• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMBaseInstrInfo.h"
19 #include "ARMRelocations.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/JITCodeEmitter.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #ifndef NDEBUG
39 #include <iomanip>
40 #endif
41 using namespace llvm;
42 
43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
44 
45 namespace {
46 
47   class ARMCodeEmitter : public MachineFunctionPass {
48     ARMJITInfo                *JTI;
49     const ARMBaseInstrInfo    *II;
50     const TargetData          *TD;
51     const ARMSubtarget        *Subtarget;
52     TargetMachine             &TM;
53     JITCodeEmitter            &MCE;
54     MachineModuleInfo *MMI;
55     const std::vector<MachineConstantPoolEntry> *MCPEs;
56     const std::vector<MachineJumpTableEntry> *MJTEs;
57     bool IsPIC;
58     bool IsThumb;
59 
getAnalysisUsage(AnalysisUsage & AU) const60     void getAnalysisUsage(AnalysisUsage &AU) const {
61       AU.addRequired<MachineModuleInfo>();
62       MachineFunctionPass::getAnalysisUsage(AU);
63     }
64 
65     static char ID;
66   public:
ARMCodeEmitter(TargetMachine & tm,JITCodeEmitter & mce)67     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68       : MachineFunctionPass(ID), JTI(0),
69         II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
70         TD(tm.getTargetData()), TM(tm),
71         MCE(mce), MCPEs(0), MJTEs(0),
72         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73 
74     /// getBinaryCodeForInstr - This function, generated by the
75     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76     /// machine instructions.
77     uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
78 
79     bool runOnMachineFunction(MachineFunction &MF);
80 
getPassName() const81     virtual const char *getPassName() const {
82       return "ARM Machine Code Emitter";
83     }
84 
85     void emitInstruction(const MachineInstr &MI);
86 
87   private:
88 
89     void emitWordLE(unsigned Binary);
90     void emitDWordLE(uint64_t Binary);
91     void emitConstantToMemory(unsigned CPI, const Constant *CV);
92     void emitConstPoolInstruction(const MachineInstr &MI);
93     void emitMOVi32immInstruction(const MachineInstr &MI);
94     void emitMOVi2piecesInstruction(const MachineInstr &MI);
95     void emitLEApcrelInstruction(const MachineInstr &MI);
96     void emitLEApcrelJTInstruction(const MachineInstr &MI);
97     void emitPseudoMoveInstruction(const MachineInstr &MI);
98     void addPCLabel(unsigned LabelID);
99     void emitPseudoInstruction(const MachineInstr &MI);
100     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
101                                     const MCInstrDesc &MCID,
102                                     const MachineOperand &MO,
103                                     unsigned OpIdx);
104 
105     unsigned getMachineSoImmOpValue(unsigned SoImm);
106     unsigned getAddrModeSBit(const MachineInstr &MI,
107                              const MCInstrDesc &MCID) const;
108 
109     void emitDataProcessingInstruction(const MachineInstr &MI,
110                                        unsigned ImplicitRd = 0,
111                                        unsigned ImplicitRn = 0);
112 
113     void emitLoadStoreInstruction(const MachineInstr &MI,
114                                   unsigned ImplicitRd = 0,
115                                   unsigned ImplicitRn = 0);
116 
117     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
118                                       unsigned ImplicitRn = 0);
119 
120     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
121 
122     void emitMulFrmInstruction(const MachineInstr &MI);
123 
124     void emitExtendInstruction(const MachineInstr &MI);
125 
126     void emitMiscArithInstruction(const MachineInstr &MI);
127 
128     void emitSaturateInstruction(const MachineInstr &MI);
129 
130     void emitBranchInstruction(const MachineInstr &MI);
131 
132     void emitInlineJumpTable(unsigned JTIndex);
133 
134     void emitMiscBranchInstruction(const MachineInstr &MI);
135 
136     void emitVFPArithInstruction(const MachineInstr &MI);
137 
138     void emitVFPConversionInstruction(const MachineInstr &MI);
139 
140     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
141 
142     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
143 
144     void emitMiscInstruction(const MachineInstr &MI);
145 
146     void emitNEONLaneInstruction(const MachineInstr &MI);
147     void emitNEONDupInstruction(const MachineInstr &MI);
148     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
149     void emitNEON2RegInstruction(const MachineInstr &MI);
150     void emitNEON3RegInstruction(const MachineInstr &MI);
151 
152     /// getMachineOpValue - Return binary encoding of operand. If the machine
153     /// operand requires relocation, record the relocation and return zero.
154     unsigned getMachineOpValue(const MachineInstr &MI,
155                                const MachineOperand &MO) const;
getMachineOpValue(const MachineInstr & MI,unsigned OpIdx) const156     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
157       return getMachineOpValue(MI, MI.getOperand(OpIdx));
158     }
159 
160     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
161     //  TableGen'erated getBinaryCodeForInstr() function to encode any
162     //  operand values, instead querying getMachineOpValue() directly for
163     //  each operand it needs to encode. Thus, any of the new encoder
164     //  helper functions can simply return 0 as the values the return
165     //  are already handled elsewhere. They are placeholders to allow this
166     //  encoder to continue to function until the MC encoder is sufficiently
167     //  far along that this one can be eliminated entirely.
NEONThumb2DataIPostEncoder(const MachineInstr & MI,unsigned Val) const168     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
169       const { return 0; }
NEONThumb2LoadStorePostEncoder(const MachineInstr & MI,unsigned Val) const170     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
171       const { return 0; }
NEONThumb2DupPostEncoder(const MachineInstr & MI,unsigned Val) const172     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
173       const { return 0; }
VFPThumb2PostEncoder(const MachineInstr & MI,unsigned Val) const174     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
175       const {
176       if (IsThumb) {
177         Val &= 0x0FFFFFFF;
178         Val |= 0xE0000000;
179       }
180       return Val;
181     }
getAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const182     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
183       const { return 0; }
getThumbAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const184     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
185       const { return 0; }
getThumbBLTargetOpValue(const MachineInstr & MI,unsigned Op) const186     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
187       const { return 0; }
getThumbBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const188     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
189       const { return 0; }
getThumbBRTargetOpValue(const MachineInstr & MI,unsigned Op) const190     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
191       const { return 0; }
getThumbBCCTargetOpValue(const MachineInstr & MI,unsigned Op) const192     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
193       const { return 0; }
getThumbCBTargetOpValue(const MachineInstr & MI,unsigned Op) const194     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
195       const { return 0; }
getBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const196     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
197       const { return 0; }
getUnconditionalBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const198     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
199       unsigned Op) const { return 0; }
getARMBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const200     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
201       const { return 0; }
getARMBLTargetOpValue(const MachineInstr & MI,unsigned Op) const202     unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
203       const { return 0; }
getARMBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const204     unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
205       const { return 0; }
getCCOutOpValue(const MachineInstr & MI,unsigned Op) const206     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
207       const { return 0; }
getSOImmOpValue(const MachineInstr & MI,unsigned Op) const208     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
209       const { return 0; }
getT2SOImmOpValue(const MachineInstr & MI,unsigned Op) const210     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
211       const { return 0; }
getSORegRegOpValue(const MachineInstr & MI,unsigned Op) const212     unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
213       const { return 0; }
getSORegImmOpValue(const MachineInstr & MI,unsigned Op) const214     unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
215       const { return 0; }
getThumbAddrModeRegRegOpValue(const MachineInstr & MI,unsigned Op) const216     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
217       const { return 0; }
getT2AddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const218     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
219       const { return 0; }
getT2AddrModeImm8OpValue(const MachineInstr & MI,unsigned Op) const220     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
221       const { return 0; }
getT2Imm8s4OpValue(const MachineInstr & MI,unsigned Op) const222     unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
223       const { return 0; }
getT2AddrModeImm8s4OpValue(const MachineInstr & MI,unsigned Op) const224     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
225       const { return 0; }
getT2AddrModeImm0_1020s4OpValue(const MachineInstr & MI,unsigned Op) const226     unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
227       const { return 0; }
getT2AddrModeImm8OffsetOpValue(const MachineInstr & MI,unsigned Op) const228     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
229       const { return 0; }
getT2AddrModeImm12OffsetOpValue(const MachineInstr & MI,unsigned Op) const230     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
231       const { return 0; }
getT2AddrModeSORegOpValue(const MachineInstr & MI,unsigned Op) const232     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
233       const { return 0; }
getT2SORegOpValue(const MachineInstr & MI,unsigned Op) const234     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
235       const { return 0; }
getT2AdrLabelOpValue(const MachineInstr & MI,unsigned Op) const236     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
237       const { return 0; }
getAddrMode6AddressOpValue(const MachineInstr & MI,unsigned Op) const238     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
239       const { return 0; }
getAddrMode6OneLane32AddressOpValue(const MachineInstr & MI,unsigned Op) const240     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
