory || IA->hasSideEffects())
5938 Chain = getRoot();
5939 else
5940 Chain = DAG.getRoot();
5941
5942 // Second pass over the constraints: compute which constraint option to use
5943 // and assign registers to constraints that want a specific physreg.
5944 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5945 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5946
5947 // If this is an output operand with a matching input operand, look up the
5948 // matching input. If their types mismatch, e.g. one is an integer, the
5949 // other is floating point, or their sizes are different, flag it as an
5950 // error.
5951 if (OpInfo.hasMatchingInput()) {
5952 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5953
5954 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5955 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5956 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5957 OpInfo.ConstraintVT);
5958 std::pair<unsigned, const TargetRegisterClass*> InputRC =
5959 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5960 Input.ConstraintVT);
5961 if ((OpInfo.ConstraintVT.isInteger() !=
5962 Input.ConstraintVT.isInteger()) ||
5963 (MatchRC.second != InputRC.second)) {
5964 report_fatal_error("Unsupported asm: input constraint"
5965 " with a matching output constraint of"
5966 " incompatible type!");
5967 }
5968 Input.ConstraintVT = OpInfo.ConstraintVT;
5969 }
5970 }
5971
5972 // Compute the constraint code and ConstraintType to use.
5973 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5974
5975 // If this is a memory input, and if the operand is not indirect, do what we
5976 // need to to provide an address for the memory input.
5977 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5978 !OpInfo.isIndirect) {
5979 assert((OpInfo.isMultipleAlternative ||
5980 (OpInfo.Type == InlineAsm::isInput)) &&
5981 "Can only indirectify direct input operands!");
5982
5983 // Memory operands really want the address of the value. If we don't have
5984 // an indirect input, put it in the constpool if we can, otherwise spill
5985 // it to a stack slot.
5986 // TODO: This isn't quite right. We need to handle these according to
5987 // the addressing mode that the constraint wants. Also, this may take
5988 // an additional register for the computation and we don't want that
5989 // either.
5990
5991 // If the operand is a float, integer, or vector constant, spill to a
5992 // constant pool entry to get its address.
5993 const Value *OpVal = OpInfo.CallOperandVal;
5994 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5995 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5996 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5997 TLI.getPointerTy());
5998 } else {
5999 // Otherwise, create a stack slot and emit a store to it before the
6000 // asm.
6001 Type *Ty = OpVal->getType();
6002 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6003 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6004 MachineFunction &MF = DAG.getMachineFunction();
6005 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6006 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6007 Chain = DAG.getStore(Chain, getCurDebugLoc(),
6008 OpInfo.CallOperand, StackSlot,
6009 MachinePointerInfo::getFixedStack(SSFI),
6010 false, false, 0);
6011 OpInfo.CallOperand = StackSlot;
6012 }
6013
6014 // There is no longer a Value* corresponding to this operand.
6015 OpInfo.CallOperandVal = 0;
6016
6017 // It is now an indirect operand.
6018 OpInfo.isIndirect = true;
6019 }
6020
6021 // If this constraint is for a specific register, allocate it before
6022 // anything else.
6023 if (OpInfo.ConstraintType == TargetLowering::C_Register)
6024 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6025 }
6026
6027 // Second pass - Loop over all of the operands, assigning virtual or physregs
6028 // to register class operands.
6029 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6030 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6031
6032 // C_Register operands have already been allocated, Other/Memory don't need
6033 // to be.
6034 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6035 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6036 }
6037
6038 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6039 std::vector<SDValue> AsmNodeOperands;
6040 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
6041 AsmNodeOperands.push_back(
6042 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6043 TLI.getPointerTy()));
6044
6045 // If we have a !srcloc metadata node associated with it, we want to attach
6046 // this to the ultimately generated inline asm machineinstr. To do this, we
6047 // pass in the third operand as this (potentially null) inline asm MDNode.
6048 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6049 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6050
6051 // Remember the HasSideEffect and AlignStack bits as operand 3.
