• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BasicConstraintManager, a class that tracks simple
11 //  equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "llvm/Support/raw_ostream.h"
19 
20 using namespace clang;
21 using namespace ento;
22 
23 
24 namespace { class ConstNotEq {}; }
25 namespace { class ConstEq {}; }
26 
27 typedef llvm::ImmutableMap<SymbolRef,ProgramState::IntSetTy> ConstNotEqTy;
28 typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;
29 
30 static int ConstEqIndex = 0;
31 static int ConstNotEqIndex = 0;
32 
33 namespace clang {
34 namespace ento {
35 template<>
36 struct ProgramStateTrait<ConstNotEq> :
37   public ProgramStatePartialTrait<ConstNotEqTy> {
GDMIndexclang::ento::ProgramStateTrait38   static inline void *GDMIndex() { return &ConstNotEqIndex; }
39 };
40 
41 template<>
42 struct ProgramStateTrait<ConstEq> : public ProgramStatePartialTrait<ConstEqTy> {
GDMIndexclang::ento::ProgramStateTrait43   static inline void *GDMIndex() { return &ConstEqIndex; }
44 };
45 }
46 }
47 
48 namespace {
49 // BasicConstraintManager only tracks equality and inequality constraints of
50 // constants and integer variables.
51 class BasicConstraintManager
52   : public SimpleConstraintManager {
53   ProgramState::IntSetTy::Factory ISetFactory;
54 public:
BasicConstraintManager(ProgramStateManager & statemgr,SubEngine & subengine)55   BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine)
56     : SimpleConstraintManager(subengine),
57       ISetFactory(statemgr.getAllocator()) {}
58 
59   ProgramStateRef assumeSymNE(ProgramStateRef state,
60                                   SymbolRef sym,
61                                   const llvm::APSInt& V,
62                                   const llvm::APSInt& Adjustment);
63 
64   ProgramStateRef assumeSymEQ(ProgramStateRef state,
65                                   SymbolRef sym,
66                                   const llvm::APSInt& V,
67                                   const llvm::APSInt& Adjustment);
68 
69   ProgramStateRef assumeSymLT(ProgramStateRef state,
70                                   SymbolRef sym,
71                                   const llvm::APSInt& V,
72                                   const llvm::APSInt& Adjustment);
73 
74   ProgramStateRef assumeSymGT(ProgramStateRef state,
75                                   SymbolRef sym,
76                                   const llvm::APSInt& V,
77                                   const llvm::APSInt& Adjustment);
78 
79   ProgramStateRef assumeSymGE(ProgramStateRef state,
80                                   SymbolRef sym,
81                                   const llvm::APSInt& V,
82                                   const llvm::APSInt& Adjustment);
83 
84   ProgramStateRef assumeSymLE(ProgramStateRef state,
85                                   SymbolRef sym,
86                                   const llvm::APSInt& V,
87                                   const llvm::APSInt& Adjustment);
88 
89   ProgramStateRef AddEQ(ProgramStateRef state,
90                             SymbolRef sym,
91                             const llvm::APSInt& V);
92 
93   ProgramStateRef AddNE(ProgramStateRef state,
94                             SymbolRef sym,
95                             const llvm::APSInt& V);
96 
97   const llvm::APSInt* getSymVal(ProgramStateRef state,
98                                 SymbolRef sym) const;
99 
100   bool isNotEqual(ProgramStateRef state,
101                   SymbolRef sym,
102                   const llvm::APSInt& V) const;
103 
104   bool isEqual(ProgramStateRef state,
105                SymbolRef sym,
106                const llvm::APSInt& V) const;
107 
108   ProgramStateRef removeDeadBindings(ProgramStateRef state,
109                                          SymbolReaper& SymReaper);
110 
111   void print(ProgramStateRef state,
112              raw_ostream &Out,
113              const char* nl,
114              const char *sep);
115 };
116 
117 } // end anonymous namespace
118 
119 ConstraintManager*
CreateBasicConstraintManager(ProgramStateManager & statemgr,SubEngine & subengine)120 ento::CreateBasicConstraintManager(ProgramStateManager& statemgr,
121                                    SubEngine &subengine) {
122   return new BasicConstraintManager(statemgr, subengine);
123 }
124 
125 ProgramStateRef
assumeSymNE(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V,const llvm::APSInt & Adjustment)126 BasicConstraintManager::assumeSymNE(ProgramStateRef state,
127                                     SymbolRef sym,
128                                     const llvm::APSInt &V,
129                                     const llvm::APSInt &Adjustment) {
130   // First, determine if sym == X, where X+Adjustment != V.