241                                                  unsigned Op)
242       const { return 0; }
getAddrMode6DupAddressOpValue(const MachineInstr & MI,unsigned Op) const243     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
244       const { return 0; }
getAddrMode6OffsetOpValue(const MachineInstr & MI,unsigned Op) const245     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
246       const { return 0; }
getBitfieldInvertedMaskOpValue(const MachineInstr & MI,unsigned Op) const247     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
248                                             unsigned Op) const { return 0; }
getSsatBitPosValue(const MachineInstr & MI,unsigned Op) const249     unsigned getSsatBitPosValue(const MachineInstr &MI,
250                                 unsigned Op) const { return 0; }
getLdStmModeOpValue(const MachineInstr & MI,unsigned OpIdx) const251     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
252       const {return 0; }
getLdStSORegOpValue(const MachineInstr & MI,unsigned OpIdx) const253     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
254       const { return 0; }
255 
getAddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const256     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
257       const {
258       // {17-13} = reg
259       // {12}    = (U)nsigned (add == '1', sub == '0')
260       // {11-0}  = imm12
261       const MachineOperand &MO  = MI.getOperand(Op);
262       const MachineOperand &MO1 = MI.getOperand(Op + 1);
263       if (!MO.isReg()) {
264         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
265         return 0;
266       }
267       unsigned Reg = getARMRegisterNumbering(MO.getReg());
268       int32_t Imm12 = MO1.getImm();
269       uint32_t Binary;
270       Binary = Imm12 & 0xfff;
271       if (Imm12 >= 0)
272         Binary |= (1 << 12);
273       Binary |= (Reg << 13);
274       return Binary;
275     }
276 
getHiLo16ImmOpValue(const MachineInstr & MI,unsigned Op) const277     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
278       const {
279       const MCInstrDesc &MCID = MI.getDesc();
280       const MachineOperand &MO = MI.getOperand(Op);
281 
282       unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
283                        ARM::reloc_arm_movw : ARM::reloc_arm_movt);
284 
285       if (!MO.isImm()) {
286         emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
287         return 0;
288       }
289       unsigned Imm16 = static_cast<unsigned>(MO.getImm());
290       return Imm16;
291     }
292 
getAddrMode2OpValue(const MachineInstr & MI,unsigned OpIdx) const293     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
294       const { return 0;}
getAddrMode2OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const295     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
296       const { return 0;}
getPostIdxRegOpValue(const MachineInstr & MI,unsigned OpIdx) const297     uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
298       const { return 0;}
getAddrMode3OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const299     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
300       const { return 0;}
getAddrMode3OpValue(const MachineInstr & MI,unsigned Op) const301     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
302       const { return 0; }
getAddrModeThumbSPOpValue(const MachineInstr & MI,unsigned Op) const303     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
304       const { return 0; }
getAddrModeSOpValue(const MachineInstr & MI,unsigned Op) const305     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
306       const { return 0; }
getAddrModeISOpValue(const MachineInstr & MI,unsigned Op) const307     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
308       const { return 0; }
getAddrModePCOpValue(const MachineInstr & MI,unsigned Op) const309     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
310       const { return 0; }
getAddrMode5OpValue(const MachineInstr & MI,unsigned Op) const311     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
312       // {12-9}  = reg
313       // {8}     = (U)nsigned (add == '1', sub == '0')
314       // {7-0}   = imm8
315       uint32_t Binary = 0;
316       const MachineOperand &MO  = MI.getOperand(Op);
317       uint32_t Reg = getMachineOpValue(MI, MO);
318       Binary |= (Reg << 9);
319 
320       // If there is a non-zero immediate offset, encode it.
321       if (MO.isReg()) {
322           const MachineOperand &MO1 = MI.getOperand(Op + 1);
323         if (uint32_t ImmOffs = ARM_AM::getAM5Offset(MO1.getImm())) {
324           if (ARM_AM::getAM5Op(MO1.getImm()) == ARM_AM::add)
325             Binary |= 1 << 8;
326           Binary |= ImmOffs & 0xff;
327           return Binary;
328         }
329       }
330 
331       // If immediate offset is omitted, default to +0.
332       Binary |= 1 << 8;
333       return Binary;
334     }
getNEONVcvtImm32OpValue(const MachineInstr & MI,unsigned Op) const335     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
336       const { return 0; }
337 
getRegisterListOpValue(const MachineInstr & MI,unsigned Op) const338     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
339       const { return 0; }
340 
getShiftRight8Imm(const MachineInstr & MI,unsigned Op) const341     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
342       const { return 0; }
getShiftRight16Imm(const MachineInstr & MI,unsigned Op) const343     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
344       const { return 0; }
getShiftRight32Imm(const MachineInstr & MI,unsigned Op) const345     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
346       const { return 0; }
getShiftRight64Imm(const MachineInstr & MI,unsigned Op) const347     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
348       const { return 0; }
349 
350     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
351     /// machine operand requires relocation, record the relocation and return
352     /// zero.
353     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
354                             unsigned Reloc);
355 
356     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
357     ///
358     unsigned getShiftOp(unsigned Imm) const ;
359 
360     /// Routines that handle operands which add machine relocations which are
361     /// fixed up by the relocation stage.
362     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
363                            bool MayNeedFarStub,  bool Indirect,
364                            intptr_t ACPV = 0) const;
365     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
366     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
367     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
368     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
369                                intptr_t JTBase = 0) const;
370   };
371 }
372 
373 char ARMCodeEmitter::ID = 0;
374 
375 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
376 /// code to the specified MCE object.
createARMJITCodeEmitterPass(ARMBaseTargetMachine & TM,JITCodeEmitter & JCE)377 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
378                                                 JITCodeEmitter &JCE) {
379   return new ARMCodeEmitter(TM, JCE);
380 }
381 
runOnMachineFunction(MachineFunction & MF)382 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
383   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
384           MF.getTarget().getRelocationModel() != Reloc::Static) &&
385          "JIT relocation model must be set to static or default!");
386   JTI = ((ARMBaseTargetMachine &)MF.getTarget()).getJITInfo();
387   II = (const ARMBaseInstrInfo *)MF.getTarget().getInstrInfo();
388   TD = MF.getTarget().getTargetData();
389   Subtarget = &TM.getSubtarget<ARMSubtarget>();
390   MCPEs = &MF.getConstantPool()->getConstants();
391   MJTEs = 0;
392   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
393   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
394   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
395   JTI->Initialize(MF, IsPIC);
396   MMI = &getAnalysis<MachineModuleInfo>();
397   MCE.setModuleInfo(MMI);
398 
399   do {
400     DEBUG(errs() << "JITTing function '"
401           << MF.getFunction()->getName() << "'\n");
402     MCE.startFunction(MF);
403     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
404          MBB != E; ++MBB) {
405       MCE.StartMachineBasicBlock(MBB);
406       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
407            I != E; ++I)
408         emitInstruction(*I);
409     }
410   } while (MCE.finishFunction(MF));
411 
412   return false;
413 }
414 
415 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
416 ///
getShiftOp(unsigned Imm) const417 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
418   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
419   default: llvm_unreachable("Unknown shift opc!");
420   case ARM_AM::asr: return 2;
421   case ARM_AM::lsl: return 0;
422   case ARM_AM::lsr: return 1;
423   case ARM_AM::ror:
424   case ARM_AM::rrx: return 3;
425   }
426 }
427 
428 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
429 /// machine operand requires relocation, record the relocation and return zero.
getMovi32Value(const MachineInstr & MI,const MachineOperand & MO,unsigned Reloc)430 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
431                                         const MachineOperand &MO,
432                                         unsigned Reloc) {
433   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
434       && "Relocation to this function should be for movt or movw");
435 
436   if (MO.isImm())
437     return static_cast<unsigned>(MO.getImm());
438   else if (MO.isGlobal())
439     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
440   else if (MO.isSymbol())
441     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
442   else if (MO.isMBB())
443     emitMachineBasicBlock(MO.getMBB(), Reloc);
444   else {
445 #ifndef NDEBUG
446     errs() << MO;
447 #endif
448     llvm_unreachable("Unsupported operand type for movw/movt");
449   }
450   return 0;
451 }
452 
453 /// getMachineOpValue - Return binary encoding of operand. If the machine
454 /// operand requires relocation, record the relocation and return zero.
getMachineOpValue(const MachineInstr & MI,const MachineOperand & MO) const455 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
456                                            const MachineOperand &MO) const {
457   if (MO.isReg())
458     return getARMRegisterNumbering(MO.getReg());
459   else if (MO.isImm())
460     return static_cast<unsigned>(MO.getImm());
461   else if (MO.isFPImm())
462     return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
463                       .bitcastToAPInt().getHiBits(32).getLimitedValue());
464   else if (MO.isGlobal())
465     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
466   else if (MO.isSymbol())
467     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
468   else if (MO.isCPI()) {
469     const MCInstrDesc &MCID = MI.getDesc();
470     // For VFP load, the immediate offset is multiplied by 4.