6052 unsigned ExtraInfo = 0;
6053 if (IA->hasSideEffects())
6054 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6055 if (IA->isAlignStack())
6056 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6057 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6058 TLI.getPointerTy()));
6059
6060 // Loop over all of the inputs, copying the operand values into the
6061 // appropriate registers and processing the output regs.
6062 RegsForValue RetValRegs;
6063
6064 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6065 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6066
6067 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6068 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6069
6070 switch (OpInfo.Type) {
6071 case InlineAsm::isOutput: {
6072 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6073 OpInfo.ConstraintType != TargetLowering::C_Register) {
6074 // Memory output, or 'other' output (e.g. 'X' constraint).
6075 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6076
6077 // Add information to the INLINEASM node to know about this output.
6078 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6079 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6080 TLI.getPointerTy()));
6081 AsmNodeOperands.push_back(OpInfo.CallOperand);
6082 break;
6083 }
6084
6085 // Otherwise, this is a register or register class output.
6086
6087 // Copy the output from the appropriate register. Find a register that
6088 // we can use.
6089 if (OpInfo.AssignedRegs.Regs.empty()) {
6090 LLVMContext &Ctx = *DAG.getContext();
6091 Ctx.emitError(CS.getInstruction(),
6092 "couldn't allocate output register for constraint '" +
6093 Twine(OpInfo.ConstraintCode) + "'");
6094 break;
6095 }
6096
6097 // If this is an indirect operand, store through the pointer after the
6098 // asm.
6099 if (OpInfo.isIndirect) {
6100 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6101 OpInfo.CallOperandVal));
6102 } else {
6103 // This is the result value of the call.
6104 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6105 // Concatenate this output onto the outputs list.
6106 RetValRegs.append(OpInfo.AssignedRegs);
6107 }
6108
6109 // Add information to the INLINEASM node to know that this register is
6110 // set.
6111 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6112 InlineAsm::Kind_RegDefEarlyClobber :
6113 InlineAsm::Kind_RegDef,
6114 false,
6115 0,
6116 DAG,
6117 AsmNodeOperands);
6118 break;
6119 }
6120 case InlineAsm::isInput: {
6121 SDValue InOperandVal = OpInfo.CallOperand;
6122
6123 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
6124 // If this is required to match an output register we have already set,
6125 // just use its register.
6126 unsigned OperandNo = OpInfo.getMatchedOperand();
6127
6128 // Scan until we find the definition we already emitted of this operand.
6129 // When we find it, create a RegsForValue operand.
6130 unsigned CurOp = InlineAsm::Op_FirstOperand;
6131 for (; OperandNo; --OperandNo) {
6132 // Advance to the next operand.
6133 unsigned OpFlag =
6134 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6135 assert((InlineAsm::isRegDefKind(OpFlag) ||
6136 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6137 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6138 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6139 }
6140
6141 unsigned OpFlag =
6142 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6143 if (InlineAsm::isRegDefKind(OpFlag) ||
6144 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6145 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6146 if (OpInfo.isIndirect) {
6147 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6148 LLVMContext &Ctx = *DAG.getContext();
6149 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6150 " don't know how to handle tied "
6151 "indirect register inputs");
6152 }
6153
6154 RegsForValue MatchedRegs;
6155 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6156 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6157 MatchedRegs.RegVTs.push_back(RegVT);
6158 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6159 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6160 i != e; ++i)
6161 MatchedRegs.Regs.push_back
6162 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6163
6164 // Use the produced MatchedRegs object to
6165 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6166 Chain, &Flag);
6167 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6168 true, OpInfo.getMatchedOperand(),
6169 DAG, AsmNodeOperands);
6170 break;
6171 }
6172
6173 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6174 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6175 "Unexpected number of operands");
6176 // Add information to the INLINEASM node to know about this input.
6177 // See InlineAsm.h isUseOperandTiedToDef.
6178 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6179 OpInfo.getMatchedOperand());
6180 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6181 TLI.getPointerTy()));
6182 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6183 break;
6184 }
6185
6186 // Treat indirect 'X' constraint as memory.
