• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BasicValueFactory, a class that manages the lifetime
11 //  of APSInt objects and symbolic constraints used by ExprEngine
12 //  and related classes.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
18 
19 using namespace clang;
20 using namespace ento;
21 
Profile(llvm::FoldingSetNodeID & ID,QualType T,llvm::ImmutableList<SVal> L)22 void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T,
23                               llvm::ImmutableList<SVal> L) {
24   T.Profile(ID);
25   ID.AddPointer(L.getInternalPointer());
26 }
27 
Profile(llvm::FoldingSetNodeID & ID,const StoreRef & store,const TypedValueRegion * region)28 void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID,
29                                   const StoreRef &store,
30                                   const TypedValueRegion *region) {
31   ID.AddPointer(store.getStore());
32   ID.AddPointer(region);
33 }
34 
35 typedef std::pair<SVal, uintptr_t> SValData;
36 typedef std::pair<SVal, SVal> SValPair;
37 
38 namespace llvm {
39 template<> struct FoldingSetTrait<SValData> {
Profilellvm::FoldingSetTrait40   static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
41     X.first.Profile(ID);
42     ID.AddPointer( (void*) X.second);
43   }
44 };
45 
46 template<> struct FoldingSetTrait<SValPair> {
Profilellvm::FoldingSetTrait47   static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
48     X.first.Profile(ID);
49     X.second.Profile(ID);
50   }
51 };
52 }
53 
54 typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> >
55   PersistentSValsTy;
56 
57 typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> >
58   PersistentSValPairsTy;
59 
~BasicValueFactory()60 BasicValueFactory::~BasicValueFactory() {
61   // Note that the dstor for the contents of APSIntSet will never be called,
62   // so we iterate over the set and invoke the dstor for each APSInt.  This
63   // frees an aux. memory allocated to represent very large constants.
64   for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
65     I->getValue().~APSInt();
66 
67   delete (PersistentSValsTy*) PersistentSVals;
68   delete (PersistentSValPairsTy*) PersistentSValPairs;
69 }
70 
getValue(const llvm::APSInt & X)71 const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
72   llvm::FoldingSetNodeID ID;
73   void *InsertPos;
74   typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
75 
76   X.Profile(ID);
77   FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
78 
79   if (!P) {
80     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
81     new (P) FoldNodeTy(X);
82     APSIntSet.InsertNode(P, InsertPos);
83   }
84 
85   return *P;
86 }
87 
getValue(const llvm::APInt & X,bool isUnsigned)88 const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
89                                                 bool isUnsigned) {
90   llvm::APSInt V(X, isUnsigned);
91   return getValue(V);
92 }
93 
getValue(uint64_t X,unsigned BitWidth,bool isUnsigned)94 const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
95                                            bool isUnsigned) {
96   llvm::APSInt V(BitWidth, isUnsigned);
97   V = X;
98   return getValue(V);
99 }
100 
getValue(uint64_t X,QualType T)101 const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
102 
103   unsigned bits = Ctx.getTypeSize(T);
104   llvm::APSInt V(bits,
105                  T->isUnsignedIntegerOrEnumerationType() || Loc::isLocType(T));
106   V = X;
107   return getValue(V);
108 }
109 
110 const CompoundValData*
getCompoundValData(QualType T,llvm::ImmutableList<SVal> Vals)111 BasicValueFactory::getCompoundValData(QualType T,
112                                       llvm::ImmutableList<SVal> Vals) {
113 
114   llvm::FoldingSetNodeID ID;
115   CompoundValData::Profile(ID, T, Vals);
116   void *InsertPos;
117 
118   CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
119 
120   if (!D) {
121     D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
122     new (D) CompoundValData(T, Vals);
123     CompoundValDataSet.InsertNode(D, InsertPos);
124   }
125 
126   return D;
127 }
128 
129 const LazyCompoundValData*
getLazyCompoundValData(const StoreRef & store,const TypedValueRegion * region)130 BasicValueFactory::getLazyCompoundValData(const StoreRef &store,
131                                           const TypedValueRegion *region) {
132   llvm::FoldingSetNodeID ID;
133   LazyCompoundValData::Profile(ID, store, region);
134   void *InsertPos;
135 
136   LazyCompoundValData *D =
137     LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
138 
139   if (!D) {
140     D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>();
141     new (D) LazyCompoundValData(store, region);
142     LazyCompoundValDataSet.InsertNode(D, InsertPos);
143   }
144 
145   return D;
146 }
147 
148 const llvm::APSInt*
evalAPSInt(BinaryOperator::Opcode Op,const llvm::APSInt & V1,const llvm::APSInt & V2)149 BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op,
150                              const llvm::APSInt& V1, const llvm::APSInt& V2) {
151 
152   switch (Op) {
153     default:
154       assert (false && "Invalid Opcode.");
155 
156     case BO_Mul:
157       return &getValue( V1 * V2 );
158 
159     case BO_Div:
160       return &getValue( V1 / V2 );
161 
162     case BO_Rem:
163       return &getValue( V1 % V2 );
164 
165     case BO_Add:
166       return &getValue( V1 + V2 );
167 
168     case BO_Sub:
169       return &getValue( V1 - V2 );
170 
171     case BO_Shl: {
172 
173       // FIXME: This logic should probably go higher up, where we can
174       // test these conditions symbolically.