471     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
472       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
473     emitConstPoolAddress(MO.getIndex(), Reloc);
474   } else if (MO.isJTI())
475     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
476   else if (MO.isMBB())
477     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
478   else
479     llvm_unreachable("Unable to encode MachineOperand!");
480   return 0;
481 }
482 
483 /// emitGlobalAddress - Emit the specified address to the code stream.
484 ///
emitGlobalAddress(const GlobalValue * GV,unsigned Reloc,bool MayNeedFarStub,bool Indirect,intptr_t ACPV) const485 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
486                                        bool MayNeedFarStub, bool Indirect,
487                                        intptr_t ACPV) const {
488   MachineRelocation MR = Indirect
489     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
490                                            const_cast<GlobalValue *>(GV),
491                                            ACPV, MayNeedFarStub)
492     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
493                                const_cast<GlobalValue *>(GV), ACPV,
494                                MayNeedFarStub);
495   MCE.addRelocation(MR);
496 }
497 
498 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
499 /// be emitted to the current location in the function, and allow it to be PC
500 /// relative.
501 void ARMCodeEmitter::
emitExternalSymbolAddress(const char * ES,unsigned Reloc) const502 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
503   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
504                                                  Reloc, ES));
505 }
506 
507 /// emitConstPoolAddress - Arrange for the address of an constant pool
508 /// to be emitted to the current location in the function, and allow it to be PC
509 /// relative.
emitConstPoolAddress(unsigned CPI,unsigned Reloc) const510 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
511   // Tell JIT emitter we'll resolve the address.
512   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
513                                                     Reloc, CPI, 0, true));
514 }
515 
516 /// emitJumpTableAddress - Arrange for the address of a jump table to
517 /// be emitted to the current location in the function, and allow it to be PC
518 /// relative.
519 void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex,unsigned Reloc) const520 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
521   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
522                                                     Reloc, JTIndex, 0, true));
523 }
524 
525 /// emitMachineBasicBlock - Emit the specified address basic block.
emitMachineBasicBlock(MachineBasicBlock * BB,unsigned Reloc,intptr_t JTBase) const526 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
527                                            unsigned Reloc,
528                                            intptr_t JTBase) const {
529   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
530                                              Reloc, BB, JTBase));
531 }
532 
emitWordLE(unsigned Binary)533 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
534   DEBUG(errs() << "  0x";
535         errs().write_hex(Binary) << "\n");
536   MCE.emitWordLE(Binary);
537 }
538 
emitDWordLE(uint64_t Binary)539 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
540   DEBUG(errs() << "  0x";
541         errs().write_hex(Binary) << "\n");
542   MCE.emitDWordLE(Binary);
543 }
544 
emitInstruction(const MachineInstr & MI)545 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
546   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
547 
548   MCE.processDebugLoc(MI.getDebugLoc(), true);
549 
550   ++NumEmitted;  // Keep track of the # of mi's emitted
551   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
552   default: {
553     llvm_unreachable("Unhandled instruction encoding format!");
554   }
555   case ARMII::MiscFrm:
556     if (MI.getOpcode() == ARM::LEApcrelJT) {
557       // Materialize jumptable address.
558       emitLEApcrelJTInstruction(MI);
559       break;
560     }
561     llvm_unreachable("Unhandled instruction encoding!");
562   case ARMII::Pseudo:
563     emitPseudoInstruction(MI);
564     break;
565   case ARMII::DPFrm:
566   case ARMII::DPSoRegFrm:
567     emitDataProcessingInstruction(MI);
568     break;
569   case ARMII::LdFrm:
570   case ARMII::StFrm:
571     emitLoadStoreInstruction(MI);
572     break;
573   case ARMII::LdMiscFrm:
574   case ARMII::StMiscFrm:
575     emitMiscLoadStoreInstruction(MI);
576     break;
577   case ARMII::LdStMulFrm:
578     emitLoadStoreMultipleInstruction(MI);
579     break;
580   case ARMII::MulFrm:
581     emitMulFrmInstruction(MI);
582     break;
583   case ARMII::ExtFrm:
584     emitExtendInstruction(MI);
585     break;
586   case ARMII::ArithMiscFrm:
587     emitMiscArithInstruction(MI);
588     break;
589   case ARMII::SatFrm:
590     emitSaturateInstruction(MI);
591     break;
592   case ARMII::BrFrm:
593     emitBranchInstruction(MI);
594     break;
595   case ARMII::BrMiscFrm:
596     emitMiscBranchInstruction(MI);
597     break;
598   // VFP instructions.
599   case ARMII::VFPUnaryFrm:
600   case ARMII::VFPBinaryFrm:
601     emitVFPArithInstruction(MI);
602     break;
603   case ARMII::VFPConv1Frm:
604   case ARMII::VFPConv2Frm:
605   case ARMII::VFPConv3Frm:
606   case ARMII::VFPConv4Frm:
607   case ARMII::VFPConv5Frm:
608     emitVFPConversionInstruction(MI);
609     break;
610   case ARMII::VFPLdStFrm:
611     emitVFPLoadStoreInstruction(MI);
612     break;
613   case ARMII::VFPLdStMulFrm:
614     emitVFPLoadStoreMultipleInstruction(MI);
615     break;
616   case ARMII::VFPMiscFrm:
617     emitMiscInstruction(MI);
618     break;
619   // NEON instructions.
620   case ARMII::NGetLnFrm:
621   case ARMII::NSetLnFrm:
622     emitNEONLaneInstruction(MI);
623     break;
624   case ARMII::NDupFrm:
625     emitNEONDupInstruction(MI);
626     break;
627   case ARMII::N1RegModImmFrm:
628     emitNEON1RegModImmInstruction(MI);
629     break;
630   case ARMII::N2RegFrm:
631     emitNEON2RegInstruction(MI);
632     break;
633   case ARMII::N3RegFrm:
634     emitNEON3RegInstruction(MI);
635     break;
636   }
637   MCE.processDebugLoc(MI.getDebugLoc(), false);
638 }
639 
emitConstantToMemory(unsigned CPI,const Constant * C)640 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
641   DEBUG({
642       errs() << "  ** Constant pool #" << CPI << " @ "
643              << (void*)MCE.getCurrentPCValue() << " ";
644       if (const Function *F = dyn_cast<Function>(C))
645         errs() << F->getName();
646       else
647         errs() << *C;
648       errs() << '\n';
649     });
650 
651   switch (C->getValueID()) {
652   default: {
653     llvm_unreachable("Unable to handle this constantpool entry!");
654     break;
655   }
656   case Value::GlobalVariableVal: {
657     emitGlobalAddress(static_cast<const GlobalValue*>(C),
658                       ARM::reloc_arm_absolute, isa<Function>(C), false);
659     emitWordLE(0);
660     break;
661   }
662   case Value::ConstantIntVal: {
663     const ConstantInt *CI = static_cast<const ConstantInt*>(C);
664     uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
665     emitWordLE(Val);
666     break;
667   }
668   case Value::ConstantFPVal: {
669     const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
670     if (CFP->getType()->isFloatTy())
671       emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
672     else if (CFP->getType()->isDoubleTy())
673       emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
674     else {
675       llvm_unreachable("Unable to handle this constantpool entry!");
676     }
677     break;
678   }
679   case Value::ConstantArrayVal: {
680     const ConstantArray *CA = static_cast<const ConstantArray*>(C);
681     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
682       emitConstantToMemory(CPI, CA->getOperand(i));
683     break;
684   }
685   case Value::ConstantVectorVal:{
686     //FIXME:emit vector
687     const ConstantVector *CV = static_cast<const ConstantVector*>(C);
688     break;
689   }
690   }
691 
692   return;
693 }
694 
emitConstPoolInstruction(const MachineInstr & MI)695 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
696   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
697   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
698   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
699 
700   // Remember the CONSTPOOL_ENTRY address for later relocation.
701   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
702 
703   // Emit constpool island entry. In most cases, the actual values will be
704   // resolved and relocated after code emission.