6187 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6188 OpInfo.isIndirect)
6189 OpInfo.ConstraintType = TargetLowering::C_Memory;
6190
6191 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6192 std::vector<SDValue> Ops;
6193 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6194 Ops, DAG);
6195 if (Ops.empty()) {
6196 LLVMContext &Ctx = *DAG.getContext();
6197 Ctx.emitError(CS.getInstruction(),
6198 "invalid operand for inline asm constraint '" +
6199 Twine(OpInfo.ConstraintCode) + "'");
6200 break;
6201 }
6202
6203 // Add information to the INLINEASM node to know about this input.
6204 unsigned ResOpType =
6205 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6206 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6207 TLI.getPointerTy()));
6208 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6209 break;
6210 }
6211
6212 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6213 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6214 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6215 "Memory operands expect pointer values");
6216
6217 // Add information to the INLINEASM node to know about this input.
6218 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6219 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6220 TLI.getPointerTy()));
6221 AsmNodeOperands.push_back(InOperandVal);
6222 break;
6223 }
6224
6225 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6226 OpInfo.ConstraintType == TargetLowering::C_Register) &&
6227 "Unknown constraint type!");
6228 assert(!OpInfo.isIndirect &&
6229 "Don't know how to handle indirect register inputs yet!");
6230
6231 // Copy the input into the appropriate registers.
6232 if (OpInfo.AssignedRegs.Regs.empty()) {
6233 LLVMContext &Ctx = *DAG.getContext();
6234 Ctx.emitError(CS.getInstruction(),
6235 "couldn't allocate input reg for constraint '" +
6236 Twine(OpInfo.ConstraintCode) + "'");
6237 break;
6238 }
6239
6240 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6241 Chain, &Flag);
6242
6243 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6244 DAG, AsmNodeOperands);
6245 break;
6246 }
6247 case InlineAsm::isClobber: {
6248 // Add the clobbered value to the operand list, so that the register
6249 // allocator is aware that the physreg got clobbered.
6250 if (!OpInfo.AssignedRegs.Regs.empty())
6251 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6252 false, 0, DAG,
6253 AsmNodeOperands);
6254 break;
6255 }
6256 }
6257 }
6258
6259 // Finish up input operands. Set the input chain and add the flag last.
6260 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6261 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6262
6263 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6264 DAG.getVTList(MVT::Other, MVT::Glue),
6265 &AsmNodeOperands[0], AsmNodeOperands.size());
6266 Flag = Chain.getValue(1);
6267
6268 // If this asm returns a register value, copy the result from that register
6269 // and set it as the value of the call.
6270 if (!RetValRegs.Regs.empty()) {
6271 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6272 Chain, &Flag);
6273
6274 // FIXME: Why don't we do this for inline asms with MRVs?
6275 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6276 EVT ResultType = TLI.getValueType(CS.getType());
6277
6278 // If any of the results of the inline asm is a vector, it may have the
6279 // wrong width/num elts. This can happen for register classes that can
6280 // contain multiple different value types. The preg or vreg allocated may
6281 // not have the same VT as was expected. Convert it to the right type
6282 // with bit_convert.
6283 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6284 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6285 ResultType, Val);
6286
6287 } else if (ResultType != Val.getValueType() &&
6288 ResultType.isInteger() && Val.getValueType().isInteger()) {
6289 // If a result value was tied to an input value, the computed result may
6290 // have a wider width than the expected result. Extract the relevant
6291 // portion.
6292 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6293 }
6294
6295 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6296 }
6297
6298 setValue(CS.getInstruction(), Val);
6299 // Don't need to use this as a chain in this case.
6300 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6301 return;
6302 }
6303
6304 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6305
6306 // Process indirect outputs, first output all of the flagged copies out of
6307 // physregs.
6308 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6309 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6310 const Value *Ptr = IndirectStoresToEmit[i].second;
6311 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6312 Chain, &Flag);
6313 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6314 }
6315
6316 // Emit the non-flagged stores from the physregs.