131   llvm::APSInt Adjusted = V-Adjustment;
132   if (const llvm::APSInt* X = getSymVal(state, sym)) {
133     bool isFeasible = (*X != Adjusted);
134     return isFeasible ? state : NULL;
135   }
136 
137   // Second, determine if sym+Adjustment != V.
138   if (isNotEqual(state, sym, Adjusted))
139     return state;
140 
141   // If we reach here, sym is not a constant and we don't know if it is != V.
142   // Make that assumption.
143   return AddNE(state, sym, Adjusted);
144 }
145 
146 ProgramStateRef
assumeSymEQ(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V,const llvm::APSInt & Adjustment)147 BasicConstraintManager::assumeSymEQ(ProgramStateRef state,
148                                     SymbolRef sym,
149                                     const llvm::APSInt &V,
150                                     const llvm::APSInt &Adjustment) {
151   // First, determine if sym == X, where X+Adjustment != V.
152   llvm::APSInt Adjusted = V-Adjustment;
153   if (const llvm::APSInt* X = getSymVal(state, sym)) {
154     bool isFeasible = (*X == Adjusted);
155     return isFeasible ? state : NULL;
156   }
157 
158   // Second, determine if sym+Adjustment != V.
159   if (isNotEqual(state, sym, Adjusted))
160     return NULL;
161 
162   // If we reach here, sym is not a constant and we don't know if it is == V.
163   // Make that assumption.
164   return AddEQ(state, sym, Adjusted);
165 }
166 
167 // The logic for these will be handled in another ConstraintManager.
168 ProgramStateRef
assumeSymLT(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V,const llvm::APSInt & Adjustment)169 BasicConstraintManager::assumeSymLT(ProgramStateRef state,
170                                     SymbolRef sym,
171                                     const llvm::APSInt &V,
172                                     const llvm::APSInt &Adjustment) {
173   // Is 'V' the smallest possible value?
174   if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
175     // sym cannot be any value less than 'V'.  This path is infeasible.
176     return NULL;
177   }
178 
179   // FIXME: For now have assuming x < y be the same as assuming sym != V;
180   return assumeSymNE(state, sym, V, Adjustment);
181 }
182 
183 ProgramStateRef
assumeSymGT(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V,const llvm::APSInt & Adjustment)184 BasicConstraintManager::assumeSymGT(ProgramStateRef state,
185                                     SymbolRef sym,
186                                     const llvm::APSInt &V,
187                                     const llvm::APSInt &Adjustment) {
188   // Is 'V' the largest possible value?
189   if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
190     // sym cannot be any value greater than 'V'.  This path is infeasible.
191     return NULL;
192   }
193 
194   // FIXME: For now have assuming x > y be the same as assuming sym != V;
195   return assumeSymNE(state, sym, V, Adjustment);
196 }
197 
198 ProgramStateRef
assumeSymGE(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V,const llvm::APSInt & Adjustment)199 BasicConstraintManager::assumeSymGE(ProgramStateRef state,
200                                     SymbolRef sym,
201                                     const llvm::APSInt &V,
202                                     const llvm::APSInt &Adjustment) {
203   // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
204   if (const llvm::APSInt *X = getSymVal(state, sym)) {
205     bool isFeasible = (*X >= V-Adjustment);
206     return isFeasible ? state : NULL;
207   }
208 
209   // Sym is not a constant, but it is worth looking to see if V is the
210   // maximum integer value.
211   if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
212     llvm::APSInt Adjusted = V-Adjustment;
213 
214     // If we know that sym != V (after adjustment), then this condition
215     // is infeasible since there is no other value greater than V.
216     bool isFeasible = !isNotEqual(state, sym, Adjusted);
217 
218     // If the path is still feasible then as a consequence we know that
219     // 'sym+Adjustment == V' because there are no larger values.
220     // Add this constraint.
221     return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
222   }
223 
224   return state;
225 }
226 
227 ProgramStateRef
assumeSymLE(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V,const llvm::APSInt & Adjustment)228 BasicConstraintManager::assumeSymLE(ProgramStateRef state,
229                                     SymbolRef sym,
230                                     const llvm::APSInt &V,
231                                     const llvm::APSInt &Adjustment) {
232   // Reject a path if the value of sym is a constant X and !(X+Adj <= V).
233   if (const llvm::APSInt* X = getSymVal(state, sym)) {
234     bool isFeasible = (*X <= V-Adjustment);
235     return isFeasible ? state : NULL;
236   }
237 
238   // Sym is not a constant, but it is worth looking to see if V is the
239   // minimum integer value.