705   if (MCPE.isMachineConstantPoolEntry()) {
706     ARMConstantPoolValue *ACPV =
707       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
708 
709     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
710           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
711 
712     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
713     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
714     if (GV) {
715       Reloc::Model RelocM = TM.getRelocationModel();
716       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
717                         isa<Function>(GV),
718                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
719                         (intptr_t)ACPV);
720     } else  {
721       const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
722       emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
723     }
724     emitWordLE(0);
725   } else {
726     emitConstantToMemory(CPI, MCPE.Val.ConstVal);
727   }
728 }
729 
emitMOVi32immInstruction(const MachineInstr & MI)730 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
731   const MachineOperand &MO0 = MI.getOperand(0);
732   const MachineOperand &MO1 = MI.getOperand(1);
733 
734   // Emit the 'movw' instruction.
735   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
736 
737   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
738 
739   // Set the conditional execution predicate.
740   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
741 
742   // Encode Rd.
743   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
744 
745   // Encode imm16 as imm4:imm12
746   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
747   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
748   emitWordLE(Binary);
749 
750   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
751   // Emit the 'movt' instruction.
752   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
753 
754   // Set the conditional execution predicate.
755   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
756 
757   // Encode Rd.
758   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
759 
760   // Encode imm16 as imm4:imm1, same as movw above.
761   Binary |= Hi16 & 0xFFF;
762   Binary |= ((Hi16 >> 12) & 0xF) << 16;
763   emitWordLE(Binary);
764 }
765 
emitMOVi2piecesInstruction(const MachineInstr & MI)766 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
767   const MachineOperand &MO0 = MI.getOperand(0);
768   const MachineOperand &MO1 = MI.getOperand(1);
769   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
770                                                   "Not a valid so_imm value!");
771   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
772   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
773 
774   // Emit the 'mov' instruction.
775   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
776 
777   // Set the conditional execution predicate.
778   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
779 
780   // Encode Rd.
781   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
782 
783   // Encode so_imm.
784   // Set bit I(25) to identify this is the immediate form of <shifter_op>
785   Binary |= 1 << ARMII::I_BitShift;
786   Binary |= getMachineSoImmOpValue(V1);
787   emitWordLE(Binary);
788 
789   // Now the 'orr' instruction.
790   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
791 
792   // Set the conditional execution predicate.
793   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
794 
795   // Encode Rd.
796   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
797 
798   // Encode Rn.
799   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
800 
801   // Encode so_imm.
802   // Set bit I(25) to identify this is the immediate form of <shifter_op>
803   Binary |= 1 << ARMII::I_BitShift;
804   Binary |= getMachineSoImmOpValue(V2);
805   emitWordLE(Binary);
806 }
807 
emitLEApcrelInstruction(const MachineInstr & MI)808 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
809   // It's basically add r, pc, (LCPI - $+8)
810   const MCInstrDesc &MCID = MI.getDesc();
811 
812   unsigned Binary = 0;
813 
814   // Set the conditional execution predicate
815   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
816 
817   // Encode S bit if MI modifies CPSR.
818   Binary |= getAddrModeSBit(MI, MCID);
819 
820   // Encode Rd.
821   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
822 
823   // Encode Rn which is PC.
824   Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
825 
826   // Encode the displacement which is a so_imm.
827   // Set bit I(25) to identify this is the immediate form of <shifter_op>
828   Binary |= 1 << ARMII::I_BitShift;
829   emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
830 
831   emitWordLE(Binary);
832 }
833 
emitLEApcrelJTInstruction(const MachineInstr & MI)834 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
835   // It's basically add r, pc, (LJTI - $+8)
836 
837   const MCInstrDesc &MCID = MI.getDesc();
838 
839   // Emit the 'add' instruction.
840   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
841 
842   // Set the conditional execution predicate
843   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
844 
845   // Encode S bit if MI modifies CPSR.
846   Binary |= getAddrModeSBit(MI, MCID);
847 
848   // Encode Rd.
849   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
850 
851   // Encode Rn which is PC.
852   Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
853 
854   // Encode the displacement.
855   Binary |= 1 << ARMII::I_BitShift;
856   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
857 
858   emitWordLE(Binary);
859 }
860 
emitPseudoMoveInstruction(const MachineInstr & MI)861 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
862   unsigned Opcode = MI.getDesc().Opcode;
863 
864   // Part of binary is determined by TableGn.
865   unsigned Binary = getBinaryCodeForInstr(MI);
866 
867   // Set the conditional execution predicate
868   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
869 
870   // Encode S bit if MI modifies CPSR.
871   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
872     Binary |= 1 << ARMII::S_BitShift;
873 
874   // Encode register def if there is one.
875   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
876 
877   // Encode the shift operation.
878   switch (Opcode) {
879   default: break;
880   case ARM::RRX:
881     // rrx
882     Binary |= 0x6 << 4;
883     break;
884   case ARM::MOVsrl_flag:
885     // lsr #1
886     Binary |= (0x2 << 4) | (1 << 7);
887     break;
888   case ARM::MOVsra_flag:
889     // asr #1
890     Binary |= (0x4 << 4) | (1 << 7);
891     break;
892   }
893 
894   // Encode register Rm.
895   Binary |= getMachineOpValue(MI, 1);
896 
897   emitWordLE(Binary);
898 }
899 
addPCLabel(unsigned LabelID)900 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
901   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
902         << (void*)MCE.getCurrentPCValue() << '\n');
903   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
904 }
905 
emitPseudoInstruction(const MachineInstr & MI)906 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
907   unsigned Opcode = MI.getDesc().Opcode;
908   switch (Opcode) {
909   default:
910     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
911   case ARM::B:
912     emitBranchInstruction(MI);
913     break;
914   case ARM::BR_JTr:
915   case ARM::BR_JTm:
916   case ARM::BR_JTadd:
917     emitMiscBranchInstruction(MI);
918     break;
919   case ARM::BX_CALL:
920   case ARM::BMOVPCRX_CALL: {
921     // First emit mov lr, pc
922     unsigned Binary = 0x01a0e00f;
923     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
924     emitWordLE(Binary);
925 
926     // and then emit the branch.
927     emitMiscBranchInstruction(MI);
928     break;
929   }
930   case TargetOpcode::INLINEASM: {
931     // We allow inline assembler nodes with empty bodies - they can
932     // implicitly define registers, which is ok for JIT.
933     if (MI.getOperand(0).getSymbolName()[0]) {
934       report_fatal_error("JIT does not support inline asm!");
935     }
936     break;
937   }
938   case TargetOpcode::PROLOG_LABEL:
939   case TargetOpcode::EH_LABEL:
940     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
941     break;
942   case TargetOpcode::IMPLICIT_DEF:
943   case TargetOpcode::KILL:
944     // Do nothing.
945     break;
946   case ARM::CONSTPOOL_ENTRY:
947     emitConstPoolInstruction(MI);
948     break;
949   case ARM::LDMIA_RET:
950     emitLoadStoreMultipleInstruction(MI);
951     break;
952   case ARM::PICADD: {
953     // Remember of the address of the PC label for relocation later.
954     addPCLabel(MI.getOperand(2).getImm());
955     // PICADD is just an add instruction that implicitly read pc.
956     emitDataProcessingInstruction(MI, 0, ARM::PC);
957     break;
958   }
959   case ARM::PICLDR:
960   case ARM::PICLDRB:
961   case ARM::PICSTR:
962   case ARM::PICSTRB: {
963     // Remember of the address of the PC label for relocation later.
964     addPCLabel(MI.getOperand(2).getImm());
965     // These are just load / store instructions that implicitly read pc.
966     emitLoadStoreInstruction(MI, 0, ARM::PC);
967     break;
968   }
969   case ARM::PICLDRH:
970   case ARM::PICLDRSH:
971   case ARM::PICLDRSB:
972   case ARM::PICSTRH: {
973     // Remember of the address of the PC label for relocation later.
974     addPCLabel(MI.getOperand(2).getImm());
975     // These are just load / store instructions that implicitly read pc.
976     emitMiscLoadStoreInstruction(MI, ARM::PC);
977     break;
978   }
979 
980   case ARM::MOVi32imm:
981     // Two instructions to materialize a constant.
982     if (Subtarget->hasV6T2Ops())
983       emitMOVi32immInstruction(MI);
984     else
985       emitMOVi2piecesInstruction(MI);
986     break;
987   case ARM::LEApcrel:
988     // Materialize constantpool index address.
989     emitLEApcrelInstruction(MI);
990     break;
991   case ARM::LEApcrelJT:
992     // Materialize jumptable address.
993     emitLEApcrelJTInstruction(MI);
994     break;
995   case ARM::RRX:
996   case ARM::MOVsrl_flag:
997   case ARM::MOVsra_flag:
998     emitPseudoMoveInstruction(MI);
999     break;
1000   }
1001 }
1002 
getMachineSoRegOpValue(const MachineInstr & MI,const MCInstrDesc & MCID,const MachineOperand & MO,unsigned OpIdx)1003 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
1004                                                 const MCInstrDesc &MCID,
1005                                                 const MachineOperand &MO,
1006                                                 unsigned OpIdx) {
1007   unsigned Binary = getMachineOpValue(MI, MO);
1008 
1009   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
1010   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
1011   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
1012 
1013   // Encode the shift opcode.