6317 SmallVector<SDValue, 8> OutChains;
6318 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6319 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6320 StoresToEmit[i].first,
6321 getValue(StoresToEmit[i].second),
6322 MachinePointerInfo(StoresToEmit[i].second),
6323 false, false, 0);
6324 OutChains.push_back(Val);
6325 }
6326
6327 if (!OutChains.empty())
6328 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6329 &OutChains[0], OutChains.size());
6330
6331 DAG.setRoot(Chain);
6332 }
6333
visitVAStart(const CallInst & I)6334 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6335 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6336 MVT::Other, getRoot(),
6337 getValue(I.getArgOperand(0)),
6338 DAG.getSrcValue(I.getArgOperand(0))));
6339 }
6340
visitVAArg(const VAArgInst & I)6341 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6342 const TargetData &TD = *TLI.getTargetData();
6343 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6344 getRoot(), getValue(I.getOperand(0)),
6345 DAG.getSrcValue(I.getOperand(0)),
6346 TD.getABITypeAlignment(I.getType()));
6347 setValue(&I, V);
6348 DAG.setRoot(V.getValue(1));
6349 }
6350
visitVAEnd(const CallInst & I)6351 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6352 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6353 MVT::Other, getRoot(),
6354 getValue(I.getArgOperand(0)),
6355 DAG.getSrcValue(I.getArgOperand(0))));
6356 }
6357
visitVACopy(const CallInst & I)6358 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6359 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6360 MVT::Other, getRoot(),
6361 getValue(I.getArgOperand(0)),
6362 getValue(I.getArgOperand(1)),
6363 DAG.getSrcValue(I.getArgOperand(0)),
6364 DAG.getSrcValue(I.getArgOperand(1))));
6365 }
6366
6367 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6368 /// implementation, which just calls LowerCall.
6369 /// FIXME: When all targets are
6370 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6371 std::pair<SDValue, SDValue>
LowerCallTo(SDValue Chain,Type * RetTy,bool RetSExt,bool RetZExt,bool isVarArg,bool isInreg,unsigned NumFixedArgs,CallingConv::ID CallConv,bool isTailCall,bool doesNotRet,bool isReturnValueUsed,SDValue Callee,ArgListTy & Args,SelectionDAG & DAG,DebugLoc dl) const6372 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6373 bool RetSExt, bool RetZExt, bool isVarArg,
6374 bool isInreg, unsigned NumFixedArgs,
6375 CallingConv::ID CallConv, bool isTailCall,
6376 bool doesNotRet, bool isReturnValueUsed,
6377 SDValue Callee,
6378 ArgListTy &Args, SelectionDAG &DAG,
6379 DebugLoc dl) const {
6380 // Handle all of the outgoing arguments.
6381 SmallVector<ISD::OutputArg, 32> Outs;
6382 SmallVector<SDValue, 32> OutVals;
6383 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6384 SmallVector<EVT, 4> ValueVTs;
6385 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6386 for (unsigned Value = 0, NumValues = ValueVTs.size();
6387 Value != NumValues; ++Value) {
6388 EVT VT = ValueVTs[Value];
6389 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6390 SDValue Op = SDValue(Args[i].Node.getNode(),
6391 Args[i].Node.getResNo() + Value);
6392 ISD::ArgFlagsTy Flags;
6393 unsigned OriginalAlignment =
6394 getTargetData()->getABITypeAlignment(ArgTy);
6395
6396 if (Args[i].isZExt)
6397 Flags.setZExt();
6398 if (Args[i].isSExt)
6399 Flags.setSExt();
6400 if (Args[i].isInReg)
6401 Flags.setInReg();
6402 if (Args[i].isSRet)
6403 Flags.setSRet();
6404 if (Args[i].isByVal) {
6405 Flags.setByVal();
6406 PointerType *Ty = cast<PointerType>(Args[i].Ty);
6407 Type *ElementTy = Ty->getElementType();
6408 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6409 // For ByVal, alignment should come from FE. BE will guess if this
6410 // info is not there but there are cases it cannot get right.