175 
176       // FIXME: Expand these checks to include all undefined behavior.
177 
178       if (V2.isSigned() && V2.isNegative())
179         return NULL;
180 
181       uint64_t Amt = V2.getZExtValue();
182 
183       if (Amt > V1.getBitWidth())
184         return NULL;
185 
186       return &getValue( V1.operator<<( (unsigned) Amt ));
187     }
188 
189     case BO_Shr: {
190 
191       // FIXME: This logic should probably go higher up, where we can
192       // test these conditions symbolically.
193 
194       // FIXME: Expand these checks to include all undefined behavior.
195 
196       if (V2.isSigned() && V2.isNegative())
197         return NULL;
198 
199       uint64_t Amt = V2.getZExtValue();
200 
201       if (Amt > V1.getBitWidth())
202         return NULL;
203 
204       return &getValue( V1.operator>>( (unsigned) Amt ));
205     }
206 
207     case BO_LT:
208       return &getTruthValue( V1 < V2 );
209 
210     case BO_GT:
211       return &getTruthValue( V1 > V2 );
212 
213     case BO_LE:
214       return &getTruthValue( V1 <= V2 );
215 
216     case BO_GE:
217       return &getTruthValue( V1 >= V2 );
218 
219     case BO_EQ:
220       return &getTruthValue( V1 == V2 );
221 
222     case BO_NE:
223       return &getTruthValue( V1 != V2 );
224 
225       // Note: LAnd, LOr, Comma are handled specially by higher-level logic.
226 
227     case BO_And:
228       return &getValue( V1 & V2 );
229 
230     case BO_Or:
231       return &getValue( V1 | V2 );
232 
233     case BO_Xor:
234       return &getValue( V1 ^ V2 );
235   }
236 }
237 
238 
239 const std::pair<SVal, uintptr_t>&
getPersistentSValWithData(const SVal & V,uintptr_t Data)240 BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
241 
242   // Lazily create the folding set.
243   if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();
244 
245   llvm::FoldingSetNodeID ID;
246   void *InsertPos;
247   V.Profile(ID);
248   ID.AddPointer((void*) Data);
249 
250   PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);
251 
252   typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy;
253   FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
254 
255   if (!P) {
256     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
257     new (P) FoldNodeTy(std::make_pair(V, Data));
258     Map.InsertNode(P, InsertPos);
259   }
260 
261   return P->getValue();
262 }
263 
264 const std::pair<SVal, SVal>&
getPersistentSValPair(const SVal & V1,const SVal & V2)265 BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
266 
267   // Lazily create the folding set.
268   if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();
269 
270   llvm::FoldingSetNodeID ID;
271   void *InsertPos;
272   V1.Profile(ID);
273   V2.Profile(ID);
274 
275   PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);
276 
277   typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy;
278   FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
279 
280   if (!P) {
281     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
282     new (P) FoldNodeTy(std::make_pair(V1, V2));
283     Map.InsertNode(P, InsertPos);
284   }
285 
286   return P->getValue();
287 }
288 
getPersistentSVal(SVal X)289 const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
290   return &getPersistentSValWithData(X, 0).first;
291 }
292