1014   unsigned SBits = 0;
1015   unsigned Rs = MO1.getReg();
1016   if (Rs) {
1017     // Set shift operand (bit[7:4]).
1018     // LSL - 0001
1019     // LSR - 0011
1020     // ASR - 0101
1021     // ROR - 0111
1022     // RRX - 0110 and bit[11:8] clear.
1023     switch (SOpc) {
1024     default: llvm_unreachable("Unknown shift opc!");
1025     case ARM_AM::lsl: SBits = 0x1; break;
1026     case ARM_AM::lsr: SBits = 0x3; break;
1027     case ARM_AM::asr: SBits = 0x5; break;
1028     case ARM_AM::ror: SBits = 0x7; break;
1029     case ARM_AM::rrx: SBits = 0x6; break;
1030     }
1031   } else {
1032     // Set shift operand (bit[6:4]).
1033     // LSL - 000
1034     // LSR - 010
1035     // ASR - 100
1036     // ROR - 110
1037     switch (SOpc) {
1038     default: llvm_unreachable("Unknown shift opc!");
1039     case ARM_AM::lsl: SBits = 0x0; break;
1040     case ARM_AM::lsr: SBits = 0x2; break;
1041     case ARM_AM::asr: SBits = 0x4; break;
1042     case ARM_AM::ror: SBits = 0x6; break;
1043     }
1044   }
1045   Binary |= SBits << 4;
1046   if (SOpc == ARM_AM::rrx)
1047     return Binary;
1048 
1049   // Encode the shift operation Rs or shift_imm (except rrx).
1050   if (Rs) {
1051     // Encode Rs bit[11:8].
1052     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
1053     return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
1054   }
1055 
1056   // Encode shift_imm bit[11:7].
1057   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
1058 }
1059 
getMachineSoImmOpValue(unsigned SoImm)1060 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
1061   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
1062   assert(SoImmVal != -1 && "Not a valid so_imm value!");
1063 
1064   // Encode rotate_imm.
1065   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
1066     << ARMII::SoRotImmShift;
1067 
1068   // Encode immed_8.
1069   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
1070   return Binary;
1071 }
1072 
getAddrModeSBit(const MachineInstr & MI,const MCInstrDesc & MCID) const1073 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
1074                                          const MCInstrDesc &MCID) const {
1075   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
1076     const MachineOperand &MO = MI.getOperand(i-1);
1077     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
1078       return 1 << ARMII::S_BitShift;
1079   }
1080   return 0;
1081 }
1082 
emitDataProcessingInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1083 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1084                                                    unsigned ImplicitRd,
1085                                                    unsigned ImplicitRn) {
1086   const MCInstrDesc &MCID = MI.getDesc();
1087 
1088   // Part of binary is determined by TableGn.
1089   unsigned Binary = getBinaryCodeForInstr(MI);
1090 
1091   if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
1092       emitWordLE(Binary);
1093       return;
1094   }
1095 
1096   // Set the conditional execution predicate
1097   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1098 
1099   // Encode S bit if MI modifies CPSR.
1100   Binary |= getAddrModeSBit(MI, MCID);
1101 
1102   // Encode register def if there is one.
1103   unsigned NumDefs = MCID.getNumDefs();
1104   unsigned OpIdx = 0;
1105   if (NumDefs)
1106     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1107   else if (ImplicitRd)
1108     // Special handling for implicit use (e.g. PC).
1109     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1110 
1111   if (MCID.Opcode == ARM::MOVi16) {
1112       // Get immediate from MI.
1113       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1114                       ARM::reloc_arm_movw);
1115       // Encode imm which is the same as in emitMOVi32immInstruction().
1116       Binary |= Lo16 & 0xFFF;
1117       Binary |= ((Lo16 >> 12) & 0xF) << 16;
1118       emitWordLE(Binary);
1119       return;
1120   } else if(MCID.Opcode == ARM::MOVTi16) {
1121       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1122                        ARM::reloc_arm_movt) >> 16);
1123       Binary |= Hi16 & 0xFFF;
1124       Binary |= ((Hi16 >> 12) & 0xF) << 16;
1125       emitWordLE(Binary);
1126       return;
1127   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1128       uint32_t v = ~MI.getOperand(2).getImm();
1129       int32_t lsb = CountTrailingZeros_32(v);
1130       int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1131       // Instr{20-16} = msb, Instr{11-7} = lsb
1132       Binary |= (msb & 0x1F) << 16;
1133       Binary |= (lsb & 0x1F) << 7;
1134       emitWordLE(Binary);
1135       return;
1136   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1137       // Encode Rn in Instr{0-3}
1138       Binary |= getMachineOpValue(MI, OpIdx++);
1139 
1140       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1141       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1142 
1143       // Instr{20-16} = widthm1, Instr{11-7} = lsb
1144       Binary |= (widthm1 & 0x1F) << 16;
1145       Binary |= (lsb & 0x1F) << 7;
1146       emitWordLE(Binary);
1147       return;
1148   }
1149 
1150   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1151   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1152     ++OpIdx;
1153 
1154   // Encode first non-shifter register operand if there is one.
1155   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1156   if (!isUnary) {
1157     if (ImplicitRn)
1158       // Special handling for implicit use (e.g. PC).
1159       Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1160     else {
1161       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1162       ++OpIdx;
1163     }
1164   }
1165 
1166   // Encode shifter operand.
1167   const MachineOperand &MO = MI.getOperand(OpIdx);
1168   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1169     // Encode SoReg.
1170     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1171     return;
1172   }
1173 
1174   if (MO.isReg()) {
1175     // Encode register Rm.
1176     emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1177     return;
1178   }
1179 
1180   // Encode so_imm.
1181   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1182 
1183   emitWordLE(Binary);
1184 }
1185 
emitLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1186 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1187                                               unsigned ImplicitRd,
1188                                               unsigned ImplicitRn) {
1189   const MCInstrDesc &MCID = MI.getDesc();
1190   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1191   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1192 
1193   // Part of binary is determined by TableGn.
1194   unsigned Binary = getBinaryCodeForInstr(MI);
1195 
1196   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1197   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1198       MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
1199       MI.getOpcode() == ARM::STRBi12) {
1200     emitWordLE(Binary);
1201     return;
1202   }
1203 
1204   if (MI.getOpcode() == ARM::BR_JTm)
1205     Binary = 0x710F000;
1206   else if (MI.getOpcode() == ARM::BR_JTr)
1207     Binary = 0x1A0F000;
1208 
1209   // Set the conditional execution predicate
1210   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1211 
1212   unsigned OpIdx = 0;
1213 
1214   // Operand 0 of a pre- and post-indexed store is the address base
1215   // writeback. Skip it.
1216   bool Skipped = false;
1217   if (IsPrePost && Form == ARMII::StFrm) {
1218     ++OpIdx;
1219     Skipped = true;
1220   }
1221 
1222   // Set first operand
1223   if (ImplicitRd)
1224     // Special handling for implicit use (e.g. PC).
1225     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1226   else
1227     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1228 
1229   // Set second operand
1230   if (ImplicitRn)
1231     // Special handling for implicit use (e.g. PC).
1232     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1233   else
1234     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1235 
1236   // If this is a two-address operand, skip it. e.g. LDR_PRE.
1237   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1238     ++OpIdx;
1239 
1240   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1241   unsigned AM2Opc = (ImplicitRn == ARM::PC)
1242     ? 0 : MI.getOperand(OpIdx+1).getImm();
1243 
1244   // Set bit U(23) according to sign of immed value (positive or negative).
1245   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1246              ARMII::U_BitShift);
1247   if (!MO2.getReg()) { // is immediate
1248     if (ARM_AM::getAM2Offset(AM2Opc))
1249       // Set the value of offset_12 field
1250       Binary |= ARM_AM::getAM2Offset(AM2Opc);
1251     emitWordLE(Binary);
1252     return;
1253   }
1254 
1255   // Set bit I(25), because this is not in immediate encoding.
1256   Binary |= 1 << ARMII::I_BitShift;
1257   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1258   // Set bit[3:0] to the corresponding Rm register
1259   Binary |= getARMRegisterNumbering(MO2.getReg());
1260 
1261   // If this instr is in scaled register offset/index instruction, set
1262   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1263   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1264     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1265     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1266   }
1267 
1268   emitWordLE(Binary);
1269 }
1270 
emitMiscLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRn)1271 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1272                                                   unsigned ImplicitRn) {
1273   const MCInstrDesc &MCID = MI.getDesc();
1274   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1275   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1276 
1277   // Part of binary is determined by TableGn.