6411 unsigned FrameAlign;
6412 if (Args[i].Alignment)
6413 FrameAlign = Args[i].Alignment;
6414 else
6415 FrameAlign = getByValTypeAlignment(ElementTy);
6416 Flags.setByValAlign(FrameAlign);
6417 }
6418 if (Args[i].isNest)
6419 Flags.setNest();
6420 Flags.setOrigAlign(OriginalAlignment);
6421
6422 EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6423 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6424 SmallVector<SDValue, 4> Parts(NumParts);
6425 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6426
6427 if (Args[i].isSExt)
6428 ExtendKind = ISD::SIGN_EXTEND;
6429 else if (Args[i].isZExt)
6430 ExtendKind = ISD::ZERO_EXTEND;
6431
6432 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6433 PartVT, ExtendKind);
6434
6435 for (unsigned j = 0; j != NumParts; ++j) {
6436 // if it isn't first piece, alignment must be 1
6437 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6438 i < NumFixedArgs);
6439 if (NumParts > 1 && j == 0)
6440 MyFlags.Flags.setSplit();
6441 else if (j != 0)
6442 MyFlags.Flags.setOrigAlign(1);
6443
6444 Outs.push_back(MyFlags);
6445 OutVals.push_back(Parts[j]);
6446 }
6447 }
6448 }
6449
6450 // Handle the incoming return values from the call.
6451 SmallVector<ISD::InputArg, 32> Ins;
6452 SmallVector<EVT, 4> RetTys;
6453 ComputeValueVTs(*this, RetTy, RetTys);
6454 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6455 EVT VT = RetTys[I];
6456 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6457 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6458 for (unsigned i = 0; i != NumRegs; ++i) {
6459 ISD::InputArg MyFlags;
6460 MyFlags.VT = RegisterVT.getSimpleVT();
6461 MyFlags.Used = isReturnValueUsed;
6462 if (RetSExt)
6463 MyFlags.Flags.setSExt();
6464 if (RetZExt)
6465 MyFlags.Flags.setZExt();
6466 if (isInreg)
6467 MyFlags.Flags.setInReg();
6468 Ins.push_back(MyFlags);
6469 }
6470 }
6471
6472 SmallVector<SDValue, 4> InVals;
6473 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, doesNotRet, isTailCall,
6474 Outs, OutVals, Ins, dl, DAG, InVals);
6475
6476 // Verify that the target's LowerCall behaved as expected.
6477 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6478 "LowerCall didn't return a valid chain!");
6479 assert((!isTailCall || InVals.empty()) &&
6480 "LowerCall emitted a return value for a tail call!");
6481 assert((isTailCall || InVals.size() == Ins.size()) &&
6482 "LowerCall didn't emit the correct number of values!");
6483
6484 // For a tail call, the return value is merely live-out and there aren't
6485 // any nodes in the DAG representing it. Return a special value to
6486 // indicate that a tail call has been emitted and no more Instructions
6487 // should be processed in the current block.
6488 if (isTailCall) {
6489 DAG.setRoot(Chain);
6490 return std::make_pair(SDValue(), SDValue());
6491 }
6492
6493 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6494 assert(InVals[i].getNode() &&
6495 "LowerCall emitted a null value!");
6496 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6497 "LowerCall emitted a value with the wrong type!");
6498 });
6499
6500 // Collect the legal value parts into potentially illegal values
6501 // that correspond to the original function's return values.
6502 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6503 if (RetSExt)
6504 AssertOp = ISD::AssertSext;
6505 else if (RetZExt)
6506 AssertOp = ISD::AssertZext;
6507 SmallVector<SDValue, 4> ReturnValues;
6508 unsigned CurReg = 0;
6509 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6510 EVT VT = RetTys[I];
6511 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6512 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6513
6514 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6515 NumRegs, RegisterVT, VT,
6516 AssertOp));
6517 CurReg += NumRegs;
6518 }
6519
6520 // For a function returning void, there is no return value. We can't create
6521 // such a node, so we just return a null return value in that case. In
6522 // that case, nothing will actually look at the value.