240   if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
241     llvm::APSInt Adjusted = V-Adjustment;
242 
243     // If we know that sym != V (after adjustment), then this condition
244     // is infeasible since there is no other value less than V.
245     bool isFeasible = !isNotEqual(state, sym, Adjusted);
246 
247     // If the path is still feasible then as a consequence we know that
248     // 'sym+Adjustment == V' because there are no smaller values.
249     // Add this constraint.
250     return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
251   }
252 
253   return state;
254 }
255 
AddEQ(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V)256 ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state,
257                                                   SymbolRef sym,
258                                              const llvm::APSInt& V) {
259   // Create a new state with the old binding replaced.
260   return state->set<ConstEq>(sym, &state->getBasicVals().getValue(V));
261 }
262 
AddNE(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V)263 ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
264                                                   SymbolRef sym,
265                                                   const llvm::APSInt& V) {
266 
267   // First, retrieve the NE-set associated with the given symbol.
268   ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
269   ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();
270 
271   // Now add V to the NE set.
272   S = ISetFactory.add(S, &state->getBasicVals().getValue(V));
273 
274   // Create a new state with the old binding replaced.
275   return state->set<ConstNotEq>(sym, S);
276 }
277 
getSymVal(ProgramStateRef state,SymbolRef sym) const278 const llvm::APSInt* BasicConstraintManager::getSymVal(ProgramStateRef state,
279                                                       SymbolRef sym) const {
280   const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
281   return T ? *T : NULL;
282 }
283 
isNotEqual(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V) const284 bool BasicConstraintManager::isNotEqual(ProgramStateRef state,
285                                         SymbolRef sym,
286                                         const llvm::APSInt& V) const {
287 
288   // Retrieve the NE-set associated with the given symbol.
289   const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
290 
291   // See if V is present in the NE-set.
292   return T ? T->contains(&state->getBasicVals().getValue(V)) : false;
293 }
294 
isEqual(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & V) const295 bool BasicConstraintManager::isEqual(ProgramStateRef state,
296                                      SymbolRef sym,
297                                      const llvm::APSInt& V) const {
298   // Retrieve the EQ-set associated with the given symbol.
299   const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
300   // See if V is present in the EQ-set.
301   return T ? **T == V : false;
302 }
303 
304 /// Scan all symbols referenced by the constraints. If the symbol is not alive
305 /// as marked in LSymbols, mark it as dead in DSymbols.
306 ProgramStateRef
removeDeadBindings(ProgramStateRef state,SymbolReaper & SymReaper)307 BasicConstraintManager::removeDeadBindings(ProgramStateRef state,
308                                            SymbolReaper& SymReaper) {
309 
310   ConstEqTy CE = state->get<ConstEq>();
311   ConstEqTy::Factory& CEFactory = state->get_context<ConstEq>();
312 
313   for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
314     SymbolRef sym = I.getKey();
315     if (SymReaper.maybeDead(sym))
316       CE = CEFactory.remove(CE, sym);
317   }
318   state = state->set<ConstEq>(CE);
319 
320   ConstNotEqTy CNE = state->get<ConstNotEq>();
321   ConstNotEqTy::Factory& CNEFactory = state->get_context<ConstNotEq>();
322 
323   for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
324     SymbolRef sym = I.getKey();
325     if (SymReaper.maybeDead(sym))
326       CNE = CNEFactory.remove(CNE, sym);
327   }
328 
329   return state->set<ConstNotEq>(CNE);
330 }
331 
print(ProgramStateRef state,raw_ostream & Out,const char * nl,const char * sep)332 void BasicConstraintManager::print(ProgramStateRef state,
333                                    raw_ostream &Out,
334                                    const char* nl, const char *sep) {
335   // Print equality constraints.
336 
337   ConstEqTy CE = state->get<ConstEq>();
338 
339   if (!CE.isEmpty()) {
340     Out << nl << sep << "'==' constraints:";
341     for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I)
342       Out << nl << " $" << I.getKey() << " : " << *I.getData();
343   }
344 
345   // Print != constraints.
346 
347   ConstNotEqTy CNE = state->get<ConstNotEq>();
348 
349   if (!CNE.isEmpty()) {
350     Out << nl << sep << "'!=' constraints:";
351 
352     for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
353       Out << nl << " $" << I.getKey() << " : ";
354       bool isFirst = true;
355 
356       ProgramState::IntSetTy::iterator J = I.getData().begin(),
357                                   EJ = I.getData().end();
358 
359       for ( ; J != EJ; ++J) {
360         if (isFirst) isFirst = false;
361         else Out << ", ";
362 
363         Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
364       }
365     }
366   }
367 }
368