1278   unsigned Binary = getBinaryCodeForInstr(MI);
1279 
1280   // Set the conditional execution predicate
1281   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1282 
1283   unsigned OpIdx = 0;
1284 
1285   // Operand 0 of a pre- and post-indexed store is the address base
1286   // writeback. Skip it.
1287   bool Skipped = false;
1288   if (IsPrePost && Form == ARMII::StMiscFrm) {
1289     ++OpIdx;
1290     Skipped = true;
1291   }
1292 
1293   // Set first operand
1294   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1295 
1296   // Skip LDRD and STRD's second operand.
1297   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1298     ++OpIdx;
1299 
1300   // Set second operand
1301   if (ImplicitRn)
1302     // Special handling for implicit use (e.g. PC).
1303     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1304   else
1305     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1306 
1307   // If this is a two-address operand, skip it. e.g. LDRH_POST.
1308   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1309     ++OpIdx;
1310 
1311   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1312   unsigned AM3Opc = (ImplicitRn == ARM::PC)
1313     ? 0 : MI.getOperand(OpIdx+1).getImm();
1314 
1315   // Set bit U(23) according to sign of immed value (positive or negative)
1316   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1317              ARMII::U_BitShift);
1318 
1319   // If this instr is in register offset/index encoding, set bit[3:0]
1320   // to the corresponding Rm register.
1321   if (MO2.getReg()) {
1322     Binary |= getARMRegisterNumbering(MO2.getReg());
1323     emitWordLE(Binary);
1324     return;
1325   }
1326 
1327   // This instr is in immediate offset/index encoding, set bit 22 to 1.
1328   Binary |= 1 << ARMII::AM3_I_BitShift;
1329   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1330     // Set operands
1331     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1332     Binary |= (ImmOffs & 0xF);                      // immedL
1333   }
1334 
1335   emitWordLE(Binary);
1336 }
1337 
getAddrModeUPBits(unsigned Mode)1338 static unsigned getAddrModeUPBits(unsigned Mode) {
1339   unsigned Binary = 0;
1340 
1341   // Set addressing mode by modifying bits U(23) and P(24)
1342   // IA - Increment after  - bit U = 1 and bit P = 0
1343   // IB - Increment before - bit U = 1 and bit P = 1
1344   // DA - Decrement after  - bit U = 0 and bit P = 0
1345   // DB - Decrement before - bit U = 0 and bit P = 1
1346   switch (Mode) {
1347   default: llvm_unreachable("Unknown addressing sub-mode!");
1348   case ARM_AM::da:                                     break;
1349   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1350   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1351   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1352   }
1353 
1354   return Binary;
1355 }
1356 
emitLoadStoreMultipleInstruction(const MachineInstr & MI)1357 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1358   const MCInstrDesc &MCID = MI.getDesc();
1359   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1360 
1361   // Part of binary is determined by TableGn.
1362   unsigned Binary = getBinaryCodeForInstr(MI);
1363 
1364   if (MCID.getOpcode() == ARM::LDMIA_RET) {
1365     IsUpdating = true;
1366     Binary |= 0x8B00000;
1367   }
1368 
1369   // Set the conditional execution predicate
1370   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1371 
1372   // Skip operand 0 of an instruction with base register update.
1373   unsigned OpIdx = 0;
1374   if (IsUpdating)
1375     ++OpIdx;
1376 
1377   // Set base address operand
1378   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1379 
1380   // Set addressing mode by modifying bits U(23) and P(24)
1381   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1382   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1383 
1384   // Set bit W(21)
1385   if (IsUpdating)
1386     Binary |= 0x1 << ARMII::W_BitShift;
1387 
1388   // Set registers
1389   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1390     const MachineOperand &MO = MI.getOperand(i);
1391     if (!MO.isReg() || MO.isImplicit())
1392       break;
1393     unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1394     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1395            RegNum < 16);
1396     Binary |= 0x1 << RegNum;
1397   }
1398 
1399   emitWordLE(Binary);
1400 }
1401 
emitMulFrmInstruction(const MachineInstr & MI)1402 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1403   const MCInstrDesc &MCID = MI.getDesc();
1404 
1405   // Part of binary is determined by TableGn.
1406   unsigned Binary = getBinaryCodeForInstr(MI);
1407 
1408   // Set the conditional execution predicate
1409   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1410 
1411   // Encode S bit if MI modifies CPSR.
1412   Binary |= getAddrModeSBit(MI, MCID);
1413 
1414   // 32x32->64bit operations have two destination registers. The number
1415   // of register definitions will tell us if that's what we're dealing with.
1416   unsigned OpIdx = 0;
1417   if (MCID.getNumDefs() == 2)
1418     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1419 
1420   // Encode Rd
1421   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1422 
1423   // Encode Rm
1424   Binary |= getMachineOpValue(MI, OpIdx++);
1425 
1426   // Encode Rs
1427   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1428 
1429   // Many multiple instructions (e.g. MLA) have three src operands. Encode
1430   // it as Rn (for multiply, that's in the same offset as RdLo.
1431   if (MCID.getNumOperands() > OpIdx &&
1432       !MCID.OpInfo[OpIdx].isPredicate() &&
1433       !MCID.OpInfo[OpIdx].isOptionalDef())
1434     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1435 
1436   emitWordLE(Binary);
1437 }
1438 
emitExtendInstruction(const MachineInstr & MI)1439 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1440   const MCInstrDesc &MCID = MI.getDesc();
1441 
1442   // Part of binary is determined by TableGn.
1443   unsigned Binary = getBinaryCodeForInstr(MI);
1444 
1445   // Set the conditional execution predicate
1446   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1447 
1448   unsigned OpIdx = 0;
1449 
1450   // Encode Rd
1451   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1452 
1453   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1454   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1455   if (MO2.isReg()) {
1456     // Two register operand form.
1457     // Encode Rn.
1458     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1459 
1460     // Encode Rm.
1461     Binary |= getMachineOpValue(MI, MO2);
1462     ++OpIdx;
1463   } else {
1464     Binary |= getMachineOpValue(MI, MO1);
1465   }
1466 
1467   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1468   if (MI.getOperand(OpIdx).isImm() &&
1469       !MCID.OpInfo[OpIdx].isPredicate() &&
1470       !MCID.OpInfo[OpIdx].isOptionalDef())
1471     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1472 
1473   emitWordLE(Binary);
1474 }
1475 
emitMiscArithInstruction(const MachineInstr & MI)1476 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1477   const MCInstrDesc &MCID = MI.getDesc();
1478 
1479   // Part of binary is determined by TableGn.
1480   unsigned Binary = getBinaryCodeForInstr(MI);
1481 
1482   // Set the conditional execution predicate
1483   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1484 
1485   // PKH instructions are finished at this point
1486   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1487     emitWordLE(Binary);
1488     return;
1489   }
1490 
1491   unsigned OpIdx = 0;
1492 
1493   // Encode Rd
1494   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1495 
1496   const MachineOperand &MO = MI.getOperand(OpIdx++);
1497   if (OpIdx == MCID.getNumOperands() ||
1498       MCID.OpInfo[OpIdx].isPredicate() ||
1499       MCID.OpInfo[OpIdx].isOptionalDef()) {
1500     // Encode Rm and it's done.
1501     Binary |= getMachineOpValue(MI, MO);
1502     emitWordLE(Binary);
1503     return;
1504   }
1505 
1506   // Encode Rn.
1507   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1508 
1509   // Encode Rm.
1510   Binary |= getMachineOpValue(MI, OpIdx++);
1511 
1512   // Encode shift_imm.
1513   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1514   if (MCID.Opcode == ARM::PKHTB) {
1515     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1516     if (ShiftAmt == 32)
1517       ShiftAmt = 0;
1518   }
1519   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1520   Binary |= ShiftAmt << ARMII::ShiftShift;
1521 
1522   emitWordLE(Binary);
1523 }
1524 
emitSaturateInstruction(const MachineInstr & MI)1525 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1526   const MCInstrDesc &MCID = MI.getDesc();
1527 
1528   // Part of binary is determined by TableGen.
1529   unsigned Binary = getBinaryCodeForInstr(MI);
1530 
1531   // Set the conditional execution predicate
1532   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1533 
1534   // Encode Rd
1535   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1536 
1537   // Encode saturate bit position.