6523 if (ReturnValues.empty())
6524 return std::make_pair(SDValue(), Chain);
6525
6526 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6527 DAG.getVTList(&RetTys[0], RetTys.size()),
6528 &ReturnValues[0], ReturnValues.size());
6529 return std::make_pair(Res, Chain);
6530 }
6531
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6532 void TargetLowering::LowerOperationWrapper(SDNode *N,
6533 SmallVectorImpl<SDValue> &Results,
6534 SelectionDAG &DAG) const {
6535 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6536 if (Res.getNode())
6537 Results.push_back(Res);
6538 }
6539
LowerOperation(SDValue Op,SelectionDAG & DAG) const6540 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6541 llvm_unreachable("LowerOperation not implemented for this target!");
6542 }
6543
6544 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)6545 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6546 SDValue Op = getNonRegisterValue(V);
6547 assert((Op.getOpcode() != ISD::CopyFromReg ||
6548 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6549 "Copy from a reg to the same reg!");
6550 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6551
6552 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6553 SDValue Chain = DAG.getEntryNode();
6554 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6555 PendingExports.push_back(Chain);
6556 }
6557
6558 #include "llvm/CodeGen/SelectionDAGISel.h"
6559
6560 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6561 /// entry block, return true. This includes arguments used by switches, since
6562 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)6563 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6564 // With FastISel active, we may be splitting blocks, so force creation
6565 // of virtual registers for all non-dead arguments.
6566 if (FastISel)
6567 return A->use_empty();
6568
6569 const BasicBlock *Entry = A->getParent()->begin();
6570 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6571 UI != E; ++UI) {
6572 const User *U = *UI;
6573 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6574 return false; // Use not in entry block.
6575 }
6576 return true;
6577 }
6578
LowerArguments(const BasicBlock * LLVMBB)6579 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6580 // If this is the entry block, emit arguments.
6581 const Function &F = *LLVMBB->getParent();
6582 SelectionDAG &DAG = SDB->DAG;
6583 DebugLoc dl = SDB->getCurDebugLoc();
6584 const TargetData *TD = TLI.getTargetData();
6585 SmallVector<ISD::InputArg, 16> Ins;
6586
6587 // Check whether the function can return without sret-demotion.
6588 SmallVector<ISD::OutputArg, 4> Outs;
6589 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6590 Outs, TLI);
6591
6592 if (!FuncInfo->CanLowerReturn) {
6593 // Put in an sret pointer parameter before all the other parameters.
6594 SmallVector<EVT, 1> ValueVTs;
6595 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6596
6597 // NOTE: Assuming that a pointer will never break down to more than one VT
6598 // or one register.
6599 ISD::ArgFlagsTy Flags;
6600 Flags.setSRet();
6601 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6602 ISD::InputArg RetArg(Flags, RegisterVT, true);
6603 Ins.push_back(RetArg);
6604 }
6605
6606 // Set up the incoming argument description vector.
6607 unsigned Idx = 1;
6608 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6609 I != E; ++I, ++Idx) {
6610 SmallVector<EVT, 4> ValueVTs;
6611 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6612 bool isArgValueUsed = !I->use_empty();
6613 for (unsigned Value = 0, NumValues = ValueVTs.size();
6614 Value != NumValues; ++Value) {
6615 EVT VT = ValueVTs[Value];
6616 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6617 ISD::ArgFlagsTy Flags;
6618 unsigned OriginalAlignment =
6619 TD->getABITypeAlignment(ArgTy);
6620
6621 if (F.paramHasAttr(Idx, Attribute::ZExt))
6622 Flags.setZExt();
6623 if (F.paramHasAttr(Idx, Attribute::SExt))
6624 Flags.setSExt();
6625 if (F.paramHasAttr(Idx, Attribute::InReg))
6626 Flags.setInReg();
6627 if (F.paramHasAttr(Idx, Attribute::StructRet))
6628 Flags.setSRet();
6629 if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6630 Flags.setByVal();
6631 PointerType *Ty = cast<PointerType>(I->getType());
6632 Type *ElementTy = Ty->getElementType();
6633 Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6634 // For ByVal, alignment should be passed from FE. BE will guess if
6635 // this info is not there but there are cases it cannot get right.
6636 unsigned FrameAlign;
6637 if (F.getParamAlignment(Idx))
6638 FrameAlign = F.getParamAlignment(Idx);
6639 else
6640 FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6641 Flags.setByValAlign(FrameAlign);
6642 }
6643 if (F.paramHasAttr(Idx, Attribute::Nest))
6644 Flags.setNest();
6645 Flags.setOrigAlign(OriginalAlignment);
6646
6647 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6648 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6649 for (unsigned i = 0; i != NumRegs; ++i) {
6650 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6651 if (NumRegs > 1 && i == 0)
6652 MyFlags.Flags.setSplit();
6653 // if it isn't first piece, alignment must be 1
6654 else if (i > 0)
6655 MyFlags.Flags.setOrigAlign(1);
6656 Ins.push_back(MyFlags);
6657 }
6658 }
6659 }
6660
6661 // Call the target to set up the argument values.
6662 SmallVector<SDValue, 8> InVals;
6663 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6664 F.isVarArg(), Ins,
6665 dl, DAG, InVals);
6666
6667 // Verify that the target's LowerFormalArguments behaved as expected.
6668 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6669 "LowerFormalArguments didn't return a valid chain!");
6670 assert(InVals.size() == Ins.size() &&
6671 "LowerFormalArguments didn't emit the correct number of values!");
6672 DEBUG({
6673 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6674 assert(InVals[i].getNode() &&
6675 "LowerFormalArguments emitted a null value!");
6676 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6677 "LowerFormalArguments emitted a value with the wrong type!");
6678 }
6679 });
6680
6681 // Update the DAG with the new chain value resulting from argument lowering.
6682 DAG.setRoot(NewRoot);
6683
6684 // Set up the argument values.
6685 unsigned i = 0;
6686 Idx = 1;
6687 if (!FuncInfo->CanLowerReturn) {
6688 // Create a virtual register for the sret pointer, and put in a copy
6689 // from the sret argument into it.
6690 SmallVector<EVT, 1> ValueVTs;
6691 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6692 EVT VT = ValueVTs[0];
6693 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6694 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6695 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6696 RegVT, VT, AssertOp);
6697
6698 MachineFunction& MF = SDB->DAG.getMachineFunction();
6699 MachineRegisterInfo& RegInfo = MF.getRegInfo();
6700 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6701 FuncInfo->DemoteRegister = SRetReg;
6702 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6703 SRetReg, ArgValue);
6704 DAG.setRoot(NewRoot);
6705
6706 // i indexes lowered arguments. Bump it past the hidden sret argument.
6707 // Idx indexes LLVM arguments. Don't touch it.
6708 ++i;
6709 }
6710
6711 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6712 ++I, ++Idx) {
6713 SmallVector<SDValue, 4> ArgValues;
6714 SmallVector<EVT, 4> ValueVTs;
6715 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6716 unsigned NumValues = ValueVTs.size();
6717
6718 // If this argument is unused then remember its value. It is used to generate
6719 // debugging information.
6720 if (I->use_empty() && NumValues)
6721 SDB->setUnusedArgValue(I, InVals[i]);
6722
6723 for (unsigned Val = 0; Val != NumValues; ++Val) {
6724 EVT VT = ValueVTs[Val];
6725 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6726 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6727
6728 if (!I->use_empty()) {
6729 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6730 if (F.paramHasAttr(Idx, Attribute::SExt))
6731 AssertOp = ISD::AssertSext;
6732 else if (F.paramHasAttr(Idx, Attribute::ZExt))
6733 AssertOp = ISD::AssertZext;
6734
6735 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6736 NumParts, PartVT, VT,
6737 AssertOp));
6738 }
6739
6740 i += NumParts;
6741 }
6742
6743 // We don't need to do anything else for unused arguments.