1538   unsigned Pos = MI.getOperand(1).getImm();
1539   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1540     Pos -= 1;
1541   assert((Pos < 16 || (Pos < 32 &&
1542                        MCID.Opcode != ARM::SSAT16 &&
1543                        MCID.Opcode != ARM::USAT16)) &&
1544          "saturate bit position out of range");
1545   Binary |= Pos << 16;
1546 
1547   // Encode Rm
1548   Binary |= getMachineOpValue(MI, 2);
1549 
1550   // Encode shift_imm.
1551   if (MCID.getNumOperands() == 4) {
1552     unsigned ShiftOp = MI.getOperand(3).getImm();
1553     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1554     if (Opc == ARM_AM::asr)
1555       Binary |= (1 << 6);
1556     unsigned ShiftAmt = MI.getOperand(3).getImm();
1557     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1558       ShiftAmt = 0;
1559     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1560     Binary |= ShiftAmt << ARMII::ShiftShift;
1561   }
1562 
1563   emitWordLE(Binary);
1564 }
1565 
emitBranchInstruction(const MachineInstr & MI)1566 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1567   const MCInstrDesc &MCID = MI.getDesc();
1568 
1569   if (MCID.Opcode == ARM::TPsoft) {
1570     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1571   }
1572 
1573   // Part of binary is determined by TableGn.
1574   unsigned Binary = getBinaryCodeForInstr(MI);
1575 
1576   if (MCID.Opcode == ARM::B) {
1577     Binary = 0xEA000000;
1578   }
1579 
1580   // Set the conditional execution predicate
1581   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1582 
1583   // Set signed_immed_24 field
1584   Binary |= getMachineOpValue(MI, 0);
1585 
1586   emitWordLE(Binary);
1587 }
1588 
emitInlineJumpTable(unsigned JTIndex)1589 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1590   // Remember the base address of the inline jump table.
1591   uintptr_t JTBase = MCE.getCurrentPCValue();
1592   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1593   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1594                << '\n');
1595 
1596   // Now emit the jump table entries.
1597   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1598   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1599     if (IsPIC)
1600       // DestBB address - JT base.
1601       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1602     else
1603       // Absolute DestBB address.
1604       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1605     emitWordLE(0);
1606   }
1607 }
1608 
emitMiscBranchInstruction(const MachineInstr & MI)1609 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1610   const MCInstrDesc &MCID = MI.getDesc();
1611 
1612   // Handle jump tables.
1613   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1614     // First emit a ldr pc, [] instruction.
1615     emitDataProcessingInstruction(MI, ARM::PC);
1616 
1617     // Then emit the inline jump table.
1618     unsigned JTIndex =
1619       (MCID.Opcode == ARM::BR_JTr)
1620       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1621     emitInlineJumpTable(JTIndex);
1622     return;
1623   } else if (MCID.Opcode == ARM::BR_JTm) {
1624     // First emit a ldr pc, [] instruction.
1625     emitLoadStoreInstruction(MI, ARM::PC);
1626 
1627     // Then emit the inline jump table.
1628     emitInlineJumpTable(MI.getOperand(3).getIndex());
1629     return;
1630   }
1631 
1632   // Part of binary is determined by TableGn.
1633   unsigned Binary = getBinaryCodeForInstr(MI);
1634 
1635   // Set the conditional execution predicate
1636   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1637 
1638   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1639     // The return register is LR.
1640     Binary |= getARMRegisterNumbering(ARM::LR);
1641   else
1642     // otherwise, set the return register
1643     Binary |= getMachineOpValue(MI, 0);
1644 
1645   emitWordLE(Binary);
1646 }
1647 
encodeVFPRd(const MachineInstr & MI,unsigned OpIdx)1648 static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1649   unsigned RegD = MI.getOperand(OpIdx).getReg();
1650   unsigned Binary = 0;
1651   bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1652   RegD = getARMRegisterNumbering(RegD);
1653   if (!isSPVFP) {
1654     Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
1655     Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
1656   } else {
1657     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1658     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1659   }
1660   return Binary;
1661 }
1662 
encodeVFPRn(const MachineInstr & MI,unsigned OpIdx)1663 static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1664   unsigned RegN = MI.getOperand(OpIdx).getReg();
1665   unsigned Binary = 0;
1666   bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1667   RegN = getARMRegisterNumbering(RegN);
1668   if (!isSPVFP) {
1669     Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
1670     Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
1671   } else {
1672     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1673     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1674   }
1675   return Binary;
1676 }
1677 
encodeVFPRm(const MachineInstr & MI,unsigned OpIdx)1678 static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1679   unsigned RegM = MI.getOperand(OpIdx).getReg();
1680   unsigned Binary = 0;
1681   bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1682   RegM = getARMRegisterNumbering(RegM);
1683   if (!isSPVFP) {
1684     Binary |=  (RegM & 0x0F);
1685     Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
1686   } else {
1687     Binary |= ((RegM & 0x1E) >> 1);
1688     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1689   }
1690   return Binary;
1691 }
1692 
emitVFPArithInstruction(const MachineInstr & MI)1693 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1694   const MCInstrDesc &MCID = MI.getDesc();
1695 
1696   // Part of binary is determined by TableGn.
1697   unsigned Binary = getBinaryCodeForInstr(MI);
1698 
1699   // Set the conditional execution predicate
1700   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1701 
1702   unsigned OpIdx = 0;
1703 
1704   // Encode Dd / Sd.
1705   Binary |= encodeVFPRd(MI, OpIdx++);
1706 
1707   // If this is a two-address operand, skip it, e.g. FMACD.
1708   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1709     ++OpIdx;
1710 
1711   // Encode Dn / Sn.
1712   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1713     Binary |= encodeVFPRn(MI, OpIdx++);
1714 
1715   if (OpIdx == MCID.getNumOperands() ||
1716       MCID.OpInfo[OpIdx].isPredicate() ||
1717       MCID.OpInfo[OpIdx].isOptionalDef()) {
1718     // FCMPEZD etc. has only one operand.
1719     emitWordLE(Binary);
1720     return;
1721   }
1722 
1723   // Encode Dm / Sm.
1724   Binary |= encodeVFPRm(MI, OpIdx);
1725 
1726   emitWordLE(Binary);
1727 }
1728 
emitVFPConversionInstruction(const MachineInstr & MI)1729 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1730   const MCInstrDesc &MCID = MI.getDesc();
1731   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1732 
1733   // Part of binary is determined by TableGn.
1734   unsigned Binary = getBinaryCodeForInstr(MI);
1735 
1736   // Set the conditional execution predicate
1737   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1738 
1739   switch (Form) {
1740   default: break;
1741   case ARMII::VFPConv1Frm:
1742   case ARMII::VFPConv2Frm:
1743   case ARMII::VFPConv3Frm:
1744     // Encode Dd / Sd.
1745     Binary |= encodeVFPRd(MI, 0);
1746     break;
1747   case ARMII::VFPConv4Frm:
1748     // Encode Dn / Sn.
1749     Binary |= encodeVFPRn(MI, 0);
1750     break;
1751   case ARMII::VFPConv5Frm:
1752     // Encode Dm / Sm.
1753     Binary |= encodeVFPRm(MI, 0);
1754     break;
1755   }
1756 
1757   switch (Form) {
1758   default: break;
1759   case ARMII::VFPConv1Frm:
1760     // Encode Dm / Sm.
1761     Binary |= encodeVFPRm(MI, 1);
1762     break;
1763   case ARMII::VFPConv2Frm:
1764   case ARMII::VFPConv3Frm:
1765     // Encode Dn / Sn.
1766     Binary |= encodeVFPRn(MI, 1);
1767     break;
1768   case ARMII::VFPConv4Frm:
1769   case ARMII::VFPConv5Frm:
1770     // Encode Dd / Sd.
1771     Binary |= encodeVFPRd(MI, 1);
1772     break;
1773   }
1774 
1775   if (Form == ARMII::VFPConv5Frm)
1776     // Encode Dn / Sn.
1777     Binary |= encodeVFPRn(MI, 2);
1778   else if (Form == ARMII::VFPConv3Frm)
1779     // Encode Dm / Sm.
1780     Binary |= encodeVFPRm(MI, 2);
1781 
1782   emitWordLE(Binary);
1783 }
1784 
emitVFPLoadStoreInstruction(const MachineInstr & MI)1785 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1786   // Part of binary is determined by TableGn.
1787   unsigned Binary = getBinaryCodeForInstr(MI);
1788 
1789   // Set the conditional execution predicate
1790   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1791 
1792   if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
1793       MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
1794     emitWordLE(Binary);
1795     return;
1796   }
1797 
1798   unsigned OpIdx = 0;
1799 
1800   // Encode Dd / Sd.
1801   Binary |= encodeVFPRd(MI, OpIdx++);
1802 
1803   // Encode address base.
1804   const MachineOperand &Base = MI.getOperand(OpIdx++);
1805   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1806 
1807   // If there is a non-zero immediate offset, encode it.