6744 if (ArgValues.empty())
6745 continue;
6746
6747 // Note down frame index.
6748 if (FrameIndexSDNode *FI =
6749 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6750 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6751
6752 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6753 SDB->getCurDebugLoc());
6754
6755 SDB->setValue(I, Res);
6756 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6757 if (LoadSDNode *LNode =
6758 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6759 if (FrameIndexSDNode *FI =
6760 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6761 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6762 }
6763
6764 // If this argument is live outside of the entry block, insert a copy from
6765 // wherever we got it to the vreg that other BB's will reference it as.
6766 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6767 // If we can, though, try to skip creating an unnecessary vreg.
6768 // FIXME: This isn't very clean... it would be nice to make this more
6769 // general. It's also subtly incompatible with the hacks FastISel
6770 // uses with vregs.
6771 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6772 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6773 FuncInfo->ValueMap[I] = Reg;
6774 continue;
6775 }
6776 }
6777 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6778 FuncInfo->InitializeRegForValue(I);
6779 SDB->CopyToExportRegsIfNeeded(I);
6780 }
6781 }
6782
6783 assert(i == InVals.size() && "Argument register count mismatch!");
6784
6785 // Finally, if the target has anything special to do, allow it to do so.
6786 // FIXME: this should insert code into the DAG!
6787 EmitFunctionEntryCode();
6788 }
6789
6790 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
6791 /// ensure constants are generated when needed. Remember the virtual registers
6792 /// that need to be added to the Machine PHI nodes as input. We cannot just
6793 /// directly add them, because expansion might result in multiple MBB's for one
6794 /// BB. As such, the start of the BB might correspond to a different MBB than
6795 /// the end.
6796 ///
6797 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)6798 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6799 const TerminatorInst *TI = LLVMBB->getTerminator();
6800
6801 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6802
6803 // Check successor nodes' PHI nodes that expect a constant to be available
6804 // from this block.
6805 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6806 const BasicBlock *SuccBB = TI->getSuccessor(succ);
6807 if (!isa<PHINode>(SuccBB->begin())) continue;
6808 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6809
6810 // If this terminator has multiple identical successors (common for
6811 // switches), only handle each succ once.
6812 if (!SuccsHandled.insert(SuccMBB)) continue;
6813
6814 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6815
6816 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6817 // nodes and Machine PHI nodes, but the incoming operands have not been
6818 // emitted yet.
6819 for (BasicBlock::const_iterator I = SuccBB->begin();
6820 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6821 // Ignore dead phi's.
6822 if (PN->use_empty()) continue;
6823
6824 // Skip empty types
6825 if (PN->getType()->isEmptyTy())
6826 continue;
6827
6828 unsigned Reg;
6829 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6830
6831 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6832 unsigned &RegOut = ConstantsOut[C];
6833 if (RegOut == 0) {
6834 RegOut = FuncInfo.CreateRegs(C->getType());
6835 CopyValueToVirtualRegister(C, RegOut);
6836 }
6837 Reg = RegOut;
6838 } else {
6839 DenseMap<const Value *, unsigned>::iterator I =
6840 FuncInfo.ValueMap.find(PHIOp);
6841 if (I != FuncInfo.ValueMap.end())
6842 Reg = I->second;
6843 else {
6844 assert(isa<AllocaInst>(PHIOp) &&
6845 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6846 "Didn't codegen value into a register!??");
6847 Reg = FuncInfo.CreateRegs(PHIOp->getType());
6848 CopyValueToVirtualRegister(PHIOp, Reg);
6849 }
6850 }
6851
6852 // Remember that this register needs to added to the machine PHI node as
6853 // the input for this MBB.
6854 SmallVector<EVT, 4> ValueVTs;
6855 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6856 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6857 EVT VT = ValueVTs[vti];
6858 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6859 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6860 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6861 Reg += NumRegisters;
6862 }
6863 }
6864 }
6865 ConstantsOut.clear();
6866 }
6867