1808   if (Base.isReg()) {
1809     const MachineOperand &Offset = MI.getOperand(OpIdx);
1810     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1811       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1812         Binary |= 1 << ARMII::U_BitShift;
1813       Binary |= ImmOffs;
1814       emitWordLE(Binary);
1815       return;
1816     }
1817   }
1818 
1819   // If immediate offset is omitted, default to +0.
1820   Binary |= 1 << ARMII::U_BitShift;
1821 
1822   emitWordLE(Binary);
1823 }
1824 
1825 void
emitVFPLoadStoreMultipleInstruction(const MachineInstr & MI)1826 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1827   const MCInstrDesc &MCID = MI.getDesc();
1828   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1829 
1830   // Part of binary is determined by TableGn.
1831   unsigned Binary = getBinaryCodeForInstr(MI);
1832 
1833   // Set the conditional execution predicate
1834   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1835 
1836   // Skip operand 0 of an instruction with base register update.
1837   unsigned OpIdx = 0;
1838   if (IsUpdating)
1839     ++OpIdx;
1840 
1841   // Set base address operand
1842   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1843 
1844   // Set addressing mode by modifying bits U(23) and P(24)
1845   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1846   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1847 
1848   // Set bit W(21)
1849   if (IsUpdating)
1850     Binary |= 0x1 << ARMII::W_BitShift;
1851 
1852   // First register is encoded in Dd.
1853   Binary |= encodeVFPRd(MI, OpIdx+2);
1854 
1855   // Count the number of registers.
1856   unsigned NumRegs = 1;
1857   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1858     const MachineOperand &MO = MI.getOperand(i);
1859     if (!MO.isReg() || MO.isImplicit())
1860       break;
1861     ++NumRegs;
1862   }
1863   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1864   // Otherwise, it will be 0, in the case of 32-bit registers.
1865   if(Binary & 0x100)
1866     Binary |= NumRegs * 2;
1867   else
1868     Binary |= NumRegs;
1869 
1870   emitWordLE(Binary);
1871 }
1872 
emitMiscInstruction(const MachineInstr & MI)1873 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1874   unsigned Opcode = MI.getDesc().Opcode;
1875   // Part of binary is determined by TableGn.
1876   unsigned Binary = getBinaryCodeForInstr(MI);
1877 
1878   if (Opcode == ARM::FCONSTS) {
1879     unsigned Imm = getMachineOpValue(MI, 1);
1880     Binary &= ~(0x780000 >> 19);
1881     Binary |= (Imm & 0x780000) >> 19;
1882     Binary &= ~(0x3800000 >> 7);
1883     Binary |= (Imm & 0x3800000) >> 7;
1884     Binary = VFPThumb2PostEncoder(MI, Binary);
1885   }
1886 
1887   // Set the conditional execution predicate
1888   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1889 
1890   emitWordLE(Binary);
1891 }
1892 
encodeNEONRd(const MachineInstr & MI,unsigned OpIdx)1893 static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1894   unsigned RegD = MI.getOperand(OpIdx).getReg();
1895   unsigned Binary = 0;
1896   RegD = getARMRegisterNumbering(RegD);
1897   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1898   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1899   return Binary;
1900 }
1901 
encodeNEONRn(const MachineInstr & MI,unsigned OpIdx)1902 static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1903   unsigned RegN = MI.getOperand(OpIdx).getReg();
1904   unsigned Binary = 0;
1905   RegN = getARMRegisterNumbering(RegN);
1906   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1907   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1908   return Binary;
1909 }
1910 
encodeNEONRm(const MachineInstr & MI,unsigned OpIdx)1911 static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1912   unsigned RegM = MI.getOperand(OpIdx).getReg();
1913   unsigned Binary = 0;
1914   RegM = getARMRegisterNumbering(RegM);
1915   Binary |= (RegM & 0xf);
1916   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1917   return Binary;
1918 }
1919 
1920 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1921 /// data-processing instruction to the corresponding Thumb encoding.
convertNEONDataProcToThumb(unsigned Binary)1922 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1923   assert((Binary & 0xfe000000) == 0xf2000000 &&
1924          "not an ARM NEON data-processing instruction");
1925   unsigned UBit = (Binary >> 24) & 1;
1926   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1927 }
1928 
emitNEONLaneInstruction(const MachineInstr & MI)1929 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1930   unsigned Binary = getBinaryCodeForInstr(MI);
1931 
1932   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1933   const MCInstrDesc &MCID = MI.getDesc();
1934   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1935     RegTOpIdx = 0;
1936     RegNOpIdx = 1;
1937     LnOpIdx = 2;
1938   } else { // ARMII::NSetLnFrm
1939     RegTOpIdx = 2;
1940     RegNOpIdx = 0;
1941     LnOpIdx = 3;
1942   }
1943 
1944   // Set the conditional execution predicate
1945   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1946 
1947   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1948   RegT = getARMRegisterNumbering(RegT);
1949   Binary |= (RegT << ARMII::RegRdShift);
1950   Binary |= encodeNEONRn(MI, RegNOpIdx);
1951 
1952   unsigned LaneShift;
1953   if ((Binary & (1 << 22)) != 0)
1954     LaneShift = 0; // 8-bit elements
1955   else if ((Binary & (1 << 5)) != 0)
1956     LaneShift = 1; // 16-bit elements
1957   else
1958     LaneShift = 2; // 32-bit elements
1959 
1960   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1961   unsigned Opc1 = Lane >> 2;
1962   unsigned Opc2 = Lane & 3;
1963   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1964   Binary |= (Opc1 << 21);
1965   Binary |= (Opc2 << 5);
1966 
1967   emitWordLE(Binary);
1968 }
1969 
emitNEONDupInstruction(const MachineInstr & MI)1970 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1971   unsigned Binary = getBinaryCodeForInstr(MI);
1972 
1973   // Set the conditional execution predicate
1974   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1975 
1976   unsigned RegT = MI.getOperand(1).getReg();
1977   RegT = getARMRegisterNumbering(RegT);
1978   Binary |= (RegT << ARMII::RegRdShift);
1979   Binary |= encodeNEONRn(MI, 0);
1980   emitWordLE(Binary);
1981 }
1982 
emitNEON1RegModImmInstruction(const MachineInstr & MI)1983 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1984   unsigned Binary = getBinaryCodeForInstr(MI);
1985   // Destination register is encoded in Dd.
1986   Binary |= encodeNEONRd(MI, 0);
1987   // Immediate fields: Op, Cmode, I, Imm3, Imm4
1988   unsigned Imm = MI.getOperand(1).getImm();
1989   unsigned Op = (Imm >> 12) & 1;
1990   unsigned Cmode = (Imm >> 8) & 0xf;
1991   unsigned I = (Imm >> 7) & 1;
1992   unsigned Imm3 = (Imm >> 4) & 0x7;
1993   unsigned Imm4 = Imm & 0xf;
1994   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1995   if (IsThumb)
1996     Binary = convertNEONDataProcToThumb(Binary);
1997   emitWordLE(Binary);
1998 }
1999 
emitNEON2RegInstruction(const MachineInstr & MI)2000 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
2001   const MCInstrDesc &MCID = MI.getDesc();
2002   unsigned Binary = getBinaryCodeForInstr(MI);
2003   // Destination register is encoded in Dd; source register in Dm.
2004   unsigned OpIdx = 0;
2005   Binary |= encodeNEONRd(MI, OpIdx++);
2006   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2007     ++OpIdx;
2008   Binary |= encodeNEONRm(MI, OpIdx);
2009   if (IsThumb)
2010     Binary = convertNEONDataProcToThumb(Binary);
2011   // FIXME: This does not handle VDUPfdf or VDUPfqf.
2012   emitWordLE(Binary);
2013 }
2014 
emitNEON3RegInstruction(const MachineInstr & MI)2015 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
2016   const MCInstrDesc &MCID = MI.getDesc();
2017   unsigned Binary = getBinaryCodeForInstr(MI);
2018   // Destination register is encoded in Dd; source registers in Dn and Dm.
2019   unsigned OpIdx = 0;
2020   Binary |= encodeNEONRd(MI, OpIdx++);
2021   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2022     ++OpIdx;
2023   Binary |= encodeNEONRn(MI, OpIdx++);
2024   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2025     ++OpIdx;
2026   Binary |= encodeNEONRm(MI, OpIdx);
2027   if (IsThumb)
2028     Binary = convertNEONDataProcToThumb(Binary);
2029   // FIXME: This does not handle VMOVDneon or VMOVQ.
2030   emitWordLE(Binary);
2031 }
2032 
2033 #include "ARMGenCodeEmitter.inc"
2034